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ABSTRACT

Models for small area estimation based on a random effects specification typically assume
population units in different areas are uncorrelated. However, they can be extended to account
for the correlation between areas by assuming that area random effects are spatially
correlated. In this paper we suggest a simple variance-covariance structure for such a spatial
correlation structure within the context of a linear model for the population characteristic of
interest, and derive estimates of parameters and components of variance using maximum
likelihood and restricted maximum likelihood methods. This allows empirical best linear
unbiased predictions for area totals to be computed for areas in sample as well as those that
are not in sample. An expression for the mean cross-product error (MCPE) matrix of these
predicted small area totals is derived, as is an estimator of this matrix. The estimation
approach described in the paper is then evaluated by a simulation study, which compares the

new method with other methods of small area estimation for this situation.
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Summary

Models for small area estimation based on a random effects specification typically assume
population units in different areas are uncorrelated. However, they can be extended to account
for the correlation between areas by assuming that area random effects are spatially
correlated. In this paper we suggest a simple variance-covariance structure for such a spatial
correlation structure within the context of a linear model for the population characteristic of
interest, and derive estimates of parameters and components of variance using maximum
likelihood and restricted maximum likelthood methods. This allows empirical best linear
unbiased predictions for area totals to be computed for areas in sample as well as those that
are not in sample. An expression for the mean cross-product error (MCPE) matrix of these
predicted small area totals is derived, as is an estimator of this matrix. The estimation
approach described in the paper is then evaluated by a simulation study, which compares the

new method with other methods of small area estimation for this situation.
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1. Introduction

Efficient estimation of population characteristics for sub-national domains is an important
objective for statistical surveys. In particular, geographically defined domains, e.g. regions,
states, counties, wards and metropolitan areas are often of interest. Estimates for these
domains based on the classical design-based approach to survey sampling inference are often
called direct estimates in the literature. However, sample sizes are typically small or even zero
within the domains/areas of interest, leading to large sampling variability for these direct
estimators. An alternative approach that is now widely used in small area estimation is the so-
called indirect or model-based approach. This uses auxiliary information for the small areas

of interest and has been characterized in the statistical literature as “borrowing strength” from

the relationship between the values of the response variables and the auxiliary information.

A flexible and popular way of borrowing strength is based on the application of mixed
models with area specific random effects (Rao, 2003), with estimation and inferences
typically carried out using empirical best linear unbiased prediction (EBLUP), see Prasad and
Rao (1990), Singh et al. (1998) and You and Rao (2000). In many applications, however,
there are no sample observations in some (often many) of the small areas of interest. Clearly,
direct estimates cannot be calculated for such out of sample areas. In contrast, model-based
estimates for such areas can be computed, but this is typically by making the clearly incorrect
assumption that the random effects for these areas are zero. If random effects are uncorrelated
between areas there seems to be no way around this problem because there is no area specific
sample information about an out of sample area that can be used to estimate its effect.
However, most small area boundaries are essentially arbitrary, and there appears to be no
good reason why population units just one side of such a boundary should not generally be
correlated with population units just on the other side. The implication of this observation is
that correlation between small area effects should be the norm, rather than the exception. That
is, small area models should allow for spatial correlation of area random effects. An
immediate benefit of using such models is that prediction of random area effects for out of
sample areas becomes straightforward. This paper therefore extends the EBLUP approach so
that estimates for areas in sample as well as those that are not in sample are calculated in a
consistent way. In order to do this, it assumes a linear mixed model with spatially correlated
area random effects.

In section 2 we define the spatially correlated linear mixed model and its associated
notation. Assuming the variance components of this model are known, we develop the

corresponding best linear unbiased predictors (BLUPs) for in sample and out of sample areas



in section 3. The corresponding EBLUPs are developed in section 4, based on use of
maximum likelihood and restricted maximum likelihood methods for estimating the variance
components. The mean cross-product errors matrix of the EBLUP estimator and an estimator
of this quantity are developed in section 5. Results from a simulation study of the
performance of the new method are then provided in section 6. Section 7 concludes the paper

with a discussion of potential avenues for further research.

2. Model Specification
Let the vector y={y,,i=1,...,N,;d =1,...,D} denote the N-vector of population values of

the survey variable of interest Y, where the subscripts d and i represent area and unit

respectively. Let x,, be a known vector of dimension p with first element equal to 1 that

corresponds to the auxiliary information for population unit 7 in area d. The population values

of this auxiliary are collected in the N X p matrix X. The objective then is to estimate the
value of the vector-valued parameter @ = Ay, where A is a known matrix. In order to do this,
we use a linear mixed model to characterise the relationship between the population values of
the survey variable and the auxiliary information. This is a model of the form

y=XB+Zu+e (1)
where P is a vector of regression coefficients (including an intercept) and u is the D-vector
of area random effects u,. Here Z denotes the incidence matrix for the random component

vector u, i.e. the matrix that “picks out” population units in different areas. The random vector

u is assumed to be a realisation from a multivariate normal distribution with zero mean vector
and variance-covariance matrix ¢-Q of the same order as the matrix Z . Note that Q = Q(A)
is a function of a parameter A . Similarly, the N-vector e is assumed to be independent of u
and normally distributed, with zero mean vector and variance-covariance matrix 6°W , where
W is a known square matrix of order N. The covariance matrix of y is then

0’(W+@ZQZ')= 0’ (2)
where p=0>/0".

After the sample is observed, the vector y can be partitioned as y=[y’ y,, y. 1, with

the subscripts of s and » corresponding to sample and non-sample population units
respectively. The subscripts rs and rr here refer to non-sample units in sample and non-

sample areas respectively. The model (1) can then be conformably partitioned as



yAY X‘Y ZS 0 eS XYB + Z.S‘uX + eS
u,

yrS = XVS ﬁ + ZI‘X 0 [ ’ } ers = XVSB + erus + ers (3)
u
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Similarly, the matrix A can be partitioned A :[ 0 0 A

}, allowing the vector-valued

parameter of interest @ = Ay to be written

Ay +A
9:[ Y Y}

4
Arryrr ( )

The term Ay, in (4) depends only on the sample values and is known after the sample is

observed. The terms Ay, and Ay, depend on non-sample values and are unknown. Our

estimated or predicted value of 0, say ) , 1s therefore

é = [A;Yyé' + Arsyrs:| _ [Asys + AVS(XVSB + Zr.YﬁS)

+ X.p+! 5)
rryrr Ar,- (erB + erur)

where a “hat” denotes an estimate of an unknown quantity.

3. Best Linear Unbiased Prediction

A widely used method for defining the estimates in (5) is via substitution of the corresponding
best linear unbiased estimators (for unknown parameters) and best linear unbiased predictors
(for unknown realisations of random variables). In what follows we do not distinguish
between theses two sorts of estimates, referring to both as “BLUPs”. Put /, equal to the log-
likelihood for B and o generated by y, given the value of the random component vector
u_, [, equal to the logarithm of the probability density of u, given the value of the random
component vector u_, /3 equal to the logarithm of the probability density function of random
component u, and set / =/, +1, +1,. The BLUPs of B, u, and u, are then the values of these

quantities where / is maximised (Henderson, 1950).

Q Q
In order to derive these BLUPs, let [ ’ "} be the partition of the variance-

covariance matrix £ corresponding to the dimensions of the in sample area random effects

u_ and the out of sample area random effects u_ respectively. Setting the partial derivatives
of [ with respect to B, u, and u, to zero and solving for these quantities then leads to the

BLUP estimating equations



B X/W.y,
i =V ZW'y, (6)
u 0
where
XWX XW,'Z, 0
V = Z;WY_IX Z;Wv_lzf + q)_lA _go_lAgzxrgzr_l 5
O _¢7IQI:IQYA ¢71(Q1 + Q}’-IQI'SAQW"Q;I)

A=(Q, -Q Q'Q )" and W, denotes the restriction of W to the sampled units. The BLUP

of 9 is then

é_[Asys +A,sy,.s}_ [Asys +A, (X, B+2,0,)

~ X.p! @)
Arryrr Arr (erB + erur)

The estimator (7) assumes the variance components ¢ and A are known. In practice

of course, this is hardly ever the case. We therefore need to estimate these parameters from
the sample data. Two standard ways of doing this are via maximum likelihood (ML) or via
restricted maximum likelihood (REML). The latter approach is usually preferable for small to

medium sample sizes.

4. Estimation of Variance Components
The variance components estimation method described below is based on that of Henderson

(1963, 1975). The approach uses initial estimates of the variances components ¢ and A to

calculate the BLUP estimates (6). These estimates are used in turn as starting values for an
iterative procedure that updates these initial estimates. This process is repeated to
convergence. This interrelationship between BLUP, ML and REML is discussed in Harville
(1977) and is investigated further in Thompson (1980), Fellner (1986, 1987) and Speed
(1990). Let

Vl 1 Vl 2 Vl 3 Tl 1 Tl 2 Tl 3
V=V, V, V,|landV'=| . T, T,
V3 1 V32 V33 . . T33

be the partitions of the matrix V and its inverse that correspond to the dimensions of B, u,
and u, . The iterative procedure used to obtain the ML estimates of ¢, A and o can be
specified as follows:

1. Assign initial values to the variance components ¢, A and ¢”.



2. Using the current values for these variance components, calculate €.

3. Calculate B, @i, and @, using (6).

4. Update 6> =n"'yW '(y. - XB-Z.1).

(v, v.T [ T
5. Calculate T, :[ 2 23} :{ 2 23}.

Vi, Vi T, T,

6. Update ¢ = D' (t(T,,Q )+ o w/Q'u,).

N

7. Check for convergence of the different estimates. If not return to step 2.
8. Update A= f(A,0,T,,,0°,1,) where fis the Newton-Raphson updating function for

this parameter, i.e. a function whose specification depends on the parameterization of
Q, and where current values for variance components are used in the right hand side
of this equation.

9. Return to step 2 and repeat the procedure until the values of the different parameters
converge.

At convergence the ML-based empirical best linear unbiased predictor (EBLUP) of 6 is

é = [A;Yyé' + Arsyrs:| _ [Asys + AVS(XVSB + Zr.YﬁS)

R S (8)
rryrr Ar,- (erB + erur)

where B, u, and G, are the final values of B, u_ and u,_ output by this iterative process.

Note that replacing T, by T, above leads to the REML estimates of the variance
components, and hence the REML-based EBLUP of 6.

5. Estimating the Mean Cross-Product Error (MCPE) Matrix
The EBLUP estimator (8), calculated either via ML or REML, has a prediction error of the

Arx (9rs - Yrs)

form@ —0 = [ N
Arr (yrr - yrr)

}. Its associated mean cross-product error (MCPE) matrix is

2 506 A, 0 Z. 0
MCPE(8)=E[(8-06)(6—-0)]. PutA,=[ 0 } X] =[X], X.]" and Z,=[ | }

A 0 Z

Without loss of generality we assume that the population values are ordered so that values
from the D, in sample areas precede the values from the D, = D - D, out of sample areas.

After some algebra, it can be shown that

MCPE(®) = M ;(@)+ M, (0)+ M, (@) + M ,(6*)+ M, (®) 9)



where MCPE(©) = My (®)+ My, (@)+ M, (®)+ M (6%) is the corresponding mean cross-
product error matrix of the BLUP estimator 0. Here M 5(@) and M, (o) measure the
uncertainty due to estimation of B and u; M 5.(®) 1s the covariance between the estimators of
B and u; M (®) measures the uncertainty due to estimation of the variance components
®=(0",p,\") and ME(GZ) is the uncertainty due to estimation of the error term. The
approximation (9) (without the M,(c?) term) is due to Kacker and Harville (1984) and is
discussed in Prasad and Rao (1990) and Datta and Lahiri (2000). Put X' =A X , Z =AZ_,
X =Z W 'X_ and y, =Z W.'y, . The components of (9) are then

My@)="XT,X, , M,(@)="ZTZ, , M,(6")=0’A,WA
and

M, (@)= -0 [X(X/Z,X,)'X'W, ZT'Z +ZTZW,'X (X'Z'X,) "X ].
The final component M ,(®) is a measure of the uncertainty due to estimation of the variance
components @ and is defined as follows. Put A=Z T, =[A], A},...,A, ] and let Z, be the
a " row of the matrix Z', so that dA_ /9y = d(Z,T.)/dy where y=(¢ A’Y . Then

