Thermal poling of multioxide silicate glasses and ion-exchanged waveguides

Brennand, André Luiz Ribeiro (2002) Thermal poling of multioxide silicate glasses and ion-exchanged waveguides. University of Southampton, Faculty of Engineering and Applied Science, Department of Electronics and Computer Science, Doctoral Thesis .


Download (6Mb) | Preview


This Thesis reports a theoretical and experimental study of thermal poling of glasses in which a second order optical nonlinearity is introduced into the glass by applying a potential across the glass at elevated temperature. Thermal poling is the most reported and reproducible procedure for the introduction of the nonlinear susceptibility of 2nd order, c(2), in glasses. The attainment of c(2) of the order of 1pm/V has been reported in a wide range of silica based glasses including glasses suitable for ion exchange, UV-writing and rare earth doping. Effective c(2) of 0.1 pm/V has been demonstrated in poled channel waveguides in silica indicating a poor overlap between c(2) and the waveguide modes. These reported values of c(2) must be increased at least one order of magnitude for glasses and two orders of magnitude for waveguides for practical use. Therefore a good understanding of the poling mechanism which was unclear at the beginning of this work was required for poling optimisation.

In this Thesis a poling model based on electrostatics and ion transport theory is developed yielding a method for the evaluation of glasses for poling. A new technique for simultaneous poling and waveguide fabrication by differential ionic drift in glasses that contains more than one mobile ion is demonstrated and poling of K+ ion-exchanged waveguides is achieved. c(2) of the order of 1 pm/V was verified in poled soda lime glass and in found in poled potassium ion-exchanged soda lime glass. A poling time for multioxide glasses some 5 times shorter and minimum temperature 50oC lower than reported in the literature was achieved with constant-current thermal poling in vacuum. A procedure to evaluate the average value, thickness and the location of the c(2) region is established. This study provides an improved understanding of the poling mechanism and may contribute to the achievement of higher c(2) in poled glasses and poled waveguides in glasses.

Item Type: Thesis (Doctoral)
Related URLs:
Subjects: Q Science > QC Physics
T Technology > TK Electrical engineering. Electronics Nuclear engineering
Divisions : University Structure - Pre August 2011 > School of Electronics and Computer Science
University Structure - Pre August 2011 > Optoelectronics Research Centre
ePrint ID: 15487
Accepted Date and Publication Date:
2002Made publicly available
Date Deposited: 31 May 2005
Last Modified: 14 Aug 2015 16:00

Actions (login required)

View Item View Item

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics