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Summary

Models for small area estimation based on a random effects specification typically assume

population units in different areas are uncorrelated. However, they can be extended to account

for the correlation between areas by assuming that area random effects are spatially

correlated. In this paper we suggest a simple variance-covariance structure for such a spatial

correlation structure within the context of a linear model for the population characteristic of

interest, and derive estimates of parameters and components of variance using maximum

likelihood and restricted maximum likelihood methods. This allows empirical best linear

unbiased predictions for area totals to be computed for areas in sample as well as those that

are not in sample. An expression for the mean cross-product error (MCPE) matrix of these

predicted small area totals is derived, as is an estimator of this matrix. The estimation

approach described in the paper is then evaluated by a simulation study, which compares the

new method with other methods of small area estimation for this situation.
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1. Introduction

Efficient estimation of population characteristics for sub-national domains is an important

objective for statistical surveys. In particular, geographically defined domains, e.g. regions,

states, counties, wards and metropolitan areas are often of interest. Estimates for these

domains based on the classical design-based approach to survey sampling inference are often

called direct estimates in the literature. However, sample sizes are typically small or even zero

within the domains/areas of interest, leading to large sampling variability for these direct

estimators. An alternative approach that is now widely used in small area estimation is the so-

called indirect or model-based approach. This uses auxiliary information for the small areas

of interest and has been characterized in the statistical literature as ″borrowing strength” from

the relationship between the values of the response variables and the auxiliary information.

A flexible and popular way of borrowing strength is based on the application of mixed

models with area specific random effects (Rao, 2003), with estimation and inferences

typically carried out using empirical best linear unbiased prediction (EBLUP), see Prasad and

Rao (1990), Singh et al. (1998) and You and Rao (2000). In many applications, however,

there are no sample observations in some (often many) of the small areas of interest. Clearly,

direct estimates cannot be calculated for such out of sample areas. In contrast, model-based

estimates for such areas can be computed, but this is typically by making the clearly incorrect

assumption that the random effects for these areas are zero. If random effects are uncorrelated

between areas there seems to be no way around this problem because there is no area specific

sample information about an out of sample area that can be used to estimate its effect.

However, most small area boundaries are essentially arbitrary, and there appears to be no

good reason why population units just one side of such a boundary should not generally be

correlated with population units just on the other side. The implication of this observation is

that correlation between small area effects should be the norm, rather than the exception. That

is, small area models should allow for spatial correlation of area random effects. An

immediate benefit of using such models is that prediction of random area effects for out of

sample areas becomes straightforward. This paper therefore extends the EBLUP approach so

that estimates for areas in sample as well as those that are not in sample are calculated in a

consistent way. In order to do this, it assumes a linear mixed model with spatially correlated

area random effects.

In section 2 we define the spatially correlated linear mixed model and its associated

notation. Assuming the variance components of this model are known, we develop the

corresponding best linear unbiased predictors (BLUPs) for in sample and out of sample areas
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in section 3. The corresponding EBLUPs are developed in section 4, based on use of

maximum likelihood and restricted maximum likelihood methods for estimating the variance

components. The mean cross-product errors matrix of the EBLUP estimator and an estimator

of this quantity are developed in section 5. Results from a simulation study of the

performance of the new method are then provided in section 6. Section 7 concludes the paper

with a discussion of potential avenues for further research.

2. Model Specification

Let the vector  y = {ydi ,i = 1,…,Nd ;d = 1,…,D}  denote the N-vector of population values of

the survey variable of interest Y, where the subscripts d  and i represent area and unit

respectively. Let xdi  be a known vector of dimension p with first element equal to 1 that

corresponds to the auxiliary information for population unit i in area d. The population values

of this auxiliary are collected in the N × p  matrix X. The objective then is to estimate the

value of the vector-valued parameter θ = Ay , where A is a known matrix. In order to do this,

we use a linear mixed model to characterise the relationship between the population values of

the survey variable and the auxiliary information. This is a model of the form

y = Xβ + Zu + e (1)

where β  is a vector of regression coefficients (including an intercept) and u  is the D-vector

of area random effects ud . Here Z  denotes the incidence matrix for the random component

vector u, i.e. the matrix that “picks out” population units in different areas. The random vector

u is assumed to be a realisation from a multivariate normal distribution with zero mean vector

and variance-covariance matrix σ u
2Ω  of the same order as the matrix Z . Note that Ω = ΩΩ(λ)

is a function of a parameter λ . Similarly, the N-vector e  is assumed to be independent of u

and normally distributed, with zero mean vector and variance-covariance matrix σ 2W , where

W is a known square matrix of order N. The covariance matrix of y  is then

σ 2 (W + ϕZΩ ′Z ) = σ 2 Σ (2)

where ϕ = σ u
2 / σ 2 .

After the sample is observed, the vector y  can be partitioned as y = [ ′ys  ′yrs   ′yrr ′] , with

the subscripts of s and r corresponding to sample and non-sample population units

respectively. The subscripts rs and rr here refer to non-sample units in sample and non-

sample areas respectively. The model (1) can then be conformably partitioned as



4

ys
yrs
yrr

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
Xs

Xrs

Xrr

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

β +
Zs 0

Zrs 0

0 Zrr

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

us
ur

⎡

⎣
⎢

⎤

⎦
⎥ +

es
ers
err

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
Xsβ + Zsus + es
Xrsβ + Zrsus + ers
Xrrβ + Zrrur + err

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

(3)

Similarly, the matrix A can be partitioned A =
As Ars 0

0 0 Arr

⎡

⎣
⎢

⎤

⎦
⎥ , allowing the vector-valued

parameter of interest θ = Ay  to be written

θ =
Asys + Arsyrs
Arryrr

⎡

⎣
⎢

⎤

⎦
⎥ . (4)

The term Asys in (4) depends only on the sample values and is known after the sample is

observed. The terms Arsyrs  and Arryrr  depend on non-sample values and are unknown. Our

estimated or predicted value of θ , say θ̂ , is therefore

θ̂ =
Asys + Arsŷrs
Arr ŷrr

⎡

⎣
⎢

⎤

⎦
⎥ =

Asys + Ars (Xrsβ̂ + Zrsûs )

Arr (Xrrβ̂ + Zrrûr )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

(5)

where a “hat” denotes an estimate of an unknown quantity.

3. Best Linear Unbiased Prediction

A widely used method for defining the estimates in (5) is via substitution of the corresponding

best linear unbiased estimators (for unknown parameters) and best linear unbiased predictors

(for unknown realisations of random variables). In what follows we do not distinguish

between theses two sorts of estimates, referring to both as “BLUPs”. Put l1  equal to the log-

likelihood for β  and σ 2  generated by ys  given the value of the random component vector

us , l2 equal to the logarithm of the probability density of us  given the value of the random

component vector ur , l3 equal to the logarithm of the probability density function of random

component ur  and set l = l1 + l2 + l3 . The BLUPs of β , us  and ur  are then the values of these

quantities where l  is maximised (Henderson, 1950).

In order to derive these BLUPs, let 
Ωs Ωsr

Ωrs Ωr

⎡

⎣
⎢

⎤

⎦
⎥  be the partition of the variance-

covariance matrix Ω  corresponding to the dimensions of the in sample area random effects

us  and the out of sample area random effects ur  respectively. Setting the partial derivatives

of l  with respect to β , us  and ur  to zero and solving for these quantities then leads to the

BLUP estimating equations
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�β
�us
�ur

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

= V−1

′XsWs
−1ys

′ZsWs
−1ys
0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

(6)

where

V =
′XsWs

−1X ′XsWs
−1Zs 0

′ZsWs
−1X ′ZsWs

−1Zs + ϕ −1Λ −ϕ −1ΛΩsrΩr
-1

0 −ϕ −1Ωr
-1ΩrsΛ ϕ −1(Ωr

-1 + ΩΩr
-1ΩrsΛΩsrΩr

-1)

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

,

Λ = (Ωsr − ΩΩsrΩr
-1Ωrs )

−1  and Ws  denotes the restriction of W to the sampled units. The BLUP

of θ  is then

�θ =
Asys + Ars �yrs
Arr �yrr

⎡

⎣
⎢

⎤

⎦
⎥ =

Asys + Ars (Xrs
�β + Zrs �us )

Arr (Xrr
�β + Zrr �ur )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

. (7)

The estimator (7) assumes the variance components ϕ  and λ  are known. In practice

of course, this is hardly ever the case. We therefore need to estimate these parameters from

the sample data. Two standard ways of doing this are via maximum likelihood (ML) or via

restricted maximum likelihood (REML). The latter approach is usually preferable for small to

medium sample sizes.

4. Estimation of Variance Components

The variance components estimation method described below is based on that of Henderson

(1963, 1975). The approach uses initial estimates of the variances components ϕ  and λ  to

calculate the BLUP estimates (6). These estimates are used in turn as starting values for an

iterative procedure that updates these initial estimates. This process is repeated to

convergence. This interrelationship between BLUP, ML and REML is discussed in Harville

(1977) and is investigated further in Thompson (1980), Fellner (1986, 1987) and Speed

(1990). Let

V =
V11 V12 V13

V21 V22 V23

V31 V32 V33

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 and V−1 =
T11 T12 T13

. T22 T23

. . T33

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

be the partitions of the matrix V and its inverse that correspond to the dimensions of β , us

and ur . The iterative procedure used to obtain the ML estimates of ϕ , λ  and σ 2  can be

specified as follows:

1. Assign initial values to the variance components ϕ , λ  and σ 2 .
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2. Using the current values for these variance components, calculate Ω .

3. Calculate �β , �us  and �ur  using (6).

4. Update  σ
2 = n−1 ′ysWs

−1(ys − Xs
�β − Zs �us ) .

5. Calculate Ts
* =

V22 V23

V32 V33

⎡

⎣
⎢

⎤

⎦
⎥

−1

=
T22

* T23
*

T32
* T33

*

⎡

⎣
⎢

⎤

⎦
⎥ .

6. Update  ϕ = Ds
−1(tr(T22

* Ωs
−1) + σ −2 ′�usΩs

−1 �us ) .

7. Check for convergence of the different estimates. If not return to step 2.

8. Update λ = f (λ,ϕ,T22
* ,σ 2 , �us )  where f is the Newton-Raphson updating function for

this parameter, i.e. a function whose specification depends on the parameterization of

Ω , and where current values for variance components are used in the right hand side

of this equation.

9. Return to step 2 and repeat the procedure until the values of the different parameters

converge.

At convergence the ML-based empirical best linear unbiased predictor (EBLUP) of θ  is

θ̂ =
Asys + Arsŷrs
Arr ŷrr

⎡

⎣
⎢

⎤

⎦
⎥ =

Asys + Ars (Xrsβ̂ + Zrsûs )

Arr (Xrrβ̂ + Zrrûr )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

(8)

where β̂ , ûs  and ûr  are the final values of  
�β ,  �us  and  �ur  output by this iterative process.

Note that replacing Ts
*  by T22  above leads to the REML estimates of the variance

components, and hence the REML-based EBLUP of θ .

5. Estimating the Mean Cross-Product Error (MCPE) Matrix

The EBLUP estimator (8), calculated either via ML or REML, has a prediction error of the

form θ̂ − θθ =
Ars (ŷrs − yrs )
Arr (ŷrr − yrr )

⎡

⎣
⎢

⎤

⎦
⎥ . Its associated mean cross-product error (MCPE) matrix is

MCPE(θ̂) = E[(θ̂ − θθ)(θ̂ − θθ ′) ] . PutAr =
Ars 0

0 Arr

⎡

⎣
⎢

⎤

⎦
⎥ , ′Xr = [ ′Xrs   ′Xrs ′]  and Zr =

Zrs 0

0 Zrr

⎡

⎣
⎢

⎤

⎦
⎥ .

Without loss of generality we assume that the population values are ordered so that values

from the Ds in sample areas precede the values from the Dr = D - Ds out of sample areas.

