Influence of hydrodynamics and cell signaling on the structure and behavior of Pseudomonas aeruginosa biofilms


Purevdorj, B., Costerton, J. W. and Stoodley, P. (2002) Influence of hydrodynamics and cell signaling on the structure and behavior of Pseudomonas aeruginosa biofilms. Applied and Environmental Microbiology, 68, (9), 4457-4464. (doi:10.1128/AEM.68.9.4457-4464.2002).

Download

Full text not available from this repository.

Description/Abstract

Biofilms were grown from wild-type (WT) Pseudomonas aeruginosa PAO1 and the cell signaling lasI mutant PAO1-JP1 under laminar and turbulent flows to investigate the relative contributions of hydrodynamics and cell signaling for biofilm formation. Various biofilm morphological parameters were quantified using Image Structure Analyzer software. Multivariate analysis demonstrated that both cell signaling and hydrodynamics significantly (P < 0.000) influenced biofilm structure. In turbulent flow, both biofilms formed streamlined patches, which in some cases developed ripple-like wave structures which flowed downstream along the surface of the flow cell. In laminar flow, both biofilms formed monolayers interspersed with small circular microcolonies. Ripple-like structures also formed in four out of six WT biofilms, although their velocity was approximately 10 times less than that of those that formed in the turbulent flow cells. The movement of biofilm cell clusters over solid surfaces may have important clinical implications for the dissemination of biofilm subject to fluid shear, such as that found in catheters. The ability of the cell signaling mutant to form biofilms in high shear flow demonstrates that signaling mechanisms are not required for the formation of strongly adhered biofilms. Similarity between biofilm morphologies in WT and mutant biofilms suggests that the dilution of signal molecules by mass transfer effects in faster flowing systems mollifies the dramatic influence of signal molecules on biofilm structure reported in previous studies.

Item Type: Article
Additional Information: Selected for Journal Highlights of ASM News
ISSNs: 0099-2240 (print)
Related URLs:
Subjects: Q Science > QR Microbiology
Divisions: University Structure - Pre August 2011 > School of Engineering Sciences > Engineering Materials & Surface Engineering
ePrint ID: 157143
Date Deposited: 09 Jun 2010 15:11
Last Modified: 27 Mar 2014 19:14
URI: http://eprints.soton.ac.uk/id/eprint/157143

Actions (login required)

View Item View Item