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Blooms of toxic, or otherwise harmful phytoplankton species are known to occur in eastern 
boundary upwelling systems, coincident with the relaxation of upwelling in late 
summer/autumn. Field studies were carried out in 3 consecutive summers (March/April 06-08) 
in the Benguela and in the autumn (Sept 06) and summer (June 07) in the Iberian upwelling 
system (Ría de Vigo), with the aim of identifying common nitrogen nutrition strategies of HAB 
species that may allow them to succeed in upwelling systems. Two summer field studies were 
also carried out in the Fal Estuary (UK) to identify possible differences between a UK estuary 
and these upwelling systems.  
  In the Benguela, three toxic phytoplankton species were dominant under different nutrient 
conditions. Pseudo-nitzschia spp. were abundant during a period of strong upwelling and high 
NO3

-, peaking during short periods of wind relaxation. During these periods, a switch from high 
nitrate uptake [ρ(NO3

-)] to regenerated nitrogen uptake [ρ(NH4
+) and ρ(urea)] occurred, with ƒ-

ratios dropping from 0.79 to 0.12. Alexandrium catenella bloomed during a period of upwelling, 
displaying high ρ(NO3

-) and ƒ-ratios up to 0.87. Dinophysis acuminata dominated when NO3
- 

concentrations were <0.5 µmol l-1 and ƒ-ratios <0.1 in 2007, although in 2008 it formed a 
subsurface maximum, often associated with high NO3

- concentrations. Nutrient uptake kinetics 
showed that Pseudo-nitzschia spp. displayed the highest maximum specific uptake rates (νmax). 
D. acuminata displayed the highest affinity for NH4

+, as shown by its α values (slope of the 
nutrient uptake vs. concentration curve). Thus, A. catenella was adapted to utilising high NO3

- 
concentrations during upwelling pulses, whereas both Pseudo-nitzschia and D. acuminata were 
able to acclimate to both high and low NO3

- concentrations during the upwelling/relaxation 
cycles. 
  In the Ría de Vigo, warm water from the stratified shelf entered the ría and downwelled in 
September, resulting in a well-mixed water column. The phytoplankton assemblage, dominated 
by Ceratium spp., Dinophysis acuminata and Gymnodinium catenatum, appeared to be advected 
in to the ría. Nitrate concentrations were consistently low, whereas NH4

+ concentrations 
increased towards the head of the ría and with depth. The phytoplankton community was 
dependent on regenerated nitrogen, with ƒ-ratios <0.2. In contrast, positive circulation in June 
resulted in strong vertical gradients in temperature, salinity and nutrients and a community 
dominated by diatoms. Nitrate and NH4

+ were depleted in surface waters although uptake rates 
were higher than in September, as were the ƒ-ratios (0.1-0.3).  
  In both systems, upwelling winds favoured diatoms, although they were able to utilise 
regenerated nitrogen when NO3

- was depleted, whereas upwelling relaxation created favourable 
conditions for HAB development. Dinophysis spp. occurred in both systems and were able to 
grow on recycled nitrogen in the absence of NO3

-. The Benguela showed high variability in the 
selection of particular HAB species, perhaps due to greater variability in upwelling-downwelling 
cycles. In the Ría de Vigo, the occurrence of downwelling and associated nutrient conditions 
leading to blooms of Dinophysis spp. and Gymnodinium catenatum seems more predictable.  

In the Fal Estuary, Alexandrium spp. was favoured by low irradiance and the combination of 
strong stratification and high nutrient concentrations, and its growth was sustained 
predominantly by NH4

+. A. minutum strains isolated from both upwelling systems and from a 
UK Lagoon all displayed higher νmax for NH4

+
 relative to NO3

-
 but higher growth rates on the 

latter. This was consistent with field results from all 3 regions, suggesting that the upwelling 
systems did not display a different order of nitrogen preference, although they did display a 
higher affinity for NO3

-.  
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S: substrate concentration 

SACW : South Atlantic Central Water 

SD: Standard Deviation 

SE: Standard Error 

Si (= Si(OH)2): dissolved inorganic silicate (silicic acid) 

SIRMS: Stable Isotope Ratio Mass Spectrometry 

Vcell: cell volume (µm3) 

α: ratio of νmax to Ks, a measure of substrate affinity 

δ: excess of 15N relative to natural abundance  

µ: cellular growth rate (d-1) 

µmax: maximum cellular growth rate (d-1) 

ρ(N): absolute rate of nitrogen uptake (µmol N l-1 h-1) 

ν: PN-specific rate of nitrogen uptake (h-1) 

σPSII: functional absorption cross-section of photosystem II 

τ: photosynthetic turnover 

νmax: maximum PN-specific rate of nitrogen uptake (h-1) 

νmax(cell): maximum cell-specific rate of nitrogen uptake (h-1)
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1 Introduction 
 

1.1. Harmful Algal Blooms 

 

Harmful Algal Blooms (HABs) are proliferations of planktonic algae that cause 

negative impacts on marine ecosystems, aquaculture resources and human health. They 

were previously known as “red tides”, due to the water discolouration they often cause, 

however blooms do not need to be visible to cause harm, and conspicuous blooms are 

not necessarily harmful, hence the term HABs was deemed more appropriate. These 

blooms occur in coastal waters worldwide, often in harbours, embayments and lagoons 

which are used for human activities such as aquaculture, tourism and recreation. Their 

occurrence is thought to have become more frequent and widespread and their impacts 

more severe in recent years (Hallegraeff, 1993; Chretiennot-Dinet, 1998; Anderson et 

al., 2002). Some 300 phytoplankton species have been reported to produce “red tides”, 

although only 60-80 species are intrinsically harmful due to biotoxin production, 

physical damage, anoxia, irradiance reduction or nutritional unsuitability. Among these, 

90 % are flagellates and 75 % are dinoflagellates (Smayda, 1997).  

Blooms of “benign” (i.e. non-toxic) species can reach extremely high concentrations 

and may result in water discolouration. Although these blooms often appear as red 

patches (e.g. Noctiluca spp., Protogonyaulax spinifera) hence the name “red tides”, they 

can be a variety of different colours, such as the “brown tides” caused by the 

pelagophyte Aureococcus anophagefferens (Bricelj & Lonsdale, 1997). Such blooms are 

not necessarily harmful, but they can lead to extensive fish and shellfish mortalities 

when bloom decay causes anoxia and produces hydrogen sulfide. For example, an 

extensive bloom of Ceratium furca and Prorocentrum micans at Eland’s Bay, on the 

west coast of South Africa, caused the stranding of 2,000 tonnes of rock lobster and an 

estimated economic loss of 50 million US dollars (Pitcher & Cockcroft, 1998). They can 

also negatively impact fauna and flora, such as eel grass and coral reef communities, by 

reducing light penetration. Other negative effects include mechanical damage to marine 

organisms, such as clogging of fish gills (e.g. the spiny diatom Chaetoceros spp.). The 

prymnesiophyte Phaeocystis spp. is known to form large mucilaginous colonies that can 

disrupt food-web dynamics and fisheries and have a negative impact on tourism, due to 
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the production of foam that washes up on beaches (Lancelot et al., 1987; Schoemann et 

al., 2005). 

Blooms of toxic species are of major concern due to their human health and 

economic impacts. Paralytic (PSP), Diarrhetic (DSP), Amnesic (ASP), Neurotoxic 

(NSP) and Azaspiracid Shellfish Poisoning (AZP) occur as a result of the accumulation 

of toxins in filter-feeders, which may cause severe illness or even death to the consumer. 

Gymnodinium breve can cause NSP via shellfish consumption as well as producing 

aerosols that can cause respiratory problems and skin irritation in humans (Steidinger et 

al., 1998).  

In tropical and subtropical regions, ciguatera toxins can also be bioaccumulated 

through the food chain to carnivorous fish and result in Ciguatera Fish Poisoning (CFP) 

from their consumption (Lewis, 1984). Bioaccumulation of the toxin domoic acid also 

occurs in anchovies on the California coast and has resulted in mortalities of brown 

pelicans (Work et al., 1992) and sea lions (Scholin et al., 2000). Some phytoplankton 

species produce toxins that are directly lethal to fish (ichthyotoxic), for example the 

dinoflagellate Pfiesteria piscicida (Morris, 1999) and the raphidophytes Heterosigma 

akashiwo (Honjo, 1993) and Chattonella spp.(Toyoshima et al., 1989).  

PSP is caused by a group of 21 known closely related water-soluble neurotoxins 

(tetrahydropurines), comprising 4 sub-groups, (i) carbamate components (saxitoxin 

STX, neo-saxitoxin neo-STX and gonyautoxins GTX 1-4), (ii) N-sulfo-carbamoyl 

components (GTX 5-6, C1-C4), (iii) decarbamoyl components (dcSTX, dcneoSTX, 

dcGTX 1-4) and deoxydecarbamoyl components (doSTX, doneoSTX, doGTX 1) (van 

Egmond et al., 2004). The effects of PSP range from slight numbness and tingling to 

complete respiratory paralysis. Many causative organisms of PSP belong to the genus 

Alexandrium (e.g. A. tamarense, A. catenella, A. minutum, A. fundyense), while the 

chain-forming species Gymnodinium catenatum is the only athecate dinoflagellate 

known to produce PSP toxins.  

DSP toxins are heat-stable polyether and lipophilic compounds that can be divided 

into several groups according to their chemical structure. The acidic toxins, which 

include okadaic acid (OA) and its derivatives dinophysistoxins (DTX 1, 2, 3), are the 

only group to produce diarrhetic symptoms. Other groups include neutral toxins, 

consisting of polyether-lactones belonging to the pectenotoxin group, of which 10 have 

been isolated to date, and yessotoxin (a sulphated polyether) and its derivatives (van 

Egmond et al., 2004). A related compound causing DSP symptoms was identified in 
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1995 and later called azaspiracid (Satake et al., 1998). DSP symptoms include diarrhoea, 

nausea, vomiting and abdominal pain. The main causative organisms of DSP belong to 

the genus Dinophysis, but also include Protoceratium reticulatum (Satake et al., 1999), 

Lingulodinium polyedrum and the benthic dinoflagellate Prorocentrum lima. Dinophysis 

spp. are known to cause toxicity in shellfish at cell concentrations as low as 200 cells l-1 

(Lassus et al., 1985). 

Several species of the pennate diatom Pseudo-nitzschia (e.g. P. multiseries, P. 

australis, P. pseudodelicatissima) have been found to produce the toxin domoic acid 

(DA), responsible for the syndrome ASP (Bates et al., 1989; Buck et al., 1992; Trainer et 

al., 2002). Domoic acid is an amino acid, which can be transferred through the food 

chain and can cause illness or death to fish, seabirds and marine mammals as well as 

humans. Unlike Dinophysis spp., high concentrations of cells (at least 100,000 cells l-1) 

are necessary to produce toxin concentrations in shellfish that exceed the harvestable 

limit.  

 

1.2. Adaptive strategies of HAB species 

 

HABs are often (quasi-) monospecific, and while in some locations the same species 

blooms every year in a fairly predictable manner [e.g. Alexandrium minutum on the 

Catalan coast (Bravo et al., 2008), Alexandrium catenella in the Thau lagoon (Collos et 

al., 2007), Pseudo-nitzschia spp. on the US west coast (Anderson et al., 2006; Trainer et 

al., 2007)], in other regions, such as the southern Benguela, a variety of species 

dominate blooms at different times. In either case, the combination of physical, chemical 

and ecological factors which may lead to the proliferation of a certain species at the 

expense of all others is largely unresolved. One approach to improving our 

understanding of community succession is to study the physiological characteristics of a 

particular species (e.g. growth response to temperature, salinity, irradiance, nutrient 

source/ratios/concentrations), which can then be applied to models in an attempt to 

improve our predictive capability. As most HAB species are dinoflagellates, and diatom 

blooms are typically considered a “normal” stage in phytoplankton community 

succession, the characteristics of HAB species are often contrasted with those of diatoms 

(e.g. Smayda et al., 1997).  
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1.2.1. Margalef’s Mandala 

 

An early model of phytoplankton community succession suggested that the shift 

from diatoms to dinoflagellates occurred along a gradient of decreasing turbulence and 

nutrient availability, corresponding to a shift from r (small cell, high growth rate) to K 

(large cell, low growth rate) growth strategies (Margalef, 1978). Dinoflagellates are 

thought to thrive under low turbulence conditions for a variety of reasons. At a cellular 

level, turbulence impairs dinoflagellate growth (White, 1976; Pollingher & Zemel, 

1981), disrupts certain cellular processes and behaviour, such as swimming (Thomas & 

Gibson, 1990), causes physical damage which can lead to cell disintegration (Berdalet & 

Estrada, 1993) and may even lead to mortality (White, 1976; Pollingher & Zemel, 1981). 

Furthermore, stratification caused by surface heating, wind relaxation or freshwater 

input, creates a favourable habitat for dinoflagellate populations. In the case of 

freshwater input, conditions are improved not only by reduced mixing, but also by 

increased nutrient concentrations (Smayda, 1997). Reduced wind stress also prevents 

bloom dispersal once it has formed. 

The Mandala was subsequently revised to include a “red tide sequence”, which 

occurred in low turbulence/high nutrient conditions (Figure 1.1), a situation seen as an 

“anomaly” (Margalef et al., 1979). This agrees with the observed link between HABs 

and eutrophication (Anderson et al., 2002) and the low affinity for nutrient uptake 

generally associated with dinoflagellates, indicating that they should thrive under 

nutrient-enriched conditions (Smayda, 1997; Collos et al., 2005). However, the model 

remains challenged by the occurrence of extensive blooms in oligotrophic regions such 

as those of Gymnodinium breve in the Gulf of Mexico (Steidinger et al., 1998) and 

during upwelling relaxation in upwelling systems (Pitcher et al., 1993a; Pitcher & Boyd, 

1996; Pitcher et al., 1998; Fawcett et al., 2007).   

 



 5 

Turbulence

Nu
tr
ie
nt
s

Turbulence

Nu
tr
ie
nt
s

Flattened 
dinoflagellates Diatoms Main 

sequence

Red tide 
sequence

Red rounded 
dinoflagelates

K r

Winter

Spring
VOID

 
Figure 1.1 Mandala (Margalef, 1979) showing the “main sequence” of diatom dominance in spring 
to dinoflagellate dominance in summer, along a gradient of decreasing nutrient availability and 
turbulence, and the “red tide sequence” occurring under the paradoxical combination of high 
nutrients and low turbulence. r and K growth strategies are explained in the text. 
 

1.2.2. Life forms 

 

The selection of HAB species cannot always be explained by the Mandala, thus 

Reynolds (1980; 1984) attempted to identify co-occurring freshwater species across a 

broad spatial and temporal range and to link these “life forms” with the morphological, 

physiological and ecological traits of their key component species (Reynolds, 1987).  
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Figure 1.2 Reynolds’ Intaglio showing the 3 major strategies devised by Reynolds (1987). See text 
for explanations. 
 

He identified three primary adaptive strategies (Figure 1.2) in freshwater 

phytoplankton (Reynolds, 1988; 1995), as adapted from the classification used in 

terrestrial botany (Grime, 1974):  
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- Colonist (C strategy), small, r-selected, invasive, fast-growing and with a high 

surface to volume ratio. 

- Nutrient stress-tolerant (S strategy), large, K-selected, acquisitive, slow-growing 

but biomass-conserving.   

- Ruderal (R strategy), attuning, light-harvesting, attenuated, disturbance-tolerant. 

Factors other than nutrients and light are also considered to play a minor role, which 

is represented in the model by a low relief, hence the name “intaglio”. 

Smayda & Reynolds (2001) later identified nine life form types that occurred along 

an onshore-offshore gradient of decreasing nutrients, decreased mixing and increasing 

mixed layer depth (Figure 1.3). 

 

Type I (= Gymnodinioids)

Type II (= Peridinians/Prorocentroids)

Type III (= Ceratians)

Type IV (= Frontal Zone Taxa)

Gymnodinium Gyrodinium instriatum Katodinium rotundatumspp., , 

Heterocapsa triquetra Scrippsiella trochoidea Prorocentrum 
micans Prorocentrum minimum

, , 
, 

Ceratium tripos Ceratium fusus Ceratium lineatum, , 

Gymnodinium mikimotoi Alexandrium tamarense, 

Gymnodinium catenatum Lingulodinium polyedrum, 
Type V (= Upwelling Relaxation Taxa)

Gymnodinium breve Ceratium Pyrodinium 
bahamense ompressum

, spp., 
 var. c

Type VI (= Coastal Current Entrained Taxa)

Type VII (= Dinophysoids)
Dinophysis acuta Dinophysis acuminata, 

Amphisolenia, Histioneis, Ornithocercus, Ceratium spp.
Type VIII (= Tropical Oceanic Flora)

Pyrocystis noctiluca, Pyrocystis pyriformis

Type IX (= Tropical Shade Flora)

 
Figure 1.3 Life-form types and representative species, ordered along a gradient of decreasing 
nutrients, reduced mixing and deepened euphotic zone (from Smayda & Reynolds, 2001) 
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1.3. HABs in upwelling systems 

 
The California, Humboldt, Canary/Iberian and Benguela currents are the four major 

eastern boundary upwelling systems worldwide. These are driven by the same physical 

mechanisms, whereby alongshore, equatorward winds coupled with Ekman transport 

direct surface currents offshore. This divergence causes upwelling of deep, cold, 

nutrient-rich water, stimulating primary production that in turn supports fisheries 

production. As a result, the contribution of upwelling systems to global fish catch is 

disproportionately high relative to their surface area (Ryther, 1969). Upwelling in these 

systems is seasonal, occurring during the summer months. Interannual variability in the 

degree and duration of upwelling is driven by the displacement of high-low pressure 

dipoles, which causes the reversal of wind direction and transition from upwelling to 

downwelling. This transition normally occurs between spring and autumn, when 

downwelling becomes more prevalent. However, synoptic wind patterns can cause 

short-term variability in upwelling, with upwelling/relaxation cycles occurring on time 

scales of days. 

Traditionally thought to be dominated by fast-growing diatoms, these systems are 

becoming increasingly impacted by HABs (Smayda, 2000), which now seem to form an 

integral part of seasonal phytoplankton community succession. As in other temperate 

coastal environments, diatoms tend to dominate during spring, which in this case 

corresponds to the upwelling season. As upwelling weakens and thermal insulation 

increases, the water column becomes increasingly stratified and nutrient depleted and 

the community becomes increasingly dominated by heterotrophs and flagellates. This 

pattern is also reflected in the spatial gradient between newly upwelled inshore water 

dominated by diatoms and aged upwelled offshore water dominated by flagellates 

(Barlow, 1982; Pitcher & Nelson, 2006).  

HABs normally occur towards the end of the upwelling season (late summer/ 

autumn), although there is no simple pattern in community succession that can account 

for the high temporal and spatial variability observed in the occurrence of HABs. In fact, 

HAB species occur over a wide range of nutrient-mixing-advection combinations, which 

cannot be accounted for by the classical Mandala. In upwelling systems, phytoplankton 

are subjected to strong physical forcing, such as within upwelling or downwelling fronts 

and advective currents (Smayda, 2000). The short-term alternations between upwelling 
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and relaxation create “habitat windows” which may lead to bloom formation if (i) the 

relaxation period is long enough relative to cellular growth rates, (ii) growth is faster 

than advective dispersal and mortality losses, and (iii) growth is not impaired by 

turbulence. Thus, the complexity of upwelling habitats and the rapid fluctuations that 

occur within them makes it extremely difficult to predict the occurrence of HABs. 

In order to increase our understanding of HAB dynamics in upwelling systems, it is 

useful to draw on the commonalities between these systems, such as the physical and 

ecological mechanisms involved in HAB development. For example, a link between 

upwelling relaxation, wind reversal and onshore advection of HABs has been reported 

for the Benguela (Pitcher & Boyd, 1996; Pitcher et al., 1998), the Iberian (Tilstone et al., 

1994) and the Californian (Trainer et al., 2002) upwelling systems.  

The occurrence of common species or taxa in the different systems may also indicate 

common ecological adaptations, although species that bloom in upwelling systems are 

also found in other coastal habitats (Smayda, 2000). Alexandrium catenella has been 

associated with PSP outbreaks in the Benguela (Pitcher & Calder, 2000), the California 

current (Nishitani & Chew, 1988) and the Humboldt (Avaria, 1979; Guzman et al., 

2002). Dinophysis acuminata is responsible for DSP outbreaks in both the Benguela 

(Pitcher & Calder, 2000) and the Iberian systems (Reguera et al., 1993a; Moita & da 

Silva, 2000). Toxic Pseudo-nitzschia spp. are found in the California, Benguela and 

Iberian systems but only appear to cause ASP in the former (Adams et al., 2000; Scholin 

et al., 2000; Trainer et al., 2001). Protoceratium reticulatum is common to the Benguela 

and California systems and is known to produce yessotoxins in the Benguela (Fawcett et 

al., 2007), although it is relatively poorly studied in both systems and has not been 

implicated in shellfish poisoning in either case. 

Upwelling systems are thus comparable ecosystems, driven by similar hydrographic 

forcing mechanisms, in which blooms of similar species occur. Therefore, comparison 

between upwelling systems could be a useful tool to identify mechanisms underlying 

HAB population and community dynamics, as stated by the IOC programme Global 

Ecology and Oceanography of Harmful Algal Blooms (GEOHAB, 2001). A better 

understanding of HABs in upwelling systems could be achieved by comparing the 

physiological ecology of these species both in the laboratory and in the field. 
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Figure 1.4. Distribution of HAB species in the four major eastern boundary upwelling systems, each 
of which is represented by a circle (legend in lower panel). Note that the northwest African system is 
not represented due to insufficient data. Red represents high, yellow moderate and green low 
biomass. White represents no reported presence and black represents presence but no reported 
harmful effects. From Smayda & Trainer (submitted). 
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1.4. The role of nitrogen 

 
1.4.1. Principles of nitrogen uptake 

 

Nitrogen is classically thought to be the nutrient that limits primary production in 

coastal marine ecosystems (Dugdale & Goering, 1967; Thomas, 1970b;1970a; Ryther & 

Dunstan, 1971; Goldman et al., 1979; Howarth & Marino, 2006). It is generally taken up 

as dissolved inorganic nitrogen (DIN): nitrate (NO3
-), nitrite (NO2

-) and ammonium 

(NH4
+). At least some species also utilise dissolved organic nitrogen (DON), such as the 

amide urea and some amino acids such as glutamine and asparagine (Syrett, 1981; 

Palenik & Morel, 1990; Antia et al., 1991). Others may use more complex organic 

compounds such as polypeptides, proteins and humic acids (Berg et al., 1997; 

Mulholland et al., 1998; Mulholland et al., 2003). Nitrate is mostly supplied by sources 

external to the euphotic zone, such as river runoff, atmospheric deposition or upwelling. 

Ammonium and urea, on the other hand, are supplied by recycling processes, although 

in some coastal areas NH4
+ can also be supplied by dust deposition. Uptake of NO3

- and 

recycled nitrogen are termed “new” and “regenerated” production, respectively 

(Dugdale & Goering, 1967) and the ratio of NO3
- uptake relative to total nitrogen uptake 

(NO3
- + NH4

+
 and sometimes urea) is termed the ƒ-ratio (Eppley & Peterson, 1979). This 

has been widely applied as a proxy for nitrogen and carbon export, when based on 

Redfield stoichiometry, although its application as such is limited because it does not 

take into account dinitrogen gas (N2) fixation, which is also a new nitrogen source that 

can be significant in oligotrophic oceans (Dugdale & Goering, 1967). More recently, 

Yool et al. (2007) have summarized and discussed euphotic layer nitrification of NH4
+ to 

NO3
-, which renders such NO3

- no longer “new” in the classical sense, therefore 

undermining the ƒ-ratio as a means of estimating nitrogen or carbon export. However, 

surface layer nitrification rates are likely to be insignificant in upwelling or other high 

nutrient oceans where NO3
- concentrations typically exceed 10-25 µmol l-1.  

DIN is actively transported across the cell membrane via “uptake sites” and 

metabolised within the cell to form amino acids and, in turn, proteins and nucleotides. 

The conversion of NO3
-
 into organic compounds requires first its reduction to NO2

-, then 

to NH4
+. The former reaction is catabolysed by the enzyme nitrate reductase (NR), with 

NAD(P)H as the electron donor, while the latter requires nitrite reductase (NiR), using 

ferredoxin as the electron donor (Syrett, 1981).  



 11 

There are two known pathways of NH4
+ assimilation, both involving reductive 

reactions resulting in the production of glutamic acid and/or glutamine. The first known 

pathway involves the enzyme glutamic dehydrogenase (GDH). Lea and Miflin (1974) 

later discovered an alternative pathway that involves a combination of glutamine 

synthetase (GS) and glutamate synthase (also known as GOGAT -glutamine-

oxoglutarate aminotransferase). The latter pathway is now known to be more widespread 

in marine phytoplankton (Zehr & Falkowski, 1988; Charpin & Devaux, 1997), partly 

because it is has a higher affinity (µM range) relative to GDH (mM range) (Bressler & 

Ahmed, 1984, and refs therein). Genes encoding glutamine synthetase have recently 

been identified in marine diatoms and linked with NH4
+ assimilation (Schnitzler-Parker 

& Armbrust, 2005), indicating that the latter reaction is more likely.  

Urea can be metabolised in 2 ways, involving either the enzyme urease or a 

combination of urea carboxylase and allophanate hydrolase (Syrett, 1981). Schnitzler-

Parker & Armbrust (2005) identified carbamoyl phosphate synthase (CPS) as the 

enzyme that catalyses the first step in the urea cycle, and arginine and ornithine as 

intermediates in the cycle . 

 

1.4.2. Ammonium-nitrate interactions 

 

High concentrations of NH4
+ are thought to inhibit NO3

- uptake, as shown by the 

suppression of NO3
- uptake observed at NH4

+ concentrations of 0.2-0.3 µmol l-1 

(Wheeler & Kokkinakis, 1990), 0.5-1.0 µmol l-1  (Syrett & Morris, 1963; Goering et al., 

1970; Caperon & Meyer, 1972) or 1-2 µmol l-1 (Cochlan & Harrison, 1991). The earlier 

studies assumed that NO3
- uptake and reduction were tightly coupled, therefore 

inhibition of NO3
- uptake could be explained by the suppression of NR activity and/or 

synthesis. It has since been shown, however, that NO3
- uptake and reduction are 

frequently uncoupled during transient situations (Collos, 1982). Furthermore, the 

suppression of NO3
- uptake is too rapid to be explained by the inhibition of NR, 

therefore it was concluded that uptake itself (i.e. transport across the cell membrane) was 

inhibited as well as, and prior to, NO3
- reduction (McCarthy, 1981; Syrett, 1981). The 

exact mechanisms involved in inhibition are still poorly understood, although it appears 

that a product of NH4
+ metabolism (glutamine or an organic product of glutamine) 

suppresses the NO3
- uptake mechanism (Syrett, 1981). More recently, a study by 
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Hildebrand & Dahlin (2000) demonstrated that the nitrate transporter gene is suppressed 

in cultures of the diatom Cylindrotheca fusiformis grown on NH4
+ as sole nitrogen 

source, showing that a component of inhibition is at the level of gene expression. 

Furthermore, phytoplankton are known to express a “preference” for NH4
+, the 

theoretical basis for this being the additional energy requirement of NO3
- assimilation, 

due to the need for reduction of NO3
- to NH4

+ before it can be incorporated into cellular 

material (Goering et al., 1970; Syrett, 1981). In order to distinguish between inhibition 

and preference, one needs to measure uptake rates of both nitrogen sources in the 

presence and absence of one another, a situation that is difficult to achieve in the field. 

Inhibition and preference involve different mechanisms, one distinction being that 

inhibition is dependent upon NH4
+ concentration whereas preference is not (Dortch, 

1990).  

Preference for a certain form of nitrogen over others can be determined in several 

ways. A time lag in uptake of one source that is not observed in the other or higher 

growth rates sustained by one source but not by the other are both indicative of 

nutritional preference. The Relative Preference Index (RPI) introduced by McCarthy et 

al. (1977) has been a subject of controversy, as it can be more strongly influenced by 

ambient concentrations than by actual preference. In areas where NO3
- concentrations 

are much higher than NH4
+ concentrations, such as upwelling systems, this bias can lead 

to falsely high RPI values for NO3
- (Stolte & Riegman, 1996). A more reliable method 

for determining preference is to measure uptake rates at increasing concentrations of a 

particular nutrient (see following section, Nutrient uptake kinetics). Inhibition of NO3
- 

uptake by NH4
+ can only be properly quantified by comparing the NO3

- uptake rate in 

the absence of NH4
+ with that in the presence of increasing concentrations of NH4

+ 

(Dortch, 1990). This results in an inhibition kinetics curve analogous to a “reverse” 

Michaelis-Menten curve (Varela & Harrison, 1999) following the equation: 

 

ν = νmax * [1 - Imax * [NH4
-]/ (Ki + [NH4

-])]        (1.1) 

 

where ν is specific uptake, νmax is maximum specific uptake in the absence of NH4
+, Imax 

is maximum inhibition (between 0 and 1) and Ki is the half-inhibition constant (the 

concentration at which inhibition is half of  Imax). 

Although NH4
+ inhibition has been widely reported, it is not as universal nor as 

severe as previously thought (Collos, 1989; Dortch, 1990). Simultaneous uptake of NO3
- 
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and NH4
+ is often observed (McCarthy, 1981) and there is a high variability in the 

degree to which NH4
+ affects NO3

- uptake (Dortch, 1990). The interaction between NO3
- 

and NH4
+ also appears to vary between species and to be influenced by environmental 

factors such as light, as well as nutritional state. For example, Collos et al. (1989) 

concluded that NH4
+ inhibition may not affect nitrogen-sufficient cells and  L’ Helguen 

et al. (2008) found that NH4
+ inhibition was stronger in the <2 µm than in the >2 µm size 

fraction (Figure 1.5), consistent with the severity of NH4
+ inhibition observed in the 

picoflagellate Micromonas pusilla (Cochlan & Harrison, 1991) and in the 

coccolithophore Emiliania huxleyi (Varela & Harrison, 1999).  

In addition to the inhibition of NO3
- uptake by NH4

+, different forms of nitrogen 

compete for uptake sites on the cell surface, therefore competitive inhibition can be 

observed between different nitrogen forms. This translates as linear interactions between 

different forms of nitrogen, whereby the uptake rate of a particular nitrogen source is 

correlated with the relative concentrations of the two sources competing for the uptake 

sites. This competitive inhibition has been observed between NO3
- and NH4

+, NO3
- and 

NO2
- and between NO2

- and NH4
+ (Collos, 1989).  
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Figure 1.5 Ammonium inhibition kinetics as described by the equation of Varela & Harrison (1999). 
Note that uptake here is absolute (ρ) rather than specific (ν). Here, the smaller size fraction is more 
severely inhibited, as shown by higher maximum inhibition (Imax) values (0.96 vs 0.84), lower 
maximum uptake ρmax (4.0 vs 3.8) and lower half-inhibition constant Ki (38 vs 117). Adapted from 
L’ Helguen et al. (2008). 
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1.4.3. Nitrogen uptake kinetics 

 

The Michaelis-Menten equation (illustrated in Fig. 1.6.) was first applied to enzyme-

substrate kinetics by Michaelis & Menten (1913) and later to the relationship between 

bacterial growth rates and limiting concentrations of organic substrate (Monod, 1942). 

Dugdale (1967) first applied this equation to a mass balance model of phytoplankton 

nutrient dynamics and the validity of the model was confirmed by MacIsaac & Dugdale 

(1969) using field data. Since then, nutrient uptake kinetics have been used extensively 

to analyse preferences for particular nitrogen sources in different species [see reviews by 

Dortch (1990), Litchman (2007) and Kudela (2008b)] or to predict the outcome of 

competitive interactions between species (Eppley et al., 1969; Doyle, 1975; Collos et al., 

1997).  
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Figure 1.6. Illustration of the Michaelis-Menten equation ν = νmax * S/ (Ks + S). Symbols are 
explained in the text. 
 
 

The Michaelis-Menten equation is a rectangular hyperbolic function described by:  

 

ν = (νmax * S)/ (Ks + S)                (1.2) 

 

where ν is uptake rate, S is substrate concentration and Ks is the substrate concentration 

at which ν = νmax/2, known as the half-saturation constant. 
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Comparison of νmax and Ks for NO3
- and NH4

+ can provide an indication of 

preference for either form of nitrogen (Dortch, 1990). The analogous Monod equation 

applies to growth rates as a function of nutrient concentration: 

 

µ = (µmax S)/(Ku + S)           (1.3) 

 

where µ is specific growth rate (d-1), µmax is the maximum specific growth rate and Ku is 

the half-saturation constant for growth.  

Although in the original application of the Michaelis-Menten equation to nutrient 

uptake kinetics it was assumed that growth and uptake were coupled (Dugdale 1967), it 

has since been recognised that growth and uptake rates are only coupled during balanced 

growth, for example in the steady state of a continuous culture (Caperon, 1968), a 

situation rarely encountered in nature (Maestrini & Bonin, 1981; McCarthy, 1981). 

Therefore Ks and Ku are usually distinct, as are νmax and µmax (McCarthy, 1981; 

Goldman & Glibert, 1982b).  

Uncoupling between νmax and µmax is evident during “luxury consumption” in 

“storage specialists” (Sommer, 1984) as well as during “surge” uptake in nitrogen-

starved cells (Conway et al., 1976; Glibert & Goldman, 1981). In the latter case νmax is 

much higher than µmax immediately following nutrient addition, and as nitrogen 

limitation is lifted and the relative growth rate (µ/µmax) increases, νmax decreases and 

should, in theory, converge with µmax when the relative growth rate reaches 1 (µ = µmax).  

This indicates that nitrogen is stored intracellularly, a strategy that can be 

particularly important in vertically migrating dinoflagellates (Dugdale & Goering, 1967; 

Cullen & Horrigan, 1981). Caperon (1968) and Droop (1968) first hypothesised that 

growth rate was a function of intracellular rather than external nitrogen concentrations 

and the latter formulated the Droop model: 

 

µ = µ∞ (Q - KQ)/Q                                         (1.4) 

 

where µ∞ is the specific growth rate at which cell quota Q (N cell-1) is infinite, and KQ is 

the Q below which there is no cellular growth. 

Furthermore, the enzymes thought to be involved in nitrogen assimilation have much 

higher half-saturation constants (Km) than the Ks values measured for uptake, confirming 

that nitrogen is pooled internally (Eppley & Rogers, 1970). Subsequent studies have 
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shown that uptake and NR activity can be regulated by an internal nutrient pool rather 

than by external nutrient concentrations (Collos & Slawyk, 1976). 

Finally, physical processes can be mistaken for biological processes during uptake 

kinetics experiments. For example, ion adsorption onto dead cell membranes can result 

in apparent uptake kinetics. Apparent saturation kinetics have also been observed with 

urea in a diatom species that was not able to grow on that nitrogen source (McCarthy, 

1981).  

 

1.4.4. Ecological applications of nitrogen uptake kinetics 

 

It is thought that species are selected on the basis of their ability to compete for the 

nutrient concentrations typical of their habitat (McCarthy, 1981), and this is reflected in 

variations in Ks and νmax. Higher Ks values for NO3
- and NH4

+ uptake have been reported 

both in clones and natural populations from eutrophic coastal waters relative to those 

from the oligotrophic ocean (Eppley et al., 1969; MacIsaac & Dugdale, 1969), and 

Collos et al. (2005) have found a relationship between Ks and ambient NO3
- 

concentration. Furthermore, intraspecific differences have been observed (Carpenter & 

Guillard, 1971), although it is still unknown whether the differences in kinetic 

parameters observed between geographic strains are a result of acclimation (a 

physiological response to environmental conditions) or adaptation (a result of genetic 

mutations and Darwinian selection) (Maestrini & Bonin, 1981). 

Nutrient uptake parameters can be related to different nutrient uptake strategies. The 

half-saturation constant provides an indication of whether a species is better adapted to 

taking up nutrients at low concentrations (low Ks, high affinity for nutrients) or whether 

it requires high concentrations (high Ks, low affinity). Low Ks species are termed 

“affinity strategists” whereas species which display high νmax are more likely to be 

“growth strategists” (Sommer, 1989). However, the inadequacy of this parameter as an 

index of affinity (or uptake efficiency) has been pointed out by Healey (1980) and 

Aksnes & Egge (1991) and the ratio α = νmax/Ks, the initial slope of the Michaelis-

Menten curve, has been proposed as a more reliable indicator of substrate affinity 

(Healey, 1980).  

Covariation in Ks and νmax is well documented (Healey, 1980; Aksnes & Egge, 1991; 

Collos et al., 2005) and forms the basis of a simple model of competitive interactions 

(Figure 1.7). In this figure, (1) and (2) can be considered as 2 competing species 
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(McCarthy, 1981) or the same species before and after adaptation to increased nutrient 

concentrations (Doyle, 1975). In the former case, it is possible to predict that Species 1 

will outcompete Species 2 at concentrations below the intersection of the 2 curves and, 

conversely, Species 2 will outcompete Species 1 at higher concentrations. The 

competitive interaction depicted in Figure 1.7 has been observed in the field although its 

predictive power is questionable (Collos et al., 1997). This is the “either or” situation 

described by Doyle (1975), whereby species can be genetically adapted to either high 

(i.e. Species 2) or low (i.e. Species 1) concentrations, but not both. Doyle (1975) 

postulated that there were no grounds for this type of adaptation to occur exclusively and 

that there should be species with genes coding for both a high νmax and low Ks. 
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Figure 1.7 (a) Michaelis-Menten curves illustrating competition between a low nutrient-adapted 
species (1, low Ks, low νmax) and a high nutrient-adapted species (2, high Ks, high νmax). This is also 
the “either or” adaptation of a species to changing nutrient regime. (b) Form of adaptation to 
changing nutrient regime which is advantageous in all cases (adapted from Droop 1975). Increased 
nutrient concentrations result in both cases in an increased νmax [from (3) to (4) or (3) to (5)], but can 
either involve an increase [(3) to (4)] or decrease [(3) to (5)] in Ks.   
 

1.4.5. Factors influencing Ks and νmax 

 

The use of nutrient uptake kinetics in determining species-specific adaptations to 

their nutrient environment can be complicated by other factors influencing variability in 

Ks and νmax. When comparing the uptake kinetics of different species it is difficult to 

determine whether the differences observed are a result of acclimation to the species’ 

growth environment or due to genetic differences which have resulted in natural 
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selection for that particular cell line (in a clonal culture) or that group of cell lines (in a 

natural population).  

It has recently been shown that Ks is linearly related to the highest NO3
- 

concentration used to measure uptake kinetics and that ambient NO3
- concentrations 

have a greater influence on Ks than interspecific differences, for a range of published 

studies carried out both in the field and with cultures (Collos et al., 2005). These authors 

showed that uptake can appear to be saturated at the highest experimental 

concentrations, but that a further increase in uptake will occur at higher concentrations, 

and that underestimation of Ks can occur if the concentration range is too narrow. Higher 

preconditioning NO3
- or NH4

+ concentrations (hence growth rate) have also been shown 

to increase cell-specific νmax (by increasing the number of uptake sites per cell) although 

they do not influence Ks (Caperon & Meyer, 1972). 

Temperature is also known to influence nitrogen uptake, whereby absolute uptake 

rates of NO3
- are negatively correlated with temperature and those of NH4

+ and urea are 

positively correlated (Lomas & Glibert, 1999). Aksnes & Egge (1991) hypothesised that 

both νmax and Ks should increase with temperature, since both parameters are negatively 

correlated with handling time, which like all biochemical processes should be aided by 

increased temperature, within the limits of enzyme sensitivity. Experimental studies, 

however, have shown conflicting results: νmax for NH4
+ may increase with temperature 

(Lomas et al., 1996) although νmax for urea is temperature-independent. Similar results 

were obtained by Fan et al. (2003) who found a positive correlation between temperature 

and α for NH4
+ and amino acids but no temperature dependency of α for urea, but also a 

negative correlation between temperature and α for NO3
-. 

Nutrient uptake kinetics parameters can also change substantially during nitrogen 

starvation (Harrison, 1976). An increase in νmax with starvation has been reported for 

batch cultures (Harrison, 1976), which contradicts the theory of adaptation to ambient 

concentrations (MacIsaac & Dugdale, 1969). Collos et al (1980) showed that the effect 

of nitrogen starvation on νmax was dependent upon cellular nitrogen status prior to the 

experiment as well as on the duration of starvation and the nitrogen source under study. 

For NO3, absolute maximum uptake (ρmax) decreased during starvation of both 

previously nitrogen-limited and nitrogen-replete cells. However, the decrease in ρmax 

was less drastic in previously replete cells because they could increase their specific 

maximum uptake (νmax) by decreasing their cellular nitrogen quota. For NH4
+, on the 

other hand, νmax increased in both cases. Furthermore, a preliminary increase in νmax was 
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observed within the first 6 h of starvation in both cases, indicating that contradictory 

results can be obtained depending on the length of the experiment. 

Aksnes & Egge (1991) devised a model relating νmax to the number of uptake sites 

and handling time and relating Ks to the area of each uptake site, handling time and the 

mass transfer coefficient (or relative velocity between nutrient and uptake sites). They 

hypothesised that νmax was proportional to the square of cell radius and Ks was 

proportional to cell radius, relationships that were confirmed by Litchman et al. (2007) 

in a review of existing data on νmax, Ks and cell size.  

Finally, increasing uptake with substrate concentration can not always be described 

by the Michaelis-Menten equation, since non-saturating kinetics have been reported 

(Lomas & Glibert, 1999; Collos et al., 2005) as well as biphasic kinetics (Serra et al., 

1978; Collos et al., 1992). The former consists of a continual linear increase with 

substrate concentration, whereas the latter shows a further increase in uptake after an 

initial saturation plateau. Both are usually observed when a wide range of substrate 

concentrations is used (up to 100 µmol N l-1). The use of such high concentrations may 

be of ecological relevance under conditions of increasing eutrophication.  
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1.5. Nitrogen and HABs 

 

In an effort to characterise the nitrogen nutrition of HAB species, comparisons of 

dinoflagellates and diatoms may be appropriate, since most HAB species are 

dinoflagellates (Smayda, 1997). This type of comparison has been carried out with 

published Ks values for a range of species both in culture and in the field by Smayda 

(1997) and also by Collos et al. (2005). Both studies concluded that dinoflagellates 

displayed higher Ks values than diatoms, suggesting that dinoflagellates should be more 

successful in nutrient-enriched waters, consistent with the “red tide sequence” in 

Margalef’s Mandala (Margalef et al., 1979). However, the use of Ks as an index of 

affinity is flawed and comparisons of α may have been more useful. Lomas & Glibert 

(2000) also found lower Ks values for NO3 in 3 diatom species relative to 3 flagellate 

species (only one of these being a dinoflagellate), but also higher νmax and NR/NiR 

activities. Cell size is also known to influence νmax and Ks (see previous section), 

therefore any comparison made between diatoms and dinoflagellates should take into 

account differences in cell size. Although Lomas & Glibert (2000) mentioned that their 

diatom and flagellate species spanned overlapping size ranges, the number of species 

used in their study was rather limited. A review by Litchman et al. (2007), using 5 

dinoflagellate species and 6 diatom species, showed higher νmax and  Ks in 

dinoflagellates than in diatoms when νmax was expressed on a per cell basis, although 

νmax was higher for diatoms when νmax was expressed on a carbon basis. 

Notwithstanding the limitations of these studies, their conclusions, together with the 

occurrence of HABs in both oligotrophic and eutrophic environments, complicate the 

classical association between dinoflagellates and low nutrient conditions. Given the 

apparent disadvantage of dinoflagellates under nutrient-depleted conditions, but their 

often striking success in such environments, they must have evolved other adaptive 

strategies to offset this disadvantage. Smayda (1997) suggested four major adaptations: 

nutrient retrieval migrations, mixotrophy, secretion of allelochemicals (to minimise 

inter-specific competition) and allelopathy (to offset predation). In addition to these, the 

utilisation of recycled sources of nutrients may be significant in situations where new 

nutrients are depleted. 
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1.5.1. Preferential uptake of ammonium and urea 

 

Ammonium is generally thought to be preferred over NO3
- and to inhibit its uptake 

(see section 1.4.2), however little is known about the role of urea. In an attempt to 

determine whether diatoms and dinoflagellates exhibited different nutritional 

preferences, Dortch (1990) reviewed published literature values of νmax and Ks for NO3
- 

and NH4
+ and found that both groups assimilated NH4

+ preferentially but grew better on 

NO3
-. The only exceptions were in upwelling areas, where NO3

-
 was preferred. 

HABs are often supported by recycled nitrogen sources, for example Gymnodinium 

aureolum blooms in the western English Channel (Le Corre & L' Helguen, 1993), mixed 

HAB assemblages (Dinophysis acuta, Gymnodinium catenatum, Ceratium fusus and C. 

furca) in the Ría de Vigo, north-west Spain (Rios et al., 1995) and blooms of 

Alexandrium catenella in Thau Lagoon, on the south coast of France (Collos et al., 

2007). In the latter study, the authors hypothesised that blooms could be triggered by 

elevated urea concentrations, although this was complicated by the covariation between 

NH4
+ and urea. A. catenella displayed a preference for NH4

+ and urea over NO3
-, as 

demonstrated by differences in νmax, both in cultures and in the field (Collos et al., 

2004). Similar results were obtained for blooms of Lingulodinium polyedrum and 

Akashiwo sanguinea off California (Kudela & Cochlan, 2000), Prorocentrum minimum 

in Chesapeake Bay and a mixed bloom (Heterocapsa rotundata, H. triquetra and P. 

minimum) in the Neuse Estuary, on the east coast of the United States (US) (Fan et al., 

2003). Lomas et al. (1996) also measured a high affinity for urea (and speculated on a 

high affinity for NH4
+) during blooms of the “brown tide” pelagophyte Aureococcus 

anophagefferens off the north-east coast of the US. On the other hand, a poor ability to 

utilise urea relative to NO3
-
 and NH4

+ (as shown by lower νmax) has been reported for 

blooms of the dinoflagellate Cochlodinium sp. (Kudela et al., 2008a) and the fish-killing 

raphidophyte Heterosigma akashiwo (Herndon & Cochlan, 2007). 

Blooms of the toxic diatom Pseudo-nitzschia on the US west coast have been 

attributed to either elevated NO3
- (Horner et al., 2000; Marchetti et al., 2004) or NH4

+ 

concentrations (Trainer et al., 2007). Field populations of P. australis from California 

were found to grow equally well on NO3
-, NH4

+ or urea, however P. australis cultures 

exhibited lower growth rates supported by urea relative to NO3
- and NH4

+ (Howard et 

al., 2007). Cochlan et al. (2008) found that the same species exhibited a preference for 

NO3
- relative to NH4

+ and glutamine, as shown by higher νmax and lower Ks. 
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1.5.2. Nitrogen-toxicity interactions 

 

Although there is evidence of genetic variability in cell toxicity (Cembella & Taylor, 

1985), given the high intra-specific variability between strains isolated from different 

locations (Bates et al., 1978; Cembella & Taylor, 1985; Yoshida et al., 2001) or between 

natural samples and cultures (Kodama et al., 1982; Lundholm et al., 1994; Rhodes et al., 

1996), it appears that toxin production may be a function of environmental conditions as 

well as a hereditary trait. Several studies have concluded that toxin profile (i.e. the 

proportion of each toxin produced) was a genetic trait (Cembella & Taylor, 1985; Boyer 

et al., 1987; Oshima et al., 1993; Anderson et al., 1994; Flynn et al., 1994), but later 

experiments reported changes in toxin profile with culture age (Boczar et al., 1988) and 

with salinity (Hwang & Lu, 2000). 

As toxin production can be inversely related to growth rate, factors controlling 

growth, such as temperature, light, salinity and nutrients, could indirectly control toxin 

production (Proctor et al., 1975; Cembella, 1998). However, various authors have since 

contradicted this theory (White, 1978; Kodama, 1990; Etheridge & Roesler, 2005) and 

argue that variations in toxicity may be directly controlled by light and temperature and 

are not a consequence of altered growth rates (Hamasaki et al., 2001; Etheridge & 

Roesler, 2005; Lim et al., 2006). 

PSP toxins are nitrogen-rich compounds, hence phosphorus limitation has been 

shown to increase toxin production in Alexandrium tamarense (Boyer et al., 1987) and 

in A. minutum (Flynn et al., 1994; Bechemin et al., 1999; Maestrini et al., 2000; 

Lippemeier et al., 2003). Maximum toxin synthesis in A. minutum was found to occur 

after nitrogen re-supply to deprived cells, however short-term phosphorus stress did not 

enhance toxin synthesis (Flynn et al., 1994) and they later found that toxin synthesis and 

content declined during nitrogen or phosphorus deprivation (Flynn et al., 1995). 

Lippemeier et al. (2003) also found a significant negative correlation between 

fluorescence-based photochemical efficiency (an indicator of nutrient limitation) and 

cell toxin content. Furthermore, high NH4
+ concentrations have been associated with 

toxicity in A. minutum (Flynn et al., 1994) and in A. tamarense (Hamasaki et al., 2001). 

The utilisation of organic forms of nitrogen has also been found to stimulate toxin 

production. Uptake of urea, glycine, leucine and aspartic acid appear to enhance 

brevetoxin production in Gymnodinium breve (Shimizu & Wrensford, 1993; Shimizu et 

al., 1995). While A. fundyense is capable of taking up dissolved free amino acids, there 
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is no evidence for a link between amino acid uptake and toxicity in this species (John & 

Flynn, 1999). These authors found that toxicity was only enhanced by unnaturally high 

concentrations of arginine. Furthermore, Flynn et al. (1995) showed that toxicity varied 

with intracellular free arginine (the precursor for PSP toxin synthesis), which itself was 

increased by phosphorus deprivation.  

Silicate and phosphate limitation have been shown to stimulate domoic acid (DA) 

production in Pseudo-nitzschia sp. in laboratory studies and in some field studies (Bates 

et al., 1998). High DA concentrations during Pseudo-nitzschia sp. blooms have been 

observed at low NO3
- concentrations during post-upwelling conditions, suggesting that 

recycled nutrients supported growth and DA production (Walz et al., 1994). Bates et al. 

(1993) demonstrated that NH4
+ prevented the growth of P. multiseries and enhanced DA 

production. Field and culture studies on P. australis showed that growth on urea as the 

sole nitrogen source enhanced cell toxicity without significantly affecting growth rate or 

biomass (Howard et al., 2007). 
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1.6. Aims & Objectives 

 

This thesis aims to investigate the role of nitrogen nutrition in the initiation and 

maintenance of HABs in upwelling systems. The two systems chosen for this study were 

the Benguela and Iberian upwelling systems, where repeated studies were carried out to 

obtain information on temporal variation in nitrogen cycling and its control on HAB 

occurrence. Studies were carried out on an annual basis in the Benguela, but on a 

seasonal basis in the Iberian system. The aim was to compare the nitrogen nutrition of 

specific HAB species, when (quasi-) monospecific blooms occurred, or to adopt the 

“dinoflagellate-diatom” approach in determining ecological traits of HAB and non-HAB 

groups.  

A species’ ability to compete for particular nitrogen sources and concentrations will 

determine its success under certain conditions. Therefore, if adaptations can be 

determined for different species, this would enhance our ability to forecast blooms of 

particular species and their impacts. Upwelling systems are highly dynamic and a wide 

range of physical and nutrient regimes are encountered over short time-scales. 

Comparison between the different major upwelling systems is important to further our 

understanding of the ecological and oceanographic mechanisms underlying HAB 

population dynamics in these systems and to improve our predictive capability. This 

work fits into the general context of the SCOR/IOC programme for international 

cooperative research on HABs, GEOHAB (GEOHAB, 2001). 

To investigate the relative importance of upwelling and other factors in the success 

of a certain species, the nitrogen nutrition of Alexandrium minutum strains isolated from 

the two upwelling systems and also from a UK estuary were compared.    

 

The specific objectives of the study were to: 

• Determine the relative roles of new versus regenerated nutrients in the initiation 

of HABs in upwelling systems, by adopting a comparative approach. 

• Identify nitrogen nutrition strategies of HAB species in different regions and in 

cultures isolated from different geographical locations. 

• Determine whether such nitrogen nutrition strategies are specific to upwelling 

systems. 
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2 Materials & Methods 
 

2.1. Sampling 

 

2.1.1. Lambert’s Bay 

 
Three field studies were carried out off Lambert’s Bay, in the southern Benguela, as 

part of a Marine & Coastal Management (MCM) HAB research programme. They took 

place from 7 to 23 March 2006, 19 March to 11 April 2007 and 4 to 25 March 2008. 

Sampling was carried out daily on-board MCM research vessels RV Ecklonia (2006/07) 

or RV Catenella (2008) at the same station, 3.5 km off Lamberts’ Bay (32°05.020 S, 

18°16.010 E), over the shallow shelf region (approximately 50 m depth) (Figure 2.1). 

The station was marked by a permanent  mooring comprising a 30 m Apprise 

Technologies thermistor chain, a Turner Designs SCUFA fluorometer and a 300 kHz 

RDI Workhorse Acoustic Doppler Current Profiler (ADCP).  

Daily profiles of temperature, salinity, dissolved oxygen and chlorophyll 

fluorescence were taken using a Seabird Electronics Seacat CTD coupled with a Wetstar 

fluorometer. Dissolved oxygen (hereafter DO) and chlorophyll-a (hereafter chl-a) 

measurements from the CTD were calibrated against discrete measurements. Samples 

for analysis of DO, chl-a, NO3
-, NO2

-, NH4
+, urea, phosphate (PO4

3-) and silicic acid 

(Si(OH)2, hereafter Si), measurements were taken on dates and at depths shown in Table 

2.1. Samples for 15N incubations were taken at the “surface” (0.5 m) and at 5 or 10 m, as 

shown in Table 2.1). Phytoplankton counts were performed on surface samples only in 

2006/07 but on samples from both incubation depths in 2008. Water was collected using 

5-l Niskin bottles (fired manually using a messenger) and transported ashore in dark 10-l 

buckets within 1 h of collection.  

Measurements of photophysiological parameters were obtained in 2007/08 from 

regular deployments of a Chelsea Instruments Fastracka™ Fast Repetition Rate 

fluorometer (FRRf).  
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Figure 2.1. Map of the west coast of South Africa, showing the sampling station at Lambert’s Bay.  
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Year Date Station Other activities

DO chl-a, PO4
3-, Si NO3

-, NO2
-, NH4

+, urea 15N
2006 07-Mar n/a 0.5, 5, 10, 15, 20 n/a n/a

08-Mar 1 " 0.5, 5 0.5, 5
09-Mar 2 " 0.5, 5 0.5, 5
10-Mar 3 " 0.5, 10 0.5, 10
11-Mar 4 " 0.5, 10 0.5, 10
12-Mar 5 " 0.5, 5 0.5, 5
13-Mar 6 " 0.5, 5 0.5, 5
14-Mar n/a " n/a n/a Offshore transect (2-14)
15-Mar 7 " 0.5, 5 0.5, 5
16-Mar 8 " 0.5, 5 0.5, 5 Nutrient kinetics 1
17-Mar 9 " 0.5, 5 0.5, 5
18-Mar n/a " n/a n/a Pump station
19-Mar 10 " 0.5, 5 0.5, 5
20-Mar 11 " 0.5, 5 0.5, 5
21-Mar 12 " 0.5, 5 0.5, 5
22-Mar 13 " 0.5, 5 0.5, 5
23-Mar n/a " n/a n/a

2007 20-Mar n/a " 0.5, 5, 10, 15, 20 n/a
21-Mar 1 " " 0.5, 5 Nutrient kinetics 2
22-Mar 2 " " 0.5, 5
23-Mar 3 " " 0.5, 5
24-Mar 4 0.5, 45 " " 0.5, 5
25-Mar 5 0.5, 45 " " 0.5, 5
26-Mar 6 " " 0.5, 5
27-Mar n/a " " n/a
28-Mar 7 0.5, 45 " " 0.5, 5 Start long term inc
29-Mar 8 " " 0.5, 5
30-Mar 9 " " 0.5, 5
31-Mar n/a " " n/a
01-Apr 10 " " 0.5, 5
02-Apr n/a 0.5, 43 " " n/a
03-Apr n/a " " n/a Offshore transect (2-6)
04-Apr 11 " " 0.5, 5 End long term inc
05-Apr 12 " " 0.5, 5
06-Apr 13 " " 0.5, 5
07-Apr 14 0.5, 42 " " 0.5, 5
08-Apr 15 " " 0.5, 5 Nutrient kinetics 3
09-Apr 16 " " 0.5, 5
10-Apr 17 " " 0.5, 5
11-Apr n/a " " n/a

2008 04-Mar n/a " " n/a
05-Mar 1 " " 0.5, 5
06-Mar 2 " " 0.5, 5
07-Mar 3 0.5, 45 " " 0.5, 5
08-Mar n/a " " n/a Offshore transect (3-11)
09-Mar 4 " " 0.5, 5
10-Mar 5 " " 0.5, 5
11-Mar 6 0.5, 42 " " 0.5, 5
12-Mar 7 " " 0.5, 5
13-Mar 8 0.5, 34 " " 0.5, 5
14-Mar 9 " " 0.5, 5
15-Mar 10 0.5, 48 " " 0.5, 5
16-Mar 11 " " 0.5, 5
17-Mar n/a " " n/a Offshore transect (3-11)
18-Mar 12 0.5, 45 " " 0.5, 5
19-Mar 13 " " 0.5, 10
20-Mar 14 " " 0.5, 5
21-Mar 15 " " 0.5, 5 Nutrient kinetics 4
22-Mar 16 " " 0.5, 5
23-Mar n/a " " n/a Offshore transect (3-11)
24-Mar 17 0.5, 48 " " 0.5, 5
25-Mar 18 " " 0.5, 5 Nutrient kinetics 5

Sampling depth

 
Table 2.1. Stations sampled off Lambert’s Bay in March 2006, March/ April 2007 and March 2008, 
showing sampling depths for various parameters and additional activities carried out. Stations 
sampled on each transect are given in brackets.  
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2.1.2.  Ría de Vigo 
 

As part of the Spanish programme CRIA (Circulaciόn en la RIA), led by Dr Des 

Barton of the Instituto de Investigaciόnes Marinas (IIM) in Vigo, similar measurement 

to the South African programme were made in the Ría de Vigo. CRIA consisted of two 

parts, CRIA I targeting the downwelling, “HAB season” (26 to 30 September 2006) and 

CRIA II targeting the upwelling, “diatom” season (25 to 28 June 2007).  

