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ABSTRACT

Rishad Ahmed Shafik

It is likely that the demand for multiprocessor system-on-chip (MPSoC) with low power

consumption and high reliability in the presence of soft errors will continue to increase.

However, low power and reliable MPSoC design is challenging due to conflicting trade-

off between power minimisation and reliability objectives. This thesis is concerned with

the development and validation of techniques to facilitate effective design of low power

and reliable MPSoCs. Special emphasis is placed upon system-level design techniques

for MPSoCs with voltage scaling enabled processors highlighting the trade-offs between

performance, power consumption and reliability.

An important aspect in the system-level design is to validate reliability in the presence

of soft errors through simulation technique. The first part of the thesis addresses the

development of a SystemC fault injection simulator based on a novel fault injection

technique. Using MPEG-2 decoder and other examples, it is shown that the simulator

benefits from minimum design intrusion and high fault representation. The simulator is

used throughout the thesis to facilitate the study of reliability of MPSoC.

On-chip communication architecture plays a vital role in determining the performance

and reliability of MPSoCs. The second part of the thesis focuses on comparative study

between two types of on-chip communication architectures: network-on-chip (NoC) and

advanced microprocessor bus architecture (AMBA). The comparisons are carried out

using real application traffic based on MPEG-2 video decoder demonstrating the trade-

off between performance and reliability.

The third part of the thesis concentrates on low power and reliable system-level design

techniques. Two new techniques are presented, which are capable of generating opti-

mised designs in terms of low power consumption and reliability. The first technique

demonstrates a power minimisation technique through appropriate voltage scaling of

the MPSoC cores, such that real-time constraints are met and reliability is maintained

at acceptable-level. The second technique deals with joint optimisation of power min-

imisation and reliability improvement for time-constrained MPSoCs. Extensive experi-

ments are conducted for these two new techniques using different applications, including

MPEG-2 video decoder. It is shown that the proposed techniques give significant power

reduction and reliability improvement compared to existing techniques.
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Chapter 1

Introduction

Over the last decade, the popularity of portable electronic devices has increased signifi-

cantly. These devices are realised by interconnecting various system components into a

single integrated circuit, called system-on-chip (SoC). The methodology of component

interconnection in an SoC is defined by an on-chip communication architecture. De-

velopment of efficient on-chip communication architecture is a crucial design issue as it

greatly influences the underlying performance of an SoC. Since most of these devices are

battery-powered, low power consumption is a prime design objective to extend battery

life. Recently, reliability is emerging as another design requirement to operate in the

presence of soft errors (i.e. transient faults caused by radiation and harsh operating

environment). However, low power consumption and reliability are conflicting design

objectives as power minimisation techniques cause substantial increase in the number of

soft errors. Hence, design of low power and reliable SoCs is a complex and challenging

task. To produce optimised designs, appropriate design flows are needed. This thesis

addresses the above challenges through investigation into design and development of

efficient, low power and reliable SoCs. The remainder of this chapter is organised as

follows. Section 1.1 underlines the motivations of the research carried out in this thesis

and Section 1.2 presents an overview of the thesis and its contributions.

1.1 Motivations and Scope of the Thesis

Embedded systems are making their way into more and more devices, from hand-held

gadgets to household appliances, and from mobile devices to cars. The current trend

is that this growth will continue and the market is expected to experience a three-fold

rise in the demand from 2009 to 2014 [1]. This growing demand has led the designers to

reduce cost and improve system performance through integration of more functionality

into a single chip. The continued increase in device integration has become possible due

1
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to CMOS transistor scaling and miniaturisation described by the Moore’s Law [2, 3].

Traditionally, embedded systems are designed with single-processor chips. To accom-

modate more functionality with increased complexity of applications, multiprocessor

system-on-chip (MPSoC) is emerging as a popular embedded systems platform. MP-

SoC consists of multiple processing elements on a single piece of silicon, each with specific

functionality reflecting the need of the expected application domain. The inclusion of

multiple processing elements in MPSoCs has a number of benefits, including parallel

processing, low clock speed and low power consumption [4]. However, the design of the

current and future MPSoCs presents a number of challenges [5]. A core issue in the de-

sign of MPSoCs is on-chip communication architecture, which affects the performance of

the system [6]. Also, since a vast majority of today’s embedded systems are battery pow-

ered, a prime design objective is to minimise power consumption to extend battery life

of these systems. However, power minimisation is reported to cause exponential increase

in the number of soft errors, particularly that of single-event upsets (SEUs) caused by

cosmic or electromagnetic radiation [7, 8, 9]. The existence of these errors highlighting

the impact of technology scaling and operating environments has been investigated in

a number of academic [10] and industrial studies [11, 12]. Therefore, reliability of MP-

SoCs in the presence of soft errors is an emerging design challenge in addition to high

performance and low power consumption requirements. A number of design approaches

have been proposed by researchers over the years addressing various issues related to

low power and reliable design of MPSoCs, such as [13, 14, 15, 16].1

This research addresses the following challenges in the design of efficient, low power and

reliable MPSoCs:

1. To date there has been good progress in developing efficient on-chip communica-

tion architectures. Advanced microprocessor bus architecture (AMBA) is today’s

dominant, industrial standard on-chip communication architecture [17]. AMBA

enables multiple processing elements to be incorporated in an MPSoC through

shared communication bus architecture [18]. Network-on-Chip (NoC) is an emerg-

ing paradigm for on-chip communication architecture in MPSoCs. It enables mul-

tiprocessing through integration and spatial multiplexing of communication inter-

connects among processing elements [19]. Over the years a number of studies have

been carried out showing comparisons between AMBA and NoC in terms of per-

formance, power and area, such as [20, 21, 22]. However, most of these studies

are based on synthetic applications (random task graphs). Also, with reliability

as an emerging design challenge, no study has been reported so far showing the

impact of AMBA and NoC based on-chip communication architectures on MP-

SoC reliability. To understand the benefits and shortcomings of AMBA and NoC

in terms of performance and reliability and to facilitate development of efficient

1A review of related previous works carried out is presented in Section 2.5, Chapter 2).
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on-chip communication architecture, further investigations are needed using real

application traffic.

2. There is growing interest in evaluating the impact of soft errors on MPSoCs at

application-level rather than architectural-level. Such evaluation at application-

level, often known as application-level correctness, has been reported to enable low-

cost fault-tolerant design techniques, particularly in multimedia applications [23,

24]. To achieve low-cost power reduction the impact of system-level power minimi-

sation on application-level correctness needs to be investigated. Currently no such

study exists that address the relationship between system-level power minimisation

and application-level correctness. Such relationship can be effectively employed to

reduce power consumption, whilst maintaining acceptable application-level cor-

rectness and meeting the real-time performance constraints.

3. Traditionally, low power and reliable MPSoC design is carried out through power-

aware fault tolerance techniques considering low power and reliability as two sep-

arate objectives. To find effective design optimisation technique with low power

and improved reliability as a joint objective, further studies are needed to under-

stand the reliability of applications, particularly from system- and application-level

design perspective. Application task mapping is one such design step of applica-

tions, which is concerned with distribution of computational and communication

tasks among available resources in an MPSoC. Currently there is no study into

the impact of the application task mapping on the reliability of application in the

presence of soft errors. Such investigation is expected to facilitate soft error-aware

design optimisation technique for MPSoCs such that both power minimisation and

reliability improvement can be achieved at the same time.

4. To study the above challenges using simulation technique, appropriate tools for

profiling power, performance and reliability need to be employed. A number of

academic and industrial simulation tools have been developed so far that can

effectively profile performance and power, such as MPARM [21], NIRGAM [25]

and PrimeTime [26]. However, currently there is a lack of effective fault injection

simulators based on system-level specification language, such as SystemC, offering

high fault representation and minimum design intrusion.

1.2 Thesis Overview and Contributions

This thesis presents novel and effective techniques for the design of low power and re-

liable MPSoCs. An overview of the following chapters highlighting their contributions

follows. In Chapter 2, the fundamental concepts used in this work are introduced and

a brief review of related previous works is presented (further reviews of related works
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are presented in each of the following chapters). Chapter 3 presents a prototype fault

injection simulator using a novel fault injection technique. The fault injection is carried

out through simulation command approach using SystemC description of the device un-

der test. Comparisons with recently reported SystemC fault injection techniques show

that the proposed fault simulator benefits from high fault representation, fast simula-

tion speed and flexibility with different fault types and probabilities. The simulator is

validated using an MPEG-2 video decoder and other examples. Chapter 4 highlights

comparative performance and reliability analysis between traditional advanced micro-

processor bus architecture (AMBA) and emerging network-on-chip (NoC) architecture

using real application traffic based on MPEG-2 video decoder. The comparisons are

carried out using SystemC cycle-accurate realistic simulations and fault injection exper-

iments employing the fault injection simulator presented in Chapter 3. It is shown that

NoC outperforms AMBA in terms of application performance. Furthermore, compara-

tive reliability analyses between the two on-chip communication architectures show that

NoC outperforms AMBA in terms of the number of soft errors experienced due to less

execution time in NoC.

Chapter 5 outlines the relationship between application-level correctness and system-

level power management using voltage scaling technique. Using this relationship, a

voltage scaling technique is proposed to generate designs that are optimised in terms of

power consumption, while providing acceptable application-level correctness and real-

time performance. The effectiveness of the proposed technique is evaluated using an

MPEG2 video decoder and synthetic application examples. Using peak signal-to-noise

ratio (PSNR) as an application-level correctness metric for MPEG-2 decoder it is shown

that the proposed voltage scaling technique can significantly reduce power consumption,

while maintaining acceptable application-level correctness and meeting real-time perfor-

mance constraint. Furthermore, the impact of application task mapping (distribution

of application tasks among processing cores in an MPSoC) and architecture allocation

(choice of number of processing cores in an MPSoC) is investigated on the trade-offs

between the application-level correctness and power consumption. Chapter 6 examines

the impact of application task mapping on system reliability in the presence of single-

event upsets (SEUs). Based on this study, a novel soft error-aware design optimisation

technique is proposed using joint power minimisation and reliability improvement. The

power minimisation is carried out using voltage scaling technique and reliability improve-

ment is achieved using application task mapping. The aim is to minimise the number

of SEUs experienced by an MPSoC application, while providing low power consumption

under a real-time constraint. To evaluate the effectiveness of the proposed design opti-

misation, different experiments are carried out using a number of applications, including

MPEG-2 video decoder and random task graphs. Chapter 7 presents a summary of the

thesis along with future and worthy research areas to improve power minimisation and

reliability of MPSoCs. The details of the application and simulation models used in the
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thesis are described in Appendices A, B and C.
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Chapter 2

Background and Previous Works

This chapter introduces the fundamental concepts involved in this thesis and presents

a review of the previous works. The remainder of this chapter is organised as follows.

Section 2.1 introduces MPSoC platform and different on-chip communication architec-

tures. Section 2.2 presents the principles of low power design and Section 2.3 introduces

reliability and fault injection techniques. Section 2.4 describes the system-level design

techniques. Finally, Section 2.5 gives a review of the previous works relevant to the

presented research.

2.1 Multiprocessor System-on-Chip

To accommodate more functionality meeting the needs of increased complexity of ap-

plications, multiprocessor system-on-chip (MPSoC) is emerging as a popular embedded

systems platform [5]. MPSoC contains multiple processing elements on a single piece

of silicon, each with an assigned task to define an expected application domain. The

inclusion of multiple processing elements in MPSoCs has a number of benefits, including

parallel processing, low clock speed and low power consumption [4]. Figure 2.1 shows an

MPSoC with two processors, viz. digital signal processor (DSP) and microcontroller unit

(MCU), a memory and an application-specific integrated circuit (ASIC). The intercon-

nection of these components within the MPSoC is controlled by on-chip communication

architecture. Since on-chip communication architecture defines how inter-component

communication takes place, it greatly influences the underlying performance of the sys-

tem. Currently, there are three major on-chip communication architectures for MP-

SoCs: point-to-point (P2P), on-chip bus and network-on-chip (NoC). The P2P on-chip

communication architecture lays out dedicated interconnects between each communi-

cating component within an MPSoC. Such interconnection results in poor scalability

and as such P2P architectures are generally not suited for MPSoCs [6]. The advanced

6
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Digital Signal

Processor (DSP)


Memory


Micro-controller

Unit (MCU)


Application-
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Integrated

Circuit (ASIC)


On-Chip Communication Architecture


Figure 2.1: An example MPSoC showing different components and on-chip commu-
nication architecture

microprocessor bus architecture (AMBA) is a dominant, industrial standard on-chip

bus architecture for today’s MPSoCs, which offers good connectivity and scalability.

Network-on-chip is an emerging on-chip communication architecture for the present and

future MPSoCs. In the following, AMBA and NoC are briefly introduced.

2.1.1 Advanced Microprocessor Bus Architecture

The advanced microprocessor bus architecture (AMBA) protocol [27] is an open stan-

dard, on-chip bus specification that details a strategy for the interconnection and man-

agement of functional blocks of a system-on-chip (SoC). AMBA uses a set of signals

connected with all other communicating modules, called bus, as the main interconnec-

tion unit. Four distinct buses are defined within the AMBA specification [27]: a) the

advanced high-performance bus (AHB), b) the advanced system bus (ASB), c) the ad-

vanced peripheral bus (APB), and recently specified d) advanced extensible interface

(AXI). In this work, AMBA AHB has been chosen as the shared-bus architecture due

to its high performance and high clock-frequency [18].

The AMBA AHB bus protocol is designed to be used with a central multiplexor in-

terconnection scheme among various components, including masters (e.g. processing

elements, microcontrollers) and slaves (e.g. memory, peripherals). Figure 2.2 shows a

block diagram of the interconnection scheme used in AMBA. Using such scheme all bus

masters drive out the address (HADDR) and control signals (Read: RD, Write: WR)

to the address/control multiplexor indicating the transfer they wish to perform. The

arbiter determines which master has its address from address/control multiplexor and

routes the control signals (Read: RD, Write: WR) to all slaves. Each of the master
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Figure 2.2: Block diagram of AMBA AHB central multiplexing scheme connecting
arbiter, decoder, masters and slaves

HWDATA interface (for write data interface) is connected to the slaves through AMBA

write data multiplexor. Similarly, the HRDATA interfaces (for read data interface) from

slaves is connected to the masters through a read data multiplexor. A central decoder

is required to control the read data multiplexor and select the appropriate signals from

the slave that is involved in the transfer (Figure 2.2).

Figure 2.3 shows how a data transfer takes place through AMBA AHB. As can be seen,

before an AMBA AHB transfer can commence the bus master must be granted access to

the bus (Figure 2.3). This process is started by the master asserting a request signal to

the arbiter. Then the arbiter indicates when the master will be granted use of the bus.

A granted bus master then starts an AMBA AHB transfer by driving the address and

control signals. These signals provide information on the address, direction and width of

the transfer, as well as an indication if the type of transfer: burst, incrementing burst or

wrapped burst. A write data bus (HWDATA) is used to move data from the master to a

slave, while a read data bus (HRDATA) is used to move data from a slave to the master.

Every transfer consists of an address and control cycle and one or more cycles for the

data. The address cycle cannot be extended and therefore all slaves must sample the

address during this time. The data cycle, however, can be extended using the HREADY

signal. When HREADY is LOW, wait states are inserted into the transfer to allow

extra time for the slave to provide or sample data. The address cycle of any transfer

occurs during the data phase of the previous transfer. This overlapping of address and

data is fundamental to the pipelined nature of the bus and allows for high performance

operation, while still providing adequate time for a slave to provide the response to a

transfer.
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Figure 2.3: A simple AMBA AHB data transfer without waiting states

Depending on how the components are connected in AMBA, a number of different on-

chip bus architectures are possible [28]. Single layer shared-bus AMBA, where only one

master can initiate and carry out communication at a given time, is a dominant on-chip

bus architecture [29, 30]. Such architecture has benefits, such as scalability and high

clock frequency [31] and is used in this work.

2.1.2 Network-on-Chip

Network-on-Chip (NoC) is an emerging on-chip communication architecture enabling

integration of large number of processing elements on a single chip. NoCs offer modular

structure and uses packets for on-chip communication. Due to high level of modularity,

NoCs have advantages of high scalability and performance at the expense of silicon area

and complexity [32, 33, 34]. A great deal of research works have already been carried

out to explore efficient and reliable NoC topologies and routing techniques [15, 33].

An NoC is made up of the following components:

Processing Element (PE) is responsible for computation. Examples of PEs are mi-

croprocessor and digital signal processor (DSP).
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Network Interface (NI) is generally attached to a PE and is responsible for packet-

based communication. NI adds communication related headers and tails to gener-

ate packets for outgoing data from PEs or discards the headers and tails from a

packet as it enters PEs.

Switch is responsible for communication related tasks within NoC and is attached

to one or more PEs through the NIs. Switch contains multiple buffers to store

packets from various directions and arbiters to select single output channel from

a number of outgoing packets. The selection of outgoing packet and selection

of communication links are controlled by a set of routines defined by a routing

technique.
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Figure 2.4: A (3 × 3) NoC architecture with CLICHE or mesh-based topology

NoC offers a high degree of freedom with interconnection of its components and underly-

ing communication and routing algorithms. In the following, NoC topology, the packet

routing and communication techniques used in this thesis are briefly introduced.

NoC topologies define the way the PEs and NIs are connected with the switches and have

direct influence on the performance of the system [35, 36]. Mesh-based interconnect ar-

chitecture, also called CLICHE (chip-Level integration of communicating heterogeneous

elements), is a popular NoC architecture, proposed by [37]. Figure 2.4 shows a simple

(3 × 3) mesh-based NoC. As shown, every switch in such topology is connected to a
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specific PE and the number of switches is equal to the number of PEs. All switches

are connected to the four closest switches and the target resource block, except those

on the edge of the layout. Due to its regular structure, mesh-based topology has good

scalability with simple switches [38, 39, 40]. The simplicity mesh layout allows for the

division of the chip into processing or resource regions. The smallest of such region is

a tile formed of single PE, NI and switch (Figure 2.4). Although mesh-based NoC is

very well known for its scalability and performance, it incurs higher wire overhead (ap-

proximately 12% higher than AMBA [17]) due to large number of switches and wires.

A large proportion of these switches is taken up by the processing logic of the router,

which estimated to be approximately between 2.0% [40] to 6.6% [38] of the total chip

area.

NoC routing algorithms are crucial as they determine the paths the packets take during

inter component communication. A good routing algorithm reduces the latency of the

network by minimising the number of hops that are required for packets to reach their

destination. For packet switched NoCs, routing techniques and algorithms have direct

impact on the communication and system performance [41]. NoC routing algorithms

are classified as either deterministic or adaptive. The deterministic routing algorithms

choose a route without considering any information about the network’s present con-

dition, resulting in less design complexity [42]. Adaptive routing algorithms use the

state of the network like the traffic status of a node or link and the status of buffers for

network resources to adapt to a new routing path [43].

The XY routing, proposed by [44], is a popular routing technique for mesh-based NoCs.

In this routing, the position of the mesh nodes and their nested network components

is described by coordinates: the X -coordinate for the horizontal and the Y -coordinate

for the vertical position. A packet will be routed to the correct X -direction first and

then in Y -direction. XY routing is high-performance and simple to implement [44].

Figure 2.5 shows XY routing for packet travelling from from node (2,2) to node (0,0) in

a (3× 3) mesh-based NoC. The routing takes the path in the X -direction first and then

Y -direction, involving the nodes as follows: (2, 2) −→ (2, 1) −→ (2, 0) −→ (1, 0) −→

(0, 0) (Figure 2.5). Among other routing techniques, source-based and odd-even turn

model [45] are examples of deterministic and adaptive routing techniques. In source-

based routing technique, the direction of packet travel is specified in the packet header,

making the switch design simple. In odd-even turn model for routing the path of packet

travel is determined adaptively. Two main restrictions are imposed in such routing

technique to avoid deadlock of packets. Firstly, no packet is permitted to do east-north

or north-west turn at a node if it is located in an even or odd column (column 0 is odd,

column 1 is even and so on). Secondly, no packet is permitted to do east-south turn or

south-west turn at a node if it is located in an even or odd column [45]. Figure 2.6 shows

an example of odd-even routing for packet travelling from from node (0,2) to node (1,0)

in a (3 × 3) mesh-based NoC. As can be seen, the packet starts travelling from an odd
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Figure 2.5: An example of XY routing between node (2,2) to node (0,0) in a (3 × 3)
mesh-based NoC

column (column 2) from node (0,2) and travels to node (1,2). After reaching node (1,2)

the packet can take a south-west (first south and then west) turn and follow the nodes

(2,2) and (2,1). After reading node (2,1) (which is in an even column), the packet can

now take a west-north turn and finally reach the destination node (1,0). Note that unlike

deterministic routing techniques, such as XY routing or source-based routing, odd-even

turn model can follow any permitted path from a node depending on the node status.

Packet structure is a key design consideration in NoC. An NoC packet generally consists

of header, payload and tail as shown in Figure 2.7. The header contains useful infor-

mation regarding the packet communication, while the payload contains the actual data

that is to be communicated. The tail marks the end of packet. The header information

added by the source network interface at the front end of the packet generally contains

various information to enable packet-based communication, including routing and com-

munication history. Depending on the routing algorithm used, packet structure can be

different and packet headers can be modified by the intermediate switches.

Depending on how a packet is communicated from source to destination, NoC packet

communication can be classified in three techniques: store and forward, virtual cut

through and wormhole. Figure 2.8 shows the three different packet communication

techniques. The store and forward technique requires the whole packet to be received

and stored by the switch before it can be sent to the next node (Figure 2.8(a)). The vir-
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 TAIL


Containing packet identification,

routing and communication

information etc.


Containing actual data
 Marking packet end


Figure 2.7: A general structure of NoC packet with different components

tual cut through technique is similar to store and forward, except that the switches can

start sending packets before the entire packet is received (Figure 2.8(b)). The wormhole

technique is a finer grain technique and requires the packet to be split in flow control

units, called flits (Figure 2.8(c)). The idea is to split a large packet communication into

small modular flits, which has the advantage of reduced wire length. Each flit is consid-

ered as the unit of communication between switches and interconnecting elements. All

flits contained within a packet follows the first flit in subsequent communication cycles.
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Figure 2.8: Different packet communication techniques: (a) store and forward, (b)
virtual cut through, and (c) wormhole packet communication technique

buffer space to hold and entire packet. If the packet size is larger, this can make the

switches have considerable overheads. On the other hand, although wormhole requires

less buffer space but as every flit needs to be acknowledged, it creates considerable traffic

into the NoC [41]. Also, due to reduced wire in communication channels in the switch,

the switch area is smaller for such communication technique.

2.2 Low Power Design

The power dissipated by processing elements (PEs) of an MPSoC is given by the sum

of the leakage power, Pleak, and dynamic power, Pdyn, as [46]

PPE = Pleak + Pdyn. (2.1)

The dynamic power, Pdyn, in (2.1) is caused by switching activity of the PE, while the

leakage power, Pleak, is the power present when no switching activity takes place in the

PE. The dynamic power, Pdyn, is given by

Pdyn = α CL V 2
dd f, (2.2)

where CL is the processor load capacitance per cycle (generally constant for a given PE),

Vdd is the supply voltage, f is the operating frequency and α is the processor activity

factor (the ratio of switching activity over a given time). From (2.2) it is evident that the
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most effective means of lowering Pdyn is to reduce Vdd. However, lowering Vdd increases

circuit propagation delay [47]. This delay restricts the circuit operating frequency in

a PE and hence it is required to lower the clock frequency to tolerate the propagation

delay [47]. Dynamic voltage scaling (DVS) is an effective power minimisation technique

that reduces power through lowering Vdd and f during runtime. The main working prin-

ciple of DVS is to lower Vdd and f during slack times caused by the idle period between

computational tasks due to early completion the previous computational task or late

starting of the next computational task [48]. Over the last decade, power minimisation

using DVS-enabled MPSoCs has been extensively investigated considering its effects on

system performance due to lowering of operating frequency [5, 49, 50, 51, 52].

Dynamic power management (DPM) is another effective technique to reduce power

consumption [53]. The main strategy employed in DPM is to control the operational

times of supply voltages in system components. For example, power supply can be shut

down for components within an MPSoC when they are idle and can be switched on

when they are operational. However, shutting down power for these components results

in delay in waking them up to their fully operation condition. Hence, DPM technique

needs to take into consideration this delay effect to achieve power minimisation without

compromising the system performance [54]. Often, today’s MPSoCs include both DVS

and DPM techniques to minimise power. In this work, power minimisation is achieved

out using voltage scaling technique as it is widely employed for power minimisation of

MPSoCs [47, 48, 55]. Reviews of research works related to voltage scaling and its effects

on system performance and reliability is presented in Section 2.5.

2.3 Reliability and Fault Injection

An emerging challenge in today’s electronic system design is reliability of the system

when it is subjected to different errors or faults. The existence of these errors highlighting

the impact of technology scaling and operating environments has been investigated in a

number of academic and industrial studies, such as [10, 11, 12, 56]. To determine how

reliability is affected by the presence of these errors, fault simulation has been a prevalent

technique over the past few years [57]. Fault simulation describes the technique of fault

injection in a prototype implementation through a simulation model to observe the

behaviour of the system in the presence of faults [58]. Different fault injection techniques

using simulated fault injection are briefly introduced in Section 3.1, Chapter 3.

Faults in electronic systems can be classified in two types: permanent and transient.

Permanent faults are related to irreversible physical defects in the circuit. These defects

can be produced during manufacturing process or in normal operation. In simulated

fault injection techniques such faults are made persistent throughout the observation

time. Stuck-at faults are popular permanent fault model used in fault injection experi-
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ments [57]. Transient faults, also known as soft errors, can appear during the operation

of a circuit. Unlike permanent faults, transient faults do not represent a physical defect

in the circuit. Such faults take place when a single ionising radiation event produces a

burst of hole-electron pairs in a transistor that is large enough to cause the circuit to

change state. Bit-flip or single-event upset (SEU) is the most popular transient fault

model used in fault injection techniques [59]. Such faults generally take place at the

storage elements, like registers. Among other transient fault types, indetermination and

delay faults are also used in fault injection experiments [57]. Indetermination type faults

are caused by increased leakage current, which perturbs the original state (‘0’ or ‘1’ val-

ues) of logic gates to unknown state (‘X’). The delay type faults are transient delay

experienced by logic gates due to change of physical properties, such as capacitance and

resistance.

Probabilistic simulation is an effective and popular technique for transient fault injec-

tion, which uses statistical information regarding locations and rates associated with

faults [60, 61]. For SEU-based fault injection, Poisson’s distribution is generally used to

identify the fault locations within the registers [62, 63], while exponential distribution is

used for determining the timing of fault injection [64]. Different parameters have been

reported to date showing methods of evaluating the rate of faults occurring in the device

under test (DUT). These parameters include:

Fault Density is the measure of number of faults found in a device per unit of data.

For memories, this is generally expressed as the number of faults per megabyte or

gigabyte data. This parameter is used for permanent faults or defects only [7].

Failures in time (FIT) is the rate at which the failures or faults take place per unit

of time in an electronic component. It is generally expressed in unit of number of

fault per million of operating hours (fault / 109 hours).

Mean time-to-failure (MTTF) is an estimate of the mean time expected until the

first fault occurs in a component of an electronic system. MTTF is a statistical

value and is meant to be the mean over a long period of time and large number of

units. It is usually expressed in unit of millions of hours. For constant failure rate

systems, MTTF is the inverse of FIT [65].

Mean time-between-failures (MTBF) is described as the time elapsed before a

component in an electronic system experiences another fault. Unlike MTTF, the

time elapsed in MTBF includes the time required to recover from a fault.

Soft error-rate (SER) is the rate at which the errors take place per unit time and

per unit data. It is generally used for soft errors and is expressed as number of

soft errors per bit per cycle.
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In this research, SEU-based probabilistic fault injection technique is carried out using

soft error rate (SER) as it is commonly used for evaluating reliability in the presence of

SEUs [65].

2.4 System-Level Modelling and Design

MPSoC design is complex due to feature richness, application complexity and short time-

to-market requirements [66]. System-level modelling and design address these challenges

in MPSoC design using modular design approach at a higher-level of abstraction. Over

the years, a number of system-level modelling and design tools and techniques have been

developed for academic and industrial research and developments, such as [21, 26, 67].

In this work, SystemC is used for system-level modelling and simulation of MPSoC

(Chapters 4, 5 and 6). The different concepts involved in system-level modelling and

design used in this research are briefly described next.

2.4.1 System-level Modelling and Simulation using SystemC

SystemC, ratified as IEEE standard 1666-2005 [68], is a hardware description language

(HDL), which extends standard C/C++ with the use of HDL-specific libraries. It

has been developed by a group of companies forming the Open SystemC Initiative

(OSCI) [68]. Like other HDLs, such as VHDL and Verilog, SystemC provides a large

set of hardware data types along with their array-based implementations. It abstracts

design component as re-usable modules and incorporates timing information, concur-

rent process modelling and process sensitivity. Furthermore, it provides with a rich

set of communication classes, such as channels, which can be used to model complex

communication behaviour between SystemC modules easily.

To demonstrate the organisation and design specification in SystemC, Figure 2.9 shows

an example SystemC hardware description of 1-bit adder. The description of 1-bit adder

is organised in hierarchical modules: basic module, testbench module and top-level mod-

ule (Figure 2.9). The basic module (which is the adder module, SC MODULE(Adder))

incorporates the desired functionality of the system and contains the input and output

ports (input ports: sc in<..>, output ports: sc out<..>), functionality of the module,

add(..), and the constructor for the module, SC CTOR(..). The input port signals A,

B and Cin (of logic type) provide interface for 1-bit adder inputs with carry-in and the

output port signals sum and Cout (of logic type) provide the sum and carry-out out-

puts. The actual functionality of adder is described in add(..). The constructor creates

the module instance and registers the add(..) functionality as a SystemC process using

SC METHOD making it sensitive to the input port signals. Such SC METHOD based

process registration enables add(..) functionality to be executed recurrently when any
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#include “systemc.h”


SC_MODULE
 (Adder){

sc_out<sc_logic> sum, Cout;

sc_in<sc_logic> A, B, Cin;


void
 add(){

sc_logic tempC, tempD, tempE;

tempC = A
 .read
 () & B.read();

tempD = A.read() ^ B.read();

tempE = Cin.read() & tempD.read();

sum.write(tempD ^ Cin.read());

cout.write(tempC | tempE);


}

SC_CTOR
(Adder){


SC_METHOD
 (add);

sensitive << A << B << Cin;


}

};


#include “systemc.h”


SC_MODULE(Testbench){

sc_out<sc_logic> TA, TB, TCin;


void testprocess(){

TA
.write
(SC_LOGIC_0);

TB.write(SC_LOGIC_0);

TCin.write(SC_LOGIC_0);

wait(5, SC_NS);

TA.write(SC_LOGIC_1);

TB.write(SC_LOGIC_1);

TCin.write(SC_LOGIC_0);

wait(10, SC_NS);


sc_stop();

}

SC_CTOR(Testbench){


SC_THREAD
 (testprocess);

}


};


#include “Adder.h”

#include “Testbench.h”


int 
sc_main
 (int argc, char *argv[]){

sc_signal<sc_logic> A, B, Cin;

sc_signal<sc_logic> sum, Cout;


Adder adder1bit(“BitAdder”);

adder1bit.A(A);


       adder1bit.B(B);

       adder1bit.Cin(Cin);

       adder1bit.sum(sum);

       adder1bit.Cout(Cout);


       Testbench tb(“Testbench”);

       tb.TA(A);

       tb.TB(B);

       tb.TCin(Cin);


sc_start
 (200, SC_NS);

return 0;


}


Basic (Adder) Module
 Testbench Module


Top-level Module


Figure 2.9: An example SystemC model of a 1-bit adder

of the sensitivity signals change (Adder module, Figure 2.9). The testbench module

(SC MODULE(Testbench)) incorporates validation of the adder functionality through

different sequences in output port signals: TA, TB and TCin (of logic type). The vali-

dation is carried out through SystemC process called testprocess(..), which is registered

in the testbench constructor, SC CTOR(..), using SC THREAD. Such SC THREAD

based process registration enables testprocess(..) to be executed once (Testbench mod-

ule, Figure 2.9). The top-level module integrates the basic module (Adder) and test-

bench module (Testbench) together connecting the outputs of the testbench module to
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the inputs of the adder module. The top-level module also issues simulation specific

initialisations that are required, such as sc start(..) to start SystemC simulations (top-

level module, Figure 2.9). A detailed language specification of SystemC can be found

in [69].

2.4.2 Hardware/Software Co-design

Hardware/software (HW/SW) co-design describes the techniques for simultaneous de-

sign and synthesis of both hardware- and software-based implementations [70]. Such

design approach extracts maximum benefit of both hardware- and software-based de-

sign and reduces time-to-market greatly [71, 72]. Figure 2.10 shows a typical design

flow used in HW/SW co-design. In the following the major HW/SW co-design steps are

briefly introduced. The impact of the design steps on power minimisation and reliability

are considered in Chapters 4, 5 and 6.
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Figure 2.10: Flowchart of hardware/software co-design
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2.4.2.1 Architecture Allocation

Architecture allocation deals with allocation of different design components for a target

MPSoC [48]. For example, architecture allocation in an MPSoC may include selection

of number and types of processors, memories and interconnections. The overall goal of

the architecture allocation process is to identify the most suitable architecture, which

would provide the best performance and cost under given constraints. In this thesis,

architecture allocation is referred to as the allocation of number of processing cores in

the MPSoC architecture.

2.4.2.2 Application Task Mapping and Scheduling

Following the architecture allocation, application task mapping describes the process of

distributing the computation and communication tasks among the allocated processing

and communicating elements. The mapping considerations may include different perfor-

mance and cost involved with each task. The mapping process explicitly determines the

implementation related issues in hardware and software. Determining a good mapping is

of crucial importance as inappropriately mapped tasks for a given allocated architecture

may under-utilise its performance and increase the system costs [73]. Task scheduling

generally follows task mapping, which defines the order of execution of the different

tasks, such that timing constraints are satisfied. Task scheduling affects the parallelism

among different tasks and performance of the system [48, 74].

Architecture allocation, application task mapping and task scheduling have direct impact

on performance and power consumption of MPSoC [48, 75]. Further power minimisa-

tion can be achieved using dynamic voltage scaling (DVS) technique and dynamic power

management using slack time (Section 2.2). The power management is then followed

by system evaluation, which may repeat the previous design steps to achieve optimised

HW/SW partitioning and design. Over the years a number of HW/SW co-design tools

have been proposed that can carry out the above tasks, such as COSYN [71], POLIS [76],

MPARM [21]. In Chapter 5 MPARM [21] has been used as it enables high-level de-

scription of the design using C/C++ for the software implementation and SystemC for

hardware implementation. An introduction to MPARM is presented in Section B.2,

Appendix B.

2.5 Previous Works

Significant progress has been made in the research and development of efficient on-

chip communication architecture of MPSoC. Advanced microprocessor bus architecture

(AMBA) is today’s dominant on-chip communication architecture [18] (Section 2.1.1).
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With increased complexity of applications and shorter time-to-market demands, the de-

sign of on-chip communication architecture is being expedited further towards more mod-

ular and scalable architectures, such as network-on-chip (NoC) [77, 78] (Section 2.1.2).

A number of studies have discussed the benefits of NoCs as a future MPSoC platform.

In [79] it was shown that shared-bus will not meet the performance requirements of

tomorrow’s systems. It demonstrates that network-based systems would outperform

shared-bus based systems with better throughput and lower latency. Further justifica-

tions were presented in [38] showing that using an NoC-based on-chip communication

architecture has advantages of structure, performance and modularity. Since network

channels are shared across all connecting components, the bandwidth is enhanced but

this gives NoC an area overhead of 6.6% [38]. It also shows that unlike in point-to-point

(P2P) architecture, the wiring in NoC is not dedicated to connecting components only,

which also enhances utilisation. Similar in-depth and intuitive analyses of NoC concepts

and arguments are also presented in [77, 80, 81]. In [19] an overview of the research works

carried in the development of NoC is presented. Also, a set of case studies with industrial

and academic prototyping and implementation has been summarised in [19] showing the

NoC implementations: ÆTHEREAL by Philips [82], NOSTRUM [83, 84], SPIN [79],

CHAIN [85], MANGO [86] and xPipes [87]. Further review of related research works

related to comparison between NoC and AMBA is presented in Section 4.1, Chapter 4.

Power reduction is a major consideration in MPSoC design to extend battery life. Dy-

namic voltage scaling (DVS) is an effective power minimisation technique that has re-

ceived considerable attention over the last decade [5, 48, 49, 50, 51, 52, 54, 55] (Sec-

tion 2.2). However, power minimisation using such technique has detrimental effects

on the system performance and reliability. This is because lowering of the operational

frequency degrades the performance of the system and lowering voltage to achieve power

minimisation exponentially increases the number of soft errors experienced. This has

been extensively investigated in a number of studies [62, 63, 88, 89, 90, 91].

To mitigate the effect of soft errors in low power systems, different techniques have been

employed over the last few years [48]. Hardware redundancy technique, such as [89, 92],

is an effective technique, which employs extra hardware and incorporates voting from

multiple outputs to a single output to mitigate the effect of soft errors. Due to usage

of extra hardware resources such techniques incur area and power overheads. A num-

ber of publications have reported this conflict between redundant resources and power

consumption for fault tolerant designs, for example [89]. Time and information redun-

dancy techniques are other effective fault tolerance techniques. However, several studies

reported that these techniques cause overheads in terms of computation and communica-

tion performance. For example, in [93, 94] the trade-off between power minimisation and

performance using time redundancy technique is shown, while in [62] the trade-off be-

tween communication overhead and power consumption using information-redundancy

is presented. An alternative technique is to employ task re-execution or replication as
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shown in [13, 95]. Using this technique fault tolerance is achieved through task replica-

tion and re-execution during idle/slack times and power minimisation is achieved using

task scheduling. The overhead for such technique is generally much lower than redun-

dancy technique. For example, in [93] it is demonstrated that the fault tolerance can be

improved without any impact on the execution time by utilising idle processors for du-

plicating some of the computations of the active processors. Application check-pointing

is another effective technique. The fault tolerance using such technique is achieved by

selectively repeating part of an application during slack times to realise fault tolerant

design. However, the fault tolerance using this technique is achieved at the cost of

high complexity of application design. Examples of effective application check-pointing

techniques highlighting such increased cost are, adaptive and non-uniform online ap-

plication check-pointing proposed in [96, 97], offline application check-pointing shown

in [50]. A number of other techniques have also been proposed in past few years showing

the combination of different fault tolerance techniques to extract maximum benefit in

terms of fault tolerance and low power consumption, such as [74, 98, 99]. Further review

of research works related to fault tolerance and reliability is presented in Section 6.1,

Chapter 6.

Recently, to ease fault tolerance requirements for DVS-enabled systems, different tech-

niques have been proposed showing the impact of faults at application-level. Since

the impact of faults are investigated at application-level rather than architectural-

level, a large number of faults get masked enabling low-cost fault tolerance technique.

In [7, 8] it has been shown that multimedia applications are capable of tolerating a

high rate of faults. A similar study has been reported in [24] showing that soft errors at

architectural-level do not always lead to faults at application level, leading to the concept

of application-level correctness. Exploiting the relaxed requirements of application-level

correctness, the authors of [24] demonstrated that effective and fault-tolerant appli-

cations can be designed at low-cost. Further review of research works related to the

evaluation of the impact of faults is presented in Section 5.1, Chapter 5.

2.6 Concluding Remarks

This chapter has introduced the fundamental concepts related to the thesis. Differ-

ent MPSoC on-chip communication architectures, such as AMBA and NoC, have been

described. Low power design techniques using dynamic voltage scaling (DVS) and dy-

namic power management (DPM) have been discussed and concepts related to reliability

and fault injection have been outlined. Also, overview of different system-level design

techniques and SystemC-based modelling and design specification have been given. Fur-

thermore, a review of previous research works relevant to this thesis has been presented.
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SystemC Fault Injection

Simulator

With the ongoing trend of technology scaling, reliability is an emerging issue in the

design of electronic systems, particularly due to transient single-event upsets (SEUs) and

manufacturing permanent faults [100] (see Section 2.3, Chapter 2 for further details on

reliability). Hence, an important aspect in the design of electronic systems is to validate

the feasibility of fault tolerance at a high level of design abstraction to reduce the system

re-design cost. Such validation requires studying how different faults affect the system

functionality and behaviour. Simulated fault injection is an effective technique often used

to facilitate such studies [58]. Desirable features of an effective fault simulator include

low intrusion into original design description, low simulation time and implementation

of various type of fault injection. SystemC is a system-level design and specification

language with potential improvements in design productivity by allowing the designer

to operate at different levels of abstraction. Currently, there is a lack of a SystemC fault

injection simulator with the desirable features of an effective fault simulator. In this

chapter, a SystemC-based prototype fault injection simulator is presented employing a

novel fault injection technique. The simulator benefits from simplicity, minimum design

intrusion and high fault representation compared to other recently reported SystemC

fault injection techniques.

This chapter is organised as follows. Section 3.1 reviews existing fault injection tech-

niques. Section 3.2 describes the new fault injection technique implemented on a proto-

type simulator. Section 3.3 demonstrates the effectiveness of the simulator and compares

with recently reported fault injection techniques. Section 3.4 considers MPEG-2 video

decoder setup as a case study using the proposed fault injection simulator. Finally, Sec-

tion 3.5 concludes the chapter. The fault injection simulator is also used in Chapters 4, 5

and 6 to analyse the reliability in the presence of soft errors.

23
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3.1 Related Works

To date a number of fault injection simulators have been proposed employing different

design description languages. For example, a VHDL-based fault injection simulator,

called MEFISTO, is presented in [101] showing fault injection through signal or variable

manipulation. Similar fault injection simulators using signal or variable manipulation

for fault injection are also shown in [102, 103]. The simulators in [102, 103] employ

automatic design modification through VHDL-based controller. Such design modifi-

cation is demonstrated to be useful for speeding up the system re-design process and

enable effective fault injection in behavioural design description of the device under test

(DUT). Another VHDL-based fault injection simulator, called VERIFY, is proposed

in [104]. The simulator injects faults in the DUT by flipping bits within the registers

during simulation. A Verilog-based fault injection simulator, called INJECT, is shown

in [105] using mutated design description to enable fault injection. Examples of other

effective fault injection simulators employing different techniques are DEPEND [106],

GOOFI [107] and RIEFLE [108].

SystemC is a design description language that allows the designer to operate at differ-

ent levels of abstraction [68]. Currently a number of SystemC fault injection simulators

have been proposed employing different fault injection techniques, such as saboteurs [60],

mutants [109] or simulation command based approach [110]. Apart from simulation tech-

niques, emulation approach for fault injection have also been proposed, such as [111].

In the following, the existing fault injection techniques in the context of SystemC are

discussed. These techniques are compared with the novel fault injection technique im-

plemented on a prototype simulator in Section 3.3.

3.1.1 Saboteurs

A saboteur is a special component added to the original design description of the device

under test (DUT). The purpose of this component is to alter the value or the timing

characteristics of one or more signals in the original design description, when a fault

is injected [112]. Due to its simplicity, it is a popular fault injection technique [59].

Depending on how saboteurs are connected with the signals in the original design de-

scription, it can be serial simple, serial complex or parallel as shown in Figure 3.1 (’O’

- signal driver, ’S’ - saboteur and ’I’ - signal receiver). In serial configuration, saboteur

is inserted between a signal driver and its receiver (Figure 3.1(a)). In serial complex

configuration, saboteur is inserted between two different sets of signal drivers and signal

receivers to simulate cross-talk based faults (Figure 3.1(b)). A parallel configuration is

used when a set of drivers and receivers have a common resolved signal (Figure 3.1(c)).
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Figure 3.1: Different types of saboteurs (unidirectional only): (a) Serial simple sabo-
teur, (b) Serial complex saboteur, and (c) Parallel saboteur

Figure 3.2 shows an example SystemC design of a serial simple saboteur (Figure 3.1(a)).

To make the saboteur compatible with different signal types, a template class is used. As

can be seen, the template class consists of three major parts: the saboteur input/output,

saboteur constructor and the actual fault injection functionality (Figure 3.2). The sabo-

teur input (sab in) drives the signal for which the fault injection is being enabled and the

saboteur output (sab out) receives the signal value after fault injection (lines 4-5). The

fault injection is controlled by the fault enable signal, fault enable, and the fault type is

handled by fault type (lines 6-7). The saboteur constructor creates an object of the sabo-

teur registering the main fault injection functionality, insert fault, as an SC METHOD

process (see Section 2.4, Chapter 2 for example of how processes are registered within

SystemC modules). The fault injection functionality, called insert fault(..), is made sen-

sitive to saboteur driver, sab in in the constructor such that any change in the sab in

causes insert fault functionality to be executed (lines 9-12). Within the insert fault(..),

when the fault enable signal is enabled, the driver signal, sab in, is altered by inserting

a random fault into it (lines 17-21). However when the fault enable signal is disabled,

no faults are injected and the original signal remains fault-free. The variable data acts
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//Saboteur.h

1:  template <typename T>

2:  class Saboteur: public sc_module{

3:  public:

4:    sc_in<T> sab_in;

5:    sc_out<T> sab_out;

6:    sc_in<bool> fault_enable;

7:    sc_in<sc_uint<2> > fault_type;

8:

9:   SC_CTOR(Saboteur){

10:    SC_METHOD(insert_fault);

11:    sensitive << sab_in;

12:  }

13:

14:  void insert_fault(){

15:    if(sab_in.event(){

16:      data = sab_in.read();

17:      if(fault_enable.read() == 1){

18:        data = sab_in.read() + fault;

19:      }

20:      sab_out.write(data);

21:    }

22:  }

23:

24: private:

25:  T data;

26: };


Saboteur I/O

and fault

information


Saboteur

constructor


Fault

injection


Figure 3.2: An example SystemC template of a serial simple saboteur (Figure 3.1(a))

as a local variable to store the faulty or fault-free data, which is written to the signal

receiver, sab out to reflect the fault injection (lines 20). For simple design description,

using such saboteur (Figure 3.2) is an effective technique for fault injection [110].

Saboteurs can only manipulate signals to enable fault injection (Figure 3.2). Hence,

saboteurs are not suitable for fault injection in behavioural models of the DUT, which

generally include variable registers apart from signal registers [57]. A saboteur-based

SystemC fault injection simulator is presented in [60]. The fault injection is enabled

through manipulation of signals in the DUT using similar saboteur templates similar as

shown in Figure 3.2. In [113] a SystemC-based fault injection technique is proposed using

saboteur-based controllers to flip bits during data transfer of a system. A similar system-

level fault injection technique using SystemC is presented with distributed saboteur-

based fault injection controllers in [114]. The fault injection controllers in [113, 114]

define the interface between input and output of the set of signals and enable fault

injection through external inputs.

3.1.2 Mutants

A mutant is a design component that replaces the original design component to en-

able fault injection. It works as the original component when inactive and works as a
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faulty component when active. Mutants can be accomplished by one of the several ways,

such as adding saboteurs to structural or behavioural component descriptions, mutat-

ing structural component descriptions and manually mutating behavioural component

descriptions to achieve complex and detailed fault models [59]. Figure 3.3(a) shows a

SystemC-based example of original D-type flip-flop and Figure 3.3(b) shows the mutant

configuration of the same (using manual mutation).

//dff.h

1: SC_MODULE(dff){

2:   sc_in<bool> data_in, clock;

3:   sc_out<bool> data_out;

4:   sc_in<sc_uint<2> > fault_ctrl;

5:

6: SC_CTOR(dff){

7:     SC_METHOD(datastore);

8:     sensitive << clock.pos();

9:  }

10:

11: void datastore(){

12:   if(fault_ctrl.read() == 0)

13:     data_out.write(data_in.read());

14:   else if(fault_ctrl.read() == 1)

15:     data_out.write(0);

16:   else if(fault_ctrl.read() == 2)

17:     data_out.write(1);

18:   else if(fault_ctrl.read() == 3){

19:     data_out.write(!data_in.read());

20:    wait();

21:     data_out.write(data_in.read());

22:   }

23:   wait();

24: }


//dff.h

1: SC_MODULE(dff){

2:    sc_in<bool> data_in, clock;

3:    sc_out<bool> data_out;

4:

5:    SC_CTOR(dff){

6:       SC_METHOD(datastore);

7:       sensitive << clock.pos();

8:    }

9:

10:  void datastore(){

11:    data_out.write(data_in.read());

12:  }

13: };


(a)
 (b)
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Figure 3.3: Example of mutant based fault injection: (a) an original D-type flip-flop
in SystemC, (b) a mutant D-type flip-flop in SystemC

As can be seen, the original D-type flip-flop consists of the input/output ports (data in,

clock and data out), the module constructor (SC CTOR(..)) and the module functional-

ity datastore(..) (for brief introduction to module structure in SystemC, see Section 2.4,

Chapter 2). The module constructor (SC CTOR(..)) registers the datastore(..) func-

tionality as a SystemC SC METHOD process making it sensitive to clock’s positive edge

(lines 6-7, Figure 3.3(a)). The mutant configuration of D-type flip-flop consists of the

basic components within the module (Figure 3.3(b)). To control fault injection the mu-

tant configuration of the D-type flip-flop incorporates fault control signal (line 4). The

actual control of fault injection is carried out within the datastore(..) functionality of

the mutant configuration (lines 11-22). Within datastore(..), when the fault control has

a value of 0, no fault is injected and mutant configuration works similarly as the original

fault-free configuration (lines 12-13, Figure 3.3(b)). However, when ‘fault control’ has

a value of 1, 2 or 3, fault of type stuck-at-0, stuck-at-1 or single-event upset is injected

(lines 14-19, Figure 3.3(b)).
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Similar to saboteurs, mutants require time consuming re-design or modifications (as

shown in the example, lines 12-20, Figure 3.3(b)). Such re-design can become complex

as the design description becomes large. To simplify mutation for such designs, SystemC-

based auto-mutation tools have been proposed by [115]. In [109, 116] SystemC-based

external signal manipulation for simulation of attack-based fault scenarios using mutant-

based fault injection models have been shown. In [117] SystemC-based fault injection is

carried out using processor and memory mutant models. A number of other illustrative

examples of mutant-based approach are presented in [118].

3.1.3 Emulation Techniques

Emulation techniques are based on implementing a close-to-real scenario for fault injec-

tion into the device under test (DUT). Two main approaches are used when considering

an emulation-based fault injection. The first approach takes advantage of partial run-

time reconfiguration available in modern FPGAs, such as [119]. The second approach

Original


After Emulation


1: If(data_in > rmax){

2:
 rmax = data_in;

3: }


1: If(inject_error(inject_error(data_in, error, 8, 11, “1111”, 12, 25, “1111”)) >

inject_error(inject_error(rmax, error, 17, 19, “1111”, 12, 25, “1111”)){

2:
 rmax = inject_error(data_in, error, 26, 29, “1111”, 30, 33, “1111”);

3: }


(a)


(b)


Figure 3.4: Example of modification of design description using emulation technique:
(a) fault-free (before emulation) design description, and (b) faulty (after emulation)

design description

relies on instrumentation, i.e. modifications of the original description to enable fault

injection, such as [111]. For all emulation techniques, the fault injection arrangement

requires compatibility and necessary translations for use with interface hardware and

software tools that are involved in the emulation technique. Emulation-based techniques

using the second approach generally restrict the abstraction of system modelling. For

example, the design of the DUT needs to be completely synthesizable for the emulation-

based technique proposed in [111]. The emulated and automatically re-generated design

codes using this technique are changed from the original descriptions. Figure 3.4 shows

an example of such emulation technique with the original design description and the

modified design description after enabling fault injection through [111]. As can be

seen, the modified design description enables fault injection using automatic insertion of
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inject error(..) function to manipulate the variables data in and rmax (lines 1-2, Fig-

ure 3.4(b)). Comparing between Figure 3.4(a) and (b), it is evident that such technique

inflates the design description and has high level of design intrusion. As a result, such

emulation technique has limited applicability in validation of system reliability [59].

3.1.4 Simulation Command

Simulation command based approach, which is also employed in the proposed fault

simulator, is an effective way to inject faults into signal or variable registers. It requires

no or minimum changes in the original design description of the device under test (DUT).

The variable manipulation technique allows injection of faults into behavioural models

by altering values of variables defined in the design description. In signal manipulation

technique, faults are injected by altering the value of signals. Signal manipulation is

implemented by disconnecting the signal from its driver and forcing it to a new value for

the fault duration. When the fault duration time is over, the signal is connected back

to the driver [101]. Varying the fault duration different types of faults can be simulated

using such approach, viz. temporary, intermittent and permanent faults, etc.

Recently, SystemC simulation command based approach have been reported by [110,

118], which employ the introduction of extra values within SystemC type sc logic. The

extra values are: SC LOGIC A meaning a stuck-at-1, SC LOGIC B meaning a stuck-at-

0, and SC LOGIC R meaning reset for stuck-at faults. Using these additional values for

sc logic along with the original values fault-free and faulty scenarios can be simulated.

To enable fault injection in different variable and signal registers within a DUT the orig-

inal types are required to be changed to the proposed sc logic or its variants (such as

sc lv). However, in behavioural models of a DUT different variable and signal register

types are common. Hence, restricting them to only sc logic type or its variants limits the

applicability of this approach for design descriptions with different variable and signal

types. An 8-bit counter example using the simulation command based approach [118]

is shown in Section 3.3 and it is then compared with the fault injection technique em-

ployed in the proposed fault simulator, which also employs simulation command based

approach. The new SystemC fault injection simulator is described next.

3.2 Fault Injection Simulator

The SystemC fault injection simulator implementing a novel fault injection technique

has four major components as shown in Figure 3.5. Brief description of each component

follows. The actual fault injection technique is described in Section 3.2.3.
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Figure 3.5: Block diagram of the proposed SystemC fault injection simulator

3.2.1 Fault Locations Database

Fault locations database is the first module within the proposed fault simulator. It con-

tains the organised list of locations of the registers, where faults can be injected. The

database is formed by automated insertion and update of fault locations (variable or sig-

nal registers) from the original SystemC design description (Figure 3.5). The automated

insertion in fault locations database is initiated by replacing the original variable and

signal register types to the fault injection enabler types. Table 3.1 shows the proposed

fault injection enabler types for commonly used primitive and SystemC types. As can be

seen, the original primitive types, for example, int and long are replaced by Reg<int>

and Reg<long>. Also, the SystemC types, for example, sc logic and sc int<N> are re-

placed by fault injection enabler types LogicReg and IntReg<N> (Table 3.1). The fault

injection enabler types in Table 3.1 employ careful and transparent implementation of

their original types, such that their functions are kept intact. To enable automated in-

sertion of the registers, the fault injection enabler types use constructor (or initialisers).

During initialisation in the constructor, the register locations of the variable or signal

types are inserted in the fault locations database. When the scopes of these replacement

types are expired, destructors (or de-initialisers) are used, which remove the the register
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Original types Fault injection enabler types

primitive type (int, bool etc.) Reg<primitive type>

sc bit BitReg

sc logic LogicReg

sc fix FixReg

sc ufix UFixReg

sc int<N> IntReg<N>

sc uint<N> UIntReg< N >

sc bigint<N> BigIntReg<N>

sc biguint<N> BigUIntReg<N>

sc lv<N> LogicVectorReg<N>

sc bv<N> BitVectorReg<N>

sc fixed<N> FixedReg<N>

sc ufixed<N> UFixedReg<N>

Table 3.1: Original variable/signal types and corresponding fault injection enabler
types used in the fault injection simulator

locations from the fault locations database (Figure 3.5). Since database updates are

possible from multiple design modules at the same time, the database implementation is

made thread-safe by singleton design pattern within the simulator. Such design pattern

restricts mutually inclusive database updates at the same time. Using such thread-safe

implementation, the fault locations database or the register space within the proposed

fault simulator, FIMgr, can be accessed through the following SystemC statement:

>> database = FIMgr::getInstance().register_space;

To demonstrate how the fault injection enabler types are implemented, Figure 3.6 shows

the SystemC definitions of proposed Reg<primitive type> and IntReg<N> types, which

are equivalent to primitive types and SystemC type sc int<N>. As can be seen, the

constructor (Reg(..)) in the SystemC definition of Reg<primitive type> inserts the reg-

ister location of the original type in a centralised fault locations database within the

fault simulator (called FIMgr) (lines 6-12, Figure 3.6(a)). This is done by calling the

member function registerInsert(..) of FIMgr with appropriate size and data type in-

formation (line 9-10). The constructor is called upon every time a variable or signal

register is initialised. When the signal or variable register is de-initialised, destructor

(˜Reg(..)) is called upon. Within the destructor, the register location is removed from

the fault locations database, using registerDelete(..) member function of FIMgr (lines

14-17, Figure 3.6(a)). The original functionality of primitive types are implemented

in Reg<primitive type> through a set of SystemC operator definitions (line 18, Fig-

ure 3.6(a)). Due to usage of SystemC template, the Reg<primitive type> definition
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//Reg.h

1:  #define BYTE 8 //byte->bits

2:  #define size(x) ((int) (sizeof(x) * BYTE))

3:  template <typename T>

4:  struct Reg{

5:    T reg;

6:    //Constructor

7:    Reg(T _reg = 0) {

8:      reg = _reg;

9:      FIMgr::getInstance().registerInsert

10:     ((void *) &reg, size(reg), 11: DATA_TYPE);

11:  }

12:

13:  //Destructor

14:  ~Reg() {

15:    FIMgr::getInstance().registerDelete

16:    ((void *) &reg);

17:  }

18:  // Inline operator implementation functions

19: };


(a)
 (b)


//IntReg.h

1:  template <int W>

2:  class RegInt : public sc_int_base{

3:    ....

4:    //Constructors..

5:    IntReg():sc_int_base(W){

6:      FIMgr::getInstance().registerInsert

7:        ((void *) &m_val, W, DATA_TYPE);

8:    }

9:    IntReg(int_type v):sc_int_base(v, W){

10:    FIMgr::getInstance().registerInsert

11:       ((void *) &m_val, W, DATA_TYPE);

12:  }

13:    ......

14:  //Destructor

15:  ~IntReg(){

16:    FIMgr::getInstance().registerDelete

17:      ((void *) &m_val);

18:    }

19:  //Other original functions

20: };


Figure 3.6: SystemC definition of (a) Reg<primitive type> as a replacement of prim-
itive types, (b) IntReg<N> as replacement of SystemC sc int<N> type for enabling

fault injection

can accept any primitive type as a parameter of Reg<primitive type>, such as int, long

(line 3, Figure 3.6(a)). Similar to Reg<pritimitive type>, the overloaded constructors

of IntReg<N> inserts register location of the value-holder variable m val into the fault

locations database by calling the registerInsert(..) function with corresponding size of

data in bits and their types (lines 4-12, Figure 3.6(b)). During de-initialisation the de-

structor is called upon, which uses registerDelete(..) to remove the register location from

the fault locations database (lines 14-18, Figure 3.6(b)). The original functionality of

IntReg<N> is implemented in a transparent way by overloading their operator-related

functions (line 19, Figure 3.6(b)).

Register (fault location) information


Register location

(pointed address)


Register size

(in bits)


Register Type

(in C/SystemC desc.)


Fault injection-related information


Fault type


Fault position


Fault time


Number of faults


Figure 3.7: Organisation of each record within the fault locations database



Chapter 3 SystemC Fault Injection Simulator 33

Upon insertion of variable and signal register locations into the fault locations database,

they are organised with related information to facilitate the fault injection. Figure 3.7

shows how each record within the fault locations database is organised. The information

related to each register is organised in two major categories: information related to the

register (the possible fault location) and information related to fault injection. The

register information contains the location of the register, it’s size and the original type

of the register (Figure 3.7). For example, through the use of Reg<long> x; instead of

long x; in the SystemC design description, the fault injection technique employed in the

proposed simulator inserts into the fault locations database the address of x, the size as

64 bits and data type as ‘LONG’ (a pre-defined constant indicating the original type of

long). Each entry in the database also contains information to enable fault injection,

such as the fault type, the position of the fault, the fault injection time and the number

of faults injected (Figure 3.7). The organisation within the fault locations database

provides an effective and fast technique for search within the database to facilitate fault

injection and fault policy management, as explained in the following sections.

3.2.2 Fault Policy Manager

The fault policy manager (FPM) is the second module of the proposed fault simulator

(Figure 3.5). The FPM interacts with the fault injection manager (FIM) and provides

flexibility of simulating different fault scenarios. The different fault injection policies

are managed within the FPM using the following specifications from the fault injection

manager:

• Fault type: This specifies the type of fault model to be simulated. Currently, the

simulator supports simulation of stuck-at (permanent) faults, bit flips or SEUs,

indetermination and delay type (transient) faults, which are reckoned as the major

fault types used in fault injection campaigns (for introduction to different fault

types, see Section 2.3, Chapter 2). The actual fault injection mechanism for these

fault types are described in Section 3.2.3.

• Fault probability or rate: This defines the rate at which the fault injection takes

place. Fault rate within the FPM is specified by either fault probability (i.e. faults

per bit) or fault injection rate (i.e. faults per bit per clock cycle). For transient

faults, such as SEUs, this specifies the timing and location of fault. For stuck-at

faults, this rate defines the number of faults per bit (for introduction to different

fault injection rates, see Section 2.3, Chapter 2). Determination of fault rate for

different types of faults is detailed in Section 3.2.3

• Fault probability type: The FPM facilitates probabilistic fault simulation using

fault rate, which is often used in fault injection experiments [60, 61]. A proba-

bility distribution is also specified within the FPM module, which determines the
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location of faults within the fault locations database. Poisson’s distribution is gen-

erally used for determining fault location [62, 91] as the register space (collection

of possible fault locations) is formed of dynamically updated application registers.

Also, exponential distribution is generally used for determining the timing of fault

injection using single-event upset model [64].

• Fault Location: This specifies the desired fault location within the available reg-

isters. Such specification is useful for manual fault injection in a target register

within a DUT.

With the above specifications, the FPM module manages different fault injection scenar-

ios and interfaces with fault injection manager for fault injection. Figure 3.8 shows the

SystemC implementation of the FPM module, FIPolicy, with the main functions. The

FPM member functions setFaultType(..) (line 6), setFaultProbability(..) (line 7) and

setFaultProbabilityType(..) (line 8) take input from the top-level SystemC module or

testbench for the fault type (fault type), probability (prob), and its type (probType) for

the fault injection. The other member functions getSearchLength(..) (lines 10-13) and

getFaultLocation(..) (lines 15-22) return to the fault injection manager (FIM) module

the associated search length, search length, and fault location within the available bit

space in the fault locations database based on the fault probability (pB). The gener-

ation of random fault location is implemented using the following random probability

distribution functions: exponential, uniform, and Poisson’s. The different probability

distributions are implemented using GNU scientific library [120] (gsl rng, line 3, Fig-

ure 3.8).

Using the FPM module, the proposed fault simulator supports two fault injection modes:

manual fault injection and probabilistic fault injection. Manual fault injection requires

the user to specify fault injection within the design description of the DUT. To carry

out manual fault injection in a target signal and variable register (reg), the location of

the register, fault loc, is obtained first by

>> long fault_loc = FIMgr::getInstance().getLocation(DUT.reg.get_ptr());

Later, with the given location, fault loc, the fault location is specified through the FPM

within the fault simulator by

>> FIMgr::getInstance().getPolicy().setFaultLocation(fault_loc);.

Finally, the manual fault injection of the given type, FAULT TYPE, is carried out by

>> FIMgr::getInstance().inject_faults(FAULT_TYPE);.
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//FIPolicy.h

1:  class FIPolicy{

2:    const gsl_rng_type * T;

3:    gsl_rng * r;

4:    long search_length;

5:    …….

6:    void setFaultType(int _fault_type){fault_type = _fault_type;}

7:    void setFaultProbabilityType(int _probType){probType = _probType;}

8:    void setFaultProbability(double _prob){prob = _prob;}

9:

10:  long getSearchLength(){

11:    search_length = (prob > 0) ? (1/prob) : -1;

12:    return search_length;

13:  }

14:

15:  long getFaultLocation(){

16:    switch(probType){

17:      case UNIFORM:

18:        fault_loc = (long) (gsl_rng_uniform(r) * search_length); return fault_loc;

19:      case POISSON:

20:        fault_loc = (long) gsl_rng_poisson(r, (double)(search_length / 2));

21:        return fault_loc;

22:    }

23:  }

24:  …………….

25:  void setFaultLocation(long _fault_loc){fault_loc = _fault_loc;}

26:   ….

27:};


Figure 3.8: SystemC model of the fault policy manager, FIPolicy showing main
functions

Manual fault injection is useful to validate the system reliability with faults in the target

registers. However, for validation of reliability of large or complex systems, probabilistic

fault injection is a popular technique [61]. The probabilistic fault injection requires

specification of the fault type, fault rate and specified probability before the actual fault

injection takes place. An example illustration of how the FPM functionality (shown

in Figure 3.8) is used within the top-level SystemC module or testbench to initiate

probabilistic fault injection follows. For example, to specify the type of fault as single-

event upset in the current policy, the following SystemC statement is issued within the

top-level module or testbench

>> FIMgr::getInstance().getPolicy().setFaultType(SEU);.

Next, to inject faults at the rate of FAULT RATE with Poisson’s distribution within

the fault locations database, the following SystemC statements are used within the the

top-level module or testbench

>> FIMgr::getInstance().getPolicy().setFaultProbability(FAULT_RATE);

>> FIMgr::getInstance().getPolicy().setFaultProbabilityType(POISSON);
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With the above specifications, the probabilistic fault injection starts with the SystemC

simulation start command sc start(..) in the top-level module. The actual fault injection

is managed by the fault injection manager (FIM) module and is described next.

