A multi-platform comparison of efficient probabilistic methods in the prediction of total knee replacement mechanics

Strickland, M.A., Arsene, C.T.C., Pal, S., Laz, P.J. and Taylor, M. (2010) A multi-platform comparison of efficient probabilistic methods in the prediction of total knee replacement mechanics. Computer Methods in Biomechanics and Biomedical Engineering, 13, (6), 701-709. (doi:10.1080/10255840903476463). (PMID:20162473).


[img] PDF (Pre-review version of CMBBE manuscript) - Author's Original
Download (898Kb)


Explicit finite element (FE) and multi-body dynamics (MBD) models have been developed to evaluate total knee replacement (TKR) mechanics as a complement to experimental methods. In conjunction with these models, probabilistic methods have been implemented to predict performance bounds and identify important parameters, subject to uncertainty in component alignment and experimental conditions.

Probabilistic methods, such as advanced mean value (AMV) and response surface method (RSM), provide an efficient alternative to the gold standard Monte Carlo simulation technique (MCST). The objective of the current study was to benchmark models from three platforms (two FE and one MBD) using various probabilistic methods by predicting the influence of alignment variability and experimental parameters on TKR mechanics in simulated gait.

Predicted kinematics envelopes were on average about 2.6 mm for tibial anterior-posterior translation, 2.9° for tibial internal-external rotation and 1.9 MPa for tibial peak contact pressure for the various platforms and methods. Based on this good agreement with the MCST, the efficient probabilistic techniques may prove useful in the fast evaluation of new implant designs, including considerations of uncertainty, e.g. misalignment.

Item Type: Article
Digital Object Identifier (DOI): doi:10.1080/10255840903476463
ISSNs: 1025-5842 (print)
1476-8259 (electronic)
Keywords: total knee replacement, kinematics, contact mechanics, knee mechanics, probabilistic methods, simulation
Subjects: Q Science > QM Human anatomy
R Medicine > RD Surgery
T Technology > TA Engineering (General). Civil engineering (General)
Divisions : University Structure - Pre August 2011 > School of Engineering Sciences > Bioengineering Sciences
Faculty of Engineering and the Environment > Engineering Sciences > Bioengineering Research Group
ePrint ID: 143555
Accepted Date and Publication Date:
9 December 2010Made publicly available
Date Deposited: 12 Apr 2010 12:11
Last Modified: 31 Mar 2016 13:19
URI: http://eprints.soton.ac.uk/id/eprint/143555

Actions (login required)

View Item View Item

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics