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used. At the same time, model-based prediction methods for estimation of small area or
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with standard calibrated weighting methods. A simple MSE estimator for weighted small area
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Abstract

Calibrated weighting methods for estimation of survey population characteristics are widely
used. At the same time, model-based prediction methods for estimation of small area or
domain characteristics are becoming increasingly popular. This paper explores weighting
methods based on the mixed models that underpin small area estimates to see whether they
can deliver equivalent small area estimation performance when compared with standard
prediction methods and superior population level estimation performance when compared
with standard calibrated weighting methods. A simple MSE estimator for weighted small area
estimation is also developed.
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1. Overview

This paper explores the use of calibrated sample weights for small area estimation. Its
motivation lies in the observation that the dominant paradigm in survey estimation for
populations is weighted linear estimation, while the rapidly expanding field of small area
estimation is currently dominated by a model-based predictive approach where the survey
weights have little or no relevance. See Rao (2003). Many of the practical advantages of
weighted linear estimation are lost when one adopts a predictive approach. Perhaps the most
important of these are the simplicity of the estimation process (as well as estimation of mean
square errors) and the fact that one can provide “general purpose” weights for straightforward
secondary analysis of public use data sets derived from the survey data. This type of analysis
has become very common with the increased availability of statistical analysis software that
can accommodate weighted survey data. A further advantage is that calibration constraints are
readily included in a weighted approach, allowing survey analysts who prefer a design-based
approach to inference to obtain weighted estimates that have good design-based properties
(Hidiroglou et al, 2000) at some level of aggregation.

In the following section we summarise the calibrated approach to survey weighting for
population quantities. In Section 3 we then discuss issues that arise when weights that also
reflect small area or local characteristics are required, and focus on the construction of
calibrated survey weights under the popular linear mixed model that underpins much of small
area estimation methodology. In section 4 we provide illustrative empirical results that
contrast estimation using calibrated weights based on linear mixed models with estimates
based on standard linear model-based calibrated weights as well as with estimates obtained
via standard small area predictive estimation. Finally, in Section 5 we discuss the important
issues that arise when a weighting approach is used in small area estimation and identify
related topics that require further research.

2. Calibrated Sample Weighting for Population Estimation

In this section we briefly review calibrated sample weighting for estimation of population
level quantities. To start, we fix our notation. Let y denote an N-vector of population values of
a characteristic of interest, and suppose that our primary aim is estimation of the total 7, of

the values in y (or their mean y ). In order to assist us in this objective, we shall assume that

we have “access” to X, an N X p matrix of values of p auxiliary variables that are related, in
some sense, to the values in y. In particular, we assume that the individual sample values in X
are known, and these values define a full rank matrix of order n X p that we denote by X;. The
non-sample values in X may not be individually known, but are assumed known at some
aggregate level. At a minimum, we know the population totals t_of the columns of X.

Given this set up, the “industry standard” method of survey estimation is to estimate the
population total and population mean of'y by
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and
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respectively, where the weights {w,} reflect the relationship between the values in y and X,

typically via some form of statistical model. In addition, many survey applications require
weights that are calibrated on X, in the sense that they exactly reproduce the known
population totals defined by the columns of X, i.e.
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Note that in some applications of calibration the population totals on the right hand side of (3)
are not known, and are replaced by “reliable” estimates. This adds an extra degree of
complexity to the procedure because of possible biases due to errors in the estimation of the
totals. We do not consider this issue here, focusing instead on the case where these constraints
are specified without error.

There are two basic approaches to constructing weights that satisfy (3). The first is by what
we refer to as Linear Unbiased (LU) Weighting. That is, we assume that y and X are related
by the linear model

y=XB+e 4

where € denotes a N-vector of random variables with E(e)=0 and Var(e) = 6>V, with
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a known positive definite matrix. Here V_, V_, V_ define the sample/non-sample

decomposition of V. Royall (1976) shows that the Best Linear Unbiased Predictor (BLUP) of
t, under (4) is given by (1) with weights

w, =1 +H,(X1-X1,)+(L, -H,X/)V.'V 1, (5)

where I is the identity matrix of ordern, 1, 1_, 1 are vectors of one’s with dimensions N, n
and N - n respectively, and

ry7-1 1 gyl
HL = (Xszs Xa) XsVss :
Let I, denotes the identity matrix of order p and let K and d denote arbitrary n-vectors of
constants. Following Chambers (1997), we refer to any matrix H satisfying HX =1, asa LU

(linear unbiased) matrix since it allows us to define a class of linear unbiased predictors (1)
with weights defined by (5), but replacing H, by H, 1, by d and V_'V_1_by K. These are
weights of the form

w,, =d+H (X1-Xd)+(I,-HX))K. (6)



It is easy to see that the weights (6) are always calibrated on X, i.e. X!w,, =X"1=t_. They
also define unbiased linear predictors of 7, (provided H is a function of X and not y) since

A

E(t - ty) = E(w;,eys - l’y) = (w;,eXA, - I’X)B =0.

w

In fact, this unbiasedness result provides us with a useful perspective on calibration -
unbiasedness with respect to the linear model (4) defined by X and calibration on X are
equivalent. That is, any linear estimator with weights that are calibrated on X will be unbiased
under (4), and conversely, any linear estimator that is unbiased under (4) will have weights
that are calibrated on X.

The above discussion represents what might be referred to the model-based interpretation of
calibration. From a design-based perspective it is more usual to develop calibration weighting
via the concept of “closest” calibrated weights (Deville and Sarndal, 1992). Under this
approach we assume the existence of an initial set of sample weights d ={d,} (typically

these are the inverses of the inclusion probabilities of the sample units, but they do not have
to be — see Chambers (1996) where they are defined by a nonparametric regression model),
and we construct final sample weights that are as “close” as possible to these initial weights
but at the same time are calibrated on X (i.e. they correspond to a linear estimator that is
unbiased under a linear model for the expected value of y given X). There are many metrics
that can be used to define “close” here, but, from a design-based perspective all are equivalent
asymptotically when d equals the vector of inverses of inclusion probabilities of the sample
units, since they then lead to the same weights as those obtained when we choose w to
minimise Q = (w—d)Q(w—d), where Q is a known positive definite matrix.

Minimising Q subject to calibration on X, i.e. (3), leads to sample weights of the form

w,(d)=d+H,(X'1-X"d) (7)

where H,, is the LU matrix (X;QS_IXX)_1 X’Q". Again we note that H,, can be replaced by

an arbitrary LU matrix and the calibration property still holds, though now w and d are no
longer necessarily “close” with respect to the metric defined by Q. Also, setting d=1_ and

Q=V_ in (7) leads to the BLUP weights (5) under diagonal V, but not for general V.
Similarly, setting d, = (7;') and Q = diag(r,v,), where 7, denotes the inclusion probability

of unit i and V, =diag(v,), leads to the less efficient (from a model-based perspective)
Generalised Regression (GREG) weights.

Irrespective of how the calibrated sample weights are derived, it is now well known that a key
issue in calibration is the number of constraints. The reason for this is simple - the greater the
number p of explanatory variables in (4), the greater the variability of a set of LU weights
based on (4). Consequently, the more calibration constraints one imposes, the higher the
variability of the resulting calibrated weights. This increased variability has unfortunate side
effects, including larger standard errors and the creation of extreme weights, particularly
negative weights, thus raising the possibility of negative estimates for strictly positive
quantities, especially in domain analyses. Balanced against this however is the fact that
increasing the number of calibration constraints also increases the explanatory power of the
linear model implied by the constraints (i.e. (4) fits individual behaviour better), implying that



we can never increase (and often we decrease) the bias of a weighted estimator by increasing
the number of constraints. This bias-variance trade-off in the choice of calibration constraints
is an important practical problem (see Chambers et al, 1999).

3. Calibrated Sample Weighting for Small Area Estimation

The primary target of most surveys is estimation of population level quantities, and so
calibrated sample weights are usually based on models appropriate for the population as a
whole (population weighting). In particular, small area and individual level variation are
assumed to “average out” over the population, in the sense that if in fact y=XB+Zy+e

where XP denotes the contribution from population level effects, Zy denotes the

contribution from small area effects and e denotes the contribution from individual effects,
then 1’XP >>1'(Zy +e) so that weights based on the model y=XB+¢€ (i.e. population

weighting) will still give almost unbiased estimates at population level.