After some algebra, it can be shown that

MCPE(θ̂) ≅ M β (ω) + M βu (ω) + Mu (ω) + Me(σ 2 ) + Mω (ω) (9)
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where MCPE(�θ) = M β (ω̂) + M βu (ω̂) + Mu (ω̂) + Me(σ̂ 2 )  is the corresponding mean cross-

product error matrix of the BLUP estimator �θ . Here M β (ω)  and Mu (ω)  measure the

uncertainty due to estimation of β  and u; M βu (ω)  is the covariance between the estimators of

β  and u ; Mω (ω)  measures the uncertainty due to estimation of the variance components

ω = (σ 2 ,ϕ, ′λ ′)  and Me(σ 2 )  is the uncertainty due to estimation of the error term. The

approximation (9) (without the Me(σ 2 )  term) is due to Kacker and Harville (1984) and is

discussed in Prasad and Rao (1990) and Datta and Lahiri (2000). Put Xr
* = ArXr , Zr

* = ArZr ,

Xs
* = ZsWs

−1Xs  and ys
* = ZsWs

−1ys . The components of (9) are then

M β (ω) = σ 2Xr
*T22Xr

*′ , Mu (ω) = σ 2Zr
*Ts

*Zr
*′ , Me(σ 2 ) = σ 2ArWr ′Ar

and

M βu (ω) = −σ 2[Xr
*( ′XsΣ s

−1Xs )
−1 ′XsWs

−1ZsTs
*Zr

*′ + Zr
*Ts

* ′ZsWs
−1Xs ( ′XsΣ s

−1Xs )
−1Xr

*′ ] .

The final component Mω (ω)  is a measure of the uncertainty due to estimation of the variance

components ω  and is defined as follows. Put ∆ = Zr
*Ts

* = [ ′∆1,  ′∆ 2 ,..., ′∆D ′]  and let Zα
*  be the

α th
 row of the matrix Zr

* , so that ∂∆∆α / ∂γγ = ∂(Zα
*Ts

*) / ∂γγ  where γ = (ϕ   ′λ ′) . Then

Mω (ω) = σ 2[tr(∇α Σ s
* ′∇ ′α B)]

where Σ s
* = ′ZsWs

−1Zs + ϕ ′ZsWs
−1ZsΩs ′ZsWs

−1Zs  and ∇α  is the first Ds columns of the matrix

∂∆∆α / ∂γγ . Here B  is the asymptotic variance-covariance matrix of the estimator of the

variance components vector γ . An estimate of MCPE matrix of the EBLUP ˆ θ  is therefore

 MCPE
�(θ̂) = M β (ω̂) + M βu (ω̂) + Mu (ω̂) + Me(σ̂ 2 ) + 2Mω (ω̂) (10)

where ω̂  is the ML/REML estimate of the variance components vector ω . Note that the

multiplier of two for the last term on the right hand side of (10) follows because (see Datta

and Lahiri, 2000)

E Mu (ω̂)( ) = Mu (ω) − Mω (ω) .

6. Simulation Results

In this section we present results from a simulation study of the EBLUP methodology

outlined above that focuses on estimating the small area totals for a survey variable Y, so

θ = Ay  is the vector of these small area totals. The population values themselves were

generated from a linear mixed model with spatially correlated area random effects, defined by
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ydi = 0.5 + xdi + ud + edi . (11)

The values edi  were independently generated from a normal distribution with zero mean and

variance σ 2 . The values u = [u1,u2 ,...,uDs
,...,uD ′]  were generated from a multivariate normal

distribution with zero mean vector and variance-covariance matrix

σ u
2Ω(λ) = σ u

2[(ID − λΛ)(ID − λ ′Λ )]−1 (12)

where ID  is an identity matrix of order D and Λ  is a spatial weight matrix. This is the SAR

or simultaneous autoregressive model (Cressie, 1993). The symmetric spatial weight matrix

Λ  was made up of ones and zeros with Λ ij = 1  if areas i and j are considered “spatial

neighbours” and is zero otherwise. It was generated by randomly assigning “neighbours” to

each area in the population and was kept fixed for all simulations. The xdi  values were

generated from a uniform distribution between 0 and 1 and were also kept fixed throughout

the simulations. Values of ydi  were generated for D  = 30 and D  = 100 areas with 90

population units per area. Random samples of size nd were taken from each area, with nd

increasing with d. The first Ds = 25 (95) areas were taken to be in sample areas, with the

remaining Dr = 5 areas considered as being out of sample areas. The sample data from the in

sample areas were used to estimate the model parameters via REML, and then estimates of all

30 (100) area totals for the ydi  were calculated. Note that under (12) the Newton-Raphson

updating equation for the parameter λ is given by

λk  =  λk−1 + b1b2

where  b1 = −0.5[ϕ −1σ −2 � ′u (∂ΩΩ −1 / ∂λ)�u + ϕ −1tr((∂ΩΩ −1 / ∂λ)T22
* ) − tr((∂ΩΩ −1 / ∂λ)Ω)]  and b2  is

the (3, 3) element of the information matrix of the estimators σ̂ 2 , ϕ̂  and λ̂ .

