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Abstract

The usual way to investigate the statistical properties of finitely gen-
erated subgroups of free groups, and of finite presentations of groups, is
based on the so-called word-based distribution: subgroups are generated
(finite presentations are determined) by randomly chosen k-tuples of re-
duced words, whose maximal length is allowed to tend to infinity. In this
paper we adopt a different, though equally natural point of view: we inves-
tigate the statistical properties of the same objects, but with respect to the
so-called graph-based distribution, recently introduced by Bassino, Nicaud
and Weil. Here, subgroups (and finite presentations) are determined by
randomly chosen Stallings graphs whose number of vertices tends to infin-
ity.

Our results show that these two distributions behave quite differently
from each other, shedding a new light on which properties of finitely gener-
ated subgroups can be considered frequent or rare. For example, we show
that malnormal subgroups of a free group are negligible in the graph-
based distribution, while they are exponentially generic in the word-based
distribution. Quite surprisingly, a random finite presentation generically
presents the trivial group in this new distribution, while in the classical
one it is known to generically present an infinite hyperbolic group.

Keywords: subgroups of free groups, finite group presentations, statistical
properties, Stallings graphs, partial injections, malnormality
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1 Introduction

Statistical properties of elements and subgroups of free groups have evoked
much interest in recent years, especially after Gromov’s famous claim that
“most” groups were hyperbolic, which led to a precise statement and proof
by Olshanskii [27]. Shortly thereafter, Ol’shanskii and Arzhantseva [2] 1] pur-
sued the study of the statistical properties of finite presentations of groups, that
is, largely, of finitely generated normal subgroups of free groups.

This interest encountered another historical trend in combinatorial group
theory, namely the consideration of algorithmic problems, which leads naturally
to an interest in the evaluation of the complexity of these algorithms (e.g.
[0, 22, 28]) and in enumeration problems.

The search for innovative group-based cryptographic systems (see [25] for
instance) only reinforced the study of complexity questions, and focused it on
the investigation of the statistical properties of finitely generated subgroups of
free groups, notably via the notion of generic complexity (see [17, [14]).

The usual method to approach statistical properties is to enumerate the
objects under consideration, or more precisely, representatives for these objects,
in a stratified way. For instance, if we wish to investigate k-generated subgroups
of F, (resp. finitely presented groups with r generators and k relators), we
proceed by enumerating lists of k-tuples of generators (resp. relators) over a



fixed alphabet of r letters, so that at level n one has enumerated all such k-
tuples whose elements have length at most n. In the situation we will consider,
there are only finitely many objects of a given level n and it makes sense to
ask what proportion of level n objects satisfy a given property. This gives us
a number p, between 0 and 1 for each n, associated to the given property and
one can ask whether this sequence has a well defined limit. If the limit exists
and is equal to 1, we would say that the property is generic, and take this to
mean that most objects satisfy the property. At the other extreme, if the limit
of the p, equals 0, we would say that the property in question is negligible and
conclude that it is rarely encountered amongst our objects.

A crucial observation, which is well worth mentioning in view of the intuitive
weight carried by expressions such as most objects or rarely encountered, is that
genericity and negligibility depend essentially on the choice of the stratification:
different stratifications of the same objects, say finitely generated subgroups of
free groups, will bring to light different insights on the statistical behavior
of these objects. Concretely, different properties will appear to be generic or
negligible.

Up to recently (namely the publication of [3]), the literature was unanimous
in adopting the representation of finitely generated subgroups of free groups by
k-tuples of generators, stratified by their maximal length — which we call the
word-based distribution.

It is the purpose of this paper to question this unanimity. The basic idea is
that there exists another very natural representation of finitely generated sub-
groups of free groups, by their Stallings graph ([31], see Section [ZT]). Stratifying
finitely generated subgroups by the size (number of vertices) of their Stallings
graph — what we call the graph-based distribution — indeed sheds a different
light on which properties of subgroups are frequent or rare. One of our main
results is that malnormality and purity, which are generic in the word-based
distribution, are negligible in the graph-based distribution (Section []).

We also exhibit a property of finitely generated subgroups of F,. that is neg-
ligible in the word-based distribution and that has a non-zero, non-one asymp-
totic probability (namely e~") in the graph-based distribution (Section [H).

Finally we explore the possibility of using the graph-based distribution to
discuss the statistical properties of finitely presented groups. The results there
are disappointing: it turns out that finitely presented groups are generically
trivial in this distribution — quite differently from the word-based distribution
in which they are known to be generically infinite and hyperbolic (Section [G).

Sections 2l and B] are devoted to preliminaries on genericity and to a review
of the main features of the word-based and the graph-based distributions for
finitely generated subgroups of free groups.

2 Preliminaries

Here we summarize standard facts about the Stallings graphs of subgroups (in
Section [21]) and we review the notions of generic and negligible properties.
Throughout the paper, A denotes an alphabet, that is, a finite non-empty set



and F(A) denotes the free group over A. The elements of F/(A) are represented
by the reduced words written using letters from A and their formal inverses
{a7' | a € A}. If r > 1, we often use the notation F, instead of F'(A), to
indicate that A consists of r letters. Throughout the paper, we will in fact
assume that r > 2.

We denote by [n] (n > 1) the set {1,...,n}.

2.1 Subgroup graph representation

Each finitely generated subgroup of F(A) can be represented uniquely by a
finite graph of a particular type, by means of the technique known as Stallings
foldings [31] (see also [33] 16} [32],24]). This construction is informally described
at the end of this section.

An A-graph is defined to be a pair I' = (V, E) with E C V x A x V, such
that

o if (u,a,v),(u,a,v’") € E, then v = v';
o if (u,a,v),(v,a,v) € E, then u =1

The elements of V' are called the vertices of I' and the elements of E are its edges.
We say that I' is connected if the underlying undirected graph is connected. If
v € V, we say that v is a leaf if v occurs at most once in (the list of triples
defining) F and we say that I is v-trim if no vertex w # v is a leaf. Finally
we say that the pair (I',v) is admissible if I is a finite, v-trim and connected
A-graph. Then it is known (see [311 [33] (16, 24]) that:

e Stallings associated with each finitely generated subgroup H of F'(A) a
unique admissible pair of the form (I",1), which we call the graphical
representation or the Stallings graph of H and write I'(H);

e every admissible pair (I',1) is the graphical representation of a unique
finitely generated subgroup of F'(A);

e if (I, 1) is the graphical representation of H and w is a reduced word, then
u € H if and only if u labels a loop at 1 in T’

e if (I", 1) is the graphical representation of H, then rank(H) = |E|—|V|+1;

e finitely generated subgroups H and K are conjugates if and only if the
cyclic cores of I'(H) and I'(K) (obtained by repeatedly deleting leaves
and the edges they are adjacent to) are equal.

We informally remind the readers of the computation of the graphical rep-
resentation of a subgroup generated by a subset B = {uy,...,ux}. It consists
in building an (A LI A~!)-graph, changing it into a A-graph, then reducing it
using foldings. First build a vertex 1. Then, for every word u of length n in
B, build a loop with label u from 1 to 1, adding n — 1 vertices. Change every
edge (u,a',v) labeled by a letter of A~! into an edge (v,a,u). Then itera-
tively identify the vertices v and w whenever there exists a vertex u and a letter



a € A such that either both (u,a,v) and (u,a,w) or both (v,a,u) and (w,a,u)
are edges in the graph (the corresponding two edges are folded, in Stallings’
terminology).

The resulting graph I is such that (I', 1) is admissible and, very much like
in the (1-dimensional) reduction of words, it does not depend on the order used
to perform the foldings.

2.2 Negligibility and genericity

Let S be a countable set, the disjoint union of finite sets S,, (n > 0), and let
B, = U<, Si- Typically in this paper, S will be the set of Stallings graphs,
of partial injections, of reduced words or of k-tuples of reduced words, and S,
will be the set of elements of S of size n. A subset X of S is negligible (resp.
generic) if the probability for an element of B, to be in X, tends to 0 (resp. to
1) when n tends to infinity; that is, if lim, ‘)TEB"‘ =0 (resp. =1).

Naturally, the negligibility or the genericit; of a subset X of S depends on
the layering of S into the S,. In particular, if X and its complement are both
infinite, then an appropriate partition of S into finite subsets .5,, will make X
negh%lble another will make it generic, and indeed, another will be such that
lim,, X‘BB‘” = p for any fixed 0 < p < 1.

Thus, any discussion of negligibility or genericity must clearly specify the
distribution that is considered, that is, the choice of the partition (S ).

2.2.1 Rate of convergence
\Xﬂ

In general, we may be interested in the speed of convergence of — towards
0 if X is negligible and towards 1 if it is generic. One reason is tLat a higher
speed of convergence indicates a higher rate of confidence that a randomly
chosen element of S of size n will miss X if X is negligible, or will be in X if
X is generic, even for moderately large values of n.

If a class F of functions tending to 0 is closed under max (of two elements),

we say that a subset X is F-negligible if ‘ﬁgﬁ"' = O(f(n)) for some f € F.
We also say that X is F-generic if the complement of X is F-negligible. Note
that F-negligible (resp. JF-generic) sets are closed under finite unions and
intersections.

Much of the literature is concerned with exponential negligibility or gener-
icity, namely F-negligibility or genericity where F is the class of functions e~

(c>0).

2.2.2 Balls versus spheres

The definition of negligibility and genericity above is given in terms of the balls
B,,: the sets of elements of size at most n. It is sometimes more expedient to
reason in terms of the proportion of elements of X in the spheres S,,: let us say,
within the ambit of this section, that a set X is S-negligible (resp. S-generic)

if the ratio . ‘nﬁ”‘ tends to 0 (resp. 1). The definition of F-S-negligibility or




F-S-genericity is analogous. We verify in this section that (exponential) S-
negligibility implies (exponential) negligibility. The same holds of course for
genericity.

Proposition 2.1 An S-negligible (resp. S-generic) set is also negligible (resp.
generic).

If the structures under consideration grow fast enough, so that lim 5 =0,
then the same result holds for exponential negligibility and genericity.

The proof of this statement relies on the following technical lemma.

Lemma 2.2 Let (ay,) and (by) be increasing sequences of positive real numbers.

(1) (Stolz-Cesaro theorem) If limb, = oo and hm%g” = 0, then
lim 2 = 0.

(2) If (%) and (%) converge to 0 exponentially fast and if an, < by, for

each n, then (‘g:) converges to 0 exponentially fast as well.
Proof. (1) Since hmb”LZ: = 0, for each € > 0, there exists ng such that
ant+1 — ap < €(bpg1 — by) for all n > ng. Summing these inequalities for all
integers between n— 1 and ng, we find that a, —an, < (b, —by,) for all n > ny.
Dividing by b,, and using the fact that limb,, = co, we conclude that g—: < 2¢
for all large enough n.

(2) Our hypothesis is now that there exists ¢ > 0 such that a,y+; —a, <
e~ (bpt1 — by) for all n > ng. Summing these inequalities for the integers
between n and 2n — 1, we find that ag, — a, < e=“"(by, — by) for all n > ny.
We now divide both sides by bo,, and use the fact that Ij‘" < ban and that this
sequence converges to 0 exponentially fast to conclude that (“;z )n converges
to 0 exponentially fast. Summing instead for the integers between n and 2n
and dividing by bo,,+1 shows that (a2"“) converges to 0 exponentially fast as
well. O

Proof of Proposition 2.1l Let X C S, a, = |X N B,| and b, = |B,|. Then
an — ap—1 = |X NS,| and b, — b,—1 = |Sp|. The statement on (exponential)
negligibility now follows directly from Lemma 2.2l The statement on genericity
follows as well, since generic sets are the complements of negligible sets. O

3 The word-based and the graph-based distributions

In order to discuss the distribution of finitely generated subgroups of F;., we
need to fix a representation of these subgroups by means of discrete structures.
In this paper we consider two such structures: a subgroup can be given by a
tuple of generators (reduced words in F}.), or by its Stallings graph (Section 2.1]).
In the first case, the size of the representation is the pair (k,n) where k is the
number of generators and n their maximal length — or n if k is fixed; in the
second case, the size of the representation is the number n of vertices of the



Stallings graph. In either case, there are only finitely many subgroups of each
size.

We first review the literature on the word-based and the graph-based dis-
tributions (Sections 3.1l and [3.2]), and then start the discussion of negligible or
generic properties of subgroups (Section B.3)).

3.1 The word-based distribution

The distribution usually found in the literature (e.g. [17, [14], [15]) is in fact a
distribution on the k-tuples h= (h1,...,hi) of reduced words of length at most
n, where k is fixed and n is allowed to grow to infinity; one then considers the
subgroup H generated by h. We call this distribution word-based.

Let us first record three elementary facts, which can also be found in [14].
We denote by R,, the set of reduced words of length at most n.

r 1

Proof. The number of reduced words of length i > 1 is 2r(2r — 1)*~!, so the
cardinality of R, is

@r—1)" 1

n
— i—1 _
Rl =1+ 20(2r = )71 =14 20—

1=1

14 Tl((2r—1)"—1)

r —

:ri1(2r—1)”<1—m>.

O

Fact 3.2 Let 0 < o < 1. Exponentially generically, a reduced word in R,, has
length greater than an. O

Proof. The proportion of words in R,,, of length less than or equal to an, is

[Rlan)| _ 75 C2r =D (1 +0(1) o ylenl—ney oo
R~ m@ oDty D)

< (2r — 1)@ (1 4 0(1)).

Since o« — 1 < 0, it converges to 0 exponentially fast. O

Let h = (h1,...,h) be a tuple of reduced words and let p > 0 such that

—

min |h;| > 2[p]. We denote by Pref,(h) the set of prefixes of length at most
(1] of the h; and h; .

'We choose to reiterate the proofs of these results, because we feel that our presentation
exhibits more clearly their combinatorial underpinnings.



Fact 3.3 Let 0 < A\ < % Exponentially generically, a k-tuple (hq,...,h) of
elements of R, is such that min |h;| > 2[An] and the prefixes of the h; and h; !
of length [An] are pairwise distinct. 0

Proof. The complement in R¥ of the set of k-tuples described in the statement
is the union of the set Y of k-tuples & where min |h;] < 2[An], and of the set Z
of k-tuples where min |h;| > 2[An] and the set of prefixes of length [An] of the
h; and hi_1 has at most 2k —1 elements. Since 2\ < 1, the set Y is exponentially
negligible by Fact and we now concentrate on Z.

For each integer 2[An] < m < n, let Z,, be the set of k-tuples in Z, such
that min |h;| = m. Then

| Zm| < (2r(2r — 1)PI=1) 2671 pog — 1) (27 — 1)k(m=2[An])
< (2r)% 71 k(2 — 1) (2r — 1)Rm=2)=[An]+L
Summing these inequalities for all 2[An] < m < n, we find
1Z] < (2r)% 7L B2k — 1) (2r — 1)k D=l
As a result, the proportion of k-tuples in Z is at most
(2r)2=1 k(2k — 1) (2r — 1)k(n=D=[An]+1

e (2r — (14 o(1))

< C(2r—1)7"(1+0(1))

for some constant C' depending only on k£ and r. Thus, this proportion converges
to 0 exponentially fast. O

Remark 3.4 A closely related statement, relative to common factors located
anywhere in the words h; and h; ! (not just at their extremities) is discussed in
Lemmal4.5] in a variant of Arzhantseva and Ol’shanskii’s result on cyclic words
[2, Lemma 3]. 0

Let 0 < a<1land 0 < A< g, and for each n, let Y, \ 1 be the set of
k-tuples i = (hy,...,h;) € RF such that min |h;| > an and the prefixes of the
hi and h; ' of length [An] are pairwise distinct. Facts and [3.3] show that
the proportion of elements of be in Y, anx converges to 1 exponentially fast:
in the search for exponentially generic properties of subgroups, we can restrict
our attention to the tuples in Y, ) , x and to the subgroups they generate.

The following observation is the basis for our exponential genericity proofs,
in the context of the word-based distribution.

Fact 3.5 Let a, \ satisfy 0 < 2\ < a < 1. If h € Yornk and H = <ﬁ>, then
I'(H) consists of two parts:

- the vertices at distance at most [An| from the distinguished vertex and the
edges connecting them: this forms a tree with vertex set Pref)m(fz), and edges

u—%wua if a € A and u,ua € Prefy,(h); this tree, which we call the central part
of I'(H), has 2k leaves;



- and for each 1 < i < k, where h; = p;m;s; and |p;| = |s;| = [An], a path
labeled m; from the vertex p; to the vertex sl._l (both are in the central part);
we call these paths the outer loops. O

This leads to the following results. Propositions and [B.§] first appeared
in a paper by Jitsukawa [14]. They are direct consequences of earlier analo-

gous results (counting cyclic words instead of words) due to Arzhantseva and
Ol'shanskii [2, Lemma 3].

Proposition 3.6 Fxponentially generically, a k-tuple of elements of R, gen-
erates a subgroup of rank k.

Proof. Let o, A satisfy 0 < 2\ < a < 1. As observed above, it suffices to show
that if h € Yoank, then H = (fi) has rank k. In that case, using Fact B.5], we
find that I'(H) is formed of a central part and k outer loops.

The central part is a tree and like all trees, the number of its edges is 1
less than the number of its vertices. With the notation of Fact B.5] the number
of additional vertices (resp. edges) in the outer loops is Y .(|m;| — 1) (resp.
>; Imi]). Therefore, in I'(H), we have |E| — |V| 4+ 1 = k. O

Proposition 3.7 Exponentially generically, a k-tuple h and an k' -tuple g of
elements of R, generate subgroups that are distinct, have trivial intersection,
and are such that (h,h') = (h) * (I').

Proof. Since the first k components of a (k + k’)-tuple of elements of R,
are independent from the &’ last components, and since such a (k + k’)-tuple
exponentially generically generates a subgroup of rank k+ &’ (Proposition [3.4]),
we find that a k-tuple and an k’-tuple of elements of R,, exponentially generically
generate their free product. This in turn implies the other properties. O

Proposition B.7] shows that two k-tuples of elements of R, exponentially
generically generate distinct subgroups. Proposition [3.8]is a little more precise.

Proposition 3.8 Let a, A\ satisfy 0 < 2\ < a < 1. The k-tuples h and K
in Yo ank generate distinct subgroups, unless h' = (hzl(l),...,hifzk)) for some

permutation o of [k] and for ey, ... e € {—1,+1}.

Proof. If (h) = (K'), then the graphs I'(h) and ['(F') are equal. In particular,
their central parts, formed by the vertices at distance at most [An] from the
distinguished vertex, coincide. By Fact [3.5] this central part is a tree and, the
graphs T'(h) and T'(F') are obtained from this tree by the addition of k paths
joining leaves of the tree: the proposition follows from this observation. O

Proposition B.8 shows that, if we consider the class Sy ), of subgroups
generated by k-tuples in Y, ) , k., then each subgroup occurs the same number
of times, namely 2Fk!. Randomly choosing a k-tuple in Yo An,k yields therefore
a random subgroup in S xnk, and the proportion of these subgroups among
all subgroups generated by a k-tuple of words of length at most n tends to 1
exponentially fast.



3.2 The graph-based distribution

The uniform distribution on the set of size n Stallings graphs was analyzed
by Bassino, Nicaud and Weil [3]. Here we summarize the principles of this
distribution and the features which will be used in this paper.

We already noted that in Stallings graphs, each letter labels a partial injec-
tion on the vertex set: in fact, a Stallings graph can be viewed as a collection
(fa)aca of partial injections on an n-element set, with a distinguished vertex,
and such that the resulting graph (with an a-labeled edge from i to j if and
only if j = f,(7)) is connected and has no vertex of degree 1, except perhaps the
distinguished vertex. We may even assume that the n-element set in question
is [n] = {1,...,n}, with 1 as the distinguished vertex, see [3| Section 1.2] for a
precise justification.

One shows [3, Corollary 2.7] that the probability that an A-tuple (fy)aca of
partial injections on [n] induces a Stallings graph tends to 1 as n tends to infinity,
and the problem of randomly generating a Stallings graph then reduces (via an
efficient rejection algorithm, see [3, Section 3]) to the problem of efficiently
generating a random partial injection on [n]. This view of a Stallings graph as
an A-tuple of partial injections on [n] is central in our analysis.

The maximal orbits of a partial injection f (equivalently: the connected
components of the function graph of f) can be of two kinds: cycles — where
each element is both in the domain and in the range of f — and sequences. The
size of each of these components is defined to be the number of vertices which
they contain. It is this combinatorial view of partial injections — as a disjoint
union of cycles and sequences —, which is at the heart of the random generation
algorithm, obtained using the so-called recursive method [26] [12].