Sampling was carried out on-board the IIM research vessel RV Mytilus. Spatial 

surveys of temperature, salinity, chl-a fluorescence and turbidity were carried out using 

a lightweight towed undulating vehicle, MiniBAT FC60 (Ocean Scientific International 

Ltd.) fitted with an Applied Microsystems Ltd. (AML) Micro CTD, a Wet Labs WetStar 

fluorometer and a Campbell Scientific OBS 3 turbidity sensor. Continuous 

measurements of temperature, salinity and chl-a fluorescence were also made on surface 

water collected underway (2.5 m depth). Temperature, salinity, DO and chl-a 

fluorescence profiles were carried out at various stations along the ría (Table 2.2, Figure 

2.2) using a Seabird Electronics 911+ CTD system coupled with a Seatech fluorometer 

and Seabird 18 oxygen sensor mounted on a sampling rosette fitted with 10-l Niskin 

bottles. Samples were collected from 3-6 depths in Milli-Q rinsed 5- or 10-l carboys for 

routine chl-a and nutrient analyses. These were stored in the dark until transported 

ashore (within <5 h). At some stations water was only collected from the underway 

supply (2.5 m). Water for 15N incubations and associated NO3
-, NH4

+ and urea analyses 

and phytoplankton counts was collected from ~3 m in both years and occasionally from 

the chl-a maximum (10-12 m) in 2007 (Table 2.2).  
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Figure 2.2. Map of the Ría de Vigo showing repeat CTD sampling stations (B0-B5) and ADCP 
moorings along the ría. 
 
 

Date Station Latitude Longitude Tidal Time (GMT) Tide

range GMT

15
N, nutrients, 

phyto
chl-a, DO, nutrients

26/09/2006 B5 42.209 -8.861 2.4 08:59 low/ebb 2 2, 11, 20, 25, 29, 36
B3 42.226 -8.818 11:42 low/flood 3 3, 10, 21, 31, 34
B2 42.242 -8.759 13:15 flood 3 3, 9, 21, 31, 37

27/09/2006 B5 42.206 -8.863 2.2 06:00 high/ebb 3 3, 11, 21, 31, 37
B5 42.209 -8.864 09:09 ebb n/a 3, 10, 20, 30, 35
B5 42.209 -8.864 12:00 flood n/a 3, 11, 20, 31, 33

28/09/2006 B3 42.224 -8.818 2.0 06:08 high/ebb 3 3, 11, 21, 31, 36
B3 42.225 -8.818 08:58 ebb 3 3, 11, 21, 31, 35
B3 42.224 -8.817 12:16 low/ebb n/a 2, 11, 21, 30, 34

29/09/2006 B2 42.243 -8.758 1.7 06:43 high/ebb 2 2, 10, 20, 27, 33
B2 42.241 -8.760 09:25 ebb 3 3, 10, 20, 31, 39
B2 42.242 -8.759 low/ebb n/a 2, 11, 21, 31, 35

25/06/2007 B1 42.270 -8.700 1.3 08:02 flood n/a 3, 10, 14, 19
B2 42.242 -8.758 09:18 flood 3, 10 3, 10, 18, 31, 39
B3 42.226 -8.818 11:13 high 3 3, 11, 20, 27, 37
B4 42.177 -8.870 14:34 ebb n/a 3, 10, 20, 31, 43
B5 42.210 -8.860 16:08 low/ ebb 3, 11, 16, 21, 32

26/06/2007 B5 42.191 -8.858 1.6 08:14 low/ flood UW n/a
B0 42.279 -8.675 10:10 high/ flood UW n/a

27/06/2007 B3 42.226 -8.819 1.7 07:15 low/ flood n/a 3, 11, 16, 20, 34
B3 42.226 -8.818 09:41 flood 3, 9 3, 9, 15, 21, 35
B3 42.227 -8.818 12:46 high 3, 11, 16, 20, 36

28/06/2007 B0 42.283 -8.671 2.0 06:12 low/ ebb n/a 3, 12, 21
B1 42.270 -8.699 07:38 low/ flood n/a 3, 12, 17
B2 42.243 -8.758 08:45 low/ flood 3, 13 3, 13, 20, 25, 35
B3 42.226 -8.819 11:35 flood 3* 3, 11, 15, 27, 36
B4 42.179 -8.869 13:13 high/ flood n/a 3, 11, 22, 31, 45
B5 42.209 -8.861 14:32 high/ ebb n/a 3, 12, 18, 25, 35

Sampling depths (m)

 
Table 2.2. Sampling stations during CRIA I and II. Stations were ordered from B0 at the head to B4 
and B5 at the mouth of the ría. Times indicate the start of each CTD cast. UW = underway water 
supply, when no CTD cast was carried out. * indicates nutrient uptake kinetics experiment. 
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2.1.3.  Fal Estuary 
 

Field studies were undertaken in the Fal Estuary between 4 and 16 July 2006 and 

between 4 and 12 July 2007. The work took place simultaneously with the University of 

Southampton 3rd year undergraduate field course, which provided logistical support as 

well as background data for the estuary as a whole. In addition, a 3rd year undergraduate 

research project was carried out by Ms. Joanne Souter in 2007 investigating the 

distribution of Alexandrium minutum in the estuary.  

Sampling was carried out between 0830 and 1400 GMT every day (except 6, 10, 12 

and 13 July 2006 and 8 July 2007) on-board the University of Southampton vessel RV 

Bill Conway in the main estuary whereas a RIB (2 in 2006) was used to sample the 

shallower upper reaches (Figure 2.3). A number of stations were sampled repeatedly 

(Table 2.3, Figure 2.3) and these will form the focus of this study. Sampling took place 

on the ebb tide on 4-5 and 11-16 July 2006 and on 4-7 July 2007, but on the flood tide 

on 7-9 July 2006 and 10-12 July 2007. Sampling from the RIB was always carried out 

from the head towards the mouth of the estuary in 2007, therefore it followed the tide on 

4-7 July and was against it on 10-12 July. In 2006, the sampling stations were covered 

by 2 RIBs therefore the stations were not sampled sequentially from head to mouth of 

the estuary.  

On RV Bill Conway temperature, salinity and chl-a fluorescence profiles were 

carried out daily by groups of students at various stations along the estuary using a 

Falmouth Scientific Inc. CTD and fluorometer mounted on a rosette sampler fitted with 

3-l General Oceanics Niskin bottles. They also collected samples for DO, chl-a, NO3
-, 

PO4 and Si throughout the estuary at the surface and at 1-2 additional depths where 

water depth was sufficient.  

On the RIB, samples were taken from the surface only in 2006, but from 1-2 depths 

using a Niskin bottle in 2007. Temperature, salinity and DO profiles were carried out 

using a YSI 650 in 2006 and on 4, 6, 9 and 11 July 2007, whereas a YSI Inc. 6600 V2 

handheld Multiparameter Water Quality Sonde (including a fluorescence probe) was 

used on 3, 5, 7, 10 and 12 July 2007. The difference between the two instruments’ 

temperature and salinity readings was <1 % therefore no correction was applied. 

Nutrient uptake incubations were performed on samples collected in 5-l carboys 

from the surface and occasionally the subsurface chl-a maximum, from either vessel or 



 31 

occasionally in 2006 from a pontoon (Table 2.3). This water was also used for NO3
-, 

NH4
+, urea and chl-a analyses and phytoplankton cell counts.  

 

 
Figure 2.3. Map of the Fal estuary showing sampling stations; MP = Malpas; WB = Woodbury; RU 
= Ruan; SC = Smuggler’s Cottage; KH = King Harry Reach; TP = Turnaware Point. 
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Tidal Malpas Woodbury Ruan Smuggler's King Harry Turnaware

range (m) (MP) (WB) (RU) Cottage (SC) Reach (KH) Point (TP)

Latitude (°N) 50.245-50.247 50.240-50.242 50.228-50.229 50.220-50.224 50.215-50.218 50.207-50.211
Longitude (°W) 5.022-5.023 5.014-5.015 5.016 5.022-5.027 5.027-5.028 5.028-5.030
a. 2006 RIB

04/07 2.35 13:04 (+2.2) 13:34 (+2.7) 13:40 (+2.8)
05/07 2.25 13:44 (+1.9) 13:45 (+1.9)
07/07 2.60 12:03 (-1.9) 12:28 (-1.5) 13:00 (-0.9) 13:13 (-0.7) 13:24 (-0.5)
08/07 2.90 09:13 (-5.7) 10:18 (-4.6) 10:30 (-4.4) 10:49 (-4.1) 11:45 (-3.2)
09/07 3.30 09:07 (+5.7) 09:39 (-5.9) 10:13 (-5.6) 10:38 (-5.2) 11:00 (-4.9) 11:24 (-4.5)
11/07 4.10 ? ? 10:32 (+5.4) 10:16 (+5.1) 10:00 (+4.8)
14/07 4.50 09:42 (+2.1) 10:07 (+2.5) 10:35 (+3.0) 11:19 (+3.7)
15/07 4.45 09:28 (+1.1) 10:51 (+4.5)
16/07 4.20 08:58 (-0.2) 09:35 (+0.5) 09:55 (+0.8) 10:17 (+1.2) 10:40 (+1.5) 10:39 (+1.5)

b. 2006 Bill Conway

04/07 2.35 10:01 (-0.8) 10:52 (+0.0) 11:14 (+0.4)
05/07 2.25 08:23 (-3.4) 10:11 (-1.6)
07/07 2.60 09:21 (-4.6) 10:03 (-3.9) 10:44 (-3.2)
08/07 2.90 09:27 (-5.5) 10:29 (-4.5) 10:49 (-4.1)
09/07 3.30 09:46 (-6.1) 10:50 (-5.4)
11/07 4.10 12:07 (-5.3) 12:28 (-5.0) 12:49 (-4.6)
12-07 4.20 12:43 (-5.5) 13:14 (-5.0) 13:33 (-4.7)
14/07 4.50 12:38 (+5.0) 12:15 (+4.6) 11:54 (+4.3)
15/07 4.45 12:17 (+3.9) 11:38 (+3.2)
16/07 4.20

c. 2007 RIB

04/07 3.85 09:10 (+1.4) 10:14 (+2.5) 10:44 (+3.0) 11:28 (+3.7) 12:20 (+4.6)
05/07 3.80 09:13 (+0.8)* 09:58 (+1.5) 10:26 (+2.0) 11:08 (+2.7) 11:36 (+3.2)

06/07 3.65 09:23 (+0.2) 10:40 (+1.5) 11:40 (+2.5) 12:40 (+3.5) 13:34 (+4.4)
07/07 3.35 12:09 (+2.2) 12:49 (+2.9) 13:37 (+3.7)
10/07 2.85 09:12 (-3.9)* 09:52 (-3.2) 10:30 (-2.6) 11:14 (-1.9) 12:10 (-0.9) 12:46 (-0.3)
11/07 2.95 09:13 (-5.0) 09:59 (-4.3) 10:56 (-3.3) 12:01 (-2.3) 12:50 (-1.4)
12/07 3.25 09:17 (-6.0) 09:44 (-5.6) 10:16 (-5.1) 10:57 (-4.4) 11:26 (-3.9)

d. 2007 Bill Conway

04/07 3.85 12:33 (+4.8) 11:53 (+4.2)
05/07 3.80 12:58 (+4.5)*
06/07 3.65 13:20 (+4.2)
07/07 3.35 13:10 (+3.2)*
10/07 2.85 09:21 (-3.8)* 10:38 (-2.5)
11/07 2.95 09:52 (-4.4)*
12/07 3.25 11:06 (-4.2) 11:57 (-3.4)  

Table 2.3. (a) Sampling dates and times for the main stations sampled in the Fal Estuary in (a, b) 
2006 and (c, d) 2007 using a RIB (a, c) or the research vessel RV Bill Conway (b, d). Figures in 
brackets represent time (hours) relative to high tide. * Indicates where nutrient uptake incubations 
were performed in 2007, however in 2006 samples for nutrient uptake were collected on separate 
occasions. 
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Malpas Woodbury Ruan Smuggler's King Harry Turnaware

(MP) (WB) (RU) Cottage (SC) Reach (KH) Point (TP)

Latitude (°N) 50.245-50.247 50.240-50.242 50.228-50.229 50.220-50.224 50.215-50.218 50.207-50.211
Longitude (°W) 5.022-5.023 5.014-5.015 5.016 5.022-5.027 5.027-5.028 5.028-5.030
a. 2006 RIB

04/07 0.2 0.2 0.2
05/07 0.2 0.2
07/07 0.2 0.2 0.2 0.2 0.2
08/07 0.2 0.2 0.2 0.2 0.2
09/07 0.2 0.2 0.2 0.2 0.2 0.2
11/07 0.2 0.2 0.2 0.2 0.2
14/07 0.2 0.2 0.2 0.2
15/07 0.2 0.2
16/07 0.2 0.2 0.2 0.2 0.2 0.2

b. 2006 Bill Conway

04/07 2, 13 2, 13 2, 14
05/07 0.5, 4, 14 0.5, 5, 17
07/07 0.5, 6, 12 5, 12 0.5, 14
08/07 0.5, 4, 11 0.5, 11 0.5, 15
09/07 0.5, 10, 14 0.5, 4, 12
11/07 2, 6, 12 2, 3, 10 2, 3, 12
14/07 2, 5, 12 2, 6, 12 0.5, 5, 15
15/07 0.5, 5, 11 0.5, 7, 15
16/07

c. 2007 RIB

04/07 0.2 0.2 0.2 0.2 0.2
05/07 0.2 0.2 0.2 0.2 0.2
06/07 0.2, 1, 2.5 1, 3, 5.5 1, 5, 9 1, 5, 7 1, 2.5, 5
07/07 0.2 0.2, 10 0.2, 4
10/07 0.2 1, 5 1, 7 1, 12 1, 10 1, 6
11/07 1 1, 5 1, 7 1, 10 1, 8
12/07 1 1 1 1 1

d. 2007 Bill Conway

04/07 0.5, 5, 10 0.5, 5, 10
05/07 0.5, 5, 10
06/07 0.5, 2
07/07 0.5, 8, 15
10/07 0.5, 4, 8.5 0.5, 3, 16
11/07 0.5, 3, 10
12/07 0.5, 7 0.5, 3, 14  

Table 2.4. Sampling depths for the main stations sampled in the Fal Estuary in (a, b) 2006 and (c, d) 
2007 using (a, c) a RIB or (b,d) the research vessel RV Bill Conway. 
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2006 2007 2008 Inc stns General Inc stns General Inc stns General Inc stns General
NO3 � � � XAAS XAAS � XAAS � UG � UG
PO4 HW/TAP TAP TAP XAAS XAAS � XAAS � UG � UG
Si HW/TAP TAP TAP XAAS XAAS � XAAS � UG � UG

NH4 � � � XAAS XAAS � XAAS � � � �

NO2 � � � XAAS XAAS � XAAS � � � �

Urea � � � � � � � � � � �

DO TAP TAP TAP � CGC CGC CGC � UG � UG
chl-a DC DC GCP � FGF FGF FGF � UG � UG
Phyto 

counts
DC DC GCP � FGF � FGF � UG/FG* � JS/FG*

ρN � � � � n/a � n/a � n/a � n/a
FRRf � � � � � � � � � � �

Fal 2007Lambert's Bay CRIA I Fal 2006CRIA II

 
Table 2.5. Personnel responsible for collecting the various data used in this thesis. Ticks indicate 
data produced by the author. Crosses indicate absence of data. HW = Howard Waldron (University 
of Cape Town); TAP = Trevor A. Probyn, DC = Desiree Calder and GCP = Grant C. Pitcher 
(Marine & Coastal Management); XAAS = Xavier Antόn Álvarez-Salgado, CGC = Carmen 
Gonzáles Castro; FGF = Francisco Gόmez Figueiras (Instituto de Investigaciones Marinas). UG = 
University of Southampton 3rd year undergraduates. * Phytoplankton samples collected by students 
(2006) or Joanne Souter (JS) (2007) but analysed by Fernando Gomez (FG). 



2.2.  Ancillary data 

 

2.2.1.  Meteorology 

 

Wind speeds and directions in Lambert’s Bay were obtained from the Nortier 

weather station situated 8.5 km from the sampling station (32.04 °S, 18.33 W), on  a hill 

at 97 m altitude where it is exposed to maritime wind conditions. The data were supplied 

by the South African Weather Service (charlotte.mcbride@weathersa.co.za) upon 

request.  

Wind data in the Ría de Vigo were obtained from the MeteoGalícia weather station 

(http://www.meteogalicia.es) on Islas Cíes for September, although in June the data 

were obtained from the Seawatch buoy off Cabo Silleiro that is maintained by Puertos 

del Estado (http://www.puertos.es/es/oceanografia_y_meteorologia/banco_de_datos/ 

viento. html). Monthly rainfall data were obtained from the Islas Cíes MeteoGalícia 

station for the period October 2005 to July 2007. Daily solar radiation data were 

obtained from the Vigo campus MeteoGalícia station for September 2006 and June 

2007. 

Monthly rainfall, minimum and maximum temperatures and monthly duration of 

sunshine for the Fal Estuary were obtained from the UK Met Office meteorological 

station at St. Mawgan, situated at 103 m above mean sea level (http://www.metoffice. 

gov.uk/climate/uk/stationdata/). 

 

2.2.2.  Dissolved oxygen  
 

In all studies DO concentrations obtained from the CTD electrode (or from the YSI 

sensor in the Fal) were calibrated against discrete sample measurements using the 

Winkler titration method as modified by Carpenter (1965). In Lambert’s Bay, 

measurements were made in triplicate and in the Fal Estuary they were made in 

duplicate on a few occasions. CTD DO values were in ml l-1 in Lambert’s Bay (except in 

2007 when an arbitrary unit was given) and in the Ría de Vigo, whereas the YSI DO 

values were given as % saturation. Measured concentrations were also in different units 

in the 3 studies: ml l-1 in Lambert’s Bay, µmol kg-1 in the Ría de Vigo and µmol l-1 in the 

Fal, therefore all measurements were converted to µmol l-1 for calibration, using the 

ideal gas law which gives a molar volume of 22.414 l at standard temperature and 
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pressure. CTD/YSI DO values and discrete measured concentrations were significantly 

correlated in all studies (Figure 2.4). In Lambert’s Bay, a different CTD was used in 

2007 that reported DO in a different unit, hence the difference in the slope of the 

calibration curve in this year. Also, different calibrations were obtained for March and 

April 2007. For these reasons, the DO data for this year should be interpreted with 

caution. Also, different calibrations were obtained for the two YSI probes in the Fal 

Estuary. The YSI 650 was not considered to provide reliable DO measurements, hence 

the data was not used. 

Saturated DO concentration (DOsat, ml l-1) was calculated from temperature and 

salinity using the equation of Weiss (1970): 

ln (DOsat) = Al + A2 * 100/T + A3 * ln (T/100) + A4 * T/100 + S [B1 + B2 * T/100 + 

B3 (T/100)2]                                                (2.1) 

where  Al = -173.4292               

A2 = 249.6339                       

A3 = 143.3483 

A4 = -21.8492                  

Bl = -0.033096 

B2 = 0.014259 

B3 = -0.001700 

and  T = temperature  in Kelvin (= °C + 273.15) 

S = salinity in g kg-1 (ppt) 

These values were then converted to µmol l-1 following the equation: 

DOsat(µmol) = DOsat(ml) / 22.414 * 1000                       (2.2) 

Saturation percentages were calculated from the equation: 

%Sat = DOcal / DOsat x 100                     (2.3) 

where DOcal is calibrated DO concentration (µmol l-1) measured by the CTD.  
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Figure 2.4. Calibration curves for DO in (a) Lambert’s Bay, (b) the Ría de Vigo and (c) the Fal 
Estuary. In the Fal Estuary, calibrations are for the 2 YSI probes. 
 
 

2.2.3.  Nutrients 
 

In Lambert’s Bay, all nutrients were determined manually after filtration through 

Whatman GF/F filters within 2 h of collection. Measurements were made on a single 

water sample in triplicate for NH4
+ and urea and in duplicate for NO2

-, Si and PO4
3-, but 

no replication was used for NO3
- due to the time consuming nature of manual analysis. 

Nitrate concentrations were determined colourimetrically after reduction to NO2
- on a 

cadmium column (see Appendix 1) and corrected for ambient NO2
- (Nydahl, 1976). 

Silicic acid, PO4
3-, NH4

+, NO2
- and urea were measured following the methods of 

Grasshoff et al. (1999) scaled to 5 ml sample volumes (see Appendix 1). Analytical 

precisions (calculated for each set of measurements from standard deviations of 3 

replicate standard measurements (2 for NO2
-), i.e. a measure of repeatability) were 0.12-

0.24 µmol N l-1 for NO3
- (coefficient of variation 0-3.5 %); 0.01-0.05 µmol N l-1 for 

NO2
- (0-5.8 %); 0.04-0.10 µmol N l-1 for NH4

+ (0-6.5 %) and 0.08-0.09 µmol N l-1 for 

urea (0-11.4 %). 

 

In the Ría de Vigo the nutrient samples collected by IIM (NO3
-, NO2

-, NH4
+, PO4

3-, 

Si) were analysed within ~6 h in both years using an Alpkem autoanalyser following the 

method of Hansen & Grasshoff (1983) as modified by Mouriño & Fraga (1985), to a 

precision of 0.05 µmol l-1 for all nutrients. The additional measurements made in 
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association with the incubations were performed on fresh samples in 2006, but samples 

for NO3
-, PO4

3-, Si and NH4
+ were frozen and analysed at NOCS in 2007. Nitrate, PO4

3- 

and Si were analysed on a Skalar autoanalyser in 2007, following the methods of 

Armstrong et al. (1967), Murphy & Riley (1962) and Grasshoff et al. (1999), 

respectively. The ranges of precisions for various standard concentrations were 0-0.05 

µmol l-1 (0.1-0.5 %), 0-0.04 µmol l-1 (0-1.7 %) and 0.03-0.18 µmol l-1 (0.2-1.2 %) for 

NO3
-, PO4

3- and Si, respectively. Frozen samples from 2006 were also analysed using 

these methods, for comparison with the measurements performed on fresh samples. 

Ammonium was measured using the fluorometric (o-Phthaldialdehyde, OPA) method of 

Holmes et al. (1999) (Appendix 1). After reagent addition, samples were incubated 

overnight in the dark and fluorescence was determined on a Turner Designs TD700 

fluorometer (excitation wavelength 350 nm, emission wavelength 410-600 nm). 

Precision was 0-0.02 µmol l-1 (0.3-6.8 %) depending on standard concentration.  

Urea was determined manually on fresh samples following the diacetylmonoxime 

thiosemicarbazide method of Mulvenna & Savidge (1992) adapted to room temperature 

using reaction times of 72-96 h (Goeyens et al., 1998) in 2006 (Appendix 1), but 

following the method of Grasshoff et al. (1999) in 2007. Precisions were 0.01-0.05 µmol 

N l-1 (1-16.5 %) in 2006 and 0-0.04 µmol N l-1 (0-15.9 %) in 2007, depending on 

standard concentration. 

 

In the Fal, routine nutrient measurements were carried out by the students who 

filtered two freshly collected 50 ml samples through 25-mm GF/F filters in syringe filter 

units then stored them in rinsed brown glass (NO3
-, PO4

3-) or polyethylene (Si) bottles. 

These were kept in a cool box and transported ashore where they were stored overnight 

in a refrigerator prior to analysis the following day. Phosphate and Si were analysed 

manually following the spectrophotometric method of Parsons et al. (1984) and NO3
- + 

NO2
- was analysed following the flow injection method of Johnson & Petty (1983).  

Additional nutrient analyses were performed in association with the nutrient uptake 

incubations. Filtrate obtained prior to the 15NH4
+ incubation was decanted into three 

rinsed 20 ml Diluvials and kept cool until transported ashore.  

In 2006, samples for NO3
-
 + NO2

-, PO4
3- analyses were frozen and analysed at NOCS 

with a Burkard Scientific autoanalyser, following the methods of Hydes & Wright 

(1999) with precisions of 0.4-2.4 µmol l-1 (4.1-12.2 %) and 0.06-0.09 µmol l-1 (4.4-15.7 
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%), respectively. Samples for urea were frozen and analysed following the method of 

Goeyens et al. (1998) with precisions of 0.01-0.02 µmol l-1 (1.4-5.3 %). 

In 2007, samples for NO3
-
 + NO2

-, PO4
3- and Si were frozen and analysed at NOCS 

with a Skalar autoanalyser following the methods of Armstrong et al. (1967), Murphy & 

Riley (1962) and Grasshoff et al. (1999), respectively. Precisions were 0.28-0.69 µmol l-

1 (1.4-13.7 %) for NO3
-, 0.02-0.05 µmol l-1 (0.8-10.7 %) for PO4

3- and 0.13-0.27 µmol l-1 

(1.3-9.1 %) for Si. Urea was measured following the method of Grasshoff et al. (1999) 

with precisions of 0.02-0.08 µmol N l-1 (4.9-23.6 %). For this, samples were incubated 

on hot plates for 2.5 h. Ammonium analyses in both years were performed manually on 

fresh samples following the same methods as in CRIA II, with precisions of 0-0.04 µmol 

N l-1 (1.6-10.7 %) in 2006 and 0-0.03 (0.5-17.4 %) in 2007. 

 

2.2.4.  Chl-a 
 

In Lambert’s Bay, 100 ml samples were collected for chl-a and filtered onto 25-mm 

Whatman GF/F filters. Duplicate samples were filtered in association with nutrient 

uptake incubations. Filters were then placed in 10-ml centrifuge tubes and pigments 

extracted in 9 ml of 90 % acetone for at least 24 hours at -20 °C in the dark (Parsons et 

al., 1984). These samples were then centrifuged for 10 min to separate cellular debris 

from the solution. Fluorescence was determined using a Turner Designs 10-AU 

fluorometer calibrated with commercial chl-a (Sigma). Readings were taken before and 

after acidification with 2 drops of 10 % HCl to correct for phaeopigments.  

Extracted chl-a concentrations were significantly correlated with CTD fluorescence 

measurements in all years (Figure 2.5a). 

 

In the Ría de Vigo, 100-250 ml were filtered in the laboratory onto 25-mm GF/F 

filters and filters were stored frozen at -20 °C. Chl-a was later extracted in 90 % acetone 

at 4 °C in the dark for 24 h. Chl-a concentrations were determined following the 

Welschmeyer method (Welschmeyer, 1994). Calibration curves are shown in Figure 

2.5b. 

 

In the Fal Estuary, 50 ml were filtered on-board onto 25-mm GF/F filters using a 

syringe and filters transferred directly into centrifuge tubes containing 7 ml 90 % 

acetone and stored in a refrigerator overnight. Chl-a concentrations were determined 
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following the Welschmeyer method (Welschmeyer 1994). CTD calibration curves are 

shown in Figure 2.5c. The fluorometer excitation wavelength was 436 nm and the 

emission wavelength 690 nm. 

 

 
Figure 2.5. CTD calibration curves for chl-a in (a) Lambert’s Bay, (b) the Ría de Vigo and (c) the 
Fal Estuary. 
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2.2.5.  Phytoplankton counts 
 

In Lambert’s Bay, phytoplankton samples (100 ml) were preserved with buffered 

formalin (2.5 % final concentration) and stored in 100-ml clear plastic bottles. 

Subsamples of 10 ml were settled overnight and counted in 2-ml slides using inverted 

microscopy (Utermöhl, 1958). Identification was to species level where possible. Three 

species of Pseudo-nitzschia were enumerated in 2007, when Pseudo-nitzschia spp. was 

very abundant, including P. australis and 2 unidentified species. For the nutrient uptake 

kinetics experiments carried out on 16 March 2006, 21 March 2007, 8 April 2007, 21 

and 25 March 2008, biomass estimates were made to determine the dominance of 

Pseudo-nitzschia (Expt 1), Alexandrium catenella (Expt 2) and Dinophysis acuminata 

(Expts 3-5). These were derived from cell volumes calculated from cell measurements 

and stereometric shapes (Hillebrand et al., 1999) followed by biovolume to carbon 

conversions (Menden-Deuer & Lessard, 2000). Due to the low number of species in 

these experiments and their consistent cell sizes, these estimates were considered to be 

robust, however the conversion to carbon biomass was not warranted for the routine cell 

counts as it may have introduced further inaccuracies.  

 

For the Ría de Vigo and Fal Estuary, samples were preserved in association with the 

nitrogen uptake incubations and counted at NOCS. However, for a general analysis of 

spatial and temporal variation in phytoplankton community structure, the data provided 

by IIM for all stations and depths sampled in the Ría de Vigo were used. For the Fal, a 

selection of samples collected by students, Joanne Souter and those associated with the 

uptake incubations were re-counted in February 2009 by Dr Fernando Gómez at 

Laboratoire Arago in Banyuls-sur-Mer. The same methods were used in all cases. 

In the Ría de Vigo and the Fal Estuary, water samples were preserved with Lugol’s 

Iodine (1 % final concentration) and stored in 100-ml brown glass bottles for <7 months 

before counting. For each sample, a 10 ml volume was settled overnight and counted 

under a Leica inverted microscope (Utermöhl, 1958). Transects across the graticule 

diameter (between 1 and 4 depending on species number) were counted under 200 x 

magnification, then the whole chamber was scanned under 100 x magnification for 

larger, rarer cells (e.g. Rhizosolenia spp., Ceratium spp., Dinophysis spp., 

Protoperidinium spp...).  

Cell concentrations were calculated from the equation: 
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Cellconc = Cellcount * Achamber/ Acount * 1000/ V                     (2.4) 

 

where Cellconc is cell concentration in the sample (cells l-1), Cellcount is number of cells 

counted (sum of all transects), Achamber is the area of the sedimentation chamber (= 

572.56 mm2), Acount is the total area counted (sum of all transects, one transect being 27 

mm2 under 200 x magnification) and V is the volume settled. 

Multivariate analyses were performed on the count data using the package Plymouth 

Routines In Multivariate Ecological Research (PRIMER, version 5). Between station 

similarities were calculated using the Bray-Curtis similarity index based on standardised 

cell concentrations after square root transformation. Data for all species were used, 

regardless of species contribution. The similarity matrices obtained were then used to 

perform cluster analyses. SIMilarity PERcentages (SIMPER) analysis was performed on 

standardised count data after square root transformation, to determine species’ 

contribution to similarity within the clusters identified at similarity levels ranging from 

40 to 60 %. The Shannon Diversity Index (Shannon, 1948) was calculated using 

PRIMER from: 

            s 

H’ = - Σ pi ln pi                      (2.5) 
                        i = 1 

where S is the number of species and pi is the proportion of each species i relative to 

total phytoplankton abundance. 
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2.2.6.  FRRf 
 

A Chelsea Instruments Fastracka™ FRRf fitted with PAR and depth sensors was 

deployed in the Benguela to a depth of 20 m in 2007 and 30 m in 2008 to measure 

variable fluorescence. Both light and dark measurements were made in sequences of 100 

saturation flashlets followed by 20 decay flashlets. 8 repeat measurements were 

averaged in 2007 but in 2008 this was changed to 4 to increase the depth resolution. As a 

result, measurements were made approximately every 1.5 m in 2007 and every 0.7 m in 

2008. Initial fluorescence (F0), maximum fluorescence (Fm), variable fluorescence 

(Fv/Fm = (Fm - F0)/ Fm), functional absorption cross-section of photosystem II (σPSII), and 

photosynthetic turnover (τ) were calculated using the software FRS (Chelsea 

Instruments Ltd., version 1.8).  
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2.3.  Nitrogen uptake 

 

2.3.1.  Incubations 

 

2.3.1.1.  Standard uptake measurements  

 

In Lambert’s Bay, water from each depth (Table 2.1) was decanted into two 1-l 

Nalgene polycarbonate bottles and one 2-l Nalgene bottle. The 1-l samples were 

inoculated with stock solutions of K15NO3 and urea [CO(15NH2)2] and the 2-l sample 

with 15NH4Cl. All stock solutions had a concentration of 1µmol N ml-1 and 15N purities 

were 99.6, 99.1 and 99.7 % for K15NO3, CO(15NH2)2 and 15NH4Cl, respectively. The 

volume of 15N spike in each case was adjusted to achieve a final concentration of 

approximately 10 % of the ambient nutrient concentration (based on the previous day’s 

concentration for NH4
+ and urea and on the NO3

- vs temperature relationship for NO3
-). 

However, due to the extremely variable nutrient concentrations and to the fact that 

nutrients were measured after the spike addition, this was not always achievable and 

aqueous enrichments ranged from 1 to 93 % (average for all 3 years 19.5 ± 15.9) (Table 

2.6). Immediately after spiking the NH4
+ sample, exactly 1 l was transferred to a 

separate 1-l polycarbonate bottle for incubation, while the remaining 1 l was filtered 

through a 47-mm Whatman precombusted GF/F filter to measure time zero aqueous 15N 

enrichment (R0) in the filtrate. Subsamples were also taken from the filtrate for later 

analyses of ambient NO3
-, NH4

+ and urea. The measured NH4
+ concentration was 

subsequently corrected for the 15NH4Cl spike addition.  

Spiked samples were incubated in perspex incubation tubes for 3 h at simulated in situ 

temperatures (10-15 ºC) and irradiances. Fifty percent shading was achieved with grey 

neutral density filters (Lee) for the subsurface samples, whereas the surface samples 

were incubated in a clear tube. Water was re-circulated through the incubators via chiller 

units set at the respective in situ temperatures for the 2 incubation depths. The 

temperature maintained by each chiller was generally within 1 ºC of in situ temperature 

although on a few hot days it exceeded it by up to 2 ºC. Incubations were terminated by 

filtration onto 47-mm precombusted GF/F filters, which were then rinsed with artificial 

seawater and dried at 75 ºC overnight. 15N uptake by the <0.8 µm fraction was assumed 

to be negligible therefore no sequential filtrations were performed to measure the loss of 

particulate 15N through the GF/F filters. For 15N analyses, between 10 and 15 small (5 
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mm diameter) discs were punched out of each filter, depending on the amount of 

material present, and pelletted into tin capsules (Pellican Scientific, 5 x 9 mm).  

 

In the Ría de Vigo, similar procedures were carried out, using 0.5-l Nalgene 

cylindrical polycarbonate incubation bottles and volumes of 0.5 l (1 l was spiked with 
15NH4Cl then 0.5 l was decanted into a 0.5-l bottle for incubation). Samples were 

incubated in a grey plastic box placed on-deck, through which surface water flowed. For 

subsurface samples, 50 % shading was provided by a nylon mesh. Incubations lasted for 

1h30-2h in 2006 and 2h30-3h in 2007. Filtration of 15NO3
- and 15N-urea spiked samples 

was onto 25-mm Whatman GF/F filters using a Pall Gelman polyurethane 3-port in-line 

filter funnel manifold. Waste filtrate was evacuated via a drain plug and collected in a 1-

l Büchner flask. Filtration of 15NH4
+ spiked samples was carried out with a different 

system that allowed clean collection of the filtrate for later isotopic dilution analyses. 

Water was filtered through precombusted 47-mm Whatman GF/F filters using a 

polyphenylsulfone 47-mm magnetic filter funnel and collected in an acid-washed 500-

ml borosilicate Büchner flask (rinsed with Milli-Q in-between samples).  

 

In the Fal, the same incubation volumes, bottles and filtration systems were used as 

in the Ría de Vigo. In 2006, samples were incubated in situ, suspended from a pontoon 

just below the surface and on occasion at 2 m depth (Table 2.3). In 2007, incubations 

were carried out in an on-deck incubator as in the Ría de Vigo. Incubations lasted 3h45-

5h15 in 2006 and 1h20 to 2h10 in 2007, due to different logistical constraints in the 2 

years. 
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Nutrient Nutrient concs Spike concs
µmol N l-1 µmol N l-1 Range Mean (se)

LB2006 NH4
+ 0.1-1.7 0.1 6-48 24.3 (2.1)

NO3
- 0.1-29.8 0.1-2.4 4-93 23.5 (6.0)

Urea 0.2-3.1 0.1-0.2 4-41 18.6 (1.9)
LB2007 NH4

+ 0.1-4.4 0.1 2-65 22.2 (2.6)
NO3

- 0.1-23.8 0.1-2.0 1-70 27.0 (3.5)
Urea 0.1-3.7 0.1 4-32 15.0 (1.7)

LB2008 NH4
+ 0.2-5.0 0.1-0.4 2-31 14.8 (2.0)

NO3
- 0.1-29.3 0.05-2.2 1-66 15.4 (3.7)

Urea 0.3-2.6 0.1-0.2 4-27 14.7 (1.5)

CRIA I NH4
+ 0.6-4.6 0.1 3-17 8.5 (2.0)

NO3
- 0.8-2.5 0.1 4-9 5.3 (0.6)

Urea 0.1-1.1 0.1 8-42 22.0 (4.0)

CRIA II NH4
+ 0.1-2.5 0.01-0.1 0.3-26 16.1 (3.9)

NO3
- 0.1-6.8 0.1-1.0 1-95 60.5 (10.9)

Urea 0.1-0.6 0.01-0.1 3-51 26.6 (5.8)

Fal 06 NH4
+ 0.1-0.9 0.1 10-45 35.7 (5.8)

NO3
- 0.2-18 2 10-90 26.1 (6.4)

Urea 0.3-0.8 0.1 11-22 17.8 (0.8)

Fal 07 NH4
+ 0.2-2.3 0.1 4-52 18.8 (5.4)

NO3
- 2.2-41.3 2 4-47 11.9 (4.4)

Urea 0.1-0.7 0.1 12-60 25.2 (4.9)

Enrichment (%)

 
Table 2.6. Ambient concentrations of NH4

+, NO3
- and urea, concentrations of 15N after spike 

addition and aqueous enrichment (range and mean ± standard deviation) obtained in the 7 field 
studies. 
 

 

2.3.1.2.  Nitrogen uptake kinetics 
 

In Lambert’s Bay, one experiment was performed in 2006, two in 2007 and two in 

2008 (Table 2.7). The choice of dates and depths was guided by phytoplankton 

community structure. Prior to the experiments, net samples were examined briefly under 

a dissecting microscope to determine whether a particular species was dominant. 

Furthermore, experiments were generally carried out when ambient NO3
-, NH4

+ and urea 

concentrations were low, although this was not the case for NO3
- in experiments 2 and 4 

and for urea in experiments 1 and 5. In the case of urea, uptake rates were measured 

successfully at saturating concentrations, therefore νmax was estimated from the mean of 

ν measured at the 4 or 5 highest concentrations. However, there were not enough 

measurements in the range of sub-saturating concentrations, therefore Ks could not be 

determined. For NO3
-, neither Ks nor νmax could be estimated in experiment 2, however a 

lower limit estimate of νmax was derived from ν(NO3
-) at the ambient NO3

- concentration 
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of 16.9 µmol l-1. In experiment 4, high NO3
- additions (up to 88 µmol l-1) were carried 

out and Michaelis-Menten kinetics were observed.  

Water from a clean 10-l sampling bucket (from 5 m in 2006 and 2008, from 0 m in 

2007) was decanted into eighteen 250-ml sterile polystyrene screw-capped culture 

flasks. Six 250-ml sample were spiked with different volumes of 10 % enriched 1 mmol 

N l-1 NO3
- solution, another 6 with NH4

+ solution and the remaining 6 with urea solution 

to obtain final concentrations between 0.4 and 25 µmol N l-1 for NO3
- and between 0.2 

and 15 µmol N l-1 for NH4
+ and urea. In 2008, this method was modified slightly 

because the use of a 10 % enriched solution led to very low enrichments (<3 %) at the 

lowest nitrogen additions, when ambient concentrations were substantial. Instead, the 

lowest addition consisted of a pure 15N spike (0.01 ml). Subsamples were taken for 

NH4
+, urea (2 x 5 ml) and NO3

-
 (1 x 15 ml) analyses. Samples were incubated for 2 h in 

a plastic box maintained at ambient seawater temperatures by water flow through the 

chiller unit. Incubations were terminated by filtration onto 25-mm precombusted GF/F 

filters. Samples were analysed in the same way as the standard uptake samples. In 2008 

(experiment 4) samples were pre-filtered through a 200-µm mesh to remove the large 

number of small jellyfish that were present in the water at this time. 

In the Ría de Vigo, nutrient uptake kinetics were measured on one occasion in 2007 

(Table 2.2), on a water sample dominated by a mixed diatom community (Skeletonema 

costatum, Leptocylindrus spp., Nitzschia cf. americana, Chaetoceros socialis). The 

experiment was carried out in 75-ml Sterilin Iwaki culture flasks, in the same incubator 

as the standard uptake incubations. Final nutrient concentrations were between 0.3 and 

30 µmol N l-1 and the incubation lasted 2h30. 

In the Fal, 2 experiments were carried out in 2006 on samples collected from King 

Harry Pontoon, co-dominated by a mixture of diatoms and Alexandrium spp. (Table 

2.3), using 500-ml polycarbonate bottles filled with 200 ml water. Incubations were 

carried out in situ, just below the surface, with final concentrations in the range 0.3-21 

µmol N l-1 for NH4
+ and urea and 3.7-32 µmol N l-1 for NO3

- and incubation lengths of 

3.5 to 4.25 h. 
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Exp. # Date Depth Dominant species Cell conc. PON

NH4
+ NO3

- Urea

Lambert's Bay

1 16/03/2006 5 Pseudo-nitzschia (80 %) 7,980 13.7 0.18 0.09 1.68c

2 21/03/2007 0 A. catenella (77 %) 304 34.8 0.16 16.89a 0.27
3 08/04/2007 0 D. acuminata (91 %) 31 7.2 0.42 0.47 0.23

4 21/03/2008 5 D. acuminata ( 50 %) 5384 27.5 0.53 14.25b 0.57

5 25/03/2008 5 D. acuminata (33 %) 108 8.8 0.30 0.10 0.79c

Ria de Vigo
1 28/06/2007 0 Mixed diatoms n/a n/a 0.33 0.52 0.17

Fal Estuary
1 10/07/2006 0 Mixed diatoms + Alexandrium n/a n/a 0.44 2.72 -
2 13/07/2006 0 Mixed diatoms + Alexandrium n/a n/a 0.20 5.34 -

Ambient conc.

 
Table 2.7. Date, depth and ambient NO3

-, NH4
+ and urea concentrations (µmol N l-1) for each 

nitrogen uptake kinetics experiment carried out in the 3 systems. Dominant species’ concentrations 
(x 103 cells l-1) and total PON concentrations (µmol N l-1) are given for monospecific blooms.  
a ambient concentration hindered the determination of both Ks and νmax;  
b high NO3 additions were carried out to obtain νmax and Ks; 
c ambient concentration hindered the determination of Ks, but νmax was estimated from the mean of 
ν at 4 or 5 highest concentrations. 
 
 

The choice of incubation length was important, as it can significantly bias the 

resulting kinetics. Nutrient uptake kinetics rely on the assumption that substrate 

concentration is constant over time, an assumption that is violated by non-steady state 

conditions, therefore the equation is only valid for describing instantaneous rates, which 

is extremely difficult even using incubation lengths <5 min (Goldman & Glibert, 1982b; 

Lomas et al., 1996). Not only is the use of such short incubation lengths experimentally 

impractical, it would also seriously bias the results if uptake rates were not constant over 

time, as is often the case (Collos, 1983; Harrison et al., 1989; Lomas et al., 1996; Collos 

et al., 1997). Transient high uptake, or “surge” uptake may occur in the first few minutes 

of the incubation, such as has been observed in response to nutrient addition in both 

nitrogen-starved cultures (Conway et al., 1976; Goldman & Glibert, 1982a) and 

nitrogen-sufficient natural assemblages (Lomas et al., 1996). In this case, νmax will be 

overestimated if a short incubation time is used. Conversely, if there is a progressive 

increase in nitrogen uptake observed after a time lag, νmax will be underestimated by a 

short incubation length.  

Conversely the incubation length should be kept short enough that substrate 

depletion does not occur at the lowest concentrations during the course of the 

incubation, as this would result in first order, rather than Michaelis-Menten kinetics, at 

the lowest concentrations (Fisher et al., 1981) and an overestimation of Ks (McCarthy, 

1981). The time-dependency of Ks is poorly documented but has been observed in a few 

studies (Goldman & Glibert, 1982b; Wheeler et al., 1982). 



 49 

Furthermore, longer incubation times could lead to significant dilution of the 15N-

labelled NH4
+ pool by regenerated 14N and thus underestimation of uptake rates at the 

lowest concentrations and overestimation of Ks (Fisher et al., 1981). This problem can, 

however, be overcome by correcting ν(NH4
+) for this isotope dilution, as described 

below (Glibert et al., 1982b), or simply by keeping incubation lengths under 6 h. Similar 

incubation lengths have been used in uptake kinetics experiments by Collos et al. (1997) 

with ambient NO3
- concentrations of 0.21-4.0 µmol l-1 and NH4

+ concentrations of 0.14-

2.98 µmol l-1. 

 

2.3.2.  Correction for isotope dilution 
 

Aqueous enrichment was measured at the beginning and end of all incubations to 

correct for the increase in 14NH4
+ relative to 15NH4

+
 caused by NH4

+ regeneration during 

the course of the incubation. In Lambert’s Bay, 900 ml (400 ml in Ría de Vigo and Fal) 

of the NH4 uptake filtrate from the beginning (T0) and end (Tt) of each incubation were 

transferred to acid-washed 1-l glass Schott Duran bottles. The 900 ml volume was 

chosen to leave sufficient head space for the sample to expand while freezing and also to 

facilitate the subsequent ammonium diffusion and recovery process. The head space 

provided a suitable surface to volume ratio to optimise the diffusion rate as well as 

creating sufficient space beneath the cap to suspend a GF/F filter while avoiding 

contamination from the sample. Furthermore, this allowed for some of the surplus 

filtrate to be retained for nutrient analyses (NO3, NO2, urea and NH4
+ at T0, NH4

+ only at 

Tt).  

To recover sufficient NH4
+ for analysis by stable isotope mass spectrometry (i.e. >50 

µg N and <3 At% enrichment), 10 µmol NH4Cl solution was added to each sample as a 

“carrier” (i.e. 0.9 ml of a 10 mmol l-1 solution, but 0.4 ml in the Ría de Vigo and Fal). At 

Lambert’s Bay in 2008, 0.9 ml of a 14.7 g l-1 HgCl2 solution was also added to prevent 

further biological activity and ensure that bacterial activity would not recommence upon 

thawing. Aqueous samples from Lambert’s Bay were immediately frozen at -20°C, 

whereas in the Ría de Vigo and Fal they were initially stored in a refrigerator on-board 

then transferred to a freezer in the laboratory at the end of the day.  

These samples were returned frozen to the laboratory (MCM in Cape Town, IIM in 

Vigo, NOCS for Fal samples and CRIA I samples) and prepared for the recovery of 

NH4
+ onto GF/F filters by diffusion. Magnesium oxide (MgO) was added to the thawed 
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samples to increase the pH to >9 and thus liberate NH4
+ as gaseous NH3 (Brooks et al., 

1989). A pre-combusted halved 25-mm GF/F filter was wetted with 20 µl of a 6.25 M 

potassium hydrogen sulphate (KHSO4) solution to obtain a trapping capacity of 175 µg 

N (Stark & Hart, 1996). The concentration of KHSO4 was adjusted from their method to 

suit a larger filter size while maintaining the same trapping capacity. A filter was 

suspended from the inside of each bottle cap to recover the diffused NH3 following the 

method of Probyn (1987) modified for the use of KHSO4 instead of H2SO4. Bottles with 

suspended filters were left for 2-3 weeks then filters were removed and dried overnight 

at 75 °C and pelletted in the same way as the standard uptake filters. The isotopic 

composition of the ammonium trapped on the filters was measured by stable isotope 

ratio mass spectrometry to provide a measure of aqueous enrichment at the start (R0) and 

at the end of the experiment (Rt). 

 

2.3.3.  Mass spectrometry 
 

The isotopic composition of all samples was determined on a GV Instruments 

IsoPrime™ stable isotope ratio mass spectrometer (SIRMS) interfaced with a 

EuroVector Euro EA elemental analyser. The system was based on the Europa 

Tracermass developed by Preston & Owens (1983). Control of the instrument and data 

output in 2006/2007 was by the software package MassLynx™ (Waters Corp.), although 

IonVantage (GV Instruments) was used in 2008.  

 

2.3.3.1.  Principle 

 

Samples first pass through the CHN elemental analyser where the Dumas 

combustion method is employed (Figure 2.6). Samples are placed in an autosampler 

carousel that sequentially drops them into a combustion furnace (1040 °C) where flash 

combustion takes place after injection of O2 (10-20 ml). Here, the major elements in the 

sample (C, H, N) are oxidised to CO2, H2O, N2O and N2 gases, respectively. These gases 

are carried by a helium carrier flow (flow rate 100 ml min-1) into the reduction furnace 

(650 °C), where N2O is reduced to N2 in the presence of a copper catalyst and excess O2 

is removed by copper oxidation. The remaining gases pass through a water trap 

(anhydrous magnesium perchlorate). If C is not being analysed, CO2 is also removed by 

a trap (“Pelisorb”, Pelican Scientific). The gases then pass through a gas chromatograph 
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(GC) column (55 °C), which temporally separates interfering gases such as CO (same 

mass as 14N2).  

The N2 gas is then introduced into a triple collector mass spectrometer where it is 

ionised by an electron impact ionisation source (accelerating voltage 3400 V). The 

resulting ions pass through a flight tube then a fixed magnet separates them on the basis 

of their mass to charge ratio (m/z). Ions of mass 28 (14N14N), 29 (14N15N) and 30 

(15N15N) are detected by the triple collector, composed of Faraday cups, which become 

charged when hit by ions. The ion flux is converted to a proportional electrical current 

corresponding to masses 28, 29 and 30. A reference gas of known isotopic composition 

is measured once before each sample and used to correct for any instrument drift. A 

constant vacuum is maintained by a Turbomolecular pump which clears the instrument 

of waste gases. Delta values (δ, the excess of 15N in the sample relative to the reference 

gas) are then calculated by the software from the expression: 

 

δ = (Rsam - Rref)/ Rref * 1000                        (2.6) 

 

where δ is in ‰ and Rsam and Rref are the sample and reference ratios of minor (mass 29) 

to major beam (mass 28). At low enrichments (<5 %) the contribution of mass 30 is 

insignificant therefore it is not taken into account for the calculation of δ. This raw δ is 

then corrected for the relative enrichment of the reference gas relative to air. Isotopic 

abundance (At%) is calculated  from Equation 2.7, which can also be expressed as: 

 

δ = (At%sam - At%nat)/ (At%nat) * 1000 

 

Rearranging this equation gives: 

At%sam = δ * At%nat / 1000 + At%nat                        (2.7)  

 

where At%nat is the natural isotopic abundance of 15N (0.3663 %).  
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Figure 2.6. Schematic diagram of the elemental analyser interfaced with a stable isotope ratio mass 
spectrometer. 
 
 

2.3.3.2.  Instrument settings 

 

The sensitivity of the instrument was adjusted to suit the sample size and expected 

enrichment, by altering the trap current (Table 2.8). The reference N2 gas pressure was 

adjusted accordingly (from 15 to 30 psi).   

Internal precision cannot be calculated for a continuous flow SIRMS since each 

sample is only measured once, as opposed to a dual inlet system which repeatedly 

measures both the sample and the reference gas.  

Method precision was calculated from the standard deviation of repeated 

measurements of a urea standard (GV Instruments). Six standards were analysed for 

each batch of 30 samples. Precision was 0.0001 to 0.001 At% (CV between 0.02 and 

0.30 %) for the 5 different sets of analyses performed between May 2006 and July 2008 

(n = 15 to n = 47). Certified enriched ammonium sulphate standards (Aldrich) were also 

analysed to assess the accuracy of the instrument. The instrument drift was 0.002-0.009 

At% at enrichments between 0.5 and 1 At%. Urea standards (N content 49.44 %) were 

also used to generate calibration curves for particulate nitrogen (PN) concentrations.  

 



 53 

Trap Mean sensitivity Sample range

µg nA-1
µg

100 23.81 (± 0.78) 100-300
200 9.04 (± 0.83) 50-150
250 5.99 (± 0.45) 30-90
300 4.41 (± 0.31) 25-75
400 4.19 20-70
500 2.89 (± 0.06) 15-50
600 2.72 (± 0.16) 5-35  

Table 2.8. Various trap settings used for sample analysis and corresponding sensitivities, as 
determined from calibration curves of major beam height (nA) versus nitrogen content of weighed 
urea standards (µg). Approximate ranges of samples for which each trap setting was suitable are 
also shown. 
 

2.3.3.3.  Calculations 

 

Standard nitrogen uptake 

 

Nitrogen uptake (ρ in µmol N l-1 h-1) was calculated from the equation of Dugdale & 

Wilkerson (1986): 

 

ρ = r * PN/ (R * t)                       (2.8)

   

where PN is particulate nitrogen (µmol N l-1)  

t is incubation length (h) 

r is At% excess of the particulate fraction (= At%sam - At%nat )  

R is At% enrichment of the aqueous medium: 

R = (S * At%nat/ 100 + s * p)/ (S + s) * 100 - At%nat                 (2.9) 

where S is substrate concentration (µmol N l-1), s is 15N concentration after spike 

addition (µmol N l-1) and p is 15N spike purity.  

 

For ρ(NH4
+), R can change quite appreciably during the course of the incubation due 

to microzooplankton excretion and/or bacterial regeneration. To take this into account, R 

was calculated at the start (R0) and at the end (Rt) of each incubation. The amount of 
15NH4

+ present at T0 and Tt can be expressed in 2 ways: 

 
15NH4

+ = V * Sx * Rx + At%nat * C                             (2.10a) 

or  
15NH4

+
 = rx (V * Sx + C)                             (2.10b)  
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where V is sample volume (l), Sx is substrate concentration at tx (µmol l-1), C is the 

amount of NH4
+ added as “carrier” (µmol) and rx is the measured enrichment at tx (At%). 

These can be combined to calculate R0 and Rt: 

 

Rx = [rx (V * Sx + C) – At%nat * C]/ (V * Sx)                 (2.11) 

 

Measured R0 values (R0meas) were significantly correlated with theoretical values 

(R0calc) calculated from the initial spike addition following Equation 2.9 (Figure 2.7). 

However, the regression coefficients were 0.9-2.4, which led to under- or overestimation 

of NH4
+ uptake. To correct for this, it was assumed that Rt was affected in the same way 

as R0 and the regression coefficient was used to adjust Rt. 
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Figure 2.7. Linear correlations in (a) the Benguela, (b) the Ria de Vigo and (c) the Fal, between 
calculated R0 and measured R0 used to correct the measured Rt values in the final calculation of RG. 
A single regression line was drawn for both years in the Ria de Vigo since the range of values in 
2006 was more restricted than in 2007 and the slope may have been overestimated by excluding the 
2007 values. 
 

Using these corrected values, the average R over the time course of the incubation 

was then calculated based on the assumption that R decreases exponentially over time, 

following the equation of Glibert et al. (1982b): 

 

RG = R0 / ln(R0/Rt) * (1-Rt/R0)                   (2.12) 
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This corrected value of aqueous enrichment (RG) was then substituted for R in the 

calculation of uptake (Equation 2.8). 

 

Ammonium regeneration rates 

 

Ammonium recycling was calculated from the Blackburn-Caperon model 

(Blackburn, 1979; Caperon et al., 1979) since the NH4
+ concentration always changed 

during the incubation:  

rB-C = [ln(Rt/R0)] / ln(St/S0) * (S0 - St)      (2.13) 

 

 

Nitrogen uptake kinetics 

 

The kinetics parameters Ks (half-saturation constant) and νmax (maximum PN-

specific uptake rate) were obtained by fitting uptake (ν) versus concentration (S) data to 

the Michaelis-Menten equation using a computerised, iterative non-linear least squares 

regression (Jandel Scientific SigmaPlot).  

 

ν = ν max S/ (Ks + S)                     (2.14) 

 

where ν is PN specific uptake rate (h-1), νmax is maximum specific uptake rate (h-1), S is 

substrate concentration (µmol N l-1) and Ks is half-saturation constant (µmol N l-1). The 

initial slope of the curve α, used as an indicator of nutrient affinity at concentrations < 

Ks, was calculated from α = vmax/ Ks (Healey, 1980). 

The use of PN-specific rather than absolute uptake rates enables direct comparison 

with growth rates, however it implies that the presence of detrital nitrogen may lead to a 

dilution of the 15N enrichment of the living particulate matter and thus an 

underestimation of ν and hence νmax. 

Cell-specific uptake rates (µmol N cell-1 h-1) are also used, although these are most 

suited to culture studies or monospecific blooms, where all the nitrogen uptake can be 

attributed to one species. In natural populations where other species are present, one 

must assume that all of the nitrogen is being taken up by the dominant species. The 

resulting νmax(cell)  will of course be an estimate, however its calculation is useful for 
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comparison with literature values and also to determine the effects of cell size. It was 

calculated for the Lambert’s Bay experiments 1, 2 and 3 only, following the equation:  

 

νmax(cell) = νmax * PN/ n                     (2.15) 

 

where PN is estimated nitrogen biomass (µmol N l-1) of the dominant species (= Total 

PN * % dominance) and n is cell concentration of the dominant species (cells l-1). 

Ammonium inhibition kinetics parameters were determined by fitting the ν(NO3
-) 

versus NH4
+ concentration data to a modified Michaelis-Menten equation (Varela & 

Harrison, 1999) using the same regression technique as for the uptake kinetics: 

 

ν = νmax - (νmax * Imax * S)/ (Ki + S)                  (2.16) 

 

2.4. Statistics 

 

Where comparisons were made between groups of data (e.g. between years), 

Student’s t-tests were applied, provided that variances within each group were not 

significantly different (as determined by a two-tailed F-test). If this condition was not 

met, the non-parametric Mann-Whitney U-test was employed. 

For matched pairs of samples (e.g. to compare simultaneous surface and subsurface 

measurements or measurements of different parameters made on the same water 

sample), the parametric paired t-test or the non-parametric Wilcoxon’s signed ranks test 

were chosen, following the same criteria. The level of confidence used to determine 

significance was 95 % (p < 0.05). 
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3 Nitrogen nutrition of phytoplankton assemblages 
dominated by different HAB species in Lambert’s Bay 
in March 2006, 2007 and 2008. 

 

 

3.1. Introduction 

 

3.1.1. General features of the Southern Benguela 

 

3.1.1.1. Physical features 

 

The Benguela upwelling system is one of the four major eastern-boundary upwelling 

systems in the world, alongside the California, Humboldt and Canary current systems. It 

is part of the anticyclonic South Atlantic Gyre, flowing northwards along the west coast 

of southern Africa. Although disputed, the boundaries of the Benguela can be considered 

as Cape Agulhas (34 ºS) to the south and Walvis Ridge (15 ºS) to the North (Shannon, 

1985 and references therein). The Benguela is unique among upwelling systems in that it 

is bounded by warm currents at both extremities; by the Angola current to the North 

(from which it is separated by the Angola/Benguela front) and by the Agulhas current to 

the South (Shannon, 1985a). To the South, rings or filaments of warm Indian Ocean 

water shed periodically by the Agulhas Retroflection can penetrate the Benguela current 

(Figure 3.1). 

Upwelling/relaxation cycles are forced locally by the wind stress field of southern 

Africa, whereby southeasterly Trade winds drive Ekman transport of the surface layer 

away from the shore, causing upwelling of cold, nutrient-rich deep water to the surface. 

Upwelled water originates from South Atlantic Central Water (i.e. from the 

thermocline), which displays a linear temperature-salinity plot, with temperatures 

between 6 and 16 ºC and salinities between 34.5 and 35.5 (Shannon, 1985a).  

Offshore, the water column remains stratified while inshore the water column 

becomes well mixed, and an upwelling front may develop where the thermocline 

outcrops, separating warm offshore water from colder inshore water. Upwelled water is 

displaced offshore, and may sink again at the front. As in the other upwelling systems, 
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slow poleward undercurrents (Nelson & Hutchings, 1983) and faster subsurface 

equatorward jets are observed.  

The Benguela is divided into two quasi-independent subsystems separated by the 

Lüderitz upwelling cell (27 ºS, Figure 3.1): the Northern (~ Namibian coast) and 

Southern Benguela (~ South African coast). The sampling station used in this study is 

situated in the latter, therefore this chapter will focus on the Southern Benguela. Wind 

fields in this region are related to displacements of the South Atlantic high pressure 

system (to the North in winter), changes in the seasonal pressure field over the adjacent 

subcontinent (from a well-developed low in summer to a weak high in winter) and to 

eastward moving cyclones produced by perturbations in the subtropical jet stream 

(Nelson & Hutchings, 1983). As a result, upwelling in the Southern Benguela is highly 

seasonal, occurring mainly during the spring and summer (September to March) 

(Andrews & Hutchings, 1980), while winter is characterised by quiescent, westerly 

winds. Seasonal variability is therefore higher in the Benguela than in the other 

upwelling systems, although interannual variability is less pronounced. Short-term 

variability in synoptic wind patterns during the upwelling season also drives 

upwelling/relaxation cycles at the time scale of 3-10 days, whereby relaxation events are 

associated with the eastward passage of cyclones (Nelson & Hutchings, 1983). The 

autumn and winter are characterised by periodic offshore, dry and warm “Berg” winds 

that are caused by the formation of a large high pressure cell over the subcontinent. 

These winds can carry substantial quantities of sand and dust up to 150 km offshore 

(Shannon & Anderson, 1982). Coastal trapped waves can also influence upwelling and 

shelf currents, for example by periodically creating an inshore poleward countercurrent 

during upwelling relaxation events (Shannon, 1985a).  
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Figure 3.1. Map of Southern Africa showing general circulation patterns of the Benguela and 
adjacent currents. Adapted from Shannon (2001). 
 

 

Upwelling is also influenced locally by the coastal topography and orientation of the 

coastline, and tends to be stronger where the shelf is narrower (e.g. the Namaqua 

upwelling centre) and in the vicinity of promontories and capes, (e.g. Cape Columbine 

and Cape Agulhas) (Nelson & Hutchings, 1983). To the North of Cape Columbine, 

between 33 and 32 ºS, the shelf broadens, with the outer shelf break running in a 

northwesterly direction and the shallow isobaths curving eastwards and northwards 

around the Columbine Peninsula. These broad shelf regions, such as the Namaqua Shelf, 

tend to favour stratification. This spatial variability in upwelling is shown in Figure 3.2, 

with upwelling occurring in the vicinity of headlandsand and upwelling filaments 

extending into the warmer offshore waters. Phytoplankton blooms can be fairly 

widespread, as shown in the examples of satellite images of surface chl-a for the three 

years of sampling (Figure 3.3).  

Freshwater inputs are relatively low, since most of the west coast of South Africa is 

arid and characterised by few rivers. Most of the freshwater input is from the Olifants 

and Berg rivers, which is highest in winter with mean annual runoffs of 708 x 106 and 

528 x 106 m3, respectively (Shannon, 1985a). 



 60 

 

 
Figure 3.2. Sea-viewing Wide Field-of-view Sensor (SeaWiFS) satellite image of sea surface 
temperature showing upwelling off Cape Columbine, the Cape Peninsula and Cape Hangklip. 
 
 

 
Figure 3.3. Medium Resolution Imaging Spectrometer (MERIS) satellite chl-a images from (a) 22 
March 2006; (b) 19 February 2007 and (c) 16 March 2008. Courtesy of Stewart Bernard.  
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3.1.1.2. Chemical features 

 

Upwelled water in the Benguela is fairly well oxygenated, with saturations of ~80-85 

% (Shannon 1966). During upwelling relaxation, which favours phytoplankton growth, 

surface DO saturations can be as high as 180 % [Shannon (1985b) and references 

therein]. Remineralisation of organic matter in the vicinity of the Angola Dome and 

poleward advection of low oxygen water (LOW) at similar depths result in an oxygen 

minimum layer at 200-400 m. As a result, LOW is found at depth in the Northern 

Benguela and anoxic water has been reported near Walvis Bay, with associated high 

hydrogen sulphide concentrations (Pieterse & van der Post, 1967) and so-called 

hydrogen sulphide “eruptions” (Weeks et al., 2004). LOW in the Southern Benguela is 

generated locally in bottom waters (e.g. in St Helena Bay) in response to wind-driven 

physical and biogeochemical processes, such as high phytoplankton growth and 

subsequent decay under stratified conditions (Monteiro & van der Plas, 2006). Oxygen-

deficient conditions are favourable for denitrification, which is known to occur in the 

Northern Benguela (Calvert & Price, 1971; Tyrrell & Lucas, 2002), but also in the St 

Helena Bay region (Bailey & Chapman, 1985). This usually occurs during periods of 

intense stratification, and may result in a NO2
- or NH4

+ maximum near the bottom, 

although this does not appear to be the case in St Helena Bay (Shannon, 1985b). 

Typical nutrient distributions follow those of other upwelling systems, with high 

concentrations inshore during active upwelling and depletion by phytoplankton growth 

in the surface layer during quiescent periods, while nutrient regeneration occurs below 

the thermocline as the phytoplankton bloom decays. The gyral system in St Helena Bay 

favours retention and settling of organic matter, therefore nutrient regeneration rates are 

high (Shannon, 1985b). Nutrient concentrations in source SACW are typically in the 

range 10-18 µmol l-1 for NO3
-, 0.8-1.5 µmol l-1 for PO4

3- and 6-15 µmol l-1 for Si (Jones, 

1971) and higher concentrations may be attained during its passage over shelf sediments 

where nutrient recycling takes place. Furthermore, phosphorus has been found to be 

released from organic matter prior to the simultaneous release of both nitrogen and 

phosphorus at a constant ratio (Grill & Richards, 1964). Bailey & Chapman (1985) have 

reported N:P ratios between 16 and 25 for the St Helena Bay region, with a PO4
3- excess 

between 0.6 and 1.2 µmol l-1 at zero NO3
-, and Si:N ratios between ~0.8 and 2.0. Lower 

N:P ratios of ~9 and a PO4
3- excess of 0.11 were reported by Tyrrell & Lucas (2002) for 

shelf waters between 20 and 32 °S, which they attributed to denitrification and nutrient 
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trapping on the shelf. These combine to increase PO4
3- concentrations but decrease NO3

- 

concentrations relative to source waters. However, more recent findings suggest that 

they should rather be attributed to anaerobic ammonium oxidation (“Annamox”) 

(Kuypers et al., 2005). Andrews & Hutchings (1980) reported N:P ratios between 10 and 

20 at DO concentrations <4 ml l-1 and N:Si ratios decreasing from ~1.5 to 0.5 as DO 

concentration approached zero. They attributed the latter to the reduction of NO3
-
 to 

NH4
+ or to elemental nitrogen (which were not included in the ratio calculation). At DO 

concentrations between 4 and 7 ml l-1, nitrogen uptake by phytoplankton resulted in the 

rapid decline of N:P and N:Si ratios to values <1.  

Nitrogen uptake rates were found to be higher on the shelf relative to inshore and 

oceanic stations, with ρ(N) between ~0.3 and 0.5 µmol N l-1 h-1 for the former and ≤ 0.1 

µmol N l-1 h-1 for the latter (Probyn, 1985). A synopsis of NO3
- uptake measurements 

made in the Benguela between 1983 and 1991 showed rates ranging from <0.1 to 0.55 

µmol N l-1 h-1 and revealed maximum potential uptake rates between 0.56 and 1.11 µmol 

N l-1 h-1, depending on the acceleration term used in the calculation (Probyn, 1992). 

Hence, the system was fairly close to realisation of its maximum potential new 

production. ƒ-ratios show substantial variation in the Benguela, from <0.1 to >0.9 

(average 0.39), and display a hyperbolic relationship with ρ(NO3
-) (Probyn, 1992). 

Furthermore, the ƒ-ratio increases linearly with concentration at concentrations <2 µmol 

N l-1, but then declines at higher concentrations, perhaps indicating a more rapid “shift-

up” in ρ(NH4
+) than in ρ(NO3

-) following upwelling (Probyn, 1992). Probyn (1985) also 

found that picoplankton (<2 µm) ρ(N) was highest in the oceanic waters and was 

dominated by ρ(NH4
+), whereas ρ(N) for the microplankton fraction (>20 µm) was 

dominated by ρ(NO3
-), therefore the relative abundances of the various size classes can 

be responsible for variations in the ƒ-ratio. Furthermore, the phytoplankton community 

as a whole expressed a preference for NH4
+ over NO3

- and urea, as shown by higher νmax 

and α (Probyn, 1985).  
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3.1.2. HABs in the Southern Benguela 

 

3.1.2.1. HAB species and their impacts 

 

Although primary production in upwelling systems is typically thought to be 

dominated by diatoms, the Benguela and other upwelling regions are also subjected to 

HABs (Kudela et al., 2005). Within the Southern Benguela, they tend to occur in late 

austral summer (February to April), although HABs have been reported as early as 

November (Pitcher et al., 2007). HABs were first suspected to be responsible for 

fluctuating fish stocks at the beginning of the 20th century (Gilchrist, 1914), and mass 

mortalities of fish, shellfish, seabirds and marine mammals have been reported since the 

mid-20th century (Copenhagen, 1953; Brongersma-Sanders, 1957). A harmful algae 

monitoring programme has been established since 1989, that involves daily sampling at 

Gordon’s Bay (near Cape Town) and Eland’s Bay on the west coast of South Africa 

(Pitcher & Calder, 2000). 

HAB species reported by the monitoring programme between 1989 and 1997 include 

species from a range of phytoplankton groups, with 22 of the 34 species belonging to the 

class Dinophyceae, 2 to the Bacillariophyceae and the remaining 10 divided between 

various classes of flagellates (Pelagophyceae, Haptophyceae, Euglenophyceae) and one 

ciliate. The list includes both toxic species and high biomass producers, such as the 

dinoflagellates Ceratium furca, C. lineatum, C. dens and Prorocentrum micans (Pitcher 

& Calder, 2000). The photosynthetic ciliate Mesodinium rubrum has also been reported 

to form extensive blooms, causing anoxic events that have led to rock lobster mortalities 

(Horstman, 1981). In March 1994, a bloom of C. furca and P. micans in St. Helena Bay 

caused oxygen depletion to <0.5 ml l-1 and bacterial production of hydrogen sulphide, 

resulting in concentrations >50 µmol l-1 when the bloom decayed, killing 60 tonnes of 

rock lobster and 1,500 tonnes of fish (Matthews & Pitcher, 1996). A bloom of 

Gonyaulax polygramma occurred in 1962 in False Bay (Cape Town), causing 100 

tonnes of dead fish and invertebrates to wash up on the beaches (Grindley & Taylor, 

1962). The only other reported bloom of G. polygramma occurred in 2007, lasting for 2 

months, and was associated with some marine fauna mortalities (Pitcher et al., 2008). 

Blooms of the brown tide pelagophyte Aureococcus anophagefferens were reported in 

1997 in Saldanha Bay and associated with growth arrest in oysters and mussels (Probyn 

et al., 2001).  



 64 

PSP was first attributed to Alexandrium catenella (Sapeika, 1948) and severe PSP 

outbreaks and even human fatalities have been reported (Sapeika, 1958; Popkiss et al., 

1979; Muller et al., 1998; Pitcher & Cockcroft, 1998), with the highest incidences 

occurring north of St. Helena Bay (Pitcher & Calder, 2000). More recently, a bloom of 

Alexandrium minutum was reported in Cape Town harbour (Pitcher et al., 2007), 

suggesting that this species could also pose a threat to human health in the future. 

Furthermore, A. catenella blooms can cause direct poisoning of sardines (Pitcher & 

Calder, 2000) and even mussels (Horstman, 1981), as well as accumulating through the 

food chain to seabirds, seals and whales (Horstman, 1981; Pitcher & Calder, 2000).  

DSP was first reported in 1991 on the west coast and attributed to Dinophysis 

acuminata (Pitcher et al., 1993b), although D. fortii, D. tripos, D. hastata and D. 

rotundata are now also known to occur on both the south and west coasts (Pitcher & 

Calder, 2000). Dinophysis spp. are present intermittently throughout the upwelling 

season, but tend to peak towards the latter part of it. Although they are generally a 

relatively minor component of the phytoplankton community, they are able to 

contaminate shellfish at cell concentrations as low as 2,000 cells l-1 and as a result the 

harvestable toxin limit is often exceeded in shellfish (Pitcher & Calder, 2000).  

Pseudo-nitzschia australis and other, unidentified Pseudo-nitzschia spp. blooms also 

occur in the Southern Benguela (Pitcher & Calder, 2000; Fawcett et al., 2007), however 

no cases of ASP have been reported despite high concentrations of domoic acid found in 

association with the species (Fawcett et al., 2007).  

Ichthyotoxic species include a dinoflagellate initially identified as Gymnodinium 

mikimotoi (= Karenia mikimotoi), although more recently 2 new Karenia species, K. 

cristata sp. Nov. and K. bicuneiformis sp. Nov., were discovered on the South African 

coast (Botes et al., 2004). The ichthyotoxic raphidophyte Heterosigma akashiwo also 

occurs on both the south and west coasts. Blooms of the former were associated with 

extensive mortalities of abalone (30 tonnes) in False Bay in 1989 (Horstman et al., 

1991), whereas the latter has not been associated with faunal mortalities thus far. A 

bloom of K. mikimotoi in False Bay in 1995-96 was also associated with the presence of 

NSP-like toxins in mussels and respiratory disorders and skin irritations in bathers 

(Pitcher & Matthews, 1996). 
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3.1.2.2. Mechanisms of HAB formation 

 

HABs around the South African coast are closely associated with the upwelling 

system, as they are generally restricted to the west of Cape Agulhas (Pitcher & Calder, 

2000). They are particularly frequent north of Cape Columbine, where the broad 

Southern Namaqua shelf favours stratification. This area is also characterised by high 

residence times and retentive, near-surface circulation patterns (Holden, 1985). Blooms 

tend to occur towards the end of the upwelling season (March to April), when reduced 

wind stress and increased thermal stratification create favourable conditions for 

dinoflagellates (Pitcher et al., 1993a; Pitcher & Weeks, 2006). During the latter part of 

the upwelling season, synoptic wind patterns are responsible for short-term 

upwelling/relaxation cycles, which in turn influence community succession and hence 

the presence of HABs (Pitcher & Boyd, 1996; Pitcher et al., 1998).  

The association of HABs with upwelling relaxation in the Benguela is consistent 

with Margalef’s Mandala (Margalef, 1978), whereby the seasonal shift from diatoms in 

spring to dinoflagellates in summer occurs along a gradient of decreasing turbulence and 

nutrient availability. However, in the subsequent revision of the Mandala, the “red tide 

sequence” occurred under low turbulence/high nutrient conditions, a situation perceived 

as an “anomaly” (Margalef et al., 1979). This model is therefore not applicable to 

upwelling systems, where most of the nutrient input is from upwelling, and is perhaps 

more suited to coastal lagoons and embayments that are affected by high nutrient inputs 

from the adjacent land.  

The physical mechanisms of HAB formation in the Benguela are now relatively well 

understood. Blooms are thought to originate in the region of the thermocline in stratified 

offshore waters and appear as surface blooms in the vicinity of the upwelling front, 

where the thermocline outcrops. Wind relaxation or reversal then leads to onshore 

advection and accumulation of the bloom (Pitcher et al., 1998). These blooms can then 

be transported poleward by an inshore counter-current, resulting in a latitudinal variation 

in the timing of HABs (Probyn et al., 2000). 

In the Benguela and other upwelling systems, diatoms tend to dominate following a 

pulse of upwelling (or in the vicinity of an upwelling centre), whereas dinoflagellates 

increase in abundance during wind relaxation (or downstream of the upwelling centre), 

as new nutrients become depleted. In these situations, regenerated nitrogen becomes an 

important source for phytoplankton growth (Hutchings et al., 1995), therefore the ability 
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to utilise recycled forms of nitrogen more efficiently than diatoms would give HAB 

species a competitive advantage. This is the case at the end of the upwelling season in 

the Iberian upwelling system, with mixed red tide populations that are sustained by 

NH4
+ uptake (Rios et al., 1995).  

Time-series data indicate a high degree of interannual variability in the dominance of 

particular HAB species. This variability makes it very difficult to predict HABs at the 

species level (which is particularly important in terms of toxic outbreaks), since HABs 

may be stochastic events, i.e. a result of a species being present in the right place at the 

right time (Pitcher & Weeks, 2006). Furthermore, HAB species known to bloom in the 

Benguela belong to most of the functional groups identified by Smayda & Reynolds 

(2001), indicating that the Benguela comprises a wide range of habitat types, including 

fronts, coastal currents and upwelling/relaxation events, and that prediction even at the 

level of life forms is very challenging (Pitcher & Nelson, 2006). 

 

3.1.3. Aims and objectives 

 

The aim of this study was to test the hypothesis that “the success of HAB species in 

the Southern Benguela at the end of the upwelling season is attributable to their ability to 

utilise alternative sources of nitrogen or to their high affinity for NO3 under low NO3 

conditions”. 

The hypothesis was tested during 3-week field surveys in March 2006, March/April 

2007 and March 2008 off Lambert’s Bay on the west coast of South Africa, with the 

specific objectives: 

- to characterise short-term and interannual variations in hydrographic and 

nutrient conditions at the end of the upwelling season,  

- to characterise short-term and interannual variations in phytoplankton 

community structure and the occurrence of HAB species, 

- to link these with variations in nitrogen uptake rates (NO3, NH4 and urea) and 

nitrogen uptake kinetics and identify possible nitrogen nutrition strategies of 

HAB species. 
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3.2. Results 

 

3.2.1. Wind 

 

In 2006, winds were south-easterly prior to the survey, then south-westerly during 

most of the sampling period, with the exception of 18-19 March when wind direction 

switched to north-easterly (Figure 3.4a,b). Eastward components ranged from -3.5 to 3.3 

m s-1 and northward components from -2.1 to 4.8 m s-1. 

In 2007, eastward components were very weak (≤1.3 m s-1), with the exception of 19 

March (-3.4 m s-1), therefore winds alternated between southerly (16-18, 24-27 March) 

and northerly (19-23 March, 28 March-4 April), switching on a daily basis between 5 

and 11 April (Figure 3.4c, d). Northward components ranged from -2.5 to 3.0 m s-1. 

In 2008, wind direction was predominantly south-westerly, with maximum eastward 

and northward components of 2.9 and 4.2 m s-1, respectively (Figure 3.4e,f). Wind 

direction changed only for brief periods, including 5 March (south-easterly), 9 March 

(north-westerly), 16-17 March (north-easterly), 19 and 24 March (north-westerly). On 

these occasions, negative eastward and northward components reached -2.3 and -1.2 m  

s-1, respectively. 

 
3.2.2. Hydrography 

 

3.2.2.1.  Temperature 

 

Temperatures in all years fluctuated as cold upwelling pulses alternated with periods 

of surface warming and stratification. In 2006, the sampling period was characterised on 

3 occasions by surface warming (to 14-15 ºC), with a thermocline apparent at 5-10 m 

depth (Figure 3.5a) and these periods generally corresponded to northerly or weak 

southerly winds. In between these periods, upwelling pulses introduced colder (11-12 

ºC) water to the surface and the water column was well mixed. These upwelling events 

were sometimes concurrent with stronger southerly winds (e.g. 21 Mach 2006, 26 March 

2007, 14-15 March 2008, Table 3.1), although this was not always the case and the time-

lag between changes in wind direction and temperature were not always equivalent (e.g. 

21, 29 March 2007, 18-22 March 2008, Table 3.1).  
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In 2007, recently upwelled water (~11°C) was present at the surface at the start of 

the survey. During the period of northerly winds that ensued (until 23 March), surface 

temperatures warmed to 13.8 °C before wind reversal caused another pulse of upwelling 

to decrease surface temperatures to 11.0 °C (Figure 3.5b). Northerly winds then 

prevailed for most of the remaining period and the water column became strongly 

stratified with surface temperatures increasing from 11.8 to 16.8 °C over ~8 days and 

remaining between 16 and 17 °C thereafter. The warm surface layer was deeper than in 

2006, with the thermocline observed at ~15-20 m.  

In 2008, a period of stratification was observed between 7 and 12 March, with a 

shallow thermocline at ~5 m and surface temperatures reaching 17 °C (Figure 3.5c). A 

4-day period of upwelling was then observed, after which a thermocline began to 

develop (17 March) and surface temperatures warmed to 13 °C by 21 March and to 15 

°C by 25 March.     
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Figure 3.4. Daily westerly and southerly wind components in (a, b) 2006, (c, d) 2007 and (e, f) 2008. 
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Figure 3.5. Temperature contour plots obtained from daily CTD casts in (a) 2006, (b) 2007 and (c) 
2008. 
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Year Date
Southerly wind 

component (m s
-1

)

Surface 

temp (°C)

Phyto 

cluster
ρ(NO3

-
) ƒ-ratio

2006 08-Mar 2.92 12.97 VII 0.160 0.81
09-Mar 2.26 12.39 VII 0.329 0.83
10-Mar 2.10 11.84 VII 0.109 0.84
11-Mar 2.23 12.54 VII 0.403 0.83
12-Mar 2.62 12.87 VII 0.091 0.83
13-Mar 1.96 12.68 VII 0.111 0.86
15-Mar 0.61 13.11 VII 0.016 0.95
16-Mar 3.57 12.74 VII 0.030 0.78
17-Mar 1.78 11.38 VII 0.337 0.84
19-Mar 2.93 13.82 VII 0.017 0.82
20-Mar 4.46 12.66 VII 0.314 0.73
21-Mar 4.45 11.35 VII 0.206 0.71
22-Mar 3.78 10.78 VII 0.296 0.73

2007 21-Mar -1.54 11.17 II 0.609 0.87
22-Mar -2.29 13.08 VI 0.250 0.60
23-Mar -0.41 13.80 VI 0.045 0.28
24-Mar 2.40 13.14 VI 0.054 0.20
25-Mar 2.43 13.39 VI 0.086 0.22
26-Mar 3.04 11.69 VI 0.013 0.21
28-Mar -0.95 11.80 II 0.008 0.24
29-Mar 1.77 13.44 VI 0.103 0.27
30-Mar -1.16 14.17 VI 0.030 0.10
01-Apr -0.52 15.45 VII 0.028 0.10
04-Apr -0.19 16.03 I 0.008 0.06
05-Apr 1.65 16.79 I 0.007 0.06
06-Apr -0.24 15.93 VII 0.040 0.29
07-Apr 1.16 17.15 VII 0.023 0.12
08-Apr -0.89 15.77 I 0.009 0.08
09-Apr 0.27 16.40 I 0.013 0.08
10-Apr -2.49 16.41 I 0.013 0.11

2008 05-Mar 3.25 13.52 VII 0.160 0.48
06-Mar 0.95 12.84 VII 0.150 0.60
07-Mar 1.75 14.85 VII 0.137 0.45
09-Mar -1.09 15.82 VII 0.002 0.02
10-Mar 0.35 16.24 n/a 0.001 0.02
11-Mar 3.23 17.08 n/a 0.001 0.01
12-Mar 4.19 14.02 VII 0.024 0.22
13-Mar 3.46 12.21 III 0.007 0.14
14-Mar 3.91 11.23 III 0.003 0.17
15-Mar 3.53 10.33 n/a 0.002 0.25
16-Mar 2.62 10.30 III 0.003 0.24
18-Mar -1.21 11.15 IV 0.100 0.67
19-Mar -0.40 11.91 IV 0.093 0.59
20-Mar 2.76 12.47 IV 0.141 0.68
21-Mar 3.12 13.10 IV 0.177 0.65
22-Mar 0.38 12.66 IV 0.183 0.55
24-Mar -0.79 13.70 V 0.004 0.04
25-Mar 1.65 14.89 n/a 0.004 0.04  

Table 3.1. Time-series of temperature, southerly wind component, phytoplankton cluster, ρ(NO3-) 
and f-ratio in all 3 years.  
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3.2.2.2. Salinity 

 

In 2006, salinity was relatively isohaline throughout the water column, with 

maximum vertical differences of <0.2 (Figure 3.6a). Salinity was generally lowest at the 

bottom (34.53 to 34.75) and highest in the upper mixed layer (top 10-20 m), sometimes 

displaying a subsurface maximum. Maxima were generally 34.75-34.8, although on 19 

March it was only 34.53. On 19, 22 and 23 March, salinity increased with depth, 

displaying a maximum at the bottom. 

In 2007, a subsurface maximum was observed between 10 and 20 m from 20 to 31 

March (Figure 3.6b), reaching higher values than in 2006 (34.89 to 35.54). Minimum 

concentrations were measured at the surface and at the bottom, ranging from 34.43 to 

34.69 and vertical differences ranged from 0.19 to 0.88. From 1 to 11 April, salinities 

were lower and relatively isohaline, with vertical differences ranging from 0.05 to 0.20. 

In 2008, much larger variations in salinity were observed, particularly on 5-8, 10-14, 

20, 22 and 24-25 March, when highest salinities (~34.75-35.26) were measured in the 

top 20-30 m. On these occasions, a halocline was generally observed, below which 

salinities remained fairly constant (~34.8). On 4, 9, 15-19, 21 and 23 March, the water 

column was more or less isohaline, with vertical differences ranging from 0.02 to 0.14 

(Figure 3.6c).    

 

 
Figure 3.6. Examples of typical salinity profiles obtained from CTD casts in (a) 2006, (b) 2007 and 
(c) 2008. 
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3.2.3. Dissolved oxygen 

 

DO saturations were highest (>100 %, 6-9 ml l-1) in the warm, surface layer during 

periods of stratification, whereas concentrations in bottom waters were often <40 % and 

<1 ml l-1. During the upwelling periods, low DO water was brought up to the surface, 

and DO saturation was < 100 % throughout the water column.  

In 2006, DOSat decreased gradually with depth between 7 and 11 March, but a sharp 

gradient was observed at ~10 m thereafter, associated with the thermocline (Figure 

3.7a). Below the thermocline, saturations were very low (≤ 20 %). At the end of the 

survey (21-23 March), when strong upwelling occurred, DO saturation was <40 % 

throughout the water column. 

In 2007, higher saturations were observed (up to 160 % at the surface and up to 50 % 

at the bottom), consistent with the higher temperatures measured relative to 2006. 

Supersaturated waters were observed down to ~20 m, due to the deeper thermocline in 

this year (Figure 3.7b). 

In 2008, even higher saturations (up to 180 %) were measured at the surface, 

although these declined rapidly with depth, due to the presence of a very shallow 

thermocline (5 m) (Figure 3.7c). Bottom DO saturation was similar to 2006 (≤ 20 %). 

DO saturations were significantly correlated with temperature in all years (Table 3.2). 
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Figure 3.7. Contour plots of dissolved oxygen saturations obtained from daily CTD casts in (a) 2006, 
(b) 2007 and (c) 2008. 
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3.2.4.  Nutrients 

 

Nitrate concentrations increased with depth, with a particularly steep gradient during 

the stratified periods when nutrients were depleted in the surface. During the upwelling 

periods, higher concentrations were reached at the surface and the water column was 

more homogeneous (Figure 3.8). Surface concentrations ranged from ~0.05 µmol l-1 in 

all years, to 25.1, 23.2 and 29.3 µmol l-1 in 2006, 2007 and 2008, respectively. A very 

long period (13 days) of NO3
-
 depletion was observed in 2007, whereas in the other 

years nutrients were replenished approximately every 4 days. As a result, NO3
-
 

concentrations measured at all 5 depths were significantly lower in 2007 relative to the 

other years (Student’s t-test, p < 0.001). 

 

 
Figure 3.8. Contour plots of NO3

- concentrations measured daily at 5 depths in (a) 2006, (b) 2007 
and (c) 2008. Symbols indicate data points. N.B: samples taken only down to 20 m depth. 
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Nitrate concentrations displayed a significant negative linear correlation with 

temperature in 2006, when the temperature range was ~9 to 14 °C. In 2007 and 2008 the 

temperature range was ~10-17 °C and NO3
- was generally depleted at 14 °C, resulting in 

an overall exponential decrease with temperature (Figure 3.9). In 2008, some samples 

exhibited a departure from this relationship between 11 and 13 °C, when unusually low 

concentrations were measured. 
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Figure 3.9. Relationships between NO3

- and temperature and between total DIN and temperature in 
(a) 2006, (b) 2007 and (c) 2008. Parameters derived from linear regressions are shown in Table 3.1. 
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Variable Relationship a b r n Year

DIN vs temp linear -8.57** 115.8** 0.85 84 2006

linear -4.31** 67.2** 0.86 115 2007

exponential 1326* -0.38** 0.83 110 2008
NO3

- vs temp linear -8.6** 115.3** 0.85 84 2006

exponential 12368** -0.59** 0.94 115 2007

exponential 2177* -0.42** 0.85 110 2008
PO4

3- vs temp linear -0.66** 9.38** 0.87 84 2006

exponential 126.7** -0.38** 0.91 115 2007

exponential 48.3** -0.29** 0.81 110 2008

Si vs temp linear -13.43** 175.8** 0.81 84 2006

exponential 28075 -0.67** 0.85 115 2007

exponential 2673 -0.43** 0.71 104 2008

DO vs temp linear 37.03** -362.4** 0.97 2757 2006

linear 16.17** -124.3** 0.74 1798 2007

linear 27.40** -256.9** 0.91 3840 2008
DIN vs PO4

3- linear 11.82** -3.31* 0.89 84 2006

linear 12.20** -3.21** 0.97 115 2007

linear 11.94** -2.25* 0.93 110 2008
NO3

- vs PO4
3- linear 11.79** -4.13** 0.89 84 2006

linear 11.41** -4.09** 0.97 115 2007

linear 12.07** -3.56** 0.92 110 2008

DIN vs Si linear 0.53** 6.51** 0.87 84 2006

linear 0.89** 2.72** 0.87 115 2007

linear 0.56** 7.50** 0.83 104 2008
NO3

- vs Si linear 0.53** 5.63** 0.87 84 2006

linear 0.85** 1.25* 0.89 115 2007

linear 0.58** 5.96** 0.84 104 2008  
Table 3.2. Parameters derived from regression analysis of nutrients versus temperature, DO (% 
saturation, obtained from CTD) versus temperature and between nutrients in all years. Linear 
relationships are described by the equation y = a * x + b and exponential relationships by the 
equation y = a * e-bx. Significance of parameters and shown by * p < 0.05 or ** p < 0.01. r is the 
correlation coefficient (p < 0.01 in all cases) and n is number of measurements.  
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Phosphate concentrations followed the same patterns as NO3
-, with lowest 

concentrations at the surface and maximum concentrations at depth (Figure 3.10). 

Surface concentrations ranged from ~0.2 to 3.0 µmol l-1 in all years, whereas deep 

concentrations ranged from 1.7 to 3.2 µmol l-1 in 2006, from 0.7 to 2.6 µmol l-1 in 2007 

and from 2.0 to 3.2 µmol l-1 in 2008. PO4
3- concentrations were also significantly lower 

in 2007 relative to 2006 and 2008 (Student’s t-test, p < 0.001). 

Phosphate was significantly correlated with temperature in all years (Table 3.2, 

Figure 3.11a). As with NO3
-, the relationship was linear in 2006, but exponential in 2007 

and 2008. Phosphate also displayed a significant linear correlation with both NO3
- and 

total DIN (Table 3.2, Figure 3.11b). The regression coefficients indicated NO3
-:PO4

3- 

ratios of 11.8-12.2 and slightly lower DIN:PO4
3- ratios of 11.4-12.1 in all years. 

However, individually calculated NO3
-:PO4

3- ratios ranged from <1 to 14.7 (all years, all 

depths), generally being lowest at the surface and increasing with depth (data not 

shown). Ratios dropped to <1 when NO3
- and PO4

3- became depleted and increased 

again when nutrient concentrations increased following pulses of upwelling.  

 

 
Figure 3.10. Contour plots of PO4

3- concentrations measured daily at 5 depths in (a) 2006, (b) 2007 
and (c) 2008. Symbols indicate data points. N.B: samples taken only down to 20 m depth. 
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Figure 3.11. Relationships between (a) PO4

3- and temperature and (b) total DIN and PO4
3- in all 3 

years. 
 

 

Si followed the same distribution as NO3
- and PO4

3-, although Si concentrations 

reached higher maxima relative to NO3
- (Figure 3.12) Minimum surface concentrations 

were ≤ 0.5 µmol l-1 in all years, whereas maximum surface concentrations were lower in 

2007 (30.6 µmol l-1) relative to the other years (49.0 and 45.7 µmol l-1 in 2006 and 2008, 

respectively). Si concentrations were significantly lower in 2007 relative to 2006 and 

2008 (Mann-Whitney U-test, p < 0.05). 

Si concentrations displayed a significant linear correlation with temperature in 2006 

and significant exponential relationships with temperature in 2007 and 2008 (Table 3.2, 

Figure 3.13a). They were also significantly correlated with NO3
- and total DIN, with 

similar NO3
-:Si and DIN:Si ratios in 2006 and 2008 (0.53-0.58), but significantly higher 

ratios (Student’s t-test, p < 0.05) in 2007 (0.85-0.89) (Table 3.2, Figure 3.13b). 
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Figure 3.12. Contours of Si concentrations measured daily at 5 depths in (a) 2006, (b) 2007 and (c) 
2008. Symbols indicate data points. N.B: samples taken only down to 20 m depth. 
 
 
 

 
Figure 3.13. Relationships between (a) Si and temperature and (b) total DIN and Si in all 3 years. 
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The vertical distribution of NH4
+ varied considerably with time (Figure 3.14), 

sometimes displaying a homogeneous distribution (e.g. 15-18 March 2006, 20-22 March 

2007, 18-20 March 2008), sometimes a decrease with depth (21-22 March 2006, 26-28 

March 2007, 11-15 March 2008) and sometimes an increase with depth (3-11 March 

2007).  

In 2006, NH4
+ concentrations ranged from 0.08 to 1.49 µmol N l-1 at the surface and 

from 0.13 to 1.74 µmol N l-1 at the subsurface incubation depth (hereafter “subsurface”) 

(Figure 3.14a,d). In 2007, concentrations ranged from 0.07 to 4.16 µmol N l-1 at the 

surface and from 0.05 to 4.41 µmol N l-1 in the subsurface (Figure 3.14b,e). In 2008, 

they ranged from 0.07 to 4.75 µmol N l-1 at the surface and from 0.22 to 5.02 µmol N l-1 

in the subsurface (Figure 3.14c,f). 

Concentrations were significantly higher in the subsurface relative to the surface in 

2006 (paired t-test, n = 14, p < 0.05), however the difference was not significant in 2007 

or in 2008. Furthermore, NH4
+ concentrations at all depths were significantly higher in 

2007 relative to the other 2 years (Mann-Whitney U-test, p < 0.05).  

 

 
Figure 3.14. Contour plots of NH4

+ concentrations measured daily at 5 depths in (a) 2006, (b) 2007 
and (c) 2008.  
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In 2006, urea concentrations ranged from 0.17 to 0.95 µmol N l-1 (mean 0.42 ± 0.06) 

at the surface and from 0.54 to 3.11 µmol N l-1 in the subsurface (mean 1.46 ± 0.20) 

(Figure 3.13a,d). In 2007, they ranged from 0.15 to 1.29 µmol N l-1 (mean 0.53 ± 0.07) 

at the surface and from 0.44 to 3.65 µmol N l-1 (mean 1.34 ± 0.18) in the subsurface 

(Figure 3.13b,e). In 2008, concentrations ranged from 0.24 to 2.60 µmol N l-1 (mean 

0.84 ± 0.12) at the surface and from 0.24 to 1.51 µmol N l-1 (mean 0.77 ± 0.07) in the 

subsurface (Figure 3.13c,f).  

Concentrations in both 2006 and 2007 were significantly higher at the subsurface 

depth than at the surface (paired t-test, p < 0.01, n = 13 in 2006, n = 17 in 2007), 

although they were not significantly different in 2008 (Mann-Whitney U-test, p > 0.05). 

There were no significant differences in urea between years. 
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Figure 3.15.  Concentrations of NO3

-, NH4
+ and urea at the surface in (a) 2006, (b) 2007 and (c) 2008 

and in the subsurface in (d) 2006, (e) 2007 and (f) 2008. 
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3.2.5.  Chl-a 

 

In all years, high chl-a concentrations developed during periods of stratification, 

generally following wind reversal, and usually displayed a maximum at 5-10 m depth, 

although occasionally the maximum was at the surface (e.g. 24 March 2007, 4-5 March 

2008) (Figure 3.16). Surface concentrations ranged from 9.4 to 57.1 µg l-1 (mean 19.4 ± 

3.2 µg l-1) in 2006, from 0.3 to 28.8 µg l-1 (mean 9.7 ± 2.1 µg l-1) in 2007 and from 0.3 to 

82.3 µg l-1 (mean 9.5 ± 3.6 µg l-1) in 2008. In 2006, stratification did not persist for 

longer than 4 days and chl-a concentrations were always >8 µg l-1, whereas in 2007 and 

2008 concentrations dropped occasionally to <1 µg l-1. In April 2007, the persistence of 

warm, stratified conditions led to a decline in chl-a, which remained <5 µg l-1 for the last 

10 days of the survey. Overall, chl-a concentrations were significantly higher in 2006 

relative to both 2007 and 2008 (Student’s t-test, p<0.001).  

 

 
Figure 3.16. Contour plots of chl-a concentrations obtained from calibrated daily CTD casts in (a) 
2006, (b) 2007 and (c) 2008. N.B: different scale bars apply for (a) and (b,c). 
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3.2.6. Phytoplankton community structure 

 

3.2.6.1. Cell concentrations 

 

In 2006, diatoms were always dominant, representing 96-100% total phytoplankton 

cells (Figure 3.17a). The dominant diatom species were Pseudo-nitzschia spp. (up to 85 

% and 13.1 x 106 cells l-1) and Chaetoceros spp. (up to 41 % and 4.8 x 106 cells l-1) 

(Figure 3.17d). Dinoflagellates never exceeded 4 % total cell concentration (3.7 x 105 

cells l-1) and were composed mainly of Prorocentrum spp. (P. micans & P. triestinum) 

and Scrippsiella trochoidea (Figure 3.17g).  

In 2007, dinoflagellates dominated the community on several occasions (65 % on 21 

March, 100 % on 4-5 and 8-10 April), while diatoms dominated during other periods 

(71-100 %, 20, 22-25 March, 29 March-3 April & 6-7 April) (Figure 3.17b). When 

diatoms were dominant the main species present were Skeletonema costatum (28-85 %, 

up to 20.0 x 106 cells l-1), Chaetoceros spp. (8-93 %, up to 9.3 x 106 cells l-1) and 

Pseudo-nitzschia spp. (2-30 %, up to 1.2 x 106 cells l-1) (Figure 3.17e). The PSP-

producing dinoflagellate Alexandrium catenella dominated at the start of the survey (48 

% cell concentration, 77 % carbon biomass on 21 March), with cell concentrations 

reaching 4.5 x 105 cells l-1. On 4-5 and 9-10 April two Gymnodinium species dominated, 

representing together 92-100 % total cell numbers (1.1 x 106 cells l-1), while on 8 April 

the community was co-dominated by the DSP producer Dinophysis acuminata (44%, 3.1 

x 104 cells l-1) and a small (<12 µm) Gymnodinium species (54 %, 3.7 x 104 cells l-1) 

(Figure 3.17h), although in terms of biomass D. acuminata was 91% dominant. 

In 2008, diatoms were most often numerically dominant, although dinoflagellates 

were dominant on several occasions, representing up to 95 % of total cell numbers 

(Figure 3.17c). The main diatom species were Chaetoceros spp. (mainly between 4 and 

9 March, representing 42 to 83 % of total cell numbers, with up to 6.9 x 106 cells l-1), 

Pseudo-nitzschia spp. (up to 67 % and 2.3 x 106 cells l-1) and Minidiscus trioculatus (33 

to 94 % betwen 18 and 22 March, representing up to 4.9 x 106 cells l-1) (Figure 3.17f). 

The main dinoflagellate species were Dinophysis acuminata (up to 1.8 x 105 cells l-1, but 

generally a small proportion of the phytoplankton community) and Gyrodinium zeta 

(particularly at the start of the survey, with 8.2 x 106 cells l-1, representing 50 % of the 

cell numbers) (Figure 3.17i). 
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Figure 3.17. Total cell concentrations of diatoms and dinoflagellates in (a) 2006, (b) 2007 and (c) 
2008 and concentrations of the most abundant species of diatoms in (d) 2006, (e) 2007 and (f) 2008 
and of dinoflagellates in (g) 2006, (h) 2007 and (i) 2008. Black symbols represent Pseudo-nitzschia 
spp. and open circles represent Chaetoceros spp. in d, e and f; black symbols represent Dinophysis 

acuminata in h and i. 
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3.2.6.2. Cluster analysis 

 
To assess whether there were similarities between phytoplankton communities in all 

years, cluster analyses were performed on the 2006, 2007 and 2008 data combined. The 

stations were divided into 7 clusters at the 50 % similarity level (stations that clustered 

separately were omitted) (Figure 3.18). The phytoplankton species responsible for 

between-station similarities within these clusters are shown in Table 3.3. All the 2006 

stations were grouped together into Cluster VII, whereas 2007 stations were divided into 

Clusters I, II, VI and VII and 2008 stations into Clusters III, IV, V and VII.  

The occurrence of each Cluster is shown in Table 3.1 together with southerly wind 

component and surface temperature. Cluster I was the only one entirely dominated by 

dinoflagellates (Gymnodinium spp. and Dinophysis acuminata), whereas Clusters IV, VI 

and VII were dominated by diatoms and Clusters II, III and V were mixtures of diatoms 

and dinoflagellates. Cluster I displayed the lowest Shannon diversity index (H’) and very 

low chl-a and occurred in warm, nutrient-depleted waters characterised by low DIN:P 

and DIN:Si ratios. Cluster II was characterised by the presence of A. catenella and 

Skeletonema costatum and had the highest average chl-a biomass and H’ value. Cluster 

III was co-dominated by Scrippsiella trochoidea, Pseudo-nitzschia spp. and Gyrodinium 

spp. and displayed very low chl-a, although a high H’, occurring in cold, nutrient-replete 

waters with high DIN:P and DIN:Si ratios. Cluster IV consisted of stations immediately 

following those of Cluster III, occurring under similar conditions, with slightly warmer 

temperatures and lower nutrients, and was dominated by Minidiscus trioculatus. Cluster 

V was co-dominated by Coscinodiscus spp. and Gyrodinium zeta and was associated 

with low nutrients and nutrient ratios and moderately high chl-a. Clusters VI and VII 

were co-dominated by Chaetoceros spp. and Pseudo-nitzschia spp. (with Skeletonema 

costatum also present in Cluster VI) and occurred under a wide range of temperature and 

nutrient conditions. 



 

 
Figure 3.18. Dendrogram derived from calculations of Bray-Curtis similarity indices between stations in all years combined, using the statistical package PRIMER. 
Clusters formed at the 50 % similarity level are labelled (I-VII) as in the text.



 

Cluster Dates Species
% contribution 

to similarity
% diatoms chl-a H' Temp NO3 PO4 Si DIN:P DIN:Si

I 4,5, 8-10 Apr 07 Gymnodinium spp. 93.1 0.0 (0.0) 1.5 (0.4) 0.3 (0.1) 16.4 (0.2) 0.2 (0.1) 0.3 (0.0) 3.5 (0.3) 2.6 (0.6) 0.2 (0.0)
D. acuminata 6.2

II 20,21,28 Mar 07 S. costatum 31.6 60.0 (12.4) 13.3 (7.2) 1.5 (0.2) 12.1 (0.6) 16.5 (3.6) 2.1 (0.5) 22.3 (5.8) 8.5 (0.4) 0.8 (0.1)
A. catenella 21.3

Thalassiosira spp. 16.2
S. trochoidea 11.5

III 13,14,16,17 Mar 08 Scrippsiella trochoidea 39.0 35.7 (16.4) 1.3 (0.5) 1.2 (0.3) 11.4 (0.4) 25.5 (2.5) 2.5 (0.2) 35.5 (5.9) 11.4 (0.2) 0.9 (0.1)
Pseudo-nitzschia spp. 16.7

Gyrodinium spp. 14.4
Coscinodiscus 9.7
D. acuminata 9.2

IV 18-22 Mar 08 M. trioculatus 52.5 79.2 (13.7) 10.0 (1.3) 0.8 (0.2) 12.3 (0.4) 19.3 (2.2) 1.8 (0.2) 32.8 (2.8) 11.0 (0.2) 0.6 (0.0)
Coscinodiscus spp. 11.0
Chaetoceros spp. 9.4

Pseudo-nitzschia spp. 9.3
V 23,24 Mar 08 Coscinodiscus spp. 39.1 78.6 (14.1) 9.1 (2.1) 1.3 (0.3) 13.8 (0.1) 0.1 (0.0) 0.3 (0.1) 0.7 (0.1) 1.5 (1.1) 0.6 (0.3)

G. zeta 14.5
Pseudo-nitzschia spp. 11.3

Chaetoceros spp. 10.2
Leptocylindrus 7.7

VI 22-27, 29-31 Mar, S. costatum 29.2 97.4 (0.8) 14.3 (3.1) 1.1 (0.1) 13.8 (0.4) 4.9 (2.5) 0.9 (0.2) 4.6 (2.6) 4.1 (1.3) 1.8 (0.3)
2-3 Apr 07 Chaetoceros spp. 28.6

Pseudo-nitzschia spp. 18.5
Bacteriastrum spp. 11.0

VII 7-23 Mar 06, 1,6,7 Apr 07 Pseudo-nitzschia spp. 47.7 94.4 (2.1) 17.6 (3.4) 0.7 (0.1) 13.5 (0.3) 7.5 (1.6) 1.2 (0.1) 11.2 (2.5) 5.1 (0.8) 1.2 (0.3)
 4-9,12 Mar 08 Chaetoceros spp. 47.0  

Table 3.3. Main species contributions to total similarity (up to 80 % cumulative percentage, with a minimum of 2 species shown) within clusters defined at the 50 % 
similarity level using the statistical package PRIMER and mean (standard error) % diatoms, chl-a, Shannon diversity index (H’), temperature, NO3, PO4 and Si 
concentrations and DIN:P and DIN:Si ratios for each cluster. 



3.2.7. Nitrogen uptake and regeneration 

 

3.2.7.1. Standard uptake 

 

Rates of nitrogen uptake generally followed the upwelling/downwelling cycles, 

whereby absolute nitrogen uptake ρ(N) was dominated by ρ(NO3
-) during active 

upwelling (e.g. 8-13, 17, 20-22 March 2006, 21 March 2007, 18-20 March 2008, Table 

3.1), and by ρ(NH4
+) and ρ(urea) during stratified, NO3

--depleted periods (e.g. 15-16, 19 

March 2006, 30 March-10 April 2007, 9-12 March 2008, Table 3.1). However, this was 

not always the case (e.g. 26 March 2007, 14-16 March 2008, Table 3.1).  

In 2006, ρ(NO3
-) at the surface (0.02-0.40 µmol N l-1 h-1) was not significantly 

different from the subsurface (0.01-0.55 µmol N l-1 h-1). Ammonium and urea uptake 

were also not significantly different between surface and subsurface, with ρ(NH4
+) 

ranging from 0.04 to 0.15 µmol N l-1 h-1 at the surface and from 0.03 to 0.21 µmol N l-1 

h-1 in the subsurface and ρ(urea) from 0.01 to 0.06 µmol N l-1 h-1 at the surface and from 

0.01 to 0.11 µmol N l-1 h-1 in the subsurface (Figure 3.19a,d). Overall, ρ(NO3
-) was 

significantly higher than ρ(NH4
+), which was significantly higher than ρ(urea) at both 

depths (Wilcoxon’s test, p < 0.05).  

In 2007, ρ(NO3
-) was particularly high for the Alexandrium catenella-dominated 

assemblage on 21 March (0.61 µmol N l-1 h-1 at 0 m, 0.53 µmol N l-1 h-1 at 5 m) but was 

generally low for the rest of the survey, with similar values at both depths (0.01-0.25 

µmol N l-1 h-1 at 0 m, <0.01 to 0.29 µmol N l-1 h-1 at 5 m) (Figure 3.19b,e). Ammonium 

uptake was relatively high, ranging from 0.02 to 0.19 µmol N l-1 h-1 at 0 m and from 0.02 

to 0.25 µmol N l-1 h-1 at 5 m. Urea uptake displayed the lowest rates, ranging from <0.01 

to 0.08 µmol N l-1 h-1 at 0 m and from <0.01 to 0.10 µmol N l-1 h-1 at 5 m, where it was 

significantly higher (Wilcoxon’s test, p < 0.05). Overall, ρ(NH4
+) was significantly 

higher than both ρ(NO3
-) and ρ(urea) at both depths (Wilcoxon’s test, p < 0.05).  

In 2008, ρ(NO3
-) was relatively low at the surface, ranging from <0.01 to 0.18 µmol 

N l-1 h-1, but higher in the subsurface, ranging from <0.01 to 0.57 µmol N l-1 h-1 (Figure 

3.19c,f). Ammonium uptake ranged from <0.01 to 0.14 µmol N l-1 h-1 at the surface and 

from 0.01 to 0.20 µmol N l-1 h-1 in the subsurface. Both ρ(NO3
-) and ρ(NH4

+) were 

significantly higher in the subsurface relative to the surface (Wilcoxon’s test, p < 0.01). 

Urea uptake was significantly lower than both ρ(NO3
-) and ρ(NH4

+) at both depths 

(Wilcoxon’s test, p < 0.05), ranging from <0.01 to 0.06 µmol N l-1 h-1 at the surface and 
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from <0.01 to 0.14 µmol N l-1 h-1 in the subsurface, where it was significantly higher 

(Wilcoxon’s test, p < 0.05). Nitrate uptake was significantly lower than in 2006 

(Student’s t-test, p < 0.01), but higher than in 2007 (Mann-Whitney U-test, p < 0.05), 

whereas ρ(NH4
+) was significantly lower than in 2007 (Student’s t-test, p < 0.01).  

The alternating dominance of new (NO3
-) and regenerated nitrogen (NH4

+
 and urea) 

uptake during the upwelling/relaxation cycles was reflected in the highly variable ƒ-

ratios of 0.11-0.85 at the surface and 0.10-0.81 in the subsurface in 2006 (Figure 3.19g), 

0.06-0.87 at 0 m and 0.03-0.79 at 5 m in 2007 (Figure 3.19h) and 0.01-0.68 at the 

surface and 0.03-0.76 in the subsurface in 2008 (Figure 3.19i). Overall, ƒ-ratios were 

significantly higher in 2006 than in 2007 and 2008 (Student’s t-test, p < 0.01).  
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Figure 3.19. Surface uptake rates of NO3

-, NH4
+ and urea in (a) 2006, (b) 2007 and (c) 2008; 

subsurface uptake rates in (d) 2006, (e) 2007 and (f) 2008; ƒ-ratios at both depths in (g) 2006, (h) 
2007 and (i) 2008. Arrows indicate upwelling events. 

 

Both ρ(NO3
-) and the ƒ-ratio displayed significant linear correlations with wind 

(previous day northward component) at both depths in 2006 (r2 = 0.54, n = 26, p < 0.01). 
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These relationships were not observed in 2007 or 2008 due to variable time lags between 

changes in wind direction and in nitrogen uptake. However, the correlation was 

significant for all 3 years combined, after removal of 21-22 March 2007, which 

represented the unusual combination of high ƒ-ratios and northerly winds (Figure 3.20).  

 

 
Figure 3.20. (a) ρ(NO3

-) and (b) ƒ-ratio at both incubation depths versus northward wind 
component in 2006, 2007 and 2008. Significant linear correlations (p < 0.01) were found for all data 
combined (but not for 2007 or 2008 alone). Equations are: y = 0.022 x + 0.072 (r2 = 0.09) in (a) and y 
= 0.07 x + 0.24 (r2 = 0.20) in (b). 
 

Nitrate uptake was highest in Clusters II, IV and VII, whereas ρ(NH4
+) was highest 

in Clusters I and VI (Table 3.4). Highest ƒ-ratios were measured in Clusters II, IV and 

VII, whereas the lowest ratios (<0.1) were measured in Clusters I and V (Table 3.4). 

Cluster Dates Species ρ(NO3
-
) ρ(NH4

+
) ƒ-ratio

I 4,5, 8-10 Apr 07 Gymnodinium , D. acuminata 0.01 (0.0) 0.10 (0.01) 0.08 (0.01)
II 20,21,28 Mar 07 S. costatum, A. catenella, 0.31 (0.25) 0.04 (0.01) 0.55 (0.26)

Thalassiosira, S. trochoidea

III 13,14,16,17 Mar 08 S. trochoidea, Pseudo-nitzschia, 0.00 (0.00) 0.02 (0.01) 0.18 (0.02)
Gyrodinium, Coscinodiscus,

D. acuminata

IV 18-22 Mar 08 M. trioculatus, Coscinodiscus 0.14 (0.02) 0.06 (0.01) 0.63 (0.03)
Chaetoceros, Pseudo-nitzschia

V 23,24 Mar 08 Coscinodiscus spp., G. zeta 0.00 0.07 0.04
Pseudo-nitzschia, Chaetoceros,

Leptocylindrus

VI 22-27, 29-31 Mar, S. costatum, Chaetoceros 0.08 (0.02) 0.15 (0.02) 0.27 (0.05)
2-3 Apr 07 Pseudo-nitzschia, Bacteriastrum

VII 7-23 Mar 06, 1,6,7 Apr 07 Pseudo-nitzschia, Chaetoceros 0.14 (0.02) 0.09 (0.01) 0.43 (0.05)
 4-9,12 Mar 08  

Table 3.4. Mean (standard error) ρ(NO3
-), ρ(NH4

+) (µmol N l-1 h-1) and ƒ-ratios for each cluster as 
defined in Table 3.2.  
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3.2.7.2. Ammonium regeneration 

 

Regeneration rates r(NH4
+) were highly variable, but displayed no significant 

differences between the surface and subsurface. Rates ranged from 0.03 to 0.33 µmol N 

l-1 h-1 at both depths in 2006, from 0.01 to 0.47 µmol N l-1 h-1 in 2007 and from 0.02 to 

0.33 µmol N l-1 h-1 in 2008. Although r(NH4
+) was on average higher in 2007 (0.18 ± 

0.02 µmol N l-1 h-1) relative to the other years (0.13 ± 0.02 µmol N l-1 h-1 in 2006 and 

0.12 ± 0.01 µmol N l-1 h-1 in 2008), these differences were not statistically significant. 

Ammonium uptake and regeneration rates were significantly correlated in all 3 years 

(n = 22 in 2006, n = 33 in 2007, n = 35 in 2008, p < 0.01), with regression coefficients of 

0.39, 0.48 and 0.60 in 2006, 2007 and 2008, respectively (Figure 3.21). 
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Figure 3.21. Correlations between ρ(NH4

+) and r(NH4
+) in all years (p < 0.01). Equations are:  

2006: y = 0.39 x + 0.05 (r2 = 0.54); 2007: y = 0.48 x + 0.03 (r2 = 0.69); 2008: y = 0.60 x + 0.001 (r2 = 
0.76). 
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3.2.7.3.  Nitrogen uptake kinetics 

 

The Pseudo-nitzschia-dominated assemblage displayed a preference for NH4
+ over 

NO3
- and for NO3

- over urea in terms of its maximum PN-specific uptake rate (νmax), 

with νmax (NH4
+): νmax(NO3

-) and νmax(urea): νmax(NO3
-) ratios of 1.2 and 0.3, 

respectively. The half-saturation constant (Ks) could not be determined for urea, but it 

was similar for NO3
- and NH4

+, resulting in similar α values (Table 3.5a). 

The Alexandrium catenella-dominated assemblage displayed a preference for NO3
-
 

over both forms of recycled nitrogen, with a νmax(NH4
+): νmax(NO3

-) ratio less than 0.9, 

and a νmax(urea):νmax(NO3
-) ratio less than 0.2. Exact ratios could not be determined 

because νmax was a lower limit estimate.  

Dinophysis acuminata was only truly dominant (91 % of total phytoplankton carbon 

biomass) in 2007, whereas in 2008 it only represented 50 % total biomass in Experiment 

4, co-occurring with Coscinodiscus spp. and Polykrikos schwartzii, and 33 % in 

Experiment 5, co-occurring with Gyrodinium spp., Protoperidinium excentricum and P. 

schwartzii. However, the communities in Experiments 3 and 5 displayed very similar 

nitrogen uptake kinetics, with little differences observed in νmax and α between years, the 

greatest discrepancy being 41 % (νmax for urea, higher in 2007). Both assemblages 

showed a very strong preference for NH4
+

 relative to NO3
-
 at both saturating and limiting 

concentrations, with νmax(NH4
+): νmax(NO3

-) ratios of 4.0 and 4.2 and α(NH4
+): α(NO3

-) 

ratios of 4.7 and 5.5. They also exhibited a preference for urea over NO3
-, with 

νmax(urea):νmax(NO3
-) ratios of 1.8 and 1.3 and an α(urea): α(NO3

-) ratio of 2.6 in 2007 

(not determined in 2008). The community in Experiment 4, however, displayed 7-fold 

higher νmax(NO3
-), but 2-fold lower νmax(NH4

+) and 1.5 to 2-fold lower νmax(urea) 

relative to Experiments 3 and 5. In contrast to the others, this community displayed a 

strong preference for NO3
- over NH4

+
 in terms of νmax, with a νmax(NH4

+):νmax(NO3
-) 

ratio of 0.3, although the α(NH4
+):α(NO3

-) ratio of 4.0 indicated that at limiting 

concentrations NH4
+ was preferred. Since the experiment was conducted at high NO3

-
 

concentrations, the comparison of νmax is more relevant. The absence of measurements 

below 15 µmol l-1 could, for example, mask biphasic kinetics with a first saturation 

plateau at lower concentrations. 

An inhibition kinetics experiment carried out on the phytoplankton assemblage in 

Experiment 5 revealed a maximum inhibition constant (Imax) of 0.68 and a half-

inhibition constant (Ki) of 4.21 µmol N l-1 (Figure 3.22f). 



 94 

All communities displayed similar νmax for NH4
+ (increasing 29 % between the 

lowest and highest values) and to a lesser extent for urea (increasing 2-fold), whereas 

νmax for NO3
- was more variable, increasing 7-fold between the lowest (Experiments 3 

and 5) and the highest values (Experiment 4). Pseudo-nitzschia displayed the highest 

affinity (α) for NO3
-, 3- to 4- fold higher than the other species, whereas D. acuminata 

(Experiments 3 and 5) displayed the highest affinity for NH4
+ (2 to 3-fold higher) and 

urea (1.5- to 2-fold higher). 

However, due to differences in cell size between the dinoflagellate species and 

Pseudo-nitzschia, estimates of cell-specific νmax (νmax(cell)) displayed different patterns. 

These could only be calculated for Experiments 1-3, since the phytoplankton 

communities in Experiments 4 and 5 were mixed assemblages. Cellular νmax was 1-2 

orders of magnitude lower for Pseudo-nitzschia (cell volume Vcell ≈ 5 x 102 
µm3) relative 

to the dinoflagellates (Vcell ≈ 1.4 x 104 µm3). A similar pattern was observed for α, with 

lowest values measured in Pseudo-nitzschia and highest in D. acuminata (Table 3.6). 

 There was no apparent relationship between Ks and Vcell for these species (data not 

shown). Whereas Ks values measured for Pseudo-nitzschia (NH4
+

  and NO3
-) and for A. 

catenella (NH4
+) were close to the values predicted by the Vcell-Ks relationship derived 

by Litchman et al. (2007), Ks for D. acuminata (all nitrogen sources) and A. catenella 

(for urea) were only 24-37 % of the predicted values (Table 3.6). 
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Figure 3.22. PN-specific nitrogen uptake versus nitrogen concentration fitted to the Michaelis-
Menten equation ν = νmax*S/ (Ks + S) using iterative non-linear least squares regression (SigmaPlot, 
Jandel Scientific) for samples dominated by (a) Pseudo-nitzschia spp., (b) Alexandrium catenella, 
(c,d,e) Dinophysis acuminata; (f) ν(NO3

-) versus NH4
+ concentration obtained from an NH4

+ 
inhibition kinetics experiment run in parallel with experiment (e), fitted to the modified Michaelis-
Menten equation ν = νmax - νmax*Imax*S/ (Ki + S)



 

Dominant νmax(NH4
+) α(NH4

+) νmax(urea) α(urea)
species NO3

- NH4
+ Urea NO3

- NH4
+ Urea NO3

- NH4
+ Urea νmax(NO3

-) α(NO3
-) νmax(NO3

-) α(NO3
-)

Pseudo-nitzschia 15.0 (0.4)* 18.0 (0.3)* 4.9 (0.3)b 1.21 (0.15)* 1.34 (0.07)* nd 12.4 13.4 nd 1.20 1.08 0.33 nd

A. catenella >17.5a 14.9 (0.8)* 3.5 (0.2)* nd 2.52 (0.36)* 0.65 (0.12)* nd 5.9 5.4 < 0.85 nd <0.20 nd

D. acuminata 3.5 (0.2)* 13.9 (0.2)* 6.2 (0.6)* 0.79 (0.26) 0.67 (0.06)* 0.53 (0.22) 4.4 20.7 11.7 3.97 4.68 1.77 2.64

D. acuminata (mixed) 24.0 (0.9)* 6.2 (0.6)* 3.2 (0.1)* 8.24 (1.46)* 0.53 (0.22) 0.41 (0.08)* 2.9 11.7 7.8 0.26 4.02 0.13 2.68

D. acuminata (mixed) 3.5 (0.1)* 14.6 (0.9)* 4.4 (0.3)b 0.82 (0.13)* 0.62 (0.14)* nd 4.3 23.5 nd 4.17 5.52 1.26 nd

νmax Ks α

 
Table 3.5. Maximum PN-specific uptakes νmax (x 10-3 h-1) and half-saturation constants Ks (µmol N l-1) with standard errors given in brackets. α is the ratio νmax/Ks (x 
10-3 h-1 (µmol N l-1)-1).  Ratios of νmax and α between different nitrogen sources are given as indicators of nutrient preferences.  
a ν (NO3

-) measured at an ambient NO3
- concentration of 16.9 µmol l-1 is given as a lower limit estimate of νmax.

  

b νmax was derived from the mean of ν(urea) at 4 or 5 saturating concentrations.  
* p < 0.05. 
 

Exp. # Dominant Vcell Ks(pred)

species (µm3) NO3
- NH4

+
Urea NO3

- NH4
+

Urea NO3
- NH4

+
Urea

1 Pseudo-nitzschia 518 0.02 0.03 0.01 0.92 1.32 1.46 nd 0.02 0.02 nd
2 A. catenella 13739 nd 1.30 0.31 2.23 nd 1.13 0.29 nd 1.15 1.06
3 D. acuminata 14009 0.74 2.90 1.30 2.24 0.35 0.30 0.24 2.10 9.69 5.49

Ks(meas):Ks(pred) α(cell)νmax(cell)

 
Table 3.6. Cell volume (Vcell) of the dominant phytoplankton species, cell-specific νmax(cell) (pmol N cell-1 h-1) and α(cell) (pmol N cell-1 h-1 (µmol N l-1)-1; Ks predicted from 
the relationship between Ks and Vcell derived by Litchman et al. (2007) and ratio of measured Ks to predicted Ks. 
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3.2.8. FRRf 

 

Photochemical efficiency of photosystem II (PSII), Fv/Fm, was generally lowest at 

the surface (Figure 3.23), ranging from 0.1 to 0.3 in both 2007 and 2008 (mean 0.17 ± 

0.02 and 0.20 ± 0.02, respectively). Values increased with depth, reaching a maximum 

of 0.4 to 0.6 between 5 and 10 m (means 0.44 ± 0.02 and 0.43 ± 0.02 at 10 m in 2007 

and 2008, respectively), then remaining constant or decreasing slightly with depth.  

The functional absorption cross-section of PSII (σPSII) followed a similar pattern, 

with surface values between 158 and 737 m2 (µmol quanta)-1 in 2007 (mean 461 ± 36) 

and between 60 and 452 m2 (µmol quanta)-1 (mean 281 ± 25) in 2008. Values increased 

to a maximum between 5 and 10 m, with mean values at 10 m of 625 ± 42 m2 (µmol 

quanta)-1 in 2007 and 423 ± 25 m2 (µmol quanta)-1 in 2008. 

 

 
Figure 3.23. Contour plots of Fv/Fm obtained from FRRf casts in (a) 2007 and (b) 2008. 
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There was a significant positive correlation between Fv/Fm and σPSII in both years (r2 

= 0.22, n = 146, p < 0.01 in 2007 and r2 = 0.28, n = 135, p < 0.01 in 2008, Figure 3.24a).  

There was also a significant positive correlation between the ƒ-ratio and Fv/Fm in both 

years (r2 = 0.25, n = 26, p < 0.01 in 2007 and r2 = 0.37, n = 26, p < 0.01 in 2008, Figure 

3.24b). However, the ƒ-ratio displayed no correlation with σPSII despite the correlation 

between Fv/Fm and σPSII. 

 

 
Figure 3.24. Correlations between (a) σPSII and Fv/Fm in 2007 (n = 146, p < 0.01) and in 2008 (n = 
135, p < 0.01), and (b) between the ƒ-ratio and Fv/Fm in 2007 and 2008 (n = 26, p < 0.01).  
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3.3.  Discussion 

 

3.3.1. Hydrography 

 

The observed alternations between cold and warm surface temperatures in the 

Southern Benguela were consistent with the pulsed upwelling that characterises the 

seasonal transition between active upwelling in summer and quiescence in winter. The 

temperatures and salinities measured (~11-17 °C and 34.4-35.5) were within the range 

characteristic of South Atlantic Central Water (SACW) (Shannon, 1985a). A wide range 

of temperatures was measured at the surface, whereas the salinity range was narrower 

(34.4-34.8), hence there was no correlation between temperature and salinity. Therefore, 

all surface water was upwelled SACW, the coldest having recently upwelled and the 

warmest having warmed since upwelling, but conserving its original salinity.  

Oxygen concentrations in bottom waters were lower than in source SACW, as is 

often the case in the Benguela region (Shannon, 1985b). Concentrations <1 ml l-1 were 

measured below the thermocline at temperatures <10.5 °C, even as shallow as 10 m. 

Previous studies that found similar results concluded that bacterial decomposition of 

sinking organic matter was responsible for this oxygen depletion (Jones, 1971; Shannon, 

1985b). Low oxygen water in the Southern Benguela is thought to be formed locally, 

rather than advected from the Northern Benguela, as shown by the different 

thermohaline properties of these water masses (Shannon, 1985b; Monteiro & van der 

Plas, 2006). The temperatures and salinities measured in oxygen-depleted waters in this 

study were similar to the mean published by Shannon et al. (1985) for the region 

between 30 and 35 °S (9.5 °C and 34.7), confirming that oxygen depletion was a result 

of local biological processes. 

Following upwelling, low DO water was brought to the surface, where 

concentrations dropped as low as 1.3 ml l-1 (at 10.3 °C). Although surface DO 

concentrations are known to drop following upwelling in the Southern Benguela, 

previous studies only reported a drop to 5 ml l-1 (Shannon, 1966). Concentrations 

increased to values as high as 9 ml l-1 concurrently with surface warming, stratification 

and increased phytoplankton biomass, because of photosynthesis. An increase from 1.6 

to 10.9 ml l-1 was observed over a 7 day period, from 17-25 March 2008, even greater 

than that reported by Pieterse & van der Post (1967) for Walvis Bay. Therefore, it 
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appears that fluctuations in surface DO concentrations were particularly pronounced 

during the present study, with extremely low concentrations during upwelling, 

increasing rapidly to very high concentrations during stratification.  

  

3.3.2. Nutrient remineralisation 

 

In 1934, Alfred Redfield noted that the nutrient (N, P) composition of seawater was 

identical to that of plankton (Redfield, 1934) and this was attributed to the 

stoichiometric uptake and subsequent remineralisation of nutrients by phytoplankton 

(Sverdrup et al., 1942). However, it has since been noted that the N:P requirements of 

phytoplankton vary between species and with growth stage (Arrigo, 2005). Departures 

from the so-called “Redfield ratio” of ~16 can be attributed to a number of 

biogeochemical processes such as different remineralisation rates (Harrison, 1980), 

denitrification (Tyrrell & Law, 1997), anaerobic ammonium oxidation or “Anammox” 

(Arrigo, 2005) and “nutrient trapping” (Alvarez Salgado et al., 1997; Tyrrell & Lucas, 

2002).  

In the current study, the regression coefficient derived from the linear correlation 

between DIN and PO4
3- was ~12 mol DIN (mol PO4

3-)-1 in all years. This is higher than 

the value of 9 published by Tyrrell & Lucas (2002) for the Benguela, but lower than that 

of 14 obtained from the global dataset compiled by Tyrrell & Law (1997). A PO4
3- 

excess of 0.26 to 0.28 was observed at zero DIN, indicating that PO4
3- was non-limiting 

at low NO3
- concentrations, consistent with previous studies in the Benguela (Dittmar & 

Birkicht, 2001; Tyrrell & Lucas, 2002). In contrast to these results, measurements of 

NO3
- and PO4

3- in the Iberian upwelling system compiled for the period 1977-1998 

yielded an N:P ratio greater than the Redfield ratio (17.9 mol NO3
- (mol PO4

3-)-1) and a 

very low PO4
3- excess at zero NO3

- (0.02 µmol l-1) (Álvarez–Salgado et al., 2002) 

although lower N:P ratios (<10) were found in spring and summer in the surface waters 

of the Ría de Ferrol (Bode et al., 2005). 

In this study, newly upwelled water generally had an N:P ratio of 10-12 and 

subsequent nutrient uptake caused further departure from Redfield (down to values 

<0.1), consistent with a study by Andrews & Hutchings (1980) that revealed a decline in 

N:P ratios with increasing DO concentration as a result of phytoplankton uptake. This, 

however does not indicate that nutrient uptake did not follow Redfield stoichiometry, it 

is simply due to the fact that the initial ratio was <16 (Tyrrell & Lucas, 2002). All low 
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N:P values in this dataset were associated with low PO4
3- concentrations (<1.5 µmol l-1), 

i.e. there were no “LNP points”, defined by Tyrrell & Law (1997) as data points where 

N:P < 3 and PO4 > 1.5 µmol l-1, and used as evidence of denitrification. High nitrogen 

deficits (∆N = 16 * [PO4
3-] - [NO3

-]), i.e. > 20 µmol l-1, as measured by Tyrrell & Lucas 

(2002), were also used as an indicator of denitrification. The highest ∆N measured in the 

present study were 13.6 µmol l-1 (mean 3.7 ± 0.5 µmol l-1) in 2006, 10.6 µmol l-1 (mean 

3.0 ± 0.2 µmol l-1) in 2007 and 19.5 µmol l-1 (mean 2.4 ± 0.4 µmol l-1) in 2008, therefore 

it seems unlikely that the low N:P ratios in this study were due to denitrification 

[although more recent findings suggest this was more likely Annamox (Kuypers et al., 

2005)]. The data used by Tyrrell and Lucas (2002) were collected in the Northern 

Benguela (20-32°S), where hypoxia is widespread due to the advection of low oxygen 

water (LOW) from the Angola Basin (Chapman & Shannon, 1985; Shannon, 1985a; 

Monteiro & van der Plas, 2006). In contrast, LOW in the Southern Benguela is 

generated locally (in St Helena Bay) in response to wind-driven physical (e.g. 

stratification) and biogeochemical processes (e.g. new production) (Monteiro & van der 

Plas, 2006). Thus, denitrification should be more widespread in the low oxygen waters 

of the Northern Benguela, but does not appear to be prominent in this study.  

An alternative explanation for the low N:P ratios could be different rates of 

remineralisation for DIN and PO4
3-. To investigate this, one can estimate the ratio of 

NO3
- and PO4

3- remineralisation rates from linear regression of the residuals of the 

correlations between NO3
- and temperature (∆ NO3

-) and between PO4
3-

 and temperature 

(∆PO4
3-). Since temperature and nutrients are negatively correlated in upwelling regions, 

any departures from linearity can be attributed to biogeochemical processes such as 

nutrient recycling, therefore the correlation between ∆ NO3
-
 and ∆PO4

3-
 should reveal 

whether the scatter around the regression line is due to a biogeochemical process that 

alters nutrient concentrations stoichiometrically, or if it is due to random distribution. 

∆NO3
-
 and ∆PO4

3-
 were significantly correlated in all years (n = 84, 115 and 110 in 

2006, 2007 and 2008, respectively, p < 0.01), with regression coefficients between 8.3 

and 8.8 (i.e. lower than Redfield), indicating that PO4
3-

 was remineralised preferentially 

to NO3
-. Similarly, ∆Si and ∆ NO3

- were significantly correlated, with regression 

coefficients between 0.31 and 0.33, indicating that NO3
- was remineralised more rapidly 

than Si. 
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3.3.3. Nitrogen uptake  

 

Nitrogen uptake rates fluctuated widely during the upwelling/relaxation cycles, with 

the largest variations observed in ρ(NO3
-) (1-2 orders of magnitude). The relative 

contributions of new and regenerated nitrogen sources also varied, with ƒ-ratios ranging 

from 0.04 to 0.89. Such variations in ρ(NO3
-) and the ƒ-ratio have been previously 

reported in the Benguela from a number of studies, where ρ(NO3
-) ranged from ~0.01 to 

~0.55 and ƒ-ratios from ~0.02 to 0.87 (Probyn, 1992). The data compiled by Probyn 

(1992) was fitted to the model of Dugdale et al. (1990) used to describe the relationship 

between ρ(NO3
-) and ν(NO3

-) in the California, Peru and Canary currents. The model is 

based on observations from drifter studies that followed a recently upwelled parcel of 

water (MacIsaac et al., 1985). According to this model, ν(NO3
-) and ρ(NO3

-) are low 

immediately following upwelling due to the small population size and low initial 

ν(NO3). As the population drifts away from the upwelling centre, a “shift-up” (or 

acceleration) in ν(NO3
-) is observed once the phytoplankton community has acclimated 

to the increased irradiance, and the acceleration term depends on the initial NO3
-
 

concentration. If biomass accumulates, then ρ(NO3
-) increases exponentially with 

increasing ν(NO3
-), otherwise a linear relationship is observed. The increased uptake 

rates eventually result in nutrient depletion, which occurs after ~72 h regardless of the 

initial NO3
-
 concentration. This leads to a “shift-down” response in ν(NO3

-) and 

phytoplankton sink out of the euphotic zone. This model has been used to calculate 

maximum potential new production in the California, Peru and Canary currents 

(Dugdale et al., 1990) and in the Benguela (Probyn, 1992). Maximum observed new 

production was close to the maximum potential in all systems except the California 

current. Maximum observed ρ(NO3
-) was 0.55 µmol N l-1 h-1 in the Benguela, while 

theoretical maxima ranged from 0.56 to 1.11 µmol N l-1 h-1 depending on the 

acceleration term (Probyn, 1992). In the present study, maximum surface ρ(NO3
-) was 

0.40, 56 and 0.18 µmol N l-1 h-1 in 2006, 2007 and 2008, respectively. The “shift-up” 

model was originally applied to diatom populations that are typically favoured by 

upwelling. In 2006, the population was dominated by Pseudo-nitzschia, therefore the 

comparison is valid, however the maximum ρ(NO3
-) in 2007 was during an Alexandrium 

catenella bloom. The occurrence of high biomass dinoflagellate blooms in the Benguela 

is thought to be at least partly a result of physical accumulation (e.g. at the upwelling 
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front) (Pitcher et al., 1998), therefore the high ρ(NO3
-) could be a result of increased 

biomass through physical processes rather than cellular growth.  

When NO3
-
 depletion occurred, phytoplankton turned to regenerated nitrogen to 

support their nitrogen demands, with ρ(NH4
+) up to 11-fold higher than ρ(NO3

-) and 

reaching a maximum of 0.25 µmol N l-1 h-1. This high ρ(NH4
+) was supported by high 

regeneration rates, whereby r(NH4
+) exceeded ρ(NH4

+) on average by a factor of 2. The 

resulting excess NH4
+

 may have accumulated in the surface layer and this would explain 

the very high NH4 concentrations measured on some occasions (up to 5 µmol N l-1). 

Accumulation of NH4
+

 during the decline of the diatom spring bloom were reported in 

the North Atlantic (Johnson et al., 2007). These authors demonstrated that at high 

temperatures and increased pH, this can lead to the emission of NH3 to the atmosphere. 

 The implications of this NH4
+ accumulation would be potential inhibition of ρ(NO3

-

) by NH4
+. Indeed, evidence for inhibition of ρ(NO3

-) by NH4
+ was provided by 

extremely low ρ(NO3
-) at NH4

+ concentrations >2 µmol N l-1 (Figure 3.25b). Further 

evidence was illustrated by the ammonium inhibition experiment conducted in 2008 that 

revealed an Imax of 0.68 and a Ki of 4.21 µmol N l-1. Although Imax was relatively high 

(on a scale of 0 to 1), Ki was also high, indicating that inhibition was not very severe for 

that assemblage. For comparison, Ki values reported for the North-East Atlantic were 

between 0.04 and 0.23 µmol N l-1 (L' Helguen et al., 2008), while Ki measured in 

cultures of Emiliania huxleyi was reported to be 0.24 µmol N l-1 (Varela & Harrison, 

1999). In the associated nitrogen uptake kinetics experiment, however, the ratio 

νmax(NH4
+): νmax(NO3

-) was 4.2, indicating that the phytoplankton community displayed 

a strong preference for NH4
+ over NO3

-, therefore preference rather than inhibition may 

have determined the relative rates of ρ(NO3
-) and ρ(NH4

+). 

Interestingly, ρ(NH4
+) displayed a significant negative linear correlation with NO3

- 

in all 3 years combined (p < 0.01, Figure 3.25), indicating possible competitive 

inhibition of ρ(NH4
+) by NO3

-. Although inhibition of ρ(NO3
-) by NH4

+ is more 

commonly reported, competitive inhibition between various nitrogen sources has been 

observed in cultures (Collos, 1989). This effect could be responsible for the decoupling 

between ρ(NH4
+) and r(NH4

+), as highest r(NH4
+): ρ(NH4

+) ratios were generally 

associated with NO3
-
 concentrations >25 µmol N l-1.  
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Figure 3.25. Relationships between (a) ρ(NH4

+) and NO3
- concentration and (b) ρ(NO3

-) and NH4
+ 

concentrations in all years. The equation of the regression line for all years combined in (a) is: y = -
3.23 x + 0.12 (r2 = 0.32, n = 96, p < 0.01).  
 

The significant linear correlation between Fv/Fm and the ƒ-ratio indicated that during 

periods of high ρ(NO3
-), i.e. during periods of upwelling, photochemical efficiency of 

photosystem II was enhanced. Although NH4
+ is often preferred over NO3

-, highest 

photochemical efficiency in this study was linked with a dependence on NO3
-
 uptake. 

This is consistent with the finding that phytoplankton may express a preference for 

uptake of NH4
+ but not for growth on NH4

+ (Dortch, 1990). Furthermore, the linear 

correlations between wind direction, the ƒ-ratio and Fv/Fm could be exploited to estimate 

new production on larger spatial and temporal scales. 
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3.3.4. HAB assemblages 

 

Previous studied have shown that the occurrence of HABs along the west coast of 

South Africa is clearly linked to wind forcing and water column stability (Pitcher et al., 

1998; Probyn et al., 2000; Pitcher & Nelson, 2006; Fawcett et al., 2007) and this is 

confirmed by the present study. In contrast, little is known about the nitrogen nutrition 

of HAB species during the upwelling/quiescence cycles.  

The different assemblages identified by cluster analysis could be linked to a certain 

extent with nutrient regime. Clusters I (Dinophysis acuminata/ Gymnodinium spp.) and 

V (Coscinodiscus spp./ Gyrodinium zeta) were associated with warm, nutrient depleted 

waters, whereas Clusters II (A. catenella/ Skeletonema costatum), III (Scrippsiella 

trochoidea/ Pseudo-nitzschia spp.) and IV (Minidiscus trioculatus) were associated with 

recently upwelled water, i.e. lower temperatures and higher NO3
- concentrations and 

DIN:P ratios. Clusters VI (S. costatum/ Chaetoceros spp.) and VII (Pseudo-nitzschia 

spp./ Chaetoceros spp.) were observed under a wide range of temperature and nutrient 

conditions, indicating that they were able to adapt to fluctuating conditions, in particular 

by utilising recycled nitrogen when NO3
- became limiting.  

Potentially harmful species were present in all of the clusters, with Dinophysis 

acuminata in Cluster I, Alexandrium catenella in Cluster II and Pseudo-nitzschia spp. in 

Clusters III to VII, representing 9 to 48 % total similarity. However, since Pseudo-

nitzschia spp. are very small cells, their contribution in terms of biomass was probably 

insignificant in Clusters IV and V (9 to 11 %). These clusters were mixed assemblages, 

with low contributions from HAB species. They were present under very different 

conditions from one another and did not present radically different ecophysiological 

characteristics (such as nutrient uptake rates) to the clusters that were characterised by 

HAB species. This suggests that there was no clear distinction between environmental 

conditions that favoured HAB relative to “non-HAB” assemblages. A closer 

investigation of the HAB clusters, the prevailing environmental conditions under which 

they occurred and the nutrient acquisition strategies that allowed them to succeed under 

such conditions is therefore warranted to determine whether the occurrence of HABs is 

stochastic (i.e. a result of their being “in the right place at the right time”) or if it is 

dictated by specific environmental conditions and therefore to a certain extent 

predictable. 
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3.3.4.1. Alexandrium catenella 

 

The A. catenella bloom that peaked on 21 March 2007, was present before the start 

of our survey, therefore we do not know under which conditions it was initiated. 

However, it displayed a very high ρ(NO3
-) (0.61 µmol N l-1 h-1) and ƒ-ratio (0.87) and 

the concentration of A. catenella cells dropped rapidly when NO3
- became depleted, 

indicating a high requirement for NO3
-. Nitrate uptake by the A. catenella bloom was the 

highest measured in all 3 years, higher than the maximum measured rate in the Benguela 

for the period 1983-1991 (Probyn, 1992), and the maximum values measured in the 

Californian, Peruvian and North-West African upwelling systems (Dugdale et al., 1990) 

and one order of magnitude higher than in the Iberian upwelling system (Bode et al., 

2005). Also, the second pulse of upwelling (25-26 March) reintroduced A. catenella 

cells, confirming the link between upwelling/high nutrients and the presence of A. 

catenella, although cell numbers were 2 orders of magnitude lower and thus ρNO3
- was 

much lower. 

Although it became more abundant over the next 3 days, it then disappeared from the 

community, possibly because of competitive exclusion by diatoms, but most likely due 

to alongshore (and to a lesser extent onshore) advection. A. catenella is known to form 

cysts in the Lambert’s Bay area (Joyce & Pitcher, 2004) and it has been suggested that 

encystment occurs in response to nutrient starvation (Anderson et al., 1984), therefore 

the disappearance of A. catenella could possibly be attributed to encystment and sinking 

in response to nutrient depletion. Similarly, the reintroduction of A. catenella cells 

during the second pulse of upwelling may have resulted from excystment and vertical 

transport of the cells.  

Studies of Alexandrium catenella blooms and cultures have yielded contradictory 

results with respect to their nitrogen requirements. For example, the optimal range of 

concentrations for A. catenella growth in culture was higher for NO3
- (221-8830 µmol l-

1) relative to NH4
+ (25-200 µmol l-1) in a study by Siu et al. (1997). Furthermore, 

Matsuda et al. (1999) reported a high Ks(NO3
-) for growth (3.3-7.7 µmol l-1). In the 

Mediterranean, blooms were associated with high NO3
- and NH4

+ concentrations on the 

north-east Spanish coast (Bravo et al., 2008), whereas NH4
+ and urea were the main 

nitrogen sources fuelling a bloom in the Thau Lagoon on the French coast (Collos et al., 

2007). A similar dichotomy exists for other Alexandrium species. For example, an A. 
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minutum bloom in Cape Town Harbour displayed extremely high ρ(NH4
+) (up to 1.1 

µmol N l-1 h-1) but very low ρ(NO3
-) (<0.05 µmol N l-1 h-1) (Pitcher et al., 2007). In 

contrast, ρ(NO3
-) represented 85-91 % of total ρ(N) during the peak of an A. minutum 

bloom in the Penzé Estuary (NW France), whereas ρ(NH4
+) dominated ρ(N) before and 

after the bloom (Maguer et al. 2004). The authors estimated the N requirements of the 

21-day bloom at 184 µmol l-1 NO3
- and 25 µmol l-1 NH4

+, based on 15N uptake rates, cell 

concentrations and doubling rates, (Maguer et al., 2004).  

Measurements of ρ(N) in the field provide limited information on nutritional 

preference, since in upwelling systems ρ(NO3
-) increases as a “shift-up” response to 

increased NO3
- concentrations supplied by upwelling (Dugdale et al., 1990; Dugdale et 

al., 2006). This is demonstrated in the present study by the significant correlation 

between ƒ-ratios and wind direction, used as an indicator of upwelling, hence NO3
- 

concentration (Figure 3.25). Furthermore, the Relative Preference Index or RPI 

(McCarthy et al., 1977) is also biased by ambient concentrations, particularly in 

upwelling systems where NO3
- can be much more abundant than NH4

+ (Stolte & 

Riegman, 1996). The uptake kinetics parameters, however, can provide valuable 

information on the nutritional preferences of a given species (Dugdale, 1967; Dortch, 

1990) and the potential outcome of interspecific competition for nutrients (Eppley et al., 

1969), although they too can vary in response to nitrogen starvation (MacIsaac & 

Dugdale, 1969; Collos, 1980) and to elevated ambient nitrogen concentrations (Caperon 

& Meyer, 1972; Collos et al., 2005). 

In this study, νmax was at least 17 % higher for NO3
-
 than for NH4

+ and 5-fold higher 

than for urea, whereas α for NH4
+ and urea were low, indicating that Alexandrium 

catenella was a poor competitor for recycled nitrogen at the low concentrations (<Ks) 

measured during the bloom. In the Thau Lagoon, A. catenella displayed a preference for 

NH4
+, as shown by higher νmax and α for NH4

+ relative to NO3
- (Collos et al., 2004). A. 

catenella in the Thau Lagoon displayed the second highest νmax of all the dinoflagellate 

species in Table 3.7 for all 3 nutrients, indicating that it was a very good competitor for 

high nitrogen concentrations. It was, however, a relatively poor competitor for all 

nitrogen sources at limiting concentrations (particularly urea), as shown by low α values. 

The lower νmax and Ks values for NH4
+ and urea in the Benguela could be a result of 

natural selection for low nutrient-adapted cell lines (Doyle, 1975) in an environment 

where NH4
+ and urea concentrations are often <1 µmol N l-1, whereas they can be as 

high as 8 and 4 µmol N l-1, respectively, in the Thau Lagoon (Collos et al., 2007). 
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Out of the five studies carried out on HAB dinoflagellates in upwelling systems 

presented in Table 3.7, A. catenella in the Benguela was the only one that expressed a 

preference for NO3
- over NH4

+, and its νmax(NO3
-) was higher than those of the other 

species. However, its νmax(NH4
+) was similar to that of Akashiwo sanguinea, which was 

the highest out of the five studies, although its α for NH4
+

 was at the low end of the 

spectrum, indicating that it was a better competitor for NH4
+ at high concentrations. On 

the other hand, it displayed both a low νmax and α for urea, indicating that it was a poor 

competitor for urea at both high and low concentrations. Higher νmax for NH4
+ and 

similar (if not lower) νmax for NO3
- and urea were measured in cultures of the 

raphidophyte Heterosigma akashiwo isolated from the California upwelling system 

(Herndon & Cochlan, 2007) (Table 3.7). The higher α measured for H. akashiwo 

indicated that it was also a better competitor for NH4
+ at limiting concentrations, which 

is consistent with the hypothesis that small flagellates express a preference for NH4
+ 

(Glibert et al., 1982a; Probyn, 1985). Overall, A. catenella in this study displayed 

characteristics typically attributed to diatoms.  

Nitrate concentrations in the other studies were low, therefore the higher νmax for 

NO3
- in the Benguela could be explained by acclimation to a higher ambient 

concentration, which is mediated by an increase in the number of uptake sites on the cell 

surface (Caperon & Meyer, 1972). Temperature can also influence variability in the 

uptake kinetics of NH4
+ and NO3

-, whereby νmax and α for NH4
+ are positively correlated 

with temperature and α for NO3
- is negatively correlated with temperature (Lomas et al., 

1996; Fan et al., 2003). The lower temperature in the Benguela relative to the other 

studies (Table 3.7) could contribute to lowering νmax and α for NH4
+, however the large 

differences in α for urea were due to other factors since urea uptake is thought to be 

temperature-independent (Fan et al., 2003). In the latter case, interspecific differences 

were probably the most significant. 

 

3.3.4.2. Pseudo-nitzschia spp. 

 

Pseudo-nitzschia was particularly abundant in Cluster VII, representing 48 % total 

similarity, although it was also present in Clusters III and VI (17-18 %) and to a lesser 

extent in Clusters IV and V (9-11 %). Cluster VII comprised all the 2006 stations, when 

Pseudo-nitzschia was present in very high concentrations (>106 cells l-1 except on the 

last 2 days), but also some stations in 2007 and 2008 when concentrations were 
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generally lower (0.2 x 105 to 3 x 105 cells l-1 in 2007 and 0.1 x 106  to 2.3 x 106 cells l-1 

in 2008).  

Cluster VII occurred under a wide range of nutrient concentrations (0.02 to 25.1 

µmol l-1 NO3
-, 0.2 to 2.9 µmol l-1 PO4

3- and 0.04 to 49.0 µmol l-1 Si). In 2006, highest 

cell concentrations were reached during periods of wind relaxation or reversal, during 

which NO3
-
 became depleted in the surface layer. During these periods, Pseudo-nitzschia 

was able to maintain its population size (4.5-8.6 x 106 cells l-1) and remain dominant 

despite the depletion of NO3
- and Si and increase in dinoflagellate abundance. Larger 

cells require a greater amount of intracellular N to survive, as shown by the positive 

correlation between minimum cell-specific nitrogen quota and cell volume (Aksnes & 

Egge, 1991; Litchman et al., 2007). Therefore, Pseudo-nitzschia would require less 

nitrogen per cell due to its smaller cell size relative to dinoflagellates. The success of 

Pseudo-nitzschia in stratified environments due to its small cell size and efficient 

nutrient uptake has also been reported for the California current (Cochlan et al., 2006; 

Trainer et al., 2007). In addition, Pseudo-nitzschia displayed high ρ(NH4
+) in all years 

(0.039 to 0.192 µmol N l-1 h-1, mean 0.094 ± 0.008 µmol N l-1 h-1) that exceeded ρ(NO3
-) 

during the NO3
--depleted periods, showing that Pseudo-nitzschia was able to turn to 

NH4
+ when NO3

-
 became limiting. 

Although ρ(NO3
-) was as low as 0.002 µmol N l-1 h-1 during the NO3

--depleted 

periods, when NO3
- concentrations were high (>10 µmol l-1) following upwelling pulses 

in 2006, Pseudo-nitzschia displayed high uptake rates of up to 0.40 µmol N l-1 h-1 at the 

surface, with maximum uptake ~30% higher than that measured in Pseudo-nitzschia spp. 

populations in the Juan de Fuca eddy (Washington coast, USA) (Marchetti et al., 2004). 

This flexibility, which allows Pseudo-nitzschia to take advantage of both high and low 

NO3
- concentrations, would increase its competitive advantage under fluctuating 

conditions. This would also explain why Pseudo-nitzschia was present in a wide range 

of clusters and under varying conditions. However, Pseudo-nitzschia is not always 

abundant in upwelling regions, suggesting that its success is determined by factors other 

than nutrients and/or may depend on the duration of the upwelling/downwelling cycles.  

The nutrient uptake kinetics experiment revealed a higher PN-specific νmax for NH4
+ 

relative to both dinoflagellate populations and for NO3
- relative to Dinophysis 

acuminata. However, on a per-cell basis, νmax was low relative to the dinoflagellate 

species, due to its smaller cell size (Table 3.6), consistent with the Vcell-νmax relationship 

derived by Litchman et al. (2007). This trend of lower cell-specific but higher biomass-
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specific νmax seems to hold true for diatoms as a whole relative to dinoflagellates 

(Litchman et al., 2007). Higher biomass-specific νmax may be due to an increased 

number of smaller uptake sites per unit cell surface area (Aksnes & Egge, 1991). Thus, 

when cell size effects are eliminated, Pseudo-nitzschia appears to be a “velocity” 

strategist (Sommer, 1984), as is generally the case for small, r-selected diatoms 

(Litchman et al., 2007).  

Pseudo-nitzschia displayed a high α for both NO3
- and NH4

+ relative to the 

dinoflagellate species in Table 3.7, indicating that it had a high affinity for NO3
- and 

NH4
+. Thus, the combination of high νmax and high α indicates that Pseudo-nitzschia was 

adapted to both high and low nutrient concentrations, which was apparent in its success 

during both upwelling and relaxation cycles.  

However, νmax and α for NO3
- were lower in this study than in Pseudo-nitzschia 

australis cultures isolated from the Californian upwelling system (Cochlan et al., 2008) 

(Table 3.7). This can be explained by the nutrient history of the cultures, which were 

grown on 70 µmol l-1 NO3
- as the sole nitrogen source. Such pre-conditioning effects 

were also observed by Fan et al. (2003). Although the medium was NO3
--depleted prior 

to starting the experiments, the cells were not nitrogen-starved, therefore regulation of 

νmax and α in response to nitrogen depletion had most likely not yet taken place. The 

same order of preference, as shown by comparison of νmax values (NH4
+ > NO3

- > urea) 

was observed in the present study as in culture experiments using P. multiseries (Radan, 

2008) and P. cuspidata (Auro, 2007), showing a general trend in preference for NH4
+, as 

is often observed in phytoplankton due to the lower energetic cost of NH4
+ assimilation 

relative to NO3
- (Dortch, 1990). 

The Californian P. australis also had a higher νmax for NH4
+ than in this study, even 

though it was not preconditioned with NH4
+. If Pseudo-nitzschia in the California 

system responds as well to high NH4
+ concentrations as it does in culture, this would 

support the hypothesis that high anthropogenic NH4
+ concentrations (>12 µmol l-1) are 

responsible for blooms of P. pseudodelicatissima on the Washington coast (Trainer et 

al., 2007). P. australis cultures had a similar α to that in this study, indicating that the 

Californian strain was more competitive at high NH4
+ but not at limiting NH4

+ 

concentrations.     
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3.3.4.3. Dinophysis acuminata 

 

Although Gymnodinium spp. were responsible for 93 % similarity within Cluster I, 

D. acuminata co-occurred with Gymnodinium spp. at 3 of those 5 stations, hence 

Gymnodinium spp. and Dinophysis can be assumed to be adapted to similar 

environmental conditions. D. acuminata was also responsible for 9 % similarity within 

Cluster III, although the contribution of D. acuminata to total cell numbers was very low 

(1-5 %).  

Cluster I occurred in 2007 under highly stratified, NO3
--depleted (0.1-0.5 µmol l-1) 

conditions and was dependent on recycled nitrogen, with ƒ-ratios of ~0.1. This 

community therefore conformed with the traditional concept of dinoflagellates being 

adapted to low nutrients and low turbulence (Margalef, 1978). Studies carried out in the 

Galician Rías, within the Iberian upwelling system, have also demonstrated that during 

the downwelling season (late summer/ autumn) communities dominated by Dinophysis 

acuta and Gymnodinium catenatum rely on NH4
+ (Rios et al., 1995).  

In both nitrogen uptake kinetics experiments that were dominated by Dinophysis 

acuminata, νmax and α were 4-fold higher for NH4
+ than for NO3

- and 30 to 80 % higher 

for urea than for NO3
-, therefore D. acuminata expressed a preference for recycled over 

new nitrogen. Furthermore, the NH4
+ inhibition kinetics experiment demonstrated that 

NH4
+ inhibited ρ(NO3

-), although the high Ki value showed that inhibition occurred at 

relatively high concentrations. All dinoflagellate species in Table 3.7 except 

Alexandrium catenella (this study) and Gymnodinium catenatum cultures (Yamamoto et 

al., 2004) displayed similar trends, with νmax(NH4
+): νmax(NO3

-) ratios ranging from 2.1 

to 16.2 and νmax(urea): νmax(NO3
-) ranging from 1.3 to 9.2. D. acuminata also had a 

higher affinity for NH4
+ and urea relative to NO3

-, with 5- and 3-fold higher α for NH4
+ 

and urea, respectively (Table 3.7). With a few exceptions (G. catenatum, A. catenella 

and Cochlodinium spp.), dinoflagellates generally displayed a higher affinity for 

recycled nitrogen relative to NO3
-. Thus, dinoflagellates were generally better 

competitors for recycled nitrogen at both saturating and limiting concentrations.  

In 2007, D. acuminata displayed a lower νmax(NO3
-) than all other species in Table 

3.7 except Cochlodinium spp. (Kudela et al., 2008b) and a mixed assemblage in the 

Central North Pacific Gyre (Sahlsten, 1987), indicating that D. acuminata was not able 

to compete for high concentrations of NO3
-, hence its appearance in the phytoplankton 

community after a long period of NO3
- depletion. Maximum uptake of NH4

+ and urea 
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was towards the middle of the range for dinoflagellates, whereas α was higher for NH4
+ 

than in all other species including most diatoms. This suggests that D. acuminata is an 

“affinity strategist” (Sommer, 1984), well adapted to growing at very low NH4
+ and urea 

concentrations, although it was less competitive at low NO3
-. The difference in α for 

NH4
+ is also consistent with the higher temperature observed during the D. acuminata 

bloom, which would favour a higher α (Fan et al., 2003), although it is difficult to 

disentangle temperature effects from species-specific differences.  

The half-saturation constants for D. acuminata were among the lowest of the range 

of experiments in Table 3.7, and lower for all 3 nutrients than the value predicted by the 

Ks-Vcell relationship derived by Litchman et al. (2007) (Table 3.6). This suggests the 

existence of an ecological trait that may give this species an advantage under nutrient-

depleted conditions, which could offset the disadvantage of low growth rates typical of 

K-selected species. This seems to be the case for other dinoflagellate species, since the 

Ks-Vcell relationship is not significant for dinoflagellates alone (Litchman et al., 2007).  

These results show that D. acuminata has a high affinity for all 3 nitrogen sources 

and a preference for recycled forms over NO3
-
 which give it a competitive advantage 

under nutrient depleted conditions, e.g. during wind relaxation in upwelling systems. 

Although this was confirmed by the mixed D. acuminata/ other dinoflagellates 

assemblage in Experiment 5, the mixed assemblage comprising D. acuminata and 

diatoms (Minidiscus trioculatus 88 % total cell numbers) in Experiment 4 revealed a 

very high νmax(NO3
-). However, this may have been predominantly attributable to a high 

νmax(NO3
-) for the diatom populations. Nonetheless, D. acuminata was very abundant at 

5 m in 2008 at ambient NO3
-
 concentrations as high as 26 µmol l-1, and often co-occurred 

with Coscinodiscus spp. This suggests that D. acuminata was perhaps also able to 

acclimate to high NO3
-
 concentrations, or that a range of different genotypes were 

present with varying nitrogen nutrition characteristics. Such differences in nutrient 

utilisation have been shown in between strains of Pseudo-nitzschia caliantha and P. 

fraudulenta isolated from the same water sample (Thessen et al., 2009).  

Finally, mixotrophic behaviour (Jacobson & Anderson, 1994) and okadaic acid 

production (Carlsson et al., 1995), both of which are characteristic of Dinophysis spp., 

have been suggested as competitive strategies contributing to dinoflagellate species’ 

success under nutrient-depleted conditions (Eppley et al., 1969; Smayda, 1997), and may 

have contributed to the success of D. acuminata at certain times during this study. 
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Species Cell size Location νmax(NH4
+
) α(NH4

+
) νmax(urea) α(urea) Temp Reference

x 10
3
 µm

3 NO3
-

NH4
+

Urea NO3
-

NH4
+

Urea NO3
-

NH4
+

Urea νmax(NO3
-
) α(NO3

-
) νmax(NO3

-
) α(NO3

-
) °C

Cultures

Dinoflagellates
Alexandrium catenella 14 Thau Lagoon 3-47 26 25 0.6-28.1 2 28.4 nd 13 0.9 nd nd nd nd 20 a

Gymnodinium catenatum 207.1 107.5 nd 7.59 33.6 nd 27.3 3.2 nd 0.5 0.1 nd nd b
Diatoms

P. australis 1.4-4.6 California 105.3 80.0 nd 2.82 5.37 nd 37.3 14.9 nd 0.8 0.4 nd nd 15.0 c
Raphidophyte

Heterosigma akashiwo 0.3-0.9 California 18.0 28.0 2.9 1.47 1.44 0.42 12.2 19.4 6.9 1.6 1.6 0.1 0.6 20.0 d
Blooms

Dinoflagellates
Akashiwo sanguinea 20-100 California 5.2 15.1 7.2 1.00 2.37 0.43 5.2 6.4 16.7 2.9 1.2 1.4 3.2 15.1 e

Alexandrium catenella 14 Benguela >17.5 14.9 3.5 nd 2.52 0.65 nd 5.9 5.4 <0.9 nd <0.2 nd 11.2 f

A. catenella 14
Thau Lagoon      (S. 

France)
24.0 64.0 61.0 4.60 8.40 43.90 5.2 7.6 1.4 2.7 1.5 2.5 0.3 20.0 a

Cochlodinium spp. 10-50 California 0.9 >4.0 2.1* 1.00 nd 4.06* 0.9 0.3 0.8* 4.4 nd 2.3 0.9 15.0 g
Dinophysis acuminata 14 Benguela 3.5 13.9 6.2 0.79 0.67 0.53 4.4 20.7 11.7 4.0 4.7 1.8 2.6 15.8 f

Lingulodinium polyedrum 16.8-63 California 3.9 8.1 10.6 0.47 0.59 0.99 8.2 13.7 10.7 2.1 1.7 2.8 1.3 15.0 h

Prorocentrum minimum
Choptank Estuary 
(Chesapeake Bay)

53.8 868.6 492.6 7.12 5.09 16.84 7.6 170.6 29.3 16.2 22.6 9.2 3.9 15.7-23.0 i

Diatoms
Pseudo-nitzschia 0.45 Benguela 15.0 18.0 4.9 1.21 1.34 nd 12.4 13.4 nd 1.2 1.1 0.3 nd 12.6 f

Mixed assemblages

Central North 
Pacific gyre

3.0 16.0 16.0 0.03 0.03 0.02 100.0 533.3 800.0 5.3 5.3 5.3 8.0 j

Washington coast 
upwelling

5.8 6.8 4.6 0.05 0.71 0.78 116.0 9.6 5.9 1.2 0.1 0.8 0.1 k

Western New 
Zealand

13.8 20.7 12 1.1 0.5 0.5 12.5 41.4 24.0 1.5 3.3 0.9 1.9 l

Mixed dinoflagellates
Neuse Estuary     
(N. Carolina)

4.0 52.9 5.77 0.54 2.38 0.37 0.6 10.4 0.3 13.3 18.6 1.4 0.6 11.2-13.2 i

Benguela (Expt 5) 3.5 14.6 4.4 0.82 0.62 nd 4.3 23.5 nd 4.2 5.5 1.3 nd 14.2 f

Diatoms + dinoflagellates Benguela (Expt 4) 24.0 6.2 3.2 8.24 0.53 0.21 2.9 11.7 15.2 0.3 4.0 0.1 5.2 11.9 f

νmax Ks α

 
Table 3.7. Summary of nitrogen uptake kinetics experiments performed on cultures, monospecific blooms, and mixed assemblages, adapted from Kudela et al. 
(2008b). a: Collos et al. (2004); b: Yamamoto et al. (2004); c: Cochlan et al. (2008); d: Herndon & Cochlan (2007); e: Kudela et al. (2008a); f: this thesis; g: Kudela et 
al. (2008b); h: Kudela & Cochlan (2000); i: Fan et al. (2003); j: Sahlsten (1987); k: Dortch & Postel (1989); l: Chang et al. (1995a). Data from this study are shaded in 
grey.
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3.4. Conclusion 

 

The results of this study revealed extremely high variability in hydrographic 

conditions, phytoplankton community structure and nitrogen uptake off Lambert’s Bay, 

on the west coast of South Africa. This highly dynamic region is influenced by local 

wind patterns which drive upwelling/relaxation cycles on timescales of days. During 

active upwelling, deep water characterised by low temperatures and low DO 

concentrations and high nutrient concentrations is brought to the surface. During 

subsequent relaxation periods, this water warms and stratification promotes 

phytoplankton growth, which in turn depletes nutrients, reduces DIN:P and DIN:Si 

ratios and increases DO concentrations. Whereas some assemblages are favoured by 

active upwelling [e.g. Clusters II (A. catenella/ Skeletonema costatum), III (Scrippsiella 

trochoidea/ Pseudo-nitzschia spp.) and IV (Minidiscus trioculatus)], others [e.g. Clusters 

I (Dinophysis acuminata/ Gymnodinium spp.) and V (Coscinodiscus spp./ Gyrodinium 

zeta)] were associated with warm, nutrient depleted waters. Some diatom assemblages 

[Clusters VI (S. costatum/ Chaetoceros spp.) and VII (Pseudo-nitzschia spp./ 

Chaetoceros spp.)] were observed under a wide range of temperature and nutrient 

conditions, indicating that they were able to adapt to fluctuating conditions, in particular 

by utilising recycled nitrogen when NO3
- became limiting.  

Furthermore, specific nutritional characteristics were attributed to different HAB 

species that occurred during the 3 surveys. Alexandrium catenella bloomed at high NO3
- 

concentrations and appeared to have a high requirement for NO3
- since it disappeared 

when NO3
- became depleted. It also displayed the highest surface ρ(NO3

-) and ƒ-ratio 

measured in all 3 surveys. The higher νmax for NO3
- relative to NH4

+ and urea indicated a 

preference for NO3
- over recycled nitrogen. 

The toxic diatom Pseudo-nitzschia spp. was favoured by upwelling and was able to 

rapidly utilise the high nutrient concentrations supplied by upwelling. Biomass 

accumulation occurred during wind relaxation and Pseudo-nitzschia then switched to 

NH4
+ as its main source of nitrogen as NO3

- became depleted. The high νmax and α for 

both NO3
- and NH4

+ confirmed that Pseudo-nitzschia is poised to utilise either source of 

nitrogen at both saturating and limiting concentrations. Cellular νmax, however, was 2 

orders of magnitude lower than for the dinoflagellate species, consistent with its smaller 

cell size. 
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 Dinophysis acuminata bloomed during stratified periods, when NO3
- concentrations 

were low, and displayed low ƒ-ratios indicative of its reliance on recycled nitrogen. Its 

success under such conditions is attributable to a very high affinity for NH4
+, as shown 

by its high α, which gave it a competitive advantage even though it did not display a 

high affinity for NO3
-. Its low νmax for NO3

-, however, would explain why it was 

outcompeted by other species during periods of upwelling. But as it displayed a high 

νmax for NH4
+, it would also be favoured by high NH4

+ concentrations. Although high 

NH4
+

 concentrations are not generally measured in this region, this finding could be used 

to model potential increases in DSP outbreaks in the context of increasing NH4
+

 loading 

in coastal waters.  
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4 Comparison of community structure and nitrogen 
uptake during the upwelling and downwelling 
seasons in the Iberian upwelling system 

 

 

4.1. Introduction 

 

4.1.1. The Iberian upwelling system 

 

The eastern boundary of the North Atlantic subtropical gyre, comprising the Canary 

and Portugal currents, is another of the world’s four major eastern boundary currents. It 

extends from 44 to 10 °N, from the north-west coast of Spain to the north-west coast of 

Africa. As in the Benguela, upwelling is driven by Trade Winds and offshore Ekman 

transport of the coastal equatorward surface current. The upwelling system is divided 

into two regions, the Iberian coast and the north-west African coast, with little continuity 

between them due to the influence of the Mediterranean outflow. This chapter will focus 

on the former, which will herein be referred to as the Iberian upwelling system.  

Upwelling here is seasonal, occurring from approximately March to September when 

northerly winds prevail, whereas the rest of the year is characterised by southerly winds 

and downwelling (Fraga, 1981). The duration of the upwelling season and the intensity 

of upwelling show a pronounced decadal variability, which may be linked with 

variations in the North Atlantic Oscillation (NAO) (Guisande et al., 2004). The 

upwelling season is characterised by upwelling/relaxation cycles of 1-2 weeks (Blanton 

et al., 1987).  

During upwelling, northerly winds prevail and circulation patterns comprise an 

equatorward coastal current, an equatorward jet over the continental slope and a 

poleward offshore counter-current as well as a poleward undercurrent (Estrada, 1995). 

Upwelled water extends offshore as filaments, particularly where the coastline is marked 

by capes and promontories. These filaments transport organic matter to the oligotrophic 

waters of the subtropical gyre and this export represents a significant fraction of new 

production during the upwelling season (Arístegui et al., 2004). Upwelled water 

originates from either subpolar (<12.2 °C, <35.66) or subtropical (>12.2 °C, >35.66) 

branches of Eastern North Atlantic Central Water (ENACW) (Ríos et al., 1992). The 
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less nutrient-rich water (0-6 µmol l-1 NO3
-) of subtropical origin lies above the more 

nutrient-rich water (6-10 µmol l-1 NO3
-) of subpolar origin, therefore the latter only 

enters the shelf during strong upwelling events. 

During downwelling, southerly winds prevail and the whole water column is 

characterised by poleward flow. Poleward slope currents generate a downwelling front 

between oceanic and shelf waters, the position of which is determined by runoff and 

wind stress (Haynes & Barton, 1990). 

 

4.1.2. The Rías Baixas 

 

The Rías Baixas of Galicia are four large coastal indentations of more than 2.5 km3, 

situated between 42 and 43 °N and comprising, from north to south, Rías de Muros, 

Arousa, Pontevedra and Vigo (Figure 4.1). Circulation in these rías is influenced by 

upwelling/relaxation cycles on the shelf. During upwelling the rías behave as an 

extension of the shelf, whereby positive circulation forces upwelled ENACW from the 

shelf into the rías along the bottom while surface water flows out of the rías (Figure 4.2). 

During downwelling, surface water flowing into the rías converges with water flowing 

out and forms a downwelling front, thus the outflow occurs at depth (Figueiras et al., 

1994). Salinity in the rías ranges from 20.0 at the head to 35.7 at the mouth during 

coastal upwelling (Figueiras & Rios, 1993). During upwelling, the injection of nutrients 

into the rías stimulates phytoplankton growth and the resulting biomass is then exported 

out of the ría, where it may sink and become remineralised (Figure 4.2). The recycled 

nutrients may then be re-injected into the rías along with the upwelled nutrients 

(Álvarez-Salgado et al., 1993). This “secondary remineralisation” allows the rías to 

support very high rates of primary production, particularly towards the end of the 

upwelling season when remineralised nutrient concentrations are at a maximum 

(Álvarez-Salgado et al., 1997). 
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Figure 4.1. Map of the north-west Iberian Peninsula, showing the four Galician Rías Baixas. The 
Ría de Vigo is enlarged in Fig. 2.3 (Chapter 2). 
  
 

The Ría de Vigo has a surface area of 176 km2, a length of 32 km, a width of 1-10 

km and a maximum depth of 40 m in the central channel. It is partially mixed, with a 

tidal velocity range of 10-30 cm s-1 and a mesotidal range of 2-4 m. The mouth of the ría 

is divided into two main channels by the Ciès Islands, a narrow northern channel of sill 

depth 25 m and a wider and deeper southern channel (45 m depth). It has a relatively 

small catchment area (~589 km2) and runoff is generally low, with minimum rates in 

summer (5-10 m3 s-1) and maximum rates in winter (30-35 m3 s-1) (Nogueira et al., 

1997). Sewage flux from Vigo is ~0.5 m3 s-1 (Ríos, 1992), which represents an average 

PO4
3- input of 130 µmol l-1 (Pérez et al., 1986).  

Nitrate and NO2
- concentrations in the bottom waters of the ría tend to peak in July-

August at ~8 and 0.75 µmol l-1, respectively, whereas corresponding surface 

concentrations tend to be depleted during this period. Deep NH4
+ concentrations 

increase throughout summer, reaching a maximum in September-October (~4 µmol l-1), 

whereas surface concentrations tend to remain low throughout the summer, peaking in 

October-November. The contribution of NH4
+ to total DIN increases from 25 to 65 % 

between January and August concurrent with a decrease in the proportion of NO3
- from 

70 to 20 %, due to the more rapid recycling of NH4
+ (Nogueira et al., 1997). N:P ratios 

are 15-17 (close to Redfield) in the upwelled ENACW but decrease rapidly as the water 
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enters the ría, where it is influenced by very high PO4
3- inputs. N:P ratios are lowest in 

spring (~8) and summer (~3) (Nogueira et al., 1997).  

As in most temperate ecosystems, two seasonal phytoplankton blooms are observed, 

one in spring (May) and another in autumn (September), with surface chl-a 

concentrations generally >8 µg l-1 in both cases. However, chl-a concentrations remain 

relatively high throughout the summer, due to the input of nutrients from upwelling 

(Nogueira et al., 1997). Gross annual primary production is highest in spring and 

summer (1-8 g C m-2 d-1) and lowest in winter (0.2 g C m-2 d-1), although a high degree 

of variability occurs with the upwelling/relaxation cycles (Arístegui et al., 2004).   

New production estimates for shelf waters between 42 and 44 °N during the 

upwelling season are relatively low compared to primary production, resulting in a 

seasonally-averaged ƒ-ratio of 0.35 (Álvarez-Salgado et al., 2002). This value is similar 

to the average published for the Benguela (Probyn, 1992), but lower than expected for a 

major upwelling system and reported for the California current [0.4-0.8, Dugdale et al. 

(2006)]. This has been attributed to low continental inputs, low nutrient concentrations 

in ENACW and low average coastal winds. Furthermore, during the upwelling/ 

relaxation cycles, a switch from net autotrophy to net heterotrophy occurs, resulting in a 

low average ƒ-ratio (Arístegui et al., 2004).  

