Film grain reduction on colour images using undecimated wavelet transform


De Stefano, A., White, P.R. and Collis, W.B. (2004) Film grain reduction on colour images using undecimated wavelet transform. Image and Vision Computing, 22, (11), 873-882. (doi:10.1016/j.imavis.2004.04.002).

Download

Full text not available from this repository.

Description/Abstract

The presence of film grain often imposes the crucial quality choice between film enlargement and speed. In this work we present an automatic technique for reducing the amount of grain on film images. The technique reduces the noise by thresholding the wavelet components of the image with parameterised family of functions obtained with an initial training on a set of images. The training produces the parameters identifying the functions by optimising a cost function related to the image visual quality. The method has been tested on images contaminated by artificial and by real grain noise from two Kodak film makes. Being the main focus of this work on the grain reduction aspect rather than on the modelling side, we rely on a well known and state of the art software (Furnace) instead of producing a new noise model. The results demonstrate the efficiency of the method in reducing the grain noise and the ability of the technique in adapting the parameters to the noise level on each colour component. Another relevant characteristic of the method is its potential to be used for various different applications, class of images and type of noises just by modifying training set of images, cost function and shape of the thresholding functions.

Item Type: Article
ISSNs: 0262-8856 (print)
Related URLs:
Keywords: film grain, noise reduction
Subjects: Q Science > QC Physics
T Technology > TR Photography
Divisions: University Structure - Pre August 2011 > Institute of Sound and Vibration Research > Signal Processing and Control
ePrint ID: 11010
Date Deposited: 31 Mar 2005
Last Modified: 27 Mar 2014 18:03
URI: http://eprints.soton.ac.uk/id/eprint/11010

Actions (login required)

View Item View Item