3.2.3 Fault Injection Manager

The fault injection manager (FIM) is the third and main module of the proposed fault

simulator (Figure 3.5). It interfaces with the FPM module and the fault locations

database to inject faults implementing a novel fault injection technique. The FIM mod-

ule interfaces with the FPM module for information related to the fault type, rate

and associated probability (Section 3.2.2). Also, it interfaces with the fault locations

database, which creates a centralised register space for fault injection (Section 3.2.1).

The fault location within the register space and the fault injection timing are determined

from the specified fault probability or rate, pB. The number of bits searched in each

clock cycle is equal to the total number of registers within the fault locations database.

Figure 3.9 shows a diagrammatic demonstration of how the register space and available

simulation time are sampled for the fault injection. As can be seen, in each clock period

Search space per

clock cycle, R bits


Search space per

clock cycle, R bits


Search space per

clock cycle, R bits


Search space per

clock cycle, R bits


CLOCK PERIOD


Search #n
 Search #(n+1)
 Search #(n+2)
 Search #(n+3)


Single Fault Search Length, 
 S
 Single Fault Search Length, 
 S
 Single Fault Search Length, 
 S


Figure 3.9: Fault injection mechanism using sampling between time and register space

a complete search within the register space, R (in bits), is performed (Figure 3.9). The

search continues iteratively until a single fault is injected within the specified search

length, S (in bits) (Figure 3.9). To incorporate the timing information in the fault in-

jection simulator, the FIM module requires access to the system clock. This is done by

connecting the the system clock with the FIM using the following SystemC statement:

>> FIMgr::getInstance().clk(top_level_clock);

Figure 3.10 shows SystemC description of the fault injection technique within the FIM

module, FIManager. The fault injection is implemented using the fault injection func-
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tion, inject faults, which employs the time sampled search within register space (Fig-

ure 3.9). As shown in Figure 3.10, using the member functions getFaultLength(..) and

#include “FIReg.h” #include “ FIPolicy.h”

1:  class FIManager: public sc_module{

2:    .....

3:    SC_CTOR(FIManager){

4:      .....

5:      SC_CTHREAD(inject_faults, clk.pos();

6:    }

7:    void inject_faults(){

8:      .....

9:      list<RegisterElement>::iterator listIterator;

10:    long loc_counter;

11:    while(true){

12:      wait();

13:      search_length = currentPolicy.getSearchLength();

14:      fault_loc = currentPolicy.getFaultLocation();

15:      loc_counter = 0;

16:      for(listIterator = register_space.begin(); listIterator != register_space.end();){

17:
 if(fault_loc >= listIterator.loc_counter && fault_loc <= listIterator.search_length)


*(TYPE*)(*listIterator).registers=*(TYPE*)(*listIterator).registers^(TYPE)fault;

18:        loc_counter+=(*listIterator).size_bits; listIterator++;

19:        if(loc_counter < search_length && lisIterator == register_space.end())

20:          {wait(); listIterator = register_space.begin();}

21:      }……..

22:    }

23:  }

24:  .....

25:  FIPolicy currentPolicy; list<RegisterElement> register_space;

26:};

27:typedef Singleton<FIManager> FIMgr;


FIM fault

injection


FIM

constructor


FIM Fault

locations

database,

register_space


Include database

and policy

manager class


Figure 3.10: SystemC model of the fault injection manager showing main functions

getFaultLocation(..) of the fault policy manager (FPM) module, the search length within

the register space, search length (of S bits) and fault location, fault loc, is found (lines 13-

14). For single fault injection or clearance, the fault locations database (register space)

is searched in each iteration (lines 16-21). The iteration continues until the location

counter, loc counter, reaches the search length, (search length) (line 19-20). To speed

up iterative searching process, the iteration in which the fault injection would not be

done are skipped with appropriate increase of the loc counter. Once the fault loc is found

in the current iteration, the fault is either injected or cleared depending on the type of

fault (line 17). During the fault injection the registers in the register space are converted

back to their original types within the FIM (line 17). Since the fault injection technique

implemented on a prototype simulator requires search through the register space on ev-

ery clock cycle, the member function of the FIM module inject fault is registered as a

SystemC process sensitive to the clock (line 5). To provide single instance of the FIM

across all other design components within the DUT, a singleton instance of the FIM

module, FIMgr, is generated (line 27, Figure 3.10). The top-level module, testbench

and the SystemC design description of the DUT uses this FIMgr as a global single in-

stance. Multiple instances can be incorporated by creating number of such singleton
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objects.

Table 3.2 shows how faults are injected for various fault types with relevant parameters.

For simplicity, symbol for each parameter is used: S meaning search length, r meaning

fault loc, τ meaning fault duration and r′ meaning approx fault loc. As can be seen from

Fault types Fault injection technique

Stuck-at-fault A bit at r in S is changed to ’1’ or ’0’ for stuck-at-1 or
stuck-at-0 faults for τ cycles (if temporary) or indefinitely
(if permanent)

Bit-flip/SEU A bit at r in S is XORed with ’1’ for one clock cycle
duration (i.e. τ = 1)

Delay Original SystemC wait() statements are replaced by
wait(N) statements, where N is registered in the fault
locations database. A bit close to r′ in S is bit flipped for
such types for specified delay of τ clock cycles

Indetermination A logic type value close to r′ in S is changed from ’0’/’1’
to ’X’ for τ cycles (if temporary) or indefinitely (if perma-
nent)

Table 3.2: Different fault types and injection techniques used in the fault injection
manager (FIM)

Table 3.2, FIM within the proposed fault simulator can flexibly implement different fault

types using register perturbation within the fault locations database. The transient

faults are injected by altering the original r-th or r′-th bit and cleared after a duration

of τ cycles using XOR operation with ’1’. For permanent stuck-at faults, the alterations

are not cleared throughout the simulation time.

Since the fault injector performs one search per clock cycle in the register space (Fig-

ure 3.9), the fault probability, pB (faults per bit) is interpreted as the injection of one

fault in search length of S =
⌈

1
pB

⌉

bits or two concurrent faults in every S =
⌈

2 × 1
pB

⌉

bits and so on. Hence, the injection of one fault requires the search to be carried out

over
⌈

1
pBR

⌉

clock cycles, where R is the average register usage or average size of the fault

locations database (in bits per clock cycle). Assuming the fault duration (for temporary

faults) of τ clock cycles only, the average time required for one transient fault injection,

Ttransient, is given by

Ttransient =

⌈

1

pBR

⌉

+ τ . (3.1)

The register usage of the device under test (DUT), R, is defined as

R =
1

TE

TE
∑

t=1

Rt , (3.2)
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where Rt is the size of the register space at t-th clock cycle (found by logging the different

sizes of register space over simulation time in the fault injection monitor, Section 3.2.4).

Employing the average fault injection time from (3.1), the total number of transient

faults injected, Γtransient, in total execution time of TE is given as

Γtransient =

⌈

TE

Ttransient

⌉

≈









TE
⌈

1
pBR

⌉

+ τ









. (3.3)

Dividing the total faults injected in (3.3) by the execution time (TE) and average register

usage (R), the transient error rate or fault injection rate per clock cycle per bit, λtransient,

is given as

λtransient =

⌈

1

R × Ttransient

⌉

≈









1

R ×
(⌈

1
pBR

⌉

+ τ
)









. (3.4)

Equation (3.4) gives the soft error rate (SER) that is often used as a unit for fault in-

jection experiments using soft error models [62, 121] (also used in Chapters 4, 5 and 6).

Depending on the duration of the transient fault, τ , λtransient in (3.4) can vary for differ-

ent fault types. For example, assuming a single-event upset (SEU) model for transient

fault (implying τ = 1), the soft error rate (SER) is given by

λSEU =

⌈

1

R × TSEU

⌉

≈









1

R ×
(⌈

1
pBR

⌉

+ 1
)









. (3.5)

Using (3.4) the transient fault probability, pB (fault per bit), can be defined in terms of

transient fault injection rate, λtransient (fault per bit per clock cycle), as

pB ≈
1

(

1
λtransient

− τR
) , (3.6)

assuming that 1
(pBR) >> 1 or (pBR) << 1. For permanent fault models, such as stuck-at

faults, the fault rate is expressed in terms of fault probability, pB . The total number of

permanent faults injected by the proposed fault injection simulator is given as

Γpermanent = pBR . (3.7)

Equation (3.3) and (3.7) give total faults injected for transient and permanent faults.

To demonstrate how many faults would be injected for a given fault injection rate using

the fault injection technique employed in the proposed fault injection simulator, two

examples follow.

Example 1: Given a system with average size of register space or register usage of
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R=10k bits and execution time of TE=1 × 106 clock cycles, the total number of

faults injected in the given system assuming single-event upset (SEU) model (i.e.

τ = 1 clock cycle) with fault probability of pB=1 × 10−8 (faults per bit) is found

by (3.3) as Γ=100 SEUs. Using (3.5) the equivalent SER of pB=1× 10−8 is given

as λ=1 × 10−10.

Example 2: Given a system with average size of register space or register usage of

R=10k bits and execution time of TE=1 × 106 clock cycles), the total number

of faults injected in the given system assuming stuck-at fault model with fault

probability of pB=1 × 10−4 (faults per bit) is found by (3.7) as 1 stuck-at fault.

3.2.4 Fault Injection Monitor

The fault injection monitor is the final component of the proposed fault simulator (Fig-

ure 3.5). It interfaces with the fault locations database and the FIM module to provide

with the following useful simulation specific outputs:

• Total simulation or execution time: Since the clock of the DUT is connected to the

FIM within the proposed fault simulator (Section 3.2.3), the fault injection monitor

can output the observation time for fault injection as simulation or execution time,

denoted by TE .

• Average register usage: The average register usage, R, gives a measure of average

number of registers that are subjected to fault injection per clock cycle. This is

the found through logging and averaging the length of the register space in the

fault locations database over the execution time, TE , and is given by (3.2).

• Number of total faults injected : For a given fault injection rate or probability

(pB), specified through the FPM module (Section 3.2.2), the total number of faults

injected, Γ, is recorded by the fault injection monitor. An approximate analytical

measure of the total number of transient faults injected for a given fault rate is

given by (3.3) and total number of permanent faults injected for a given fault

probability is given by (3.7).

Enabling the fault injection through the proposed types (Table 3.1) and managing the

fault injection and policies within the fault injection manager, a prototype fault sim-

ulator is developed. In the following, the effectiveness of the fault injection technique

implemented on the a prototype fault simulator is described and it is compared with the

existing SystemC-based fault injection techniques.
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3.3 Comparison of Fault Injection Techniques

The effectiveness and capabilities of the technique employed in the proposed fault in-

jection simulator is demonstrated through comparison against other techniques: sabo-

teur [60], mutant [118] and simulation command based approach [110]. Using SystemC

models of synchronous 8-bit counter and a D-type flip flop, three comparisons are carried

out in terms of the following: 1) simplicity and intrusiveness, 2) fault representation and

capabilities, and 3) simulation speed. The detailed comparisons follow.

3.3.1 Comparison 1: Simplicity and Intrusiveness

As described in Section 3.1, a highly intrusive re-design for enabling fault injection into

the DUT is not desirable. The technique in the proposed simulator can be applied

in the design description of a DUT with minimum intrusion (i.e. minimum design

modification). To demonstrate this, an original synchronous 8-bit counter design in

SystemC and the modified design using the technique employed in the proposed fault

simulator are presented in Figure 3.11. As can be seen, the technique employed in the

proposed simulator requires simple replacement of the original types bool and sc uint<8>

to their equivalent fault injection enabler types (Table 3.1) Reg<bool> and UIntReg<8>

(compare between lines 3-6, Figure 3.11(a), and lines 4-7, Figure 3.11(b)). The inclusion

of the SystemC header file FIReg.h (line 1, Figure 3.11(b)) enables the usage of the

fault injection enabler types in the 8-bit counter description. The new signal or variable

types allow automatic update of the fault locations database (Section 3.2.1) and fault

injection within the FIM (Section 3.2.3), keeping the rest of the design intact without

changing its functionality.

To compare the technique employed in the proposed fault injection simulator with other

techniques in terms of simplicity and intrusiveness, SystemC design of synchronous 8-bit

counter of saboteur [60], mutant [118] and simulation command based approach [110]

are shown in Figure 3.12. Each of these descriptions give similar fault injection ca-

pabilities as the fault injection technique implemented on a prototype fault injection

simulator. Comparing SystemC descriptions in Figure 3.11(a) with Figure 3.12(a)-(b),

it can be seen that saboteurs and mutants have the highest level of design intrusion. The

saboteur-based fault injection is implemented with the insertion of three serial simple

saboteurs: sab reset, sab enable and sab counter (Figure 3.12(a)). Using these sabo-

teurs the fault injection is controlled for reset, enable and counter signals. However,

these saboteurs cannot inject faults into variable register count, since it is not a signal

(Section 3.1.1). The mutant-based fault injection is implemented with the insertion of

the same saboteurs with intrusive design description to inject faults into the variable

register count (Figure 3.12(b)). For example, the behavioural faults are injected at local

register count by using the function, inject bfaults (lines 18-30, Figure 3.12(b)). Different



Chapter 3 SystemC Fault Injection Simulator 42

1:  #include “fim/FIReg.h”

2:  SC_MODULE (counter8bit) {

3:    sc_in_clk clock ;

4:    sc_in<Reg<bool> > reset ;

5:    sc_in<Reg<bool> > enable;

6:    sc_out<UIntReg<8> > counter_out;

7:    UIntReg<8> count;

8:

9:    void incr_count() {

10:    while(true){

11:      if (reset.read() == 1) {

12:        count = 0; counter_out.write(count);

13:      }

14:      else if (enable.read() == 1) {

15:        count = count + 1;

16:        counter_out.write(count);

17:      }

18:      wait();

19:    }

20:  }

21:

22:  SC_CTOR(counter8bit) {

23:    SC_THREAD(incr_count);

24:    sensitive << reset;

25:    sensitive << clock.pos();

26:  }

27:};


(a)
 (b)


1:  SC_MODULE (counter8bit) {

2:    sc_in_clk clock ;

3:    sc_in<bool> reset ;

4:    sc_in<bool > enable;

5:    sc_out<sc_uint<8> > counter_out;

6:    sc_uint<8> count;

7:

8:    void incr_count() {

9:      while(true){

10:       if (reset.read() == 1) {

11:        count = 0; counter_out.write(count);

12:      }

13:      else if (enable.read() == 1) {

14:        count = count + 1;

15:        counter_out.write(count);

16:      }

17:      wait();

18:    }

19:  }

20:

21:  SC_CTOR(counter8bit) {

22:    SC_THREAD(incr_count);

23:    sensitive << reset;

24:    sensitive << clock.pos();

25:  }

26:};


Figure 3.11: Example illustration of the fault injection technique employed in the
proposed fault injection simulator: (a) a synchronous SystemC 8-bit counter module,
and (b) a synchronous SystemC 8-bit counter module using the technique employed in

proposed fault injection simulator

fault types within the mutant-based counter are controlled externally from testbench by

using signal array of fault type (line 6, Figure3.12(b)). The counter design specification

using the simulation command-based approach [110, 118] replaces the original bool type

to sc logic type (lines 3-5) and sc uint type to sc lv<N> type (vector of sc logic, line

6, Figure 3.12(c)). These changes of the variable or signal types have implication on

the design specification, although the level of design intrusion is kept low. For example,

to keep the functionality of the original specification, additional programming effort is

required as shown in line 14 (Figure 3.12(c)).
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1:  #define MAX 4

2:  SC_MODULE (counter8bit) {

3:    //original ports and signals/variables

4:    Saboteur<bool> sab_reset, sab_enable;

5:    Saboteur<sc_uint<8> > sab_counter;

6:    sc_signal<sc_uint<2> > fault_type[MAX];

7:    sc_signal<bool> reset_out, enable_out;

8:    sc_signal<sc_uint<8> > counter_in;

9:    int fault_loc;

10:  sc_uint<8> count;

11:

12:  void incr_count () {

13:    .....

14:    count = inject_bfaults(count.to_int(), 8);

15:    count = count + 1;

16:    counter_out.write(count);

17:  }

18:  int inject_bfaults (int _var, int _size){

19:    int fault_at, fault;

20:    if(fault_type[MAX].read() == NO_FAULT){

21:      return _var;

22:    }

23:    else if(fault_type[MAX].read() == SEU){

24:      fault_at = srand() % _size;

25:      fault = (1 << fault_at);

26:      _var = _var ^ fault;

27:      return _var;

28:    }

29:    ......

30:  }

31:

32:  SC_CTOR(counter8bit): sab_reset("S_R"),

33:    sab_enable("S_E"),sab_counter("S_C"){

34:    sab_reset.sab_in(reset);

35:    sab_reset.sab_out(reset_out);

36:    sab_enable.sab_in(enable);

37:    sab_enable.sab_out(enable_out);

38:    sab_counter.sab_in(counter_out);

39:    sab_counter.sab_out(counter_in);

40:    sab_reset.fault_type(fault_type[0]);

41:    sab_enable.fault_type(fault_type[1]);

42:    sab_counter.fault_type(fault_type[2]);

43:    for(int i = 0; i < MAX; i++){

44:      fault_type[i].write(NO_FAULT);

45:    }

46:    .....

47:  }

48:};


(b)


(a)


1:  SC_MODULE (counter8bit) {

2:    //original ports and signals/variables

3:    Saboteur<bool> sab_reset, sab_enable;

4:    Saboteur<sc_uint<8> > sab_counter;

5:    sc_signal<bool> reset_out, enable_out;

6:    sc_signal<sc_uint<8> > counter_in;

7:    sc_uint<8>  count;

8:

9:    void incr_count(){...}

10:  SC_CTOR(counter8bit): sab_reset("Sab_R"),

11:  sab_enable("Sab_E"), sab_counter("Sab_C") {

12:    sab_reset.sab_in(reset);

13:    sab_reset.sab_out(reset_out);

14:    sab_enable.sab_in(enable);

15:    sab_enable.sab_out(enable_out);

16:    sab_counter.sab_in(counter_out);

17:    sab_counter.sab_out(counter_in);

18:    ....

19:  }

20:};


(c)


1:  SC_MODULE (counter8bit) {

2:    sc_in_clk clock ;

3:    sc_in<sc_logic> reset ;

4:    sc_in<sc_logic > enable;

5:    sc_out<sc_logic > counter_out;

6:    sc_lv<8> count;

7:

8:    void incr_count() {

9:      while(true){

10:      if (reset.read() == 1) {

11:        count = 0; counter_out.write(count);

12:      }

13:      else if (enable.read() == 1) {

14:        count = count.to_int() + 1;

15:        counter_out.write(count);

16:      }

17:      wait();

18:    }

19:  }

20:

21:  SC_CTOR(counter8bit) {

22:    SC_THREAD(incr_count);

23:    sensitive << reset;

24:    sensitive << clock.pos();

25:  }

26:};


Figure 3.12: Example of fault injection in synchronous 8-bit counter design using (a)
saboteurs, (b) mutant, and (c) simulation command based approach
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Apart from additional programming effort, the type changes shown in Figure 3.12(c)

have a number disadvantages compared to the proposed fault injection technique (Fig-

ure 3.11(b)). These are as follows.

1. Instead of only two (’0’ and ’1’) values for bool, each replaced type sc logic will

now have seven values, ′0′, ′1′, ′X ′, ′Z ′, ′A′ (stuck-at ’1’), ′B′ (stuck-at ’0’) and ′R′

(stuck-at reset), with default value of ′X ′. This default value (’X’) gives undefined

initial state of the signal or variable during initial cycles on the SystemC simula-

tion. To avoid undefined value in early simulation cycles in SystemC, sc start(..)

statement to start simulation needs to be changed to sc initialize(..). The following

simulation cycles are then controlled by sc cycle(..) statement. In the proposed

fault injection simulator, value space of the changed type Reg<bool> remains un-

changed, while fault injection is enabled by replacing the original types to fault

injection enabler types (Table 3.1) and the original simulation control statements

require no change, viz. the simulation can be initialised by default sc start(..)

SystemC statement.

2. Since the original type and the re-defined sc logic or sc lv<N> type is not directly

compatible with each other, the designer needs to make manual code modifica-

tions. The required modifications for achieving equivalence between the original

and the changed types inflate the design description. An example of such modifi-

cation is shown line 14 (Figure 3.12(c)). Often limiting original types to sc logic

or sc lv<N> type is not feasible for some types, for example integer array type

(int[..]), or floating point type (float) or it’s array type (float[..]) etc. The tech-

nique employed in the proposed simulator has transparent and equivalent imple-

mentations for all variable and signal register types, requiring no modification in

how they are used in different scopes within the design description of a DUT.

From the above examples, it is evident that the fault injection technique employed in

the proposed fault simulator is less intrusive compared to other reported fault injection

techniques: saboteur [60], mutant [110] or simulation command based approach [118].

The minimum intrusive modification of the design description makes the proposed fault

injection simulator simple but effective.

3.3.2 Comparison 2: Fault Representation and Capabilities

Faults injection using simulation command based approach is implemented mainly by

perturbation of registers [59]. In behavioural or higher-level description of systems, these

faults are propagated from variable or data registers to signal registers or vice versa, often

referred to as multiplicity [57]. As such a desirable feature of a fault injection technique

is to have access to all variable and signal registers of a model description for better
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fault access and representation. Saboteurs, as shown in Section 3.1.1, have no access

to variable manipulation and therefore, have poor fault representation for behavioural

systems, An example of this is shown in Figure 3.12(a), where the variable register

count is not accessible by any fault. Mutants require extra manual or behavioural

modelling to introduce variable manipulation (Figure 3.12(b)). Simulation command

based approach [110] restricts types to sc logic and sc lv<N> for fault injection. As

a result, it cannot be used to replace all variable register types (Section 3.3.1). The

technique employed in the proposed simulator can be applied to replace any primitive

or SystemC type to fault injection enabler types (Table 3.1) giving it full access to all

variable and signal registers within a DUT.

To compare the proposed fault simulation technique with the other techniques in terms

of different capabilities, the following features of a fault simulator are considered:

• Design abstraction: System-level modelling is carried out at different abstraction-

levels. Hence, a desirable feature of fault simulators is to be able to enable fault

injection for systems at various design abstractions [122]. However, some fault sim-

ulators restrict the abstraction level of the DUT design description to enable fault

simulations. For example, VHDL-based fault injection technique using automated

codes insertion proposed in [101] and SystemC-based fault injection technique us-

ing simulation command based approach proposed in [118] require that the original

description should be in register transfer-level (RTL). Similarly, emulation-based

fault injection technique proposed by [111] require that the original description

should be completely synthesizable. The proposed fault simulator works by re-

placing the original variable or signal types to fault injection enabler types and

does not impose any such restriction to the design abstraction.

• Fault types: The proposed fault injection simulator can simulate the major fault

types, including SEUs, stuck-up faults, indetermination and delay faults (described

in Section 3.2.3), which is considered as a desirable feature of a fault simulator [57].

• Fault injection mode: Another useful feature of a fault simulator is to be able to

carry out fault injection in different modes: manual or probabilistic fault simula-

tions [57]. Manual fault simulations are useful for fault injection to target registers

of a system to evaluate the reliability in the presence of different types of faults [59].

However, for validation of reliability in the presence of transient faults, particu-

larly due to SEUs, probabilistic fault simulation has been reported [60, 123]. The

proposed fault injection simulator can carry out both manual and probabilistic

fault simulations (Section 3.2.2). Similar fault injection capability using SystemC

is reported in [60]. The fault injection technique using simulation command based

approach [110] employs manual fault injection.
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3.3.3 Comparison 3: Simulation Time

Simulation time is often used as a benchmark for simulator performance [57]. To compare

the simulation time of the proposed fault simulator with other techniques, a D-type flip-

flop and a synchronous 8-bit counter are designed. These designs are then simulated

along with their testbenches using saboteur [60], mutant [118], simulation command

based approach [110] and the technique employed in the proposed fault simulator for

fault injection. The following cases were simulated:

Case-1: D-type flip flop for 5 SEUs in 1000 clock cycles,

Case-2: Synchronous 8-bit counter for 5 SEUs in 1000 clock cycles,

Case-3: D-type flip flop for 5 stuck-at-0 faults in 1000 clock cycles, and

Case-4: Synchronous 8-bit counter for 5 stuck-at-0 faults in 1000 clock cycles.
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Figure 3.13: Comparison of simulation speed for fault simulation techniques

The simulation times for different cases are recorded as average elapsed time in ModelSim

6.2g on a Intel(R) Core(TM)2 CPU T7200 at 2GHz PC and are shown in Figure 3.13.

As can be seen, the technique employed in the proposed simulator gives less simulation

times than saboteur [60] and mutant-based fault injection techniques by on average

12.76% and 25.42%, respectively for the four test cases. The higher simulation time for

saboteur and mutant-based fault injection is due to insertion of additional signal drivers

and inflated design description (Figure 3.12(a) and (b)). The technique employed in

the proposed simulator and simulation command based approach [110] have comparable

simulation times with only 1.75% higher simulation time on average for the technique

implemented on a prototype fault simulator. The higher simulation time in the fault
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injection simulator is due to the fact that it employs iterative fault location search within

the fault locations database (Figure 3.10).

3.3.4 Summary of Comparisons

The proposed fault injection simulator employs minimum intrusive design modification

compared to saboteur [60], mutant [118] or simulation command based approach [110]

(Section 3.3.1). Minimum design modification is achieved through replacement of the

original variable and signal types to the fault injection enabler types in the design de-

scription of the DUT (Table 3.1). Using such replacements all variable or signal types in

the DUT can be subjected to fault injection. As such the proposed fault injection simu-

lator can achieve high fault representation and simulate different fault injection scenarios

with various types (Section 3.3.2). High fault representation in the fault simulator is also

achieved with low simulation time (by 12.76% and 25.42%) compared to saboteur [60]

and mutant-based [118] approach. Also, compared to the recently reported SystemC

simulation command based approach [110], the proposed fault injection simulator has

comparable simulation speed (with 1.75% higher simulation time, Section 3.3.3).

3.4 MPEG-2 Decoder Case Study

In this section, an MPEG-2 decoder setup is presented as a case study to validate the

effectiveness of the fault injection simulator (Section 3.2). Single-event upset (SEU)

is used as fault model for validation as it is by far the most popular transient fault

model used in the literature [62, 121]. The SEU injection is carried out using a Poisson

distribution for fault locations within the register space (formed by the fault locations

database, Section 3.2.1). Due to sc logic only type restrictions, such validation is not

feasible using the fault injection technique proposed in [110] (Section 3.1.4).

For validation, a behavioural SystemC model for MPEG-2 video decoder is developed

based on the specification described in [124]. Figure 3.14 shows the block diagram of the

MPEG-2 video decoder setup with the functional blocks (refer to Appendix A for fur-

ther details to MPEG-2 video decoder). Fault injection in the decoder setup is enabled

through replacement of the original variable and signal data types by the fault injection

enabler types. Such type replacements create a fault locations database, where faults

can be injected (Section 3.2). To incorporate timing information for fault injection in

the register space, the clock of the decoder is connected to the fault injection simulator

(Figure 3.14). The information related to fault injection rate is fed through the fault pol-

icy manager (FPM). With timing and fault policy information, the proposed simulator

injects SEUs in the register space through the fault injection manager (Section 3.2.3).

To demonstrate how the proposed fault injection simulator enables fault injection in
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SystemC fault injection simulator
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Figure 3.14: MPEG-2 video decoder setup for fault injection

the decoder, Figure 3.15 shows an example description of the inverse discrete cosine

transformation (IDCT) functions used in the decoder (Figure 3.14). The modifications

used to enable fault injection employing the proposed fault injection simulator are em-

boldened. As can be seen, the description includes FIReg.h SystemC header file, which

enables the usage of different fault injection enabler types within the description (line

2). For example, the fault injection type Reg<short> in place of the original variable

type short (lines 9, 11-12, 14-15) includes the variable registers block, iclip, iclp and blk

in the fault locations database. Similarly, the fault injection type Reg<int> in place

of the original variable type int takes control of other registers for fault injection (lines

18, 38, 63 and 71). The fault injection enabler types are transparently implemented

with the functionality of the original types such that the different mathematical or log-

ical operations within the functions (such as IDCT by row, IDCT by column) can be

carried out without any further modification of the design description (Section 3.15).

Using such variable replacements throughout the MPEG-2 decoder description keeps

the design modifications at minimum level. Since all the variables in the functions are

replaced, fault injection can be carried out with high fault representation in different

registers (Section 3.3.2).

For fault injection setup in the MPEG-2 video decoder, a video sequence of 3 frames with

frame size of (176 × 144) pixels is decoded (Figure 3.14). Table 3.3 shows the different

inputs to the fault policy manager and outputs from the fault injection monitor of the

simulator (Figure 3.5). As can be seen, a fault rate of pB=1 × 10−8 is used in the fault

policy manager (FPM) module. The fault rate is chosen arbitrarily for probabilistic fault
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1: #include "config.h"

2: #include 
 "fim/FI
Reg
.h"

3: #define W1 2841 /* 2048*sqrt(2)*cos(1*pi/16) */

4: #define W2 2676 /* 2048*sqrt(2)*cos(2*pi/16) */

5: ......other constants

6:

7: /* global declarations */

8: void Initialize_Fast_IDCT _ANSI_ARGS_((void));

9: void Fast_IDCT _ANSI_ARGS_((
 Reg
<short> *block));

10:/* private data */

11:static 
 Reg
<short> iclip[1024]; /* clipping table */

12:static 
 Reg
<short> *iclp;

13:/* private prototypes */

14:static void idctrow _ANSI_ARGS_((
 Reg
<short> *blk));

15:static void idctcol _ANSI_ARGS_((
 Reg
<short> *blk));

16:

17:static void idctrow(
 Reg
<short> *blk){

18:  
Reg
<int> x0, x1, x2, x3, x4, x5, x6, x7, x8;

19:  if (!((x1=blk[4]<<11)|(x2=blk[6])|(x3=blk[2])|(x4=blk[1])

20:    |(x5=blk[7])|(x6=blk[5])|(x7=blk[3]))){

21:    blk[0]=blk[1]=blk[2]=blk[3]=.....=blk[7]=blk[0]<<3;

22:    return;

23:  }

24:  x0 = (blk[0]<<11) + 128; /* for rounding in 4th stage */

25:  /* first stage */ wait();

26:  x8 = W7*(x4+x5);   x4 = x8 + (W1-W7)*x4;

27:  x5 = x8 - (W1+W7)*x5;   x8 = W3*(x6+x7);

28:  x6 = x8 - (W3-W5)*x6;   x7 = x8 - (W3+W5)*x7;

29:  /* second stage */ wait();

30:  ......

31:  /* third stage */ wait();

32:  ......

33:  /* fourth stage */ wait();

34:  ......

35:}

36:

37:static void idctcol(
 Reg
<short> *blk){

38:  
Reg
<int> x0, x1, x2, x3, x4, x5, x6, x7, x8;

39:  if (!((x1=(blk[8*4]<<8))|(x2=blk[8*6])|(x3=blk[8*2])

40:     |(x4=blk[8*1])|(x5=blk[8*7])|(x6=blk[8*5])|(x7=blk[8*3])))

41:  {

42:    blk[8*0]=blk[8*1]=blk[8*2]=blk[8*3]=....=

43:      iclp[(blk[8*0]+32)>>6];

44:    return;

45:  }

46:  x0 = (blk[8*0]<<8) + 8192;

47:  /* first stage */ wait();

48:  x8 = W7*(x4+x5) + 4;   x4 = (x8+(W1-W7)*x4)>>3;

49:  x5 = (x8-(W1+W7)*x5)>>3;   x8 = W3*(x6+x7) + 4;

50:  x6 = (x8-(W3-W5)*x6)>>3;   x7 = (x8-(W3+W5)*x7)>>3;

51:  /* second stage */ wait();

52:  ......

53:  /* third stage */ wait();

54:  ......

55:  /* fourth stage */ wait();

56:  ......

57:}

58:

59:/* 2-D inverse discrete cosine transform */

60:void Fast_IDCT(
 Reg
<short> *block){

61:  
Reg
<int> i;

62:  for (i=0; i<8; i++)

63:    idctrow(block+8*i); wait();

64:  for (i=0; i<8; i++)

65:    idctcol(block+i); wait();

66:}

67:

68:void Initialize_Fast_IDCT(){

69:  
Reg
<int> i;

70:  iclp = iclip+512;

71:  for (i= -512; i<512; i++){

72:    iclp[i]=(i<-256)?-256:((i>255)?255:i); wait();}

73:}
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Figure 3.15: Example description of inverse discrete cosine transformation (IDCT)
functions in the MPEG-2 decoder highlighting the modifications for enabling fault

injection in the proposed fault injection simulator
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Fault Policy
Manager

Fault type Single-event upset (SEU)

Fault probability or rate pB=1 × 10−8

Fault probability type Poisson’s

Fault Injection
Monitor

Execution time, TE (cycles) 419287

Register usage, R (bits/cycle) 49324

Total faults injected, Γ 211

Table 3.3: MPEG-2 video decoder setup with input in the fault policy manager and
output from the fault injection monitor
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Figure 3.16: (a) Total number of faults injected for varying fault probabilities, and (b)
simulation times (in ms) for varying fault probabilities of the MPEG-2 video decoder

fault injection setup
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injection with Poisson’s distribution for determining location of SEUs within the register

space (Table 3.3). Due to automatic insertion and update, the size of register space

varies (Section 3.2.1). The fault injection monitor returns the average register usage

of R=49kbits per cycle over the execution time of TE=419287 clock cycles (Table 3.3).