We considered four ways of defining the small area estimates:

θ̂ =
Asys + ArsXrsβ̂

ArrXrrβ̂

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

(13a)

θ̂ =
Asys + Ars (Xrsβ̂ + Zrsûs )

ArrXrrβ̂

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

(13b)

θ̂ =
Asys + Ars (Xrsβ̂ + Zrsûs )

Arr (Xrrβ̂ + Zrrûr )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

(13c)

θ̂ = Asys + Ar (Xrβ̂ + Zrû) . (13d)
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Here (13a) corresponds to a synthetic estimation procedure, where the mixed model defined

by (11) and (12) is first fitted to the sample data, but then estimation is carried out on the

basis that ud = 0 in every small area. In contrast, (13b) fits the model (11) to the sample data,

but forces λ = 0  in (12), i.e. this estimator assumes there is no spatial correlation among the

area effects. The estimator defined by (13c) corresponds to the EBLUP procedure defined

earlier in this paper, while (13d) serves as a benchmark since it assumes that sample data are

available from every small area (and so works with a larger sample size than the preceding

methods).

The process of generating population and sample data, estimation of model parameters

and calculation of (13a) – (13d) was independently replicated 2000 times. For each set of

estimates θ̂  and each small area d we then calculated the actual and average estimated mean

squared errors

ActMSEd = diagd (θ̂k − θθk )(θ̂k − θθk ′)
k=1

2000

∑ / 2000
⎛
⎝⎜

⎞
⎠⎟

EstMSEd = diagd MCPE�(θ̂k )
k=1

2000

∑ / 2000
⎛
⎝⎜

⎞
⎠⎟

where diagd (X)  denotes the dth
 element of the main diagonal of X. The actual coefficient of

variation

ActCVd = 100 ×
ActMSEd

θdk / 2000
k=1

2000

∑

and the estimated coefficient of variation

EstCVd = 100 ×
EstMSEd

θ̂dk / 2000
k=1

2000

∑

were then calculated, as was the average coverage of the area d total by the nominal 95%

confidence intervals defined by these estimated mean squared errors.

Nine different combinations of overall sample sizes and parameter values in (11) and

(12) were used in the simulations. These are denoted Par1 – Par9 and are set out in Table 1.

Table 2 shows the average values of both the actual coefficient variation (ActCV) and

estimated coefficient of variation (EstCV) for the estimators (13a) – (13d). These show that

for Method (13a) in particular, estimated CVs are far from their actual values, irrespective of

whether the areas concerned are in sample or out of sample. This problem persists, albeit in a

somewhat reduced form, with Method (13b), where now it is out of sample areas whose
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estimated CVs tend to be far too optimistic. Both Method (13c) and Method (13d) – as one

would expect – perform much better in this regard, with estimated and actual CVs for both in

sample and out of sample areas under Method (13c) being very close. Note also that average

values of ActCV for Methods (13b) and (13c) in Table 2 are very similar for small values of

λ , but indicate substantial gains in efficiency for (13c) for large values of σ u
2  and λ . As

might be expected, these gains are more pronounced for large values of D.

Irrespective of potential increases in efficiency, an important gain from modelling the

spatial correlation of the area random effects is better estimation of mean squared error. This

is confirmed in Table 3 where we see that Method (13a) generally leads to severe

undercoverage because it is based on conditionally biased synthetic estimators. In contrast,

Method (13b) has good coverage for in sample areas, but poor coverage for out of sample

areas (even when there is no spatial correlation), reflecting its use of conditionally biased

synthetic estimators for these areas. There also seems to be some evidence that this coverage

gets worse as this spatial correlation increases. On the other hand, Method (13c) records

coverages very close to the nominal 95% level for in sample areas, and only slightly less for

out of sample areas. Furthermore, this overall good performance holds across all sets of

parameter values investigated, including where there is no spatial correlation. Note that larger

values of D also lead to better coverage performance.