The distribution of sizes of components is studied in [3, Section 3|, as well as
the distribution of cycles vs. sequences among size k components. The random
generation algorithm consists in drawing a size of component, say k, according
to the relevant distribution; then drawing whether this size k& component is a
cycle or a sequence; and finally drawing a partial injection on the remaining
n — k elements [3, Section 3.1]. This results in a partial injection on an n-
element set, and we need only add a random numbering (1 through n) of the
elements of that set.

However complex the method may seem, it guarantees a uniform distribu-
tion among all size n partial injections, it is easy to implement and its average
time complexity is linear (in the RAM model; it is O(n?logn) under the bit-cost
assumption) [3 Section 3.3].

To further discuss partial injections and other combinatorial structures, we
use the notion of exponential generating series, written EGS. If S is a class of
finite discrete structures such that there are finitely many S-structures of each
size, let .S,, be the number of S-structures of size n. The EGS of S is the formal
power series S(z) =3, -, 2% 2"

Let I(2) = >, %z" be the EGS of partial injections. Bassino, Nicaud
and Weil show the following [3, Section 2.1 and Proposition 2.10].

10



Proposition 3.9 The EGS I(z) of partial injections satisfies the following

1
2
I(z) = 1 i ~ eXp (&) and % = 26\/%62\/571_%(1 + o(1)).

This result is obtained by means of deep theorems from analytic combina-
torics. The same methods can be used to study the asymptotic behavior of
particular parameters, such as the number of sequences of a partial injection.
This parameter is directly connected with the number of edges in the Stallings
graph formed by the partial injections f, (a € A), which leads to the following
result [3, Lemma 2.11 and Corollary 4.1].

Proposition 3.10 The expected number of sequences in a randomly chosen
partial injection of size n is asymptotically equivalent to \/n.

The expected rank of a randomly chosen size n subgroup of F,. is asymptot-
ically equivalent to (r — 1)n — ry/n + 1.

3.3 Negligible and generic properties of subgroups

Thus, in the discussion of statistical properties of finitely generated subgroups
of a (fixed) free group F,, we have two distributions at our disposal. One,
the word-based distribution, is governed by two parameters — the number of
generators and their maximum length, the former fixed and the latter allowed
to tend to infinity —; the other, the graph-based distribution, is governed by a
single parameter — the size of the Stallings graph.

We first observe that our discussion of the graph-based distribution (as well
as the results in [3]) is in terms of spheres rather than balls: as we saw in
the Section 2:2.2] the (exponential) negligibility or genericity results obtained
in that setting are sufficient. In contrast, the existing literature on the word-
based distribution is in terms of balls, as is our description in Section B.Ilabove.

The graph-based as well as the word-based distribution allow the discussion
of properties of subgroups (of subgroups of a fixed rank k in the word-based
case). There is of course no reason why a property that is generic or negligible
in one distribution should have the same frequency in the other.

Our two distributions are indeed very different. How different is illustrated
in Figure [Il which shows a “random” size 200 Stallings graph and the Stallings
graph of the subgroup of F5 generated by a “random” 5-tuple of words of length
at most 40 (which has close to 200 vertices). This figure provides the intuition
to exhibit properties of subgroups that are negligible in one distribution and
generic in the other.

It is not difficult to come up with such properties. It is the case, for instance,
of the property to have rank ¢, for a fixed integer £ > 1. In the graph-based dis-
tribution, this property is negligible as a consequence of Proposition 310 (see
[3, Corollary 4.2]). In contrast, it is exponentially generic in the word-based
distribution of £-generated subgroups, see Proposition For the same rea-
son, it is exponentially negligible in the word-based distribution of k-generated
subgroups with k # £.

The properties of malnormality and purity, discussed in Section Ml provide
more complex examples of this sort.

11



Figure 1: The Stallings graphs of two randomly generated subgroups of F;. On the
left, a subgroup generated by a random 5-tuple of words of length at most 40. On the
right, a random Stallings graph of size 200. Only the shape of the graphs is depicted,
vertices and edge labels and directions are not represented. The pictures have been
generated by neato. Note that the scale (average distance between two vertices) is not
the same on the two pictures.

4 Malnormal and pure subgroups

Malnormality and purity are two important properties of subgroups. A sub-
group H is pure if 2™ € H and n # 0 implies x € H. A pure subgroup is also
called closed under radicals or isolated.

The subgroup H is malnormal if H N HY =1 for every g ¢ H. Malnormal
subgroups play an important role in the study of amalgamated products (e.g.
[18, [6]) and in the characterization of their hyperbolicity [20]. The following is
elementary from the definition.

Lemma 4.1 If a subgroup is malnormal, then it is pure.

Note that the converse statement does not hold: (a,bab™!) is pure, yet not
malnormal.

Both malnormality and purity have nice graphical characterizations, which
imply that these properties are decidable for finitely generated subgroups of
free groups. The result on malnormality is due to Kapovich and Myasnikov
[16] (following a decidability result in [4]), that on purity is due to Birget,
Margolis, Meakin and Weil [5].

Proposition 4.2 Let (I',1) be the graphical representation of a subgroup H.

(1) H is non-malnormal if and only if there exists a non-trival reduced word
u and distinct vertices x # y in I' such that u labels loops at x and at y.

(2) H is non-pure if and only if there exists a non-trival reduced word u, an
integer n > 2 and a vertex x in I' such that u™ labels a loop at x but u
does not.

4.1 Genericity in the word-based distribution. ..

Jitsukawa shows that malnormality is a generic property in free groups [14,
Theorem 4 and Lemma 6]. His arguments can be extended to show that it is
exponentially generic.
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Theorem 4.3 Malnormality is exponentially generic in the word-based distri-
bution.

In view of Lemma 4] we also have the following result.
Corollary 4.4 Purity is exponentially generic in the word-based distribution.

We now proceed to prove Theorem 4.3l The proof relies on the two following
lemmas, which provide an analogue of a small cancellation property for tuples
of reduced words. These lemmas constitute a variant of the result proved by
Arzhantseva and Ol’shanskii for tuples of cyclic words |2, Lemma 3].

Lemma 4.5 Let 0 < 8 < 1. The proportion of k-tuples h of reduced words in
F, of length at most n, such that one of the h; contains two distinct occurrences
of factors v and w of length at least fn, with v =w or v = w™', converges to
0 exponentially fast.

Proof. The number of words u € R, of length m > n in which the occurrences
of v and w do not overlap each other, is at most equal to 4n’r(2r — 1)m=A:
the factor n? corresponds to the choice of two starting positions, a factor 2
corresponds to the two possibilities of v being equal to w or w™!. Summing
over all lengths m < n, we find an upper bound of 4n?r(2r — 1)(1_6)”“.
Let us now consider the words u of length m where the occurrences of v and
w do overlap. We first observe that occurrences of v and v~! cannot overlap
in a reduced word. So the words v and w are equal. Since their occurrences
overlap properly in u, we have v = xy and the factor of u spanned by these two
occurrences together is of the form xxy for some x,y # 1.
If |z| > |y|, then |z| > % and z has two consecutive occurrences in u. The
8

number of such words is at most equal to 2nr(2r — 1) 2",

If instead |z| < |y|, then v = z‘2’ for some integer £ > 2 and some proper
prefix 2’ of z. In that case, 23] has two disjoint occurrences in v and hence
in u. Moreover, \xtéJ] > (o] = |z = |2']) > E|v] > %n. The number of such
words is at most equal to 2nr(2r — 1)m_%”.