The decoder experiences Γ=211 SEUs over this time as recorded by the fault injection

monitor (can also be analytically found through (3.3)). The proposed fault injection

simulator can represent faults in different register types, including the variables and

signals. However, an approximate total of 768 bits of the constants within pre-processor

directives can not be replaced by any equivalent types using the proposed fault simulator.

Assuming the total register usage is made up of these constants and the register usage

(49kbits per cycle) returned by the fault injection monitor, about 98.5% registers are

represented within the MPEG-2 video decoder setup for fault injection. Such high fault

representation is possible due to replacement of the original types to the fault injection

enabler types and their transparent implementation (Section 3.2.1).

Figure 3.16(a) shows the total number of SEUs injected recorded by the fault injection

monitor for varying fault probabilities (pB) from 10−10 to 10−4. It can be seen that

the total number of SEUs injected varies almost linearly with fault probability, pB . For

example, a total of 259 SEUs were injected at pB=1.25×10−8 and 560 SEUs were injected

at pB=2.5 × 10−8. The approximate number of SEUs injected can be found by (3.3).

Figure 3.16(b) shows the corresponding simulation times as CPU elapsed time. The

simulation times are recorded on an Intel Pentium-4 CPU clocked at 3.20GHz system

running SystemC on RHEL 2.6.9-42. As can be seen, the simulation times (in ms)

increase with higher pB due to increased number of SEUs injected (Figure 3.16(a)). The

simulation times increase almost linearly from 990 ms to 50560 ms as pB increases from

10−10 to 4 × 10−7. However, with further increase in pB, the simulation times do not

increase proportionately. This is because at higher SERs, faults injection takes place on

almost every clock cycle, requiring iterative search on every cycle. To compare the faulty

cases with fault-free case, further simulation is carried out without injecting any faults

in the decoder. The decoder for fault free case takes only 750 ms time for decoding the

same test video in 419287 clock cycles recorded from simulation compared to 990 ms

for a fault probability, pB, of 10−10. The increase in the simulation time from fault-free

case to faulty case is expected as fault injection requires iterative search for the fault

location within the fault injection manager.

3.5 Concluding Remarks

This chapter has presented a SystemC fault injection simulator implementing a novel

fault injection technique based on simulation command based approach. The fault in-

jection in the simulator is initiated by replacement of the original variable and signal
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register types with the proposed fault injection enabler types in the system description

of the the device under test (DUT) (Section 3.2). In doing so, the design modifications

are kept simple and less intrusive without change of functionality. Due to such replace-

ment of various signal and variable register types, the proposed fault injection simulator

benefits from high fault representation. Also, the proposed fault simulator has less

simulation time than saboteur- and mutant-based approaches due to minimum design

intrusion and simplicity. The simulation time of the proposed simulator is comparable to

the recently reported simulation command based approach [110, 118] (Section 3.3). To

demonstrate the fault injection capabilities of the fault injection simulator, an MPEG-2

video decoder setup has also been presented. It has been shown that high fault represen-

tation in variable and signal registers can be achieved using the proposed fault injection

simulator (Section 3.4). This fault injection simulator is also used throughout the thesis

(Chapters 4, 5 and 6) to validate the system reliability in the presence of soft errors.



Chapter 4

On-Chip Communication

Architecture Comparative

Analysis

A key requirement in SoC design is to find a suitable on-chip communication architec-

ture, since the chosen architecture influences the system performance [66]. A number

of on-chip communication architectures have been proposed over the years. Advanced

microprocessor bus architecture (AMBA) is an industrial standard, scalable on-chip

communication architecture (for brief introduction to AMBA, see Section 2.1.1, Chap-

ter 2). Due to the demands of scalability and short time-to-market, designs of MPSoCs

are being expedited towards more modular and structured on-chip communication ar-

chitectures. Network-on-Chip (NoC) evolves as an emerging on-chip communication

architecture with high modularity and scalability [77] (for brief introduction to NoC, see

Section 2.1.2, Chapter 2). To date there has been good progress in developing flexible

NoC architectures with efficient communication techniques, such as ÆTHEREAL [82],

NOSTRUM [83, 84] and Intel 80-core [125].

Several studies have highlighted comparison between NoC and shared-bus AMBA, such

as [17, 20, 22]. Such comparisons have been carried out using synthetic application

traffic. To understand the benefits and shortcomings of these architectures in terms of

performance, further investigation is needed using real application traffic. Also, with re-

liability as a design challenge for today’s MPSoCs, such investigation should consider the

impact of choice of on-chip communication architecture on reliability (for introduction

to reliability, see Section 2.3, Chapter 2). This chapter provides comparison between

NoC and shared-bus AMBA through analytical and simulation approach using MPEG-2

video decoder as a case study. Using cycle-accurate realistic simulations, different met-

rics are defined and evaluated to find out how these on-chip communication architectures

compare in terms of performance and reliability.

53
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The rest of the chapter is organised as follows. Section 4.1 gives a review of related

works carried out to compare NoC with other architectures using different techniques. In

Section 4.2, MPEG-2 video decoder designs with AMBA- and NoC-based on-chip archi-

tecture are presented. Different metrics are defined and evaluated towards MPEG-based

comparison between NoC and AMBA in Section 4.3. Using these metrics, Section 4.4

compares the MPEG-based performance and Section 4.5 compares reliability between

NoC and AMBA. Finally, Section 4.6 concludes the chapter.

4.1 Related Works

The concept of NoC derives from wired networks and was introduced in [126] showing

a networked message passing architecture for multiprocessing. Further details of NoC

concepts and its advantages were presented in [79] arguing that traditional shared-bus

would not meet the performance requirements of future MPSoCs. It argued that NoCs

would outperform shared-bus systems with better throughput and lower latency. Sim-

ilar arguments for employing NoC in place of shared-bus SoC architecture has been

presented in [38, 80] showing that NoC can provide well-structured on-chip communica-

tion, simplify the layout and provide with high scalability for system integration. It is

demonstrated that since communication channels in NoC are multiplexed across various

connecting nodes, the bandwidth, utilisation and performance are enhanced for multi-

processing. However, laying out more wires for multiplexing communication channels

in NoC has been shown to cause area overhead. For example, in [33, 38] it has been

shown mesh-based NoC implementation gives 6.6% area overhead compared to tradi-

tional shared-bus on-chip communication architectures. A number of other studies have

also been reported showing various intuitive comparisons and design challenges using

NoC. For example, in [34, 80] it is shown that future MPSoC designs would be driven by

considerations like scalability, energy-efficiency, and design productivity of the on-chip

communication architecture. The papers also highlighted specific problems that need

to be addressed for NoC-based on-chip communication architectures, including reliabil-

ity, task mapping and architecture allocation (allocation of number of processing cores

and their types). Different aspects and challenges of NoC communication protocols and

layering have also been extensively investigated and compared with traditional design

methodologies in [81].

To date good progress has been made in the research and development of efficient NoC

architectures and on-chip communication techniques. For example, ÆTHEREAL NoC

architecture has been proposed by [82] with guaranteed communication services and

NOSTRUM NoC architecture with layered communication approach has been proposed

by [83, 84]. Recently, mesh-based NoC architecture, Intel 80-core has also been pre-

sented with clock frequency higher than 4GHz [125]. Efficient routing and communi-
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cation techniques for NoC have been proposed by [43, 45] and adaptive NoC design

and implementations are presented in [127]. A detailed survey highlighting the progress

of NoC research and development has been presented in [19]. It also identifies general

trends in design and development of NoC architecture and communication techniques.

Furthermore, a set of case studies with industrial and academic prototyping and imple-

mentation, such as xPIPES [87], MANGO [86], have also been presented in this paper.

Apart from the intuitive analysis, design and developments of AMBA and NoC discussed

above, a number of comparative studies based on analytical and simulation have recently

been reported. A performance analyses between AMBA and NoC using single core on-

chip communication has been presented in [128] using MPEG-4 application traffic. The

paper identifies that existing on-chip SoC buses have limitation on data traffic band-

width since a large number of silicon intellectual properties (IPs) share the bus. Using

experimental setup for AMBA and NoC, it shows that the performance of the MPEG-4

video codec based on NoC is improved over 50% compared to shared AMBA. In another

study, quantitative cost analyses and comparison of area, power, frequency, throughput,

latency and energy of NoC and bus-based architectures are presented in [20, 22]. The

analyses and comparisons in [22] include different bus architectures and NoC, showing

different cost functions related to performance issues. An industrial comparative study

highlighting the comparisons between NoC and AMBA has been presented in [20]. It

was shown that NoCs have higher maximum frequency and higher throughput than

shared-bus (above 750MHz compared to 250MHz for shared-bus and 100GBps com-

pared to 5GBps for bus) due to capacitive loading in shared-bus. A review of guiding

principles towards the evolution of NoC as an emerging SoC communication architec-

ture is presented in [17]. The paper shows that NoC has higher interconnect utilisation

and concurrency due to shared channels among communicating nodes compared to a

shared-bus architecture. A comparative evaluation between point-to-point (P2P) and

NoC with MPEG-2 video encoder has been carried out in [33] considering area, power,

data parallelism, MPEG frame rate and scalability. The comparison in [33] showed that

NoC has higher scalability but comparable performance as point-to-point (P2P) systems

(for details of different on-chip communication architectures, see Section 2.1, Chapter 2).

Reliability in the presence of soft errors is an emerging design challenge for MPSoCs, par-

ticularly due to exacerbation of single-event upsets (SEUs) with technology scaling [123].

A number of studies have shown different fault tolerant on-chip communication architec-

tures and techniques for MPSoCs. For example, in [129] an investigation into reliability

of different NoC architectures has been reported. Based on the investigation, effec-

tive fault tolerance techniques have been proposed for different NoC configurations to

mitigate the impact of soft errors. Another reliability analysis of on-chip communica-

tion architectures from performance, reliability and energy perspective has been carried

out in [130]. Using such analysis an array of different fault tolerance techniques have

been introduced at architectural- and algorithmic-level to tackle the reliability issues of
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communication components. In [15] a fault tolerant design of interconnects in on-chip

communication architectures has been considered explaining conflicting design trade-offs

between reliability and performance. The impact of power minimization on reliability has

been examined in [100] showing effective power-aware fault tolerance design techniques

for on-chip communication architectures. Several other techniques, such as stochastic

communication [131] and routing [132], have also been proposed to incorporate fault

tolerance in on-chip communication architectures.

Most of the performance comparisons reported between NoC and shared-bus AMBA,

such as [17, 20, 22], use synthetic traffic patterns. Other comparative studies, such

as [128, 133], do not show architectural implications on application performance. Al-

though good progress has been made in the development of reliable architectures and

techniques, currently there is a lack of analysis of how on-chip communication archi-

tecture affects the reliability of MPSoCs in the presence of soft errors. For the NoC

methodology to gain further maturity, such insightful analysis of reliability need to be

performed highlighting comparison between dominant shared-bus AMBA and NoC using

real application traffic.

4.2 Design Space

In this section, design of NoC and shared-bus AMBA architectures with MPEG-2 video

decoder cores used in this work is explained briefly.

4.2.1 MPEG-2 Video Decoder Cores

MPEG-2 video decoder constitutes a major component of the current and future multi-

media systems. In this work, MPEG-2 video decoder has been used as a case study for

real application traffic (refer to Appendix A for further details regarding MPEG-2 video

decoder). Figure 4.1 shows the block diagram of MPEG-2 video decoder MPSoC with

four processing cores used in this work (also used in Chapter 5). The application parti-

tioning and task mapping are carried out arbitrarily. The variable length decoder (VLD)

core reads the original video bitstream from local memory, buffers and organises them in

32-bit payload data transaction units (DTUs: 32-bit payload packets for NoC or 32-bit

data per transaction in AMBA). The core VLD also checks for headers and semantics

to decode the bitstream into two organised video structures: header sequence and video

sequence. The header sequence with the quantisation matrices and coded macroblocks

(MBs) are sent to inverse scanner and quantizer (ISQ) core. The other header and video

sequence specific information are sent to the motion compensator (MC) core. The ISQ

core transforms the quantisation matrices and pixel blocks into two dimensional struc-

ture (i.e. 64 = 8 × 8). Later this is inverse quantised in the core ISQ to form discrete
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Figure 4.1: Block diagram of MPEG-2 video decoder

cosine transform (DCT) coefficients. The inverse discrete cosine transformer (IDCT)

core transforms the two dimensional blocks into actual time domain picture-ready for-

mat in a lossy manner using the DCT coefficients. The picture-ready blocks are then

sent to motion compensator (MC) core, which reads the header sequence with different

semantics from core VLD and forms predictions with the decoded picture-ready video

blocks from core IDCT. The decoded and motion compensated video frames are then

stored in memory.

Figure 4.2 shows a simplified block diagram of a processing core used in MPEG-2 video

decoder (Figure 4.1). Each processing core has a dedicated local memory of 256 kbytes,

chosen to give high availability of data in the processing cores. The memory is directly

connected to the input port by memory access controller. Incoming DTUs are interfaced

through input channel, which is directly connected with the memory access controller.

Outgoing DTUs are communicated through the output channel, which is directly con-

nected with the processor. Optional control signals, such as busy and request signals are

also connected for compatibility with different communication architectures. The signal

request indicates the intention of the connecting module to transmit data or transmis-

sion request, while the signal busy communicates that the status (BUSY or NOTBUSY)

of the processing cores to the connecting modules.

4.2.2 Shared-bus AMBA Design

The AMBA protocol is an open standard, on-chip bus specification that details a strategy

for the interconnection and management of functional blocks within a system-on-chip

(SoC) [18, 27] (see Section 2.1.1, Chapter 1 for further details). AMBA uses a set of

signals connected with all other communicating modules, called the bus as the main

interconnection unit among the masters and slaves. In this work, AMBA AHB has

been used as the shared-bus architecture due to its high performance and high clock-

frequency [18]. AMBA-AHB can be used to form topologies with different bus layouts
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Figure 4.2: Simplified block diagram of a processing core used in the MPEG-2 video
decoder (Figure 4.1)

with multiple layers and segments. In this work single-layer shared-AHB is used, which

is one of the most commonly used shared-bus architecture to date [28].
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Figure 4.3: Block diagram of shared-bus AMBA with MPEG cores used for compar-
ison

A block diagram of shared-bus AMBA employing MPEG-2 decoder cores used in this

work is shown in Figure 4.3. The MPEG-2 video decoder cores (Figure 4.1) are config-

ured for AMBA by using each input port as slave port and each output port as master

port. Single burst sequential transfers without waiting states and 32-bit payload of each

DTU are used. Bus accesses are shared and switched among the cores in the sequence of

cores VLD, ISQ and IDCT until their executions are completed. Further details related

to simulation setup for shared-bus AMBA is discussed in Section 4.3.1.
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Figure 4.4: Packet structure used in mesh-based NoC architecture used for compari-
son

4.2.3 Network-on-Chip Design

A number of general purpose and application-specific NoC architectures have been pro-

posed over the years [134, 135]. Even though application-specific NoCs outperform

general purpose NoCs, the designs of such NoCs vary depending on the application,

partitioning among multiple cores and resource allocations [136, 137]. The aim of this

work is to compare the performance without restricting the architecture to the appli-

cation itself. Hence, a general purpose architecture for NoCs is preferred. Due to its

simplicity and scalability [37], mesh-based topology with XY routing is considered. Such

routing provides shortest path deterministic routing between two given nodes. The floor

mapping of cores has been done with shortest path between communicating cores to

give minimum latency [138]. Also, single-flit (flow control unit) packet-based wormhole

routing is used, which is also used in [139] (for brief introduction to communication

techniques in NoC, see Section 2.1.2, Chapter 2).

NoC employs packet-based communication, where each packet is formed of two different

parts: packet header and body. The packet header contains packet size and identifiers,

while the body of the packet contains the actual data or payload. Figure 4.4 shows a

simplified packet structure used in this work. As shown, the packets are identified by

packet identification numbers (8-bits). In this NoC implementation, a circular number-

ing for NoC packets is used (i.e. after the highest number 28 is reached, the number 0

follows). For mesh-based NoC implementation, source and destination tiles are identified

by 3-bits each. Other communication specific header information, such as routing type,

trace, virtual channel (VC) identification and control information are also included in

packet header. The size of each NoC packet used in this work is 68 bits (Figure 4.4).

The basic topological element of the NoC structure is the tile, which has three major

parts: processing element (PE), network interface (NI) and switch. The MPEG-2 de-

coder cores are plugged into the PE and responsible for computation. The switches

carry out the communication tasks, while the network interfaces (NIs) carry out the

necessary decoupling between communication and computation providing packet-based

communication between switches.

Every switch in an NoC has five input and five output ports and credit information to
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and from each port. The switch architecture compatible for store-and-forward (SaF) or

wormhole routing, which is used in this work, is shown in Figure 4.5. Each transaction is

initiated with a pair of handshake signals: busy and request signals. Credit signals convey

the current status of the virtual channel (VC) buffers and enable the wormhole routing

technique. Each input channel also has buffers to store the packets as they arrive. The

input channels in the NoC implementation used in this work are designed with buffer

for eight packets (chosen to give high availability and bandwidth). Due to handshaking

busy and request signals, channels give no congestion for pipelined transactions. Once a

transaction is agreed, data arrives at the input channel of one of the ports of the switch.

The VC allocator allocates the virtual channel for an incoming packet for wormhole

routing, but for SaF packet routing technique, the allocation is simply limited to one

virtual channel. Packets from different directions arrive at a switch controller and are

served in a round-robin fashion so that packets from different ports have fair waiting

times. The router decides for the outgoing port for a packet depending on the routing

algorithm suggested in the packet header. In this work, XY routing is used for packets

(Section 4.2.3).
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Figure 4.5: Switch structure for mesh-topology NoC used for comparison

The NI is an important element of NoC since it enables packet-based on-chip com-

munication between switches. This is done by adding packet-specific information for
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data communication from processing core to switch (called packetisation) and removing

them for data communication from switch to processing core (called de-packetisation).

A block diagram of NI module for the NoC architecture used in this work is shown in

Figure 4.6. The first-in first-out (FIFO) controllers contain the FIFO memory and con-
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Figure 4.6: Block diagram of network interface of NoC used for comparison

trols the incoming data or packet from the core or switch using busy and request signals.

Data from the core arrive at the FIFO memory and are packetised by the packetiser

unit in the NI and later stored in the output FIFO memory as packet ready to be sent

to the connecting switch. In similar way, incoming packets from switch are stored in the

FIFO memory (Figure 4.6) and later de-packetised and stored in the output data FIFO

memory to send data to the core. Credit synchroniser conveys the credit information

between core and switch with programmed delays, such that the credit in and credit out

signals are synchronised with data at the core or packet at the switch, respectively.

Figure 4.7 shows a block diagram of mesh-based (2×2) NoC used in this work employ-

ing XY routing and shortest path mapping among the communicating MPEG-2 cores

(Figure 4.1). Since dedicated interconnects are laid out between processing cores, the

communication in NoC is non-blocking. i.e. as long as the handshaking signals (busy

and request) allow the transactions are carried out between components without block-

ing states. As can be seen, the NI acts as the interface between switch and processing
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Figure 4.7: Block diagram of mesh-based (2 × 2) NoC with MPEG-2 video decoder
cores (Figure 4.1) used for comparison

cores to enable packet based communication between switches and the switches carry

out packet-based inter-core communication. The processing cores can performs neces-

sary decoder tasks with data from the local memory and can initiate data transfer to

next processing core (Figure 4.7).

4.3 Simulation Setup and Comparisons

In this section, simulation setup for NoC and shared-bus AMBA are explained. Later,

comparative analyses of NoC and AMBA are presented using different metrics. The

metrics are then used for comparison of application-specific performance and reliability

in Section 4.4 and 4.5, respectively.

4.3.1 Simulation Environment and Test Cases

To compare the MPEG-based performance between NoC and AMBA, two separate Sys-

temC simulators were used. To facilitate NoC related simulations, NIRGAM (NoC In-

terconnect Routing and Application Modelling) has been used. NIRGAM is a SystemC-

based discrete-event, cycle-accurate simulator developed at the University of Southamp-

ton and provides with substantial support to experiment with NoC design in terms of
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routing algorithms and applications with various topologies. NIRGAM uses behavioural

modelling throughout with plug-in support for processing cores. Using separate monitor

modules, it can accurately profile NoC computation and communication performance.

More details on the simulator can be found in Section B.1, Appendix B. For AMBA,

another simulator was used using Synopsys Designware SystemC libraries [67] in Cocen-

tric System Studio environment (see Section B.4, Appendix B for further details). To

make the simulations unbiased between the simulators, key details of the simulations

setup are explained next.

1. Core Configuration: The processing cores are developed using SystemC be-

havioural modelling. Cores were plugged between the architectures without change

in the application code. In NoC, NI does the necessary translations for packet-

based communication (Figure 4.7), while in shared-bus AMBA, the input and

output channel from the PE shown in Figure 4.2 were connected to slave input

and master output port, respectively (Figure 4.3). The optional communication

signals were not used in shared-bus AMBA implementation.

2. Traffic Generation: The processing and output traffic generation of the cores

were performed core-by-core and channel-by-channel basis. Thus, the traffic gen-

eration is deterministic for a given video bitstream and application mapping [17].

No extra wait states were used in both NoC and AMBA implementations. The

data injection rate is one DTU (i.e. one packet for NoC, 32-bit data for AMBA)

per clock cycle. Pipelined transactions are used between the architectures.

3. Simulation Monitoring: To monitor and record the performance metrics, sep-

arate monitor modules were implemented on each core adding simulation-specific

information to packets that are being used in inter-core communications. For

AMBA, a separate monitor module was connected as a master to investigate the

performance metrics on shared-bus.

4. Interconnect Sharing: The interconnect sharing in shared-bus AMBA is man-

aged by designing arbiter in such a way that the master priorities are same and

the interconnect sharing takes place in round robin fashion in the sequence of cores

VLD, ISQ and IDCT in AMBA implementation (Figure 4.3). This technique is

chosen over priority-based techniques (such as [140]), since in such techniques low

priority cores can often starve (i.e. may not get the interconnect share) and unfair

sharing of interconnect takes place. However, the duration for which a master core

can hold the interconnect access is determined by the type of data being processed.

For example, all cores hold the interconnect for 8 clock cycles for header sequence

processing. During video decoding, the interconnect is held by cores VLD, ISQ

and IDCT for entire macroblock (the unit of video data in terms of 16×16 pixels)

processing, which is typically more than than 8 DTUs for intra macroblocks and
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varies depending on type of macroblock being decoded. Since dedicated channels

exist between respective communicating channels in NoC, packet communication

takes place as they are permissible through channels, NIs and switches.

5. Communication Model: The communication model used for NoC is hop-by-

hop, which requires handshake between any two connecting modules. For NoC,

the cores can initiate data transactions (for write operation) or it can react to trans-

action requests (for read operation), while switches carry out the communication-

specific routines. For AMBA, any communication (read or write) is initiated by

AHB masters and AHB slaves only serve the requested service. The arbiters

and decoders control the access to interconnect and decode the slave address re-

quested. Cycle-accurate write and read model transactions for NoC and AMBA

without optional wait states are shown in Figures 4.8 and 4.9. As can be seen,

the NoC communication depends on the two-way handshaking signals, busy and

request (Figure 4.8). As such, when a transaction is agreed through handshake,

a data communication is initiated. For example, when an write operation is re-

quested through request out in HI state and busy in is seen at LO state (meaning

the communicating component is not busy) at falling edge of system clock, output

data DATA OUT can be written. Similarly, when a read operation is requested

through request in in HI state and busy out seen at LO state (meaning requested

component is not busy) at falling edge of system clock, input data DATA IN can

be read (Figure 4.8). For AMBA, the bus master must be granted access to the

shared-bus before a transfer can commence. This process is started by the master

asserting a request signal to the arbiter (Figure 4.9). Then the arbiter indicates

when the master will be granted use of the bus through HREADY. A granted bus

master starts an AMBA AHB transfer by driving the address (HADDR) and con-

trol signals. A write data bus (HWDATA) is used to move data from the master

to a slave, while a read data bus (HRDATA) is used to move data from a slave

to the master. Every transfer consists of an address and control cycle and one or

more cycles for the data (Figure 4.9).

For comparison purposes, four different video test bitstreams are used with different

resolutions and frame rates. Table 4.1 shows the video bitstreams with their sizes and

frame rates. The simulations were carried out on Intel(R) Pentium(R)-4 CPU clocked at

3.20GHz system with 1GB RAM running SystemC on RHEL 2.6.9-67. The simulation

of the four videos (Table 4.1) with decoding, monitor processes, logging took about 250,

319, 421 and 543 seconds for NoC and 231, 294, 341 and 415 seconds for AMBA. The

NoC simulation times were observed in NIRGAM [25] and shared-bus AMBA simulation

times were observed in Cocentric SystemC Compiler [67] as average CPU elapsed time.
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Figure 4.8: Cycle-accurate write and read transactions in NoC used for comparison
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Figure 4.9: Cycle-accurate write and read transactions in AMBA used for comparison

4.3.2 Performance Metrics

To better understand the underlying performance of AMBA- and NoC-based MPEG-2

video decoders (Figures 4.3 and 4.7), different metrics are defined. To understand core

performance, concurrency and core efficiency are defined and to understand interconnect

Video Frames Frame
rate

Frame Size (pixels)

test1.m2v (tennis) 67 29 176×120 (QCIF, NTSC)

test2.m2v (flower) 55 25 352×288 (CIF, PAL)

test3.m2v (tennis) 49 25 352×576 (2CIF, PAL)

test4.m2v (flower) 43 29 704×480 (4CIF, NTSC)

Source: ftp://ftp.tek.com/tv/test/streams/Element/

Table 4.1: Test video bitstreams used for comparisons between AMBA and NoC
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performance, channel latency and bandwidth are defined. Using these metrics, the

application performance of the decoders is compared in Section 4.4.

4.3.2.1 Concurrency

Concurrency defines the number of cores that are able to execute computation at the

same time and is dependent on the way processing cores communicate with each other.

Higher degree of concurrency effectively reduces the total multiprocessor execution time

through overlapped executions among processing cores. The average degree of concur-

rency, D, is defined as

D =

TM
∑

t=1

C(t)

TM

(4.1)

where TM is the total multiprocessor execution time (in clock cycles) and C(t) is the

number of cores executing the computation at t-th clock cycle. Given, C(t) ≤ Cmax,

where Cmax is the total number of MPSoC cores, it can be shown that, Dmax = Cmax.

Table 4.2 shows a tabular comparison of average degree of concurrency between AMBA-

and NoC-based decoders recorded from the simulation logs. The number of core execu-

tions are given in column 1 (Table 4.2). The corresponding execution times for decoding

test1.m2v by NoC and AMBA are given in columns 2-3. Similar execution times for

decoding test2.m2v, test3.m2v and test4.m2v are given in columns 4-9. As can be seen,

TM = 1.84 × 107 clock cycles in AMBA-based decoder, during which the application is

executed with C = 1 core for 3.91 × 106 clock cycles, C = 2 cores for 3.28 × 106 clock

cycles, C = 3 cores for 2.29 × 106 clock cycles and C = 4 cores for 6.85E × 105 clock

cycles for video decoding bitstream test1.m2v (column 3). Due to shared-bus access in

AMBA-based decoder, multiprocessor execution time (TM ) is mostly made up of execu-

tion with C = 1, 2 and 3 cores. Using (4.1) with the application times and execution

times from Table 4.2, the degree of concurrency for AMBA (DAMBA) is given as 1.09

for decoding test1.m2v. On the other hand, due to dedicated links among cores, NoC-

based decoder is able to exploit the concurrency at a higher level. As can be seen, only

2.25× 106 clock cycles are executed with C = 1 in NoC-based decoder, while for C = 2,

3 and 4 cores the recorded execution times are 2.30×106, 2.41×106 and 1.51×106 clock

cycles for decoding video bitstream test1.m2v. As a result, the multiprocessor execution

time (TM ) in NoC-based decoder is mostly made up of execution with C = 2, C = 3

and 4 cores (column 2). This allows NoC to overlap execution among processing cores

more efficiently and reduces TM to only 8.04×106 clock cycles results in a higher degree

of concurrency (DNoC) of 2.50, given by (4.1).
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Test video bitstreams

test1.m2v test2.m2v test3.m2v test4.m2v

C NoC AMBA NoC AMBA NoC AMBA NoC AMBA

1 2.25E+6 3.91E+6 6.88E+6 1.20E+7 1.18E+7 2.05E+7 1.27E+7 2.21E+7

2 2.30E+6 3.28E+6 7.18E+6 1.00E+7 1.23E+7 1.71E+7 1.33E+7 1.85E+7

3 2.41E+6 2.29E+6 7.20E+6 6.99E+6 1.23E+7 1.20E+7 1.33E+7 1.29E+7

4 1.51E+6 6.85E+5 4.62E+6 2.09E+6 7.91E+6 3.58E+6 8.55E+6 3.87E+6

TM 8.04E+6 1.84E+7 2.34E+7 5.36E+7 3.95E+7 9.31E+7 6.15E+7 1.36E+8

D 2.50 1.09 2.62 1.14 2.66 1.13 2.44 1.10

Table 4.2: Core concurrency of NoC and AMBA for different video bitstreams
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With increasing size of video in other video bitstreams, execution times for different C

values increase (Table 4.2). However, the degree of concurrency varies slightly depending

on the inter- and intra-frame compression in the coded video bitstreams. For example,

DNoC values found by (4.1) using the execution times from Table 4.2 are 2.62, 2.66

and 2.44 for decoding video bitstreams test2.m2v, test3.m2v and test4.m2v, respectively

(found using C and TM values in (4.1)). Similarly, DAMBA values are found as 1.14,

1.13 and 1.10 for video bitstreams test2.m2v, test3.m2v and test4.m2v, respectively. As

expected, NoC-based decoder maintains higher D compared to AMBA exploiting higher

concurrency among processing cores due to spatial multiplexing of channels among cores.

On average NoC-based decoder has 2.18 times higher degree of concurrency for the given

architecture (Figure 4.1) when compared to AMBA-based decoder. Clearly NoC suits

MPSoC architectures, where concurrent processing is desirable.

4.3.2.2 Core Efficiency

Core efficiency defines how efficiently processing cores can utilise the computation cycles

within the execution time. Total execution time of a processing core is given by the sum

of processing and non-processing times as

TE = TP + TNP ≤ TM , (4.2)

where TE is the execution time, TM is the multiprocessor execution time, TP is the

total processing time (i.e total number of computation cycles) and TNP is the total

non-processing time, all in clock cycles. The non-processing time, TNP is defined as

TNP = TR + TW + TI , (4.3)

where TR is the reading time of the input data at the processing core and TW is the

time required for output data to be written at the output ports and are both 0 clock

cycle in NoC and AMBA due to local memory and pipelined communication, TI is the

idle time and is the major contributor to non-processing time. The idle time, TI , is

caused by any of the following three reasons: i) not having interconnect to the master

access during writing, ii) not having enough data to process, or iii) not being able to

read from memory due to blocking access through shared interconnect. To investigate

quantitatively how effectively the computation cycles are being utilised within execution

time of a core, core efficiency, σ, is defined using (4.2) and (4.3) as

σ =
TP

TE

=
TE − TNP

TE

, (4.4)

where TE, TP and TNP are total core execution, computation and non-computation

cycles defined by (4.2) and (4.3). Table 4.3 shows the execution times (TE) and non-
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processing times (TNP ) of each core for decoding four different videos recorded from the

simulation logs. As shown in Table 4.3, the core VLD has 1.20×106 clock cycles of non-

processing time (TNP ) and 6.43 × 106 clock cycles of execution time (TE) for decoding

video bitstream test1.m2v in NoC-based decoder. The non-processing times in core VLD

in NoC-based decoder are caused by waiting times for having output interconnect busy

or core memory full. Similar non-processing times also take place in the cores ISQ, IDCT

and MC. These non-processing times take place due to waiting for DTUs to arrive for

processing as core ISQ receives DTUs from core VLD, core IDCT receives DTUs from

core ISQ and core MC receives DTUs from cores VLD and IDCT. Using execution times

(TE) and non-processing times (TNP ) from Table 4.3 in (4.4) the average core efficiencies

(σ) of cores VLD, ISQ, IDCT and MC in NoC are found by as 81%, 77%, 89% and 82%,

respectively. The higher σ for cores IDCT and MC are expected due to high TE and low

TNP compared to the other cores. Due to shared interconnect access, idle times make up

a major component of the non-processing times of all the cores in AMBA-based decoder.