 

 
Figure 4.2. Schematic diagram of circulation in the Rías Baixas during upwelling and downwelling 
seasons. Modified from Crespo et al. (2006). Blue arrows represent cold water and red arrows 
represent warm water. 
 
 

The Rías Baixas are used extensively for the cultivation of blue (or Mediterranean) 

mussels Mytilus galloprovincialis, which are grown on ropes suspended from mussel 

rafts (bateas). The rías are the largest producer of mussels worldwide, with a production 
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of 250,000 tonnes per year, representing 40 % of European production and 15 % of 

world production, with a first sale value of 80 million US dollars (Labarta et al., 2004). 

Although mussel cultivation is supported by high rates of primary production, it is also 

under threat by a number of toxic species that are known to bloom in the rías (Fraga, 

1989). HABs have been monitored since 1976, initially by the Spanish Institute of 

Oceanography (IEO), then by the Marine Environment Quality Control Centre 

(CCCMMM) since 1992.   

 

4.1.3. HABs in the Rías Baixas 

 

Seasonal succession in phytoplankton assemblages involves a shift from small 

diatoms (Skeletonema costatum and Thalassiosira pseudonana), cryptophytes and other 

small flagellates in winter (when river runoff is high) to large centric diatoms in spring, 

pennate diatoms (e.g. Nitzschia seriata) and heterotrophic dinoflagellates during summer 

upwelling (e.g. Protoperidinium spp.) and autotrophic dinoflagellates during autumn 

downwelling. The abundance of diatoms is correlated to upwelling, particularly during 

the first half of the year, when heterotrophs are present in lower numbers (Figueiras & 

Rios, 1993). Similar successional patterns are observed on shorter time scales, during the 

upwelling/relaxation cycles that occur during summer, with a shift from diatoms to toxic 

dinoflagellates accompanying stabilisation of the water column following a strong 

upwelling event. The horizontal distribution of diatoms and dinoflagellates also reflects 

the intensity of upwelling or stratification along the rías, with diatoms dominating 

towards the interior, where upwelling is strongest, whereas dinoflagellates tend to occur 

in the outer, more stratified parts of the rías (Tilstone et al., 1994). 

HABs are a regular occurrence in the Rías Baixas and along the Portuguese coast 

during the summer months (June to October) (Fraga, 1989; Jiménez et al., 1992; Moita, 

1993; Figueiras et al., 1994) and have been reported since 1916 (Sobrino Buhigas, 

1918). Shellfish poisoning outbreaks have been known to occur since 1976 (Estrada et 

al., 1984; Moita, 1993). These are caused by the DSP producers Dinophysis acuminata 

and D. acuta and the PSP producers Gymnodinium catenatum and Alexandrium 

tamarense. Total losses to the shellfish industry attributed to these toxic outbreaks have 

been estimated at 10-20 million euros per year on average between 1989 and 1998 

(Scatasta et al., 2003).  
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While D. acuminata is generally present in low numbers throughout the upwelling 

season, D. acuta and G. catenatum tend to appear during downwelling events in late 

summer-early autumn (Fraga et al., 1988; Figueiras et al., 1994). D. acuminata and D. 

acuta also tend to be spatially segregated, with D. acuminata associated with lower 

salinity waters (Reguera et al., 1993b). Blooms of the yessotoxin producer 

Lingulodinium polyedrum and of the ichthyotoxic species Heterosigma akashiwo have 

also been reported (Sobrino Buhigas, 1918; Pazos et al., 1995a). A. tamarense and G. 

catenatum were not recorded in Galician waters prior to the 1970s and their apparent 

increase has been attributed to enhanced eutrophication of the rías as a result of 

increased sewage discharges, expansion of the mussel farms and increase in forest fires 

(Wyatt & Reguera, 1989). The duration of the upwelling season has also decreased by 

~85 days over the last 40 years, causing an increase in the renewal time of the rías, from 

~2.2 to ~5.1 s m-2 (Álvarez-Salgado et al., 2008). However, contradictory results were 

obtained in the same region using ship-based measurements (Guisande et al., 2004; 

McGregor et al., 2007) and in other upwelling systems including the Benguela (Gregg et 

al., 2005), consistent with the hypothesis that upwelling would intensify as a result of 

global climate change (Bakun, 1990). The prolonged renewal time is positively 

correlated with the number of days of mussel farm closures caused by toxic outbreaks. 

This is due to the success of HAB species such as Dinophysis spp. in low turbulence 

environments (Álvarez-Salgado et al., 2008).  

Advection of established offshore populations has been suggested as the origin of 

HABs in the rías (Fraga et al., 1993; Pazos et al., 1995b; Sordo et al., 2000), although in 

situ development as a result of resuspension and germination of cysts within the rías has 

also been suggested (Fraga et al., 1990; Figueiras & Pazos, 1991a; Pazos et al., 1995b; 

Figueiras et al., 1998). HAB species such as Gymnodinium catenatum are found in the 

offshore upwelling assemblages, such as the Sines upwelling centre off the Portuguese 

coast (Estrada, 1995), which are then transported towards the Galician coast by surface 

poleward currents. These warm currents can be advected into the rías during upwelling 

relaxation (Fraga et al., 1993) and it has been suggested that HAB populations 

originating off the Portuguese coast may be advected into the Galician rías 450 km to the 

north (Estrada, 1995). A later study, however, failed to detect any G. catenatum cells in 

the poleward current waters and hypothesised that G. catenatum grew and accumulated 

at the downwelling front associated with the slope (Figueiras et al., 1998).  
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The reversal of circulation that leads to downwelling is thought to favour selection of 

motile species such as G. catenatum, which can maintain themselves in the surface layer 

(Fraga et al., 1988; Figueiras et al., 1994; Fermin et al., 1996). For example, G. 

catenatum cells are able to overcome downwelling velocities of 10 m day-1 (Figueiras et 

al., 1995). HABs can also develop during weak upwelling, when it is sufficient to raise 

the nutricline to ~10 m but not so intense that diatoms are favoured over HAB species 

(Figueiras & Rios, 1993). In this situation, dinoflagellates can undertake diel vertical 

migrations that allow them to exploit the high nutrient concentrations at the nutricline 

during the night and photosynthesise during the day in the surface layer. This involves 

synthesis of carbohydrates during the day, which can then supply the energy required for 

basal metabolism, migration, nutrient acquisition and synthesis of structural compounds, 

as shown by Figueiras & Fraga (1990).  

During the upwelling season diatom growth is sustained by NO3
-, as shown by the 

relationship between ƒ-ratio and upwelling index (Rios et al., 1995). The concentration 

of regenerated NH4
+ increases throughout the season, with autumn dinoflagellate 

populations relying on NH4
+ as their main source of nitrogen. 

 

4.1.4. Aims and objectives 

 

The aim of this work was to determine how nitrogen nutrition of HABs during the 

downwelling season differs from that of diatom populations during the upwelling season 

and to identify particular nitrogen nutrition strategies in HAB species that may be 

specific (and common) to upwelling systems. Specific objectives were: 

- to characterise the hydrographic and nutrient conditions during the 

downwelling (September 2006) and upwelling (June 2007) seasons, 

- to compare phytoplankton community structure during both seasons and 

determine whether a HAB population was present during the downwelling 

season, 

- to compare the uptake rates of NO3
-, NH4

+ and urea in both seasons and 

identify possible nitrogen nutrition strategies displayed by HABs, and to 

compare these with strategies identified in the Benguela. 
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4.2. Results 

 

4.2.1. Meteorological conditions 

 

4.2.1.1. Wind 

 

In September 2006, winds were north-westerly for the first 10 days, alternating 

between north-westerly and south-westerly between 10 and 20 September, then south-

westerly for the last 10 days. Westerly components were -1.4 to 4.5 m s-1 and southerly 

components were -3.8 to 11.0 m s-1 (Figure 4.3a, c).  

Wind direction in June 2007 was more variable, spanning a wider range of westerly 

(-4.8 to 4.7 m s-1) and southerly components (-10.5 to 11.4 m s-1). Winds were north-

easterly for the first week, then alternated between south-easterly and south-westerly for 

the following 2 weeks then were north-easterly again until the end of the month (Figure 

4.3 b, d).  
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Figure 4.3. Westerly and southerly wind components in (a, c) September 2006 and (b, d) June 2007 
measured at the meteorological station on Islas Ciès in September and by the meteorological buoy 
off Cape Silleiro in June. 
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4.2.1.2. Rainfall and solar radiation 

 

Rainfall was generally low during the summer months (<35 mm), with the highest 

value occurring in August 2006 (Figure 4.4a). Highest rainfall was recorded in 

November 2006 (205 mm), followed by March 2006 (130 mm). Total rainfall between 

November and April was equivalent in both years (433 and 438 mm, respectively).  

Incoming solar radiation was on average 48 % higher in June 2007 than in 

September 2006, with values ranging from 986 to 3183 x 10 kJ m-2 in June and from 618 

to 2471 x 10 kJ m-2 in September (Figure 4.4b,c). Radiation was particularly high at the 

start of the September survey (1985 x 10 kJ m-2), dropping to 875-1142 x 10 kJ m-2 for 

the rest of the survey. In June, radiation increased from the start (1918 x 10 kJ m-2) to 

the end of the survey (3183 x 10 kJ m-2). 

 

 
Figure 4.4. (a) Total monthly rainfall measured at the Islas Ciès meteorological station between 
November 2005 and June 2007 and daily solar radiation measured at Vigo campus meteorological 
station in (b) September 2006 and (c) June 2007.   
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4.2.2. Hydrography 

 

4.2.2.1. Tides 

 

At the start of the 2006 survey (26 September), the tidal state was close to spring, 

with a range of 2.8 m. By the end of the survey the tide was almost neap, the range 

having decreased to 1.1 m (Figure 4.5a, b). In June 2007, the tide was close to neap at 

the start of the survey, with a range of 1.3 m on 25 June, increasing to 2.0 m by 28 June 

(Figure 4.5c, d). 

On 27, 28 and 29 September 2006 and 27 June 2007 repeat stations were carried out 

on different tidal states (high, low and intermediate). On 26 and 30 September 2006 and 

25 and 28 June 2007, sampling was carried out at several stations along the estuary, with 

the ebbing tide on 30 Sept and 28 June, against the ebbing tide on 26 Sept and against 

the flooding tide on 25 June.   

 
Figure 4.5. (a) Tidal heights and (b) tidal ranges between 25 and 30 September 2006; (c) tidal 
heights and (d) tidal ranges between 24 and 28 June 2007.  
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4.2.2.2. Temperature 

 

At the start of the 2006 survey (26 Sept), the water column was stratified in the 

southern mouth of the ría, which was characterised by remnants of upwelled water 

below ~5 m (Figure 4.6). A downwelling front was apparent in the vicinity of station 

B2, where the 17.6 °C isotherm deepened from ~5 to ~15 m. By the end of the survey 

(30 Sept) the water column had warmed and was isothermal between B2 and B5, with 

temperatures of ~18 °C measured throughout the water column (Figure 4.6, Figure 4.8).  

Surface temperature increased along the ría, from 17.3 °C at B5 and B2 to 18.2 °C at 

B2 (Figure 4.8). Surface temperature variations with tidal state were small, increasing by 

0.36 °C at B3 and by 0.25 °C at B2, between high and low tide, although at B5 

temperature was 0.16 °C lower at low tide than at high tide (Table 4.1).   

 

 
Figure 4.6. Temperature contour plots obtained from MiniBAT deployments along longitudinal 
transects of the ría on (a) 26 September and (c) 30 September 2006. The ship’s tracks are shown in 
(b) for 26 September and (d) for 30 September. Courtesy E.D. Barton. 
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In 2007, the water column was stratified throughout the ría, displaying little 

horizontal variation in temperature. At the start of the survey (25 June), surface 

temperatures were ~19 °C, the thermocline was at 15-20 m depth and recently upwelled 

water (~13.5 °C) was present below 20 m. By 28 June the thermocline was uplifted to 

~5-10 m and surface water had cooled to ~18 °C (Figure 4.7, Figure 4.8). Surface 

temperatures were significantly higher in 2007 than in 2006, whereas bottom 

temperatures were significantly lower (Mann-Whitney U-test, p < 0.05). 

On 25 June, surface temperature increased from 18.9 at B5 to 19.6 °C at B3, but was 

slightly lower at B2 (19.3 °C). Higher temperatures were measured at the inner stations 

B0 and B1 (19.9-20.0 °C). On 28 June, surface temperature differences were small, 

varying from 17.5 to 18.0 °C between B0 and B5, with the lowest temperatures 

measured at B0. At B3, surface temperature dropped by 0.69 °C between high and low 

tide (Table 4.1). 

 

 
Figure 4.7. Temperature contour plots obtained from MiniBAT deployments along longitudinal 
transects of the ría on (a) 25 June and (c) 28 June 2007. The ship’s tracks are shown in (b) for 25 
June and (d) for 28 June. Courtesy E.D. Barton. 
 
 



 128 

 
 
Figure 4.8. Temperature profiles obtained from CTD casts in (a, b, c) September 2006 and (d, e, f) 
June 2007 at stations (a, d) B5, (b, e) B3 and (c, f) B2. N.B: sampling dates were the same in (d,e,f). 
 

Date Station Latitude Longitude Time
Hrs before/ 

after HT
Temp Salinity DO

27/09/2006 B5.1 42.206 -8.863 06:00 -0.2 17.66 35.28 113
B5.2 42.209 -8.864 09:09 3.0 17.55 35.46 117

B5.3 42.209 -8.864 12:00 5.8 17.50 35.43 118

28/09/2006 B3.1 42.224 -8.818 06:08 -0.7 17.36 35.28 115
B3.2 42.225 -8.818 08:58 2.8 17.38 35.26 115

B3.3 42.224 -8.817 12:16 5.5 17.72 35.18 115

29/09/2006 B2.1 42.243 -8.758 06:43 -0.8 17.59 35.15 111
B2.2 42.241 -8.760 09:25 1.9 17.80 35.12 112

B2.3 42.242 -8.759 12:11 4.6 17.84 35.15 114
27/06/2007 B3.1 42.226 -8.819 07:16 5.7 17.61 33.51 104

B3.2 42.226 -8.818 09:41 -4.3 17.91 33.12 105
B3.3 42.227 -8.818 12:44 -1.3 18.30 33.98 109  

Table 4.1. Variations in surface temperature (°C), salinity and DO (% saturation) measured at fixed 
stations at different tidal states in September 2006 and June 2007.  
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4.2.2.3. Salinity 

 

In September 2006, the water column was relatively homogeneous with respect to 

salinity. Salinity was high throughout the ría (>35) and decreased between 26 and 30 

September. This was not a result of differences in tidal state, as sampling was generally 

closer to high tide on 30 September. At the downwelling front, salinity was vertically 

homogeneous, whereas throughout the rest of the ría salinity increased slightly with 

depth, particularly towards the head of the ría (Figure 4.9). At stations B5-B2 the salinity 

difference between surface and bottom was <0.3 on 26 Sept whereas on 30 Sept it was 

0.3-0.6 (Figure 4.11). Surface salinity varied by <0.3 between B5 and B2 on both 26 and 

30 September and variation with tidal state was low at all stations (0.03-0.15, Table 4.1). 

 

 
Figure 4.9. Salinity contour plots obtained from MiniBAT deployments along longitudinal transects 
of the ría on (a) 26 September and (c) 30 September 2006. The ship’s tracks are shown in (b) for 26 
Sept and (d) for 30 Sept. Courtesy E.D. Barton. 
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In June 2007, surface salinities were significantly lower than in September, whereas 

bottom salinities were significantly higher (Mann-Whitney U-test, p < 0.05). A halocline 

was clearly visible at 10-15 m, with salinities increasing by ~2 between surface and 

bottom (Figure 4.11). Salinities in the top 25 m increased by ~0.5 between 25 and 28 

June, but did not vary below 25 m. Surface salinity showed greater horizontal variation 

than in September, decreasing by 0.7 between stations B5 and B2 and by a further 2.5 

between B2 and B0 on 25 June. On 28 June the total variation between B5 and B0 was 

1.5. Variation with tidal state was also more pronounced. At B3, surface salinity was 0.5 

to 0.9 higher when sampled closest to high tide than at other sampling times (Table 4.1). 

 

 
Figure 4.10. Salinity contour plots obtained from MiniBAT deployments along longitudinal 
transects of the ría on (a) 25 June and (c) 28 June 2007. The ship’s tracks are shown in (b) for 25 
June and (d) for 28 June. Courtesy E.D. Barton. 
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Figure 4.11. Salinity profiles obtained from CTD casts in (a, b, c) September 2006 and (d, e, f) June 
2007 at stations (a, d) B5, (b, e) B3 and (c, f) B2. N.B: sampling dates were the same in d,e,f. 
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4.2.3. Dissolved oxygen 

 

In September 2006, DO saturations were similar throughout the ría. Saturations were 

also relatively homogeneous throughout the water column, decreasing slightly with 

depth. At B5, saturations dropped from 115-120 % at the surface to 100-110 % at the 

bottom on 26 and 27 Sept, although on 30 Sept the drop was more significant, with 

saturations dropping below 100 % at ~30 m (Figure 4.12). At B3, saturations started to 

decrease at ~20 m depth on 26 and 28 Sept, whereas on 30 Sept it decreased only below 

~30 m. At B2, greater temporal variation was observed, with saturations increasing by 

~20 % throughout the water column between 26 and 30 Sept. 

 

 
Figure 4.12. Profiles of DO saturation obtained from CTD casts in (a, b, c) September 2006 and (d, 
e, f) June 2007 at stations (a, d) B5, (b, e) B3 and (c, f) B2. Dashed lines indicate 100 % saturation. 
N.B: sampling dates were the same in (d,e,f). 
 

In June 2007, both surface and bottom saturations were significantly lower than 

those in September (Student’s t-test, p < 0.01 and Mann-Whitney U-test, p < 0.05). 

Saturations were high (mean 109 %) at the surface, but dropped rapidly below the 

pycnocline (mean 60 %), consistent with the predominance of photosynthesis over 

respiration in the euphotic zone and of respiration over photosynthesis in the deeper 
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waters. The decline in saturation occurred more rapidly and at shallower depths on 28 

June than on 25 June, consistent with the shallowing of the pycnocline. Profiles were 

similar for all stations, except that the decline in DO saturation associated with the 

pycnocline occurred at a deeper depth at B5 than at B3 and B2 (Figure 4.12). DO 

concentrations were significantly correlated with temperature (DO = 11.98 T + 13.65, r2 

= 0.64, n = 67, p < 0.01) in June, but not in September. 

 
4.2.4. Nutrients 

 

In September 2006, NO3
- concentrations were relatively homogeneous throughout 

the water column, displaying an increase with depth of <1 µmol l-1. Horizontal 

variations were also slight, with surface concentrations varying by < 0.3 µmol l-1 (Figure 

4.13 a,b,c). Concentrations decreased by up to 1.3 µmol l-1 between 26 Sept and 30 Sept, 

although an initial increase was observed on 28 Sept (B3) and 29 Sept (B2). This was 

not attributable to differences in tidal state, since similar concentrations were measured 

at various points of the tidal cycle both on 28 and 29 Sept (Table 4.2). 

Ammonium concentrations were highest at B2, with concentrations ranging from 1.1 

to 4.7 µmol l-1 at the surface, whereas at B5 and B3 they ranged from 0.8 to 2.1 µmol l-1. 

Concentrations increased with depth, to between 1.7 and 4.5 µmol l-1 at B5 and B3 and 

between 4.1 and 5.2 µmol l-1 at B2 (Figure 4.13d,e,f). At B5, surface concentrations 

remained similar until 30 Sept, although deep concentrations increased from 1.7 to 5.3 

µmol l-1. At B3, concentrations increased throughout the water column between 26 and 

28 Sept (by 0.4 to 1.4 µmol l-1), although on 30 Sept concentrations were similar to 26 

Sept, with the exception of the deepest concentration, which increased to 5.5 µmol l-1. 

Ammonium concentrations were 34 and 44 % higher at high tide relative to low tide at 

B5 and B2, respectively (Table 4.2). 

Phosphate and Si profiles were very similar to NH4
+ profiles, displaying the same 

spatial and temporal variations. Surface PO4
3- concentrations were 0.1-0.3 µmol l-1 at B5 

and B3, increasing with depth, to between 0.3 and 0.8 µmol l-1 (Figure 4.13g,h). At B3, 

concentrations increased throughout the water column (by 0.10 to 0.22 µmol l-1) 

between 26 Sept and 28 Sept, then dropped again to their initial values on 30 Sept, with 

the exception of the deepest, which increased (Figure 4.13h). Concentrations were 

higher at B2 than at the other stations on 26 Sept, although on 30 Sept they were similar 

in the top 10 m and lower at depth, relative to B5 and B2. Phosphate concentrations 
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were highest at high tide at B5, although little variation was observed with tidal state at 

B3 and B2 (Table 4.2).  

Silicate concentrations at B5 were 2.1-3.0 µmol l-1 at the surface, increasing to 3.5-

8.7 µmol l-1 at 30 m (Figure 4.13j,k). At B2, surface concentrations were higher than at 

B3 and B5 between 26 and 29 Sept (2.4-5.4 µmol l-1 at the surface and 6.8-10.1 µmol l-1 

at the bottom), although on 30 Sept they dropped to 2.3-3.2 µmol l-1 (Figure 4.13l). 

Concentrations decreased with the tide at B5, although this was not observed at the other 

stations (Table 4.2).  

  

Date Station Latitude Longitude Time
Hrs before/ 

after HT
NO3

-
NH4

+ Urea PO4
3- Si chl-a

27/09/2006 B5.1 42.206 -8.863 06:00 -0.2 1.44 1.29 - 0.25 2.98 1.03
B5.2 42.209 -8.864 09:09 3.0 1.27 0.92 - 0.11 2.44 0.81

B5.3 42.209 -8.864 12:00 5.8 1.13 0.96 - 0.15 2.17 0.68

28/09/2006 B3.1 42.224 -8.818 06:08 -0.7 2.43 1.93 0.37 0.23 2.72 3.30
B3.2 42.225 -8.818 08:58 2.8 2.62 1.84 0.19 0.26 2.78 4.39

B3.3 42.224 -8.817 12:16 5.5 2.58 2.08 - 0.28 2.97 4.47

29/09/2006 B2.1 42.243 -8.758 06:43 -0.8 2.35 4.70 - 0.42 3.64 3.42
B2.2 42.241 -8.760 09:25 1.9 2.03 3.93 1.14 0.38 3.44 5.37

B2.3 42.242 -8.759 12:11 4.6 2.14 3.27 0.65 0.39 3.57 6.42
27/06/2007 B3.1 42.226 -8.819 07:16 5.7 0.01 0.06 - 0.10 1.03 7.96

B3.2 42.226 -8.818 09:41 -4.3 0.00 0.00 - 0.07 1.33 6.39
B3.3 42.227 -8.818 12:44 -1.3 0.01 0.09 - 0.06 1.07 5.22  

Table 4.2. Variations in surface NO3
-, NH4

+, PO4
3-, Si (µmol l-1) and chl-a (µg l-1) measured at fixed 

stations on different tidal states in September 2006 and June 2007.  
 



 135 

B5

NO3
- (µmol l-1)

0 1 2 3

D
ep

th
 (

m
)

0

10

20

30

40
NH4

+ (µmol l-1)

0 1 2 3 4 5 6

D
ep

th
 (

m
)

0

10

20

30

40
PO4

3- (µmol l-1)

0.0 0.2 0.4 0.6 0.8 1.0

D
ep

th
 (

m
)

0

10

20

30

40
Si (µmol l-1)

0 2 4 6 8 10

D
ep

th
 (

m
)

0

10

20

30

40

26 Sept
27 Sept
30 Sept

B3

NO3
- (µmol l-1)

0 1 2 3

NH4
+ (µmol l-1)

0 1 2 3 4 5 6

PO4
3- (µmol l-1)

0.0 0.2 0.4 0.6 0.8 1.0

B2

NO3
- (µmol l-1)

0 1 2 3

NH4
+ (µmol l-1)

0 1 2 3 4 5 6

PO4
3- (µmol l-1)

0.0 0.2 0.4 0.6 0.8 1.0

Si (µmol l-1)
0 2 4 6 8 10

26 Sept
28 Sept
30 Sept

Si (µmol l-1)
0 2 4 6 8 10

26 Sept
29 Sept
30 Sept

a. b. c.

d. e. f.

g. h. i.

j. k. l.

 
Figure 4.13. Profiles of (a, b, c) NO3

-, (d, e, f) NH4
+, (g, h, i) PO4

3- and (j, k, l) Si at stations (a, d, g, j) 
B5, (b, e, h, k) B3 and (c, f, i, l) B2 on 3 sampling dates in September 2006, as shown in the legend. 
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In June 2007, NO3
- concentrations were very low (<1.5 µmol l-1) in the top 10-20 m 

at the start of the survey, increasing with depth to maximal concentrations of 9-11 µmol 

l-1 at 30-40 m depth (Figure 4.14a-c). Surface concentrations were significantly lower 

than in September, whereas bottom concentrations were significantly higher (Mann-

Whitney U-test, p < 0.05). Profiles were similar throughout the ría on 25 June, although 

on 28 June higher concentrations were measured in the top 20 m at B2 (>5 µmol l-1) 

relative to the other stations. Concentrations below ~10 m increased between 25 and 28 

June, consistent with the raising of the pycnocline. Surface concentrations showed very 

little variation with tidal state (Table 4.2). 

Ammonium was depleted throughout the ria at the surface (≤0.1 µmol l-1), increasing 

to 3.0-3.6 µmol l-1 at the bottom (Figure 4.14d-f). On 28 June, NH4
+ was still depleted in 

the surface at B3 and B5 but had increased at B2 (1.9 µmol l-1). At B5, the concentration 

at 10 m also increased (1.9 µmol l-1). At B3, NH4
+ concentration increased to 3.1 and 2.0 

µmol l-1 at 10 m on 25 and 27 June, respectively, but was depleted again in the top 10 m 

on 28 June. Both surface and bottom concentrations were significantly lower than in 

September (Mann-Whitney U-test, p < 0.05). Surface concentrations showed no 

consistent pattern in variation with tidal state (Table 4.2). 

Phosphate displayed a similar distribution to NO3
-, and was also significantly lower 

than in September at the surface (Student’s t-test, p < 0.05), but significantly higher at 

the bottom (Mann-Whitney U-test, p < 0.05). Surface concentrations were < 0.1 µmol l-1 

at all stations between 25 and 28 June, with the exception of B2 on 28 June where it 

increased to 0.40 µmol l-1 (Figure 4.14g-i). Bottom concentrations were 0.7-0.9 µmol l-1 

at all stations. At B2, concentrations increased throughout the water column on 28 June. 

As with the other nutrients, no specific pattern in PO4
3- concentrations was identified 

with respect to tidal state (Table 4.2). 

Silicate distribution broadly followed that of PO4
3-. Surface concentrations were ≤ 

1.0 µmol l-1 at B5 and B3 on both 25 and 28 June, but higher at B2 (1.4 and 3.6 µmol l-1, 

respectively) (Figure 4.14j-l). Surface concentrations were also significantly lower than 

in September (Student’s t-test, p < 0.001), although bottom concentrations were not 

significantly different (Mann-Whitney U-test, p > 0.05).  
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Figure 4.14. Profiles of (a, b, c) NO3

-, (d, e, f) NH4
+, (g, h, i) PO4

3-, and (j, k, l) Si at stations (a, d, g, j) 
B5, (b, e, h, k) B3 and (c, f, i, l) B2 measured on 2 or 3 sampling dates in June 2007, as shown in the 
legend.  
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At B5, Si increased between 25 and 28 June at most depths below the surface, 

whereas at B3 they decreased at some depths and increased at others (Figure 4.14k). At 

B2, concentrations increased at all depths except at 10 m, where a maximum was 

observed on 28 June (Figure 4.14l). There did not appear to be any correlation between 

Si concentration and tidal state (Table 4.2). 
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Figure 4.15. Linear regressions of (a) DIN versus PO4

3- concentrations and (b) DIN versus Si 
concentrations measured at all stations and depths in September 2006 (open symbols) and June 
2007 (closed symbols). 

 

Nitrate was significantly correlated with PO4
3-

 and Si in both September and June, 

although better correlations were obtained when using total DIN (= NO3
- + NO2

- + 

NH4
+) (Figure 4.15,Table 4.3), since NH4

+
 was an important fraction of total DIN (51.6 

± 1.4 % in September and 35.9 ± 3.0 % in June), with average concentrations of 2.4 ± 

0.2 µmol l-1 and 2.3 ± 0.2 µmol l-1, respectively. The regression coefficient of the DIN vs 

PO4
3- regression (or DIN:P ratio) was higher in June than in September, and was higher 

than for the NO3
- vs PO4

3- regression in both cases. The DIN:Si ratio was higher in June 

than in September and was higher than the NO3
-:Si ratio in both cases (Table 4.3). In 

September, the DIN:P ratio was less than 50 % of  the Redfield ratio of 16, whereas in 

June it was very similar to Redfield. The DIN:Si ratio in September was <1, indicating 

that N was limiting, whereas in June a ratio >1 indicated that Si was limiting for 

diatoms. 

Nitrate was significantly correlated with temperature in June and September, 

whereas DIN and Si were significantly correlated with temperature only in June (Table 

4.3). Phosphate was significantly correlated with temperature in June and September, 

with a lower level of significance for the latter.  
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Relationship a b r n Month

DIN vs PO4
3- 17.46 -0.44 0.96** 67 June

7.17 1.75 0.91** 80 Sept
NO3

- vs PO4
3- 13.41 -0.96 0.85** 67 June

0.79 1.44 0.36** 80 Sept
DIN vs Si 1.39 1.47 0.66** 67 June

0.77 1.30 0.88** 80 Sept
NO3

-
 vs Si 0.88 1.39 0.49** 67 June

0.10 1.33 0.39** 80 Sept
DIN vs temp -1.97 38.6 -0.89** 67 June

0.57 -5.34 -0.15 80 Sept
NO3

-
 vs temp -1.78 32.9 -0.92** 67 June

-0.40 8.73 -0.40** 80 Sept
PO4

3- vs temp -0.10 1.98 -0.79** 67 June
0.13 -1.94 -0.31* 80 Sept

Si vs temp -0.45 11.69 -0.42** 67 June
0.81 -10.04 -0.20 80 Sept  

Table 4.3. Results of linear regressions among nutrients and between nutrients and temperature. a = 
regression coefficient; b = y-axis intercept; r = correlation coefficient; n = number of observations.  
* p < 0.05; ** p < 0.01. 
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4.2.5. Chl-a 

 

Chl-a concentrations were relatively low in September 2006, particularly at the start 

of the survey (<5 µg l-1). At this time there was little horizontal variation between 

stations B5 and B2. By 30 September chl-a had increased and showed a horizontal 

gradient, with maximum concentrations of 5.8, 7.1 and 8.1 µg l-1 at B5, B3 and B2, 

respectively (Figure 4.16a-c). At the start of the survey, chl-a was relatively 

homogeneous throughout the water column, whereas on 30 Sept chl-a concentrations 

were highest in the top 15-25 m and decreased with depth. 

In June 2007, a pronounced chl-a maximum was observed at ~10 m depth. 

Maximum concentrations were 10.5, 15.8 and 6.5 µg l-1 at B5, B3 and B2, respectively 

on 25 June. On 28 June they had increased at B5 and B2, to 25.8 and 25.1 µg l-1, 

respectively, whereas at B3 concentrations remained the same. Surface concentrations 

were not significantly different from September, although concentrations at 10 m were 

significantly higher (Mann-Whitney U-test, p < 0.05).  

The proportion of microplankton (chl-a > 20 µm) was significantly lower in 

September than in June, whereas the proportions of nanoplankton (chl-a >2 and <20 µm) 

and picoplankton (chl-a < 2 µm) were significantly higher (Mann-Whitney U-test for 

micro- and nanoplankton, Student’s t-test for picoplankton, p < 0.05). 

 
Figure 4.16. Chl-a profiles obtained from CTD fluorescence measurements in (a, b, c) September 
2006 and (d, e, f) June 2007 at stations (a, d) B5, (b, e) B3 and (c, f) B2. Note the difference in scale 
between 2006 and 2007. N.B: sampling dates were the same in (d,e,f). 
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Figure 4.17. Depth-averaged proportions of total chl-a represented by microplankton, nanoplankton 
and picoplankton on (a) 26 September, (b) 30 September, (c) 25 June and (d) 28 June.  
 
 

4.2.6. Phytoplankton community structure 

 

4.2.6.1. General community structure 

 

In September 2006, the phytoplankton community was numerically dominated by a 

mixture of dinoflagellates (up to 66 %) and small flagellates (up to 82 %), whereas the 

proportion of diatoms was <52 %. Maximum concentrations were 0.22 x 106 for 

diatoms, 0.35 x 106 for dinoflagellates and 0.70 x 106 cells l-1 for flagellates. In June 

2007, the phytoplankton community was dominated by diatoms, which represented 65 to 

99 % of total phytoplankton cells, with concentrations as high as 15 x 106 cells l-1. 

Dinoflagellate concentrations only reached a maximum of 0.27 x 106 cells l-1, 

representing up to 37 % of total phytoplankton cells, whereas flagellates reached 0.24 x 

106 cells l-1 (35 % of total cell concentration). Highest cell concentrations were generally 

reached at the surface or at 10 m depth and increased from a maximum of 3.4 x 106 cells 

l-1 (B2 10 m) to a maximum of 14.9 x 106 cells l-1 (B2, 3 m) between 25 and 28 June 

(Figure 4.18).  
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Dinoflagellate concentrations were significantly correlated with microplankton chl-a 

(>20 µm) (data not shown) both in September (r2 = 0.26, n = 46, p < 0.01) and in June 

(r2 = 0.53, n = 37, p < 0.01). Diatoms displayed the same correlation, although with 

lower levels of significance (r2 = 0.09 and 0.17, respectively, p < 0.05).  

Cluster analysis performed on data from all stations and depths in September 2006 

resulted in 4 clusters at the 55 % similarity level (Appendix 2, Table 4.4). Clusters I and 

II comprised shallow samples (3-10 m) from 26 to 29 September. Whereas B5 and B3 

stations from different dates clustered together (Cluster II), B2 stations from 26 and 29 

September were divided into Clusters I and II, respectively. Clusters III and IV 

comprised deeper samples (10 to 36 m) from 26-29 September and all samples from 30 

September. Species’ diversity was high in all clusters, as shown by the Shannon 

Diversity Index (H’), therefore the relative contribution of each species to total similarity 

was low (Table 4.4). Cryptophytes, the diatom Nitzschia longissima and a small 

Gymnodinium species were responsible for similarity within all clusters. Species that 

contributed to similarity within specific clusters included the dinoflagellates Scrippsiella 

trochoidea and Prorocentrum gracile, the diatom Chaetoceros spp., and the ichthyotoxic 

raphidophyte Heterosigma akashiwo for Cluster I; the dinoflagellates Ceratium fusus 

and Protoperidinium divergens for Cluster II; the diatom Guinardia delicatula and the 

flagellate Solenicola setigera for Cluster III and the dinoflagellate Amphidinium spp. for 

Cluster IV.  

The shallower samples (Clusters I and II) both had significantly higher proportions 

of diatoms than the deeper samples and a significantly lower % dinoflagellates (with the 

exception of I vs III). Cluster III had the highest proportion of diatoms and Cluster IV 

had the highest proportion of dinoflagellates (Table 4.4). H’ was also significantly lower 

for Cluster I than for Cluster II, which in turn was significantly lower than for Clusters 

III and IV (Student’s t-test, p < 0.01), indicating that diversity was higher at depth. The 

clusters could also be linked to a certain extent with nutrient conditions, although not 

with temperature or salinity (Table 4.5). For example, Clusters I and III displayed 

significantly higher PO4
3- and Si concentrations and lower DIN:P ratios relative to 

Cluster II (Student’s t-test, p < 0.01). Cluster IV also had significantly lower PO4 and Si 

concentrations (Student’s t-test, p < 0.001) and higher DIN:P ratios (Mann-Whitney U-

test, p < 0.05) relative to Cluster III. Cluster II had significantly lower Si:DIN ratios than 

Clusters III and IV (Student’s t-test, p < 0.01). Interestingly, NO3 concentrations did not 

seem to have any effect on community structure. 



 143 

Cluster analysis performed on the data from June 2007 produced 4 clusters at the 50 

% similarity level (Appendix 2, Table 4.6). Cluster I comprised samples from the inner- 

to mid-ría stations B0 to B3, from the shallower depths (3 to 10 m) on 25-27 June but 

from deeper depths (17-25 m) on 28 June. Cluster II comprised the shallow samples 

from the outer- to mid- ría stations (B5 to B3) on 25 June, but also deeper (13-18 m) 

samples from the inner station B2 on 28 June. Clusters III and IV generally comprised 

the deeper samples, ranging from 14 to 22 m, with the inner stations (B1 and B2) 

belonging to Cluster III and the outer and mid-ría stations (B5 to B3) belonging to 

Cluster IV. H’ values were similar to September 2006, ranging from 1.5 to 2.6. The 

lowest value was measured in Cluster I, in which two diatom species, Skeletonema 

costatum and Nitzschia cf. americana contributed 50 % to total similarity within the 

cluster. Cluster II was significantly more diverse, with Leptocylindrus spp. and 

Chaetoceros socialis also contributing to similarity. Both of these clusters had 

significantly higher percentages of diatoms (>90 %) relative to Clusters III and IV. 

Clusters III and IV had significantly higher H’, and they comprised cryptophytes and 

dinoflagellates as well as diatoms.  

 

 
Figure 4.18. Means of cell concentrations at 3 and 10 m (with standard errors shown as error bars) 
of diatoms, dinoflagellates and flagellates at B5, B3 and B2 on (a) 26 September 2006, (b) 30 
September 2006, (c) 25 June 2007 and (d) 28 June 2007.  
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Cluster

Samples in 

cluster

Species

% contribution 

to total 

similarity

H' % diatoms

% dino-

flagellates

I 26 B2 3-10 m Cryptophyceae 10.8 2.2 ± 0.23 16.4 ± 9.1 33.3 ± 9.9
Cachonina niei 7.2

Chaetoceros  spp. 6.5
Nitzschia longissima 5.7

Small Gymnodinium  sp. 5.6
Thalassiosira rotula 4.8

Heterosigma akashiwo 4.5
Scrippsiella trochoidea 4.5
Prorocentrum gracile 4.5

II 26-27 B5 3 m Cryptophyceae 16.1 1.3 ± 0.39 4.6 ± 2.9 25.8 ± 9.3
26-28 B3 3-10 m Cachonina niei 7.5

29 B2 3-10 m Ceratium fusus 5.4
Nitzschia longissima 5.3

Small Gymnodinium  sp. 4.9
Pseudo-nitzschia delicatissima 4.7

Protoperidinium divergens 4.7
Ceratium furca 4.4

III 28 B3 30 m Cryptophyceae 10.4 2.2 ± 0.09 35.8 ± 12.1 20.1 ± 8.9
29 B2 20-39 m Unidentified centric diatom 7.9

30 B5 35 m Nitzschia longissima 7.5
30 B3 35 m Small Gymnodinium  sp. 5.6

Pseudo-nitzschia delicatissima 5.4
Guinardia delicatula 5.1
Solenicola setigera 4.0
Thalassiosira rotula 3.9

Medium pennate diatom 3.8
IV 26-27 B5 10-36 m Cryptophyceae 10.5 2.3 ± 0.24 16.1 ± 8.4 49.8 ± 13.5

26 B3 20-35 m Small Gymnodinium  sp. 8.4
28 B3 20, 35 m Nitzschia longissima 6.0

26 B2 20-34 m Cachonina niei 5.3
30 B5 2-30 m Amphidinium  spp. 5.2
30 B3 2-30 m Pseudo-nitzschia delicatissima 5.1
30 B2 2-34 m Unidentified centric 5.0

Small fusiform naked dinoflagellate 4.6  
Table 4.4. SIMPER analysis of phytoplankton species’ contributions to similarity within clusters 
identified at the 55 % similarity level and mean H’, % diatoms and % dinoflagellates in each cluster 
in September 2006.  
 

 

Month Cluster Temp. Salinity NO3
-

NH4
+

PO4
3- Si DIN:P Si:DIN

°C

June I 16.54 ± 0.69 34.27 ± 0.41 4.08 ± 1.10 2.94 ± 0.60 0.51 ± 0.08 5.07 ± 0.65 11.76 ± 1.75 3.37 ± 1.69
II 16.82 ± 0.49 35.06 ± 0.15 2.88 ± 0.79 1.10 ± 030 0.22 ± 0.05 2.29 ± 0.41 14.27 ± 2.46 2.80 ± 0.88
III 17.12 ± 0.09 35.29 ± 0.14 1.32 ± 0.17 4.24 ± 1.64 0.51 ± 0.28 6.28 ± 2.23 13.07 ± 3.60 1.09 ± 0.04
IV 15.08 ± 0.81 35.59 ± 0.09 5.36 ± 1.87 2.03 ± 0.39 0.43 ± 0.10 4.20 ± 0.53 16.93 ± 0.82 0.68 ± 0.11

Sept I 18.05 ± 0.22 35.5 ± 0.02 1.55 ± 0.03 3.08 ± 0.26 0.65 ± 0.08 5.07 ± 0.32 7.58 ± 0.59 1.04 ± 0.00
II 17.42 ± 0.09 35.3 ± 0.13 1.91 ± 0.15 1.82 ± 0.39 0.22 ± 0.04 2.73 ± 0.18 18.74 ± 3.91 0.74 ± 0.07
III 17.42 ± 0.13 35.5 ± 0.08 1.88 ± 0.13 4.48 ± 0.41 0.69 ± 0.06 7.31 ± 0.79 9.78 ± 0.39 1.09 ± 0.07
IV 17.32 ± 0.10 35.4 ± 0.22 1.53 ± 0.11 1.86 ± 0.20 0.28 ± 0.03 3.53 ± 0.31 13.94 ± 0.62 1.01 ± 0.04

µmol l-1

 
Table 4.5. Mean (± standard error) temperature, salinity, nutrients and nutrient ratios for each 
cluster as defined in Tables 4.4 and 4.6. 
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Cluster

Samples in 

cluster

Species

% contribution 

to total 

similarity

H' % diatoms

% dino-

flagellates

I 25,28 B1 3-10 m Skeletonema costatum 30.5 1.5 ± 0.3 94.1 ± 6.5 3.4 ± 6.0
25,28 B2 3 m Nitzschia  cf. americana 22.4

27 B3 3 m
28 B2 20-25 m

28 B1 17 m
28 B0 3 m

II 25,28 B5 3-12 m Leptocylindrus danicus 22.6 1.9 ± 0.3 95.6 ± 1.8 3.7 ± 1.6
25,28 B4 3-11 m Leptocylindrus minimus 8.8
25,28 B3 2-11 m Skeletonema costatum 8.3

27 B3 9 m Nitzschia  cf. americana 6.5
28 B5 18 m Chaetoceros socialis 6.1
28 B3 15 m
28 B2 13 m

III 25 B2 18 m Cryptophyceae 13.9 2.6 ± 0.5 61.8 ± 4.4 13.9 ± 10.6
25 B1 14 m Nitzschia  cf. americana 8.8

Skeletonema costatum 8.8
Nitzschia longissima 8.2

Pseudo-nitzschia delicatissima 7.8
Small fusiform naked dino 7.3

IV 25 B5-B3 16-20 m Leptocylindrus danicus 12.6 2.6 ± 0.3 51.9 ± 16.8 34.3 ± 19.0
27 B3 15-21 m Cryptophyceae 10.0

28 B4 22 m Small Gymnodinium  sp. 8.3
Small fusiform naked dino 5.2
Rhizosolenia stolterfothii 5.1
Leptocylindrus minimus 4.9

Pseudo-nitzschia delicatissima 4.8  
 
Table 4.6. SIMPER analysis of phytoplankton species’ contributions to similarity within clusters 
identified at the 55 % similarity level and mean H’, % diatoms and % dinoflagellates in each cluster 
in June 2007.  
 



 146 

4.2.6.2. HAB species 

 

In 2006, Dinophysis acuta was present at all stations except at B2 on 26 September, 

and was generally restricted to the top 10 m, although on 30 September it was 

distributed throughout the water column, down to 20-30 m (Figure 4.19). Highest 

concentrations were observed at B2 towards the end of the survey (maximum 3.9 x 103 

cells l-1 on 29 and 3.7 x 103 cells l-1 on 30 September). Dinophysis caudata was never 

abundant at the surface and was generally found at deeper depths relative to D. acuta 

(down to 36 m). It was relatively abundant at B5 at the start of the survey, displaying a 

maximum at 30 m (3.6 x 103 cells l-1), then decreased in abundance throughout the rest 

of the survey (to <0.4 x 103 cells l-1 on 30 September). At B3 and B2, D. caudata 

abundance peaked on 28-29 September, reaching 2.8-4.5 x 103 cells l-1 (Figure 4.19). 

Gymnodinium catenatum decreased in abundance at B5 and B3 during the survey, 

with maximum concentrations decreasing from 1.5 to 0.3 x 103 cells l-1 at B5 and from 

20.2 to 0.8 x 103 cells l-1 at B3. At B2, no cells were observed on 26 September and the 

highest concentration was measured on 29 September (11.1 x 103 cells l-1), dropping to 

2.1 x 103 cells l-1 on 30 September. Because of their low numerical abundance, the toxic 

dinoflagellates did not influence the clustering of stations. However, concentrations of 

D. acuta and G. catenatum were significantly higher in Cluster II relative to Cluster III 

(Mann-Whitney U-test, p < 0.05). 

Pseudo-nitzschia delicatissima was particularly abundant at B5, displaying a 

maximum (30.8 to 34.7 x 103 cells l-1) at 10-20 m depth. At B3 and B2, P. delicatissima 

often displayed a surface maximum and was generally more abundant at B2 than at B3. 

Concentrations increased between 26 and 30 September, from maxima of 4.0 x 103 and 

4.2 x 103 cells l-1 to maxima of 7.5 x 103 and 14.3 x 103 cells l-1 at B3 and B2, 

respectively. P. delicatissima was responsible for 4.7-5.4 % total similarity within 

Clusters II, III and IV. P. delicatissima concentrations were significantly higher in 

Clusters II and IV relative to Cluster III (Mann-Whitney U-test, p < 0.05). P. seriata was 

also more abundant at B5 relative to the other stations, although concentrations were 

generally low (< 1.0 x 103 cells l-1). 
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Figure 4.19. Cell concentrations of toxic species at (a,d,g) B5, (b,e,h) B3 and (c,f,i) B2 on (a,b,c) 26 
September, (d) 27 September, (e) 28 September, (f) 29 September and (g,h,i) 30 September 2006. 
 

In June 2007, the most abundant HAB species were Pseudo-nitzschia delicatissima 

and P. seriata, although Dinophysis acuminata was also present (Figure 4.20). P. seriata 

was the most abundant at B5 and B3 on 25 June, reaching concentrations of 50.5 x 103 

and 237.6 x 103 cells l-1, respectively, at 10 m. P. delicatissima, however, was more 

abundant at B2 (maximum 10.2 x 103 cells l-1). P. delicatissima became more abundant 

on 28 June, reaching concentrations of 72.8 x 103, 12.1 x 103 and 52.8 x 103 cells l-1 at 

B5, B3 and B2, respectively. Meanwhile, P. seriata concentrations declined at B5 and 

B3, dropping to maxima of 16.0 and 56.6 x 103 cells l-1, respectively, whereas at B2 they 

increased to a maximum of 25.2 x 103 cells l-1.  
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Dinophysis acuminata was most abundant at 10 m at B3, where it reached 15 x 103 

cells l-1 on 25 June, although it declined to 4 x 103 cells l-1 on 28 June. At B5 and B2, 

concentrations were <2.5 x 103 cells l-1 on both dates (Figure 4.20). Both P. seriata and 

D. acuminata concentrations were significantly higher for Cluster II than for all other 

clusters (Mann-Whitney U-test, p < 0.05). 

 

 
Figure 4.20. Cell concentrations of toxic species at (a,d) B5, (b,e) B3 and (c,f) B2 on (a,b,c) 25 June 
and (d,e,f) 28 June 2007. 
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4.2.7. Nitrogen uptake 

 

4.2.7.1. Uptake and regeneration rates 

 

In September 2006, nitrogen was taken up predominantly in the form of NH4
+ [52 to 

74 % total ρ(N)], followed by urea (15 to 32 %), whereas ρ(NO3
-) contributed <20 % 

(Figure 4.21). Total ρ(N) showed little variation between stations and over time, except 

at B2 where it increased by 58 % between 26 and 29 September. Ammonium uptake 

ranged from 0.035 to 0.061 µmol N l-1 h-1, ρ(urea) from 0.008 to 0.026 µmol N l-1 h-1 

and ρ(NO3
-) from 0.004 to 0.013 µmol N l-1 h-1. ƒ-ratios were very low, particularly at 

B2 (0.05 to 0.08), whereas they were 0.10 to 0.16 at B3 and B5 (Figure 4.22). 

In June 2007, total ρ(N) was significantly higher (on average 4-fold) than in 

September 2006 (Student’s t-test, p < 0.0001). This was due to significant increases in 

ρ(NH4
+) (3-fold) ρ(NO3

-) (7-fold) and ρ(urea) (6-fold) (Mann-Whitney U-test, p < 0.05). 

Highest total ρ(N) was measured at B3 and B2 (0.21-0.44 µmol N l-1 h-1), whereas at B5 

and B0 ρ(N) was 0.18-0.19 µmol N l-1 h-1. Surface ρ(NH4
+) ranged from 0.044 to 0.203 

µmol N l-1 h-1, ρ(NO3
-) from 0.030 to 0.114 µmol N l-1 h-1 and ρ(urea) from 0.024 to 

0.341 µmol N l-1 h-1. Ammonium uptake was 30 % to 2-fold higher in the chl-a 

maximum relative to the surface, whereas ρ(urea) and ρ(NO3
-) were higher at the surface 

(3- to 9-fold and 4-fold, respectively) (Figure 4.21h,i). The contribution of NH4
+ to total 

ρ(N) varied between 10 and 74 % at the surface and between 75 and 80 % in the chl-a 

maximum. Urea was also an important source of nitrogen, particularly at the surface at 

B2 (41-78 %). ƒ-ratios were significantly higher (on average 2-fold) than in September 

(Mann-Whitney U-test, p < 0.05), ranging from 0.08 to 0.48 (Figure 4.22). 

Ammonium regeneration rates were highly variable, ranging from 0.063 to 0.457 

µmol N l-1 h-1 in September and from 0.002 to 0.297 µmol N l-1 h-1 in June. Although 

r(NH4
+) was on average higher in September (0.202 ± 0.071 µmol N l-1 h-1) relative to 

June (0.133 ± 0.036 µmol N l-1 h-1), this difference was not statistically significant 

(Student’s t-test, p > 0.05). 
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Figure 4.21. Surface nitrogen uptake rates at stations (a,d) B5, (b,e) B3, (c,f,) B2 and (g) B0 in (a-c) 
September 2006 and (d-g) June 2007. Data from B3 (28 Sept) and B2 (29 Sept) are means of 2 
measurements made at different times of day (SE = 0.003, 0.001 and 0.004 for NO3

-, NH4
+and urea, 

respectively at B3 and 0.0003, 0.002 and 0.002 at B2). Uptake rates at 3 and 10m (h) at B3 on 27 
June 2007 and (i) at B2 on 28 June 2007. 
 

 
Figure 4.22. ƒ-ratios measured at stations (a,d) B5, (b,e) B3, (c,f) B2 and (g) B0 in (a-c) September 
2006 and (d-g) June 2007. 
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4.2.7.2. Nitrogen uptake kinetics 

 

Maximum PN-specific uptake (νmax) was 5-fold higher for NH4
+ than for urea, which 

was 2.6-fold higher than for NO3
- (Table 4.7). The α value was also higher for NH4

+ 

relative to NO3
-, but only by 41 %, and values were similar for NO3

- and urea. The 

differences in α were less pronounced due to the positive correlation between Ks and 

νmax (r
2 = 0.999, n = 3, p < 0.05).  

 
Figure 4.23. Nitrogen uptake versus ambient concentration fitted to the Michaelis-Menten equation 
for uptake kinetics using SigmaPlot (Jandel Scientific). Note the different scale in (a).  
 

Ambient νmax Ks α νmax(NH4) νmax(urea) α(NH4) α(urea)

N νmax(NO3) νmax(NO3) α(NO3) α(NO3)

NO3 0.52 26.2 ± 3.6** 0.37 ± 0.35 70.8 12.82 2.58 1.41 1.01
NH4 0.33 335.9 ± 12.6** 3.36 ± 0.44** 100.0
Urea 0.17 67.7 ± 3.1** 0.95 ± 0.24* 71.3  

Table 4.7. Nitrogen uptake kinetics parameters νmax (x 10-3 h-1), Ks (µmol N l-1) and α (x 10-3 h-1 (µmol 
N l-1)-1) and standard errors derived from Figure 4.23. Ambient nitrogen concentrations (µmol N l-1) 
measured in the water sampled for the experiment are also shown (µmol N l-1) * p < 0.05; ** p < 
0.01. 
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4.3. Discussion 

 

4.3.1. Hydrographic features during the upwelling and downwelling seasons 

 

The hydrographic conditions that prevailed in September 2006 and June 2007 were 

typical of the downwelling and upwelling seasons, respectively. In September, southerly 

winds were predominant and the water column was relatively homogeneous with respect 

to temperature, salinity and DO saturation, as a consequence of downwelling (Figueiras 

et al., 1994). The downwelling front was observed in the vicinity of station B2, 

evidenced by vertical temperature and salinity isolines. The position of the downwelling 

front is known to vary as a result of the relative contributions of freshwater flow out of 

the ría and the inflow of shelf water into the ría (Álvarez-Salgado et al., 2000). 

Temperatures were high (>16.6 °C) throughout the water column, consistent with the 

advection of warm surface shelf water of subtropical origin into the ría (Figueiras et al., 

1994; Figueiras et al., 2002).  

In June, winds were predominantly southerly between 9 and 21 June, indicating that 

no water was upwelled during the 2 weeks prior to the survey. Winds switched to 

northerly (upwelling) during the 3 days preceding the survey, although with relatively 

weak components (< 4 m s-1), therefore upwelling was not strong enough to mix the 

water column and so the water column remained stratified. A thermocline was observed 

between 10 and 20 m, showing positive estuarine circulation, with a warm, less saline 

surface layer flowing out of the ría (T = 18-20 °C, S = 33.1-34.9) and colder, more 

saline water (T = 13-15 °C, S = 35.4-35.9) flowing into the ría at depth. Surface 

salinities were significantly higher in September than in June, consistent with 2-fold 

higher rainfall occurring during the 3 months prior to the June survey. This indicates the 

potential importance of freshwater flow on the hydrographic conditions in spring/early 

summer, as also shown by Figueiras & Pazos (1991b) for 3 of the Rías Baixas.  

Upwelled ENACW water is characterised by temperatures in the range 10.5-15 °C, 

that are significantly correlated with salinities in the range 35.5-36.0 (Álvarez-Salgado et 

al., 2002). The origin of ENACW (tropical ENACWt or polar ENACWp) can be 

determined from its salinity, whereby ENACWp is characterised by S < 35.6 (Harvey, 

1982) and ENACWt by S > 35.7 (Pollard & Pu, 1985). Bottom water temperatures in the 

ría during the June survey were 12.7-13.0 °C as far up as station B2, with salinities of 

~35.8. This confirms that recently upwelled ENACWt had entered the ría during 
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upwelling and penetrated as far as B2. Upwelling is thought to occur after a ~ 3d time 

lag relative to wind conditions (Álvarez-Salgado et al., 2002), therefore the upwelled 

water present at the bottom of the ría at the start of the survey could be linked to 

relatively weak northerly winds between 21 and 23 June (with a brief period of southerly 

winds on 24 June), which would explain why it did not penetrate the euphotic layer. 

Bottom salinities at the inner stations B0 and B1 increased from ~35.2 to ~35.7 between 

25 and 28 June, indicating that a pulse of upwelling had caused another surge of 

upwelled water into the ría, as shown by the uplifted isotherms and increased surface 

nutrient concentrations. This could be linked to intensified northerly winds from 25 June 

onwards. Nitrate, PO4 and Si concentrations of 5.6, 0.32 and 1.6 µmol l-1 have been 

reported for ENACWt, and “preformed” concentrations (i.e. concentrations in source 

waters at 100 % DO saturation) were estimated at 3.5, 0.19 and 0.3 µmol l-1 (Pérez et al., 

1993). The NO3
-, PO4

3- and Si concentrations measured in upwelled water (~13 °C) in 

this study were 11.5 ± 0.35 µmol l-1, 0.80 ± 0.02 µmol l-1 and 6.8 ± 0.25 µmol l-1, 

respectively, indicating that nutrient concentrations in the upwelled water increased 

several-fold while it travelled along the continental shelf. Bode et al. (2005) also found 

higher nutrient concentrations than those characteristic of ENACW in the Ría de Ferrol 

(one of the Rías Altas, north of Cape Finisterre, which is thought to be the divide 

between ENACWt to the south and ENACWp to the north). They attributed these 

differences to remineralisation of organic matter, using Apparent Oxygen Utilisation 

(AOU) to support this hypothesis. AOU is calculated from the difference between the 

measured DO concentration and the equilibrium saturation concentration at the 

temperature and salinity of the sample. Negative values (equivalent to DO < 100 % 

saturation) indicate the utilisation of oxygen for the oxidation of NH4
+ to NO2

- and of 

NO2
- to NO3

-. In this study, DO saturation was on average 59.2 ± 1.2 % at the bottom of 

the ría and DO concentrations were lower than those published for ENACWp (Pérez et 

al., 1993), suggesting that remineralisation was responsible for the increased nutrient 

concentrations in the rías relative to source ENACWt.  
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4.3.2. Nutrient characteristics during the upwelling and downwelling seasons 

 

Nitrate, PO4
3- and Si displayed significant negative correlations with temperature for 

both seasons combined (Table 4.8). For September alone, the correlation coefficient was 

much lower for NO3
- and was insignificant for PO4

3- and Si. This could be attributed to 

the fact that the ría was not affected by upwelling at that time of year, thus other 

processes altering nutrient concentrations were predominant. The relationship between 

nutrients and temperature is to be expected in upwelling systems, where nutrients are 

drawn down by phytoplankton concurrently with warming of upwelled water as it ages 

(Dugdale et al., 1989). DO was also significantly correlated with temperature, indicating 

that recently upwelled water had lower concentrations than the surface water in the ría, 

because DO is produced in the surface by photosynthesis, but is utilised at depth by 

heterotrophic and chemical remineralisation of organic matter.  