M ()=oc’[tr(V, Z.V/B)]
where £, =Z'W'Z +@Z'W'ZQZ'W_'Z, and V,, is the first D, columns of the matrix
0A, /dy. Here B is the asymptotic variance-covariance matrix of the estimator of the
variance components vector Y. An estimate of MCPE matrix of the EBLUP 6 is therefore

MCPE®) = M 4(@)+ M, (@) + M, (®)+ M,(6%)+2M (@) (10)

where @ is the ML/REML estimate of the variance components vector . Note that the
multiplier of two for the last term on the right hand side of (10) follows because (see Datta

and Lahiri, 2000)

E(M,(®)=M, (0)-M,(®).

6. Simulation Results
In this section we present results from a simulation study of the EBLUP methodology
outlined above that focuses on estimating the small area totals for a survey variable Y, so

0 = Ay is the vector of these small area totals. The population values themselves were

generated from a linear mixed model with spatially correlated area random effects, defined by



v; =05+x,+u,+e,. (11)
The values e, were independently generated from a normal distribution with zero mean and
variance ¢~ . The values u= [u,,uy,....u, ,...,u;,]" were generated from a multivariate normal

distribution with zero mean vector and variance-covariance matrix

0,Q(2) = 0,[(I, - M)A, - AA)]" (12)
where I, is an identity matrix of order D and A is a spatial weight matrix. This is the SAR
or simultaneous autoregressive model (Cressie, 1993). The symmetric spatial weight matrix
A was made up of ones and zeros with A, =1 if areas i and j are considered “spatial
neighbours” and is zero otherwise. It was generated by randomly assigning “neighbours” to
each area in the population and was kept fixed for all simulations. The x, values were
generated from a uniform distribution between 0 and 1 and were also kept fixed throughout
the simulations. Values of y, were generated for D = 30 and D = 100 areas with 90
population units per area. Random samples of size n; were taken from each area, with n,
increasing with d. The first Dy = 25 (95) areas were taken to be in sample areas, with the
remaining D, = 5 areas considered as being out of sample areas. The sample data from the in

sample areas were used to estimate the model parameters via REML, and then estimates of all

30 (100) area totals for the y, were calculated. Note that under (12) the Newton-Raphson
updating equation for the parameter A is given by

A, = A, +bb,
where b, =-0.5[@ 'c70 (0Q" /D) a+ @ 'tr((0Q ' /OA)T,,) — tr((dQ ' /0A)Q)] and b, is

the (3, 3) element of the information matrix of the estimators 62, ¢ and 1.

We considered four ways of defining the small area estimates:

. [Ay +A X B
g | A AL P (13a)
AVI'XVVB

_Asys + Ars ()(ml?3 + erﬁs)_ (13b)
‘Arr)(rr[§

D>
Il

_Asys + Ars ()(ml?3 + erﬁs)_ (130)

Arr (XI'rB + erﬁr)

D>
Il

O0=Ay +A XB+Z1). (13d)



Here (13a) corresponds to a synthetic estimation procedure, where the mixed model defined
by (11) and (12) is first fitted to the sample data, but then estimation is carried out on the
basis that u; = 0 in every small area. In contrast, (13b) fits the model (11) to the sample data,
but forces A =0 in (12), i.e. this estimator assumes there is no spatial correlation among the
area effects. The estimator defined by (13c) corresponds to the EBLUP procedure defined
earlier in this paper, while (13d) serves as a benchmark since it assumes that sample data are
available from every small area (and so works with a larger sample size than the preceding
methods).

The process of generating population and sample data, estimation of model parameters

and calculation of (13a) — (13d) was independently replicated 2000 times. For each set of

estimates O and each small area d we then calculated the actual and average estimated mean
squared errors

2000
ActMSE, = diag, ( > (6,-9,)6,-8,)/ 2000)

k=1

k=1

2000
EstMSE, = diag, (2 MCPE@®,)/ 2000j

where diag,(X) denotes the d" element of the main diagonal of X. The actual coefficient of

variation

ActMSE,,

2000

)8, /2000

k=1

ActCV, =100 x

and the estimated coefficient of variation

EstMSE,,

2000

> 6, 12000
k=1

EstCV, =100 x

were then calculated, as was the average coverage of the area d total by the nominal 95%
confidence intervals defined by these estimated mean squared errors.

Nine different combinations of overall sample sizes and parameter values in (11) and
(12) were used in the simulations. These are denoted Parl — Par9 and are set out in Table 1.
Table 2 shows the average values of both the actual coefficient variation (4ctCV) and
estimated coefficient of variation (EstCV) for the estimators (13a) — (13d). These show that
for Method (13a) in particular, estimated CVs are far from their actual values, irrespective of
whether the areas concerned are in sample or out of sample. This problem persists, albeit in a

somewhat reduced form, with Method (13b), where now it is out of sample areas whose



estimated CVs tend to be far too optimistic. Both Method (13c) and Method (13d) — as one
would expect — perform much better in this regard, with estimated and actual CVs for both in
sample and out of sample areas under Method (13c) being very close. Note also that average
values of ActCV for Methods (13b) and (13c) in Table 2 are very similar for small values of

A, but indicate substantial gains in efficiency for (13c) for large values of 6> and 4. As

might be expected, these gains are more pronounced for large values of D.

Irrespective of potential increases in efficiency, an important gain from modelling the
spatial correlation of the area random effects is better estimation of mean squared error. This
is confirmed in Table 3 where we see that Method (13a) generally leads to severe
undercoverage because it is based on conditionally biased synthetic estimators. In contrast,
Method (13b) has good coverage for in sample areas, but poor coverage for out of sample
areas (even when there is no spatial correlation), reflecting its use of conditionally biased
synthetic estimators for these areas. There also seems to be some evidence that this coverage
gets worse as this spatial correlation increases. On the other hand, Method (13c¢) records
coverages very close to the nominal 95% level for in sample areas, and only slightly less for
out of sample areas. Furthermore, this overall good performance holds across all sets of
parameter values investigated, including where there is no spatial correlation. Note that larger

values of D also lead to better coverage performance.

7. Summary and Discussion
In this paper we describe a method for constructing the EBLUP for a small area total or mean
when there are no sample units in the area. In doing so, we assume a unit level linear model
with spatially correlated area effects defined by the SAR model (12). Our simulations indicate
that our proposed method has the potential to lead to substantial increases in prediction
efficiency for these areas when there is strong spatial correlation in the data. They also show
that the estimates of mean squared error calculated under the spatial model are much more
accurate than those based on the usual synthetic estimates that are often used for prediction in
out of sample areas. As a consequence, confidence intervals based on these estimates of mean
squared error tend to be more accurate, in the sense of achieving their nominal level of
coverage.

The analysis in this paper has been restricted to the linear mixed model (1) and
assumes the availability of unit level data. Many applications, however, are based on area

level data and/or non-linear mixed models, e.g. generalised linear mixed models. The



methodology outlined in this paper can be extended to these situations, and results from this

research will be published elsewhere.
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Table 1. Parameter sets used in the simulations. Note D; = number of in sample areas, D, =

number of out of sample areas and n is average sample size for in sample areas.

Set Parameter Values
n 02 0'5 A Ds D,

Parl 8.1 1 0.5 0.7 25 5
Par2 9.2 3 1.5 0.7 25 5
Par3 12.4 1 0.5 0.0 25 5
Par4 10.4 1 0.5 0.2 25 5
Par5 9.4 1 0.5 0.7 95 5
Par6 8.4 1 0.5 4 25 5
Par7 11.1 1 0.5 4 95 5
Par8 7.0 1 5 4 25 5
Par9 9.7 1 5 4 95 5




Table 2 Estimated coefficients of variation (EstCV) and actual coefficients of variation
(ActCV) for different methods of estimation, averaged over the small areas. Areas denotes the
small areas whose values are averaged, while Set denotes the set of parameter values used in

the simulation (see Table 1 for their definition).