As a result, core VLD has higher non-processing time (TNP =4.85×106 clock cycles) and

also higher execution time (TE=1.34 × 107 clock cycles) for decoding video bitstream

test1.m2v in AMBA-based decoder (Section 4.3.2.1). Similarly other processing cores

also experience higher non-processing times. With these high non-processing times in

AMBA-based decoder, it gives lower core efficiencies (σ) of 45%, 36%, 39% and 37%

for the cores VLD, ISQ, IDCT and MC, respectively (Table 4.3). Note that core VLD

gives higher σ compared to other cores in AMBA. This is because core VLD reads

input bitstream directly from memory for decoding header and video sequences and

hence has lower non-processing times. Figure 4.10 shows a graphical comparison of the

average core efficiencies (σ) of AMBA- and NoC-based decoders (Figures 4.3 and 4.2).

Due to dedicated interconnects, cores in NoC utilise the execution cycles more efficiently

compared to AMBA. For example, the core IDCT has 87% core efficiency (σ) on average

in NoC-based decoder compared to only 39% in AMBA-based decoder.
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Video Arch. Core VLD Core ISQ Core IDCT Core MC

TE TNP TE TNP TE TNP TE TNP

test1.m2v
NoC 6.43E+6 1.10E+6 3.78E+6 1.23E+6 6.37E+6 6.89E+5 6.69E+6 1.16E+6

AMBA 1.34E+7 8.07E+6 7.48E+6 4.93E+6 1.37E+7 8.02E+6 1.46E+7 9.07E+6

test2.m2v
NoC 1.87E+7 2.60E+6 1.42E+7 1.61E+6 1.85E+7 1.88E+6 1.94E+7 3.38E+6

AMBA 3.96E+7 2.35E+7 2.86E+7 1.60E+7 4.04E+7 2.38E+7 4.26E+7 2.66E+7

test3.m2v
NoC 3.23E+7 4.85E+6 2.50E+7 3.92E+6 3.20E+7 3.52E+6 3.36E+7 5.66E+6

AMBA 6.98E+7 4.24E+7 5.14E+7 3.03E+7 7.02E+7 4.17E+7 7.40E+7 4.61E+7

test4.m2v
NoC 4.55E+7 7.29E+6 3.66E+7 5.81E+6 4.73E+7 5.47E+6 4.86E+7 9.08E+6

AMBA 9.83E+7 6.01E+7 7.52E+7 4.44E+7 1.04E+8 6.22E+7 1.07E+8 6.75E+7

Table 4.3: Execution and non-processing times (in clock cycles) of processing cores in NoC and AMBA for different video bitstreams (Table 4.1)
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Figure 4.10: Average core efficiencies (σ) of AMBA and NoC MPEG-2 video decoder
(Figure 4.1)

4.3.2.3 Channel Latency

Channel latency (in time units) represents an important performance parameter for on-

chip interconnects. Per data transaction unit (DTU: packet with 32-bits payload for

NoC, each 32-bit transaction data for AMBA) channel latency is a measure of how fast

per DTU is routed over the channel from output of a processing core to input of the

communicating core. For both NoC and AMBA, the pipelined transaction of data takes

place in multiple hops starting from initiator core to destination core (Section 4.3.1).

Considering no waiting states in NoC and AMBA, the average per DTU channel latency,

Lch is defined as

Lch =
1

N

N
∑

n=1

[

τS
c−in(n) + τS−D

in−in(n) + τD
in−c(n)

]

, (4.5)

where τS
c−in(n) is the time elapsed for data to travel from source output port to source in-

terconnect port, τS−D
in−in(n) is the time elapsed for data to travel from source interconnect

port to destination interconnect port and τD
in−c(n) is the time elapsed for data to travel

from destination port to the destination memory, all for n-th DTU out of total N DTUs.

For AMBA, τS
c−in(n) = 1 clock cycle after bus access is granted and locked. During

τS−D
in−in(n) = 1 clock cycle the arbiter does the necessary routing of the data and notifies

the slave port. Due to direct memory interface, τDin−c
(n) = 0 clock cycle. Minimum

channel latency (without waiting states) per DTU for AMBA, given by (4.5), is Lch = 2

clock cycles. Due to symmetric nature of NoC channels, τDc−in
(n) = τSin−c

(n) = 3 clock

cycles involving intermediate NI packetising and de-packetising (Section 4.2.3). The de-

lay, τS−D
in−in(n), in (4.5) involves communication over an array of switches for each DTU

that travels through the channel and depends on the number of intermediate switches
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travelled. Independent of routing algorithm or path travelled, τS−D
in−in(n) is given by

τS−D
in−in(n) =

K−1
∑

k=1

[τk
ic−r(n) + τk

r (n) + τk
r−oc(n) + τ

k−(k+1)
oc−ic (n)]. (4.6)

Equation (4.6) is a result of multi-hop communication through K intermediate switches.

The time required for the n-th packet to travel from input channel to the router of the

k-th switch, τk
ic−r(n) is 1 clock cycle. Also, the time required for routing decision on

the k-th switch for n-th packet, τk
r (n) is 1 clock cycle. The n-th packet travels from

router to the output channel of the k-th switch immediately in the NoC implementation

and hence τk
r−oc(n) = 0 clock cycle. Finally, the time required for the n-th packet to

travel from output channel of k-th switch to input channel of the (k + 1)-th switch,

τ
k−(k+1)
oc−ic (n) is 1 clock cycle. Using (4.5) and (4.6), NoC has a minimum channel latency

(Lch) of 9 clock cycles (when K = 2 for shortest path mapping and XY routing). The

channel latency (Lch) for AMBA- and NoC-based decoders (Figures 4.3 and 4.7) found

through simulations are also 9 clock cycles and 2 clock cycles, respectively. For a given

application traffic, channel latency sets up the major difference between the on-chip

communication architectures.

4.3.2.4 Bandwidth

Bandwidth (in bits per second) is a measure of the amount of data that can be passed

through the interconnect in a given period of time. According to [22], the maximum

available bandwidth of a node, BWarchMAX
, in any on-chip communication architecture

is given by

BWarchMAX
=

∑Larch

l=1 warch(l)farch(l)

Harch

(bits/cycle), (4.7)

where Larch is the number of outgoing links being used, warch(n) is the size of the l-th

link in data bits only (or number of data wires), farch(l) is the frequency of l-th link of the

architecture being considered and Harch is the number of hops (in clock cycles) required

for node-to-node communication. Due to spatial multiplexing of outgoing channels in

NoC, LNoC = 4 links (Figure 4.7) and HNoC = 9 clock cycles (Section 4.3.2.3). On

the other hand, due to shared-bus access in AMBA, LAMBA = 1 (Figure 4.3) and

HAMBA = 2 clock cycles (Section 4.3.2.3). Considering injection rate of single-packet

per clock cycle in AMBA- and NoC-based decoders, the maximum bandwidth of AMBA

and NoC are found as

BWNoC =
(32 × fNoC)

9
(bits/cycle), and (4.8)

BWAMBA =
(32 × fAMBA)

(2 × 4)
(bits/cycle). (4.9)
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From (4.8) and (4.9), AMBA has 9% bandwidth advantage over NoC. In practice, the

actual operating frequency will also depend on capacitive loading. According to [20], due

to capacitive loading and global wire lengths in AMBA, maximum operating frequency

of NoC is 3 times that of AMBA, i.e. fNoC = 3 × fAMBA. Using these maximum

operating frequencies the bandwidth definitions in (4.8) and (4.9) give NoC a 2.7 times

higher bandwidth advantage over AMBA.

4.4 Comparative Application Performance

Using the different parameters defined in Section 4.3.2, MPEG-based performance com-

parison between NoC and shared-bus AMBA is carried out in this section. The applica-

tion performance is evaluated and compared between AMBA- and NoC-based decoders

(Figures 4.3 and 4.7) in terms of per macroblock (i.e. block of 16 × 16 pixels) decoding

time and operating frequency for different test video bitstreams (Table 4.1).

4.4.1 Per Macroblock Decoding Time

Given a video bitstream, the efficiency and performance of an MPEG-2 decoder is defined

by the time required to decode the bitstreams. The determination of this time can be

performed through average per macroblock (MB) decoding time TMB (also used in [128]).

Each MB in the video bitstreams (Table 4.1) is comprised of 16× 16 pixels segment in a

frame. The number of MBs encoded in the bitstreams vary depending on the resolution

of the video frames and compression of video encoding achieved using correlation that

exists within and among the frames. However after decoding, a QCIF frame has 9

rows with 11 MBs per row (test1.m2v), a CIF frame has 18 rows with 22 MBs per row

(test2.m2v), a 2CIF frame has 36 rows with 22 MBs per row (test3.m2v) and finally a

4CIF frame has 36 rows with 44 MBs per row (test4.m2v, Table 4.1). The total number

of macroblocks to be decoded in a video bitstream can, thus, be found by multiplying the

frame size (in number of MBs) by the number of frames given in Table 4.1. To find per

MB decoding time (TMB) multiprocessor execution time (TM , obtained from Table 4.2)

is divided by the number of MBs per video bitstream. Table 4.4 shows TMB for each

video bitstream (Table 4.1) for the MPEG-2 video decoder (Figure 4.1) implemented

with NoC and AMBA on-chip communication architectures (column 2 and 3). As can

be seen, TMB for AMBA is 2774 clock cycles for the video bitstream test1.m2v. This

is approximately 2.30 times higher than TMB for NoC, which is 1212 clock cycles. The

less per macroblock processing time in NoC-based decoder is due to higher concurrency

and overlap of execution of processing cores (Section 4.3.2.1). Due to low concurrency

and core efficiency (Sections 4.3.2.1 and 4.3.2.2), AMBA-based decoder has large non-

processing time and hence higher multiprocessor execution time (TM ), giving on average
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Video TMB, clock cycles

NoC AMBA

test1.m2v 1212 2774

test2.m2v 1074 2461

test3.m2v 1018 2398

test4.m2v 903 1990

Table 4.4: Per macroblock (MB) decoding time of AMBA- and NoC-based decoders
for decoding the test video bitstreams (Table 4.1)

2.27 times higher TMB for AMBA than for NoC. Similar comparisons are also noted

with the other video bitstreams (Table 4.4). Note that for larger videos, TMB decreases

slightly due to higher intra-frame correlation within video frames [141].

4.4.2 Operating Clock Frequency

For decoding a given video bitstream, lower operating clock frequency is a desired perfor-

mance feature of MPSoCs. This is because high clock rates dissipate higher power [20].

The operating clock frequency required to decode a given video bitstream at a specified

frame rate can be found as,

f = (TMB × MBs/frame × fps), (4.10)

where fps is the specified frames per second for the video bitstreams (Table 4.1). The

approximate operating clock frequencies (f) for AMBA- and NoC-based decoders found

using (4.10) for decoding different video bitstreams (Table 4.1) are shown in Figure 4.11.

As can be seen, due to lower TMB in NoC-based decoder (Table 4.4), it can operate at

lower clock frequency (fNoC) than that for AMBA-based decoder (fAMBA) to decode

different video bitstreams. For example, for decoding video bitstream test2.m2v, NoC-

based decoder requires only 10.6MHz compared to 24.5MHz for AMBA to achieve the

frame rate of 25 fps (Table 4.1). NoC-based decoder consistently outperforms AMBA-

based decoder with lower operating clock frequency than AMBA-based decoder (on

average fNoC is 0.43% of fAMBA).

4.4.3 Impact of Architecture Allocation

Architecture allocation is a system-level design step for MPSoCs that deals with the

allocation of processing elements and their interconnections in the architecture (see

Section 2.4.2.1, Chapter 2 for further details). In this work, architecture allocation is

referred to as the allocation of number of processing cores in the MPSoC architecture. In
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Figure 4.11: Required clock frequency of NoC and AMBA for decoding different test
video bitstreams (Table 4.1) at specified frame rate

Sections 4.4.1 and 4.4.2, the per MB decoding time (TM ) and operating clock frequency

(f) have been found using the MPG-2 decoder with four processing cores (Figure 4.1) for

AMBA- and NoC-based decoders. This section demonstrates the impact of architecture

allocation on the application performance.

Table 4.5 shows different architecture allocations of MPEG-2 decoder with 2, 3 and 5

cores along with mapped tasks per core (mapping of architecture with 4 cores is shown in

Figure 4.1). The application task mapping is carried out arbitrarily to reflect MPSoC. As

can be seen, each core is assigned a specific functionality within the decoding process,

such as motion compensation, inverse scan and quantisation, inverse discrete cosine

transformation, etc. (Table 4.5). Table 4.6 shows the multiprocessor execution time

(TM ) and per macroblock decoding time (TMB) using AMBA- and NoC-based MPEG-2

decoder for different architecture allocations (Table 4.5). The multiprocessor execution

time (TM ) and per macroblock decoding time (TMB) of architecture with 2 allocated

cores is shown in column 3, while that of 3 and 5 cores are shown in columns 4 and 5

(Table 4.6). The corresponding TM and TMB for AMBA and NoC for different video

bitstreams are shown in rows 2-5 (Table 4.6).
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Allocation Core Mapped Tasks

2 Cores
Core 1 variable length decoding &

motion compensation

Core 2 inverse scan, quantisation &
inverse discrete cosine transformation

3 Cores

Core 1 variable length decoding
inverse scan and quantisation

Core 2 motional compensation

Core 3 inverse discrete cosine transformation

5 Cores

Core 1 variable length decoding

Core 2 inverse scan and quantisation

Core 3 discrete cosine transformation by row

Core 4 discrete cosine transformation by column

Core 5 motion compensation

Table 4.5: Task distribution of MPEG-2 video decoder among cores for different
architecture allocations



C
h
a
p
ter

4
O

n
-C

h
ip

C
o
m

m
u
n
ica

tio
n

A
rch

itectu
re

C
o
m

p
a
ra

tiv
e

A
n
a
ly

sis
77

Video Arch. 2 Cores 3 Cores 5 Cores

TM TMB TM TMB TM TMB

test1.m2v NoC 1.48E+7 2235 1.11E+7 1680 6.86E+6 1034

AMBA 1.83E+7 2759 1.89E+7 2855 1.82E+7 2741

test2.m2v NoC 4.35E+7 1996 3.24E+7 1489 2.01E+7 924

AMBA 5.34E+7 2450 5.58E+7 2563 5.30E+7 2432

test3.m2v NoC 7.34E+7 1890 5.47E+7 1411 3.36E+7 865

AMBA 8.93E+7 2301 9.51E+7 2451 8.81E+7 2271

test4.m2v NoC 1.12E+8 1650 8.52E+7 1251 5.36E+7 790

AMBA 1.39E+8 2020 1.47E+8 2160 1.42E+8 2080

Table 4.6: Impact of architecture allocation on the multiprocessor execution time (TM ) and per macroblock decoding time (TMB)
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As can be seen, the NoC-based decoder outperforms AMBA-based decoder in terms

of per macroblock decoding time (TMB) for all architecture allocations due to reduced

multiprocessor execution time (TM ). The higher multiprocessor execution time (TM ) in

AMBA-based decoder is caused by shared interconnect access (Section 4.3.2.1). As a

result of high TM , AMBA-based decoder with 2 processing cores gives 24% higher per

macroblock decoding time (TMB), while AMBA-based decoder with 3 processing cores

gives 73% higher per macroblock decoding time (TMB) than NoC with similar archi-

tecture allocations (columns 3-6). Similar trends were also observed with other video

bitstreams for increasing architecture allocations (Table 4.6). Note that AMBA-based

decoder performs better for architecture allocation with lower number of processing cores

than that with higher number of processing cores. This is because with lower number

of processing cores, the waiting time for a processing core to securing the interconnect

access decreases in AMBA. For example, AMBA-based decoder with 2 processing cores

has a per macroblock decoding time (TMB) of 2020 clock cycles, while decoder with 3

processing cores has per macroblock decoding time (TMB) of 2160 clock cycles, while

decoding test4.m2v (Table 4.5).

To demonstrate the impact of architecture allocation on the application performance in

terms of operating clock frequency (f), Figure 4.12 shows the operating clock frequen-

cies of AMBA- and NoC-based decoders found through (4.10) using the TMB values

in Table 4.6. As can be seen, NoC can exploit the concurrency (Section 4.3.2.1) and
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Figure 4.12: Operating clock frequencies of AMBA and NoC (in MHz) for decoding
test4.m2v with different architecture allocations

higher core efficiency (Section 4.3.2.2) and effectively reduce the operating clock fre-

quency required to decode a given video bitstream for increasing number of allocated

processing cores (Figure 4.12). It is evident that as the number of cores increases, the

operating frequency can scale up for AMBA due to higher TMB as a result of lower core

concurrency (Section 4.3.2.1) and core efficiency (Section 4.3.2.2). However, the fact

that high clock frequencies in AMBA can be inhibited by increased gate delay due to

capacitive loading [142], this can restrict some multiprocessor applications with many
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cores to operate on AMBA. According to [20], such capacitive loading causes AMBA to

a have a maximum operating frequency of 250MHz compared to 750MHz for NoC.

4.5 Comparative Reliability Analysis

An emerging challenge in today’s MPSoCs is reliability in the presence of soft errors,

particularly due to single-event upsets (SEUs) [15, 130] (for brief introduction to re-

liability, see Section 2.3, Chapter 2). In this section, reliability of the AMBA- and

NoC-based decoders is studied in terms of SEUs experienced in the computation cores

and communication interconnects through injection of SEUs for a given soft error rate

(in SEUs per bit per clock cycle). The impact of injected SEUs is also examined at appli-

cation level rather than architectural-level. The fault injection model used for reliability

analysis is described next, followed by the impact of SEUs on the on-chip communica-

tion architectures in Section 4.5.2 and impact of architecture allocation on reliability in

Section 4.5.3.

4.5.1 Fault Injection Model

In this work, SEU-based fault injection is carried out using the fault injection simulator

proposed in Chapter 3. The injection of SEUs using this simulator is initiated through

replacement of variable or signal types in the original design specification to equivalent

fault injection enabler types. Such type replacement enables the formation of a fault

locations database, which contains the target registers for SEU injection. The simula-

tor injects SEUs based on the specified soft error rates and probability distribution to

identify fault locations within the fault locations database. Figure 4.13 shows the fault

injection setup employing the fault injection simulator used for the MPEG-2 decoder

with four processing cores (Figure 4.1). Using type replacements for variable/signal in

the original design specification, the simulator enables formation of five fault locations

databases: one for each of the four processing cores and a centralised fault locations

database for the interconnects. For a given soft error rate (SER, in number of SEUs per

bit per cycle), the number of SEUs to be injected within each fault locations database

is found and their locations are determined by Poisson distribution. The system clock

is connected to the fault injection simulator to enable timing information for fault injec-

tion (Figure 4.13). Using simulation-specific monitor modules, total register usage and

number of faults injected can be found.



Chapter 4 On-Chip Communication Architecture Comparative Analysis 80

Fault locations

database 5


Soft error rate (SER)


Inject faults at actual SER


Core

VLD


with fault injection


enabler types


Fault locations

database 1


Soft error rate (SER)


Core

ISQ


with fault injection


enabler types


Fault locations

database 2


Soft error rate (SER)


Core

IDCT


with fault injection


enabler types


Fault locations

database 3


Soft error rate (SER)


Core

MC


with fault injection


enabler types


Fault locations

database 4


Soft error rate (SER)


F

a
u


l
t

 
I

n


j
e

c
t


i
o

n

 
S


I
m

u


l
a

t
o


r


Inject faults at actual SER


Inject faults at actual SER


Inject faults at actual SER


Inject faults at actual SER


I
n

t
e


r
c

o


n

n


e
c

t


with fault injection


enabler types


SYSTEM CLOCK


Figure 4.13: Fault injection setup used for comparative reliability analyses between
AMBA and NoC on-chip communication architecture

4.5.2 Impact of SEUs Injected

Reliability of an application against SEUs is related to the total number of SEUs expe-

rienced over a given time [24]. The aim in this section is to analyse how the reliability

of MPEG-2 video decoder is affected by the choice of AMBA and NoC on-chip commu-

nication architecture. To this end, the following investigations are carried out:

• Evaluation of the number of SEUs experienced during computation, Fcomp, to

show how MPEG-2 computation is affected,

• Evaluation of the number of SEUs experienced during inter-core communication,

Fcomm, to show how interconnects are affected, and

• Evaluate the impact of total SEUs, F = Fcomp + Fcomm, at an application-level.

In the following sections, Fcomp and Fcomm of AMBA- and NoC-based decoders are

evaluated and compared. Furthermore, the impact of F is examined at application-level

and the impact of architecture allocation on system reliability is investigated.
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Figure 4.14: Manifestation of SEUs during computation cycles of a processing core

4.5.2.1 SEUs Experienced During Computation

The SEUs affect computation of a processing core through perturbation of the regis-

ters. Figure 4.14 shows how SEUs manifest themselves in registers of the processing

cores during computation. As can be seen, SEUs extending between two IDLE cycles

(instance 3) do not affect computation process as no computation takes place in these

cycles. On the other hand, SEUs that are injected between BUSY cycles (instance 2)

or between BUSY and IDLE cycles (instances 1 and 4) are likely to affect computation

process (Figure 4.14). Hence, for a given soft error rate (SER), the effective number

of SEUs experienced during computation (Fcomp) can be given as the number of SEUs

experienced by the computation cycles (in instances 1, 2 and 4) during execution of a

processing core. The Fcomp of an MPSoC decoder with C processing cores can be given

as

Fcomp =
C
∑

i=1

(

Ti − T I−I
i

)

Riλ , (4.11)

where λ is the SER (in SEUs per bit per cycle), Ti is the execution time (in clock

cycles), T I−I
i is the number of idle-to-idle transitions within Ti (in clock cycles) and

Ri is the register usage (in bits per cycle), all for i-th processing core. The Ri gives a

measure of per core register usage by the application, since SEUs in other registers have

no impact [24]. The Ri is given as

Ri =
1

Ti

Ti
∑

t=1

Ri,t . (4.12)

where Ri,t is the number of registers (in bits) used by MPEG computation process at t-th

clock cycle in i-th processing core. Table 4.7 shows execution time, Ti, idle-idle transition

cycles, T I−I
i , and register usage, Ri, of each processing core in AMBA- (Figure 4.3) and

NoC-based decoders (Figure 4.7) for decoding different video bitstreams (Table 4.1).

The execution times (Ti and T I−I
i ) and the register usage (Ri) of AMBA and NoC-

based decoder cores VLD, ISQ, IDCT and MC are shown in columns 3-6 (Table 4.7).

The Ti and T I−I
i values of AMBA- and NoC-based decoders are obtained from SystemC

cycle-accurate simulations (Sections 4.2.2 and 4.2.3) and Ri values are found through

SystemC fault simulations (Section 4.5.1).
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Video Arch.
Core VLD Core ISQ Core IDCT Core MC

Ti,cyc.
(x106)

T I−I
i ,

cyc.
(x106)

R,
kb/c.

Ti,cyc.
(x106)

T I−I
i ,

cyc.
(x106)

R,
kb/c.

Ti,cyc.
(x106)

T I−I
i ,

cyc.
(x106)

R,
kb/c.

Ti,cyc.
(x106)

T I−I
i ,

cyc.
(x106)

R,
kb/c.

test1.m2v
NoC 6.43 0.42 23.0 3.78 0.41 19.3 6.37 0.05 19.4 6.69 0.23 25.2

AMBA 13.4 2.4 22.5 7.48 1.9 19.0 13.7 1.4 19.1 14.6 1.6 24.7

test2.m2v
NoC 18.7 1.2 23.1 14.2 1.16 19.3 18.5 0.14 20.2 19.4 0.68 25.3

AMBA 39.6 7.5 22.7 28.6 7.3 19.0 40.4 4.3 19.7 42.6 5.1 24.7

test3.m2v
NoC 32.3 2.2 23.4 25.0 3.0 19.4 32.0 0.25 20.5 33.6 1.2 25.5

AMBA 69.8 14.0 22.7 51.4 13.0 19.0 70.2 7.5 19.8 74.0 9.2 24.8

test4.m2v
NoC 45.5 3.2 23.9 36.6 4.4 19.5 47.3 0.38 20.7 48.6 1.7 25.7

AMBA 98.3 19.9 23.3 75.2 20.0 19.0 104.1 11.0 19.9 107.1 14.0 25.0

Table 4.7: Execution times (Ti), idle-idle transition times (T I−I
i ) and average register usage (Ri) of processing cores in AMBA- and NoC-based

decoders
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As can be seen, AMBA-based decoder has similar register usage, Ri, as NoC for all

four cores while decoding test1.m2v due to same processing cores between the two de-

coders (row 2, columns 3-6). However, as the registers in AMBA-based decoder are

also used over idle period during bus arbitration, it has upto 7% lower register usage

(given by (4.12)) than NoC-based decoder. Due shared-access of the bus among decoder

cores, AMBA-based decoder has upto 2.18 times higher execution time for core MC

compared to NoC-based decoder while decoding test1.m2v. Such time sharing of bus

access also causes more idle-idle transition cycles in AMBA-based decoder, resulting

in upto 6.9 times higher T I−I
i compared to NoC-based decoder for core MC (row 2,

column 6). With increased video sizes in other video bitstreams (test2.m2v, test3.m2v

and test4.m2v), Ti and T I−I
i increase but similar trend continues between AMBA- and

NoC-based decoders for Ri, Ti and T I−I
i values. Higher Ti results in higher number

of SEUs experienced (Fcomp) in AMBA-based decoder compared to NoC-based decoder

for decoding video different bitstreams (Table 4.1), as shown in Figure 4.15. The Fcomp

values are found using an arbitrary SER of 10−9 SEUs/bit/cycle in simulated fault injec-

tion environment (Section 4.5.1). The approximate Fcomp values can also be validated

through (4.11) with Ti, T I−I
i and Ri values from Table 4.7. As expected, the AMBA-
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Figure 4.15: Comparative Fcomp in AMBA- and NoC-based decoders for an arbitrary
SER of 10−9

based decoder experiences approximately 83% higher Fcomp on average compared to

NoC for decoding different video bitstreams. As a result of higher Fcomp, MPEG-2

decoder computation is expected to be affected more in AMBA-based decoder than

NoC-based decoder. In Section 4.5.2.3 the impact of SEUs experienced is examined at

application-level.

4.5.2.2 SEUs Experienced During Communication

An important aspect in the reliability of on-chip communication architectures is the

number of SEUs experienced during inter-core data communication as these SEUs per-

turb the registers in the interconnects and affect the data transfer [143]. The number of
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SEUs experienced during communication, Fcomm, depends on how the DTUs are trans-

ferred between communicating cores in an on-chip communication architecture. For a

given SER (in SEUs per bit per cycle), the total Fcomm of an on-chip communication

architecture can be given by the product of per data transaction unit (DTU: packet for

NoC and 32-bit data for AMBA) communication time, total number of DTUs trans-

ferred among cores, the register usage of the communication components and the SER.

Hence Fcomm can be expressed as

Fcomm =

M
∑

j=1

NjLchj
Rcomj

λ , (4.13)

where M is the number of inter-core communication links in the decoder (M = 4,

Figure 4.1(a)), Nj is the total number of DTUs between cores, Lchj
is the channel latency

(in clock cycles) and Rcomj
is the average register usage in communication components

during transfer of DTUs on j-th link. The channel latency, Lchj
given by (4.5) gives a

measure of communication time of DTUs within the on-chip communication architecture

and is given by the time (in cycles) required for a DTU to be transferred from the

output port of a processing core to an input port of target processing core. From

Section 4.3.2.3, Lch is 2 cycles for AMBA and 9 cycles for NoC with shortest path

mapping between communicating cores (i.e. communicating cores are connected through

K=2 intermediate switches, Section 4.3.2.3). Note that Lch for NoC varies for different

floor mapping or packet routing algorithm. This is because floor mapping affects the

number of intermediate switches travelled due to placement of cores on NoC tiles [49].

For example, Lch increases to 15 and 20 clock cycles for floor mapping with 3 and 4

intermediate switches, respectively. Similarly, packet routing affects the channel latency

since different communication paths result in varied number of intermediate switches

travelled [41]. The average register usage of communication components during transfer

of a DTU, Rcomj
in (4.13), sets up another difference between AMBA- and NoC-based

decoders. The Rcomj
is given by

Rcomj
=

1
(

Lchj
Nj

)

Nj
∑

n=1

Lchj
∑

l=1

Rn,l , (4.14)

where Rn,l is the instantaneous register usage on j-th link during inter-core communica-

tion of n-th DTU at l-th clock cycle (l=1:Lchj
). For NoC-based decoder, Rn,l in (4.14)

includes registers used in packet overheads and buffers in NI interfaces, channels, virtual

channels (VCs), and routers as packet is communicated between cores. For AMBA-based

decoder, Rn,l includes the registers used in address (HADDR), control signals (RD and

WR), decoder and arbiter as DTU is communicated between cores. Using (4.14), Rcomj

in NoC-based decoder (Figure 4.7) obtained from simulation logs is approximately 212

bits per data transfer cycle (using XY packet routing) and that in AMBA-based decoder
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is approximately 87 bits per transfer cycle. The higher Rcomj
of NoC is expected as NoC

incorporates packet-based multihop routing with complex switch structure [41]. Note

that Rcomj
of NoC is dependent on the packet routing algorithm as underlying routing

algorithm determines the switch design complexity and the associated the register us-

age [41]. For example, using source-based routing algorithm gives Rcomj
value of 187

bits per cycle, while using odd-even routing algorithm results in Rcomj
value of 273 bits

per cycle as opposed to 212 bits per cycle for XY routing.

Video N1
(VLD→MC),
×103

N2
(VLD→ISQ),
×103

N3
(ISQ→IDCT),
×103

N4
(IDCT→MC),
×103

test1.m2v 66 78 108 202

test2.m2v 232 273 364 666

test3.m2v 385 454 605 1111

test4.m2v 1598 1884 2503 4580

Table 4.8: Inter-core data transaction units (DTUs) of the MPEG-2 video decoder
(Figure 4.1) for decoding different video bitstreams (Table 4.1)

Table 4.8 shows the number of DTUs, Ni (N1 for VLD-MC link, N2 for VLD-ISQ link,

N3 for ISQ-IDCT link, and N4 for IDCT-MC link), recorded from simulation logs for

MPEG-2 video decoder with four processing cores (Figure 4.1). Note that N values

do not change between AMBA- and NoC-based decoders for a given video bitstream

due to similar architecture for processing cores (Figure 4.1(a)). For decoding a given

video bitstream, N is the least from core VLD to core ISQ. As the video decoding

progresses with other cores, N between cores increases due to decompression of the

original video bitstream. For example, only N=66 × 103 DTUs are transferred from

core VLD to core ISQ, while N=202 × 103 DTUs are transferred from core IDCT to

core MC for decoding test1.m2v (row 2, Table 4.8). For increased video sizes, N also

increases for a given link. For example, 108 × 103 DTUs are transferred from core ISQ

to core IDCT for decoding test1.m2v compared to 364 × 103 DTUs on the same link

for decoding test2.m2v (column 4, Table 4.8). Figure 4.16 shows comparative Fcomm of

AMBA- and NoC-based decoders obtained from simulation logs for an arbitrary SER

of 10−9, while decoding different video bitstreams (Table 4.1). To demonstrate the

impact of floor mapping, Fcomm values of three different NoC configurations are shown

with 2, 3 or 4 intermediate switches between cores. As expected, due to higher register

usage (Rcomj
) and channel latency (Lch), NoC-based decoder links with 2 intermediate

switches (Figure 4.7) suffer from 11 times higher Fcomm compared to AMBA, which

worsens to 18 and 24 times higher Fcomm as number of intermediate switches increase

to 3 and 4, while decoding test1.m2v (Figure 4.16). Similar trends between AMBA- and

NoC-based decoders in terms of Fcomm are also observed with other video bitstreams

(Figure 4.16).
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Figure 4.16: Comparative Fcomm in interconnects of AMBA- and NoC- decoders for
an arbitrary SER of 10−9

To demonstrate the impact of choice of NoC packet routing algorithms on the Fcomm,

Figure 4.17 shows the Fcomm values for different packet routing algorithms: source-

based, XY and odd-even routing algorithm implemented on NIRGAM [25]. The Fcomm

values are found with SER of 10−9, while decoding the video bitstream test4.m2v (Ta-

ble 4.1). The approximate values of Fcomm can be found through (4.13) using the Lch and

Rcomj
values of AMBA- and NoC-based decoders. As can be seen, using source-based
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Figure 4.17: Impact of choice of routing algorithm on Fcomm in NoC interconnects,
while decoding test4.m2v

packet routing in NoC switches gives the least SEUs experienced during communication

(Fcomm), while odd-even routing algorithm gives the highest Fcomm. This is because,

due to source initiated routing information inserted in the packets, source-based rout-

ing gives the least register usage of 187 bits per cycle and simpler switch design. On

the other hand, odd-even routing implements adaptive strategy of packet routing with

a control mechanism to avoid deadlock and intermediate packet buffering, resulting in

complex switch design and higher register usage of 273 bits per cycle. The XY rout-

ing has lower register usage (212 bits per cycle) than odd-even due to its deterministic
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nature of choice of routing directions [144]. As expected, as more number of switches

are travelled by NoC packets using these routing algorithms, the Fcomm also increases

linearly.

Comparing between Fcomm (Figure 4.15) and Fcomp values (Figure 4.16) of AMBA-

and NoC-based decoders for decoding a given video bitstream, it can be seen that

Fcomm≪Fcomp. Nevertheless, Fcomm affects the reliability on-chip communication as

it leads to faults resulting in misrouting or loss of DTUs [143]. The loss of DTUs or

misrouting causes the decoding process to be terminated or skip a number of video

blocks or frames while decoding [145]. Next, the impact of overall SEUs experienced

(F) is evaluated at application-level.

4.5.2.3 Impact of SEUs at Application-Level

In Sections 4.5.2.1 and 4.5.2.2, the reliability of AMBA- and NoC-based decoders were

investigated in terms of the SEUs experienced during computation (Fcomp) and com-

munication (Fcomm). With the Fcomp and Fcomm values, the total number of SEUs

experienced is given as

F = Fcomp + Fcomm ,

=

[

C
∑

i=1

(

Ti − T I−I
i

)

Riλ

]

+





M
∑

j=1

NjLchj
Rcomj

λ



 . (4.15)

In this section, the impact of injected SEUs, F , given by (4.15), is evaluated at application-

level. Such evaluation has also been used in [24] showing that the faults at architectural-

level do not always lead to faults at application-level enabling low-cost fault tolerance

mechanisms. The impact of F on decoder reliability has been evaluated using peak

signal-to-noise ratio (PSNR) metric (as also used by [24]). PSNR is defined as

PSNR = 10 log10
1

PQ

P
∑

p=1

Q
∑

q=1

2552

(xp,q − yp,q)
2 (dB), (4.16)

where P is the number of frames, each with Q pixels, xp,q and yp,q are the q-th pixels

in p-th reference and decoded frames. Note that in the presence of SEUs, PSNR (given

by (4.16)) is degraded due to alterations in computation registers containing yp,q values.

As a result, the SEUs experienced during computation (Fcomp) have a direct impact on

the PSNR. However, due to normalization with frames and pixels PSNR does not reflect

temporal fidelity in the event of loss of frames [145]. To evaluate fidelity in the event of

frame losses, frame error ratio (FER) metric has been used, which is defined as

FER =
x

P
, (4.17)



Chapter 4 On-Chip Communication Architecture Comparative Analysis 88

where x is the number of lost frames out of P frames. Frame losses during video

decoding take place mostly due to misrouting of DTUs between communicating cores.

Hence, SEUs experienced during communication (Fcomm) have a direct impact FER.

The SEUs experienced during computation (Fcomp) has an indirect impact on FER as

Fcomp affects computation of video parameters and causes frame losses.

Figure 4.18(a) and (b) show the PSNR (in dB) and FER (in %) values of decoded video

frames found through (4.16) and (4.17), while decoding video bitstream test4.m2v in

AMBA- and NoC-based decoders. The PSNR and FER values of NoC-based decoder

are observed for three different NoC configurations: with 2, 3 and 4 intermediate switches

between communicating cores. An arbitrary SER of 10−9 SEUs per bit per cycle is used
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Figure 4.18: (a) Comparative PSNRs of AMBA- and NoC-based decoders, while
decoding test4.m2v, (b) comparative FERs of AMBA- (Figure 4.3) and NoC-based

decoders (Figure 4.7), while decoding test4.m2v

in simulated fault injection environment (Section 4.5.1). As expected, NoC-based de-

coder outperforms AMBA-based decoder with upto 4dB higher PSNR (Figure 4.18(a)).

This is because NoC-based decoder experiences lower Fcomp than AMBA-based decoder

(Section 4.5.2.1). However, since PSNR reflects the fidelity of video blocks due to per-

turbation of registers by Fcomp, NoC-based decoder shows similar PSNRs for all config-

urations (the number of intermediate switches does not affect Fcomp, Section 4.5.2.2).

Comparing the FER values in Figure 4.18, it can be seen that AMBA-based decoder

gives 3% lower FER compared to NoC-based decoder configuration with 2 intermedi-

ate switches due to higher number of SEUs experienced during communication, Fcomm

(Section 4.5.2.2). As expected, with increased number of intermediate switches, NoC-

based decoder experiences higher FER due to increased Fcomm given by (4.13). For

example, FER of NoC-based decoder increases from 6.5% to 9.5% and 11% as number

of intermediate switches increases from 2 to 3 and 4 (Figure 4.18).

The FER values of NoC-based decoder in Figure 4.18(b) are obtained using XY packet

routing algorithm. Figure 4.19 demonstrates the impact of choice of routing algorithm

on the FER of the NoC-based decoder (Figure 4.7), while decoding the video bitstream

test4.m2v (Table 4.1). Three different packet routing algorithms are used: source-based,

XY and odd-even. FER values are obtained through (4.17) from decoded video frames in
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Figure 4.19: Impact of choice of routing algorithm on the FER of NoC-based decoder,
while decoding test4.m2v

SystemC fault injection environment with an SER of 10−9 (Section 4.5.1). As expected,

using the source-based packet routing algorithm gives the lowest FER among the routing

algorithms due to the lowest Fcomm (Section 4.5.2.2). The NoC-based decoder employing

XY and odd-even routing algorithm give higher FER due to the higher Fcomm. It can

be seen that with increasing number of intermediate switches between communicating

cores, the FER of the NoC-based decoder increases almost linearly due to increased

Fcomm, given by (4.13).

4.5.3 Impact of Architecture Allocation

To demonstrate the impact of architecture allocation on reliability, the different number

of allocated cores were simulated using the task mapping in Table 4.5. Table 4.9 shows

the number of SEUs experienced during computation and communication in AMBA-

and NoC-based decoders for architecture allocations of 2 cores, 3 cores and 5 cores

(simulation results for architecture allocation of 4 cores are shown in Tables 4.7 and

4.8).



C
h
a
p
ter

4
O

n
-C

h
ip

C
o
m

m
u
n
ica

tio
n

A
rch

itectu
re

C
o
m

p
a
ra

tiv
e

A
n
a
ly

sis
90

Video Arch. 2 Cores 3 Cores 5 Cores

Fcomp Fcomm Fcomp Fcomm Fcomp Fcomm

test1.m2v NoC 3.94E+2 1 4.44E+2 1 5.45E+2 1

AMBA 7.02E+2 0 7.97E+2 0 9.78E+2 0

test2.m2v NoC 1.20E+3 3 1.36E+3 4 1.66E+3 4

AMBA 2.16E+3 0 2.43E+3 0 2.93E+3 1

test3.m2v NoC 2.03E+3 5 2.34E+3 6 2.83E+3 8

AMBA 3.65E+3 1 4.28E+3 2 5.19E+3 3

test4.m2v NoC 3.06E+4 22 3.48E+3 25 4.21E+3 31

AMBA 5.51E+3 2 6.24E+3 3 7.44E+3 5

Table 4.9: Impact of architecture allocation on the reliability in terms of number of SEUs experienced during computation (Fcomp) and
communication (Fcomm)
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The number of SEUs experienced during computation (Fcomp) and the number of SEUs

experienced during communication (Fcomm) of architecture with 2 allocated cores is

shown in column 3, while that of 3 and 5 cores are shown in columns 4 and 5 (Table 4.9).

As expected, NoC-based decoder experiences less number of SEUs during computation

than AMBA, while AMBA experiences less SEUs during communication for all architec-

ture allocations. It can be seen that both AMBA- and NoC-based decoders experience

higher Fcomp as the number of allocated cores increases in the architectures. This is

because with higher number of allocated cores, the overall register usage (R =
∑

i Ri)

increases due to duplication of shared task registers among cores, which eventually re-

sults in higher Fcomp, given by (4.11). Also, the Fcomm for architectures with higher

number of allocated cores increases due to increase in the number of links and number

of DTUs being communicated among processing cores.
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Figure 4.20: (a) Comparative PSNRs of AMBA- and NoC-based decoders for different
architecture allocations while decoding test4.m2v, (b) Comparative FERs of AMBA-
and NoC-based decoders for different architecture allocations, while decoding test4.m2v

To observe the impact of total number of SEUs experienced at application-level, Fig-

ure 4.20 shows the corresponding PSNR and FER values of the different allocated cores
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of AMBA- and NoC-based decoders for decoding test4.m2v. The PSNR and FER values

were found at SER of 10−9 using the video bitstream test4.m2v. As can be seen, NoC-

based decoder gives better PSNR for all architecture allocations (Figure 4.20(a)) due to

lower number of SEUs experienced during computation, Fcomp (Section 4.5.2.1). Due

to increased Fcomp for increasing number of allocated cores, architecture with higher

number of cores give poorer PSNRs for AMBA- and NoC-based decoders. For example,

PSNR decreases from 99dB for architecture with 2 cores to 84dB for architecture with

5 cores for AMBA-based decoder (Figure 4.20(a)). As expected, decoder architecture

with higher number of cores gives higher FER due to increased Fcomm (Table 4.6). For

example, FER increases from 2% for architecture with 2 cores to 4.5% for architecture

with 5 cores for AMBA-based decoder (Figure 4.20(b)). Note that AMBA-based de-

coder gives lower FER when compared with NoC-based decoder due to lower number of

SEUs experienced during communication, Fcomm (Section 4.5.2.2).

4.6 Concluding Remarks

This chapter has presented a comparative analysis between shared-bus AMBA and NoC

in terms of performance and reliability using real application traffic of MPEG-2 video

decoder in cycle-accurate simulation environment. Supported by analytical and simula-

tion results, it has been shown that the NoC-based decoder reduces decoding time by a

factor of 2.18 on average compared to AMBA-based decoder (Section 4.3) for the MP-

SoC architecture with four processing cores (Figure 4.1). Despite higher channel latency,

NoC-based decoder has higher core concurrency, core efficiency and bandwidth advan-

tage over AMBA-based decoder and can operate at lower frequency (approximately 43%)

than AMBA-based decoder (Section 4.4). It has also been shown that AMBA-based

decoder experiences higher SEUs for a given soft error rate during computational pro-

cessing due to higher execution time and NoC-based decoder experiences higher SEUs

during packet communication due to higher register usage and channel latency (Sec-

tion 4.5). Considering reliability at application-level in terms of peak signal-to-noise

ratio (PSNR), it was shown that NoC-based decoder has upto 4dB higher PSNR com-

pared to AMBA-based decoder. However, due to higher communication SEUs injected,

NoC-based decoder gives upto 3% higher MPEG frame error ratio (FER) . Furthermore,

the impact of architecture allocation on the performance and reliability were shown. The

comparisons in this chapter have focused on performance and reliability aspects between

NoC and AMBA, while it supports the previously reported comparisons involving power,

area and scalability in [6, 79].



Chapter 5

Voltage Scaling Technique for

Power Minimisation

Chapter 4 presented a comparative analysis of performance and reliability between two

on-chip communication architectures: shared-bus AMBA and network-on-chip (NoC).

The comparisons were carried out with the aim to identify an efficient on-chip commu-

nication architecture for multiprocessor system-on-chip (MPSoC). Power minimisation

is a key design objective of MPSoCs used in hand-held devices to extend battery life [89]

and is one of the main aims of this chapter. To address the power minimisation issue,

dynamic voltage scaling (DVS) technique has recently been proposed [55, 146] (a brief

introduction to DVS technique is presented in Section 2.2, Chapter 2). The DVS tech-

nique reduces the dynamic power consumption by decreasing the operating frequency

and supply voltage of a processing core in an MPSoC depending on its workload [147].

However, lowering the supply voltage reduces the critical charge of a circuit node re-

quired to induce a soft error by particle hit, causing exponential increase of soft errors

and degradation of reliability [88, 148] (a brief introduction to reliability is presented in

Section 2.3, Chapter 2). As a result, there is a trade-off between power minimisation

and reliability, which has been investigated recently in a number of publications, such

as [63, 91, 88, 148, 149].

At present there is growing interest in evaluating the impact of soft errors at application-

level rather than architectural-level, particularly in multimedia applications, to optimise

system design. This has recently led to the concept of application-level correctness [23].

In this chapter, a relationship between application-level correctness and system-level

power management using voltage scaling technique is established. Based on this rela-

tionship, a novel power minimisation technique is proposed to generate designs that are

optimised in terms of power consumption, while providing acceptable application-level

correctness and meeting a specified real-time performance deadline. The effectiveness

of the proposed technique is evaluated using an MPEG-2 video decoder as a case study

93
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and with peak signal-to-noise ratio (PSNR) as the application-level correctness met-

ric. Furthermore, using the proposed voltage scaling technique the impact of varying

the number of processing cores (architecture allocation) and application task mapping

(distribution of tasks among cores of the MPSoC architecture) is investigated on the

trade-offs between power minimisation and application-level correctness.

The rest of the chapter is organised as follows. Section 5.1 presents a review of related

works and Section 5.2 introduces the preliminaries. Section 5.3 outlines the motivation

of the proposed work and Section 5.4 establishes the relationship between application-

level correctness and power consumption leading to the development of the proposed

voltage scaling technique. Section 5.5 presents the experimental results and Section 5.6

investigates the impact of application task mapping (distribution of application tasks

among cores) and architecture allocation (varying the number of processing cores) on

the trade-off between application-level correctness and power minimisation. Section 5.7

provides further validation of the proposed power minimisation technique. Finally, Sec-

tion 5.8 concludes the chapter.

5.1 Related Works

Over the last decade, a number of techniques have been proposed to mitigate the effect

of soft errors in low power system design. Examples of such techniques used are redun-

dancy [89, 123], slack time scheduling, application check-pointing [63, 96], mapping and

scheduling of fault tolerance policies [74, 99] (a brief review of the different fault toler-

ance techniques is presented in Section 6.1, Chapter 6). The fault tolerance achieved

through these techniques are evaluated by different architectural- or application-level

metrics. A brief account of recently reported metrics follows.

Architectural-level evaluation of fault tolerance is described by a number of different

metrics. The fault tolerance cost of these metrics is a direct implication of the number

of faults seen at the architectural-level [150]. As a result, achieving high fault tolerance

can be expensive in terms of resources and power consumption using such metrics [61].

A commonly used architectural-level metric is the number of faults tolerated for a given

number of faults injected. Hardware architecture solutions proposed in [151, 152], check-

pointing-based fault tolerance technique proposed in [96, 97] and task replication and

re-execution-based fault tolerance technique proposed in [95] use this metric to tolerate

a given number of faults. The number of faults that can be tolerated in these techniques

is limited by the overhead of hardware or system resources that is incurred.

Probabilistic fault rate is also an effective architectural-level metric to describe the pres-

ence of soft errors [153]. Different parameters have been proposed to date describ-

ing probabilistic fault rates, such as mean-time-to-failure (MTTF), fault injection time
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(FIT), soft error rate (SER) and fault injection rate (FIR) (a brief introduction to differ-

ent probabilistic fault rates used in fault injection is presented in Section 2.3, Chapter 2).

The effectiveness of a fault tolerance technique using these metrics is demonstrated by

the improvement of the underlying fault rate as opposed to tolerating every fault present

in the system. As a result, the fault tolerance cost is greatly relaxed using probabilistic

fault rate metric. A number of fault tolerance techniques have been reported over the

years using this metric showing associated costs and trade-offs. For example, a convex

power minimisation problem has been presented using the relationship between soft er-

ror rate (SER) and the dynamic voltage scaling (DVS) in [14]. Similarly, in [9] a power

minimisation approach has been presented using the relationship between SER and gate

sizes. Another approach using an SER-based characterisation of fault tolerance is used

in [62] showing the trade-off between combined time and information redundancy and

power minimisation through DVS. In [74] fault tolerance is evaluated as improved fault

duration, which is achieved through mapping of fault tolerance policies to different pro-

cesses for real-time systems. Among other techniques reported, a power constrained

redundancy-based fault tolerance technique using MTTF is reported in [89] showing the

relationship between achievable fault tolerance and additional costs required. Also, a

soft error hardening technique is reported in [154] showing overhead in terms of power-

delay-area product.

Another effective architectural-level metric is to evaluate fault tolerance using a relia-

bility metric [100]. Reliability metric of an architectural component is expressed as a

function of fault rate and the associated costs of different parameters that affect relia-

bility of the component [155]. The overall reliability is expressed as a function of the

component reliabilities with appropriate weights to them depending on their impact on

the overall reliability. A reliability-centric high-level synthesis technique for embedded

systems is proposed in [156]. It is shown that the increased reliability causes higher

latency in the system and higher area due to additional resources required. A number

of studies have also demonstrated the trade-off between achievable reliability and re-

source overheads, e.g. in terms of hardware resources [157], latency [158] and scheduling

length [99].

Recently, different techniques have been proposed using application-level metrics to ease

fault tolerance requirements in the presence of errors. The aim is to evaluate the im-

pact of errors at application-level rather than architectural-level to reduce system cost.

The reduction of cost using these metrics depends on the design and application being

considered [159]. For example, according to [160, 161, 162] between 10%-40% of soft

errors in flip-flips result in data corruption in the memory at the application-level. This

means that between 60%-90% of soft errors do not have any effect on the system at

application-level. In another study of the effect of faults on applications, [7, 8] showed

that up to 0.2% error density is acceptable in multimedia applications. A similar finding

has recently been reported in [23, 24] showing that the soft errors at the architectural-



Chapter 5 Voltage Scaling Technique for Power Minimisation 96

level do not always lead to the errors at the application level . For example, using an

MPEG-2 video decoder it was shown that upto 46% of the single-event upsets injected

at application registers and queues do not have any impact at the application-level. The

ability of applications to mask the micro-architectural faults has been used to define the

concept of application-level correctness in [23, 24]. Because of the relaxed requirements

of application-level correctness, the authors of [23, 24] showed that application-level

correctness can be exploited for low-cost fault tolerance of embedded systems.

To exploit the advantage of low-cost fault tolerance using application-level correctness

for power minimisation in DVS-enabled systems, the relationship between application-

level correctness and voltage scaling is essential. Currently, no such relationship exists.

In this chapter, a relationship between application-level correctness and voltage scaling

is developed leading to a novel voltage scaling technique for system-level power minimi-

sation, while meeting real-time constraint and maintaining acceptable application-level

correctness.

5.2 Preliminaries

In this section, the application model, system architecture and fault injection model are

introduced and the concept of application-level correctness is briefly explained.

5.2.1 Application and Architecture

MPEG-2 video decoder constitutes a major component of the current and future mul-

timedia systems (refer to Appendix A for further details regarding MPEG-2 video de-

coder). In this work, the MPEG-2 video decoder has been chosen as a case study (ap-

plicability to other applications are explained in Section 5.7). Due to high performance

and reliability (Sections 4.4 and 4.5, Chapter 4), two-dimensional mesh-based NoC is

chosen as the multiprocessor system-on-chip (MPSoC) architecture. Figure 5.1(a) shows

an MPEG-2 video decoder using a mesh-based NoC architecture with four processing

cores. The architecture allocation (choice of number of processing cores) and application

task mapping (distribution of application tasks among cores) are carried out arbitrarily

to reflect MPSoC. The impact of architecture allocation and application task mapping

is investigated in Section 5.6. Figure 5.1(b) shows the block diagram of a processing

core in NoC. Each core has 8k bytes of data cache, 8k bytes of instruction cache and

256k bytes of local memory accessed through direct memory access (DMA) controller.

The cache and memory sizes are chosen to provide high availability of data and paral-

lelism among the processing cores. A clock tree generator is included to provide support

for voltage scaling in the MPSoC (details of the voltage scaling arrangement is pre-

sented in Section 5.2.2). Multiprocessor ARM (MPARM), a cycle-accurate simulator
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Figure 5.1: (a) An MPEG-2 video decoder MPSoC architecture based on two-
dimensional mesh-based NoC using four processing cores with support for voltage scal-
ing, and (b) block diagram of a processing core within the NoC tile used in this work

for ARM7TDMI processor proposed in [21], is used to obtain the power consumption

reported in this work. MPARM is based on real-time executive for embedded systems

(RTEMS [163]), which gives hardware-software (HW/SW) co-design and simulation en-

vironment with software implementation (such as MPEG-2 video decoder) using C/C++

and hardware implementation (such as processing elements and interconnects) using Sys-

temC. Employing cycle-accurate simulations, MPARM can profile system performance

and power estimation of the MPSoC application. For more details regarding MPARM,

see Section B.2, Appendix B.

MPEG-2 decoder operates with video frames of various resolutions and rates. In this

work, three video sequences of different frame resolutions and decoding rates are used for
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experimental purposes (Section 5.5) as shown in Table 5.1 (for different frame formats

and decoding rates used in MPEG-2 decoder, see Section A.1.1, Appendix A).

Sequence Frames Resolution, pixels Decoding rate
(frames/sec)

house† 623 QCIF:176 × 144 25 (PAL)

tennis‡ 437 CIF:352 × 240 29 (NTSC)

flower ‡ 440 2CIF:352 × 576 25 (PAL)

†Source: http://www.cortonaweb.net/eng/video/

‡Source: ftp://ftp.tek.com/tv/test/streams/Element/

Table 5.1: Test video sequences used for experimental purposes (Section 5.5)

5.2.2 Voltage Scaling

Voltage Scaling is an effective technique for power minimisation [48, 149] (see Section 2.2,

Chapter 2 for further details related to voltage scaling). To introduce power minimisa-

tion in the MPSoC decoder through the voltage scaling technique, a clock tree generator

is included (Figure 5.1(a)). Using this clock tree generator different processing cores

within the MPSoC are provided with different clock frequencies and operating voltages.

Figure 5.2(a) shows the voltage scaling arrangements for the processing core and switch.

As can be seen, two different clock frequencies are fed at the two ends of the NI: nom-

inal clock frequency (the maximum operating frequency, with no scaling) is attached

to the switch end and the clock with scaling is attached to the processing core end

(Figure 5.2(a)). The maximum available clock frequency is attached to the switch end

to keep the communication latency as low as possible [164]. Figure 5.2(b) shows the

voltage scaling arrangements for the network interface (NI) within the NoC tile, which

acts as an interface between switch and processing core. As can be seen, the NI plays an

important role in synchronising the two different clock frequencies: the first one (with

no scaling) drives the NI front-end, the side to which the switch is attached, and the

second one (with scaling through a clock divider) drives the NI back-end, the side to

which the processing core is attached (Figure 5.2(b)). The first FIFO buffers within

the NI incorporate necessary interface to enable synchronised communication between

the two ends. This process introduces further delay in channel latency, increasing the

original channel latency by 2 clock cycles for lower scaling of clock frequency by a factor

of 1. For example, the channel latency can increase from 9 clock cycles to 11, 13 and

15 clock cycles for scaling the operating clock frequency from nominal clock frequency

(200MHz, at the switch end) to the operating clock frequencies 100MHz, 66.7MHz and

50MHz (at the processing core end). Due to pipelined communication, increased chan-

nel latency does not affect the inter-core communication greatly. Similar voltage scaling
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arrangement (Figure 5.2(a) and (b)) is also used in [164].

For a given voltage scaling, the dynamic power consumption, P , of a processing core is

given as,

P = αCLfVdd
2 = αPmax (5.1)

where CL is the processor load capacitance per cycle, Vdd is the supply voltage, f is the

operating frequency, α is the processor activity factor and Pmax is the maximum dynamic

power (Pmax = CLfVdd
2). While CL, f and Vdd are dependent on process technology, α

is a fraction between 0 and 1 indicating how often clock ticks lead to switching activity

on average and depends on the application being executed on the processor [165]. The

DVS technique effectively reduces power consumption in (5.1) by scaling down Vdd and

f . For ARM7TDMI processor, the relationship between Vdd (in volts) and f (in MHz)

is given by [47] as,

Vdd(f, s) =

[

0.1667 +
4.1667 × f

103 × s

]

(5.2)

where s is the frequency scaling constant. According to [47], ARM7TDMI has nom-

inal supply voltage of Vdd=1V operating at f=200MHz and voltage scaling gradually

stalls below f=90MHz due to (5.2). Using (5.2), the available voltage-frequency scaling

options (eg. with scaling factor s=1, 2 and 3 in (5.2)) are shown in Table 5.2.

Scaling, s f , MHz Vdd, V

1 200 1

2 100 0.58

3 66.67 0.44

Table 5.2: Operating frequency, f and supply voltage, Vdd, for different scaling options
for ARM7TDMI processor

5.2.3 Fault Injection Model

In this work, SEU-based fault injection is carried out using the fault injection simu-

lator proposed in Chapter 3. The injection of SEUs using this simulator is initiated

through replacement of variable or signal types in the original design specification to

equivalent fault injection enabler types. Such type replacement enables the formation

of a fault locations database, which contains the target registers for SEU injection. The

fault injection simulator injects SEUs in these target registers based on the specified

soft error rates and probability distribution for determining fault locations. Figure 5.3

shows the fault injection setup used for the MPEG-2 decoder with four processing cores

(Figure 5.1). As can be seen, due to type replacement to fault injection enabler types

four fault locations databases are formed for the four processing cores (for example, fault

locations database 1 for core VLD, fault locations database 2 for core ISQ and so on).
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Figure 5.3: Fault injection setup for MPSoC decoder with four processing cores
(Figure 5.1)

For a given base soft error rate (SER, λ0, in number of SEUs per bit per cycle consider-

ing no scaling), the actual SERs (λ, after scaling) for processing cores are found by the

corresponding voltage settings used (Figure 5.3). For the resulting SERs, the SEUs are

injected at random locations determined by Poisson’s distribution in the target registers

of the fault locations databases. To control the fault injection timing, the system clock

of the MPEG-2 video decoder is connected to the fault injection simulator (Figure 5.3).

5.2.4 Application-level Correctness

Application-level correctness is a measure of the impact of architectural faults or soft

errors at application-level. It was introduced in [24, 166] showing that the faults at

architectural-level do not always lead to faults at application level, leading to low-cost

fault tolerance techniques. Depending on the nature of outcome and computation car-

ried out, the application-level correctness metric can be different for various applications.

For example, peak signal-to-noise ratio (PSNR) was used as application-level correctness

metric for MPEG-2 video decoder in [24]. In this work, PSNR is also used to determine

the objective quality of MPEG-2 video in the presence of SEUs and the corresponding

application-level correctness. The application-level correctness in terms of PSNR, de-

noted by Ω, defines the the ratio of peak video signal power to the mean-squared-error
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Figure 5.4: Application-level correctness in terms of PSNR (in dB) and frame error
rate (in %) of decoded frames of tennis video sequence (Table 5.1)

or noise power as

Ω = PSNR = 10 log10
1

ML

M
∑

m=1

L
∑

l=1

2552

(xm,l − ym,l)
2 (dB), (5.3)

where M is the number of frames in the video sequence, L is the number of pixels in

a frame, xm,l and ym,l are the l-th pixels in m-th reference and decoded frames. Note

that in the presence of SEUs, PSNR (given by (5.3)) is degraded due to alterations in

the registers that contain ym,l values. Other registers related to header sequence and

application flow control are also perturbed by these SEUs and causes frame errors or

losses. As a result, degradation of PSNR (in dB) is related to amount of frame losses in

the presence of SEUs [23]. Figure 5.4 shows the relationship between PSNR (in dB) and

frame error rate (FER, in %) for varying soft error rate (SER) from 10−10 to 10−6 using

the tennis video sequence (Table 5.1). As expected, with increasing SER, PSNR (in dB)

is degraded and FER (in %) is increased due to increased number of SEUs experienced

by the decoder (the variation of PSNR over increasing SERs is further explained in

Section 5.4.3). At low SERs, PSNR equal to or more than 90dB corresponds to excellent

quality of video with negligible frame loss (about 5% or below) [23] (bounded region on

left). With increased SERs, PSNR between 90dB and 20dB give average to poor quality

of video with less than 50% FER [24] (bounded region in the middle). As the SER

increases further, PSNR reduces to 20dB or below, corresponding to high FER of more

than 50% (bounded region on right, Figure 5.4). Such high FER and low PSNR gives

an unacceptable quality for real-time video [167]. In [168, 169], PSNR of 30dB has been
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considered as an acceptable application-level correctness (Ω) for video applications. In

this work, 30dB PSNR is also considered as the acceptable application-level correctness

(Ω).

5.3 Motivation

Power reduction through voltage scaling increases the soft error rate (SER) exponen-

tially [148]. The SER due to voltage scaling, λ, is expressed as a function of the base

SER (i.e. the SER with no voltage scaling), λ0, as [62]

λ = λ0.10
Vmax−Vdd

S , (5.4)

where Vmax is the maximum supply voltage (with no scaling), Vdd is the supply voltage

with scaling and S is the voltage value such that when supply voltage decreases by S,

the SER increases by one order of magnitude. According to [170], for 90-nm CMOS

technology the SER increases by 18 percent when Vdd is reduced by 10 percent. This

gives an S value of 1.39 in (5.4). Using this S value in (5.4), the SER increases by

approximately 2.5 and 3.3 times when Vdd is scaled from 1V to 0.58V and to 0.44V,

respectively. Such increase in SER leads to higher number of soft errors and reduction

in the PSNR (as described in Section 5.2.4). To demonstrate the impact of voltage

scaling on application-level correctness, Table 5.3 shows the PSNR values (Ω, in dB)

found using (5.3) and power values found through MPARM [21] assuming a base SER

of 3.98×10−8 SEUs per bit per clock cycle (equivalent to 1 fault per bit in every 250ms)

for the MPEG-2 decoder cores (Figure 5.1(a)). Depending on the technology feature

size and operating conditions, SER can vary and therefore, different values has been

reported [65]. For example, SER of 10−7 SEUs per bit per clock cycle was reported

for memory in [171] and SER of 10−2 SEUs/second (corresponding to SER of 10−10

SEUs per bit per clock cycle for 100MHz memory speed) was reported in [91]. The

different scaling options are shown in column 1, while power consumption (in mW) and

PSNR values (Ω, in dB) for each these scaling options are shown in columns 2 and

3 (Table 5.3). The PSNR values (column 3, Table 5.3) are found through decoding

the tennis video sequence (Table 5.1) and are evaluated using SystemC fault injection

experiments (Section 5.2.3).

Scaling, s Power (P ), mW PSNR (Ω), dB

1 27.2 63 (λ = 3.98 × 10−8)

2 4.9 33 (λ = 9.65 × 10−8)

3 2.5 23 (λ = 1.21 × 10−7)

Table 5.3: Power consumption (in mW) and PSNRs (in dB) for different voltage
scaling options at λ = 3.98 × 10−8
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From Table 5.3, it can be seen that the application-level correctness (Ω) in terms of PSNR

is the best (63dB) when no voltage scaling is applied (i.e. s=1, all processing cores of the

decoder operate with Vdd=1V and f=200MHz). However, this is achieved at the cost

of the highest power consumption of 27.2mW (column 2, Table 5.3). As lower voltage

scaling is applied (s=2 or s=3) to reduce the power consumption, the power minimisation

is achieved at the cost of reduced PSNR. For example, considering the case when s=2

(i.e. all four processing cores of the decoder, Figure 5.1(a), operate with Vdd=0.58V and

f=100MHz), the PSNR is reduced to 33dB compared to 63dB for the case when no

voltage scaling is used (i.e. s=1, all cores operate with Vdd=1V and f=200MHz). This

is due to the increase in the SER from 3.98×10−8 to 9.65 × 10−8 given by (5.4) arising

out of voltage scaling of s=2 as shown in column 3, Table 5.3. Note that it is possible

to reduce the power consumption further by using s=3 (i.e. all four processing cores

of the decoder of Figure 5.1(a) operate with Vdd=0.44V and f=66.7MHz). However,

using such voltage scaling causes an increase in the SER from 3.98×10−8 to 1.21×10−7

(column 3, Table 5.3) given by (5.4). This leads to an unacceptable level of application-

level correctness (Ω) of 23dB PSNR, since the minimum acceptable application-level

correctness (Ωref ) assumed in this work is 30dB PSNR.

Table 5.3 shows that power reduction without consideration of application-level correct-

ness leads to unacceptable application-level correctness (as in the case of s=3). This

poses an interesting question as to how the voltage scaling should be chosen for the

decoder processing cores to achieve the minimum power, while the application-level

correctness and real-time performance are maintained at acceptable levels.

5.4 Proposed Voltage Scaling Technique

To answer this question, the relationship between application-level correctness and power

minimisation through voltage scaling of the MPSoC cores needs to be developed. The

aim is to generate designs that are optimised in terms of minimised power consumption,

while providing acceptable application-level correctness and real-time performance. To

this end, first the power minimisation problem is formulated and then a novel power

minimisation technique through voltage scaling is developed.