7. Summary and Discussion

In this paper we describe a method for constructing the EBLUP for a small area total or mean

when there are no sample units in the area. In doing so, we assume a unit level linear model

with spatially correlated area effects defined by the SAR model (12). Our simulations indicate

that our proposed method has the potential to lead to substantial increases in prediction

efficiency for these areas when there is strong spatial correlation in the data. They also show

that the estimates of mean squared error calculated under the spatial model are much more

accurate than those based on the usual synthetic estimates that are often used for prediction in

out of sample areas. As a consequence, confidence intervals based on these estimates of mean

squared error tend to be more accurate, in the sense of achieving their nominal level of

coverage.

The analysis in this paper has been restricted to the linear mixed model (1) and

assumes the availability of unit level data. Many applications, however, are based on area

level data and/or non-linear mixed models, e.g. generalised linear mixed models. The
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methodology outlined in this paper can be extended to these situations, and results from this

research will be published elsewhere.

References

Cressie, N. (1993). Statistics for Spatial Data. New York: John Wiley.

Datta, G.S. and Lahiri, P. (2000). A unified measure of uncertainty of estimated best linear

unbiased predictors in small area estimation problems. Statistica Sinica 10, 613 – 627.

Fellner, W.H. (1986). Robust estimation of variance components. Technometrics 28, 51 – 60

Fellner, W.H. (1987). Spare matrices, and the estimation of variance components by

likelihood methods. Communication in Statistics and Simulation. 16, 439 – 463

Harville, D.A. (1977). Maximum likelihood approaches to variance component estimation

and to related problems. Journal of the American Statistical Association 72, 320-340.

Henderson, C.R. (1950). Estimation of genetic parameters (abstract). The Annals of

Mathematical Statistics. 21 309 – 310.

Henderson, C.R. (1963) Selection index and expected genetic advance. In Statistical Genetics

and Plant Breeding (W.D. Hanson and H.F. Robinson, eds.), 141-163. National Academy

of Sciences and National Research Council Publication No. 982, Washington, D.C.

Henderson, C.R. (1975) Best linear unbiased estimation and prediction under selection model.

Biometrics 31, 423-447.

Kacker, R.N. and Harville, D.A. (1984). Approximations for standard errors of estimations of

fixed and random effects in mixed linear models. Journal of the American Statistical

Association 79, 853-862.

Prasad, N.G.N and Rao, J.N.K. (1990). The estimation of the mean squared error of small-

area estimators. Journal of the American Statistical Association 85, 163-171.

Rao, J.N.K. (2003). Small Area Estimation. New York: Wiley.

Singh, A.C., Stukel, D.M. and Pfeffermann, D. (1998). Bayesian versus frequentist measures

of error in small area estimation. Journal of the Royal Statistical Society Series B 60, 377-

396.

Speed, T. (1991) Comment on Robinson: Estimation of random effect. Statistical Science 6,

42 - 44.

Thompson , R. (1981). Maximum likelihood estimation of variance components. Math.

Operforch. Statist. Ser. Statist. 11, 125 – 131.

You, Y. and Rao, J.N.K. (2000). Hierarchical Bayes estimation of small area means using

multi-level models. Survey Methodology, 26 173-181.



12

Table 1. Parameter sets used in the simulations. Note Ds = number of in sample areas, Dr =

number of out of sample areas and n  is average sample size for in sample areas.

Set Parameter Values

n σ 2 σ u
2 λ Ds Dr

Par1 8.1 1 0.5 0.7 25 5

Par2 9.2 3 1.5 0.7 25 5

Par3 12.4 1 0.5 0.0 25 5

Par4 10.4 1 0.5 0.2 25 5

Par5 9.4 1 0.5 0.7 95 5

Par6 8.4 1 0.5 4 25 5
Par7 11.1 1 0.5 4 95 5
Par8 7.0 1 5 4 25 5
Par9 9.7 1 5 4 95 5
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Table 2 Estimated coefficients of variation (EstCV) and actual coefficients of variation

(ActCV) for different methods of estimation, averaged over the small areas. Areas denotes the

small areas whose values are averaged, while Set denotes the set of parameter values used in

the simulation (see Table 1 for their definition).

Method

(13a) (13b) (13c) (13d)

Areas Set

ActCV EstCV ActCV EstCV ActCV EstCV ActCV EstCV
Par1 84.49 36.59 40.29 31.37 40.92 40.78 31.75 32.04

Par2 139.8 61.04 67.98 52.87 69.07 69.67 53.08 53.57

Par3 77.06 29.43 41.97 33.05 42.96 43.24 33.28 33.85

Par4 73.33 28.66 36.02 27.25 36.55 36.95 27.67 27.91

Par5 75.27 28.44 35.07 32.05 35.19 35.40 32.39 32.59

Par6 159.7 16.88 57.42 38.33 39.27 41.69 30.20 31.11

Par7 82.80 10.75 34.12 29.88 31.06 30.79 28.41 28.18

Par8 591.69 36.7 122.3 63.72 74.41 75.62 44.41 44.82

All

Par9 267.96 13.65 49.95 36.62 44.43 44.56 35.44 35.51

Par1 83.07 36.08 33.87 33.80 34.38 34.01 33.97 34.29

Par2 136.62 59.92 57.01 56.86 57.89 57.61 57.23 57.76

Par3 75.35 28.96 35.63 35.70 36.40 36.33 35.99 36.61

Par4 71.89 28.23 28.99 29.05 29.29 29.39 29.18 29.45

Par5 74.80 28.28 33.03 33.02 33.12 33.27 33.07 33.28

Par6 160.34 16.53 37.75 37.84 32.86 33.55 32.01 33.06

Par7 81.92 10.69 30.68 30.66 28.98 28.7 28.88 28.64

Par8 613.06 36.74 50.16 51.79 49.07 53.57 48.76 49.17

In

sample

Par9 266.27 13.62 36.79 36.88 36.32 36.43 36.29 36.37

Par1 91.59 39.16 72.42 19.22 73.63 74.61 20.68 20.8

Par2 155.72 66.62 122.82 32.94 124.99 129.99 32.31 32.57

Par3 85.65 31.76 73.66 19.76 75.77 77.77 19.76 20.01

Par4 80.57 30.79 71.19 18.27 72.86 74.75 20.15 20.21

Par5 84.10 31.37 73.72 13.74 74.43 75.90 19.39 19.51

Par6 156.54 18.63 155.76 40.79 71.33 82.38 21.16 21.37

Par7 99.55 11.89 99.51 15.16 70.67 70.63 19.56 19.46

Par8 484.82 36.51 483.00 123.36 201.11 185.89 22.69 23.05

Out of

sample

Par9 299.96 14.29 299.95 31.67 198.56 198.95 19.14 19.21
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Table 3 Coverage of nominal 95% confidence intervals (95%Coverage) generated by

different methods of estimation, averaged over the small areas. Areas denotes the set of small

areas whose values are being averaged, while Set denotes the set of parameter values used in

the simulation (see Table 1 for their definition).

95%CoverageAreas Set
(13a) (13b) (13c) (13d)

Par1 46.02 85.59 93.87 94.9

Par2 46.91 85.48 94.22 94.99

Par3 41.92 85.56 94.05 95.03

Par4 43.53 85.44 94.55 94.93

Par5 37.16 91.68 94.93 95.08

Par6 16.66 85.51 95.38 95.51

Par7 19.95 91.31 94.77 94.75

Par8 10.05 85.03 95.65 95.13

All

Par9 8.09 91.11 95.04 95.03

Par1 46.18 94.77 94.20 94.87

Par2 47.11 94.68 94.44 94.98

Par3 42.20 94.70 94.30 94.97

Par4 43.76 94.76 94.79 94.94

Par5 37.17 94.92 94.97 95.06

Par6 16.49 95.26 95.29 95.52

Par7 20.01 94.9 94.78 94.76

Par8 9.66 95.35 96.26 95.07

In

sample

Par9 8.12 95.04 95.07 95.04

Par1 45.25 39.66 92.23 95.04

Par2 45.93 39.48 93.13 95.05

Par3 40.56 39.86 92.77 95.37

Par4 42.37 38.82 93.31 94.88

Par5 37.05 30.03 94.16 95.44

Par6 17.51 36.81 95.80 95.45

Par7 18.96 22.96 94.64 94.60

Par8 12.00 33.39 92.61 95.43

Out of

sample

Par9 7.54 16.49 94.39 94.86