Areas Set Method
(13a) (13b) (13¢c) (13d)
ActCV  EstCV  ActCV  EstCV  ActCV  EstCV  ActCV  EstCV
All Parl 84.49 36.59 40.29 31.37 40.92 40.78 31.75 32.04

Par2 139.8 61.04 6798 5287 69.07 69.67 53.08 53.57
Par3 77.06 29.43 4197 33.05 4296 4324 3328 33.85
Par4 73.33  28.66 36.02 2725 36.55 3695 27.67 27091
Par5 75.27 28.44 3507 3205 35.19 3540 3239 32.59
Par6 159.7 16.88 57.42 3833 3927 41.69 3020 31.11
Par7 82.80 10.75 34.12 2988 31.06 30.79 2841 28.18
Par8 591.69 36.7 1223  63.72 7441 75.62 4441 44.82
Par9 26796 13.65 4995 36.62 4443 4456 3544 3551
In Parl 83.07 36.08 33.87 33.80 3438 34.01 3397 34.29
sample  Par2 136.62 5992 57.01 5686 57.89 57.61 5723 57.76
Par3 75.35 2896 3563 3570 3640 3633 3599 36.61
Par4 71.89 28.23 2899 29.05 29.29 2939 29.18 2945
Par5 74.80 28.28 33.03 33.02 33.12 3327 33.07 33.28
Par6 160.34 16.53 3775 37.84 3286 33.55 32.01 33.06
Par7 81.92 10.69 30.68 30.66 28.98 287  28.88 28.64
Par8 613.06 36.74 50.16 51.79 49.07 53.57 4876 49.17
Par9  266.27 13.62 36.79 36.88 3632 3643 3629 36.37
Outof  Parl 91.59 39.16 7242 1922 73.63 74.61 20.68 20.8
sample Par2 155.72  66.62 122.82 3294 12499 129.99 3231 32.57
Par3 85.65 31.76 73.66 19.76  75.77 77.77 19.76  20.01
Par4 80.57 30.79 71.19 1827 7286 74.75 20.15 20.21
Par5 84.10 31.37 73.72 13.74 7443 7590 19.39 19.51
Par6 156.54 18.63 155.76 40.79 71.33 8238 21.16 21.37
Par7 99.55 11.89 99.51 15.16 70.67 70.63 19.56 19.46
Par8 484.82  36.51 483.00 12336 201.11 185.89 22.69 23.05
Par9 29996 1429 299.95 31.67 198.56 19895 19.14 19.21




Table 3 Coverage of nominal 95% confidence intervals (95%Coverage) generated by
different methods of estimation, averaged over the small areas. Areas denotes the set of small
areas whose values are being averaged, while Set denotes the set of parameter values used in

the simulation (see Table 1 for their definition).

Areas  Set 95%Coverage
(13a) (13b) (13¢) (13d)
All Parl 46.02 85.59 93.87 94.9
Par2 4691 8548 9422 9499
Par3 4192 8556 94.05 95.03
Pard 4353 85.44 9455 9493
Par5 37.16  91.68 9493 95.08
Par6 16.66 85.51 9538 95.51
Par7 19.95 91.31 94.77 94.75
Par8 10.05 85.03 95.65 95.13
Par9 8.09 91.11 95.04 95.03
In Parl 46.18 94.77 9420 94.87
sample Par2 47.11 94.68 94.44 9498
Par3 4220 94.70 9430 9497
Pard 4376 9476 9479 94.94
Par5 37.17 9492 9497 95.06
Par6 16.49 9526 9529 95.52
Par7  20.01 949 9478 94.76
Par8 9.66 9535 96.26 95.07
Par9 8.12 95.04 95.07 95.04
Out of Parl 4525 39.66 9223 95.04
sample Par2 4593 3948 93.13 95.05
Par3  40.56 39.86 92.77 95.37
Pard 4237 38.82 9331 94.88
Par5 37.05 30.03 94.16 95.44
Par6 1751 36.81 95.80 95.45
Par7 1896 2296 94.64 94.60
Par8 12.00 33.39 92.61 95.43
Par9 7.54 1649 9439 94.86




