Potential improvements in the characterization of forest canopy gaps caused by windthrow using fine spatial resolution multispectral data: comparing hard and soft classification techniques


Foody, G.M., Jackson, R.G. and Quine, C.P. (2003) Potential improvements in the characterization of forest canopy gaps caused by windthrow using fine spatial resolution multispectral data: comparing hard and soft classification techniques. Forest Science, 49, (3), 444-445.

Download

Full text not available from this repository.

Description/Abstract

Gaps often form in forest canopies due to windthrow and have important management and ecological implications. Remote sensing has considerable potential for the provision of information on gap properties but this has not been fully realized. This is largely due to the use of conventional (hard, one-pixel one-class) image analysis techniques and imagery with a relatively coarse spatial resolution. This article investigates the potential to extract information on gap properties from fine spatial resolution airborne thematic mapper imagery using soft classification techniques that allow image pixels to have multiple and partial class membership. It is shown that a standard hard maximum likelihood classification may be used to derive an accurate map of the land cover of a forested site (95.1%) from which gaps in a canopy of Sitka spruce were accurately identified (94.5%). The maximum likelihood classification was also softened by outputting probabilities of class membership for each pixel. Softening the classification increased the information on gap properties that could be extracted from the data. In particular, the accuracy with which key gap properties, such as gap area, perimeter length and shape, were estimated was higher in the outputs of the softened than hard classification. Thus, while strong correlations between the remotely sensed and ground data estimates of gap area (r 0.96) and perimeter (r 0.87), based on a sample of 36 gaps, were derived from all classifications, the accuracy with which gap properties were estimated was generally highest when a soft classification was used. For example, the use of a soft rather than hard classification resulted in the root mean square error in estimating gap area declining from 144.90 to 132.87 m2. Furthermore, the soft classification allowed the sharpness of the gap boundary to be estimated, enabling further gap properties to be inferred. In particular, the soft classification output enabled the direction of the wind event causing the initial damage to be estimated, and it may aid the definition of sites with a future risk of windthrow.

Item Type: Article
ISSNs: 0015-749X (print)
Related URLs:
Keywords: Gap boundary, soft classification, environmental management, forest, forest management, forest resources, forestry, forestry research, forestry science, natural resources, natural resource management
Divisions: University Structure - Pre August 2011 > School of Geography > Remote Sensing and Spatial Analysis
ePrint ID: 14544
Date Deposited: 22 Feb 2005
Last Modified: 27 Mar 2014 18:04
URI: http://eprints.soton.ac.uk/id/eprint/14544

Actions (login required)

View Item View Item