However, estimation at small area level is typically an increasingly important secondary
objective of many sample surveys, and in this context the above argument fails. This is
because small area effects do not average out at small area level. Consequently using
population weights for small area estimation (e.g. estimating the mean of y in small area d via

the weighted mean 7y, =ZS W,y /zs w;) will be inefficient, maybe even biased. An

immediate consequence is that some form of local weighting is required if survey weights are
going to be used to construct small area estimates, where we define local weighting as the
capacity to differentiate between the small areas that make up the population. This
requirement is in addition to the calibration constraints necessary for population estimation,
so sample weights become more variable, leading to the possibility of greater mean squared
errors at the population level.

The simplest way to take account of differences in distribution of y between small areas is to
assume that area effects are constant within a small area (d denotes one of D small areas).
This suggests we extend (4) to

yo=XB+7,1,+¢, (8)

where a subscript of d denotes restriction to small area d. It is easy to see that unbiased
weighting under this model requires us to calibrate both on X and on the small area
population counts {N,}. Assuming X contains an intercept term, this equates to p+D-1

calibration constraints, i.e. an additional D — 1 constraints.

There are two problems with (8). The first is that it implicitly contains the assumption that the
relationship between y and X is essentially the “same” in each small area. The second is that
D is not so large that fitting (8) becomes very difficult using the sample data. If we believe
that the relationship between y and X varies between areas we could consider extending (8)
(again assuming X contains an intercept term) to

Y. = XdBd +€,. )



This is the small area post-stratification model, and is equivalent to calibrating on X at small
area, rather than population, level (i.e. pD constraints). It can only be used if we know the
area level values of the calibration constraints and is clearly even more problematic than (8)
when D is large.

There is a different way to build small area effects into weights, however, and this is by
basing them on mixed models. To this end we observe that the preceding development
implicitly assumed that small area effects are included in the fixed part of our model for y,
with uncorrelated individual effects. However, we can also build small area effects into our
weights by explicitly allowing for the possibility of correlations between individuals, both
within small areas and between small areas. That is, we use the BLUP specification (5), with
V defined by an appropriate model that allows this correlation.

The most commonly used class of models with these characteristics is the class of mixed
linear models. These are models for the values y, of the survey variable in small area d of the

form
=XB+Z,y,+e, (10)

where Z, denotes a matrix of order N, X ¢ and y,, e, are independent random vectors, of
dimension ¢g and N, respectively, both with zero mean vectors and with Var(y,)=ZX,
Var(e,)= o’1,. There is a huge literature on the use of (10) in small area estimation, see Rao
(2003). Our interest, however, is in its use in sample weighting via, for example, (5). In this
context we assume that the sample data also satisfy (10) and so we can estimate £ and o
from these data. Denote these estimates by S and 6. An estimate Vd =61,+Z, ﬁlZ; of
the variance-covariance matrix V, of y, follows immediately. For any sequence {A, } of
matrices, let blk —diag(A,) denote the block diagonal matrix defined by {A,}. Then

V = blk - diag(Vd) is the resulting estimated variance-covariance matrix for the population

vector y. It follows we can approximate the BLUP sample weights (5) under (10) by
substituting this estimated variance-covariance matrix for V, leading to

1 + H,EBLUP (X,l - X;ls ) + (I H,EBLUPX; )VA'_SIVSI'IV (1 1)

w EBLUP

where
H,,,, = (XVX) X'V

It is easy to see that these “EBLUP” weights are a special case of (6) and so are calibrated on
X. Furthermore, since they only depend on (10) via the covariance structure in the
sample/population, extension to more complex covariance structures (e.g. spatial correlation

between population units) only requires V and V to be computed under these more
complex models. We do not pursue this extension in this paper however.
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where a subscript of d denotes restriction to area d. Then it is not difficult to see that the
estimator of the area d total ¢, =17y, that results when we use the weights (11) is

A

t
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(12)

where the first two terms on the right hand side of (12) can be interpreted as the contribution
of the fixed effect part of (10) to the estimate and the final term is essentially an area specific
residual, reflecting the contribution of the random effects in (10) to the estimate. Thus, for the
special case where Z, is a vector of one’s and so 7y, in (10) is scalar (sometimes referred to

as the Random Intercepts Model), this final term is (N, —n,)y, where y, is the estimated
effect for area d, i.e. the “shrunken residual” 7, = (1+¢n,)"'¢n,7,. Here ¢=2/6> and 7, is

the average of the area d residuals y , — X| dB .

An interesting generalisation of (11) leads to a version of GREG weighting based on mixed
models. These are weights of the form

W oree = 4+ Higrpo (X,l - X;d) + (I = Hrp X, )K (13)

where Hge =(X/V,'X ) X’V and K=V'V.1,, withV
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V.. defined by the pseudo-

likelihood (d -weighted) estimates of the parameters of the mixed model.

An important point that needs be made at this stage is that “EBLUP weighting” is not the
same as “EBLUP prediction” of the population total in area d. This is easily seen when we
compare (12) with the corresponding predictor, which is

P =1,y + (X, =1, X, B+ K (v, - X B). (14)

Thus, although (12) and (14) lead to identical population level estimates, there is in fact no
unique representation of (14) as a weighted linear combination of the valuesin y .

We finally turn to estimation of the MSE of the weighted estimate for small area d. To start,
we observe that when small area effects are part of the mean structure of a linear model for y,
e.g. via fixed area effects, see (8) and (9), MSE estimation is relatively straightforward. Well
known results indicate that robust model-based methods as well as appropriately conditioned
design-based methods lead to estimators of the MSE that are essentially of the form

Vd = zsd w’(y, —y,)* + lower order terms, where §, denotes the fitted value for y, under the

linear model implied by the calibration constraints. When the assumed model includes
random effects, e.g. (10), then we need to decide whether we wish to estimate the conditional



or unconditional MSE, i.e. whether we wish to treat the random effect ¥, in (10) as fixed or

not. Estimation of the conditional MSE of the “true” EBLUP can be extremely complicated
(Prasad and Rao, 1990). However, this is not the case when one considers estimating the
unconditional MSE of the “weighted EBLUP” (12) since this is still a simple weighted
estimate (albeit with weights that are rather complex in structure). Furthermore, such an
approach is consistent with the way the MSE is estimated at the population level. Our
strategy, therefore, is to estimate the unconditional MSE treating these weights as fixed. Thus,
we write down the prediction variance for the area d weighted mean (2) as

Var(?wd -y, = N;z (ZM usar(yi) + Zrd Var(y,.)) (15)

where

u, = (st Wj)_l (Ndwi _st wj)'

A robust model-based estimate of (15) is obtained by substituting the squared residual
(y,—¥,)* for Var(y,) in the first (leading) term on the right hand side of (15). If these squared
sample residuals are also used to estimate the second term, the resulting estimator of (15) is

‘}dzzsdei(yi_)?t)z (16)

where 6, = N (ulz +(N,—n,)/(n, — 1)). Since we are interested in an unconditional MSE,

(15) is an unconditional variance, and so we use the residuals y, — X:B in (16).

Using (16) to estimate the MSE of iwd implicitly assumes that this weighted mean is
unconditionally unbiased for y,. However, this is not generally the case, since

E(,,-5,)=(X,,—X,’p under (10), where X,, denotes the weighted average of the sample
X; in area d. Calibration on X ensures that this term vanished at population level, but not

necessarily at small area level. A simple estimate of this bias is éd = (iwd—id)’[%. Our

suggested estimator of the unconditional MSE of y,, is therefore

A

M,=V,+B. (17)

Note that one could alternatively directly “bias correct” the estimate iwd using éd. However,

this is not recommended since this bias estimator increases the variability of our estimator
much more than it reduces its bias. Using it in (17) is a more conservative, and safer,
approach.

4. An Empirical Evaluation

In this section we illustrate the performance of small area estimation based on the weighting
approach. We use design-based simulation since this represents a standard way of evaluating



the performance of a survey estimation procedure. The basic data for this study came from the
same sample of 1652 Australian broadacre farms that were the basis of the exploration of
weighting methods reported in Chambers (1996). Here however we use these farms to
generate a target population of 81982 farms by sampling with replacement from them with
probabilities proportional to their sample weights. We then drew 1000 independent stratified
random samples from this (fixed) population, with total sample size in each simulation equal
to the original sample size (1652) and with strata defined by the 29 different Australian
broadacre agricultural regions. Sample sizes within these strata were fixed to be the same as
in the original sample. Various characteristics of the target population are set out in Table 1.

In our analysis we treated the regions as the small areas of interest and focused on estimating
the average value of ¥ = annual farm costs (A$) in these regions. Regions are grouped into
zones (Pastoral, Mixed Farming, Coastal), with farm size (hectares) assumed known for each
farm in the population. Analysis of the data in the original sample indicated that, although the
linear relationship between Y and farm size is rather weak, this improves when separate linear
models are fitted within six poststrata, defined by splitting each zone into small farms (farm
area less than zone median) and large farms (farm area greater than or equal to zone median).
However, as Figure 1 clearly shows, the relationship between Y and farm size in each of these
six poststrata is still extremely heteroskedastic. In many ways this population is very much
like the populations that are the focus of business surveys, and our simulation should provide
a perspective on how some widely used small area estimation methods might work in this
environment.

To start, we consider three specifications for X (and hence sets of calibration constraints).
These are Mean (the only constraint is that the weights sum to N = 81982), AreatRegion
(weights constrained to reproduce the population total for farm area and the population size in
each region) and SizeZone*Area (weights constrained to reproduce population and farm area
totals in each of the six poststrata). In addition to the fixed effects model (4), weights were
constructed based on the random effects model (10) under two specifications for Z,. These
are a Random Intercepts specification (Z, equal to a vector on one’s) and a Random Slopes
specification (Z; equal to the design matrix for a linear regression on farm area). Both
BLUP/EBLUP and GREG/EGREG versions of weights were computed, as were EBLUP
predictors under the Random Intercepts and Random Slopes specifications. REML estimates
of random effects parameters, based on default values output by the Ime function in R (Bates
and Pinheiro, 1998, R Development Core Team, 2004), were used throughout.

Table 2 sets out the population level empirical biases and RMSEs that were generated by the
different weighting methods in the simulations. No results are presented for the EBLUP
prediction methods since these coincide with EBLUP weighting results at population level.
Two things stand out in Table 2. The first is that under both the Mean and Area+Region
specifications introduction of the mixed model (10) does not always lead to better population
estimates. It is only under the (preferred) SizeZone*Area specification that introduction of
(10) leads to improved estimation. Secondly, GREG/EGREG weighting is much less efficient
than BLUP/EBLUP weighting, particularly under a random effects specification. In fact, on
the basis of these results one would be extremely cautious about using (13) in estimation.
Such an assessment, however, needs to take into account that GREG estimation via (13)
might have been be destabilised in our simulations by the fact that the sample design strata
and the small areas of interest were the same. It should also be remembered that REML
estimation was used for the random effects parameters in (13), rather than pseudo-likelihood
estimation. Further research is clearly needed to identify situations where (13) is appropriate.



In the following analysis we therefore no longer consider GREG/EGREG weighting (because
of its poor performance in our study) and focus on BLUP/EBLUP weighting under the
SizeZone* Area model.

The main reason for using EBLUP weighting defined by (11) is to allow regional estimation
with performance comparable with that achieved when one applies standard prediction
methods based on (10). Figure 2 shows boxplots of the distributions of both weighted and
predictive estimates under the SizeZone* Area specification in each of the 29 regions in our
application. These plots show clearly that the regional estimates that result from application
of weighting methods are not the same as those that result from taking a predictive approach.
They also show that neither approach dominates the other, though, with the exception of two
regions, it seems that Random Slopes weighting performs marginally better overall. In the
two regions (3 and 21) where this weighting approach fails, inspection of Figure 2 indicates
that this is the consequence of a few outlying estimates. In fact, the outlying estimates for
region 21 are all caused by presence of a single massive outlier (y; > A$30,000,000) from the
original sample that was included in the simulation population (twice) and then selected (in
one case, twice) in 37 of the 1000 simulation samples. Figure 3 shows the boxplot of
distributions of estimate values when these samples are excluded. This is very different from
the results for region 21 shown in Figure 2 and is closer to reality, in the sense that standard
data editing procedures would normally be used to detect and exclude (or at least modify) a
sample outlier prior to publication of the survey estimates. The impact of such quality control
can be substantial, reducing the overall relative RMSE for the Random Slopes weighting
estimator from the 4.54% reported in Table 2 to 3.30%.

Figures 4 to 6 summarise the regional variation in bias and RMSE of the estimators
contributing to Figure 2. In Figure 4 we compare the Fixed Effects, Random Intercepts and
Random Slopes versions of the BLUP/EBLUP weighting estimators. This confirms the
generally better performance of the Random Slopes weighting method. In Figures 5 and 6 we
compare the weighting and predictive approaches under Random Intercepts and Random
Slopes separately. As pointed out earlier, neither approach is generally dominant, though if
one discounts the outlier driven results for region 21, then the Random Slopes version of
EBLUP weighting seems the method of choice for regional estimation in our simulation
population (among the methods considered in this study).

In Table 3 we show how the simple unconditional MSE estimator (17) performed in the
simulation study with respect to the design-based coverage of “2 sigma” confidence intervals
based upon it. These are intervals with nominal coverage of approximately 95%, defined by
the estimate plus or minus twice the square root of the estimated MSE. Our results are very
encouraging, particularly for the MSE estimator based on Random Slopes weighting. Its
population coverage is almost perfect (94.3%) and in only 3 of the 29 regions does it lead to
intervals with coverage less than 90%, with one of these already identified as problematic
because of outliers. The corresponding coverage performances for this estimator under Fixed
Effects and Random Intercept weighting are not as good, but still reasonable. Under Fixed
Effects weighting the population coverage drops to 90.3%, with 7 of the 29 regions recording
coverages less than 90%, while under Random Intercepts weighting the population coverage
is 88.3%, with 4 of the 29 regions recording coverages less than 90%. Median coverage over
the 29 regions is 91.7% for Fixed Effect weighting, 94.1% for Random Intercept weighting
and 94.6% for Random Slopes weighting.
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Before concluding this discussion of our simulation study there is one further important
observation that needs to be made. The more diligent reader will no doubt have realised that
the boxplots in Figure 2 display negative estimates on a number of occasions. That such
estimates occur should not come as a surprise, since there is nothing in the construction of the
BLUP/EBLUP (and GREG/EGREG) weights to prevent the occurrence of negative weights,
and consequently the possibility of negative regional estimates. Similarly, there is nothing in
the definition of the EBLUP (14) to stop this estimate becoming negative. In fact, over our
1000 simulations we observed that under the SizeZone*Area model, Random Intercepts
prediction generated a single negative estimate in region 1, Random Slopes prediction
generated 14 negative estimates in region 2 and Random Slopes weighting generated 3
negative estimates in region 3. These numbers are not excessive, but they do show that there
is a problem, particularly in cases where the sample size in the small area of interest is very
low. It was particularly acute for EGREG weighting, which generated many more negative
regional estimates. For example, under Random Slopes EGREG weighting based on the
SizeZone*Area model, 599 out of the 1000 estimates in region 13 were negative!
Furthermore, negative weights don’t just lead to negative estimates. Since under (2) the sum
of sample weights in a region d is effectively an estimate of the population size N; of the
region, negative weights can skew this estimate towards zero and consequently lead to a gross
overestimate of the region mean. This was the reason for the large positive outlier under
Random Slopes EBLUP weighting in region 3. In this case, of the total of 35 (out of 1652)
sample units with negative weights under this method in this simulation, 22 were
concentrated in region 3. Given a total sample size of 30 in the region, this lead to an implied
population estimate of approximately 9 for region 3, which is patently ridiculous (the true
population is 189), and a grossly inflated estimate of average regional farm costs.

Conclusions and Further Research

In this paper we have explored the possibility of using mixed models to construct calibrated
sample weights and have investigated the performance of such weights in both population
level as well as small area level estimation. Our results show that EBLUP weighting based on
a suitable mixed model (i.e. one that adequately reflects the between area variability in the
population) can work well, leading to small area estimates that are comparable to the usual
prediction-based EBLUP estimates. However, it also shows that issues such as the occurrence
of negative weights, which are typically of less concern when constructing population level
estimates, can become much more important when small area estimates are also required. To
illustrate, in the situation discussed in the previous paragraph the 35 sample units with
negative weights had virtually no impact on the population estimate of average farm costs, but
seriously destabilised the corresponding estimate for region 3. Methods for dealing with
negative weights under “standard” regression models have been discussed in the literature
(Huang and Fuller, 1978; Bardsley and Chambers, 1984; Deville and Sarndal, 1992;
Chambers, 1996) but their application in the context of mixed models remains to be explored.
This is particularly important if one wishes to adopt a design-based approach to weighting
(i.e. use GREG/EGREG weights) since such weights are particularly susceptible to taking
negative values.

We have also suggested a simple estimator for the unconditional MSE of our weighted small
area estimator. In our simulation, this MSE estimator provided good coverage performance.
However, this may have been because the highly heteroskedastic nature of our simulation
population meant that only the leading term in the MSE (the target of our MSE estimator) was

11



relevant. Further work is needed with less variable populations to see whether it continues to
perform well when variability from estimation of population parameters, particularly the
variance components) starts to become important.

A large number of further areas of research remain. These include further development of
GREG/EGREG weighting to make this approach less affected by extreme weights. They also
include the rather important problem of extending the weighting method to nominal and
ordinal variables. Linear mixed models for such variables are typically in a transformed scale
(e.g. generalised linear mixed models) and so linear estimators like (1) cannot be expected to
perform well. We anticipate that the concept of model calibration (Wu and Sitter, 2001) will
play a major role in resolving this problem.

Finally, we should point out that the EBLUP weights (11) are, strictly speaking, variable
specific since they depend on estimated variance components for a particular Y. The issue of
how to develop a “general purpose” mixed model specification that allows these weights to
also become “general purpose” therefore remains.
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Table 1 Regional characteristics of simulation population. Regions are numbered in order
of increasing population size.

Region Population Sample Average Average

Farm Area  Farm Costs
1 79 6 297958 467964
2 115 10 55731 171414
3 189 30 359383 670926
4 330 25 178355 186984
5 388 36 108038 208142
6 465 19 16717 130316
7 604 36 131544 302583
8 729 40 21976 242836
9 737 30 23083 179112
10 964 30 23712 180467
11 1586 51 2213 116965
12 1778 62 891 114442
13 1984 55 1066 96162
14 2182 47 4398 233171
15 2607 79 1239 97839
16 2683 60 581 93202
17 2689 60 701 84790
18 2847 34 373 36979
19 3056 74 799 101101
20 3139 51 3200 87919
21 3910 73 563 78509
22 4486 117 4635 164889
23 4550 80 960 86218
24 4587 95 1862 184153
25 5368 83 1838 198156
26 5528 103 1013 105151
27 6489 108 1403 134169
28 6980 81 812 95617
29 10933 77 360 66285
Population 81982 1652 5475 118997
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Table 2 Empirical biases and RMSEs (both expressed as percentages of the target value) for
the population estimates generated by the different weighting methods.

Model/Calibration Fixed Effects Random Intercepts Random Slopes

Constraints Bias RMSE Bias RMSE Bias RMSE
BLUP/EBLUP weighting

Mean 19.9468 20.9360 2.8234  8.5190

AreatRegion 0.0348 54221 0.4436  5.8628 1.6685 5.4813

SizeZone* Area -1.0523 49556  -0.1790  4.7726 0.0763  4.5406
GREG/EGREG weighting

Mean 0.0091 54631 -34.1876 36.9257

AreatRegion 0.0684  5.4204 3.4529 14.1892 -85.2070 94.4300

SizeZone* Area 0.1830  5.1093 3.0184  5.8319 -3.4054  8.5548
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Table 3 Empirical coverages of “2-sigma” confidence intervals for population mean and
regional means generated using (17) and a SizeZone*Area specification for X. Regions are
numbered in order of increasing population size.

Region Fixed Random Random
Effects Intercepts Slopes
1 0.990 0.989 0.993
2 0.917 0.928 0.955
3 0.622 0.760 0.854
4 0.998 0.999 1.000
5 0.915 0.984 0.990
6 0.926 0.968 0.992
7 0.917 0.942 0.962
8 0.965 0.970 0.965
9 0.903 0.902 0.945
10 0.931 0.941 0.946
11 0.996 0.996 0.995
12 0.861 0.914 0911
13 0.963 0.968 0.962
14 0.978 0.982 0.934
15 0.909 0.937 0.959
16 0.903 0.920 0.928
17 0.943 0.948 0.939
18 0.998 0.998 0.998
19 0.902 0.941 0.937
20 0.970 0.979 0.990
21 0.510 0.476 0.404
22 0.962 0.967 0.981
23 0.990 0.986 0.985
24 0.681 0.699 0.708
25 0.864 0.876 0.944
26 0.915 0.919 0.925
27 0.902 0911 0.938
28 0.898 0.928 0.930
29 0.875 0.918 0.912
Population 0.903 0.883 0.943
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Figure 1 Farm costs vs. farm area for the simulation population. Rows correspond to zones (1
= Pastoral, 2 = Wheat-Sheep and 3 = High Rainfall) and columns are “smaller” farms (left)
and “larger” farms (right). Line is least squares regression fit.
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Figure 2 Distributions of estimates for regions 1 to 6 produced under the SizeZone* Area
specification. FEW = Fixed Effect weighting, RIW = Random Intercept weighting, RIP =
Random Intercept prediction, RSW = Random Slope weighting, RSP = Random Slope
Prediction. Plots are ordered left to right and top down by increasing region population size.
Dotted horizontal line is true region mean.
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Figure 5 (continued) Distributions of estimates for regions 7 to 12 produced under the
SizeZone* Area specification. FEW = Fixed Effect weighting, RIW = Random Intercept
weighting, RIP = Random Intercept prediction, RSW = Random Slope weighting, RSP =

Random Slope Prediction. Plots are ordered left to right and top down by increasing region

population size. Dotted horizontal line is true region mean.
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Figure 5 (continued) Distributions of estimates for regions 13 to 18 produced under the
SizeZone* Area specification. FEW = Fixed Effect weighting, RIW = Random Intercept
weighting, RIP = Random Intercept prediction, RSW = Random Slope weighting, RSP =
Random Slope Prediction. Plots are ordered left to right and top down by increasing region

population size. Dotted horizontal line is true region mean.
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Figure 5 (continued) Distributions of estimates for regions 19 to 24 produced under the
SizeZone* Area specification. FEW = Fixed Effect weighting, RIW = Random Intercept
weighting, RIP = Random Intercept prediction, RSW = Random Slope weighting, RSP =

Random Slope Prediction. Plots are ordered left to right and top down by increasing region

population size. Dotted horizontal line is true region mean.
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Figure 5 (continued) Distributions of estimates for regions 25 to 29 produced under the
SizeZone* Area specification. FEW = Fixed Effect weighting, RIW = Random Intercept
weighting, RIP = Random Intercept prediction, RSW = Random Slope weighting, RSP =
Random Slope Prediction. Plots are ordered left to right and top down by increasing region
population size. Dotted horizontal line is true region mean.
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Figure 3 Distributions of estimates for region 21 produced under the SizeZone* Area
specification when 37 samples that include the massive outlier in this region are excluded.
FEW = Fixed Effect weighting, RIW = Random Intercept weighting, RIP = Random Intercept
prediction, RSW = Random Slope weighting, RSP = Random Slope Prediction. Dotted
horizontal line is region mean including outlier, dashed horizontal line is region mean
excluding outlier.
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Figure 4 Relative biases and RMSEs by region for weighting based on SizeZone*Area
specification. Dotted line is Fixed Effects model, dashed line is Random Intercepts model and
solid line is Random Slopes model.
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Figure 5 Relative biases and RMSEs by region for weighting based on SizeZone*Area
specification. Dashed line is prediction estimation based on Random Intercepts model and
solid line is weighting estimation based on the same model.
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Figure 6 Relative biases and RMSEs by region for weighting based on SizeZone*Area
specification. Dashed line is prediction estimation based on Random Slopes model and solid
line is weighting estimation based on the same model.
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