The University of Southampton
University of Southampton Institutional Repository

r modes and mutual friction in rapidly rotating superfluid neutron stars

r modes and mutual friction in rapidly rotating superfluid neutron stars
r modes and mutual friction in rapidly rotating superfluid neutron stars
We develop a new perturbative framework for studying the r modes of rotating superfluid neutron stars. Our analysis accounts for the centrifugal deformation of the star, and considers the two-fluid dynamics at linear order in the perturbed velocities. Our main focus is on a simple model system where the total density profile is that of an n= 1 polytrope. We derive a partially analytic solution for the superfluid analogue of the classical r mode. This solution is used to analyse the relevance of the vortex-mediated mutual friction damping, confirming that this dissipation mechanism is unlikely to suppress the gravitational-wave-driven instability in rapidly spinning superfluid neutron stars. Our calculation of the superfluid r modes is significantly simpler than previous approaches, because it decouples the r mode from all other inertial modes of the system. This leads to the results being clearer, but it also means that we cannot comment on the relevance of potential avoided crossings (and associated 'resonances') that may occur for particular parameter values. Our analysis of the mutual friction damping differs from previous studies in two important ways. First, we incorporate realistic pairing gaps which means that the regions of superfluidity in the star's core vary with temperature. Secondly, we allow the mutual friction parameters to take the whole range of permissible values rather than focusing on a particular mechanism. Thus, we consider not only the weak drag regime, but also the strong drag regime where the fluid dynamics are significantly different.
gravitational waves, methods: analytical, stars: neutron, stars: oscillations
1365-2966
1464-1485
Haskell, B.
a3c09067-6932-45cc-902d-3b7117ec848d
Andersson, N.
2dd6d1ee-cefd-478a-b1ac-e6feedafe304
Passamonti, A.
d9c7544a-5b0e-4230-9caa-f5a9a6fe9f13
Haskell, B.
a3c09067-6932-45cc-902d-3b7117ec848d
Andersson, N.
2dd6d1ee-cefd-478a-b1ac-e6feedafe304
Passamonti, A.
d9c7544a-5b0e-4230-9caa-f5a9a6fe9f13

Haskell, B., Andersson, N. and Passamonti, A. (2009) r modes and mutual friction in rapidly rotating superfluid neutron stars. Monthly Notices of the Royal Astronomical Society, 397 (3), 1464-1485. (doi:10.1111/j.1365-2966.2009.14963.x).

Record type: Article

Abstract

We develop a new perturbative framework for studying the r modes of rotating superfluid neutron stars. Our analysis accounts for the centrifugal deformation of the star, and considers the two-fluid dynamics at linear order in the perturbed velocities. Our main focus is on a simple model system where the total density profile is that of an n= 1 polytrope. We derive a partially analytic solution for the superfluid analogue of the classical r mode. This solution is used to analyse the relevance of the vortex-mediated mutual friction damping, confirming that this dissipation mechanism is unlikely to suppress the gravitational-wave-driven instability in rapidly spinning superfluid neutron stars. Our calculation of the superfluid r modes is significantly simpler than previous approaches, because it decouples the r mode from all other inertial modes of the system. This leads to the results being clearer, but it also means that we cannot comment on the relevance of potential avoided crossings (and associated 'resonances') that may occur for particular parameter values. Our analysis of the mutual friction damping differs from previous studies in two important ways. First, we incorporate realistic pairing gaps which means that the regions of superfluidity in the star's core vary with temperature. Secondly, we allow the mutual friction parameters to take the whole range of permissible values rather than focusing on a particular mechanism. Thus, we consider not only the weak drag regime, but also the strong drag regime where the fluid dynamics are significantly different.

This record has no associated files available for download.

More information

Published date: August 2009
Keywords: gravitational waves, methods: analytical, stars: neutron, stars: oscillations

Identifiers

Local EPrints ID: 151307
URI: http://eprints.soton.ac.uk/id/eprint/151307
ISSN: 1365-2966
PURE UUID: cbd612ee-70e5-4b66-afff-30911ac7ad3b
ORCID for N. Andersson: ORCID iD orcid.org/0000-0001-8550-3843

Catalogue record

Date deposited: 10 May 2010 10:55
Last modified: 14 Mar 2024 02:42

Export record

Altmetrics

Contributors

Author: B. Haskell
Author: N. Andersson ORCID iD
Author: A. Passamonti

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×