Total DIN (= NO3
- + NO2

- + NH4
+) was significantly correlated with PO4

3-
 and Si in 

both seasons. Total DIN was used rather than NO3
3- due to the high contribution of 

NH4
+, and this yielded higher correlation coefficients than NO3

- alone. Álvarez-Salgado 

et al. (2002) compiled data from upwelled ENACW water at various stations on the 

continental shelf (depth > 1000 m) sampled during a number of cruises between 1977 

and 1998 and found a significant relationship between NO3
3- and PO4

3-, with a slope of 

17.9. A stronger correlation may have been obtained by including NO2
- + NH4

+, 

although concentrations of these nitrogen forms are generally low in shelf waters 

(Álvarez-Salgado et al., 1997). Ammonium can be produced either from primary 

recycling in the euphotic zone, with a time-scale of hours to days (e.g. excretion), or 

from secondary recycling, also known as nutrient trapping, which occurs in deeper 

waters or at the sediment-water interface on a time-scale of days to weeks. The latter 

occurs as a result of organic matter export from the rías and subsequent sinking on the 

continental shelf. Within the rías, mussel excretion represents an input of  2-3 µmol 

NH4
+

 (g mussel)-1 h-1 (Smaal & Prins, 1993), while sinking faecal matter supports high 

benthic (secondary) remineralisation rates (Baudinet et al., 1990). Ammonium 

regeneration rates measured in this study were high (mean 0.20 ± 0.07 and 0.13 ± 0.04 

µmol N l-1 h-1 in September and June, respectively), on average 5-fold higher than 

ρ(NH4
+) in September but similar to ρ(NH4

+) in June. This confirms the importance of 

pelagic primary recycling as a source of NH4
+, which is sufficient to support uptake by 

phytoplankton in early summer. Furthermore, secondary recycling is high in the 
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organically rich sediments of the shelf adjacent to the Rías Baixas, due to the presence 

of large populations of benthic organisms (López-Jamar et al., 1992). The very low ƒ-

ratios measured in the present study (0.10 ± 0.01 in September and 0.22 ± 0.05 in June) 

also underline the importance of recycled nitrogen for phytoplankton growth.  

The DIN:P ratio of 17.5 obtained for June from the regression of DIN vs PO4
3-

 was 

similar to those reported for upwelled ENACWt (Pérez et al., 1993; Álvarez-Salgado et 

al., 2002). On the other hand, the DIN:P ratio derived from linear regression in 

September was only 7.2, indicating that phytoplankton growth at this time was nitrogen-

limited. The lowest ratios were measured at the bottom of the ría (~35 m), where PO4
3- 

concentrations were highest (>0.5 µmol l-1), but DIN concentrations were relatively low 

because NO3
- concentrations did not increase with depth. However, individual DIN:P 

ratios ranged from 7.2 to 25.3 and the mean of all calculated ratios was 13.5 ± 0.45, 

therefore the severity of nitrogen limitation was perhaps overestimated by linear 

regression. In June, DIN:P ratios in surface waters ranged from 0.5, when DIN was 

depleted, to 34.2 at higher DIN concentrations. The difference in the range of DIN:P 

ratios measured in September and in June can be attributed to the presence of high DIN 

concentrations in the upwelled water in June (10 to 18 µmol l-1) at PO4
3- concentrations 

of 0.6 to 0.9 µmol l-1, whereas in September similar PO4
3- concentrations corresponded 

to DIN concentrations <9 µmol l-1.  

NO3
-: PO4

3- ratios below Redfield (between 5.5 and 9.3) were also measured in the 

Ría de Ferrol, although the seasonal pattern was the opposite, whereby low ratios were 

measured in late spring-early summer and high ratios (18.3 ± 1.6) were measured in 

September (Bode et al., 2005). The N:P ratio of upwelled ENACW water is generally 

close to the Redfield ratio (Pérez et al., 1993), therefore higher ratios would be expected 

during the upwelling season. Indeed, in this study ratios ~16 were measured in June in 

the deep, cold, nutrient-rich (i.e. recently upwelled) waters. As upwelled water ages, N:P 

ratios decline as nutrient concentrations are altered by various biogeochemical 

processes. Whereas photosynthesis and nitrification follow Redfield stoichiometry, 

denitrification, nitrogen fixation and anaerobic ammonium oxidation (Anammox) can 

cause departures from this ratio. Large NO3
- deficits (∆N ~20 to 40 µmol l-1) can be used 

as an indicator of denitrification (Tyrrell & Lucas, 2002). In this study, ∆N values 

ranged from < 1 to13 µmol l-1 and the highest values were found near the bottom of the 

ría. These relatively low values, together with the lack of “LNP” points (depleted NO3
- 

and high PO4
3-) suggest that denitrification was not significant in this study. Also, 
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denitrification must occur in anoxic waters and the Iberian shelf is generally well 

oxygenated (Álvarez-Salgado et al., 1997).  

Different remineralisation rates for different nutrients will modify the nutrient ratios 

of the source water, therefore more rapid recycling of Si and PO4
3- relative to NO3

- will 

enhance the relative enrichment of these two nutrients and lower N:P and N:Si ratios. 

More rapid recycling of PO4
3- relative to NO3

- has been observed in the laboratory 

(Garber, 1984) and in the field (Harrison, 1980), including the Galician Rías (Prego, 

1993) and this can prevent complete organic nitrogen oxidation if the residence time of 

organic matter in the lower water column is relatively short. On the shelf, the ratio of 

remineralised DIN to remineralised PO4
3-

 was found to be lower than Redfield (12.2-

15.0) in a study using a simple mixing model to estimate the relative contributions of 

nutrients from source waters and from remineralisation (Álvarez-Salgado et al., 1997), 

although in a later study using regression analysis of ∆NO3
-
 versus ∆PO4

3-, Álvarez-

Salgado et al. (2002) found a remineralisation ratio close to Redfield (16.4) on the 

Iberian shelf. In the present study, ∆NO3
-
 and ∆PO4

3-
 were significantly correlated both 

in June and in September, with correlation coefficients of 5.1 and 1.3, respectively 

(Table 4.8), indicating that PO4
3- was remineralised preferentially to NO3

- relative to 

Redfield stoichiometry (Harrison, 1980). The ratios obtained in this study are several-

fold lower than the values of 12.2-16.4 and 8.0-18.5, respectively, reported for the 

Iberian (Álvarez-Salgado et al., 1997, 2002) and NW African upwelling systems (Rowe 

et al., 1977; Treguer & Le Corre, 1979). This would suggest that the difference between 

the recycling rates of PO4
3- and NO3

- is even more pronounced within the rías than on 

the open shelf.  

In the present study, Si:DIN ratios were lower in June (0.32) than in September 

(1.02) and were generally lowest at the bottom of the ría in September, whereas in June 

they were lowest in the surface. The ratio for June is within the range published for 

ENACWt (0.29-0.40) (Pérez et al., 1993; Álvarez-Salgado et al., 1997), indicating that 

in September recycling processes caused a departure from the nutrient ratios typical of 

upwelled water. The ∆Si:∆NO3
- ratio was lower in June (0.36 ) relative to September 

(2.20), indicating that Si was remineralised more rapidly in September.  
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Relationship a b r n Area Season Authors

DIN vs PO4 17.46 -0.44 0.96** 67 Ría de Vigo June This study

7.17 1.75 0.91** 80 Ría de Vigo Sept This study
17.9 -0.34 0.97** 685 Iberian Shelf (>1000 m) All year Álvarez-Salgado et al. (2002)

Si vs DIN 0.32 2.21 0.66** 67 Ría de Vigo June This study
1.02 -0.39 0.88** 80 Ría de Vigo Sept This study

DIN vs temp -1.97 38.6 -0.89** 67 Ría de Vigo June This study
NO3 vs temp -1.78 32.9 -0.92** 67 Ría de Vigo June This study

-0.40 8.73 -0.40** 80 Ría de Vigo Sept This study
-3.43 50.6 -0.93** 692 Iberian Shelf (>1000 m) All year Álvarez-Salgado et al. (2002)

PO4 vs temp -0.10 1.98 -0.79** 67 Ría de Vigo June This study
0.13 -1.94 0.31* 80 Ría de Vigo Sept This study
-0.18 2.73 -0.92** 685 Iberian Shelf (>1000 m) All year Álvarez-Salgado et al. (2002)

Si vs temp -0.45 11.69 -0.42** 67 Ría de Vigo June This study
0.81 -10.04 0.20 80 Ría de Vigo Sept This study

DO vs temp 11.98 13.65 0.80** 67 Ría de Vigo June This study
-2.9 305.9 0.07 80 Ría de Vigo Sept This study

∆DIN vs ∆PO4 12.41 0.00 0.91** 67 Ría de Vigo June This study

∆NO3 vs ∆PO4 5.10 0.00 0.51** 67 Ría de Vigo June This study

1.28 0.00 0.53** 80 Ría de Vigo Sept This study
16.4 0.00 0.8** 685 Iberian Shelf (>1000 m) All year Álvarez-Salgado et al. (2002)

∆Si vs ∆DIN 0.73 0.00 0.69** 67 Ría de Vigo June This study
∆Si vs ∆NO3 0.36 0.00 0.28* 67 Ría de Vigo June This study

2.20 0.01 0.52** 80 Ría de Vigo Sept This study
0.48 0.00 0.73* 609 Iberian Shelf (>1000 m) All year Álvarez-Salgado et al. (2002)

∆DIN vs ∆DO 0.10 0.00 0.89** 67 Ría de Vigo June This study
∆NO3 vs ∆DO -0.041 0.00 -0.49** 67 Ría de Vigo June This study

5.00 -0.64 0.11 80 Ría de Vigo Sept This study
∆PO4 vs ∆DO -0.007 0.00 -0.88** 67 Ría de Vigo June This study

-2.44 -0.65 0.02 80 Ría de Vigo Sept This study  
Table 4.8. Slope (a) and y axis intercept (b) derived from linear regression between various parameters in this study and in Álvarez-Salgado et al. (2002). * p < 0.05 
and ** p < 0.01; n = number of observations. 
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4.3.3. Nitrogen uptake during the upwelling and downwelling seasons 

 

Nitrogen uptake rates in this study were significantly higher during the upwelling 

season relative to the downwelling season, with a mean total ρ(N) of 0.30 ± 0.03 µmol N 

l-1 h-1 in the former and 0.07 ± 0.01 µmol N l-1 h-1 in the latter. The ƒ-ratio was also 

significantly higher in June, although NH4
+ remained the principal source of available 

nitrogen, therefore ƒ-ratios were low in both seasons (0.12 ± 0.02 in September and 0.17 

± 0.03 in June). This is surprising, since one would expect the ƒ-ratio to be >0.5 in June, 

when upwelling supplies high NO3
- concentrations and NH4

+ regeneration rates are low 

(Nogueira et al., 1997). This was the case in the Benguela study (Chapter 3), where a 

significant positive correlation was observed between northward wind component and 

the ƒ-ratio. Published ƒ-ratios for the California upwelling system are high, ranging from 

0.4 to 0.8 (Dugdale et al., 2006). In the Benguela, they can range from <0.1 to ~1, with 

an average of 0.39 ± 0.03 (Probyn, 1992). In the Iberian system, the upwelling season-

averaged ƒ-ratio is 0.33, lower than in the California current but similar to the Benguela 

(Álvarez-Salgado et al., 2002).  

Bode et al. (2005) measured higher ρ(NO3
-) relative to ρ(NH4

+) in the Ría de Ferrol 

in July, when NO3
- concentrations were higher than NH4

+ (although still <1 µmol N l-1), 

but the opposite in September, when NH4
+ concentrations were higher. In the present 

study, NH4
+ appeared to be taken up preferentially to NO3

- in both seasons. For example, 

ρ(NH4
+) was 3- to 7-fold higher than ρ(NO3

-) at stations B5 and B3 in September despite 

higher NO3
- concentrations. This difference was even more pronounced (8- to 14-fold) at 

B2, where NH4
+

 was more abundant than NO3
-. With one exception, ρ(NO3

-) was highest 

(0.02-0.12 µmol N l-1h-1) at NH4
+ concentrations <0.5 µmol N l-1, and remained <0.02 

µmol N l-1h-1 at higher concentrations, suggesting that ρ(NO3
-) was inhibited by NH4

+. 

Both preferential uptake of NH4
+ relative to NO3

- and inhibition of NO3
- uptake by NH4

+
 

have been widely reported [see review by Dortch (1990)]. These phenomena are linked 

to the lower energetic cost of NH4
+

 assimilation relative to NO3
-, which must first be 

reduced intracellularly to NO2
- then to NH4

+
 before the latter can be synthesised into 

amino acids and proteins. Nitrogen uptake kinetics parameters can indicate preference, 

whereby a higher νmax for NH4
+ than for NO3

- would suggest preference for NH4
+ over 

NO3
-. The presence of NH4

+
 in NO3

-
 kinetics experiments, however, can potentially 

cause inhibition of NO3
-
 uptake and bias the results (Dortch, 1990; Collos et al., 2004). 
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A nitrogen uptake kinetics experiment was carried out on a mixed diatom assemblage in 

June, with an ambient NH4
+

 concentration of 0.33 µmol N l-1. This was below the range 

of concentrations generally thought to inhibit NO3
-
 uptake (Syrett & Morris, 1963; 

Goering et al., 1970), therefore the ratio νmax(NH4
+): νmax(NO3

-) of 12.8 should indicate a 

genuine preference for NH4
+, rather than inhibition. According to Dortch (1990), the 

Ks(NH4
+): Ks(NO3

-) of 9.1 should indicate a preference for NO3
-, however the 

inadequacy of Ks as a measure of nutrient affinity under certain conditions has been 

established (Healey, 1980; Aksnes & Egge, 1991) therefore the ratio of α(NH4
+):  

α(NO3
-) is perhaps more appropriate. In this study, the α ratio was 1.4, confirming that 

NH4
+ 

 was preferred, although the preference was more strongly expressed at saturating 

concentrations (higher νmax) relative to limiting concentrations (higher α).  

The observed covariation in Ks and νmax between species is well documented 

(Healey, 1980; Aksnes & Egge, 1991; Collos et al., 2005) and suggests that 

phytoplankton can adapt either to high nutrients (by increasing νmax) or to low nutrients 

(by reducing Ks), but not both together. In this case, the phytoplankton community was 

adapted to high NH4
+

 concentrations at the expense of a poor adaptation to high NO3
-
 

concentrations. It must be noted here that such experiments carried out on a mixed 

assemblage produce species-averaged values of Ks and νmax, which makes their 

interpretation more difficult. The ratios νmax(NH4
+): νmax(NO3

-) and Ks(NH4
+): Ks(NO3

-) 

were several-fold higher than those measured in the Benguela (Chapter 3), which were 

1.2 and 1.1 for Pseudo-nitzschia spp. and 4.0 and 0.8 for Dinophysis acuminata (Table 

3.4). Although νmax(NH4
+

 ): νmax(NO3
-) > 1 was observed in 13 out of the 16 other 

studies where the ratio could be calculated (Table 3.7), comparably high ratios were only 

measured in the Neuse and Choptank Estuaries on the US east coast. Furthermore, the 

Choptank Estuary measurement of νmax(NH4
+) was the only one higher than that 

measured in the Ría de Vigo. The experiment also revealed a preference for urea over 

NO3
-, with a νmax(urea): νmax(NO3

-) ratio of 2.6, although the α ratio of 1.0 revealed no 

preference at limiting concentrations. Higher νmax for urea than for NO3
- was observed at 

8 of the 13 other experiments, with ratios ranging from 1.4 to 9.2, although these ratios 

were generally lower than for NH4
+.  

The low νmax and Ks measured for NO3
-
 indicate that large increases in NO3

- 

concentration would not have increased ν(NO3
-) by more than 2-fold, since at the 

ambient NO3
-
 concentration of 0.53 µmol N l-1, ν(NO3

-) was 50 % of νmax. A urea 

addition of 30 µmol N l-1 would have increased ν(urea) by a mere 32 %, but on the other 
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hand, ρ(NH4
+) would have increased 7-fold with an NH4

+
 addition of 5 µmol N l-1, 

therefore NH4
+, and not NO3

- or urea appeared to be limiting phytoplankton growth. 

Nitrate uptake rates in June were on average 10-fold lower than those measured in 

the California (Dugdale et al., 2006) and Benguela upwelling systems (Probyn, 1992) 

and 7-fold lower than the maximum values measured in the Cap Blanc upwelling region 

(Dugdale et al., 1990). They were, however, one order of magnitude higher than those 

measured in the Ría de Ferrol in both June and September [A. Bode, pers. comm., 

revision of data originally published in Bode et al. (2005)]. It must be noted that in the 

Ría de Ferrol 24 h incubations were carried out, therefore including dark uptake, which 

this study did not. This could contribute significantly to the difference in uptake rates. 

PN-specific rates were particularly high in June (0.026 ± 0.004) relative to 

September (0.005 ± 0.001) and to the values obtained in the Benguela (0.006 ± 0.0004). 

However, due to the relatively low biomass, this did not lead to higher ρ(N), which was 

of the same order of magnitude as in the Benguela. According to Dugdale et al. (1990), 

ν(NO3
-) is a function of ambient NO3

- and if biomass accumulation occurs as a result of 

the “shift-up” in ν(NO3
-), then ρ(NO3

-) will increase non-linearly with ν(NO3
-). Here, 

ν(NO3
-) and ρ(NO3

-) were linearly correlated, indicating that no biomass accumulation 

had occurred. This low realisation of potential new production was also observed at 

Point Conception in the California current and attributed to strong advection and 

turbulence (Dugdale et al., 2006). In this study, although the water column was 

stratified, the positive estuarine circulation that prevails during upwelling causes organic 

matter export out of the ría (Estrada, 1984; Figueiras et al., 1994), which could explain 

the low biomass accumulation. Grazing, which is particularly high in the rías due to 

mussel cultivation (Fernández-Reiriz et al., 2007) and the presence of microheterotrophs 

during summer (Figueiras & Pazos, 1991b),  will also strongly control phytoplankton 

biomass.  
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4.3.4. Community structure 

 

4.3.4.1. Comparison between upwelling and downwelling seasons 

 

Results of cluster analyses showed that the upwelling and downwelling 

phytoplankton communities were statistically distinct at the 50 % similarity level, 

whereby the downwelling community was dominated by a mixture of dinoflagellates 

and flagellates, and the upwelling community was dominated by diatoms. This is 

consistent with the trend observed by Crespo et al. (2006) in a 1-year time-series of 

phytoplankton community structure in the Ría de Vigo, showing that the 2 surveys 

carried out in this study were fairly typical of the respective seasons. However, Crespo 

et al. (2006) reported a much larger dinoflagellate bloom than in this study, with chl-a 

concentrations reaching 14 µg l-1, whereas in this study they were < 7 µg l-1. The 

association of diatoms with upwelling is regularly observed in the Iberian (Figueiras & 

Rios, 1993), NW African, (Estrada & Blasco, 1985), Benguela (Fawcett et al., 2007) and 

California currents (Lassiter et al., 2006). In the Iberian system, this association has been 

described by a linear correlation between diatom abundance and the upwelling index 

(Figueiras & Rios, 1993). Diatoms are thought to be well adapted to the dynamic 

conditions that prevail in upwelling systems, since they have high nutrient uptake and 

growth rates and are able to adjust their physiology as a “shift-up” response to increased 

nutrient concentrations and light (Dugdale et al., 1990; Kudela et al., 1997). Thus, they 

are able to exploit the windows of opportunity that are created during the upwelling-

relaxation-stratification cycles, when these occur at an optimum frequency (Legendre & 

Le Fèvre, 1989). Furthermore, upwelling favours large diatoms that would otherwise 

sink out of the euphotic zone (Estrada & Blasco, 1985). Dugdale et al. (1990) found that 

increased nutrient uptake rates measured in diatom communities in newly upwelled 

water are proportional to nutrient concentration, and that nutrient exhaustion occurred 

after 3 days of upwelling relaxation regardless of the initial nutrient concentration 

(Dugdale et al., 1990).  

In contrast, the occurrence of dinoflagellates is generally linked to longer periods of 

upwelling relaxation and depleted nutrients (Pitcher et al., 1993a; Fawcett et al., 2007) 

and are generally associated with more stratified offshore waters (Tilstone et al., 1994; 

Pitcher et al., 1998). In the Galician Rías, dinoflagellate blooms are known to occur 

during the downwelling season (late summer/autumn) (Figueiras & Rios, 1993). This is 
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thought to be due to the establishment of dinoflagellate populations in the stratified shelf 

waters and subsequent advection into the rías where they accumulate at the downwelling 

front (Fraga et al., 1988; Fraga et al., 1993; Pazos et al., 1995b; Sordo et al., 2000) 

following wind reversal and the formation of a warm, poleward current (Fraga et al., 

1993). A similar mechanism has been proposed for the formation and onshore advection 

of red tides in the coastal waters of the Benguela current (Pitcher et al., 1998). 

Furthermore, the reversal of circulation that leads to downwelling is thought to favour 

selection of highly motile species such as G. catenatum, that can maintain themselves in 

the surface layer (Fraga et al., 1988; Figueiras et al., 1994; Fermin et al., 1996). 

 

4.3.4.2. Spatial and temporal variations in September 

 

In September, nutrient concentrations were relatively high throughout the water 

column, hence chl-a and phytoplankton cell concentrations were generally high in the 

top 10 m, where they were not light-limited. Cell concentrations declined rapidly below 

this depth, particularly concentrations of small flagellates. The decline in chl-a was less 

pronounced, due to the shift from smaller to larger cells with depth, as was observed in 

June. The increase in chl-a on 30 September was accompanied by an increase in the 

proportion of nanoplankton and a decrease in the proportion of microplankton, while the 

phytoplankton count data revealed that Prorocentrum spp. increased by one order of 

magnitude.  

Clusters I and II comprised only shallow samples (<10 m), whereas Clusters III and 

IV comprised mainly deep samples, but also the shallow samples from 30 September. At 

the start of the survey, B2 clustered separately from B3 and B5, whereas at the end 

samples from all 3 stations were found in the same clusters, indicating that community 

structure became relatively homogeneous along the ría towards the end of the survey. 

Furthermore, samples from all depths clustered together at the end of the survey, 

consistent with the occurrence of downwelling and mixing of the water column observed 

in the hydrographic data.  

At the start of the survey, surface samples were divided into Clusters I and II, 

whereby Cluster I comprised the innermost station B2 and Cluster II comprised the outer 

stations B5 and B3. This suggests that B2 was characterised by remnants of the 

phytoplankton community that was present in the ría before reversal of circulation 

occurred. This is supported by the higher concentrations of diatoms and lower 
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concentrations of flagellates relative to Cluster II and also by the higher concentrations 

of PO4 and Si. The phytoplankton community in Cluster I was characterised by 

contributions from the diatoms Chaetoceros spp. and Thalassiosira rotula, as well as the 

raphidophyte Heterosigma akashiwo and the dinoflagellate Scrippsiella trochoidea. This 

mixture of small diatoms and dinoflagellates has been reported for the late upwelling 

season (June-August) in the Ría de Vigo (Crespo et al., 2006), during periods of weak 

stratification in between upwelling pulses. This provides evidence that this community 

had remained from a previous upwelling period. 

Cluster II comprised outer stations (B5, B3) from the beginning and middle of the 

survey as well as the inner station B2 from 29 September, suggesting that an influx of 

water carried the phytoplankton population into the ría during the survey. This inflow 

and accumulation of water in the ría could explain why there were little horizontal 

differences in community structure on 30 September. Cluster II had the lowest 

proportion of diatoms, the highest proportion of flagellates and was characterised by the 

presence of Ceratium fusus and Ceratium furca, suggesting that these species tend to 

bloom in the shelf waters and are subsequently transported into the ría. This is consistent 

with a study by Figueiras & Pazos (1991b). C. fusus and C. furca were also found to 

reach maximum abundance in late September in the time-series study by Crespo et al. 

(2006), suggesting that these species are typical members of the downwelling 

community. The cluster was also characterised by lower NH4
+, PO4

3- and Si 

concentrations and the highest DIN:P ratios, consistent with the oceanic origin of these 

waters.  

Cluster III had the highest proportion of diatoms, including the large diatom 

Guinardia delicatula. The nutrient requirements of these large cells were met by high 

concentrations of NH4
+, PO4

3- and Si relative to the other clusters. Also, DIN:P ratios 

were lower and Si:DIN ratios were higher than in the other clusters. This cluster 

comprised samples from B2 below 20 m on 29 September and from B5 and B3 at ~30 

m, suggesting that it could represent water that had downwelled and was exiting the ría 

along the bottom, consistent with previous studies (Tilstone et al., 1994; Fermin et al., 

1996; Crespo et al., 2006).    

 Cluster IV, on the other hand, had a significantly higher proportion of 

dinoflagellates relative to Clusters II and III and significantly lower NH4
+, PO4

3- and Si 

concentrations than Cluster III but significantly higher DIN:P ratios. Therefore, 
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dinoflagellates appeared to be more successful at high DIN:P ratios (or to be the cause of 

these high ratios), whereas the opposite was observed in diatoms.  

 

4.3.4.3. Spatial and temporal variations in June 

 

In June, a subsurface chl-a maximum was observed, as previously reported in the 

Rías Baixas during periods of moderate upwelling, and is thought to be linked to a 

deeper (9~50 m) chl-a maximum on the shelf (Figueiras & Pazos, 1991b). However, 

diatom concentrations and dominance were generally high at the surface despite the low 

nutrient concentrations. At B2, they were even higher at the surface than at the 

thermocline, although a chl-a maximum was present, and particularly prominent on 28 

June. This discrepancy suggests that the chl-a maximum at B2 was dominated by fewer, 

larger cells. Indeed, the samples from the surface and from the chl-a maximum clustered 

separately (Clusters I and II, respectively), although both clusters were numerically 

dominated by small diatoms (Skeletonema costatum, Leptocyclindrus spp., Nitzschia cf. 

americana). Closer examination of the cell count data from 28 June shows that the giant 

diatoms Rhizosolenia stolterfothii [3-61 µm diameter, 80-168 µm length (Sherer, 1965)] 

and Dactyliosolen fragilissimus [8-70 µm diameter, 42-300 µm length (Hasle & 

Syvertsen, 1996)] and the relatively large diatom Eucampia zoodiacus [8-80 µm length 

(Syvertsen & Hasle, 1983)] reached concentrations ≥104 cells l-1 at 12 m, i.e. one order 

of magnitude higher than at 3 m. Dinoflagellates were also more abundant (~20 %) at 12 

m and they also contributed significantly to the microplankton fraction, as shown by the 

linear correlation between dinoflagellate concentrations and microplankton chl-a. 

Furthermore, the proportion of microplankton (>20 µm) was always greater at the chl-a 

maximum than at the surface (data not shown), confirming that the chl-a maximum was 

formed by large diatoms and, to a lesser extent, dinoflagellates. Thus, diatoms were 

generally more successful at the thermocline relative to the surface, consistent with a 

study by Figueiras & Pazos (1991), although small diatoms (e.g. Nitzschia cf. americana 

and Nitzschia longissima) were sometimes much more abundant at the surface. Their 

small size and high surface to volume ratio would imply a lower nutrient requirement, as 

shown by the positive correlation between minimum cell-specific nitrogen quota and cell 

volume (Aksnes & Egge, 1991; Litchman et al., 2007), which would give them an 

advantage under nutrient-depleted conditions. 
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The phytoplankton community present in June was typical of the summer upwelling 

season (Crespo et al., 2006), characterised by the dominance of small diatoms such as 

Chaetoceros spp., Skeletonema costatum and Leptocylindrus spp. (but also the giant 

diatom Rhizosolenia stolterfothii in Cluster IV), coexistent with cryptophytes and 

dinoflagellates such as Gymnodinium spp. This type of community was found in the 

deeper samples of Clusters III and IV (with 6-66 % dinoflagellates), whereas the 

shallower Clusters I and II were more exclusively dominated by diatoms (77-99 %). 

Variability in community structure was linked to spatial (horizontal and vertical) 

rather than temporal changes since clusters were divided into (I) inner ría, euphotic 

layer, (II) outer ría, euphotic layer, (III) inner ría, deep water and (IV) outer ría, deep 

water, with no apparent temporal segregation of the stations. The shallower samples 

(Clusters I and II) both had significantly higher proportions of diatoms than the deeper 

samples and a significantly lower percentage of dinoflagellates (with the exception of I 

vs III). This is somewhat contrary to what one would expect, since the deeper water 

would have originated from upwelling on the shelf, which is generally thought to 

contain diatoms, as these are more tolerant of turbulence. However, the presence of high 

proportions of dinoflagellates in deeper samples from the more stratified outer ría is 

consistent with previous studies (Tilstone et al., 1994). 

 Species characterising the deeper clusters included Nitzschia longissima and 

Pseudo-nitzschia delicatissima, which were also found below the chl-a maximum in the 

Rías de Vigo and Arousa (Figueiras & Pazos, 1991b), where it was identified as typical 

of high nutrient conditions during upwelling. Indeed, these clusters could be linked with 

high nutrient conditions, since they were associated with higher NH4
+, PO4

3- and Si 

concentrations than the outer surface Cluster II (although concentrations were as high in 

the inner surface Cluster I). Interestingly, NO3
- concentrations did not seem to have any 

effect on community structure in either June or September. The DIN:P ratio, however, 

was higher and the Si:DIN ratios were lower in the deeper samples.  

Both inner and outer ria surface clusters were dominated by diatoms, therefore 

nutrient availability did not appear to affect competition between diatoms and 

dinoflagellates. H’ was lowest for Cluster I, followed by Cluster II, then Clusters III and 

IV, indicating that diversity increased with depth and towards the mouth of the ría. 

Therefore, there was no clear link between H’ and nutrient availability, although 

diversity appeared to increase with diminishing irradiance. The high phytoplankton 

diversity generally observed in natural assemblages has been attributed to the fact that 
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different species are limited by different resources. Therefore, they can coexist at 

competitive equilibrium, whereby their relative abundances are controlled by the ratios 

of the limiting nutrients (Tilman, 1977; Tilman et al., 1982). Chemostat experiments 

have shown that pulsed nutrient additions can increase the number of species and H’ 

relative to steady state conditions (Sommer, 1984) therefore the higher diversity  

measured at depth could be linked to weak upwelling pulses that do not affect surface 

waters. Furthermore, the higher DIN:P ratios were consistently associated with the 

highest dinoflagellate and lowest diatom contributions and highest H’, suggesting that a 

DIN:P ratio close to Redfield favours dinoflagellates over diatoms, but also increases 

species diversity. The Redfield ratio is not a universal optimum ratio for phytoplankton, 

but rather the average of the various N:P requirements of different phytoplankton groups 

(Klausmeier et al., 2004; Arrigo, 2005). Thus, different groups exhibit different cellular 

N:P ratios. For example, the red and green phytoplankton superfamilies exhibit ratios of 

27 and 10, respectively. Although there is no evidence of lower N:P requirements in 

diatoms relative to dinoflagellates, diatoms do exhibit lower N:P ratios relative to 

Phaeocystis spp. (Arrigo, 2005), although there is a high degree of interspecific 

variability within the diatom group (11.1 to 29.2 for 6 diatom species) (Klausmeier et 

al., 2004). Furthermore, N:P requirements vary under different ecological scenarios 

(competitive equilibrium and exponential growth) (Klausmeier et al., 2004; Arrigo, 

2005).  

 

4.3.4.4. HAB species 

 

HAB species were present during both seasons and included species known to 

produce toxins in the Rías Baixas and historically known to pose a threat to the mussel 

farming industry, namely Dinophysis spp. and Gymnodinium catenatum. G. catenatum 

was only observed during the downwelling season, consistent with its swimming 

abilities and its adaptation to downwelling conditions (Fraga et al., 1988; Figueiras et al., 

1994). While D. acuta was observed only in September, D. acuminata was more 

abundant during the upwelling season, showing temporal segregation of the 2 species 

consistent with previous studies in the rías (Fraga et al., 1988; Figueiras et al., 1994) but 

also with their spatial segregation (Reguera et al., 1993b). Both D. acuta and G. 

catenatum were most abundant in Cluster II, which characterised the inflow of shelf 

water into the ría. This is consistent with the hypothesis that HAB formation is caused 
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by advective processes rather than in situ growth (Fraga et al., 1993; Pazos et al., 1995b; 

Sordo et al., 2000). In September, Dinophysis acuta was generally restricted to the top 

10 m during most of the survey, although on 30 September it was distributed throughout 

the water column, due to the occurrence of downwelling. Furthermore, the increase in 

cell concentrations on this date shows that D. acuta was favoured by these downwelling 

conditions. Dinophysis caudata was also spatially segregated from D. acuta, as it was 

generally found at deeper depths. 

Other HAB species included the ichthyotoxic raphidophyte Heterosigma akashiwo 

in September that was most abundant at B2 at the start of the survey, then throughout the 

ría at the end. Although they are not toxic, Ceratium spp. are also known to form dense 

blooms that can lead to anoxia and these species also appeared to be advected into the 

ría and accumulate at the downwelling front. Pseudo-nitzschia delicatissima and P. 

seriata are potential domoic acid producers, although they have not been associated with 

toxic outbreaks in the rías. P. delicatissima was present at similar concentrations in 

September and in June, whereas P. seriata was 2 to 3 orders of magnitude higher in 

June. This suggests that P. delicatissima was successful under both upwelling and 

downwelling regimes, especially since it increased in abundance on 30 September, 

whereas P. seriata was better adapted to the upwelling season, although in both cases 

they displayed a subsurface maximum. 

Since the HAB species were generally a small component of the phytoplankton 

community, it was difficult to determine whether they displayed particular nitrogen 

uptake strategies. However, the occurrence of Dinophysis acuta and Gymnodinium 

catenatum exclusively during the downwelling season, concurrently with high NH4
+ 

concentrations and regeneration rates and very low ƒ-ratios, suggests that they require 

high NH4
+ concentrations in order to bloom. This study showed that urea is also a 

significant source of nitrogen supporting the growth of these species. 
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4.4. Conclusion 

 

The two surveys carried out showed contrasting situations in terms of hydrography, 

nutrient concentrations, ratios and remineralisation, nitrogen uptake and community 

structure. In September, circulation in the ría was characterised by downwelling, which 

intensified during the survey. An influx of lower nutrient water was observed, carrying a 

dinoflagellate population characterised by Ceratium spp. and other dinoflagellates that 

replaced the existing assemblage of diatoms, Heterosigma akashiwo and Scrippsiella 

trochoidea. By the end of the survey, temperature and salinity in the ría were 

homogeneous, as was community structure, both horizontally and vertically. 

Ammonium uptake was greater and ƒ-ratios were lower towards the head of the ría, 

where NH4
+ concentrations were highest. Furthermore, ρ(NH4

+) was greater than  

ρ(NO3
-), even when NO3

- concentrations were higher, demonstrating a preference of the 

phytoplankton assemblage for NH4
+ over NO3

- or inhibition of ρ(NO3
-) by NH4

+. Urea 

uptake was also generally greater than ρ(NO3
-). DIN:P ratios were lower than those 

characteristic of ENACW (~Redfield), due to high remineralisation rates on the shelf 

and within the ría itself.  

In June, positive estuarine circulation was observed, with upwelled ENACW 

entering the ría along the bottom and fresher water exiting the ría at the surface. 

Nutrients were depleted above the thermocline, whereas they were high in the deeper 

water. DIN: P ratios were on average similar to those of ENACW, although lower ratios 

were measured in the surface layer. The phytoplankton community was fairly typical of 

summer upwelling, largely dominated by diatoms in the surface, but including 

dinoflagellates in the deeper waters. Nitrogen uptake rates and ƒ-ratios were higher than 

in September, although maximum potential new production was not realised due to 

organic matter export out of the ría, possibly combined with grazing control. Also, 

uptake was dominated by NH4
+, which was preferred over NO3

- and appeared to be 

limiting primary production. Two potentially toxic Pseudo-nitzschia species were 

present, as well as Dinophysis acuminata, showing that the upwelling season can 

potentially be conducive to HABs as well as the downwelling season. 
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5 Distribution and nitrogen nutrition of phytoplankton 
assemblages comprising Alexandrium minutum in 
the Fal Estuary 

 

 

5.1. Introduction 

 

5.1.1. General features of the Fal Estuary 

 

The Fal Estuary is a ria, or drowned river valley situated in an area of high relief, 

which became submerged by post-glacial sea level rise. Situated on the south-east coast 

of Cornwall (~50°08 to 50°15 N and 5°00 to 5°05 W, Figure 5.1), it covers a total area 

of 28.4 km2 and has a length of 18 km. Its entrance is marked by Pendennis Point, to the 

west, and St Anthony Head to the east. It comprises a number of inner tidal tributaries 

(Truro, Tresillian and Fal rivers) and an outer tidal basin, known as Carrick Roads, that 

discharges into Falmouth Bay (Figure 5.1). Maximum water depth is ~34 m in the 

central channel at the southern end of Carrick Roads, decreasing northwards to 12 m at 

Turnaware Point and 5 m in King Harry Reach (Figure 2.3). To either side of the 

channel, depths can be as shallow as 0.3 m. Falmouth Harbour, on the western side of 

Carrick Roads, is the world’s third largest natural deepwater harbour. 

The estuary is tidal up to Tresillian, being macrotidal (>4 m tidal range) at Falmouth 

but mesotidal (2-4 m) at Truro, with maximal spring tidal ranges of 5.3 m and 3.5 m, 

respectively. Freshwater flows are generally low, as is typical of rias, with maximum 

measured flow rates of 0.025 m s-1 during springs and 0.013 m s-1 during neaps. Tidal 

currents are generally below 0.4 m s-1 during springs and 2-3 times lower during neaps 

[Posford-Duvivier (1992), cited in Percy (2006)]. 

Two main urban centres are situated on the estuary: Falmouth, on the south-western 

side, and Truro, at the northern extremity. Both are popular tourist attractions and the 

estuary is used extensively for recreational activities as well as commercial shipping. 

Falmouth Docks receive cargo ships and cruise liners and provide a range of services 

including bunkering and ship repair. As a result, high levels of organotin are present in 

the water and sediments (Langston et al., 2003). In addition, mining activities carried out 

since the Bronze Age have resulted in severe heavy metal pollution (Sn, Cu, Pb, Fe), 

particularly in Restronguet and adjacent creeks (Langston et al., 2003).  
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Sewage treatment works in the upper estuary are located on the Truro River 

(Newham and Malpas), the River Fal (Tregony) and the Tresillian River (Ladock 

Valley) (Figure 5.1) and represent important sources of PO4
3- and NH4

+. Run-off from 

surrounding agricultural land (estimated at 719 mm yr-1 (Fraser et al., 2000)) represents 

an important source of NO3
-. Hence, the estuary is subjected to hypernutrification, 

particularly in its upper reaches.  

 

 
Figure 5.1. Location of the Fal Estuary on the south coast of Cornwall and map of the Fal Estuary 
showing the location of mussel cultivation sites, oyster beds, sewage treatment works and sampling 
stations. MP = Malpas; WB = Woodbury; RU = Ruan; SC = Smuggler’s Cottage; KH = King Harry 
Reach; TP = Turnaware Point. N.B. only the oyster beds and sewage treatment works in the upper 
reaches of the estuary are shown since this is the area of interest to this study.  
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5.1.2. Shellfish and HABs in the Fal Estuary 

 

The Fal Estuary is used for shellfish farming and harvesting of wild shellfish, both of 

which are threatened by the occurrence of HABs. The first HAB event in the Fal was 

reported in 1995 and attributed to Alexandrium tamarense, which reached a 

concentration of 313,000 cells l-1 (Reid & Pratt, 1995). A bloom of Gyrodinium 

aureolum (now known as Karenia mikimotoi) was observed in 2002 in the Helford 

River, which resulted in invertebrate mortalities (Langston et al., 2003).  

A mussel farm was set up by Cornish Mussels Ltd. at King Harry Reach in 2001, 

producing 200 t mussels per year. The farm consists of five 20-m long Galician-type 

mussel rafts and blue mussels (also known as common mussels) Mytilus edulis are 

grown on 8-m ropes that hang from the rafts through the water column. Mussels are also 

grown on ropes hanging from Malpas, Woodbury, Ruan and Turnaware Pontoons 

(Figure 5.1). The Fal is also home to wild native European oyster (Ostrea edulis) 

populations that are harvested by Truro Fishery and intended for the international 

market. Scallop populations also exist in Falmouth Bay and these have been harvested 

since the late 1970’s although the area is under a voluntary protection agreement. A 

complete ban on scallop dredging was recommended by Natural England in February 

2008 and was to become effective in November 2008 (http://www.telegraph.co.uk/earth/ 

earthnews/3335168/Scallop-dredging-to-be-banned-in-Fal-Bay.html). 

The Fal estuary is included in the Biotoxin Monitoring Programme for England and 

Wales, a programme that has been carried out by the Centre for Environment, Fisheries 

and Aquaculture Science (CEFAS) under the direction of the Food Standards Agency 

(FSA) since 1999 (Higman & Milligan, 2000). Seawater samples are taken on a regular 

basis at a number of sites identified as historically prone to algal biotoxins, such as the 

Fal, and analysed for the presence of toxic phytoplankton species, i.e. Dinophysis spp., 

Prorocentrum lima, Pseudo-nitzschia spp. and Alexandrium spp. At certain sites, 

samples of shellfish flesh are routinely analysed whereas at others this is only carried out 

if the concentration of toxic phytoplankton exceeds the action limit. Action limits for the 

aforementioned species are 100 cells l-1 for Dinophysis spp. and P. lima, 150,000 cells l-1 

for Pseudo-nitzschia spp., and simply the presence of Alexandrium spp. Maximum 

permitted concentrations of DSP, PSP or ASP are 80 µg STX equiv (100g)-1, 16 µg OA 

equiv (100g)-1 and 20 µg DA g-1, respectively (Stubbs et al., 2008). If these are exceeded 

in 2 consecutive weekly samples then the harvesting area is closed until toxin 
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concentrations drop once again below the permitted concentrations in 2 consecutive 

samples.  

Since 1999, Alexandrium spp. has been found regularly at several stations along the 

Fal between June and October. Maximum reported concentrations were 387,000 cells l-1 

in July 1999 (Higman & Milligan, 2000), 89,100 cells l-1 in June 2000 (Higman et al., 

2001) and 130,775 cells l-1 in June 2001 (Percy et al., 2004), although concentrations 

around 10,000 cells l-1 are more common during the summer months (Percy, 2006). 

Highest abundances tend to occur in June/July, followed by a smaller peak in 

August/September (Percy, 2006). In 2006, Alexandrium spp. were observed regularly 

throughout the summer months and persisted during winter, albeit at lower 

concentrations (Stubbs et al., 2007). In 2007, lower concentrations were measured 

throughout the summer (Stubbs et al., 2008).  

PSP toxins have been detected in mussels at concentrations as high as 161 µg STX 

eq (100g)-1 in 2000, which resulted in a shellfish fishery closure (Higman et al., 2001). 

Another closure occurred in July 2006, after toxin concentrations in excess of the 

regulatory limit were detected in shellfish samples from Malpas and Turnaware Pontoon 

(Stubbs et al., 2007). 

Although the first reported HAB in 1995 was ascribed to Alexandrium tamarense 

(Reid & Pratt, 1995; Geatches, 1997), the species that bloomed in June 2001 was 

isolated and later identified as A. minutum, using molecular techniques as well as 

microscopy. A. minutum is now thought to be the main species occurring in the estuary, 

although low numbers of A. tamarense and A. ostenfeldii have also been reported (Percy, 

2006).  

Pseudo-nitzschia spp. also occur regularly in the Fal Estuary during the summer and 

have been observed at concentrations up to 106 cells l-1 in June 2001 (Percy, 2006). A 

domoic acid concentration of 3 µg g-1 was detected in scallops in 2000, which was the 

highest measured in the monitoring programme that year, although well below the 

maximum permitted concentration (Higman et al., 2001). 

Dinophysis acuminata is generally present during the summer months, at 

concentrations <1,000 cells l-1, although an unusually high concentration of 950,000 

cells l-1 was reported in September 2002 in the Percuil River (Percy, 2006). DSP toxins 

were found in summer 2006 in oyster flesh from the River Penryn (Stubbs et al., 2007) 

and again in summer 2007 (Stubbs et al., 2008) 
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Literature on the occurrence of HABs in the Fal is generally scarce and limited to 

monitoring reports rather than ecological studies. It is thought that HABs may be linked 

to increased nutrient loading since the late 1980s (Langston et al., 2003) and the 1995 

bloom was linked to low freshwater input and high temperatures and nutrient 

concentrations (Reid & Pratt, 1995). More recently, an intensive survey of the Fal 

revealed a maximum in “A. minutum type” (hereafter A. minutum) cell abundance 

towards the middle of the estuary (Turnaware Pontoon) and at 5-10 m depth in the 

Narrows (Figure 5.1) and identified the Percuil River as a potential source of cells to the 

estuary (Percy, 2006). Perez Blanco (2005, cited in Percy, 2006) identified the Percuil 

and Penryn Rivers and the area around Turnaware Point as potential seed beds. 

Laboratory studies revealed that cyst germination occurs over a range of irradiances (2 

and 20 µmol photons m-2 s-1), temperatures (8-24 °C) and salinities (15-30). The study 

concluded that the sediments provide a constant and rapid supply of vegetative cells to 

the water column, which under optimal growth conditions can lead to a bloom  (Perez 

Blanco et al., 2009).  

Relatively weak southerly winds (<6 m s-1) and reduced rainfall/freshwater flow are 

conducive to Alexandrium minutum blooms, probably due to increased water column 

stability and reduced flushing rates (Percy, 2006). A study of historical data collected by 

CEFAS revealed that blooms did not occur in years when river discharge was 

particularly high in winter or >2 m3 s-1 in summer (Morris, 2006). 

A negative correlation between tidal height and A. minutum concentration in the 

Percuil River was also observed over a tidal cycle (Morris, 2006). Irradiance did not 

appear to limit A. minutum growth, since blooms were observed even after 7 days of low 

irradiance (150-200 W h-1 m-2), consistent with the reported adaptation of A. minutum to 

low irradiance (Chang & McClean, 1997) (see section 5.1.3). 

Percy (2006) showed that Pseudo-nitzschia abundance increased seaward, 

particularly during spring tides, displaying a maximum in Falmouth Bay (up to 1.1 x 107 

cells l-1), but reduced concentrations in the Penryn and Percuil tributaries and absence 

north of Carrick Roads. During neap tides, high concentrations (>1.1 x 106 cells l-1) were 

observed throughout the estuary. These findings suggest that blooms originate at the 

seaward end of the estuary and are advected into the estuary, where they are more 

readily retained during neap tides. 
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5.1.3. Alexandrium minutum 

 

Alexandrium minutum was first described in Alexandria Harbour (Halim, 1960) and 

is a widely distributed species found in coastal waters of Spain, Portugal (as A. 

ibericum) (Balech, 1985), Italy (Montresor et al., 1990), France (Nezan et al., 1989), 

Ireland (Touzet et al., 2006), Denmark (Hansen et al., 2003), South Australia 

(Hallegraeff et al., 1988), New Zealand , Malaysia (Usup et al., 2002), Taiwan (Chang et 

al., 1995b; Hwang et al., 1999), the US east coast (Steidinger & Tangen, 1996) and more 

recently Cape Town Harbour (Pitcher et al., 2007) and Jamaica (Ranston et al., 2007). 

Toxin profiles of this species are highly variable between strains. Most strains only 

produce gonyautoxins, such as the Fal Estuary strain, which produces GTX-II and -III 

and strains from Spain (Franco et al., 1994), Portugal (Cembella et al., 1987) and 

Taiwan (Hwang & Lu, 2000) only produce GTX-I and GTX-IV. A strain isolated from 

the Fleet Lagoon (UK) also produces significant amounts of saxitoxin (Nascimento, 

2005). A. minutum has been responsible for PSP events in France (Nezan et al., 1989; 

Erard-Le Denn et al., 2000), the Galician Rias (Franco et al., 1994), New Zealand 

(Chang et al., 1995b), South Australia (Hallegraeff et al., 1988) and Taiwan (Hwang et 

al., 1999).  

Studies of A. minutum blooms have shown that they generally occur in harbours, 

lagoons and estuaries, where stratification and high freshwater input create favourable 

conditions for growth (Giacobbe et al., 1996). Blooms in a Sicilian lagoon (Giacobbe et 

al., 1996) and in a harbour on the Catalan coast (Garcés et al., 2004) were thought to be 

initiated by cyst germination, triggered by increased solar irradiance, day length and 

water temperatures. Giacobbe et al (1996) however did not exclude the possibility of an 

allochthonous mechanism such as transport from coastal waters during the flood tide. 

Strong winds and water column instability are thought to be responsible for bloom 

termination (Giacobbe et al., 1996; van Lenning et al., 2007).  

A preference for lower salinities (25-30) has been suggested from both field and 

culture studies (Giacobbe et al., 1996; Grzebyk et al., 2003; Lim & Ogata, 2005) but not 

corroborated by van Lenning et al. (2007), suggesting the existence of different 

geographic strains with distinct physiological traits. Significant negative correlations 

have been observed between A. minutum abundance and NH4
+ concentrations in both the 

Sicilian lagoon and Catalan harbour (Giacobbe et al., 1996; Bravo et al., 2008). It is not 

clear however whether this indicates that high NH4
+ concentrations inhibited A. minutum 
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growth or whether the bloom was drawing down NH4
+, although the former hypothesis 

seems to be preferred (Vila et al., 2005; Bravo et al., 2008). Nitrogen uptake 

measurements in Cape Town Harbour, however, indicated that the bloom was sustained 

by high rates of NH4
+ uptake (Pitcher et al., 2007). Culture studies carried out on a 

French strain have shown higher half-saturation constants (Ks) and maximum cell-

specific uptake rates (νmax) for NH4
+ relative to NO3

-, indicative of a preference for NH4
+ 

over NO3
-. 

In contrast, the estimated NO3
- requirement of a bloom in the Penzé Estuary (France) 

was one order of magnitude higher than for NH4
+ (184 versus 25 µmol l-1), based on 15N 

uptake rates. Bravo et al. (2008) drew a similar conclusion from their study on the 

Catalan coast, where they found a positive correlation between A. minutum and NO3
- 

concentrations. Culture studies have also shown high requirements for NO3
-, with no 

growth inhibition observed up to concentrations of 200 µmol N l-1, whereas inhibition 

occurred at NH4
+ and urea concentrations of 100 µmol N l-1 and 200 µmol N l-1, 

respectively (Chang & McClean, 1997). Similarly, a study carried out with an Irish 

strain of A. minutum showed no growth inhibition with an initial concentration of up to 

1000 µmol N l-1 NO3
- (Touzet et al., 2007).  

 

5.1.4. Aims and objectives 

 

The work carried out in the Fal Estuary aimed to characterise phytoplankton 

dynamics during the summer dinoflagellate bloom period by comparing two consecutive 

years (July 2006 and July 2007) that displayed different environmental conditions. 

Specific objectives were to: 

- determine spatial and temporal variations in community structure, with particular 

focus on Alexandrium minutum, Karenia mikimotoi and Pseudo-nitzschia spp. 

cell concentrations,  

- measure the nutrient uptake rates of different phytoplankton communities and 

identify possible nitrogen nutrition strategies,  

- determine the environmental factors (nutrients, temperature, salinity, tidal state, 

meteorological conditions) that are conducive to HAB development in the Fal 

Estuary. 



 176 

5.2. Results 

 

5.2.1. Meteorological conditions 

 

In 2006, monthly rainfall was highest in autumn (October and November, 115-132 

mm) and lowest in early summer (June and July, 20-34 mm) (Figure 5.2). In 2007, 

rainfall was similar to 2006 in October and November, but was higher than in 2006 

between December and February (82-163 mm) and between May and July (94-116 mm).  

Minimum and maximum air temperatures were higher in July 2006 (15.0 and 22.3 

°C, respectively) relative to July 2007 (12.8 and 17.2°C, respectively) (data not shown). 

 

 
Figure 5.2. Monthly rainfall measured at St Mawgan weather station between August 2005 and July 
2006 (black bars) and between August 2006 and July 2007 (grey bars). 
 
 

5.2.2. Hydrography 

 

5.2.2.1. Tides 

 

In both years the sampling period included both spring and neap tides (Figure 5.3). 

The neap tidal range was 2.30 m in 2006 (5 July) and 2.85 m in 2007 (10 July), and the 

spring tidal range was 4.50 m in 2006 and 3.90 m in 2007. 

Sampling took place on the ebb tide on 4-5 and 11-16 July 2006 and on 4-6 July 

2007, but on the flood tide on 7-9 July 2006 and 10-12 July 2007. Sampling was 

generally carried out in a seaward direction, therefore against the tide during flood tides 

but with the tide during ebb flow. 
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Figure 5.3. Semi-diurnal tidal pattern (data for Falmouth) in (a) 2006 and (c) 2007 and daily 
averaged tidal ranges in (b) 2006 and (d) 2007.  
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5.2.2.2. Temperature 

 

Water temperatures were significantly higher at all stations in 2006 relative to 2007 

(Student’s t-test, p < 0.001), ranging from 16.2 to 19.3 °C in 2006 and from 14.2 to 17.4 

°C in 2007 (Table 5.2). The lowest surface temperatures in both years were generally 

measured at the outermost station Turnaware Point (TP) and the highest at the innermost 

station Malpas (MP). In 2006, temperature variations along the estuary were 1.0-1.4 °C 

when sampling with the tide and 0.6-1.8 °C when sampling against the tide. In contrast, 

variations in surface temperature along the estuary in 2007 were small, and fell in the 

range 0.3-0.7 °C between MP and TP regardless of sampling direction.  

Temporal variations in temperature were of the same order as spatial variations in 

2006, with differences between 1.0 and 2.1 °C depending on the station. In 2007, they 

were greater, with surface temperature varying by 1.3 to 3.1 °C. Lowest temperatures 

were measured during spring tides (14-16 July 2006 and 4-6 July 2007), whereas 

warmest temperatures were observed during neap tides (4-7 July 2006 and 11-12 July 

2007) (Table 5.2). In 2007, temperature was significantly correlated with number of 

hours before or after high tide (p < 0.05, n = 43, Figure 5.6), although on 2 occasions 

very warm temperatures were measured close to high tide, at both MP and TP (7 and 11 

July, respectively). This relationship was not observed in 2006.  

Temperature generally decreased with depth, with temperature differences between 

surface and bottom ranging from 0.0 to 2.4 °C in 2006 and from 0.1 to 3.3 °C in 2007. 

Vertical gradients were strongest during neap tides, whereas the water column was more 

mixed during spring tides, as shown in Figures 5.4 and 5.5.  
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Tidal 

range (m)
MP WB RU SC KH TP

04/07 2.35 - - 18.8/ 16.6 17.8/ 16.5 17.5/ 16.6 17.8
05/07 2.25 - - - 18.2/ 16.8 18.2/ 16.9 18.2/ 16.9

07/07 2.60 19.0/ 17.3 19.3/ 17.0 17.9/ 16.8 18.5/ 16.8 18.7/ 16.5 17.9/ 15.8
08/07 2.90 18.9 18.9 18.1/ 17.0 18.1/ 15.7 18.0/16.4 17.1/ 15.4
09/07 3.30 17.9/ 18.1 18.2/ 17.5 18.0/ 17.5 17.9/ 17.6 18.1/ 17.1 17.6/ 17.2
11/07 4.10 19.0/ 18.8 - 18.0/ 17.4 17.5/ 16.7 17.3/ 16.9 17.2/ 15.2
12/07 4.20 - - - 17.7/ 16.5 17.6/ 15.9 17.3/ 15.9
14/07 4.50 17.6/ 17.5 17.2/ 17.2 - 16.4/ 16.5 17.7/16.4 16.2/ 15.8
15/07 4.45 18.2/ 17.6 - - 17.9/ 17.2 - 17.2/ 16.0

16/07 4.20 17.9/ 17.8 18.0/ 17.0 17.8/ 17.1 - - 17.0/ 16.6

04/07 3.85 14.8/ 14.3 14.6/ 13.9 14.8/ 13.7 14.7/ 14.5 15.1/ 13.9 14.7/ 13.2

05/07 3.80 14.4/ 14.0 14.5/ 13.8 14.4/ 13.7 14.3/ 13.8 - 14.2/ 13.6
06/07 3.65 14.3/ 13.8 14.3/ 13.5 14.8/ 13.6 15.0/ 14.4 14.9/ 14.1 14.8/ 13.6
07/07 3.35 17.4/ 15.3 - - - 16.1/ 14.1 15.8/ 13.5
10/07 2.85 14.7/ 14.5 14.6/ 13.9 14.6/ 13.8 14.3/ 13.6 14.8/ 13.5 14.7/ 13.6
11/07 2.95 16.7/ 14.1 14.8/ 13.8 16.0/ 13.6 15.6/ 13.5 - 16.9/ 13.6
12/07 3.25 15.6/ 15.5 15.7/ 14.0 16.1/ 14.3 - 15.9/ 13.8 15.9/ 14.3

a. 2006

b. 2007

 
Table 5.1. Temperatures measured in (a) 2006 and (b) 2007 at the surface and 2-3 m from the 
bottom by the YSI probes except values in italic, which were obtained from CTD casts. MP = 
Malpas, WB = Woodbury, RU = Ruan, SC = Smuggler’s Cottage, KH = King Harry Reach, TP = 
Turnaware Point. 
 

 

5.2.2.3. Salinity 

 

Salinities were on average 6-19 % higher in 2006 relative to 2007 at stations MP to 

TP, ranging from 22.3 to 34.6 in 2006 and from 21.5 to 31.7 in 2007 (Table 5.2). The 

difference was only significant for the outer stations SC (Student’s t-test, p < 0.05), KH 

(Student’s t-test, p < 0.001) and TP (Mann-Whitney U-test, p < 0.05). 

A salinity gradient was observed along the estuary, with surface salinities as low as 

22.3 in 2006 and 21.5 in 2007 at the riverine end (MP) and as high as 34.8 in 2006 and 

31.7 in 2007 at the seaward end (TP). However, salinity at MP was highly variable due 

to the relative influences of tidal and freshwater flows, with values ranging from 21-22 

at low tide to 30-34 at high tide. At TP, the salinity range was more restricted, although 

relatively low salinities of 26-29 were measured at the surface on 11-12 July 2007 

(Table 5.2). The salinity gradient between MP and TP was weak when sampling on the 

ebbing tide (this usually coincided with spring tides, i.e. 14-16 July 2006 and 4-6 July 

2007), with high salinities of 33-35 in 2006 and 30-32 in 2007 measured throughout the 

estuary (Table 5.2). Although a general decrease in salinity was observed with the 

number of hours since high tide in 2007, the correlation was not significant (p > 0.05, n 
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= 29, Figure 5.6). No relationship between salinity and tidal state was observed in 2006 

(data not shown). 

Vertical salinity gradients were less pronounced in 2006 relative to 2007, with 

maximum salinity differences between surface and bottom of 6.5 in 2006 and 13.6 in 

2007. In both years, salinity was relatively isohaline throughout the water-column during 

spring tides, with salinity differences between surface and bottom of 0.7-3.8, whereas a 

sharper halocline was observed in the top 2 m during neaps (Table 5.2, Figures 5.4 and 

5.5). 

  

Tidal range 

(m)
MP WB RU SC KH TP

a. 2006

04/07 2.35 - - 32.3/ 34.6 32.9/34.9 33.7/34.8 33.7
05/07 2.25 - - - 32.9/34.7 33.3/34.7 33.3/34.6

07/07 2.60 32.2/ 34.5 31.9/ 34.9 34.1/ 34.9 33.4/ 35.0 33.0/ 35.0 34.6/ 35.2
08/07 2.90 28.6 31.0 33.4/ 34.8 32.9/ 35.2 33.3/35.0 34.8/ 35.1
09/07 3.30 23.0/ 29.5 28.0/ 33.6 28.1/ 33.8 30.4/ 33.3 32.0/ 34.3 34.0/ 34.4
11/07 4.10 22.3/ 23.1 - 31.1/ 32.6 30.6/ 34.1 32.7/ 33.6 33.5/ 34.6
12/07 4.20 - - - 31.9/ 34.0 32.3/ 34.4 32.9/ 34.4
14/07 4.50 32.9/ 33.0 33.4/ 33.4 - 34.2/ 34.3 34.2/34.2 34.1/ 34.5
15/07 4.45 33.0/ 33.5 - - 33.7/34.0 - 34.2/34.7

16/07 4.20 33.6/ 33.7 33.6/ 34.2 33.8/ 34.3 - - 34.6/ 34.7
b. 2007

04/07 3.85 30.3/ 32.0 29.8/ 33.6 30.7/ 34.0 31.2/ 31.9 30.8/ 33.5 31.5/ 34.9

05/07 3.80 30.4/ 33.2 29.3/ 33.6 30.0/ 33.7 30.7/ 33.5 - 31.7/ 34.0
06/07 3.65 30.5/ 33.6 32.1/ 34.2 31.2/ 34.0 31.0/ 32.0 31.2/ 33.2 31.5/ 34.2
07/07 3.35 27.2/ 31.2 - - - 30.4/ 33.5 31.0/ 34.5
10/07 2.85 23.2/ 31.7 26.1/ 34.2 30.5/ 34.5 32.4/ 34.8 30.0/ 34.9 29.9/ 35.8
11/07 2.95 21.5/ 34.2 21.1/ 34.7 25.2/ 34.9 27.8/ 34.9 - 26.4/ 35.1
12/07 3.25 24.3/ 28.5 21.1/ 34.3 23.3/ 33.7 - 26.5/ 34.6 28.8/ 33.6  

Table 5.2. Salinities in (a) 2006 and (b) 2007 measured at the surface and 2-3 m from the bottom by 
the YSI probes except values in italic, which were obtained from CTD casts. Station abbreviations 
are as in Table 5.1.  
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Figure 5.4. Temperature and salinity profiles obtained from YSI casts at stations (a, b) MP, (c, d) 
WB, (e, f) SC and (g, h) TP on 7 July (neap/flood tide, open circles) and 14 July 2006 (spring/ebb, 
closed circles).  
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Figure 5.5. Temperature and salinity profiles obtained from YSI casts [or CTD casts for closed 
circles in (g) and (h)] at stations (a, b) MP, (c, d) WB, (e, f) SC and (g, h) TP on 4 July (spring/ebb, 
closed circles) and 11 July 2007 (neap/flood, open circles). 
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Figure 5.6. Relationships between tidal state and (a) surface temperature and (b) surface salinity. 
The correlation was significant between tidal state and temperature (solid line, p < 0.01, n = 30) but 
not salinity (dashed line, p > 0.05, n = 29). 
 
 

5.2.3. Dissolved oxygen 

 

In 2006, DO concentrations were generally measured at MP and TP, whereas in 

2007 they were measured at up to 6 stations along the estuary. Also, the YSI probe 

readings did not correlate with concentrations measured using Winkler titrations in 

2006, therefore only measured concentrations are presented for this year.  

In 2006, surface water was generally supersaturated, with saturations ranging from 

92 to 128 % at MP and from 115 to 127 % at TP. In 2007, DO concentrations were 

generally close to saturation throughout the water column, with the lowest concentration 

measured at MP (85 %, spring tide) and the highest at TP (114 %, neap tide) (Table 5.3).  

Although a clear pattern along the estuary was not always obvious, a gradient was 

observed in 2007 when sampling was conducted against the flooding tide (10 July), with 

saturations increasing seaward. In 2007, DO saturation was generally higher throughout 

the estuary during neap compared to spring tides, although this trend was not apparent in 

2006 (Table 5.3, Figure 5.7). DO saturation generally decreased with depth, with surface 

values 1-36 % and 1-16 % higher than bottom values in 2006 and 2007, respectively.   
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DO (%Sat)
Tidal range 

(m)
MP WB RU SC KH TP

a. 2006

04/07 2.35 - - 140 - - 127
05/07 2.25 - - - 139/124 - 140/125

07/07 2.60 128 - - 118/87 - 117/98

08/07 2.90 112 - - 127 110/127 109/106

09/07 3.30 - - - - 116 121/105

11/07 4.10 92 - - 113/120 112/137 115
12/07 4.20 - - - 116/112 - 127/119

14/07 4.50 125 - - 127/126 134/119 114/115

15/07 4.45 - - - - - -
16/07 4.20 119 - - - 100 -

b. 2007

04/07 3.85 96/ 96 95/ 92 96/ 93 96/ 95 98/ 95 -
05/07 3.80 87/ 85 92/ 86 91/ 86 93/ 87 - 91/ 86
06/07 3.65 99/ 96 100/ 95 100/ 96 - 99/ 97 100/ 94
07/07 3.35 101/ 99 - - - 105/ 95 96/ 88
10/07 2.85 101/ 101 102/ 101 104/ 106 109/ 101 111/ 102 114/ 98
11/07 2.95 106/ 100 108/ 101 106/ 98 110/ 97 - 110/ 100
12/07 3.25 92/ 93 98/ 100 94/ 100 - 99/ 99 108/ 108  

Table 5.3. (a) Surface DO saturations measured using the Winkler method in 2006, (b) calibrated 
surface and bottom DO saturations (%) measured using two YSI probes in 2007. Station 
abbreviations are as in Table 5.1. Italics represent measurements made on RV Bill Conway. 
 

 
Figure 5.7. DO saturation profiles obtained from YSI deployments on 5 July (closed cicles, spring 
tide) and 11 July 2007 (open circles, neap tide) at (a) MP, (b) WB, (c) RU, (d) SC and (e) TP. Profile 
data were not available for 2006 since the YSI DO sensor was unreliable.  
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5.2.4. Nutrients 

 

5.2.4.1. Nitrate 

 

Surface NO3
- concentrations ranged from 0.2 to 129.3 µmol l-1 in 2006 and from 

13.1 to 119.1 µmol l-1 in 2007 between stations MP and TP (Table 5.4a). Average 

concentrations for each station were 34 % to 17-fold higher in 2007 relative to 2006. 

These differences were significant for all stations except MP (Student’s t-test, p < 

0.001).   

A horizontal gradient was consistently observed in 2006, with concentrations 

decreasing by 3- to 56-fold between MP and TP. In 2007 the gradient was not always 

observed (e.g. 12 July) and was generally less pronounced, with concentrations 

decreasing by 1.5- to 5-fold (Table 5.4b).  

In 2007, NO3
- concentrations were measured at depth as well as at the surface and 

concentrations were significantly lower at depth relative to the surface (paired t-test, p < 

0.05). The difference was more pronounced during neap tide (66-88 % on 10-11 July) 

than during spring tide (14-67 % on 6 July), as shown in Figure 5.8d.  

Temporal variation was also more pronounced in 2006 relative to 2007, with 

concentrations as low as 5.3 µmol l-1 measured at MP at high tide and as high as 129.3 

µmol l-1 at low tide whereas in 2007 similar concentrations were measured at both high 

and low tide (e.g. 5 and 12 July). Significant correlations were observed between NO3
- 

concentrations and tidal state (number of hours since/before high tide) in 2007, during 

neap tides only (Figure 5.9a). 
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Date
Tidal range 

(m)
MP WB RU SC KH TP

a. 2006

04/07 2.35 - - 7.7 - 5.8 2.6
05/07 2.25 - - - - - -
07/07 2.60 24.0 13.6 10.1 9.0 - 8.4
08/07 2.90 76.7 34.7 15.6 11.5 9.2 0.8

09/07 3.30 123.1 63.1 52.1 21.6 12.0 2.2
11/07 4.10 129.3 65.0 25.1 27.9 9.9 2.7
12/07 4.20 - - - 15.0 9.9 8.1

14/07 4.50 8.6 8.1 - 2.1 1.7 1.1
15/07 4.45 7.4 - - 2.6 2.5 0.7

16/07 4.20 5.3 4.7 2.7 2.2 0.8 0.2
b. 2007

04/07 3.85 63.6 60.9 51.4 43.6 45.9 42.0

05/07 3.80 53.2 61.5 57.4 49.1 - 47.0
06/07 3.65 66.5 45.2 47.1 45.2 43.3 39.4
07/07 3.35 119.1 - - - 54.2 43.6
10/07 2.85 108.7 56.8 38.7 19.6 19.8 32.3
11/07 2.95 37.7 75.5 52.7 35.6 - 13.1
12/07 3.25 51.6 83.9 77.4 - 58.1 88.2  

Table 5.4. Nitrate concentrations (µmol l-1) measured at the surface between MP and TP in (a) 2006 
and (b) 2007. Italics represent measurements made on RV Bill Conway. 
 
 

5.2.4.2. Phosphate 

 

Phosphate concentrations were 0.2-2.6 µmol l-1 in 2006 and 0.1-1.1 µmol l-1 in 2007. 

Average concentrations for each station were 15-58 % higher in 2006 than in 2007 at the 

upper stations MP and WB, but 12 % to 2-fold higher in 2007 at the other stations. 

However, these differences were not statistically significant (Student’s t-test, p > 0.05). 

Phosphate followed the same distribution as NO3
- along the estuary, with highest 

concentrations generally measured at MP and lowest concentrations at TP. Horizontal 

gradients were steeper in 2006 than in 2007, decreasing by 17 % to 10-fold between TP 

and MP in 2006 and by 10 % to 5-fold in 2007 (Table 5.5).  

Concentrations were significantly lower at depth relative to the surface (paired t-test, 

p < 0.05). As with NO3
-, the difference was more pronounced during neap tides (up to 57 

%) than during spring tides (up to 34 %) (Figure 5.8b,e). Significant correlations were 

observed between PO4
3- concentrations and tidal state (number of hours since/before 

high tide) in 2007, during neap tides only (Figure 5.9b). 

 Phosphate concentrations were significantly correlated with NO3
- concentrations in 

both years, with a regression coefficient of 45 in 2006 and 73 in 2007, i.e. 3- to 6-fold 

higher than the Redfield ratio (Figure 5.10a). In 2006, N:P ratios were lowest at TP (1-
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23) and highest at MP (13-92) (data not shown). In 2007, N:P ratios were generally high 

throughout the estuary and were 2.5 to 13-fold higher than in 2006. The difference was 

statistically significant at stations MP (Student’s t-test, p < 0.01), WB (Student’s t-test, p 

< 0.001), RU (Student’s t-test, p < 0.01) and TP (Mann-Whitney U-test, p < 0.05). 

 

Date
Tidal range 

(m)
MP WB RU SC KH TP

a. 2006

04/07 2.35 - - 0.74 - 0.27 0.23
05/07 2.25 - - - - - -
07/07 2.60 0.63 0.30 0.24 0.13 - 0.54
08/07 2.90 0.84 0.98 0.60 0.70 0.50 0.50

09/07 3.30 2.63 1.50 0.77 0.46 0.42 0.26
11/07 4.10 2.04 1.21 0.46 0.38 0.35 0.19
12/07 4.20 - - - 0.52 - 0.63
14/07 4.50 0.56 0.47 - 0.24 0.27 0.23
15/07 4.45 0.49 - - 0.28 0.29 0.24

16/07 4.20 0.42 0.36 0.29 0.29 0.38 0.24
b. 2007

04/07 3.85 0.96 0.85 0.79 0.81 0.67 0.53

05/07 3.80 0.69 0.70 0.62 1.06 - 0.63
06/07 3.65 0.50 0.65 0.75 0.61 1.38 0.53
07/07 3.35 0.82 - - - 0.57 0.50
10/07 2.85 0.85 0.71 0.33 0.38 0.32 0.33
11/07 2.95 0.51 0.60 0.43 0.16 - 0.11
12/07 3.25 0.49 0.68 0.57 - 0.39 0.30  

Table 5.5. Phosphate concentrations measured at the surface between MP and TP in (a) 2006 and 
(b) 2007.  Italics represent measurements made on RV Bill Conway. 
 

 

5.2.4.3. Silicate 

 

Silicate concentrations were lower than NO3
- concentrations, ranging from 0.2 to 

37.6 µmol l-1 at the surface in 2006 and from 5.1 to 19.8 µmol l-1 in 2007. Silicate 

concentrations were significantly higher in 2007 than in 2006 at stations KH and TP 

only (Student’s t-test, p < 0.01).  

In 2006, concentrations increased up to 12-fold between MP and TP when MP was 

sampled at low tide, whereas in 2007 they only increased up to 2-fold under the same 

conditions (Table 5.6). Concentrations were significantly higher at the surface than at 

depth (paired t-test, p < 0.01) and the difference was less pronounced during spring tides 

(17-46 %) relative to neap tides (67-80 %) (Figure 5.8c,f). Silicate concentrations were 

significantly correlated with tidal state in 2007, during neap tides only (Figure 5.9c). 
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Nitrate and Si concentrations were significantly correlated in both years, with a 

regression coefficient of 2.8 in 2006 and 4.1 in 2007 (Figure 5.10b). N: Si ratios were 

significantly higher (Student’s t-test) in 2007 than in 2006 at MP, WB (p < 0.05), RU (p 

< 0.01) and SC (p < 0.001). 

 

Date
Tidal range 

(m)
MP WB RU SC KH TP

a. 2006

04/07 2.35 - - 2.4 - 3.3 2.0
05/07 2.25 - - - - - 2.9
07/07 2.60 6.2 12.7 5.3 4.6 - 3.5
08/07 2.90 17.2 11.9 10.1 - 4.8 3.6

09/07 3.30 29.5 14.0 26.3 11.1 7.2 2.7
11/07 4.10 37.6 18.1 9.4 18.5 7.7 3.1
12/07 4.20 - - - 7.1 5.6 4.9
14/07 4.50 6.2 6.2 - 2.4 2.2 1.8
15/07 4.45 2.1 - - 1.1 0.2 0.1

16/07 4.20 3.5 3.2 2.3 1.9 1.6 1.0
b. 2007

04/07 3.85 17.1 17.9 14.9 13.3 15.2 11.7

05/07 3.80 15.2 17.6 16.1 14.8 - 13.9
06/07 3.65 14.7 12.4 14 13.5 13.7 12.2
07/07 3.35 24.7 - - - 15.4 13.1
10/07 2.85 18.8 11.5 8.4 5.1 5.4 9.3
11/07 2.95 7.8 16.5 14.0 12.0 12.0 9.8
12/07 3.25 9.9 17.1 14.5 - 14.4 19.8  

Table 5.6. Silicate concentrations measured at the surface between MP and TP in (a) 2006 and (b) 
2007. Italics represent measurements made on RV Bill Conway. 
 

 
Figure 5.8. Concentrations of (a,d) NO3

-, (b,e) PO4
3- and (c,f) Si during (a,b,c) spring tides (6 July 

2007) and (d,e,f) neap tides (11 July 2007) at the surface (closed symbols) and 2-3 m from the 
bottom (open symbols). 
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Figure 5.9. Relationships between tidal state and surface concentrations of (a) NO3

-, (b) PO4
3- and 

(c) Si during spring (closed circles) and neap tides (open circles) in 2007. Regression lines are drawn 
where correlations are significant, i.e. for neap tides (p < 0.01 for NO3

-, p < 0.05 for PO4
3- and Si, n = 

16) but not for spring tides. 
 
 

 
Figure 5.10. Correlations between surface concentrations of (a) NO3

- and PO4
3-, (b) NO3

- and Si, (c) 
NO3

- and NH4
+ and (d) PO4

3- and urea, measured in 2006 (closed circles) and 2007 (open circles) at 
stations listed in Table 5.1. p < 0.01 in all cases [n = 111 in 2006 and 45 in 2007 in (a); n = 108 in 
2006 and 45 in 2007 in (b); n = 10 in (c); n = 19 in (d)]. 
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5.2.4.4. Ammonium and urea 

 

Ammonium and urea concentrations were only measured in association with 

nitrogen uptake incubations, therefore spatial coverage of the estuary is limited. 

Ammonium concentrations ranged from 0.02 to 0.77 µmol N l-1 in 2006 and from 0.09 to 

2.23 µmol N l-1 in 2007. Concentrations were significantly (on average 4-fold) higher in 

2007 relative to 2006 (Mann-Whitney U-test, p < 0.05). Ammonium concentrations 

were significantly correlated with NO3
- concentrations in 2007 but not in 2006, although 

the correlation was significant for both years combined (Figure 5.10c). Concentrations 

generally increased towards the head of the estuary although there was a high degree of 

temporal variability within stations (Figure 5.11).  

Urea concentrations were insignificantly different between years, ranging from 0.81 

to 1.63 µmol N l-1 in 2006 and from 0.13 to 1.34 µmol N l-1 in 2007. Concentrations 

were not correlated with NH4
+ or NO3

- (data not shown) but they were significantly 

correlated with PO4
3- for both years (p < 0.05, n = 18, Figure 5.10d). Concentrations 

displayed no particular pattern along the estuary, showing high variability between days 

at some stations (Figure 5.11). Urea concentrations were significantly higher than NH4
+ 

concentrations in 2006 (paired t-test, p < 0.01), but not significantly different in 2007. 

 

 
 
Figure 5.11. Concentrations of (a) NH4

+, (b) NO3
- and (c) urea as a function of latitude, measured in 

association with nutrient uptake incubations on different dates in 2006 (closed symbols) and 2007 
(open symbols). 
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5.2.5. Chl-a 

 

Chl-a concentrations ranged from 2.0 to 19.2 µg l-1 in 2006 and from 0.6 to 8.2 µg l-1 

in 2007. Concentrations were 44 % to 3-fold higher in 2006 than in 2007 depending on 

the station. These differences were statistically significant (Student’s t-test) for stations 

MP, RU (p < 0.01), WB and KH (p < 0.05). 

Highest concentrations were measured at the head of the estuary in 2006, whereas in 

2007 the horizontal distribution of chl-a varied over time. Chl-a was maximal at the 

mouth of the estuary on 4 and 10 July, in the middle of the estuary on 5, 6 and 11 July 

and at the head of the estuary on 7 and 12 July. Variations along the estuary were more 

pronounced in 2006, with concentrations increasing by up to 9-fold between TP and MP 

but only up to 5-fold in 2007. Higher concentrations were generally measured during 

neap tides in 2007 (10-12 July), although in 2006 chl-a concentrations were significantly 

higher at all stations on 9 July, between neap and spring tide (Mann-Whitney U-test or 

Student’s t-test as appropriate, p < 0.05).  

There was generally little variation in chl-a with depth and chl-a was usually highest 

at the surface, although occasionally a subsurface maximum was observed (Table 5.7). 

The difference between surface and bottom in 2006 was more pronounced during neap 

than during spring tides, although this was not observed in 2007 (Table 5.7). 

Chl-a displayed significant positive correlations with NO3
- (r2 = 0.35, n = 60, p < 

0.01), PO4
3- (r2 = 0.22, n = 59, p < 0.01) and Si (r2 = 0.23, n = 59, p < 0.01) in 2006, but 

no significant correlation with NO3
- or Si, and a significant negative correlation with 

PO4
3- in 2007 (r2 = 0.14, n = 33, p < 0.05) (Figure 5.12). 
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Tidal range 

(m)
MP WB RU SC KH TP

a. 2006

04/07 2.35 - - 6.2 11.5/ 4.0 6.4/ 2.8 6.3/ 2.5

05/07 2.25 10.9 - - 9.6/ 1.9 12.1 8.3/ 3.7

07/07 2.60 11.8 5.6 7.8 7.4/ 1.6 7.4/ 1.9

08/07 2.90 11.6 7.9 6.6 5.5/ 2.8 9.3/ 3.1 2.0/ 2.3

09/07 3.30 17.8 15.1 6.8 14.2 10.1/ 7.6 7.9/ 6.7

11/07 4.10 19.2 13.1 8.4 8.3/ 10.6 11.9/ 11.4 11.4/ 10.2

12/07 4.20 - - - 12.1/ 10.3 12.7/ 6.2 12.9/ 9.1

14/07 4.50 5.2 5.5 - 7.0/ 9.1 5.8/ 5.7 3.8/ 3.5

15/07 4.45 - - - 10.4/ 10.3 - 4.9/ 5.0

16/07 4.20 - - - - - -
b. 2007

04/07 3.85 1.3 2.2 2.1 4.5/ 5.0 3.2 4.0/ 4.2

05/07 3.80 3.5 4.6 5.6 6.1/ 5.2 - 4.5
06/07 3.65 0.6/ 0.3 1.5/ 1.3 1.6/ 3.5 3.2 2.2/ 3.1 2.0/ 2.6
07/07 3.35 6.2 - - 4.3/ 5.1 2.1/ 4.6 3.1/ 3.6
10/07 2.85 3.4 3.3/ 3.6 3.8/ 4.3 5.9/ 5.7 4.1/ 3.6 7.7/ 6.0
11/07 2.95 5.1 5.5/ 6.3 5.8/ 5.2 8.2/ 5.4 - 6.1/ 5.1
12/07 3.25 6.6 6.2 4.5 - 5.7 5.8  

Table 5.7. Chl-a concentrations (µg l-1) measured at the surface (and 2-3 m from the bottom where 
two values are given) at 6 different stations along the estuary in (a) 2006 and (b) 2007. Italics 
represent measurements made on RV Bill Conway. 
 

 
 
Figure 5.12.  Relationships between surface chl-a and (a) NO3

-, (b) PO4
3- and (c) Si concentrations in 

2006 (closed circles) and 2007 (open circles). Regression lines are drawn and equations shown where 
significant correlations were observed, i.e. 2006 for all nutrients and 2007 for PO4. 
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5.2.6. Phytoplankton community structure 

 

5.2.6.1. Cell counts 

 

In 2006, diatoms were dominant, representing up to 99.5 % of total phytoplankton 

cells, although dinoflagellates dominated (between 50 and 93 %) at some stations (KH 

on 5 July, SC on 9 July and TP on 8 and 15 July). On these occasions, the main 

dinoflagellate species were Alexandrium minutum type cells (hereafter referred to as 

Alexandrium) at KH and SC, but Karenia mikimotoi at TP (Figure 5.13). The main 

diatom species were Thalassiosira spp. (up to 94 % total cells), Leptocylindrus danicus 

(up to 90 %) and Rhizosolenia setigera (24 %). 

 
Figure 5.13. Total concentrations of diatoms and dinoflagellates at (a) KH and (d) TP, 
concentrations of the main diatom species at (b) KH and (e) TP and concentrations of the main 
dinofagellate species at (c) KH and (f) TP in July 2006. 
 
 

In 2007, total cell concentrations were one order of magnitude lower and the 

community was generally dominated by dinoflagellates (up to 99 %), although on 7 and 

10 July (Malpas) it was dominated by diatoms (71-94 %) (Figure 5.14). Alexandrium 

was the dominant dinoflagellate, representing 88 to 100 % dinoflagellate cell numbers. 
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The main diatom species were Cylindrotheca closterium (up to 95 % diatom numbers), 

Thalassiosira spp. (up to 30 %) and Rhizosolenia setigera (up to 38 %). 

 

 
Figure 5.14. Concentrations of (a,b) diatoms and dinoflagellates and (c,d) the main diatom and 
dinoflagellate species at various stations along the estuary on (a,c) 5 July and (b,d) 10 July 2007. 
 
 

5.2.6.2. Cluster analysis 

 

Cluster analysis revealed the presence of 5 clusters at the 40 % similarity level, with 

2 stations clustering separately. These were omitted from further analyses since the aim 

of the analysis was to investigate the contributions of different species to between-

station similarity within clusters. Cluster I comprised lower estuary (TP) stations from 

2006 and was characterised by Karenia mikimotoi (Table 5.8). Cluster II comprised 

stations from various locations along the estuary between 4 and 9 July 2006 and was 

characterised by a mixture of diatoms, ciliates and Alexandrium. Cluster III comprised 

mid- to lower estuary stations between 6 and 13 July 2006 and was characterised by 

Leptocylindrus danicus. Cluster IV comprised upper estuary stations from both 2006 and 

2007 and was characterised by Cylindrotheca closterium. Cluster V comprised 2007 

stations from all stations along the estuary as well as a 2006 station, and was 

characterised by Alexandrium. 
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Figure 5.15. Dendrogram derived from calculations of Bray-Curtis similarity indices between 
stations in 2006 and 2007 combined, using the statistical package PRIMER. Clusters formed at the 
40 % similarity level are labelled (I-V) as in the text. 
 
 

The different clusters displayed, to a certain extent, different hydrographic, chemical 

and biological properties (Table 5.8). Cluster I was characterised by high temperatures 

and salinities, very low NO3
- and PO4

3- but higher Si and low N:P and N:Si ratios and 

chl-a concentrations. Clusters II and III were both characterised by high temperatures 

and salinities, moderate nutrient concentrations and high chl-a. Cluster IV occurred at 

low salinities, high nutrient concentrations and nutrient ratios and high chl-a. Cluster V 

occurred at low temperatures, intermediate salinities and high nutrient concentrations 

and ratios (although not as high as Cluster IV), but low chl-a concentrations. 
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Locations Species

% 

contribution 

to similarity

Temp Sal chl-a % diatoms H' NO3
-

PO4
3- Si DIN:P DIN:Si

TP Karenia mikimotoi 52.1 17.1 (0.05) 34.5 (0.3) 2.5 (1.9) 15.4 (8.3) 1.2 (0.7) 0.7 (0.4) 0.0 5.3 5.3 0.2
TP R. setigera 21.3

Naked ciliate 7.8
KH Thalassiosira  spp. 37.2 18.1 (0.06) 33.3 (0.3) 9.8 (1.1) 84.6 (7.6) 1.4 (0.1) 7.0 (1.7) 0.4 (0.1) 5.6 (1.6) 25 (5) 1.2 (0.5)

KH, TP Mesodinium  spp. 9.9
MP, TP R. setigera 9.8

KH L. danicus 7.2
KH Alexandrium  spp. 7.1

P. micans 5.9
Naked ciliate 4.7

TP L. danicus 64.4 17.0 (1.1) 33.3 (0.5) 10.0 (1.5) 90.6 (3.5) 0.8 (0.2) 5.8 (1.3) 0.1 (0.0) 1.7 49 (21) 1.9
STP Alexandrium  spp. 14.4
KH Thalassiosira  spp. 10.1
KH
MP C. closterium 49.7 16.2 (1.6) 22.0 (1.1) 11.1 (1.2) 96.7 (2.8) 1.3 128.2 (19.6) 1.7 (1.3) 27.7 (16.8) 166 (116) 6.6 (3.3)
MP Naked ciliate 22.4

Thalassiosira  spp. 10.8
MP, WB, RU, Alexandrium  spp. 75.5 14.7 (0.2) 30.9 (0.4) 5.4 (0.5) 30.4 (6.4) 0.9 (0.1) 42.7 (5.0) 0.5 (0.1) 11.0 (1.4) 98 (11) 4.4 (0.4)

KH, TP R. setigera 7.0
SC
SC

WB, RU, SC, TP
TP  

Table 5.8. Main species contributions to total similarity (up to 80 % cumulative percentage) within clusters defined at the 40 % similarity level using the statistical 
package PRIMER, and mean (standard error) temperature, salinity, chl-a, % diatoms,  Shannon diversity index H’, NO3

-, PO4
3- and Si concentrations and DIN:P and 

DIN:Si ratios for each cluster. 
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5.2.7. Nitrogen uptake 

 

5.2.7.1. Uptake and regeneration rates 

 

In 2006, ρ(NH4
+) was significantly lower than both ρ(NO3

-) (Wilcoxon’s test, p < 

0.05) and ρ(urea) (paired t-test, p < 0.01). Nitrate uptake ranged from 0.024 to 0.149 

µmol N l-1 h-1 and ρ(urea) from 0.062 to 0.110 µmol N l-1 h-1, whereas ρ(NH4
+) ranged 

from 0.018 to 0.089 µmol N l-1 h-1 (Figure 5.16a). Uptake rates of the various nitrogen 

sources were not significantly different from one another. 

In 2007, both ρ(NO3
-) and ρ(urea) were significantly lower than in 2006 (Mann-

Whitney U-test and Student’s t-test, p < 0.05 and p < 0.001, respectively), but ρ(NH4
+) 

was similar to 2006, hence NH4
+

 was generally the most important source of nitrogen. 

Ammonium uptake ranged from 0.018 to 0.131 µmol N l-1 h-1, ρ(NO3
-) from 0.007 to 

0.058 µmol N l-1 h-1 and ρ(urea) from 0.007 to 0.035 µmol N l-1 h-1 (Figure 5.16b). 

Ammonium uptake was significantly higher than ρ(urea) (Wilcoxon’s test, p < 0.01) but 

insignificantly different from ρ(NO3
-). Ammonium uptake increased towards the head of 

the estuary, whereas ρ(NO3
-) and ρ(urea) showed little variation, with the exception of 

one high ρ(NO3
-) value of 0.058 µmol N l-1 h-1 measured at the mouth of the estuary 

(Figure 5.16b).  

ƒ-ratios ranged from 0.11 to 0.56 in 2006 (mean 0.41 ± 0.04) and from 0.09 to 0.73 

in 2007 (mean 0.23 ± 0.06). They were significantly higher in 2006 relative to 2007 

(Student’s t-test, p < 0.05).   

Regeneration rates r(NH4
+) were on average higher in 2007 (0.079 ± 0.019 µmol N l-

1 h-1) relative to 2006 (0.038 ± 0.009 µmol N l-1 h-1), although the difference was not 

statistically significant. Ammonium uptake rates displayed a significant positive 

correlation with r(NH4
+) for both years combined, with a regression coefficient of 0.52 

(r2 = 0.47, p < 0.01, n = 14, Figure 5.17). 
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Figure 5.16. ρ(NO3

-), ρ(NH4
+) and ρ(urea) in (a) 2006 and (b) 2007 and ƒ-ratios in (c) 2006 and (d) 

2007 at various stations along the estuary measured on different dates. 
 

 
Figure 5.17. Linear regression of ρ(NH4

+) versus r(NH4
+) in 2006 (closed circles) and 2007 (open 

circles) combined; y = 0.52 x + 0.01 (r2 = 0.47, p < 0.01).  
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5.2.7.2. Nitrogen uptake kinetics 

 

Two experiments were carried out in 2006 at the same location and were dominated 

by the same phytoplankton species, Leptocylindrus danicus. As a result, the curves and 

kinetics parameters for NH4
+ were very similar for both experiments (Figure 5.18, Table 

5.9), although they were not determined for NO3
- in experiment 1. Ammonium was 

preferred over NO3
-, with νmax and α 2- and 4-fold higher for NH4

+ than for NO3
-, 

respectively.  

 

 
Figure 5.18. PN-specific nitrogen uptake rates versus concentration on 10 July (Expt 1) and 13 July 
2006 (Expt 2), fitted to the Michaelis-Menten equation for uptake kinetics using the statistical 
package SigmaPlot (Jandel Scientific). 
 

Exp. Dominant νmax(NH4
+) α(NH4

+)

# species NO3
- NH4

+ NO3
- NH4

+ NO3
- NH4

+ νmax(NO3
-) α(NO3

-)

1 L. danicus - 15.4 (1.0)* - 1.61 (0.38)* - 9.6 - -
2 L. danicus 7.0 (0.6)* 15.6 (1.1)* 3.04 (1.21) 1.50 (0.39)* 2.3 10.4 2.23 4.52

νmax Ks α

 
Table 5.9. Nitrogen uptake kinetics parameters νmax (x 10-3 h-1), Ks (µmol N l-1) and α (x 10-3 h-1(µmol 
N l-1)-1) for NO3

- and NH4
+ for Experiments 1 and 2 and ratios of the parameters for NH4

+ to those 
for NO3

-, given as indicators of nutrient preference.  
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5.3. Discussion 

 

5.3.1. Effects of environmental conditions on phytoplankton biomass and 

community structure 

 

Contrasting meteorological conditions were observed between 2006 and 2007, with 

40 %, 6-fold and 3-fold higher rainfall measured in May, June and July 2007, 

respectively, relative to corresponding months in 2006. Maximum and minimum 

temperatures were 30 % and 17 % higher, respectively in July 2006, and duration of 

sunshine was 70 % and 27 % longer in June and July 2006, respectively. The warmer air 

temperatures in 2006 led to significantly higher water temperatures at all stations, while 

the lower rainfall led to higher salinities and weaker salinity stratification. Furthermore, 

NO3
- concentrations were significantly higher in 2007 at all stations except MP, and Si 

concentrations were significantly higher at TP and SC. Ammonium concentrations were 

also significantly higher in 2007 at all stations combined. The higher NO3
- and Si 

concentrations in 2007 can be explained by increased runoff. The lack of a significant 

difference in PO4
3- concentrations between years suggests that PO4

3- was supplied by 

different sources to NO3
- and Si, although the increased freshwater flow in 2007 would 

have acted to reduce PO4
3- concentrations. Sources of NH4

+ include sewage effluent and 

in situ recycling, therefore NH4
+ concentrations are not directly related to freshwater 

input. However, the correlation between NH4
+ and NO3

- concentrations (Figure 5.10) 

indicates that NH4
+ concentrations may have been indirectly linked to runoff via the 

relationship between NH4
+ and NO3

-. The higher concentrations in 2007 could have been 

due to the higher regeneration rates (average 0.079 compared to 0.038 µmol N l-1 h-1 in 

2006), which were ~2-fold higher than ρ(NH4
+).  

In 2006, chl-a and nutrient concentrations were positively correlated (Figure 5.12), 

as observed for a range of estuaries by Monbet (1992), indicating that phytoplankton 

biomass was probably controlled by nutrient availability. Lower chl-a concentrations in 

2007 however were not due to nutrient limitation, since nutrient concentrations were 

generally higher than in 2006. Irradiance exerts a very strong control on phytoplankton 

growth (Falkowski & Owens, 1978), therefore the reduced ambient irradiance in 2007 

(hence lower surface incident irradiance) were most likely responsible for the reduced 

biomass. Although wind velocities were not recorded, increased wind in 2007 would 
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have increased turbidity and thus reduced light penetration through the water column. 

Tidal mixing and its influence on light availability is also known to play an important 

role in limiting primary production in estuaries (Monbet, 1992; Gianesella et al., 2000). 

In this study, the neap tidal range was lower in 2006 (2.30 m) relative to 2007 (2.85 m), 

however the spring tidal range was higher (4.50 m in 2006 and 3.90 m in 2007). In 2007, 

higher biomass was observed during neap tides relative to spring tides, however this was 

not the case in 2006, suggesting that tidal mixing may have been a limiting factor in 

2007. Although not measured in this study, grazing pressure may also have played a part 

in limiting phytoplankton growth. This is supported by the higher r(NH4
+) in 2007, 

which suggests that microzooplankton was more abundant in this year. 

Marked differences in phytoplankton community structure were observed between 

years, with diatoms generally dominant in 2006 and dinoflagellates in 2007. Diatoms are 

traditionally associated with turbulent, high nutrient conditions in spring, whereas 

dinoflagellates are typically associated with more stratified, nutrient-depleted conditions 

in summer (Margalef, 1978). This successional pattern is generally observed in 

temperate coastal waters (Smayda, 1980), although in the Fal Estuary the peak of the 

diatom bloom has been recorded in June rather than in the early spring (Percy, 2006). 

This author also reported a higher dominance of diatoms in June 2001 relative to June 

2002, when temperatures were ~2 °C higher and dinoflagellates dominated for a period, 

albeit at lower concentrations. 

The lower temperatures and irradiances and higher nutrient concentrations recorded 

in 2007 are not conditions typically associated with dinoflagellate blooms. However, 

stronger stratification due to increased rainfall and freshwater runoff most likely 

favoured dinoflagellates. These are generally more successful in stable environments 

due to their susceptibility to turbulence (White, 1976; Thomas & Gibson, 1992; Berdalet 

& Estrada, 1993), although different species display different preferences in terms of 

water column stability (Holligan et al., 1980). Nutrients and turbulence are positively 

correlated in the open ocean and dinoflagellates generally occur along a gradient of 

decreasing turbulence and nutrient availability (Margalef, 1978). However, the 

“anomalous” combination of high nutrients and high water column stability can occur in 

coastal environments, and according to Margalef’s Mandala these conditions are 

conducive to HABs (Margalef et al., 1979). This situation was observed in the present 

study, where increased rainfall, hence freshwater inputs, were responsible for increased 
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nutrient concentrations and coincided with the dominance of the toxic dinoflagellate 

Alexandrium in 2007. 

The dominant diatom species were Thalassiosira spp. (37 % similarity within 

Cluster II), Leptocylindrus danicus (64 % similarity within Cluster III) and 

Cylindrotheca closterium (50 % similarity within Cluster IV). Clusters II and III 

occurred within similar ranges of temperature (17.9-18.3, with the exception of one 

value of 14.8), salinity (32.0-34.2), NO3 (2.7-12.0 µmol l-1), PO4
3- (0.09-0.55 µmol l-1), 

Si (1.7-11.2 µmol l-1), N:P (13.3-89.5) and N:Si ratios(0.2-2.4). These communities were 

distributed along the estuary, from Malpas to South of Turnaware Point. This wide 

distribution and the wide range of nutrient concentrations indicates that these 

communities were able to adapt to fluctuating conditions and were probably carried up 

and down the estuary with the ebbing and flooding tides. Both L. danicus and 

Thalassiosira spp. have been reported as important components of the phytoplankton 

community in the Fal Estuary, with L. danicus dominating in summer and Thalassiosira 

spp. in autumn (Percy, 2006). The low N:Si ratios relative to the other clusters were 

indicative of these communities’ high requirement for Si and their lack of success under 

Si-limited conditions. In contrast, Cluster IV occurred only on 2 occasions and both 

times at MP, therefore these species were adapted to low salinities (20.9-23.2) and high 

nutrient concentrations as well as high N:P and N:Si ratios. This lower requirement for 

Si is consistent with the morphology of the dominant species C. closterium, which is a 

small, lightly silicified cell. 

 

5.3.2. Factors affecting the spatial and temporal distribution of toxic species 

 

5.3.2.1. Karenia mikimotoi 

 

The ichthyotoxic naked dinoflagellate Karenia mikimotoi was present in 2006 and 

responsible for 52 % similarity within Cluster I. This cluster occurred only on two 

occasions, at TP (1.4-1.9 x 105 cells l-1), where salinities were high (34.2-34.8) and 

nutrients were low (NO3
- < 1 µmol l-1, PO4

3- < 0.01 µmol l-1). K. mikimotoi was also 

present in high concentrations (6.3 x 105 cells l-1) at KH on one occasion, although it 

was a smaller component of the phytoplankton community and this station was not 

included in Cluster I. Interestingly, K. mikimotoi was absent from the community in 

2007, suggesting that it was better adapted to the warmer temperatures and/or higher 
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salinities and lower nutrient concentrations in 2006. K. mikimotoi has been previously 

reported in the Fal Estuary in late summer, peaking at a concentration of 1.8 x 106 cells l-

1 in the Percuil River (Percy, 2006). This author reported that cells were first detected at 

the Narrows and later in the Percuil River, and hypothesised that the cells originated in 

the English Channel and were then advected into the estuary. The reported occurrence of 

the blooms in August/September is consistent with an adaptation to warmer 

temperatures, while their seaward origin confirms their association with more saline 

waters. Blooms of K. mikimotoi (previously known as Gymnodinium aureolum) are 

known to occur in the English Channel (Holligan, 1979; Garcia & Purdie, 1994) and in 

the Irish Sea (Ottway et al., 1979). Blooms in the western English Channel and off the 

south coast of Ireland also occurred at very low NO3
- (<0.5 µmol l-1) and PO4

3- 

concentrations (<0.1 µmol l-1) (Garcia & Purdie, 1994; Raine et al., 2001), suggesting a 

preference for nutrient-depleted waters. This is consistent with its presence in 2006 at 

very low nutrient concentrations (0.2-1.1 µmol l-1) and its absence in 2007, when 

concentrations were generally higher. Raine et al. (2001) also reported that K. mikimotoi 

blooms develop in stratified waters in the region of the thermocline and are brought to 

the surface by upwelling, then advected towards the coast during upwelling relaxation. 

Several authors have also reported the occurrence of K. mikimotoi at thermal fronts 

between upwelled and stratified waters (Holligan et al., 1980; Holligan, 1981; Roden et 

al., 1981) and blooms are regularly reported at the L4 station off Plymouth (Rodríguez et 

al., 2000). It therefore seems plausible that in the present study K. mikimotoi developed 

in stratified, nutrient-depleted offshore waters and was then advected into the estuary.     

 

5.3.2.2. Pseudo-nitzschia 

 

Pseudo-nitzschia spp. (hereafter Pseudo-nitzschia) was relatively abundant in 2006, 

reaching 6.1 x 105 cells l-1, but representing only 2-45 % total phytoplankton cell 

numbers. Concentrations were very low in 2007 (<103 cells l-1), representing only 0.2-

1.6 % total phytoplankton. It was not possible to identify Pseudo-nitzschia to species 

level using light microscopy, but several species were isolated from the Fal and cultured 

in the study by Percy (2006). These were identified as Pseudo-nitzschia fraudulenta, P. 

cf. pseudodelicatissima, P. multiseries and P. pungens and of these, P. multiseries was 

the only one found to produce DA. Although the cells were not identified to species 

level in the counts of Percy (2006), P. cf. pseudodelicatissima and P. fraudulenta were 
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identified from samples using Transmission Electron Microscopy (TEM) and were 

thought to dominate the bloom in June. In the present study, cell sizes were within the 

range reported by Percy (2006) for P. cf. pseudodelicatissima. 

In 2006, Pseudo-nitzschia was observed only at KH and TP, suggesting a seaward 

source and advection of cells into the estuary. Percy et al. (2006) reported that peaks of 

Pseudo-nitzschia concentrations in the Percuil River and at the Narrows occurred in 

June-July and September and reached 106 cells l-1. The author also reported increased 

concentrations towards the mouth of the estuary and in Falmouth Bay, suggesting a 

seaward source and tidal advection of the cells into the estuary. Furthermore, highest 

domoic acid concentrations were detected in mussels and oysters collected at the 

seaward end of the estuary (Percy, 2006). As with Karenia mikimotoi, the presence of 

Pseudo-nitzschia in 2006 but not in 2007 suggests a preference for warmer, more saline 

but less stratified water and lower nutrient concentrations.  

Blooms of P. pseudodelicatissima have been reported on the Washington Coast 

(USA) in association with shellfish toxicity (Trainer et al., 2002; 2007). They are 

thought to be initiated in the Juan de Fuca eddy and later transported towards the coast 

(Trainer et al., 2002). In the eddy, high nutrient concentrations are supplied by a 

combination of factors, such as upwelling, wind mixing and the outflow of nutrient-rich 

estuarine water from the Juan de Fuca Strait. However, no link was found between P. 

pseudodelicatissima and Si and NO3
- concentrations, although it was generally 

associated with N:Si ratios <1. Blooms occurring in the inland waterways of Washington 

State, however, were associated with high anthropogenic nutrient concentrations, 

particularly NH4
+ (up to 13 µmol l-1) but low NO3

- concentrations (Trainer et al., 2007). 

It was hypothesised that the small cell size of P. pseudodelicatissima, hence high surface 

area: volume ratio, gave it an advantage over larger species at limiting NO3
- 

concentrations. Other laboratory and field experiments concluded that Pseudo-nitzschia 

was favoured by high N:Si ratios (Sommer, 1994; Dortch et al., 1997; Anderson et al., 

2006). In the present study, N:Si ratios ranged from 0.2 to 2.4 when Pseudo-nitzschia 

was present and both NO3
- and Si concentrations were non-limiting, therefore Pseudo-

nitzschia was not necessarily favoured by Si limitation. Marchetti et al. (2004) also 

reported the occurrence of Pseudo-nitzschia in the Juan de Fuca eddy in association with 

high NO3
- and Si concentrations, although in contrast Pseudo-nitzschia australis (a 

member of the same species complex as P. fraudulenta) was associated with low 

nutrient concentrations (Buck et al., 1992).  



 205 

Studies have also reported links between Pseudo-nitzschia abundance and 

stratification. In the Washington State waterways, P. pseudodelicatissima was associated 

with increased stratification after a period of high rainfall and river discharge (Trainer et 

al., 1998; 2007). In Monterey Bay (California), peaks in P. australis were associated 

with periods of wind relaxation and stratification and its abundance was positively 

correlated with temperature (Buck et al., 1992). Although Pseudo-nitzschia in the 

present study was associated with higher temperatures in 2006, it did not appear to be 

favoured by the stronger stratification in 2007.  

 

5.3.2.3. Alexandrium 

 

Highest concentrations of Alexandrium were observed at KH in 2006, and at TP in 

2007. Concentrations were lowest at the two extremities, MP and South of TP. Percy 

(2006) also reported highest concentrations at Turnaware Point, although sometimes the 

maximum was further south, between Turnaware Point and the Narrows, or in the 

Percuil River. The author hypothesised that seed beds situated in the Percuil were a 

source of Alexandrium cells, hence the high concentrations sometimes observed at the 

Narrows, where the Percuil flows into the main estuary.   

Alexandrium was relatively abundant in both 2006 and 2007 (up to 4 x 105 and 3 x 

105 cells l-1, respectively), although the proportion of Alexandrium cells was much 

higher in 2007 (up to 98 %, relative to 50 % in 2006), as few other species were present 

at that time. Although light microscopy was not sufficient to differentiate between 

Alexandrium minutum and A. tamarense, previous studies have shown that A. minutum is 

the dominant species in the Fal Estuary (Percy et al., 2004; Percy, 2006), therefore it is 

assumed that this was the case in the present study. Furthermore, the sizes of the 

Alexandrium cells were generally closer to those reported for A. minutum (~ 25 µm 

diameter). 

The conditions that prevailed in July 2007 (lower temperatures, lower irradiance and 

stronger stratification) were specifically favourable to Alexandrium, thus allowing it to 

outcompete other species. Cluster analysis confirmed that the cluster dominated by 

Alexandrium occurred under low temperatures (14.1-16.4 °C, mean 14.7 °C) and 

moderate salinities (28.8-34.5, mean 30.9). Furthermore, a significant negative 

correlation was observed between the percentage of Alexandrium cells and temperature 

(r2 = 0.59, n = 26, p < 0.01, Table 5.10). The proportion of Alexandrium cells also 
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decreased linearly with increasing salinity in the range 29-35 (r2 = 0.41, n = 24, p < 0.01 

for salinity), although it dropped dramatically at salinities below 29 (not included in the 

regression, Table 5.10). There was no significant relationship between temperature and 

salinity in the range 29-30, therefore the relationship between A. minutum and both 

parameters was not an artefact of the relationship between temperature and salinity. 

Although it is difficult to tease apart the relative roles of the different parameters without 

using multivariate techniques, regression analysis was preferred over multidimensional 

scaling or principal component analysis because these did not reveal any clear trends. 

Principal component analysis of temperature, salinity, NO3
-, PO4

3- and N:P produced 

principal components PC1 and PC2 that were collectively responsible for 84 % of 

variation in the data, but neither PC score showed any relationship with % Alexandrium 

(data not shown). Furthermore, the cluster dominated by Alexandrium showed a wide 

range of PC scores.  

a b r2 n
Temp -16.3 296.3 0.59** 26
Sal -12.8 450.8 0.41** 24
NO3 1.2 8.5 0.55** 26

PO4 61.4 17.9 0.21* 24
N:P 0.36 13.9 0.23* 24  

Table 5.10. Parameters from linear regressions (y = ax + b) of % Alexandrium in the phytoplankton 
community and temperature, salinity, NO3

-, PO4
3- and N:P ratio. n is the number of observations.  

* p < 0.05. ** p < 0.01. 
 

Alexandrium minutum blooms have been reported within various temperature ranges, 

e.g. 12-14.5 °C on the Catalan coast of Spain (Vila et al., 2005; Bravo et al., 2008), 16-

24 °C in Syracuse Harbour (Sicily) (Vila et al., 2005), 18.3-21.6 °C in Greek coastal 

waters (Ignatiades et al., 2007), 14.9-18.2 °C in Cape Town Harbour (Pitcher et al., 

2007) and 16.3-18.9 in the Penzé Estuary (France) (Maguer et al., 2004). Alexandrium in 

the present study appeared to be favoured by a temperature range within the lower half 

of that reported for Cape Town Harbour. In a comparative study of the Fal Estuary in 2 

consecutive summers, higher Alexandrium concentrations were observed in the year 

when temperatures were between 12 and 16 °C relative to the previous year, when they 

were <14 °C (Percy, 2006). 

Culture experiments have shown that growth of A. minutum becomes saturated at 

relatively low irradiances compared to other species, such as A. tamiyavanichii (Lim et 

al., 2006), Heterosigma carterae and Thalassiosira pseudonana (Chang & McClean, 
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1997). This, together with observations of A .minutum blooms developing throughout 

the water column (Cannon, 1990; Chang & Bradford-Grieve, 1994), suggests that this 

species is generally well adapted to low irradiances. This is consistent with the finding in 

the present study that Alexandrium was more successful in 2007 when irradiances were 

lower due to meteorological conditions.  

Salinities measured for the Alexandrium-dominated cluster (Cluster V) in the present 

study (28.8-34.5) were lower than those reported for A. minutum blooms on the Catalan 

coast and in Syracuse Harbour (32-38, Vila et al. (2005), Bravo et al. (2008)), in Greek 

waters (35.2-38.2, Ignatiades et al. (2007)) and in Cape Town Harbour (34.1-37.6), but 

higher than those reported for the Penzé Estuary (26.1-28.0, Maguer et al. (2004)). It 

was, however, similar to the range reported for Ganzirri Lagoon (29.6-33.4, Giacobbe et 

al. (1996)). A previous study in the Fal reported the presence of A. minutum-type cells at 

salinities between 21 and 36 (Percy, 2006), although concentrations were reduced at the 

two extremes, as was the case in the present study.  

Culture experiments have demonstrated a high tolerance to fluctuating salinity in A. 

minutum, with no significant difference in growth rate observed at salinities between 5 

and 30 in a Malaysian strain (Lim & Ogata, 2005). A similar experiment conducted with 

a strain isolated from Brittany showed insignificant differences in growth rates in the 

salinity range 25-37 (Grzebyk et al., 2003), consistent with the range of salinities that 

appeared favourable to Alexandrium in the present study. A negative correlation 

between A. minutum cell concentration and salinity was observed in Ganzirri Lagoon 

within the range 29-34, suggesting a preference for the lower salinities (Giacobbe et al., 

1996). On the Catalan coast, the most intense blooms of A. minutum were also observed 

at the lowest salinities (Bravo et al., 2008). Both of these studies are consistent with the 

relationship observed in the present study (Table 5.10).  

Giacobbe et al. (1996) also reported that maximum Alexandrium minutum cell 

concentrations coincided with highest vertical density gradients, i.e. strongest 

stratification. This was also the case in the present study, where a higher dominance of 

Alexandrium in 2007 was coincident with sharper salinity gradients. Similarly, a positive 

correlation between A. tamarense blooms, rainfall and river flow was reported in the St. 

Lawrence Estuary (Weise et al., 2002), although in the Fal Alexandrium blooms have 

previously been associated with reduced freshwater flow (Morris, 2006). 
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5.3.3. Nitrogen uptake 

 

5.3.3.1.  Comparison with other estuaries  

 

An increase in ρ(NO3
-) and ρ(NH4

+) was observed with increasing chl-a 

concentrations up to 10 µg l-1, followed by a decrease at higher concentrations (Figure 

5.19). This suggests that self-shading may have occurred at the highest concentrations, 

which may have caused a reduction in ρ(NO3
-) and ρ(NH4

+) as a result of the reduced 

irradiance. Urea uptake showed a general increase with chl-a, suggesting that ρ(urea) 

was not as light-dependent as ρ(NO3
-) and ρ(NH4

+). In the Humber Estuary, uptake rates 

of all 3 nitrogen forms increased with irradiance (Shaw et al., 1998) and in a 

comparative study of 6 European estuaries (Ems, Scheldt, Loire, Gironde, Douro and 

Rhine), a significant negative correlation was found between DIN uptake and depth of 

the euphotic zone (Middelburg & Nieuwenhuize, 2000).  

Nitrate uptake in the present study was at the lower end of the range reported for 

Southampton Water (Torres-Valdés & Purdie, 2006), but similar to that reported for the 

Humber Estuary (Shaw et al., 1998) and for the 6 European estuaries (Middelburg & 

Nieuwenhuize, 2000). The difference between uptake rates in the Fal and in 

Southampton Water could be due to lower NO3
- and chl-a concentrations (Table 5.11). 

Although NO3
- concentrations in the Humber, Ems, Loire and Rhine were often much 

higher than those in the Fal (Table 5.11), ρ(NO3
-) was similar, possibly because it was 

limited by light availability in the former estuaries, where turbidity was higher (as 

shown by higher light attenuation coefficients). Ammonium uptake was at the lower end 

of the ranges reported for 3 North Carolina estuaries (Fisher et al., 1982), up to 1 order 

of magnitude lower than in the Ems, Scheldt and Loire estuaries (Middelburg & 

Nieuwenhuize, 2000) and up to 2 orders of magnitude lower than in Southampton Water 

(Torres-Valdés & Purdie, 2006). This discrepancy was probably due to the lower NH4
+ 

concentrations in the Fal relative to the other estuaries (Table 5.11). The difference in 

ρ(urea) between the Fal and Southampton Water was less pronounced, presumably due 

to the similar concentrations (Torres-Valdés & Purdie, 2006).  

Shaw et al. (1998) and Torres-Valdés & Purdie (2006) reported higher ρ(NH4
+) 

relative to ρ(NO3
-), consistent with the 2007 dataset in the present study, and 

Middelburg & Nieuwenhuize (2000) reported a preference for NH4
+

 based on RPI in all 
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6 estuaries. The importance of urea as a source of nitrogen in the present study was also 

consistent with results from the Humber (Shaw et al., 1998). 

Estuary Source

NO3
- NH4

+ urea NO3
- NH4

+ urea

Fal Estuary 0.2-108.7 0.1-2.2 0.4-1.6 0.0-0.36 0.01-0.13 0.0-0.11 a
Humber Estuary - - - <0.01-0.06 0.02-0.05 0.01-0.03 b

North Carolina Estuaries - 0-26 - - <0.001-0.5 - c
Southampton Water <1-96 <0.2-42 0.1-1.9 0.001-2.6 0.003-5.2 0-0.3 d

6 European estuaries 4-348 0.1-245 - - e

Concentration (µmol N l
-1

) Uptake (µmol N l
-1

 h
-1

)

0.01-1  
Table 5.11. Comparison of ambient N concentrations and N uptake rates in various estuaries. a This 
study; b Shaw et al. (1998); c Fisher et al. (1982); d Torres-Valdes & Purdie (2004); e Middelburg & 
Nieuwenhuize (2000).  
 

 
Figure 5.19. Relationships between nitrogen uptake rates and chl-a in both years. 
 

 

5.3.3.2. Nutrient requirements of Alexandrium 

 

In the present study, the dominance of Alexandrium in 2007 coincided with high 

NO3
- concentrations (7.8-57.4 µmol l-1, average 42.7 µmol l-1) and high DIN:P (46-194, 

mean 98) and DIN:Si ratios (3.3-6.9, mean 4.4). Furthermore, significant positive 

correlations were observed between % Alexandrium and both NO3
-, PO4

3- and N:P 

within the salinity range 29-35 (Table 5.10). Although NH4
+ concentrations were 

significantly higher in 2007 relative to 2006, there was no significant correlation 

between % Alexandrium and NH4
+. 

Alexandrium blooms have also been associated with high NO3
- concentrations on the 

Catalan coast (Vila et al., 2005; Bravo et al., 2008), in the Bay of Plenty (New Zealand) 
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and Port River (South Australia) (Cannon, 1990; Chang & Bradford-Grieve, 1994). 

Several studies have also reported that NO3 is generally a more important source of 

nitrogen than NH4 for A. minutum blooms, based on nutrient concentrations on the 

Catalan coast (Vila et al., 2005; Bravo et al., 2008) and on nitrogen uptake 

measurements in the Penzé Estuary (Maguer et al., 2004). In the latter study, ρ(NO3
-) 

was 7-fold higher relative to ρ(NH4
+) and the nitrogen requirements of the bloom were 

calculated at 184 µmol l-1 NO3
- and 25 µmol l-1 NH4

+.  

Alexandrium  minutum concentrations were negatively correlated with NH4
+ 

concentrations in Ganzirri Lagoon (Giacobbe et al., 1996) and on the Catalan coast 

(Bravo et al., 2008). This may suggest that NH4
+ was depleted by A. minutum growth 

and accumulated when A. minutum growth was limited by other factors such as light, 

however Bravo et al. (2008) interpreted the results as the inhibition of A. minutum 

growth by high NH4
+ concentrations. In contrast, A. minutum blooms in Syracuse Bay 

coincided with high NH4
+ concentrations, and nitrogen uptake measurements in Cape 

Town Harbour indicated that the bloom was sustained by high ρ(NH4
+) (up to 1.1 µmol 

N l-1 h-1, representing on average 81 % total ρ(N) (Pitcher et al., 2007). In the present 

study, ρ(NH4
+) was between 0.013 and 0.089 µmol N l-1 h-1 in 2006 and between 0.018 

and 0.131 µmol N l-1 h-1 in 2007, representing 14-54 % total ρ(N) in 2006 and 19-73 % 

in 2007. Ammonium uptake was generally higher than ρ(urea) and ρ(NO3
-) in 2007, but 

lower in 2006, suggesting that the A. minutum-dominated communities were sustained 

predominantly by NH4
+, consistent with the study in Cape Town Harbour.  

Uptake kinetics studies carried out on a French strain of Alexandrium minutum have 

reported a preference for NH4
+ over NO3

-, as shown by ~2-fold higher cell-specific νmax 

and α for NH4
+ relative to NO3

- (Maguer et al., 2007). Another study has shown higher 

maximum growth rates in cultures grown on NH4
+ and urea, relative to those grown on 

NO3
-, although concentrations of 50 µmol N l-1 NH4

+ and urea started to inhibit growth 

and complete inhibition was observed at 100 and 200 µmol N l-1, respectively (Chang & 

McClean, 1997). A tolerance to very high concentrations (200-1000 µmol N l-1) of  NO3
-
 

has also been observed (Chang & McClean, 1997; Touzet et al., 2007).  

Several studies have demonstrated an increase in PSP toxin content under PO4
3- 

limitation in various species of Alexandrium (Boyer et al., 1987; Anderson et al., 1990), 

including A. minutum (Bechemin et al., 1999; Maestrini et al., 2000; Lippemeier et al., 

2003). Bechemin et al. (1999) showed that an N:P ratio of 160 enhanced toxin 

production 7-fold relative to an N:P ratio of 16, whereas an N:P ratio of 1.6 reduced 
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toxin production 3-fold. Furthermore, a culture study by Guisande et al. (2002) showed 

that in mixed species cultures toxin production by A. minutum increased under PO4
3- 

limitation (N:P ~200), as a strategy to redirect grazing pressure towards non-toxic 

species. In contrast, Flynn et al. (1994) reported that maximum toxin synthesis occurred 

in A. minutum during N-refeeding of N-deprived cells, whereas short-term P stress did 

not enhance toxin synthesis. They later found that toxin synthesis and content declined 

during N or P deprivation (Flynn et al., 1995). In the present study, the success of 

Alexandrium in 2007 could have been linked to enhanced toxin production, although it 

is impossible to conclude whether this would have been linked to higher NO3
- or higher 

N:P ratios. In Ganzirri Lagoon, A. minutum concentrations were negatively correlated 

with N:P ratios (Giacobbe et al., 1996) and in a strain isolated from Greek coastal 

waters, growth rates were negatively correlated with N:P ratios, with optimal N:P ratios 

being between 15 and 25 (Ignatiades et al., 2007), suggesting that higher N:P ratios were 

not directly responsible for Alexandrium dominance in the present study.  

Nutrient kinetics experiments have reported low Ks values for PO4
3- in A. minutum 

cultures, indicative of a high affinity for this nutrient (Frangopulos et al., 2004). These 

authors also found that Ks was positively correlated with toxin quota, supporting the 

hypothesis that toxin production is a strategy used to offset the disadvantage of a low 

affinity for nutrients, as suggested by Smayda (1997).  

In both Arenys de Mar and Syracuse, N:Si ratios were >1, indicating potential Si 

limitation, which would allow A. minutum to outcompete diatoms (Vila et al., 2005). 

This is also consistent with the higher N:Si ratios measured in 2007 relative to 2006 in 

the present study. 
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5.4. Conclusion 

 

Phytoplankton biomass in the Fal Estuary was controlled by meteorological and 

hydrographic conditions, whereby increased sunshine hours and water temperatures 

enhanced phytoplankton biomass in 2006. In addition, tidal forcing and mixing may 

have limited primary production in 2007, by interfering with light availability. 

Furthermore, higher NH4
+ regeneration rates in 2007 were indicative of higher 

microzooplankton biomass and potentially higher grazing pressure. 

The conditions in 2006 were more favourable to diatoms, the most abundant of 

which were Thalassiosira spp. and Leptocylindrus danicus. The potentially toxic species 

Karenia mikimotoi and Pseudo-nitzschia were also favoured by the warmer and more 

saline conditions. Both K. mikimotoi and Pseudo-nitzschia were particularly adapted to 

high salinities and low nutrients and appeared to be advected into the estuary from a 

seaward source, confirming previous findings in the Fal Estuary (Percy, 2006). 

Alexandrium minutum type cells were abundant in both years, although they were more 

dominant in 2007. Therefore, they seemed to be favoured by the lower irradiances and 

the combination of stratification and high nutrients, as well as high N:P and N:Si ratios. 

It is possible that their success under PO4
3- limitation is related to their reported 

increased toxin quotas under such conditions, used as a strategy to redirect grazing 

pressure to non-toxic species (Guisande et al., 2002). Furthermore, Alexandrium growth 

was supported primarily by NH4
+.  
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6 Culture experiments 

 

6.1. Introduction 

 

Measurements of nitrogen uptake kinetics have shown a high degree of intra-specific 

variability both in cultures (Carpenter & Guillard, 1971) and in natural populations 

(Kudela et al., submitted). Furthermore, different geographic strains of the same species 

can often display very different nutritional requirements, as shown for Karenia brevis 

(Sinclair et al., 2009), Gambierdiscus toxicus (Lartigue et al., 2009) and various Pseudo-

nitzschia species (Thessen et al., 2009), although in the latter case variability was also 

found between strains isolated from the same water sample.  

Furthermore, between-strain variability in toxicity is also frequently observed 

(Burkholder & Glibert, 2006). This has been shown for example in Alexandrium 

minutum, whereby both the degree of toxicity and the toxin profile differ between 

geographic strains (Nascimento et al., 2005).  

Culture studies carried out on a French strain of Alexandrium minutum have shown 

higher half-saturation constants (Ks) and maximum cell-specific uptake rates (νmax) for 

NH4
+ relative to NO3

-, indicative of a preference for NH4
+ over NO3

-. Another study 

showed high requirements for NO3
-, with no growth inhibition observed up to 

concentrations of 200 µmol N l-1, whereas inhibition occurred at NH4
+ and urea 

concentrations of 100 µmol N l-1 and 200 µmol N l-1, respectively (Chang & McClean, 

1997). Similarly, a study carried out with an Irish strain of A. minutum showed no 

growth inhibition with an initial concentration of up to 1000 µmol N l-1 NO3
- (Touzet et 

al., 2007).  

Previous studies have shown links between nitrogen nutrition and toxicity. For 

example, high NH4
+ concentrations have been associated with toxicity in A. minutum 

(Flynn et al., 1994) and in A. tamarense (Hamasaki et al., 2001). Uptake of organic 

forms of nitrogen (urea, glycine, leucine and aspartic acid) appear to enhance brevetoxin 

production in Gymnodinium breve (Shimizu & Wrensford, 1993; Shimizu et al., 1995) 

and growth on urea enhances domoic acid production by Pseudo-nitzschia australis 

(Howard et al., 2007).  
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The aim of this study was to investigate the differences in (1) nitrogen nutrition, and 

(2) toxin profile between 3 geographic strains of Alexandrium minutum. The 3 chosen 

strains were isolated from the 2 upwelling systems where field work was carried out and 

from a UK estuary, in order provide a comparison with the field work. To achieve this, 

both nitrogen uptake kinetics and growth experiments using different forms of nitrogen 

were carried out, with the latter involving associated toxicity measurements.  

 

 

6.2. Methods 

 

Unialgal batch cultures of Alexandrium minutum isolated from Cape Town Harbour 

(AMCT), the Ría de Vigo (AMV) and the Fleet Lagoon (AMF) were grown in L2 

medium (Guillard & Hargraves, 1993) using artificial seawater (Harrison et al., 1980) 

instead of natural seawater. They were maintained in a temperature-controlled incubator 

at 20 ºC illuminated with tungsten lamps on a 12:12 light:dark cycle. Photon flux density 

(PFD) was ~100 µE m-2 s-1, measured using a Biospherical Instruments Inc. QSL-2000 

4π quantum scalar irradiance metre.  

Growth experiments were carried out with all 3 strains grown on different nitrogen 

sources, NO3
-, NH4

+ and urea. The cultures were acclimated to the respective nitrogen 

sources by subculturing them twice into media containing solely NO3
-, NH4

+ or urea 

prior to the experiment. In the first experiment, treatments were duplicated and initial 

NO3
- concentrations were 100 µmol N l-1, whereas initial NH4

+ and urea concentrations 

were 50 µmol N l-1, except for AMV where NH4
+ was 25 µmol N l-1. A second 

experiment was carried out using low nutrient natural seawater collected in the North 

Atlantic gyre, to determine whether AMV would be more successful than with artificial 

seawater, and with initial NO3
-, NH4

+ and urea concentrations of 100 µmol N l-1.  

For experiment 1, two duplicate 50-ml subsamples of culture were collected every 2-

3 days and filtered through 25-mm Whatman GF/F filters using a syringe filter. These 

were immediately frozen for PSP toxin analyses using liquid chromatography coupled 

with tandem mass spectrometry (LCMS-MS). Unfortunately, due to methodological 

problems no toxins were detected, therefore, no data on toxicity measurements are 

shown. The filtrate was collected from one of the duplicate filtrations for nutrient 

analyses. NH4
+ samples were analysed immediately, following the fluorometric method 

of Holmes et al. (1999). Nitrate and urea samples were frozen; NO3
- was later analysed 
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on a Burkard Scientific autoanalyser, following the methods of Hydes & Wright (1999) 

and urea was analysed following the method of Goeyens (1998). Measurements of Fv/Fm 

were carried out using a Chelsea Instruments FastrackaTM FRRf. For experiment 2, only 

cell counts were performed. 

A nutrient uptake kinetics experiment was carried out for NO3
-, NH4

+ and urea on 

AMCT, AMF and AMV cultures. These were subcultured twice in sterile 1-l 

borosilicate Schott (Duran) bottles with 25 µmol N l-1 of the appropriate nitrogen source 

to acclimate the cultures to the respective nitrogen sources. In all cases the N:P ratio 

remained 16. The experiment was conducted during the stationary phase, 11-12 days 

after inoculation, when nutrients were depleted. Unfortunately, urea was not depleted in 

any of the cultures, therefore the urea experiment was unsuccessful. Twelve 50 ml 

samples from each of the nine cultures (3 strains x 3 nutrients) were decanted into 108 x 

50-ml polycarbonate bottles, a third of which were to be spiked with 15NH4Cl, a third 

with K15NO3 and a third with CO(15NH2)2. For each strain and nutrient, different 

volumes of 1 µmol N l-1, 10 % 15N-enriched stock solutions were added to obtain 

duplicate sets of six concentrations of NO3
-, NH4

+ and urea between 0.1 and 30 µmol N 

l-1. After spiking, cultures were incubated for ~2 h in normal growth conditions then 

filtered onto pre-combusted 25-mm Whatman GF/F filters and dried overnight at 60 ºC. 

Samples were analysed and curves were fitted using the same methods as for the field 

nutrient uptake kinetics experiments. 
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6.3. Results 

 

6.3.1. Growth experiments 
 

Alexandrium minutum strains isolated from Cape Town Harbour (AMCT), the Fleet 

Lagoon (AMF) and the Ria de Vigo (AMV) were able to grow on NO3
-, NH4

+ and urea 

as sole nitrogen source at concentrations of 100 µmol N l-1 NO3
-, 50 µmol N l-1 NH4

+ (25 

µmol N l-1 for AMV) and 50 µmol N l-1 urea (Figure 6.1). For strain AMCT, growth rates 

on NO3
- were similar to those using NH4

+ in both experiments, although growth rates 

were higher in experiment 2, which used natural rather than artificial seawater (Table 

6.1). In experiment 2, AMF also displayed highest growth rates on NO3
- and NH4

+, 

whereas in experiment 1 it grew faster using urea, although it reached lower final 

concentrations. The NH4
+

 concentration of 100 µmol N l-1 used in experiment 2 did not 

appear to inhibit growth for either AMCT or AMF, since growth rates were 2-fold 

higher in this experiment.  

AMV reached highest growth rates when grown on urea in experiment 1, although 

cell concentrations were very low in this experiment. This was due to a rapid initial 

increase in cell concentration, which then reached a plateau on Day 11. In experiment 2, 

higher final concentrations and higher growth rates were achieved on NO3
-, but the 

culture could not grow on NH4
+ or urea (supplied at 100 µmol N l-1). 

Nitrogen and PO4
3- were supplied at the Redfield ratio in all experiments, although 

PO4
3- was only measured in association with NO3

-. Nitrate and PO4
3- concentrations 

were significantly correlated for AMCT and AMV (p < 0.01, n = 5), but not for AMF. 

The ratio of NO3
-: PO4

3- utilisation was 21.5 for AMCT and 24.8 for AMV (data not 

shown). 

Expt

NO3
- NH4

+ Urea NO3
- NH4

+ Urea NO3
- NH4

+ Urea
1 AMCT 0.27 (0.06) 0.25 (0.002) 0.20 (0.03) 0.39 0.36 0.29 2.6 2.8 3.5

AMF 0.20 (0.03) 0.18 (0.04) 0.23 (0.005) 0.29 0.26 0.33 3.5 3.9 3.0
AMV 0.24 (0.01) 0.20 (0.06) 0.37 (0.06) 0.35 0.29 0.53 2.9 3.5 1.9

2 AMCT 0.56 0.49 0.27 0.81 0.71 0.39 1.2 1.4 2.5
AMF 0.47 0.41 0.22 0.68 0.59 0.32 1.5 1.7 3.2
AMV 0.48 - - 0.69 - - 1.4 - -

___________µ (d
-1

)__________ ______K (d
-1

)______ _______T (d)_______

 
Table 6.1. Growth rates (µ, means of 2 replicate cultures with standard errors in brackets for 
Experiment 1), doubling rates (K) and doubling times (T) for each Alexandrium minutum strain and 
nutrient treatment in Experiments 1 and 2. 
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Figure 6.1. Time-series of cell concentrations of Alexandrium minutum strains (a) AMCT, (b) AMF 
and (c) AMV in Experiment 1 and (d,e,f) in Experiment 2. Associated measurements of (g,h,i) 
nutrient concentrations and (j,k,l) Fv/Fm are reported for Experiment 1 only. Initial concentrations 
in Experiment 1 were 100 µmol N l-1 for NO3

-, 50 µmol N l-1 (AMCT, AMF) or 25 µmol N l-1 (AMV) 
for NH4

+ and 50 µmol N l-1 for urea; in Experiment 2 they were 100 µmol N l-1 for all nutrients. 
 

Ammonium was generally exhausted by Day 12 for all strains, whereas NO3
- was 

exhausted by Day 12 for AMCT, Day 14 for AMF and Day 20 for AMV. In the NO3
- 

experiments, PO4
3- was not completely exhausted by the end of the experiment for 

AMCT or AMV. Urea was only exhausted by Day 20 for AMCT and by Day 14 for 

AMF, whereas for AMV, the concentration remained high throughout the experiment 

(Figure 6.1g-i). 
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For all strains, Fv/Fm was between 0.54 and 0.58 at the start of the experiment and 

between 0.45 and 0.56 at the end (Figure 6.1j,k,l). Very little decrease was observed in 

the AMCT culture over the course of the experiment, whereas Fv/Fm dropped by 0.08-

0.18 for AMF and by 0.07-0.15 for AMV. For AMCT and AMV, there were no 

significant differences between nutrient treatments, whereas for AMF Fv/Fm was 

significantly higher for NH4
+ relative to NO3

- (paired t-test, p < 0.01).   

 

6.3.2. Nitrogen uptake kinetics 

 

All 3 strains demonstrated a preference for NH4
+ over NO3

- at saturating 

concentrations in the nitrogen uptake kinetics experiment, with νmax ~2-fold higher for 

NH4
+ than for NO3

- in all cases (Figure 6.2,Table 6.2). At limiting concentrations, 

AMCT and AMV also showed a preference for NH4
+, with 2-fold higher α than for NO3

- 

although AMF displayed similar α values for NH4
+ and NO3

-. AMCT displayed the 

highest νmax(NO3
-) and νmax(NH4

+). 

 

 
Figure 6.2. PN-specific nitrogen uptake rates versus concentration measured in (a) AMCT, (b) AMF 
and (c) AMV and fitted to the Michaelis-Menten equation for uptake kinetics. 
 

Strain νmax(NH4
+) α(NH4

+)

NO3
- NH4

+ NO3
- NH4

+ NO3
- NH4

+
νmax(NO3

-) α(NO3
-)

AMCT 32.0 (1.9)* 61.9 (4.9)* 3.19 (0.71)* 3.00 (0.92)* 10.0 20.6 1.93 2.06
AMF 21.6 (0.7)* 37.8 (1.1)* 3.16 (0.39)* 5.18 (0.49)* 7.9 7.3 1.75 0.93
AMV 21.4 (0.8)* 49.0 (2.9)* 2.75 (0.39)* 3.89 (0.84)* 7.8 12.6 2.29 1.62

_______νmax_______ _______Ks_______ ____α____

 
Table 6.2. Nitrogen uptake kinetics parameters νmax (x 10-3 h-1), Ks (µmol N l-1) and α (x 10-3 h-1 
(µmol N l-1)-1) measured in AMCT, AMF and AMV and ratios of the parameters for NH4

+ to those 
for NO3

-, given as indicators of nutrient preference.  
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6.4. Discussion 

 

The culture experiments showed that all 3 strains were able to grow on NH4
+ and 

urea supplied as sole sources of nitrogen. This was also the case for an Alexandrium 

minutum strain isolated from New Zealand (Chang & McClean, 1997), 3 Karenia brevis 

strains isolated from the Gulf of Mexico (Sinclair et al., 2009) and 19 Pseudo-nitzschia 

spp. strains isolated from the mid-Atlantic coast of the US (Thessen et al., 2009). In 

contrast, it has been reported that the ciguatera toxin-producing dinoflagellate 

Gambierdiscus toxicus is unable to grow on urea (Lartigue et al., 2009). When nitrogen 

was supplied at 100 µmol N l-1 AMCT and AMF displayed highest growth rates when 

grown on NO3
-
 and lowest growth rates with urea. At the lower concentration of 50 µmol 

N l-1, both AMF and AMV displayed highest growth rates on urea, consistent with 

results for one of the strains of Karenia brevis (Sinclair et al., 2009). Both K. brevis and 

Pseudo-nitzschia displayed a high degree of variability in nitrogen preference between 

strains, as was observed to a certain extent in the present study. AMCT and AMF 

achieved similar growth rates (~10 %) with 50 µmol N l-1 NH4
+ to the cultures grown on 

100 µmol N l-1 NO3
-, indicating that NH4

+ was a more efficient source of nitrogen, 

consistent with the lower energetic cost associated with its assimilation (Syrett, 1981). 

Furthermore, ρ(NO3
-) requires iron, which was supplied in the same concentration in all 

treatments, therefore growth at the higher NO3
- concentration may have been limited by 

Fe availability. However, when the NH4
+ concentration was 100 µmol N l-1, growth rate 

on NH4
+ did not exceed that on NO3

-, in fact it became 15 % lower, suggesting that the 

increase in growth rates between the 2 experiments was due to the use of natural rather 

than artificial seawater. The effect of the improved seawater medium may therefore have 

masked an inhibitory effect of increased NH4
+ concentration.  

The nitrogen uptake kinetics experiment showed a preference for NH4
+ over NO3

-, as 

shown by the ~2-fold higher νmax values, consistent with the study by Maguer et al. 

(2007) for a strain isolated from Morlaix Estuary (France). As in their study, AMCT and 

AMV also displayed 2- and 1.5-fold higher α for NH4
+ than for NO3

-, consistent also 

with the values reported by Maguer et al. (2007), although for AMF α was slightly 

higher for NO3
-. Interestingly, although these strains displayed a preference for uptake of 

NH4
+, they consistently displayed higher growth rates on NO3

-, consistent with the 

review by Dortch (1990). Previously reported Ks values were 2 to 4-fold lower for 
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growth (Ignatiades et al., 2007) and one order of magnitude lower for uptake (Maguer et 

al., 2007) relative to those measured in the present study. The strains used in the present 

study therefore had a lower affinity for both NO3
- and NH4

+. Unfortunately, the νmax 

values reported by Maguer et al. (2007) were cell-specific, therefore it was not possible 

to compare them with those in the present study, and it was not possible to compare α 

values, which are known to be more informative than Ks values (Healey, 1980; Aksnes 

& Egge, 1991).  

Temperature can also influence variability in the uptake kinetics of NH4
+ and NO3

-, 

whereby νmax and α for NH4
+ increase with temperature and α for NO3

- decreases with 

temperature (Lomas et al., 1996; Fan et al., 2003). The temperature conditions in 

Ignatiades et al. (2007) and Maguer et al. (2007) (18-20 °C) were similar to those used 

in the present study, therefore temperature differences were not responsible for the 

discrepancies observed. Irradiance was 60 µE m-2 s-1 for the Greek strain, 200 µE m-2 s-1 

for the French strain and 100 µE m-2 s-1 in the present study. According to Chang & 

McClean (1997), Ks for growth decreased with increasing irradiance between 25 and 

100 µE m-2 s-1, therefore the lower Ks measured by Maguer et al. (2007) may be 

attributable to the higher irradiance in their experiment, although irradiance could not 

account for the differences between the values reported by Ignatiades et al. (2007) and 

those reported in this study. Finally, these differences may be attributable to genetic 

predispositions to the nutrient concentrations encountered in the respective regions from 

which the strains were isolated. The total DIN concentration (NO3
- + NH4

+ + NO2
-) in 

Saronikos Gulf, where the Greek strain was isolated, was lower than NO3
- 

concentrations in Cape Town Harbour and in the Fleet Lagoon and similar to those in 

the Ría de Vigo, therefore differences in nutrient concentrations could account for the 

higher affinity for NO3 observed in the Greek strain relative to AMCT and AMF, but not 

AMV. Furthermore, very high inorganic nitrogen concentrations in the Morlaix Estuary 

(Table 6.3) could not account for the high affinity for NO3
- and NH4

+ reported for the 

French strain.  

Maximum PN-specific uptake rates of NO3
- for all 3 strains in the present study were 

within the range reported for A. catenella and Ks was at the lower end of the range, 

suggesting that A. minutum had a higher affinity for NO3
- relative to A. catenella. A. 

minutum displayed higher νmax(NH4
+) relative to A. catenella, therefore it was better 

adapted to higher NH4
+ concentrations. AMCT also displayed a higher affinity for NH4

+, 

as shown by the higher α values relative to A. catenella, whereas AMF displayed a lower 
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affinity and AMV a similar affinity (Table 6.3). These differences were not due to 

different culture conditions. The higher νmax(NH4
+) in AMCT, AMF and AMV may have 

been due to higher NH4
+ concentrations in Cape Town Harbour, the Fleet Lagoon and 

the Ría de Vigo, relative to the Thau Lagoon.    

 

Area of strain Ambient Ambient

isolation [NO3
-] [NH4

+] NO3
- NH4

+ NO3
- NH4

+ NO3
- NH4

+

A. minutum

Cape Town Harboura 7-18e 2.5-9.8e 32 61.9 3.19 3.00 10.0 20.6
Fleet Lagoona 0-62f 0-25f 21.6 37.8 3.16 5.18 7.9 7.3
Ria de Vigoa 0-3a 0-9a 21.4 49 2.75 3.89 7.8 12.6

Saronikos Gulf (Greece)b 6b - - - 1.18 - - -
Morlaix Estuary (France)c 490-9282g 70-1750g 0.29-0.40 0.65-0.95 0.22-0.28 0.25-0.38 1.12-1.55 2.48-2.93

A. catenella

Thau Lagoon (France)d 0-4h 0-3h 3-47 26 0.6-28.1 2.0 - 13.0

_____νmax_____ _____Ks_____ _____α_____

 
Table 6.3. Nitrogen uptake kinetics parameters νmax (x 10-3 h-1) , Ks (µmol N l-1) and α (x 10-3 h-1 
(µmol N l-1)-1) measured in the present study and in other studies using cultures of A. minutum and 
A. catenella and ambient NO3

- and NH4
+ concentrations reported for the areas where the strains 

were isolated. NB: νmax in the Morlaix Estuary was reported in pmol cell-1 h-1. 
a This study ; b Ignatiades et al (2007); c Maguer et al. (2007) ; d Collos et al. (2004) ; e Pitcher et al. 
(2007) ; f Nascimento (2003) ; g Wafar et al. (1989) ; h Collos et al. (1997). 
 
 

6.5. Conclusions 

 

The three strains of Alexandrium minutum showed some common nitrogen nutrition 

characteristics. They were all able to grow on all three sources of N when supplied at 

concentrations <100 µmol N l-1. When NH4
+ and urea were supplied at 100 µmol N l-1, 

AMCT and AMF displayed higher growth rates on NO3
- relative to NH4

+ and AMV was 

only able to grow on NO3
-. However, all three strains displayed a preference for NH4

+, 

as shown by the 2-fold higher νmax for NH4
+ relative to NO3

-. Both νmax and Ks were 

generally higher relative to A. catenella isolated from the South of France (Collos et al., 

2004), and Ks was higher than in an A. minutum strain isolated from Brittany (Maguer et 

al., 2007), indicating that the strains used in the present study were adapted to higher 

NO3
- and NH4

+ concentrations. Differences in νmax and Ks between the strains used in the 

present study and A. minutum in other studies could hav been attributed to differences in 

environmental conditions (light, ambient nutrient concentrations), although this was not 

consistent in all cases. Therefore, it seemed more likely that the differences were due to 

genetic predispositions. 
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7 Overall summary and conclusions 
 

7.1. General features of upwelling systems 

 

The sampling sites in the two upwelling regions studied were characterised by very 

different topography, in that the Lambert’s Bay (Benguela) site was on the open shelf 

whereas the Iberian site was within a coastal indentation, the Ría de Vigo. Although the 

Rías Baixas act as an extension to the shelf, the circulation patterns within them are 

different to those observed on the shelf. During upwelling, positive estuarine circulation 

is observed within the rías and the water column can remain stratified if upwelling is 

sufficiently weak (Figueiras et al., 1994). This was the case in June 2007 in the present 

study, and these conditions promoted phytoplankton growth. Nutrients were depleted 

from the surface layer, hence a chl-a maximum formed near the thermocline. In contrast, 

on the open shelf in the Benguela, upwelling pulses generated a well-mixed water 

column and dispersed the phytoplankton biomass accumulated during relaxation. 

However, the alternation between upwelling pulses supplying nutrients and periods of 

relaxation enhancing water column stability created “windows of opportunity” for 

phytoplankton growth.  

In the Iberian system, during wind relaxation, surface shelf water is forced into the 

rías and downwelling occurs, causing the water column to become well-mixed 

(Figueiras et al., 1994). This was the case in September 2006 in the present study, in 

which dinoflagellate populations appeared to be advected into the ría. While the 

circulation patterns promote the advection of HAB populations into the rías (Fraga et al., 

1993), downwelling is thought to select motile species that can remain in the surface 

layer (Figueiras et al., 1995). In Lambert’s Bay, relaxation periods lead to stratification 

and nutrient depletion in the surface layer, although deeper concentrations remained 

high, whereas in the ría nutrient concentrations were relatively low throughout the water 

column, although never depleted. In both systems, N:P ratios were higher in recently 

upwelled water, close to the Redfield ratio in the ría in June, but lower than Redfield in 

Lambert’s Bay, while ratios were very low in the ría in September. In all cases, it 

appeared that these departures from Redfield stoichiometry could be attributed to an N:P 

remineralisation ratio lower than Redfield, which was particularly low in the ría in 

September. In both systems, NH4
+ regeneration was higher than uptake, resulting in the 
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accumulation of NH4
+, which could possibly inhibit NO3

- uptake. Evidence of such 

inhibition was provided by the rapid decrease in ρ(NO3
-) at NH4

+concentrations above 

0.5-1.0 µmol N l-1 in both systems. 

 

7.2. Phytoplankton community structure and HAB assemblages 

 

In Lambert’s Bay, phytoplankton community structure displayed high short-term as 

well as interannual variability. Different phytoplankton species or functional groups 

were favoured by different stages of the upwelling/relaxation cycles. For example, 

Clusters II (A. catenella/ Skeletonema costatum), III (Scrippsiella trochoidea/ Pseudo-

nitzschia spp.) and IV (Minidiscus trioculatus) were favoured by active upwelling, 

whereas Clusters I (Dinophysis acuminata/ Gymnodinium spp.) and V (Coscinodiscus 

spp./ Gyrodinium zeta) were associated with warm, stratified, nutrient depleted waters. 

Clusters VI (S. costatum/ Chaetoceros spp.) and VII (Pseudo-nitzschia spp./ 

Chaetoceros spp.) occurred in both regimes, and were able to adapt to fluctuating 

conditions by utilising recycled nitrogen when NO3
- became limiting.  

The lengths of the surveys carried out in the Ría de Vigo did not allow any 

conclusions on short-term variability and studies were not repeated in the same season to 

investigate interannual variability. However, a comparison with the literature indicated 

that the communities present in both seasons were typical “upwelling” and 

“downwelling” communities (Crespo et al., 2006). For example, the occurrence of 

Dinophysis acuta and Gymnodinium catenatum during the downwelling season and D. 

acuminata throughout the year are recurring features (Fraga et al., 1988; Figueiras et al., 

1994).  

HAB taxa common to both systems included Dinophysis spp. and Pseudo-nitzschia 

spp. D. acuminata was dominant in Lambert’s Bay in 2007, with concentrations up to 31 

x 103 cells l-1, whereas in the ría it was a minor component of the phytoplankton 

community, with concentrations up to 15 x 103 cells l-1. In both cases, it was associated 

with nutrient-depleted surface waters, although cell counts were not performed at greater 

depths, where higher concentrations may have been observed. In 2008, very high 

concentrations of D. acuminata (up to 573 x 103 cells l-1) were observed at 5 m, although 

it was never truly dominant since it co-occurred with Coscinodiscus spp. On these 

occasions, NO3
- and PO4

3- concentrations were as high as 26.0 and 2.2 µmol l-1, 
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respectively, suggesting that D. acuminata was not exclusively adapted to depleted 

nutrient conditions. 

Pseudo-nitzschia consisted of P. australis and 2 unidentified species in Lambert’s 

Bay, and of P. seriata and P. cf. pseudodelicatissima in the ría. P. cf. 

pseudodelicatissima was abundant in both years, whereas P. seriata was only abundant 

during the upwelling season. In the Benguela, Pseudo-nitzschia spp. were most abundant 

in the year when upwelling-favourable winds were predominant, although biomass 

tended to accumulate during periods of upwelling relaxation. Pseudo-nitzschia appeared 

to be able to acclimate to rapid fluctuations in the hydrographic and nutrient regime and 

this was perhaps also the case with P. cf. pseudodelicatissima, since it was present 

during both upwelling and downwelling seasons. Since Pseudo-nitzschia also forms 

large blooms in the California current, this tolerance towards upwelling may therefore be 

an ecological adaptation of Pseudo-nitzschia that is specific to upwelling systems.  

 

7.3. Comparison of nutrient uptake strategies  

 

In the Ría de Vigo, growth was supported by regenerated nitrogen in both years, 

with ρ(NH4
+) and ρ(urea) generally higher than ρ(NO3

-), resulting in ƒ-ratios <0.5, 

whereas in the Benguela they ranged from <0.1 to 0.9 depending on the 

upwelling/relaxation cycles. In the ría, ρ(NH4
+) increased and ƒ-ratios decreased towards 

the head of the ría, where NH4
+ concentrations were highest. Absolute total nitrogen 

uptake was generally higher in Lambert’s Bay, reaching a maximum of 0.70 µmol N l-1 

h-1, relative to 0.44 µmol N l-1 h-1 in the ría, although specific uptake was generally 

higher in the ría. This suggests that in the ría the accumulation of biomass was limited 

by some other external factor, such as grazing or export from the system.  

In the ría, the HAB community present during the downwelling season (Dinophysis 

acuta, Gymnodinium catenatum) was sustained by NH4
+, which was supplied by high 

regeneration rates. In the Benguela, specific nutritional characteristics were attributed to 

different HAB species that occurred during the 3 surveys. Alexandrium catenella 

bloomed at high NO3
- concentrations and appeared to have a high requirement for NO3

- 

since it disappeared when NO3
- became depleted. It also displayed the highest surface 

ρ(NO3
-) and ƒ-ratio measured in all 3 surveys. Pseudo-nitzschia was favoured by 

upwelling and was able to rapidly utilise the high nutrient concentrations supplied by 

upwelling. However, biomass accumulation occurred during wind relaxation and 
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Pseudo-nitzschia then switched to NH4
+ as its main source of nitrogen as NO3

- became 

depleted. Dinophysis acuminata bloomed during stratified periods, when NO3
- 

concentrations were low, and displayed low ƒ-ratios indicative of its reliance on recycled 

nitrogen. In 2008, however, D. acuminata was sometimes very abundant at high NO3
- 

concentrations, generally forming a thin layer in the pycnocline. 

The nitrogen uptake kinetics experiments carried out during the present study in the 

two upwelling systems, and in other studies in the California system, yielded no 

apparent trends specific to these systems (Table 7.1). Both νmax and α values varied by 

one order of magnitude and spanned the same range as that displayed by all ecosystems 

in Table 6.1. The kinetics experiment carried out on a mixed diatom population in the ría 

displayed a very strong preference for NH4
+

 over NO3
-, with a νmax(NH4

+): νmax(NO3
-) 

ratio of the same order as those reported for estuaries on the east coast of the US, but at 

least 3-fold higher than in the Benguela. Furthermore, the Fal Estuary displayed similar 

νmax and α values and nutrient preferences to the Dinophysis acuminata assemblages in 

the Benguela, therefore differences within upwelling systems were greater than 

differences between an upwelling system and an estuary.  

The different HAB populations displayed a range of nitrogen uptake strategies. 

Alexandrium catenella and the mixed D. acuminata/ Coscinodiscus spp. assemblage 

were the only ones to display a νmax(NH4
+): νmax(NO3

-) ratio <1. In both experiments, the 

ambient NO3
- concentration was high, indicating that the high νmax(NO3

-) may have been 

a result of acclimation to high NO3
- concentration, and that kinetics experiments carrried 

out when NO3
- is depleted may not not be applicable to upwelling situations. This is 

shown by the experiments carried out on D. acuminata populations. When NO3
- was 

depleted, both Experiments 3 and 5 yielded low νmax(NO3
-) and 4-fold higher 

νmax(NH4
+), however in Experiment 4, at a high ambient NO3

-
 concentration, νmax(NO3

-) 

was 4-fold higher than νmax(NH4
+). Pseudo-nitzschia was poised to utilise either source 

of nitrogen at both saturating and limiting concentrations, as shown by its high νmax and 

α for both NO3
- and NH4

+. Thus, A. catenella, the mixed D. acuminata/ Coscinodiscus 

spp. assemblage and Pseudo-nitzschia were typical of periods of active upwelling and 

were fairly unique among all the field studies presented in Table 6.1, in that they did not 

display a preference for NH4
+ over NO3

-.  

In contrast, the Dinophysis acuminata assemblages that occurred during periods of 

upwelling relaxation displayed a strong preference for NH4
+ over NO3

- at both saturating 

and limiting concentrations. They displayed similar kinetics parameters to the 
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dinoflagellate species in the California current (Akashiwo sanguinea, Lingulodinium 

polyedrum, Cochlodinium spp.), that were also associated with upwelling relaxation 

events. Their νmax and α values were generally lower than for estuarine populations (e.g. 

Ría de Vigo, Choptank and Neuse Estuaries), but similar to other coastal and open ocean 

waters (Table 6.1).  

Therefore, nitrogen nutrition of HABs in upwelling systems is very much species-

dependent, particularly in the Benguela where high interannual and short-term 

variability in species selection was observed. While there was no obvious difference in 

nitrogen uptake for HAB species in upwelling systems, it was found that certain species 

displayed some unique features. For example, Alexandrium catenella, that was well 

adapted to active upwelling, displayed a preference for NO3
- over NH4

+, a characteristic 

that is not generally observed in other ecosystems. A high degree of flexibility in uptake 

kinetics was also observed in Dinophysis acuminata, which may allow it to exploit the 

fluctuating nutrient regime that is typical of upwelling systems. Although only one 

experiment was carried out on a Pseudo-nitzschia-dominated assemblage, its success 

during both upwelling and relaxation and ability to switch from new to regenerated 

production suggests that it may also have had variable uptake kinetics.  

Finally, the differences observed between the nutrient kinetics of Alexandrium 

catenella in the Benguela upwelling system and in the Thau Lagoon suggest the 

existence of different biogeographic strains with different nitrogen uptake strategies. 

This was also the case for A. minutum strains isolated from different geographic 

locations. Further comparative studies of nutrient kinetics of natural populations and 

cultures of HAB species are needed to further investigate these differences and to 

determine whether they are due to selective pressure or acclimation.    
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Species Location νmax(NH4
+) α(NH4

+) νmax(urea) α(urea) Reference

NO3
- NH4

+ Urea NO3
- NH4

+ Urea NO3
- NH4

+ Urea νmax(NO3
-) α(NO3

-) νmax(NO3
-) α(NO3

-)

CULTURES
Dinoflagellates

Alexandrium catenella Thau Lagoon 3-47 26 25 0.6-28.1 2 28.4 nd 13 0.9 nd nd nd nd a
Gymnodinium catenatum 207.1 107.5 nd 7.59 33.6 nd 27.3 3.2 nd 0.5 0.1 nd nd b

Diatoms
P. australis California 105.3 80.0 nd 2.82 5.37 nd 37.3 14.9 nd 0.8 0.4 nd nd c

Raphidophyte
Heterosigma akashiwo California 18.0 28.0 2.9 1.47 1.44 0.42 12.2 19.4 6.9 1.6 1.6 0.1 0.6 d

BLOOMS
Dinoflagellates

Akashiwo sanguinea California 5.2 15.1 7.2 1.00 2.37 0.43 5.2 6.4 16.7 2.9 1.2 1.4 3.2 e
Alexandrium catenella Benguela >17.5 14.9 3.5 nd 2.52 0.65 nd 5.9 5.4 <0.9 nd <0.2 nd f

A. catenella
Thau Lagoon      (S. 

France)
24.0 64.0 61.0 4.60 8.40 43.90 5.2 7.6 1.4 2.7 1.5 2.5 0.3 a

Cochlodinium spp. California 0.9 >4.0 2.1* 1.00 nd 4.06* 0.9 0.3 0.8* 4.4 nd 2.3 0.9 g
Dinophysis acuminata Benguela 3.5 13.9 6.2 0.79 0.67 0.53 4.4 20.7 11.7 4.0 4.7 1.8 2.6 f

Lingulodinium polyedrum California 3.9 8.1 10.6 0.47 0.59 0.99 8.2 13.7 10.7 2.1 1.7 2.8 1.3 h

Prorocentrum minimum
Choptank Estuary 
(Chesapeake Bay)

53.8 868.6 492.6 7.12 5.09 16.84 7.6 170.6 29.3 16.2 22.6 9.2 3.9 i

Diatoms
Pseudo-nitzschia Benguela 15.0 18.0 4.9 1.21 1.34 nd 12.4 13.4 nd 1.2 1.1 0.3 nd f

MIXED ASSEMBLAGES
Central North 
Pacific gyre

3.0 16.0 16.0 0.03 0.03 0.02 100.0 533.3 800.0 5.3 5.3 5.3 8.0 j

Washington coast 
upwelling

5.8 6.8 4.6 0.05 0.71 0.78 116.0 9.6 5.9 1.2 0.1 0.8 0.1 k

Mixed diatoms Ría de Vigo 26.2 335.9 67.7 0.37 3.36 0.95 70.8 100.0 71.3 12.8 1.4 2.6 1.0 f
Western New 

Zealand
13.8 20.7 12 1.1 0.5 0.5 12.5 41.4 24.0 1.5 3.3 0.9 1.9 l

Mixed dinoflagellates
Neuse Estuary     
(N. Carolina)

4.0 52.9 5.77 0.54 2.38 0.37 0.6 10.4 0.3 13.3 18.6 1.4 0.6 i

Benguela (Expt 5) 3.5 14.6 4.4 0.82 0.62 nd 4.3 23.5 nd 4.2 5.5 1.3 nd f
Diatoms + dinoflagellates Benguela (Expt 4) 24.0 6.2 3.2 8.24 0.53 0.21 2.9 11.7 15.2 0.3 4.0 0.1 5.2 f

Fal Estuary 7.0 15.5 nd 3.00 1.55 nd 2.3 10.0 nd 2.2 4.3 nd nd f

______νmax______ ______Ks______ ______α______

 
Table 7.1. Comparison of nitrogen uptake kinetics experiments in upwelling systems (shaded grey) and other ecosystems. References are as in Table 3.7. 
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Appendix A1 
Protocols for nutrient determinations 

 
 

A1.1. Nitrate (Nydahl, 1976) 
 
1. Reduction of NO3

- to NO2
-  using cadmium column 

 
Buffers 

 
Tris buffer A (1 M) 

- Weigh 30.28 g Tris base (Sigma T-1503) and dissolve in about 210 ml Milli Q.  
- Adjust to pH = 8 with concentrated HCl.  
- Make up to 250 ml with Milli Q and check pH. Add more HCl if necessary. 

 
Tris buffer B (0.5 M)  

- Weigh 6.06g Tris base (T-1503) and 7.90g Tris HCl (T-3253) and dissolve in 
100ml Milli Q.  

- pH should be around 8. 
- Dilute 1:100 for use. 

 
Cadmium preparation 

 

- Wash known weight of granulated cadmium (0.5-1mm size) with acetone, 2 M 
HCl and methanol, rinsing with water between each. Dry for storage.  
- Copperize with 0.08 M CuSO4. For a column which has a bed volume of about 
3.9 ml, 16.25g cadmium is required which needs about 40 ml Cu SO4, i.e. 25ml/10g. 
Thoroughly wash off colloidal Cu not adhering to cadmium – can lead to highly 
erratic results. Keep in buffer B or water prior to packing column. 
- Plug end of column with glass wool, fill with water or buffer B and add 
cadmium, tapping occasionally. Finish with plug of glass wool. 

 
Column activation 

- Flush column with buffer B to remove air bubbles from lines. 
- Activate column with a seawater NO3

- solution of 50 µmol l-1. Only need to 
activate newly prepared columns or columns that have been lying idle for some time 
or re-packed. 

 
Standards 

 
Initial stock (10 µmol N ml-1) 

- Weigh 0.5055 g KNO3 and dissolve in 500 ml Milli Q.  
- Store in fridge in brown glass bottle. 
- Note: according to Strickland and Parsons (1960), chloroform must not be used 

as a preservative as it poisons the copper catalyst and interferes with the 
reduction. 

 
Working standard (20 µmol N ml-1) 

- Place 0.1 ml initial stock in a volumetric flask and make up to 50 ml with NO3--
free seawater. 
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- For activation standard make up 0.25 ml of initial stock to 50 ml to obtain a 
concentration of 50 µmol N ml-1). 

 
Running samples and standards 

- Pipette 0.15 ml Tris buffer A into 15 ml test tube and fill with sample/standard. 
- Flush column with 7 – 8ml sample at appropriate flow rate to waste beaker. 
- Discard this flush water while column is still running and then collect 5 ml for 
analysis in 10 ml measuring cylinder. 
- Stop pump (watch for siphoning action!!), decant reduced sample into test tube. 
- Set up new sample/standard. 
- Once all samples, standards and blanks have been reduced, NO2- concentration is 
measured following the protocol described in A1.2. 

 
Sample order (one test tube per sample) 

- Run 3 standards - 20 µM 
- 10 samples 
- Standard 
- 10 samples  
- Standard etc 
- End with 3 blanks (seawater used to make up standard – may not be a real 
blank). 
- Flush and store column filled with buffer B. 

 
NOTES 

- Optimal flow rate is crucial to obtaining 100% reduction efficiency (or close) – 
this should be checked on each new column. For seawater this is around 1.9ml/min 
with our column set-up (freshwater optimum will be considerably faster). We 
actually operate at faster than optimal flow rates to speed things up a bit – working 
on premise that standards will take loss of efficiency into account. 
- If the column becomes filled with air bubbles it needs to be repacked (for longer 
term air contact the column should be re-copperized) 
- Following re-packing the column must be re-activated followed by 3 standards. 
Activation is necessary after long periods without use. Safest to do it each day. 
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A.1.2. Nitrite (Grasshoff et al., 1999) 
 
Reagents 

 
Sulfanilamide 

- Dilute 10 ml concentrated HCl in ~60 ml Milli-Q water. 
- Weigh 1 g sulfanilamide and dissolve in the diluted HCl. 
- Make up to 100 ml with Milli-Q.  

 

NED 
- Weigh 0.1 g N-(1-napthyl)-ethylene-diamine dihydrochloride. 
- Dissolve in 100 ml Milli-Q. 

 
Standards 

 
Initial stock (10 µmol N ml-1) 

- Dry anhydrous sodium nitrite (NaNO2) at 100 °C for 1 h. 
- Dissolve 0.345 g NaNO2 in 500 ml Milli-Q. 
- Add a few drops of chloroform. 
- Store in an amber glass bottle in a refrigerator. 

 
Working standard (4 µmol N l-1) 

- Place 1 ml initial stock in a 100 ml volumetric flask and make up to 100 ml with 
Milli-Q to produce a dilute stock of concentration 100 µmol N l-1. 

- Place 1 ml of this dilute stock in a 25 ml measuring cylinder and make up to 25 
ml with Milli-Q. 

 
Procedure 

 
- Pipette duplicate 5 ml aliquots of Milli-Q (blank), of standard and of each water 

sample into glass Kimble tubes. 
- Add 0.1 ml sulfanilamide and allow about 1 min reaction time. 
- Add 0.1 ml NED and allow at least 15 min for colour development. 
- Read absorbance on a spectrophotometer at 540 nm within 1 h.   
- The same procedure is applied to NO3 samples (2 seawater blanks, 3 standards 

and single samples) which have been reduced to NO2 by passage through a 
cadmium column. 
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A1.2. Ammonium 
 
A1.2.1.  Colourimetric method (Grasshoff et al., 1999) 

 
Reagents 

 
Citrate 

- Weigh 342.8 g trisodium citrate dihydrogen. 
- Dissolve in just under 1 l.  
- Add 0.4 g (10 mmol) NaOH. 
- Boil while stirring on heater-strirrer.  
- Cool and make up to 1 l with Milli-Q.  
- Store in a glass bottle sealed with a plastic stopper at room temperature. Stable 

for months. 
 
Phenol 

- Weigh 13.58 g phenol and 0.1435 g disodium nitroprusside dihydrate. 
- Dissolve in 500 ml Milli-Q.  
- Store in an amber glass bottle in a refrigerator. Stable for months. 

 
Trione 

- Dissolve 20 g NaOH in 1 l Milli-Q and store in a tightly closed polyethylene 
bottle. 

- Dissolve 0.1833g trione (110 mg Cl) in 100 ml NaOH reagent.  
- Store in glass bottle with plastic stopper in fridge. Stable for ~1 week. 

 
Standards 

 
Initial stock (10 µmol N ml-1) 

- Dissolve 0.2675 g NH4Cl (dried at 100 °C) in 500 ml Milli-Q. 
- Add a few drops of chloroform. 

 
Working standard (4 µmol N l-1) 

- Place 1 ml initial stock in a 100 ml volumetric flask and make up to 100 ml with 
Milli-Q to produce a dilute stock of concentration 100 µmol N l-1. 

- Place 1 ml of this dilute stock in a 25 ml measuring cylinder and make up to 25 
ml with NH4-free seawater. 

 
Procedure 

- Pipette triplicate 5 ml aliquots of standard, NH4-free seawater and sample 
- Add 0.2 ml citrate, followed by 0.2 ml phenol, then 0.2 ml trione, mixing 

between additions. 
- Cover and leave at room temperature in the dark for at least 3 h (generally 

overnight). 
- Measure absorbance on a spectrophotometer at 630 nm. 
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A.1.2.2. Fluorometric method (Holmes et al., 1999) 
 
Reagents 

 
Sodium sulfite 

- Weigh 0.8 g sodium sulfite and place in a 100 ml volumetric flask 
- Make up to 100 ml with Milli-Q. 

 
o-Phthaldialdehyde (OPA) 

- Weigh 2 g OPA and place in a darkened 50 ml volumetric flask. 
- Make up to 50 ml with high grade ethanol. 

 
Sodium tetraborate 

- Weigh 40 g sodium tetraborate and place in a 1-l volumetric flask. 
- Make up to 1 l with Milli-Q. 

 
Mixed reagent 
In a brown 1 l polyethylene bottle mix 5 ml sodium sulfite reagent with OPA and 
sodium tetraborate reagents. Store at room temperature. 
 
Standards 

 
- Dissolve 53.49 mg of NH4Cl in 100 ml Milli-Q to produce an initial stock of 

concentration 10 µmol ml-1. 
- Place 0.1 ml of this initial stock in a 100 ml volumetric flask and make up to 100 

ml with Milli-Q to obtain a working stock of concentration 10 µmol l-1. 
- To obtain standard concentrations of 0.1, 0.5 and 1.0 µmol l-1 pipette 0.08, 0.40 

and 0.80 ml initial stock into glass Kimble tubes and make up to 8 ml with Milli-
Q. 

 
Procedure 

 
- To triplicate 8 ml standards and Milli-Q blanks and duplicate 8 ml samples, add 

2 ml mixed reagent and mix. 
- Cover and leave at room temperature in the dark for at least 3 h (generally 

overnight). 
- Measure fluorescence on a fluorometer. 
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A.1.3. Urea 
 

A.1.3.1. Oven method (Grasshoff et al., 1999) 
 
Reagents 

 
Acid reagent 

- Dissolve 70 g NaH2PO4-H2O as completely as possible in 60 ml Milli-Q. 
- Carefully add 1 l H2SO4 (this is done by adding the acid slowly to the solution 

which is placed in a cold water bath and allowing the solution to cool in between 
additions). 

- Store in a glass bottle. Stable. 
 
Manganous chloride 

- Dissolve 40.5 g MnCl2-4H20 and 0.8103 g KNO3 in 100 ml Milli-Q. 
- Store in a glass bottle. Stable. 

 
Mixed reagent 

- Dissolve 3.0384 g diacetyl monoxime (CH3-COC(NOH)-CH3) and 0.035 g 
semicarbazide hydrochloride (NH2-CONH-NH2-HCl) in 50 ml 50% ethanol. 

- Immediately add 50 ml manganous chloride reagent. 
 
Standards 

 
Initial stock (10 µmol N ml-1) 

- Dissolve 0.15025 g urea in 500 ml Milli-Q. N.B.: the concentration of urea is 5 
µmol ml-1 because a molecule of urea contains 2 atoms of N.   

- Add a few drops of chloroform. 
- Store in brown glass bottle. 

 
Working standards  

- Place 1 ml initial stock in a 100 ml volumetric flask and make up to 100 ml with 
Milli-Q to produce a dilute stock of concentration 100 µmol N l-1. 

- Place 1 ml of this dilute stock in a 25 ml measuring cylinder and make up to 25 
ml with Milli-Q to obtain a standard of concentration 4 µmol N l-1. 

- To obtain concentrations of 0.1, 0.5 and 1.0 µmol N l-1 dilute 0.1 ml initial stock 
in 100 ml then pipette volumes of 0.05, 0.25 and 0.50 ml of the dilute stock into 
glass Kimble tubes and make up to 5 ml with Milli-Q.   

 
Procedure 

 
- To triplicate 5 ml standards, Milli-Q blanks and samples, add 2 ml NaCl and 

mix. This is a modification of the original method which used 0.55 g dry NaCl. 
-  Add 0.7 ml sulfuric acid reagent and mix. 
- Add 0.2 ml mixed reagent. 
- Cover and place in oven (or on a hot plate) at 75 °C for 3 h. 
- Cool under running tap water and read at 520 nm within 30 min. 
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A.1.3.2. Room temperature method (Goeyens, 1998) 
 
Reagents 

 
Acid reagent 

- Dilute 300 ml concentrated sulfuric acid in 235 ml Milli-Q (this is done by 
adding the acid slowly to the solution which is placed in a cold water bath and 
allowing the solution to cool in between additions). 

- Dissolve 0.15 g ferric chloride in 10 ml Milli-Q and add 0.5 ml of this solution to 
the acid solution. 

 
Mixed reagent 

- Dissolve 8.5 g diacetylmonoxime in 250 ml Milli-Q. 
- Dissolve 0.95 g thiosemicarbazide in 100 ml and add 10 ml of this solution to the 

diacetylmonoxime solution. 
  
Procedure 

 
- To each 10 ml standard, blank and sample, add 0.7 ml mixed reagent and mix. 
- Add 2.3 ml acid reagent and mix. 
- Store the samples at room temperature in the dark for at least 72 h and up to 120 

h. 
- Measure absorbance at 520 nm, taking care not to expose the samples to light 

while doing so. 
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A.1.4. Dissolved inorganic silicate (Grasshoff et al., 1999) 
 
Reagents 

 
Sulfuric acid (4.5 M) 

- Carefully add 250 ml concentrated sulfuric acid to 750 ml Milli-Q in a plastic 
beaker while stirring. Allow to cool and make up to 1 l. 

- Store in a polyethylene bottle. 
 
Acid molybdate 

- Dissolve 6.335 g ammonium heptamolybdate tetrahydrate [(NH4)6Mo7O24-4H2O] 
in 50 ml Milli-Q. 

- Add to 50 ml sulfuric acid reagent (do not add the acid to the molybdate). 
- Store in a polyethylene bottle protected from the sun. Stable for months. 

 
Oxalic acid 

- Dissolve 10 g oxalic acid dihydrate [(COOH)2-2H2O] in 100 ml Milli-Q.  
- Store in a polyethylene bottle at room temperature. Stable indefinitely. 

 
Ascorbic acid 

- Dissolve 1.4 g ascorbic acid (C6H3O6) in 100 ml pure water. 
- Store in an amber polyethylene bottle in the fridge. Effective as long as it 

remains colourless. 
 
Standards 

 
Initial stock (10 µmol Si ml-1) 

- Dry standard (Na2SiF6) at 105 °C in a platinum or nickel crucible.   
- Weigh 0.940 g standard and dissolve in ~100 ml Milli- 

Q in a plastic beaker, warming carefully if necessary. 
- Make up to 500 ml. 

 
Working standard (20 µmol Si l-1) 

- Pour ~45 ml Milli-Q into a plastic measuring cylinder. 
- Add 0.1 ml initial stock then make up to 50 ml with Milli-Q to obtain a standard 

of concentration 20 µmol Si l-1. 
 
Procedure 

 
- Pipette 5 ml standard, blank and sample into plastic test tubes.  
- Add 0.2 ml molybdate reagent and mix. 
- Leave for 5-10 min before adding 0.2 ml oxalic acid reagent. 
- Immediately add 0.2 ml ascorbic acid and mix. 
- Leave for 30-60 min for colour development then measure absorbance at 810 

nm.    
- Dissolved salts reduce the colour of the blue silicomolybdate complex, therefore 

a correction factor should be applied to compensate for this matrix effect:  
Sicor = (1 + 0.0045 * salinity) * Siuncor  
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A1.5. Dissolved inorganic phosphate (Grasshoff et al., 1999) 
 
Reagents 

 
Sulfuric acid (4.5 M) (same as for Si) 

- Carefully add 250 ml concentrated sulfuric acid to 750 ml Milli-Q while stirring. 
Allow to cool and make up to 1 l. 

- Store in a polyethylene bottle. 
 
Mixed reagent 

- Dissolve 12.5 g ammonium heptomolybdate tetrahydrate [(NH4)6Mo7O24-4H2O] 
in 125 ml Milli-Q. 

- Dissolve 0.5 g potassium antinomy tartrate [K(SbO)C4H4O6] in 20 ml Milli-Q. 
- Add the molybdate solution to 350 ml sulfuric acid reagent, stirring continuously 

[do not add the acid to the molybdate].  
- Add tartrate solution and mix well. 
- Store in a glass bottle. Stable for months. 

 
Ascorbic acid 

- Dissolve 5 g ascorbic acid in 25 ml Milli-Q, then add 25 ml sulfuric acid reagent. 
- Store in a refrigerator in a brown glass bottle. Stable for as long as it remains 

colourless. 
 
Standards 

 
Initial stock (10 µmol P ml-1) 

- Dry standard (KH2PO4) at 105 °C and cool in a desiccator before use. 
- Dissolve 0.6805 g in 500 ml Milli-Q to which 1 ml 4.5 M sulfuric acid has been 

added. 
- Store in a glass bottle in a refrigerator. Stable for months.  

 
Working standard (4 µmol P l-1) 

- Place 1 ml initial stock in a 100 ml volumetric flask and make up to 100 ml with 
Milli-Q to produce a dilute stock of concentration 100 µmol P l-1. 

- Place 1 ml of this dilute stock in a 25 ml measuring cylinder and make up to 25 
ml with Milli-Q to obtain a standard of concentration 4 µmol P l-1. 

 
Procedure 

 
- To 5 ml standards, blanks and samples, add 0.1 ml ascorbic acid and mix. 
- Add 0.1 ml mixed reagent and mix. 
- Read at 880 nm within 10-30 min. 
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Figure A.1.1. Examples of calibration curves for (a) NH4 using OPA method, (b) NH4 using 
indophenol blue method, (c) NO3 using flow injection method, (d) NO2 using manual method, (e) 
urea using room temperature method and (f) urea using oven method. 
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Figure A2.2. Dendrogram derived from Bray-Curtis similarity indices based on phytoplankton counts from all stations and depths sampled in June 2007 using 
PRIMER. Counts were standardised and square-root transformed prior to the calculations.  
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