8
Summing these two figures, we get an upper bound of 4nr(2r—1)""6", and

summing again over all m < n, we get an upper bound of 4nr(2r — 1)(1_%)”“.

We have proved that the proportion p of words (1-tuples) as described in
the statement of the lemma converges to 0 exponentially fast. The proportion
of k-tuples in which a word (at least) has that property is at most kp, which
completes the proof. O

Lemma 4.6 Let 0 < 8 < 1. The proportion of k-tuples h of reduced words of
length at most n, such that a word v of length at least Bn has an occurrence in
one of the h; and v or v™! has an occurrence in hj for some j # i, converges
to 0 exponentially fast.

13



Proof. Let h € R,. The number of words A’ of length m < n such that h has
a factor v of length at least An and v or v™! has an occurrence in A, is at most
equal to 4n2r(2r—1)™~A" (by the same reasoning as in the proof of LemmaLH).
Summing over all m < n yields an upper bound of 4n2r(2r — 1)(1=8)"+1 for the
number of such 4/, and of | Ry, |[4n?r(2r —1)(1=8)7+1 for the number of such pairs
(h,h’). The result follows immediately. O

We can now prove Theorem [4.3]

Proof of Theorem 4.3l Let 0 <a <1and 0 <A< §. Let h=(hy,... hg).
Exponentially generically, we have min |h;| > an and the preﬁxes of length [An]
of the h; and h; 1 are pairwise distinct (Facts and [3.3). In addition, expo-
nentially generically, no word of length at least a_24)‘n has distinct occurrences
as a factor of the h; and the h; ! (Lemmas E5 and EG).

Let us now assume that & satisfies all these properties. Then I' = F(<h>) is
composed of a central part, which is a tree containing the distinguished vertex
and all the vertices corresponding to the prefixes of the h; and h; L of length
up to [An], and of outer loops whose labels are factors of the h; (or the hi_l,
depending on the direction in which they are read), see Fact

Any loop in I" must visit the central part of I" at least once, and run along
at least one of the outer loops. Let us now assume that a word u labels two
distinct loops in I'. Up to conjugation of u, we can assume that the base point
of the first loop is in the central part of I'. Then u has a factor v of length
[an] — 2[An], which is a factor of some h; or h;'. The other occurrence of
a loop labeled u reveals another path in I' labeled v. This path may not be
entirely in an outer loop, but if it is not, then it visits the central part of I" only
4>‘ and hence
in one of the h; or h; ! This word v has dlstlnct occurrences as a factor of the
h; and the h; L a contradm‘mon. O

4.2 ... and negligibility in the graph-based distribution

In contrast, we show that malnormality and purity are negligible in the graph-
based distribution.

Theorem 4.7 The probability that a random subgroup of size n is pure is

O(n~2).
By Lemma [£1] this implies the following

Corollary 4.8 The probability that a random subgroup of size n is malnormal
is O(n~2).

To prove Theorem [.7] we observe that if H is a finitely generated subgroup
of F, and some letter a labels a cycle of length at least 2 in I'(H), then H is
not pure (Proposition [4.2]). Therefore, if a subgroup is pure, then the partial
injection determined by each letter in A has only sequences and length 1 cycles.

Thus Theorem [4.7] follows directly from the following proposition.
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Proposition 4.9 The probability that a size n partial injection has no cycle of
length greater than or equal to 2 is asymptotically equivalent to ﬁ

Our proof of Proposition uses Hayman’s theorem, discussed in Sec-
tion [£.2.1] below.

Remark 4.10 There are many more reasons for a subgroup to fail to be pure,
than those considered here. In terms of Proposition[4.2] we have considered only
the words u that are equal to a letter of the alphabet. As a result, the probability
of purity and that of malnormality are likely to be much smaller than the upper
bounds given above. The open question here is whether purity and normality
are exponentially negligible with respect to the graph-based distribution. O

4.2.1 H-admissible functions and Hayman’s theorem

Hayman’s theorem on the asymptotic behavior of the coefficients of certain
power series requires a technical hypothesis called H-admissibility. Here we give
only the technical definition and statement we will use, and we refer the readers
to [I1, Chapter VIII] for further details on this theorem and on saddlepoint
asymptotics in general.

Let f(z) be a function of the form f(z) = ¢"*) that is analytic at the origin,
with radius of convergence p. We denote by [2"]f(z) the coefficient of 2" in the
power series development of f at the origin. Let

a(r)y=rh'(r) and b(r)= r2h"(7‘) +rh/(r).

The function f(z) is said to be H-admissible if there exists a function d: ]0, p[—
10, [ such that the following three conditions hold:

(H1) lim,—,b(r) = 4o0.
(H2) Uniformly for [0| < 6(r)
f(re?) ~ f(r)ew“(r)_%ezb(r) when r tends to p.

[That is, f(re'®) = f(r)e® =30 (1 4 ~(r,0)) with |y(r,60)] < (r)
when |§] < (r) and lim,_,,¥(r) = 0.]

(H3) and uniformly for 6(r) < 0| <
f(re®)\/b(r) = o(f(r)) when 7 tends to p.
Hayman’s theorem [I1, Theorem VIII.4] states the following.

Theorem 4.11 Let f(z) = €M% be a H-admissible function with radius of
convergence p and ( = ((n) be the unique solution in the interval |0, p| of the
saddlepoint equation

Q)

FQ)

f(©)
(" /2mb(C)

¢

Then
[z"]f(2) =

where b(z) = 22h"(2) + zh/(2).

(1+ o(1)).

15



4.2.2 Proof of Proposition [4.9]

Let IC be the set of partial injections in which all the cycles have length 1 and let
J the set of partial injections without any cycles (a subset of ). The elements
of J are known as fragmented permutations, see [11l Section I11.4.2].

Let K, and J, be the number of size n elements of K and 7, and let K(z)
and J(z) be the corresponding EGS. The series J(z) is studied in detail in [IT],
Example VIIL.7, Proposition VIIL.4]. There, it is shown in particular that J(z)
is H-admissible and that

1

) and % = 26\_/;62\/%71_‘31(1 +0(1)). (1)

J(2) = exp (1 z

—Z

A partial injection in /C consists of a set of length 1 cycles and a fragmented
permutation. It follows that

& n!
Kn = )
kzzo k!(n — k:)!Jk

so that
K, e N N A N z
K(Z):ZFZ :<Zmz><zmz>:e J(z)zexp(?:—i—:).
n=0 n=0 n=0

Now e* is H-admissible: this can be verified directly, or by application of [11],
Theorem VIIL.5]. We already noted that J(z) is H-admissible, and hence K(z)
is H-admissible as well, as the product of two H-admissible functions ([11, The-
orem VIIL5] again).

The saddle-point equation ZK/((ZZ)) = n (see Section L.2.7]) is

2(2 — 2z + 2?)
(1-2)
2B —(n+2)22+2n+1)z—n=0.

=n, i.e.

Let P,(z) be the polynomial on the left hand side of this last equation. Ex-
amining the sign of the derivative of P, (z) on the interval [0, 1] and the values
of P, at 0 and 1, we find that P, has a unique zero between 0 and 1, say (,.

Moreover ) ) )
n=1——+ — — . 2
=17t 540 () )

This asymptotic development can be obtained using MAPLE, based on the appli-
cation of the Cardan method to this degree 3 polynomial. We can also observe
the following. Let @, (z) be the polynomial defined by the identity

Po(l—2)=1-2+(1-n)2? — 23 = Qn(z) — 2>
The zero of Q,(z) in the interval [0,1] is

CWVEIn-3-1 1 1 3
T s By A P Y
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and if 8, = 1—ay,, we have P,(3,) = —a2, which is negative for n large enough.

Now let ’ynzl—ﬁ—i-%. Then

5 3
P — 2 L om>
A1) = 12 +O(n73),
which is positive for n large enough. It follows that 5, < (, < v, justifying
the development in ({2]).
With the notation of Section [£.2.1], we also have

d? d
_ 2
b(z) =z e log K (2) + i log K (2)

2(2-224322 - 2%)
N (1-2)° ’
b(() = 2n°% + O(n).

so that

Then we have

o =t (1 7z 4540 (17z)) = v 0 ()
K(Cn) = exp <Cn + n ) ~ezeV™,

By Theorem [£11] we now have

ME(s) o B vagdm L L
I ) ¢r\/2m0(C) ’ o 2y/mndt 2w

Proposition B3 follows since [2"]1(z) ~ Ce2Vn~1/4,

n3/4p2Vn

4.3 A remark on the Hanna Neumann conjecture

The Hanna Neumann Conjecture (HNC) deals with the rank of the intersection
of finitely generated subgroups of free groups. We refer the reader to [9, 23, 10,
191 21] for recent discussions of this conjecture. For convenience, let the reduced
rank of a subgroup H, written rk(H), be equal to

rk(H) = max(0, rank(H) — 1).

The HNC states that, if H and K are finitely generated subgroups of F, then
rk(H N K) < rk(H)rk(K) (the inequality rk(H N K) < 2rk(H )rk(K) was estab-
lished by Hanna Neumann in the 1950s). Burns [7] conjectured the stronger
inequality:

> rk(H N K9) < rk(H)rk(K),

where the sum runs over all ¢ € H\F/K such that H N K9 # 1. We denote
this strengthened conjecture by SHNC.

It was observed, initially by Stallings [31] and Gersten [13], that HNC and
SHNC have natural interpretations in terms of Stallings graphs. If ' is an A-
labeled graph, let us denote by x(I") the difference between the number of edges

17



and the number of vertices of I': thus rk(H) = x(I'(H)). Let A(H, K) be the
graph obtained from I'(H) and I'(K) as follows: the vertices of A(H, K) are
the pairs (u,v) such that u is a vertex of I'(H) and v is a vertex of I'(K); and
the edges of A(H, K) are the triples ((u,v),a, (u’,v")) such that (u,a,u’) is an
edge of I'(H) and (v,a,v) is an edge of I'(K).

Let A; be the connected component of A(H, K) containing (1,1) (where
1 denotes the origin of I'(H) and of I'(K)), and let Ay be the union of the
connected components of A(H, K) which are not trees. Then HNC holds for
H and K if and only if x(A1) < rk(H)rk(K), and SHNC holds for H and K if
and only if x(Aq) < rk(H)rk(K).

Now observe (as in Proposition B.7)) that a randomly chosen (k + ¢)-tuple of
elements of R, is composed of the juxtaposition of a randomly chosen k-tuple
and a randomly chosen ¢-tuple. Exponentially generically, such a k-tuple h and
{-tuple g generated subgroups with trivial intersection: in particular, HNC
holds exponentially generically in the word-based distribution.

In fact, with the same ideas as in the proof of Theorem 4.3 exponentially
generically, there is no loop in I'((k)) with an occurrence as a loop in T'((1')).
Therefore SHNC holds exponentially generically.

It is usually believed that SHNC holds in general. It would be interesting to
show that it holds generically with respect to the graph-based distribution: to
find a sufficient condition for the inequality in the conjecture, that is satisfied
generically by (pairs of) Stallings graphs.

5 An intermediate property

In this section, we discuss an intermediate property of subgroups, that is a
property such that the proportion of subgroups of size n with this property
has a limit which is neither 0 nor 1 (respectively the negligible and the generic
cases).

Theorem 5.1 The probability that a random size n subgroup of F,. intersects
trivially the conjugacy classes of the generators tends to e when n tends to
infinity.

The discussion of this property is included here because we do not know
many examples of such intermediate properties. Unfortunately, the property
in question is geometric in the sense that it depends on the combinatorial pa-
rameters of the Stallings graph of the subgroup, and is not preserved under
the automorphisms of F,.. It would be interesting to exhibit such a property
that would be algebraic (preserved under automorphisms). One might think
for instance of the property of avoiding the conjugacy classes of all the elements
of some basis of F;., or the property of avoiding all primitive words.

Remark 5.2 The property described in The_Qremlf):Dis exponentially negligible
in the word-based distribution. Indeed, if A is a k-tuple of reduced words of

—

length at most n, then I'((h)) has exponentially generically k loops of length at
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least § and no loop of length 1 (see the discussion in Section B.I] with o = %
and \ = é) O

The rest of this section is devoted to the proof of Theorem Bl Tt is easily
verified that a subgroup H contains a conjugate of letter a € A if and only if a
labels a loop at some vertex of I'(H), that is, if and only if the corresponding
partial injection has some fixpoint. Since the drawing of the partial injections
corresponding to the different letters is independent, the theorem follows di-
rectly from the following proposition.

Proposition 5.3 The probability that a size n partial injection has no fixpoint
tends to % when n tends to infinity.

Remark 5.4 Note that % is also the limit of the probability that a size n
permutation has no fixpoint (a so-called derangement, see [§]). O

Our proof of Proposition 5.3] again uses Hayman’s theorem (Section [.2.]).
We also need the following technical result.

Proposition 5.5 Let fy(z) be an H-admissible function with radius of conver-
gence p < oco. Then f(z) = e *fo(2) is H-admissible as well.

Proof. Since fj is analytic at the origin, it is clear that f(z) is analytic at the
origin as well, with a radius of convergence equal to that of fo(z).

Let h(z) be such that f(z) = e"*). If h(z) = ho(z) — 2, then we have
fo(z) = eho(2)

Let ag(t) = thy(t), a(t) = th'(t), bo(t) = t2h{(t) + ao(t) and b(t) = t2h"(t) +
a(t). Then a(t) = ag(t) — t and b(t) = by(t) — t.

It is immediate that lim;_,, b(t) = +o00 since this limit holds for by. That
is, Condition (H1) holds.

We now verify Condition (H2). Let d(¢) be a positive function such that
lim;—,, §(t) = 0; and such that, uniformly for |#| < §(t), and as t tends to p,

ho(te®) = ho(t) + iBag(t) — %021)0(:5) +o(1).
Then
h(te™) = ho(te) — te®
= ho(t) + ifao(t) — %szo(t) + 0(1) — te
= h(t) +ifa(t) — %sz(t) +o(1) —te 4 tif — %w?.

We now observe that, if 0] < d(¢) and as ¢ tends to p, then [tif| < to(t) = o(1)
and similarly, %t@z = o(1). Finally,

E(L — )] = 11/ (1 = cos )2 + sin? 6 = ¢/2(1 — cos §) < t]6] < t5(t) = o(L).
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Thus h(te) = h(t) + ifa(t) — 160%b(t) + o(1) uniformly for |0 < §(¢), which
concludes the verification of (H2).
f(te®®)/b(t)

Finally, we want to show that - tends to 0 when t tends to p,
uniformly for §(¢) < || < 7. We have

F(te®)\/6(E) _ folte®)e" \/b(t)

f(?) fo(t)e™
_ fo(te)y/bo(t) g—e?y [t
fo(?) bo(t)’

Since fy is H-admissible, uniformly for 6(¢) < |#| < 7 and as ¢ tends to p,

Jo(te®)\/bo(t) — o(1)
I(t) '

Moreover, ,/1 — botw =1+ o(1) since lim;_,, by(t) = +o00. Finally, when 0 <

t < p, |ef1=¢)| = ¢tll=cos0) < 20 This suffices to conclude that (H3) holds,
and hence that f(z) is H-admissible. 0

Proof of Proposition 5.3l Let £ be the set of partial injections without
fixpoints (i.e., without size 1 cycles), let L, be the number of size n ele-
ments of £ and let L(z) be the corresponding EGS. We want to show that
L,=121L,(1+0(1)).

The EGS L(z) is computed using the standard calculus of enumeration of
labeled structures (displayed in [I1 Figure II-18]), which was already used to
compute I(2) in [3]: since the EGS of cycles is log(12), the EGS of cycles of

size at least 2 is log(ﬁ) — z and the EGS of non-empty sequences is 7

=, we
have

1 1 2
L(z) =exp <log(:)—z+ 1iz> = 1_Zexp<1z z> =1I(z)e ".

We already know that I(z) is H-admissible [3, Lemma 2.8] and Proposition
shows that L(z) is H-admissible as well.

The saddlepoint is the solution ¢, in the open interval ]0,1[) of the equa-
tion zLL((ZZ))
equation

= n. An elementary computation shows that we need to solve the

B4 n—1)22—2n+1)z+n=0, thatis,
(z+n+1)(1—-2)?2—-1=0.
Letting z = 0 and z = 1 in this equation shows that there is a solution in

the interval (0,1); moreover, one verifies easily that (z +n + 1)(1 — 2)? — 1 is
monotonous on (0, 1), and hence our equation has exactly one solution in that

interval, say, (. From 0 < (,, < 1, we deduce that n+r2 <(1-¢)? < n+r17 and
hence 1 — %H <(p<1-— n+r2 In particular, ¢, =1 — ﬁ +0 (ﬁ)
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It now follows from Theorem .11l that

L(¢n)
G/ 2mb(Cn)

Elementary computations show that

b(Cy) = n2 3(2— % +0 <%>>
leb(cn) N ;\_/7? <1 " % o <%>>
()
= exp <\/ﬁ+%+0 <in>>
1

g =i o( )

L(Gn) = Vinexp <\/ﬁ—2+(9 (%)) <1+0 (%))

2"L(2) = (1+0(1)).

Comparing with the estimate of [z"]I(z) in Proposition 3.9] we find the
announced result, namely

6 Finitely presented groups

One of the motivations for the study of subgroup distributions has been the
investigation of the statistical properties of finitely presented groups, see [27,
2, [I]. Strictly speaking, this would require a notion of distribution of these
groups, so that one would make a list of non-isomorphic groups and investigate
the frequency of groups with certain properties within that list. No such notion
is available, as far as the authors are aware and current literature operates
rather with a notion of distribution of finite presentations.

Recall that a finite presentation is a pair (A, R), where A is a finite set (the
alphabet of generators) and R is a tuple of elements of F(A) (the relators).
The resulting finitely presented group G, written G = (A | R), is the quotient
G = F(A)/N(R), where N(R) is the normal subgroup generated by R. The
usual approach of statistical properties of finitely presented groups is based on
the uniform distribution on k-tuples of reduced (or cyclically reduced) words of
length at most n.
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Of course, different presentations may yield the same group, even if the
alphabet of generators is fixed. We are not aware of an analogue of Proposi-
tion B.8labove, which would state, say, that the distribution of finitely presented
groups with k relators of length at most n resulting from the uniform distribu-
tion on k-tuples of reduced (or cyclically reduced) words of length at most n, is
uniform, at least on a generic subset of k-tuples. However, partial results exist
in this direction for one-relator groups (Kapovich, Schupp and Shpilrain [17],
Sapir and Spakulova [29] 30]).

In this section, we want to discuss an idea that may seem reasonable in this
context, but which turns out to be disappointing. If H is the subgroup generated
by the tuple of relators R, then N(R) = N(H), so the group G = (A | R) is
also specified by the pair (A | H). Thus, instead of looking at the normal
closure of a finite set of elements, we look at the normal closure of a finitely
generated subgroup. Now, clearly, if one generates a list of subgroups H by
listing k-tuples of generators (the word-based distribution discussed earlier in
this article), then the distribution of groups produced by this process will be
the same as if one were working with presentations.

The idea we wish to explore is to generate the subgroup H via its Stallings
graph, that is, to use the graph-based distribution of subgroups. Precisely,
we may present groups via pairs, (A | I') where A is an alphabet and T is a
Stallings graph. This is a priori a more compact representation of the group
(more compact in bit size, less convenient to I/}TEX)E More importantly, as
we have seen that the graph-based distribution of subgroups is different of the
word-based distribution, we may anticipate a different distribution of finitely
presented groups as well, which would give us different insights on finitely pre-
sented groups.

Now an interesting feature of the statistical study of group presentations by
tuples of relators is that the groups produced are generically non-trivial, and
in fact infinite. More strongly, if A and k are fixed and if the maximal length n
of the relators in the k-tuple R tends to infinity, then generically G = (A | R)
is such that every subgroup generated by |A| — 1 elements is free [2]. It is also
known that G is generically hyperbolic (Ol'shanskii [27], proving a statement
of Gromov).

In sharp contrast, and somewhat disappointingly, generically, a finitely pre-
sented group of the form (A | T') is trivial.

Theorem 6.1 Generically, the finitely presented group (A | T') is trivial. In
other words, generically, the normal closure of a randomly chosen subgroup of
F,. of size n, is F, itself.

The rest of Section [(] is devoted to the proof of Theorem We note that
if the lengths of the cycles of the partial injection induced by letter a in I'(H)
are relatively prime, then a belongs to the normal subgroup N(H), and hence
a=1in G = (A | H). Thus it suffices to prove the following proposition.

2Tt would be more interesting to have a unique, discrete representation of finitely generated
normal subgroups, but no such representation seems to be known. And distinct normal
subgroups may well lead to isomorphic quotients.
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Proposition 6.2 Generically, the lengths of the cycles of a size n partial in-
jection are relatively prime.

Remark 6.3 Our proof that (A | H) is generically trivial relies on a rather
rough upper bound: we show that generically with probability 1 — O(n_%),
each letter a is a product of conjugates of powers of a¢ in H. We do not know
whether (A | H) is exponentially generically trivial. See Remark ELI0l for a
similar situation. O

6.1 The permutation case

We start with the case of permutations, which is interesting in and of itself.

Observe that if the lengths of the orbits of a permutation are not relatively

prime, then these lengths have a common prime divisor p, which is in particular
(p)

a divisor of n. Let Py’ be the set of size n permutations in which all the orbits
have size a multiple of p.

Lemma 6.4 Let n > 2 and let p be a prime divisor of n.Then
]77,(1”)] < 2n!n%_1

Proof. We fix p, so n is of the form n = mp and we proceed by induction on
m. If m = 1, that is, p = n, then \Pﬁlp)] is the number of size n cycles, namely
(n — 1)I. We now assume that m > 1.

(p)

We enumerate the elements of Py’ in terms of the size kp of the orbit of 1:
to determine such a permutation, one needs to select the other kp—1 elements of
that orbit, select a cycle on these kp elements, and select a permutation on the

(»)

remaining elements, that is, an element of Py Thus, using the convention

that ]77 ]—1 we have
- 1
PP = (” >k‘p—1 pe®),
POI=3 (1)t 0P
(1) )
- P
;m_w N
m— fp(p
=0

Isolating the term j = 0 and using the induction hypothesis, it follows that

m—1 m—1

PP < -1 1423 () ==t [ 1+2p7 1Y g
j=1 j=1

1
. 1_q, . . s
Since the map x + xz» ~ is non-increasing on positive reals, we have

S

. 11 AR 1
G+ 1) s/ v Vdw = p((j + 1) — j7).
J
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Therefore, isolating the term j = 1,

m—1 L m—1 L
jrt =14 jpt
j=1 J=2
m—2
=1+ (j+1)r "
j=1
1
<l+p((m-1)r—1)
1
<l+4pmr—1) = p »rnr—p+1

Now we have
PP < (n—1)! (1 + Qp%_l (pl_%n% —-p+ 1>)
<(n—1)t (207 +1-2p7 +2p57").

Since p > 2, it holds

N —

and hence
\77 \ <(n- 1)'2np = 2n'n? 1,

which concludes the proof. O

Proposition 6.5 The probability that the lengths of the orbits of a size n per-
mutation are not relatively prime is at most equal to \/— + 2n~ 5 logs n.

Proof. Let @, be the set of size n permutations for which the lengths of the
orbits are not relatively prime, and let ¢, = |Q”|.

As we already observed, a common d1V1sor of the lengths of the orbits of a
size n permutation is also a divisor of n. Therefore, if n is prime, then @), is the
set of size n cycles, so |Q,| = (n —1)!, g, = % and we have the desired result.

If n is not prime, then every size n permutation in @, is in Pr(Lp ) for some
prime divisor p of n. These sets are not pairwise disjoint, but the Sum of their
cardinalities is an upper bound for |@,|. For these values of p, ]77 ] < Mnlns™
by Lemma Separatmg the case p = 2 from the cases p > 3, we find that

< \/_ +2Dn~ 3 where D is the number of distinct odd prime divisors of n.

Smce n > 3D, we have D < logsn and hence

C/Jl\.')

<—+2Dn 3 —+2n 310g3n

"= n = Ve

which concludes the proof. O
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6.2 Proof of Proposition

Isolating the cycles in a size n partial injection, reveals a permutation (on a sub-
set X of [n]) and a fragmented permutation (i.e., a cycle-less partial injection)
on the complement of X.

The EGS J(z) = >, & In cn 2" of fragmented permutations was discussed in

Section 1.2] where we noted in particular that J(z) = exp ( > Let us add

the following observation.
Lemma 6.6 The sequence (J,/n!)p>0 is increasing.

Proof Let M, = =, so that J(z) = > >0 Mpz". The equalities 4J(z) =
= z)2 J(2), and hence (1 — 2)2LJ(z) = J(2), yield the following recurrence
relation, for all n > 2:

(n/+-1)ﬂ4ﬁ+4 ::(2n/+-1)ﬂ4ﬁ —-(n/—-l)Aln_l.
It follows that, for all n > 2,
(n+1)(Mp+1 — M) =nM, — (n—1)My—1 =n(My, — Myp_1) + My,_1.

The result follows by induction since M; =1 and My = % (see for instance [11],
Section I11.4.2]). O

Specifying a size n partial injection whose permutation part (the union of
the cycles) has size k, amounts to choosing k elements, choosing a permutation
on these k elements, and choosing a fragmented permutation on the remaining
n — k elements: the number of such partial injections is

n Jn—k
| —nl " .
<k>k'Jn_k " (n— k)l

and the number of those in which the sizes of the cycles have a non-trivial ged

is at most equal to
Jn— 1 logs k
2n) 2k (— + g;” >
=k \VEk k3
by Proposition Moreover, summing the numbers of partial injections with
permutation part of size k, we get

n

Jn—k
— =%
I, E n(n Ik

k=0

We use these observations to show the following facts, which together suffice
to establish Proposition

Fact 6.7 The proport10n of s1ze n partial injections whose permutation part
has size less than n3 is O(n~ 6) O
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Fact 6.8 The proportilon of size n partial injections whose permutation part
has size greatler than n3 and for which the sizes of the cycles has a non-trivial
ged, is O(n™s). 0

Proof of Fact The propolrtion of size n partial injections whose permu-
tation part has size less than n3 is

1 Jn— J,
i Z nl—"=k < (n3 4 1)1—" by Lemma [6.6]
n

The last inequality holds since ‘}—: = (’)(n_%) (compare the asymptotic equiva-
lents of # given in Section [£.2.2] and of % in Proposition [3.9). O

Proof of Fact Here we use Proposition and the fact that, for large

enough integers, we have ﬁ + lo}f%k < % The number of size n partial

injections whose permutation part has size greater than ns and for which the
sizes of the cycles has a non-trivial ged, is bounded above by

3 Jn—k < 1 10g3 k> -1 - Jn—k
Mle——m— | —=+—=— | <4n" % nl———
2 oo\ SRR ey

k3 \
k=[n3] k=[n3]
1 J,
<d4n7e Y nl—E o —ypTeg
Z (n—k)! "
k=0
Thus the proportion of these partial injections is at most 4n"% O
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