5.4.1 Problem Formulation

Let P be the power of the multiprocessor system-on-chip (MPSoC) with C processing

cores, Ω be the application-level correctness for the MPSoC application and Dr be the

real-time performance (as decoding rate) of the application. The requirement is to reduce

P through voltage scaling on processing cores of the MPSoC, such that application-level

correctness, Ω, and real-time decoding rate, Dr, are maintained at acceptable levels (i.e.
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Ω ≥ Ωref and Dr ≥ Drated). Since P is a function of power of processing cores due

to voltage scaling, Pi (Vdd, f), Dr is a function of operating frequency, f , and Ω is a

function of increased soft error rate due to scaling of operating voltage, Vdd, the problem

can be expressed as the following cost function minimisation:

min : P =

C
∑

i

Pi (Vdd, f) , (5.5)

subject to:

Dr (f) ≥ Drated , (5.6)

Ω (Vdd) ≥ Ωref . (5.7)

Power minimisation through (5.5) with constraints (5.6) and (5.7) can be achieved using

simulations, which requires trying every possible scaling option on each processing core

in the worst case. For example, the MPEG-2 decoder (Figure 5.1(a)) with three different

scaling options (Table 5.2) would require a total of 34 = 81 simulations. This can be

expensive with increasing number of processing cores and wider scaling options. To

simplify the solution, a linear programming-based power minimisation through voltage

scaling is proposed.

5.4.2 Power Minimisation

The dynamic power consumption, P , of an MPSoC with C cores and S scaling options

on each core can be expressed as a function of binary scaling coefficient on each core, sij

(sij=1 when j-th voltage scaling on the i-th processing core is selected and sij=0 when

j-th voltage scaling on the i-th processing core is not selected), as

P =

C
∑

i=1

αi

S
∑

j=1

sijPij , (5.8)

where Pij is the maximum power (Pmax) of the i-th processing core for j-th scaling option

(defined in (5.1)). Equation (5.8) can be used to define the required cost function (5.5)

in terms of voltage scaling coefficient on each processing core as

min : P =

C
∑

i=1

αi

S
∑

j=1

sijPij . (5.9)

To allow only one scaling option for a core from S scaling options in the cost function

of (5.9), the necessary condition with sij is that the sum of all binary scaling coefficients
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of a processing core should be equal to 1, i.e.

∀i;
S
∑

j=1

sij = 1 . (5.10)

Equation (5.10) sets up the constraint related to choice of scaling options on each core

within an MPSoC. The activity factor of the i-th processing core, αi in (5.9), is given

by ratio of processor execution time, Ti, to the multiprocessor execution time, TM , i.e.

αi =
Ti

TM
. (5.11)

The αi, given by (5.11), is generally constant for a given application task mapping of an

application with minor variation due to different operating conditions, including voltage

and frequency scaling [165]. For power minimisation using the cost function definition

in (5.9), the constraint according to (5.6) is the real-time performance, which needs to

be greater than or equal to the MPEG decoding rate (in frames/s) in this case. For

a video with total M frames and the total application time of TA clock cycles (where

TA =
∑

i Ti), M/TA frames are processed in each clock cycle and hence the decoding

rate can be expressed as

Dr =
Mfeff

TA
, (5.12)

where feff is the effective frequency experienced by multiprocessor application and is

expressed as the sum of the chosen operating frequencies of the processing cores due to

scaling, sij, weighted by their corresponding activity factors αi, i.e.

feff =

C
∑

i=1

αi

S
∑

j=1

sijfij , (5.13)

where fij is the operating frequency of the i-th processing core due to j-th voltage

scaling. Using the feff definition in (5.13), the decoding rate is given in terms of

operating frequencies, fij , and scaling coefficient on the processing cores, sij, as

Dr =
M

TA

C
∑

i=1

αi

S
∑

j=1

sijfij ≥ Drated . (5.14)

The decoding rate expression in (5.14) sets up the constraint related to real-time perfor-

mance as the target is to achieve a decoding rate greater than or equal to the real-time

decoding rate, Drated.

Next constraint described by (5.7) is related to the application-level correctness, which

enables soft error-aware power minimisation. To develop such constraint, the require-

ment is that the overall SER of the multiprocessor, λ, should be limited such that

acceptable application-level correctness can be achieved. Voltage scaling is an effective
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technique to limit λ by controlling the SER of the processing cores. Let λi be the SER

of the i-th processing core, Ri be the average register usage in bits per clock cycle and Ti

be the execution time of the i-th processing core. The total number of SEUs experienced

by i-th processing core is given by the product of the execution time (Ti), register usage

(Ri) and the SER (in SEUs per bit per clock cycle) of the processing core (λi), i.e.

Γi = TiRiλi . (5.15)

Note that the λi in (5.15) is a function of the chosen voltage scaling coefficient on the

processing core, i.e. λi = sijλij, where λij is the SER of i-th processing core with j-th

scaling option. Hence, using (5.15) the total number of SEUs experienced by a decoder

with C processing cores, Γ, is given as

Γ =

C
∑

i=1

TiRi





S
∑

j=1

sijλij



 . (5.16)

Equation 5.16 gives the required expression for the total number of SEUs experienced in

an MPSoC application with C processing cores. As λij is the rate of SEUs per bit per

clock cycle, the average number of SEUs per clock cycle that occur in the i-th processor

is Riλij . Therefore, the average number of SEUs per clock cycle for the MPSoC is
∑

Riλij . With overall register usage of RA =
∑

Ri, the SER per cycle for the MPSoC

can be expressed as

λ =
C
∑

i=1

Ri

RA

S
∑

j=1

sijλij =
C
∑

i=1

ρi

S
∑

j=1

sijλij , (5.17)

where ρi = Ri/RA, which is generally constant for a given application and architec-

ture [172]. Equation (5.17) gives the relationship between SER, λij , and voltage scaling

of processing cores within an MPSoC. To facilitate power minimisation through voltage

scaling considering the impact on the application-level correctness (Ω), (5.17) needs to

be extended to incorporate the relationship between voltage scaling and Ω. In the fol-

lowing section, such relationship is found through statistical sampling and curve-fitting

technique to introduce application-level correctness (Ω) constraint in the proposed linear

programming-based power minimisation technique.

5.4.3 Application-level Correctness and Voltage Scaling Relationship

This section introduces the first investigation into the relationship between application-

level correctness and power minimisation through voltage scaling. The objective is to

enable the proposed voltage scaling technique to generate designs with minimised power

consumption, whilst meeting an acceptable application-level correctness and specified
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real-time performance using this relationship. To establish such relationship, the effect

of voltage scaling on each processing core on the application-level correctness is first

investigated, which is referred to as the application sensitivity of each processing core

within the MPSoC. According to [173], such sensitivity (in terms of reliability) of a mul-

tiprocessor system consisting of a number of processing elements is related to the number

of soft errors experienced over the application time and the nature of computation being

carried out. The total number of SEUs experienced by the i-th processing core, Γi, over

the application time for a given SER, λi, is given by (5.15). Since λi depends on the

voltage scaling being used due to (5.4), from (5.15) it is evident that the sensitivity of

the i-th processing core in terms of the number of SEUs experienced (Γi) depends on

voltage scaling, execution time (Ti), and average register usage (Ri) of the processing

core. To demonstrate the sensitivity of the processing cores within the MPSoC decoder

(Figure 5.1(a)) for a given SER, Table 5.4 shows the execution time, Ti (in cycles) and

the register usage, Ri (in kbits/cycle) of each processing core obtained through simula-

tions. The multiprocessor execution time, TM (in cycles), of the decoder is shown in row

Core Execution Time (Ti),
cycles

Register Usage (Ri),
kbits/cycle

VLD 8.04 × 108 23.1

ISQ 6.49 × 108 19.2

IDCT 1.17 × 109 19.3

MC 8.62 × 108 25.3

Multiprocessor TM=(1.407×109) −

Total TA=(3.48×109) RA=87

Table 5.4: Execution time and register usages of the processing cores of the MPEG-2
video decoder with four processing cores (Figure 5.1(a))

6, while the application time, TA (the sum of execution times of all processing cores, i.e.

TA =
∑

i Ti, in cycles) and total register usage, RA (in kbits/cycle) are shown in row 7

(Table 5.4). Using the Ti and Ri values from Table 5.4 in (5.15), and assuming SER of

3.98 × 10−8 (SEUs per bit per clock cycle) for no voltage scaling, the processing cores

VLD, ISQ, IDCT and MC of the decoder (Figure 5.1(a)) experience 7.4×105, 4.8×105,

8.7×106 and 8.3×105 SEUs, respectively. Hence, the most sensitive task of the decoder

in terms of largest number of SEUs experienced (Γi) is the IDCT, followed by the tasks

MC, VLD and ISQ. To evaluate the corresponding sensitivity at the application-level,

firstly the decoder PSNR performance (Ω) over varying λ0 is observed when the supply

voltages of all processing cores are scaled by the same amount. Also, to observe the

application-level sensitivity of each core, the PSNR performance (Ω) over varying λ0 is

obtained, when SEU injection is carried out one core at a time. Figure 5.5 shows the

corresponding PSNR values (Ω) for different scaling options. The Ω values are obtained

from average of 100 iterations of decoding the tennis video sequence (Table 5.1) for a
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specified λ0 and varying λ0 over the dynamic range from 10−10 to 10−5. Each fault injec-

tion experiment took on average 112 seconds for each iteration on Intel(R) Core(TM)2

2GHz CPU running SystemC in RHEL4.

From Figure 5.5(a)-(c), three key observations are made as follows:

Observation 1 : Comparing the PSNR values (Ω, in dB) from Figure 5.5(a)-(c), it is

evident that the MPEG-2 decoder has the worst application-level correctness (i.e.

the lowest PSNR) when the voltage of all the four processing cores are scaled by

s=3. This is due to the increase in soft error rate with such aggressive voltage

scaling to reduce power as described in Section 5.3.

Observation 2 : The second observation is related to the sensitivity of each task of

the decoder. From Figure 5.5(a), it can be seen that the task IDCT is the most

sensitive in terms of application-level correctness, followed by the tasks MC, VLD

and ISQ. The highest sensitivity of the task IDCT is because it experiences the

highest number of SEUs (given by (5.15) and Table 5.4) and carries out processing

that is more susceptible to SEUs, such as video block-level multiplication and

transpose. The other tasks experience less SEUs and carry out video processing

that are less susceptible to SEUs, such as header decoding in the task VLD and

video block-level substitution and fixed point multiplications in the tasks MC and

ISQ. It can be seen from Figure 5.5(b) and 5.5(c) that as the supply voltage is

scaled by a factor of 2 or 3, the PSNR (Ω) decreases significantly due to the

increase in SER. For example, at λ0 = 3.98 × 10−8, when the voltage scaling is

reduced from 1V to 0.44V (s=3), the number of SEUs experienced by the IDCT

core increases from 8.7 × 105 to 27 × 105, causing the degradation of the overall

PSNR (Ω) from 75dB (no scaling) to 42dB (scaling by 3).

Observation 3 : Referring to Figure 5.5(a), it can be seen that the PSNR values (Ω,

given by (5.3)) decrease with increasing SERs. The trend of reduction of the

PSNR values exhibit approximate exponential degradation with increasing SERs

until about 20dB. Beyond this point, the PSNR degradation is approximately

linear in the dB scale. This phenomenon can be explained as follows. With higher

SER, further PSNR degradation normally takes place with the predicted video

frames within a group of pictures of a video sequence. However, the intra-coded

or unpredicted video frames are decoded with rather higher PSNR (Ω) compared

to predicted video frames. This is because the decoding of unpredicted frames

are much simpler due to no or less compression and motion compensation, while

the predicted frames require complex decoding process involving decompression

and motion compensation. The higher complexity in processing makes predicted

frames highly sensitive in the presence of SEUs [141]. The cumulative effect is seen

as an approximate linear degradation below 25dB PSNR with higher SERs.
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(c) Scaling by 3
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(b) Scaling by 2
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(a) No Scaling
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Figure 5.5: Application sensitivity (in terms of PSNR, in dB) of processing cores and
multiprocessor MPEG-2 video decoder with varying base soft error rate, λ0, with (a)

no voltage scaling, (b) voltage scaling by 2, and (c) voltage scaling by 3



Chapter 5 Voltage Scaling Technique for Power Minimisation 111

Following the observation relating to application sensitivity and PSNR variation (Fig-

ure 5.5), an approximate relationship between application-level correctness in terms of

PSNR (Ω) and SER (λ) is found next. From Figure 5.5(a)-(c), using curve-fitting tech-

nique, an expression for PSNR (from 100dB to 20dB, which would suffice for the 30dB

acceptable lower limit), Ω, in terms of SER, λ, is found as

Ω = 100 exp (−aλ) , (5.18)

where a is the exponential decay constant. Empirically, the a values were found with

regression coefficient of 95% or more closeness of approximation. For example, the curve-

fitting of the decoder PSNR shown in Figure 5.5(a) gives a value of 11.96×106, resulting

in a regression coefficient of 98.2% closeness of approximation. Now, from (5.18), SER

can be given as, λ =
[

1
a

ln
(

100
Ω

)]

. Substituting this λ expression in (5.17) yields:

C
∑

i=1

ρi

S
∑

j=1

sij

(

1

aij

)

ln

(

100

Ωij

)

=
1

a
ln

(

100

Ω

)

, (5.19)

where aij is the exponential decay constant for i-th decoder core with j-th scaling op-

tion, Ω is the PSNR of multiprocessor decoder and Ωij is the PSNR of the i-th decoder

core with j-th scaling option. Equation (5.19) gives the required relationship between

application-level correctness and voltage scaling on the processing cores within an MP-

SoC. To provide a better insight into the impact of Vdd scaling, power consumption and

PSNR values for different voltage scalings are shown in Figure 5.6(a) and (b) employ-

ing (5.8), (5.14) and (5.19) for the tennis video sequence at SER of 3.98 × 10−8. The

voltage scaling coefficients are shown in horizontal axes, where the four digits represent

voltage scaling coefficients of processing cores IDCT, MC, VLD and ISQ, respectively.

As can be seen, voltage scaling with higher coefficients achieve higher power reduc-

tion (Figure 5.6(a)). However, this also affects the application-level correctness of the

MPEG-2 decoder in terms of PSNR, giving unacceptable application-level correctness

(Figure 5.6(b)).

To set the application-level correctness constraint through (5.19), the necessary condition

is to limit the overall SER such that it gives the application-level correctness at or above

the acceptable level, i.e. Ωref ≥ 30dB (Section 5.2.4). Considering the overall SER

produced as a result of the chosen voltage scaling options on the processing cores (given

by (5.17)) is applied to multiprocessor decoder cores with no scaling, (5.19) can be

expressed in terms of Ωref to give the following inequality expression:

C
∑

i=1

ρi

S
∑

j=1

sij

(

1

aij

)

ln

(

100

Ωij

)

≤
1

aj=1
ln

(

100

Ωref

)

. (5.20)

Equation (5.20) defines the final constraint based on application-level correctness. The
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Figure 5.6: (a) Power consumption (P , in mW) for different voltage scaling options
using tennis video sequence at soft error rate (SER) of 3.98 × 10−8, and (b) PSNR
values (Ω, in dB) for different voltage scaling options using tennis video sequence at

soft error rate (SER) of 3.98 × 10−8

proposed voltage scaling technique employs linear programming to solve for optimised

voltage scaling of each core within an MPSoC architecture and gives minimised power

using cost function in (5.9) and constraint functions in (5.10), (5.14) and (5.20).

5.5 Experimental Results

In this section, the effectiveness of the proposed voltage scaling technique (Section 5.4)

for power minimisation is evaluated using the MPEG-2 video decoder (Figure 5.1(a))

as a case study, whilst providing acceptable application-level correctness (30dB PSNR

as also used by [168, 169]) and real-time performance (Table 5.1). In this section, the

proposed soft error-aware voltage scaling technique is illustrated and compared with the
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soft error-unaware techniques. Also, the impact of choice of scaling levels and acceptable

level of application-level correctness on power minimisation using the proposed voltage

scaling technique is presented. Table 5.5 shows three experiments carried out using the

tennis video sequence, denoted as Exp:1, Exp:2 and Exp:3. Cycle-accurate simulator

MPARM [21] is used to obtain the reported power consumption values (further details

can be found in Section B.2, Appendix B), while fault injection is carried out using the

fault injection simulator (Section 5.2.3). The three experiments are explained in the

following:

Exp:1 shows three aggressive voltage scaling options for the decoder cores: with no

scaling (i.e. s = 1) or with the same voltage scaling coefficients (i.e. s = 2 and s = 3)

at SER of 3.98 × 10−8 (rows 2, 3 and 4, Table 5.5). As expected, power consumption

is reduced when lower voltage scaling is applied compared to no voltage scaling. This

reduction in power consumption is achieved in some cases with unacceptable PSNR and

decoding rate. For example, when s = 3, power consumption is lowest but PSNR is

23dB (less than 30dB acceptable PSNR) and decoding rate 19 frames/s (less than 29

frames/s, Table 5.1).

Scaling Coefficients

Exp. SER, λ
(×10−8)

Core
VLD

Core
ISQ

Core
IDCT

Core
MC

P ,
mW

Ω,
dB

Dr,
frames/s

Exp:1

3.98 1 1 1 1 27.2 65 65

3.98 2 2 2 2 4.9 32 32

3.98 3 3 3 3 2.5 23 19

Exp:2

3.98 2 3 2 2 4.2 31 29

5.75 2 1 2 2 8.9 33 31

8.53 1 1 2 1 19.7 32 51

Exp:3

3.98 2 3 2 2 4.2 31 29

5.75 2 3 2 2 4.2 23 29

8.53 2 3 2 2 4.2 18 29

Table 5.5: Application-level correctness and power minimisation trade-off using tennis
video sequence

Exp:2 demonstrates the effectiveness of the proposed voltage scaling technique to gen-

erate designs with minimised power consumption that maintains acceptable application-

level correctness and meets the real-time performance constraint for three given SERs

(rows 5, 6 and 7, Table 5.5). As can be seen, at SER of 3.98 × 10−8, three out of four

decoder cores have been scaled by 2 (f=100MHz and Vdd=0.58V), while the other core

(ISQ) has been scaled by 3 (f=66.67MHz and Vdd=0.44V). As a result of such voltage

scaling power is reduced to 4.2mW, while maintaining PSNR of 31dB (>30dB PSNR)

and decoding rate of 29 frames/s. As SER is increased to 5.75 × 10−8, the core ISQ



Chapter 5 Voltage Scaling Technique for Power Minimisation 114

could not scaled, while the other cores were scaled by 2 to produce design with accept-

able PSNR. Due to increased voltage scaling, power consumption increases to 8.9mW to

maintain the specified application-level correctness (>30dB PSNR) and decoding rate

(29 frames/s) compared to 4.2mW for the case when SER is 3.98 × 10−8. The reason

for core ISQ of the decoder not being scaled is that the core has low power contribution

due to low activity factor (Section 5.4.3) and also less sensitivity to application-level

correctness (Figure 5.5). The low sensitivity of core ISQ in terms of application-level

correctness arises from video block-level substitution and quantisation, which are also

less affected by the lower number of SEUs injected (Section 5.4.3). With further in-

crease in SER to 8.53 × 10−8, only one of the four processing cores (core IDCT) have

been scaled by 2 to meet acceptable PSNR, leading to even higher power consumption

of 19.7mW. Comparing between Exp:2 and Exp:1 at SER of 3.98×10−8 (Table 5.5), the

proposed voltage technique reduces the power consumption by 85%, while ensuring the

application-level correctness (Ω) and real-time decoding performance (Dr) are at accept-

able levels. These two experiments demonstrate the trade-off between application-level

correctness in terms of PSNR and power consumption that exists when generating de-

signs with reduced power consumption and acceptable levels of PSNR and real-time

performance.

Exp:3 highlights the significance of considering application-level correctness constraint

for power minimisation using a soft error-unaware voltage scaling technique. The aim

is to show that using such voltage scaling technique it is possible to produce designs

with low power consumption that violate application-level correctness requirement. Nu-

merous soft error-unaware voltage scaling for power minimisation has been proposed to

date, most of which employ the principles of workload balancing and allocation, such

as [52, 174]. Based on these principles, Exp:3 shows a power minimisation technique

such that processing cores with high activity factors (i.e. higher workload) can operate

with no or higher voltage scaling and processing cores with low activity factors (i.e.

lower workload) can operate with lower voltage scaling. As can be seen from Exp:3 (Ta-

ble 5.5), using soft error-unaware technique with the SERs of 5.75×10−8 and 3.98×10−8

give similar voltage scaling but results in an unacceptable application-level correctness

of 23dB PSNR for higher SER and even lower PSNR with increasing SERs. The above

three experiments were carried out using GNU Linear Programming Kit (GLPK) to solve

for the linear programming-based power minimisation. The average solution time for a

set of voltage scaling coefficients using GLPK is between 2-10 seconds on an Intel(R)

Core(TM)2 2GHz CPU running RHEL4.

In Table 5.5, the experimental results have been obtained using the tennis video se-

quence. Other video sequences given in Table 5.1 have also been experimented using

Exp:2. Similar trade-off between application-level correctness and power consumption

were observed as shown in Table 5.6. As can be seen, the decoder (Figure 5.1(a))

processing house video sequence with smaller resolution of frames (i.e. QCIF resolu-
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Scaling Coefficients

Video
Seq.

SER
(×10−8)

Core
VLD

Core
ISQ

Core
IDCT

Core
MC

P,
mW

Ω,
dB

Dr,
frames/s

house

3.98 2 2 3 3 3 30 98

5.75 2 1 2 1 8.9 30 175

8.53 1 1 2 1 19.7 31 204

flower

3.98 1 1 2 1 19.7 47 26

5.75 1 1 1 2 21.6 32 28

8.53 1 1 1 1 27.2 31 32

Table 5.6: Application-level correctness and power minimisation trade-off using other
video sequences

tion, Table 5.1) gives lower power consumption of 3mW compared to 4.2mW for tennis

video sequence, while maintaining acceptable level of application-level correctness (30dB

PSNR) and real-time decoding rate (98 frames/s). This is because at lower resolutions,

the decoder requires less number of clock cycles per frame (for example, 2 × 106 clock

cycles per frame for house video sequence, compared to 7.95×106 clock cycles per frame

for tennis video sequence), making it easier to achieve decoding rate constraint given

by (5.14). As the frame resolution increases, the decoder requires more processing cy-

cles per frame (for example, 15.5×106 clock cycles per frame for flower video sequence)

and gives less opportunities for voltage scaling. This gives higher power consumption of

19.7mW for flower video sequence compared to 4.2mW for tennis video sequence. With

increased SER, the proposed voltage scaling technique limits the voltage scaling options

to maintain acceptable level of application-level correctness, resulting in higher power

consumption (Table 5.6).

The choice of number of available scaling levels has a crucial role in power minimisation

using the proposed voltage scaling technique. In Exp:2 (Table 5.5), only three levels of

scaling (Table 5.2) was used. To demonstrate the impact of choice of scaling option using

proposed voltage scaling, Table 5.7 shows the power consumption (in mW), PSNRs (in

dB) and decoding rates (in frames/s) for S=2 (with s=1 and s=2 only in Table 5.2)

at different SERs. The results in Table 5.7 are generated using tennis video sequence

(Table 5.1) with different SERs. As can be seen from Table 5.7, with scaling option of

S=2, the solution space for the cost function of the linear programming-based proposed

voltage scaling technique shrinks for a given number of processing cores (according

to (5.9)), giving it less flexibility of scaling voltages of each core and minimizing power

further. For example, at SER of 3.98 × 10−8, the proposed voltage technique gives

power consumption of 4.9mW for S=2 compared to 4.2mW for S=3 (Exp:2, Table 5.5).

As expected, the power consumption increases further with increased SER as voltage

scaling options become limited for the given application-level correctness (Ω≥30dB) and
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Scaling Coefficients

SER
(×10−8)

Core
VLD

Core
ISQ

Core
IDCT

Core
MC

P,
mW

Ω,
dB

Dr,
frames/s

3.98 2 2 2 2 4.9 32 32

5.75 2 1 2 2 8.9 33 31

8.53 1 1 2 1 19.7 32 51

Table 5.7: Application-level correctness and power minimisation trade-off using num-
ber of voltage scaling levels of S=2

decoding rate constraints (Dr≥29fps).

In Exp:2 (Table 5.5), 30dB has been used as the minimum acceptable application-level

correctness, which is also used by [169]. To investigate the impact of choice of acceptable

application-level correctness in terms of PSNR, 20dB (as suggested by [175]) and 40dB

(as suggested by [176]) PSNRs are also used as constraints in (5.7). Table 5.8 shows the

power consumption (in mW), PSNRs (in dB), real-time decoding rates (in frames/s) for

these constraints. The results in Table 5.8 are generated using tennis video sequence

of Table 5.1 and using the SER of 8.53 × 10−8. As can be seen in Table 5.8, due to

Scaling Coefficients

Acceptable
PSNR, dB

Core
VLD

Core
ISQ

Core
IDCT

Core
MC

P,
mW

Ω,
dB

Dr,
frames/s

20 2 2 2 2 8.9 20 32

40 1 2 1 1 24.5 42 62

Table 5.8: Power consumption (in mW), PSNRs and decoding rates of the MPEG-2
video decoder (Figure 5.1(a)) using the proposed voltage scaling with different levels of

acceptable application-level correctness (in terms of PSNR, dB)

lowered requirement of acceptable application-level correctness, such as 20dB PSNR

(row 2), the proposed voltage scaling technique gives minimised power consumption of

8.9mW compared to 19.7mW for acceptable PSNR of 30dB (row 4, Table 5.5) with the

same SER. This is because with such low requirement of acceptable PSNR, achieving

the application-level correctness constraint in (5.20) becomes easier with higher scaling

options. On the other hand, when acceptable PSNR is set to a higher level, achieving

power minimisation with higher scaling becomes harder and the proposed voltage scaling

technique gives higher power consumption. For example, with acceptable PSNR of 40dB,

the proposed voltage scaling gives no scaling on all cores except for the core ISQ. This

results in a higher power consumption of 24.5mW (row 3, Table 5.8), compared to

19.7mW for acceptable PSNR of 30dB (row 4, Table 5.5).

The experimental results in this section have been obtained using MPSoC decoder ar-

chitecture with four processing cores (Figure 5.1(a)), while decoding different video
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sequences (Table 5.1). A number of trade-offs between application-level correctness and

power consumption using voltage scaling have been observed. In the following section,

the effect of application task mapping (distribution of tasks among cores of the MPSoC

architecture) and architecture allocation (choice of the number of cores needed in MP-

SoC architecture) on power minimisation using the proposed voltage scaling technique

is investigated, while maintaining acceptable application-level correctness and real-time

performance.

5.6 Application Task Mapping and Architecture Alloca-

tion

The influence of application task mapping and architecture allocation on system perfor-

mance in the context of HW/SW co-design has been investigated extensively [48, 147,

177]. In this section, the impact of application task mapping and architecture alloca-

tion on the trade-off between application-level correctness and power minimisation is

investigated.
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Figure 5.7: Task graph of MPEG-2 video decoder (Figure 5.1(a)) with eleven tasks

5.6.1 Application Task Mapping

Application task mapping is a crucial step in the design of the MPSoC applications,

which involves distribution of the computation and communication tasks among the

processing cores and interconnects of an MPSoC architecture. Figure 5.7 shows the

task graph of the MPEG-2 video decoder (Figure 5.1(a)) with eleven tasks. Each node

represents a computational task weighted by number in parenthesis, indicating the cost

in terms of execution time. The edge between nodes represents the communication

task shown with cost that describes the time required to transfer data between the

tasks with shown directions. All costs are multiples of 5.5 × 106 clock cycles and are
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obtained through SystemC cycle-accurate simulations assuming 32-bit transfer width.

The computational tasks are modelled as separate task processes, while the communi-

cation between tasks is modelled as message passing queues. The communication time

between tasks is found by dividing the size of inter-task queue by the bandwidth of

the channel (in bits per cycle). The effect of mapping the tasks on processing cores

on communication cost is not modelled explicitly rather an worst-case approximation is

assumed. Similar assumptions have also been used in [74, 172].

Mapping Core Mapped Tasks Ri, kbit-
s/cyc.

Ti, cyc.
(x109)

M1 (Figure 5.1(a))

Core 1 t1, t2, t3, t4 23.1 0.804

Core 2 t5, t6 19.3 0.649

Core 3 t7, t8 19.4 1.165

Core 4 t9, t10, t11 25.4 0.862

Multiprocessor 87 1.407

M2 (optimised for
reduced register
usage)

Core 1 t1, t2, t3, t4, t5, t6 25.6 1.254

Core 2 t7, t8 19.4 1.2098

Core 3 t9, t10 21.2 0.8317

Core 4 t11 14.2 0.1845

Multiprocessor 80 1.489

M3 (optimised for

parallelism)

Core 1 t1, t2, t3, t4, t5 23.1 0.9077

Core 2 t6, t7 23.1 0.9835

Core 3 t8 19.4 0.6052

Core 4 t9, t10, t11 25.4 0.9835

Multiprocessor 91 1.258

M4 (optimised for
reduced register
usage &
parallelism)

Core 1 t1, t2, t3, t4, t5 23.2 0.9078

Core 2 t6, t7 23.2 0.9835

Core 3 t8, t9 20.1 1.031

Core 4 t10, t11 23.9 0.5577

Multiprocessor 88 1.261

Table 5.9: Different task mappings, register usages and execution times for MPSoC
decoder using four cores

Numerous mapping combinations are possible for decoder design using the MPEG-2

video decoder task graph (Figure 5.7) on the MPSoC architecture (Figure 5.1). Ta-

ble 5.9 shows four different task mappings carried out based on the decoder task graph

(Figure 5.7). The mapping M1 is the mapping employed in Figure 5.1(a), M2 is map-

ping optimised for reduced register usage, M3 is mapping optimised for high parallelism

and finally, M4 is mapping jointly optimised for reduced register usage and high par-
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Figure 5.8: Impact of different application task mappings on (a) application-level
correctness and (b) decoding rates of the MPEG-2 video decoder

allelism. The task mappings M2, M3 and M4 in Table 5.9 are found by simulated

annealing technique using group migration-based task movement proposed in [172]. The

simulated annealing is carried out with adaptive simulated annealing tool [178] (refer

to Appendix B for more details) using the parameters reported in [172]. As expected,

mapping M2 has the lowest register usage (80 kbits/cycle) due to localisation of tasks

(more tasks mapped in a processing core) and mapping M3 has the lowest multiproces-

sor execution time due to high parallelism among processing cores (1.258 × 109 clock

cycles). Mapping M4 offers a good trade-off between register usage and multiprocessor

execution time by carefully distributing the tasks among processing cores. Figure 5.8(a)

shows the impact of application task mapping on application-level correctness in terms

of PSNR for different SERs. As expected, the PSNR worsens as the SER increases

for all mappings. Mapping M2 exhibits the worst PSNR (62dB) when compared with

other three mappings (Figure 5.8(a)). This is because, reduced register usage in M2

is achieved through localization of tasks, which eventually increases the multiprocessor

execution time and gives higher number of SEUs experienced, given by (5.16). Due to

increased multiprocessor execution time, mapping M2 gives the lowest decoding rate (62

frames/s) for a given given operating frequency (Figure 5.8(b)). Mapping M3 gives the

best decoding rate (73 frames/s) as tasks are mapped to give high parallelism. It can be
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seen that mapping M4 gives the highest PSNR (71dB) among all task mappings. The

highest PSNR in mapping M4 is due the lowest SEUs experienced, given by (5.16). To

demonstrate the trade-off between power consumption and application-level correctness

for different task mappings (M2, M3 and M4), Table 5.10 shows the voltage scaling of

the decoder processing cores. As can be seen, mapping M4 has the lowest power con-

Scaling Coefficients

Mapping SER, λ0
(×10−8)

Core
1

Core
2

Core
3

Core
4

P ,
mW

Ω,
dB

M2

3.98 2 2 2 1 5.6 35

5.75 2 2 1 1 10.7 32

8.53 1 1 1 1 26 37

M3

3.98 2 3 2 2 4.8 30

5.75 2 2 1 2 9.9 33

8.53 1 1 1 2 20 32

M4

3.98 2 3 3 2 3.6 31

5.75 2 2 2 2 5.5 30

8.53 1 1 2 1 19.1 30

Table 5.10: Impact of decoder task mapping on the power minimisation using the
proposed voltage scaling technique

sumption for different SERs, while it provides acceptable PSNR values (≥ 30dB PSNR)

when compared with the other three mappings (M1 mapping results are reported in

Exp:2, Table 5.5). Due to joint optimisation with high multiprocessor parallelism and

low register usage in mapping M4, it gives more opportunities for voltage scaling for

power minimisation using the proposed technique and saves 16.7% power than mapping

M1, 55.6% power than mapping M2 and 33.3% power than mapping M3 at SER of

λ0 = 3.98 × 10−8 (Table 5.10). Due to the lowest PSNR in mapping M2 (Figure 5.8),

there is less opportunity for voltage scaling on the processing cores. Hence, mapping

M2 gives the highest power consumption among all task mappings. As the SER in-

creases, voltage scaling is limited but similar trade-off between power consumption and

application-level correctness is observed. From Table 5.10, it is evident that the task

mapping that is jointly optimised for reduced register usage and reduced multiprocessor

execution time (mapping M4) offers the best choice among all mappings (Table 5.9) for

power minimisation using the proposed technique, while meeting a real-time performance

and maintaining an acceptable application-level correctness.
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5.6.2 Architecture Allocation

Architecture allocation is a system-level design step for MPSoCs involving the choice of

allocation of different components and their interconnections into the architecture (see

Section 2.4.2.1, Chapter 2 for further details). In this work, architecture allocation is

referred to as allocation of number of processing cores in the MPSoC architecture. The

impact of architecture allocation on power minimisation and application-level correctness

is investigated next.

Architecture allocation with higher number of processing cores allows for more computa-

tional resources and higher parallelism. For the MPSoC decoder increasing the number

of processing cores is expected to give lower multiprocessor execution time and bet-

ter decoding rate. However, with higher number of processing cores tasks distribution

causes shared memory resources to get duplicated further, increasing the register usage

of the MPSoC application. The higher register usage, in turn, increases the total num-

ber of SEUs seen by the application (given by (5.15)), the application-level correctness

becomes worse. Hence, an interesting problem is to choose the right number of allocated

cores in an architecture for the multiprocessor application that gives minimum power

consumption using the proposed voltage scaling technique, while meeting the real-time

performance and maintains acceptable application-level correctness.
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Figure 5.9: (a) Multiprocessor execution time and register usage for different archi-
tecture allocations, (b) PSNRs for different architecture allocations at different SERs,
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quencies
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Allocation Core Mapped Tasks

2 Cores
Core 1 t1, t2, t3, t4, t5, t6, t7

Core 2 t8, t9, t10, t11

3 Cores

Core 1 t1, t2, t3, t4, t5, t6

Core 2 t7, t8

Core 3 t9, t10, t11

4 Cores

Core 1 t1, t2, t3, t4, t5

Core 2 t6, t7

Core 3 t8, t9

Core 4 t10, t11

5 Cores

Core 1 t1, t2, t3, t4

Core 2 t5, t6

Core 3 t7

Core 4 t8, t9

Core 5 t10, t11

6 Cores

Core 1 t1, t2, t3, t4

Core 2 t5, t6

Core 3 t7

Core 4 t8

Core 5 t9

Core 6 t10, t11

Table 5.11: Task distribution among cores for different architecture allocations using
MPEG-2 video decoder task graph (Figure 5.7)
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To demonstrate the impact of architecture allocation on task mapping, Table 5.11 shows

the mapped tasks for different allocations from 2 cores to 6 cores. The task mappings

are carried out using MPEG-2 video decoder task graph (Figure 5.7) using joint opti-

misation with reduced register usage and high parallelism (mapping M4) as it has been

shown to effectively reduce power consumption through the proposed voltage scaling

technique (Section 5.6.1). The architecture allocation and per core mapped tasks are

shown in columns 1-3 (Table 5.11). To demonstrate the impact of architecture alloca-

tion on application-level correctness, Figure 5.9(a) shows the register usage (in kbits per

cycle) and multiprocessor execution times (in 109 cycles) for different decoder architec-

tures (from 2 cores to 6 cores) with mapped tasks shown in Table 5.11. As expected,

as the number of cores increases the register usage also increases due to duplication of

task memory resources among cores. Also, the multiprocessor execution time decreases

due to higher parallelism among processing cores. Figure 5.9(b) shows the resultant

PSNRs (in dB) for different SERs using tennis video sequence and Figure 5.9(c) shows

the decoding rates for different operating frequencies. As expected, architecture with

2 cores has the highest PSNR (Figure 5.9(b)) due to lowest register usage and subse-

quently the least number of SEUs injected (according to (5.15)). However, due to higher

multiprocessor execution time, architecture with 2 cores has the the lowest decoding rate

(Figure 5.9(c)) when compared with the other architectures. With increased number of

allocated cores (i.e. from 2 cores to 6 cores), PSNR decreases with increased register

usage (and hence increased number of SEUs experienced), while the decoding rate in-

creases due to decreased multiprocessor execution time. For example, architecture with

6 cores give the lowest PSNR (Figure 5.9(a)) and highest decoding rates (Figure 5.9(b))

compared to other architectures.

To demonstrate the trade-off between power consumption and application-level correct-

ness for different architecture allocations, Table 5.12 shows the power consumption (in

mW), PSNR (in dB) and decoding rates (in frames/s) using the proposed voltage scal-

ing for the different architectures for three different SERs. It can be seen that as the

number of cores in the architecture increases from 2 to 4, the power consumption re-

duces since the operating voltage of the processing cores can be scaled. However, as the

number of cores in the architecture increases from 4 to 6, the PSNR reduces because

of the increase in the register usage (due to duplication of memory resources among

cores, Figure 5.9(b)) and the subsequent increase in the injected SEUs. This makes it

harder to scale the processing cores and gives higher power consumption, while maintain-

ing acceptable application-level correctness (30dB PSNR, Section 5.2.4) and real-time

performance (Table 5.1).
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Scaling Coefficients

Allocation SER,
λ0
(×10−8)

Core
1

Core
2

Core
3

Core
4

Core
5

Core
6

P ,
mW

Ω,
dB

Dr,
frames/s

2 Cores

3.98 1 1 - - - - 14.7 71 33.5

5.75 1 1 - - - - 14.7 52 33.5

8.53 1 1 - - - - 14.7 33 33.5

3 Cores

3.98 2 1 2 - - - 9 35 30

5.75 2 1 1 - - - 13.6 30 36.5

8.53 1 1 1 - - - 19.6 35 45

4 Cores

3.98 2 3 3 2 - - 3.6 31 29

5.75 2 2 2 2 - - 5.5 30 34

8.53 1 1 1 1 - - 19.1 30 55

5 Cores

3.98 2 2 2 2 2 - 5.8 30 38.3

5.75 2 2 2 1 2 - 13.9 30 49.5

8.53 3 2 2 1 1 - 18.4 32 54.3

6 Cores

3.98 2 2 2 3 2 3 9.1 31 33.5

5.75 2 2 2 2 2 1 20.5 31 44

8.53 2 3 1 1 2 1 37.5 30 54

Table 5.12: Power consumption (in mW), PSNRs (in dB) and decoding rates (in frames/s) for different architecture allocations using the
proposed power minimisation technique
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Similar trade-off between power consumption and application-level correctness was ob-

served with increased SERs. For example, at SER of 5.75×10−8 more SEUs are injected

in the processing cores (causing degradation of application-level correctness in terms of

PSNR) and as such the proposed voltage scaling technique limits the scaling factors on

processing cores to maintain acceptable application-level correctness and decoding rates.

This results in an increased power consumption of 13.9mW for 5 cores (for example) at

SER of 5.75 × 10−8 compared to 5.8mW at SER of 3.98 × 10−8. Note that depending

on the soft error rate, the architecture that gives the minimum power using proposed

voltage scaling technique also varies due to the trade-off between application-level cor-

rectness and power consumption. For example, architecture with 4 allocated cores give

the minimum power among all architectures for SERs 3.98×10−8 and 5.75×10−8, while

2 allocated cores give the minimum power among all allocations for SER 8.53 × 10−8.

5.7 Synthetic Application Examples

In Sections 5.5 and 5.6, MPEG-2 decoder is used as a case study to validate the pro-

posed voltage scaling technique. In this section, more validations of the proposed power

minimisation technique is investigated using synthetic application examples. Since the

synthetic applications do not describe the nature of processing and output involved,

the application-level correctness is hypothetically defined as a direct implication of the

overall soft error rate (SER) resulting from voltage scaling on processing cores. Hence,

the constraint in (5.20) needs to replaced by an overall SER constraint for synthetic

applications given by (5.17). Using (5.17), the overall SER constraint can be expressed

as

λ =

C
∑

i=1

ρi

S
∑

j=1

sijλij ≤ λref . (5.21)

The real-time performance (in seconds) can be found through dividing the multiprocessor

execution time (TM , in clock cycles) by effective multiprocessor frequency due to voltage

scaling, feff , given by (5.13). Hence, the real-time performance constraint is given as

TM

C
∑

i=1

αi

S
∑

j=1

sijfij

≤ TMref
, (5.22)

where TMref
is the specified overall real-time constraint (in seconds). The proposed

voltage scaling technique can be employed to give minimised power for the synthetic

applications through linear programming using the cost function in (5.9) and constraint

functions in (5.10), (5.22) and (5.21).

To validate the proposed technique further, a number of synthetic application examples



Chapter 5 Voltage Scaling Technique for Power Minimisation 127

using random task graphs with 20, 40, 60, 80 and 100 tasks are used. The random

task graphs are generated using the random task and resource graph tool [179] (for

sample task graphs, see Appendix C). The cost and the number of dependent tasks

in the random task graphs are generated using uniform probability distribution with

computation cost between 1 and 30, communication cost between 1 to 10 (all costs as

multiples of 3.5×106 clock cycles), task register usage between 1kbits to 5kbits and the

number of dependants was found by exponential distribution between 0 to N/2, where

N is the number of tasks. The deadline for random task graphs are set to 15, 20, 30, 40

and 50 seconds for random task graph with 20, 40, 60, 80 and 100 tasks, respectively.

Also, the SER constraint in (5.21) is set to an arbitrary SER of λref=10−7 for illustra-

tion purposes. Table 5.13 shows the power consumption (in mW) and the number of

SEUs experienced by the random task graphs for different architecture allocations using

mapping M4. The fault injections were carried out using a base soft error rate (SER)

of 3.98 × 10−8, while the power values were found using (5.1). The applications are

shown in column 1, while the power consumption (P ) and the overall SER (λ) of each

architecture allocation (from 2 cores to 6 cores) are shown in columns 2-6 (Table 5.13).
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Application
2 Cores 3 Cores 4 Cores 5 Cores 6 Cores

P ,
mW

λ
(≤λref )

P ,
mW

λ
(≤λref )

P ,
mW

λ
(≤λref )

P ,
mW

λ
(≤λref )

P ,
mW

λ
(≤λref )

20 tasks 10.2 7.41E-8 4.9 9.95E-8 7.3 9.95E-8 7.3 9.91E-8 18.8 8.17E-8

40 tasks 10.2 7.23E-8 8.5 8.92E-8 8.9 9.86E-8 7.0 9.95E-8 22.9 7.28E-8

60 tasks 11.5 6.70E-8 9.6 8.46E-8 9.3 9.90E-8 6.6 9.92E-8 16.1 7.95E-8

80 tasks 11.2 7.23E-8 8.9 9.54E-8 10.1 9.90E-8 7.0 9.89E-8 15.5 8.79E-8

100 tasks 18.0 3.98E-8 11.4 7.79E-8 11.4 8.87E-8 15.2 9.82E-8 19.7 7.46E-8

Table 5.13: Power consumption (P , in mW) and the overall SERs (λ) for different synthetic applications for different architecture allocations
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From Table 5.13 the following two observations can be made. First observation is related

to the trade-off between power minimisation and reliability in terms effective multipro-

cessor SER due to voltage scaling. For example, lower overall SER (λ) of 6.70×10−8 for

task graph with 60 tasks is achieved at high power consumption (P ) of 11.5mW using

architecture allocation of 2 processing cores. On the other hand, higher overall SER (λ)

of 9.92 × 10−8 for the same task graph is achieved at lower power consumption (P ) of

6.6mW. Second observation is related to the fact that the power consumptions (in mW)

for different architecture allocations vary depending on the given deadline and SER con-

straints (given by (5.22) and (5.21)). For example, for the given real-time constraint of

20 seconds and SER constraint of 10−7, the task graph with 40 tasks gives the minimum

power of 8.5mW for architecture with 3 cores, while it gives the maximum power of

22.9mW for architecture with 6 processing cores. The higher power consumption for

architecture allocation with higher number of cores is due to higher register usage (Sec-

tion 5.6.2). Such higher register usage limits voltage scaling on cores as overall SER

increases, given by (5.21) leading to high power consumption.

5.8 Concluding Remarks

Resilience against SEUs and low power consumption are key objectives in the design of

emerging MPSoCs. However, these are conflicting objectives as low power design tech-

niques, such as DVS, exacerbate the soft error rate. Recently the concept of application-

level correctness was introduced showing the impact of SEUs at application-level rather

than architectural-level. This chapter has presented the first investigation that con-

siders the relationship between application-level correctness and supply voltage. The

relationship between soft error rate and application-level correctness has been estab-

lished through exhaustive statistical analysis and curve-fitting technique. Based on this

relationship, a novel soft error-aware power minimisation technique has been proposed

formulating the optimisation as a linear programming problem with an aim to give op-

timised voltage level for each processing core. Using MPEG-2 video decoder and other

synthetic examples, significant power reduction has been shown using the proposed tech-

nique. Furthermore, the effect of MPSoC architecture allocation and application task

mapping on the trade-off between application-level correctness and power minimisation

has been examined.
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Soft Error-Aware Design

Optimisation

Chapter 5 presented a voltage scaling technique for power minimisation of MPSoCs. It

was shown that significant power reduction can be achieved, while maintaining accept-

able reliability at application-level and meeting a specified real-time performance. This

chapter examines the impact of application task mapping on the reliability of MPSoC

in the presence of single-event upsets (SEUs). A novel soft error-aware design optimi-

sation is presented using joint power minimisation using voltage scaling and reliability

improvement through application task mapping. The aim is to minimise the number of

SEUs experienced by the MPSoC for a suitably identified voltage scaling of the system

processing cores such that the power is reduced and the real-time constraint is met. The

effectiveness of the proposed design optimisation technique is demonstrated using dif-

ferent applications, including an MPEG-2 video decoder and random task graphs. Fur-

thermore, the impact of architecture allocation (varying the number of MPSoC cores) is

investigated on the power consumption and SEUs experienced using the proposed design

optimisation technique.

The rest of this chapter is organised as follows. Section 6.1 presents review of related

works. Section 6.2 presents the system model and Section 6.3 demonstrates the impact

of application task mapping on reliability. Section 6.4 presents the novel design opti-

misation technique and Section 6.5 shows the experimental results and compares with

soft error-unaware design optimisation techniques. Section 6.6 investigates the effect of

architecture allocation (choice of number of processing cores) on the proposed design

optimisation technique. Finally, Section 6.7 concludes the chapter.

130



Chapter 6 Soft Error-Aware Design Optimisation 131

6.1 Related Works

Dynamic voltage scaling (DVS) is an effective power minimisation technique often em-

ployed in hand-held devices to extend the battery life [66]. The DVS technique works

by lowering the processor voltage and frequency according to its workload to achieve

power reduction [48] (a brief introduction to DVS technique is presented in Section 2.2,

Chapter 2). However, it has been reported that the reduction of supply voltage causes

an exponential increase in the rate of soft errors, particularly that of single-event upsets

(SEUs), leading to degradation of reliability [88, 148]. This is further exacerbated by

device miniaturisation and continuing technology scaling [14]. As a result, reliability is

emerging as a key challenge for low power system design [63, 88, 89, 91, 148, 149].

Several researchers have proposed number of power-aware fault tolerance or soft error

hardening techniques to mitigate the effect of increased soft errors caused by power

minimisation. Redundancy is a popular fault tolerance technique. This technique is

generally effective in that the redundant resources provide a voting system from multiple

resources to produce a single output in the presence of soft errors or faults [180]. Over

the years, a number of redundancy-based techniques have been reported at various levels

of design abstraction. The triple modular redundancy (TMR) is the most basic circuit-

level redundancy technique, such as [180, 181]. The fault tolerance is achieved through

TMR technique using three hardware elements to incorporate voting a single output from

multiple outputs. Due to the increase in hardware resources, large overhead in terms of

power consumption and chip area is incurred using such technique [182, 92]. Another

effective technique in terms of power consumption is the time redundancy, such as [93,

94]. Such technique employs multiple instances of execution to achieve fault tolerance.

Although no overhead in terms of hardware resources or area is caused, this technique

has overhead in terms of performance. Information redundancy proposed in [183, 184]

is also an effective fault tolerance technique. The main idea is to append error-detection

and error-correction codes along with the usual information bits to increase reliability

of the system [183]. The addition of these extra codes add to the communication and

computation overhead, while improving the reliability in the presence of soft errors [123].

Recently joint time and information redundancy-based technique has been proposed in

a number of publications, such as [62, 185]. Using such technique has advantages of high

reliability or fault tolerance at low cost and low overhead.

Alternatives to the redundancy-based technique are the re-execution and replication of

computational tasks among idle processing elements. Using this technique, no over-

head in incurred in terms of extra execution time. For example, in [13, 186] low power

fault tolerance technique has been presented utilising the idle processing elements for

duplicating some of the computations. Other flexible techniques to achieve high fault

tolerance are the pre-emptive on-line scheduling, such as [187] and check-pointing dur-
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ing slack times between tasks, such as [97]. Using these techniques, high fault tolerance

can be achieved at the cost of increased complexity in the design of MPSoC application.

However, the effectiveness of these techniques depends upon predictability of slack times,

which incur large overheads and often leads to problems related to unschedulability [74].

Also, achieving fault tolerance using check-pointing technique is limited by the schedu-

lability and the number of check-points. The optimal number of check-points that can

be inserted and scheduled in the presence of a given number faults is determined by the

worst case execution time of a task [188].

Recently, researchers have shown combination of different fault tolerance techniques to

reduce system overhead for fault-tolerant and low power design. For example, fault

tolerance-based optimisation of cost-constrained distributed real-time systems has been

proposed in [74]. The fault tolerance in [74] is achieved through mapping and assignment

of different fault tolerance policies to processes. Another fault-tolerant design using

process re-execution and re-scheduling of low power heterogeneous MPSoC applications

has been proposed in [99]. The power minimisation is achieved through scheduling

of voltage levels to different processes and the fault tolerance is achieved by deciding

the start times of processes and the transmission times of messages in the presence

of faults. In [50] a dynamic fault tolerance technique is presented using independent

task sets scheduling with precedence relationship in MPSoC systems. Due to the use of

such scheduling, the fault tolerance technique in [50] benefits from less communicational

complexity and better scheduling performance in terms of power consumption.

Traditionally power-aware fault-tolerant design techniques consider low power and reli-

ability as two separate objectives [13, 74, 187]. For effective design optimisation with

low power and improved reliability as a joint objective, further studies are needed to

understand reliability of applications, particularly from system- and application-level

design perspective. Application task mapping is one such crucial system-level design

step of the MPSoCs (for introduction to different system-level design steps, see Sec-

tion 2.4.2.2, Chapter 2). A number of studies have been reported showing the impact

of the application task mapping on the system performance [189] and system energy

consumption [190]. However, currently no study exists that examines the impact of the

application task mapping on the reliability of an application. This chapter presents the

first study of the impact of application task mapping on the reliability of MPSoC in the

presence of SEUs.

6.2 System Model

In this section, the models of the system architecture, application and fault injection

used in this work are introduced.
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6.2.1 Architecture Model

In this work, an MPSoC architecture, A, based on 2D-mesh network-on-chip (NoC)

with C processing cores is considered. Due to its high performance [6] (see Section 4.4,

Chapter 2 for comparative analysis) and scalability, such NoC-based MPSoC architec-

tures are gaining popularity and a number of academic or industrial designs have been

proposed to date, such as xPIPES [87], Intel 80-core [125]. Figure 6.1 shows an example

MPSoC architecture consisting of four processing cores. As shown, each block (or NoC

tile) consists of a processing core and switch (Figure 6.1). Each processing core consists
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Figure 6.1: MPSoC architecture with four processing cores and power minimisation
support through clock tree generator

of, among others, ARM7TDMI processor, an instruction cache (8kbits), a data cache

(16kbits) and a dedicated private memory (256kbits). Network interface attached to

each processor (Figure 6.1) incorporates packet-based communication with 32-bit pay-

load and switches carry out inter-core packet-based communication with XY routing,

chosen due to its performance and simplicity [6]. The cache and memory sizes have been

chosen to provide high availability of data and parallelism among the processing cores.

To introduce power minimisation through voltage scaling in the MPSoC architecture, a

clock tree generator has been included to provide different clock frequencies for the pro-

cessing cores through voltage scaling (Figure 6.1). Similar voltage scaling arrangement

was also used in Chapter 5 (Section 5.2.2). For a given voltage scaling, the dynamic

power, P , of a processing core is given as

P = αCLfVdd
2 , (6.1)
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Scaling, s f , MHz Vdd, V

1 200 1.00

2 100 0.58

3 66.7 0.44

Table 6.1: Operating frequency, f , and supply voltage, Vdd, for different voltage
scaling of ARM7TDMI processor

where CL is the processor load capacitance per cycle, Vdd is the supply voltage, f is the

operating frequency and α is the processor activity factor (0 ≤ α ≤ 1). The voltage

scaling technique effectively reduces the power consumption, defined by (6.1), by reduc-

ing Vdd and f through scaling. For ARM7TDMI processor, the empirical relationship

between Vdd (in volts) and f (in MHz) is given by [47] as

Vdd(f, s) =

[

0.1667 +
4.1667 × f

103 × s

]

, (6.2)

where s is the frequency scaling constant. Table 6.1 shows the three voltage scaling

options (with s=1, 2 and 3 in (6.2)) used in this work. The impact of choice of voltage

scaling levels on design optimisation is discussed in Section 6.5.

6.2.2 Application Model

An application is modelled as a directed, acyclic task graph G(V, E) with N nodes. Each

node tj∈V represents j-th computational task within the application and each edge

dj,k∈E represents inter-task communication and data dependency between j-th and k-

th tasks (j, k=1:N , where N is the number of computational tasks in the task graph).

An application is realised on the MPSoC architecture by distributing the computation

and communication tasks among the processing cores and their interconnects through

application task mapping. Figure 6.2 shows an example task graph of MPEG-2 video

decoder using eleven tasks and their associated register resources (brief introduction to

MPEG-2 video decoder is given in Appendix A). The computational and communica-

tion costs of tasks are shown with numbers on the nodes and edges, Figure 6.2. The

computational cost represents execution time of each task and the communication cost

represents the time required to transfer data between tasks (actual costs are approximate

multiples of 5.5 × 106 clock cycles). The computational and communication costs are

obtained using SystemC cycle-accurate simulations assuming 32-bit inter-core transfer.

The computational tasks are modelled as separate task processes, while the communi-

cation between tasks is modelled as message passing queues. The communication cost is

found by dividing the size of inter-task queue by the bandwidth of the channel (in bits

per cycle). Similar evaluation of computation and communication costs has also been

used in [74, 172].
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Figure 6.2: MPEG-2 video decoder task graph with eleven tasks and associated
register resources

Register
set

Type Size,
bits/cyc.

r1 Scan tables and variables 4132

r2 Sequence types 1124

r3 Header sequence variables (before decoding) 640

r4 VLC tables and variables 5124

r5 Header sequence variables (after decoding) 2134

r6 Video blocks (coded) 12288

r7 Scanned video blocks 13218

r8 Quantised video blocks 13132

r9 Picture ready video blocks (before motion compensation) 13274

r10 Motion compensated video data and variables 13326

r11 Decoded and motion compensated video data 13174

r12 display/storage ready video data structure 12288

Table 6.2: Register usage of MPEG-2 video decoder tasks (Figure 6.2) and their
approximate sizes

Also attached with each node is a set of application registers showing the register usage

by the computational tasks. Due to inter-dependent nature of the tasks of an application,

the tasks share register resources among themselves. For example, the task t1 uses the

set of registers r1, r2 and r3, while the task t2 uses the set of registers r3 and r4. Note that

between these two tasks, r3 is shared. Table 6.2 shows the different register sets used by

the MPEG-2 video decoder tasks along with their types and approximate sizes (obtained

by using variable or signal type tags within the SystemC simulation environment). The

actual register usage of the i-th processing core (i = 1 : C, where C is the number

of processing cores of an MPSoC), Ri, is found through SystemC simulation after the
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application tasks and their associated registers (Table 6.2) are mapped on the processing

cores of an MPSoC. The Ri is given as

Ri =
1

Ti

Ti
∑

t=1

Ri,t , (6.3)

where Ri,t is the register usage (in bits) at t-th clock cycle of the i-th processing cores.

The Rit in (6.3) depends on the number of tasks mapped with associated resources

(Table 6.2).

6.2.3 Fault Injection Model

In this work, fault injection is carried out using SEU-based fault model employing the

fault injection simulator proposed in Chapter 3. Using this technique the injection of

SEUs is initiated through replacement of variable or signal types in the original design

specification to equivalent fault injection enabler types. These fault injection enabler

types help form fault locations database for the device under test, which contains the

target registers for SEU injection. The fault injection simulator injects SEUs in these

target registers based on the specified soft error rates and probability distribution for

determining fault locations. Figure 6.3 shows the fault injection setup used for the

MPSoC architecture with four processing cores as an example. As can be seen, four

fault locations databases are formed for four processing cores through replacement of

variable/signal types to fault injection enabler types. For a given base soft error rate

(SER, λ0, in SEUs per bit per cycle considering no scaling), the actual SERs (λ, in

SEUs per bit per cycle after scaling) for processing cores are found by the corresponding

voltage settings used. For these actual SERs, the SEUs are injected at random locations

determined by Poisson’s distribution within the register space of the fault locations

database. To control fault injection timings the system clock is connected to the fault

injection simulator. Using SystemC monitor modules in cycle-accurate simulations,

register usage and the number of SEUs experienced are found (Figure 6.3).

6.3 Impact of Task Mapping on Reliability

Reliability of an MPSoC application in the presence of SEUs is related to the total

number of SEUs experienced [24]. For a soft error rate (SER) of λi (SEUs per bit per

clock cycle), the total number of SEUs experienced, Γ, by an MPSoC with C processing

cores is given by (3.3) (Section 3.2.3, Chapter 3) as

Γ =

C
∑

i=1

RiTiλi = TM

C
∑

i=1

Riαiλi , (6.4)
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Figure 6.3: Fault injection setup for MPSoC architecture with four processing cores

where Ti is the execution time, Ri is the register usage of i-th processing core and TM is

the multiprocessor execution time (in clock cycles, ∀i:Ti=αiTM ) of the i-th processing

core. The register usage of a processing core, defined by (6.3), depends on the nature

of processing being carried out by the tasks mapped, data dependency and resource

sharing among them. The TM in (6.4) affects multiprocessor performance and depends

on the number of mapped tasks on a processing core and the data dependency among

them. As a result, when more related tasks are mapped on a processing core, TM

increases for a given operating frequency but the register resources related to tasks are

localised reducing the overall register usage (R=
∑

iRi). On the other hand, when tasks

are distributed among processing cores to achieve higher parallelism, TM decreases at

the expense of increased R due to higher duplication of shared register resources among

tasks. Examples of this trade-off follow. In the MPEG-2 decoder (Figure 6.2), the tasks

t5 and t6 share about 13kb registers (r7 is shared between them), while the tasks t6,

t7 and t8 share approximately 15kb registers among them (r5 and t8 are shared among

them). To reduce register usage, for example it is possible to map tasks t5, t6, t7 and t8 on

a processing core through localisation of the registers. However, due to computationally

intensive nature of these tasks, TM will be high (with total computation cost of 188). To

reduce TM , an alternative option is to map tasks t5 and t6 on a processing core, while

the tasks t7 and t8 can be mapped on another core. However, this gives a duplication of

about 15kb registers (increased register usage) between the processing cores. Because
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of this register usage (R) and multiprocessor execution time (TM ) trade-off, the MPSoC

experiences varying number of SEUs (Γ) for different task mappings given by (6.4). The

Γ also depends on the voltage scaling of the MPSoC processing cores as it affects λi

in (6.4). To demonstrate the impact of application task mapping and voltage scaling on

the number of SEUs experienced (Γ), a total of 120 random task mappings were carried

out using the MPEG-2 decoder (Figure 6.2) on the MPSoC architecture (Figure 6.1).

Figure 6.4 shows the TM , R and Γ obtained through SystemC simulation and fault

injection (Section 6.2.3) using an SER of 10−9 SEU per bit per cycle (i.e. 1 SEU per

10ms for 1kb register bank) as an example. Three key observations are made:
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Figure 6.4: (a) Trade-off between multiprocessor execution time (in ms) and register
usage (in kbits/cycle), (b) SEUs experienced and multiprocessor execution time (in ms)
when no scaling is used for MPSoC cores, and (c) SEUs experienced and execution time
when MPSoC cores are scaled by 2; all for different task mappings of MPEG decoder

with four processing cores



Chapter 6 Soft Error-Aware Design Optimisation 140

Observation 1 : Figure 6.4(a) shows the trade-off between multiprocessor execution

time (TM , ms) and overall register usage (R). As can be seen, when tasks are

mapped to reduce R by localisation of tasks, TM increases. On the other hand,

as tasks are mapped to reduce TM , register resources shared among tasks are

duplicated, leading to increased register usage, R.

Observation 2 : Figure 6.4(b) shows the total number of SEUs experienced (Γ) and

multiprocessor execution time, TM (in ms), when all the decoder processing cores

are scaled by 1 (f=200MHz and Vdd=1V). It can be seen that when tasks are

distributed among processing cores to reduce TM , the decoder experiences more

higher Γ given by (6.4) due to higher R (Figure 6.4(a)). When tasks are localised

to reduce R, the decoder also experiences higher number of SEUs due to increased

TM (Figure 6.4(a)). This results in a concave curve for Γ given by (6.4), with the

minimum Γ located around the middle of TM range.

Observation 3 : Figure 6.4(c) shows the total number of SEUs experienced (Γ) and

multiprocessor execution time (TM , in ms) when all the decoder processing cores

are scaled by 2 (f=100MHz and Vdd=0.58V). As can be seen, Γ increases by

approximately 2.5 times due to Vdd scaling from 1V to 0.58V (found through Vdd

and λ relationship shown in [170], see Section 5.3, Chapter 5 for further details)

and TM is increased by a factor of 2 due to reduced f from 200MHz to 100MHz. For

example, for an application task mapping Γ increases from 1.71×105 to 4.12×105,

while TM increases from 9.5s to 18.2s due to scaling of Vdd from 1V to 0.58V.

The above observations demonstrate the impact of application task mapping and voltage

scaling on the MPSoC decoder reliability in the presence of SEUs. Hence, an interesting

design optimisation problem is to identify suitable voltage scaling of the MPSoC process-

ing cores to minimise power consumption and to improve reliability through application

task mapping, while meeting a real-time constraint.

6.4 Proposed Design Optimisation

To solve the problem of joint power minimisation and reliability improvement of an

application, a novel design optimisation is proposed. Figure 6.5 shows flowchart of the

proposed design optimisation with three major steps: power minimisation (step 1), soft

error-aware application task mapping (step 2) and iterative assessment (step 3).
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Stage 1


Stage 2


END


Optimised

Design
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Figure 6.5: Flowchart of the proposed design optimisation
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For a given SER and real-time constraint, the design optimisation is initiated by power

minimisation (step 1) through voltage scaling of the MPSoC cores. This is followed

by soft error-aware application task mapping (step 2) to minimise the number of SEUs

experienced for the chosen voltage scalings in step 1. These two steps are repeated and

assessed in step 3 to find a design with minimised power consumption and improved

reliability in terms of SEUs experienced, while meeting the real-time constraint. The

design optimisation steps are discussed next.

6.4.1 Power Minimisation

Power minimisation in the proposed design optimisation is performed using the voltage

scaling algorithm, Figure 6.6(a). The voltage scaling algorithm, nextScaling, starts with

the lowest voltage scaling on all identical cores and generates the next set of higher

voltage scaling, nextS, based on the previous set of coefficients, prevS (Figure 6.6(a)).

In each iteration, nextS is updated as the prevS reduced by 1 on a processing core until

the voltage scaling on the core reaches the nominal voltage scaling level (s=1, lines 3-6).

When the nominal level (s=1) is reached, nextS of the core is updated by increasing

voltage scaling of the core by 1 (line 9) and reducing the voltage scaling of the next

processing core by 1 in steps (lines 7-11). The aim is to generate non-repetitive com-

binations and reduce the number of voltage scalings that need to be investigated. For

example, for a homogeneous architecture with four processing cores (Figure 6.1) and

three scaling options (Table 6.1), the voltage scaling scaling algorithm, Figure 6.6(a),

generates 15 unique combinations, Figure 6.5(b), compared to a total of 34=81 possible

combinations. As can be seen, the voltage scaling starts with the highest scaling coeffi-

cient of 3 for all cores, followed by 3 for core 1, core 2, core 3, and 2 for core 4 as the

next scaling combination (Figure 6.6(b)). As core 4 reaches nominal value of 1, the next

combination is generated by nextScaling algorithm as 3 for core 1, core 2, and 2 for core

3 and core 4. This is followed by 3 for core 1, core 2, 2 for core 3, and 1 for core 4. The

voltage scaling algorithm, thus, effectively generates all possible combinations. For a set

of scaling coefficients from voltage scaling algorithm (Figure 6.6(a)), the dynamic power

consumption, P , of the MPSoC with C processing cores can be expressed as a function

of voltages scaling coefficient, si, as

P = CL

C
∑

i=1

αifi(si)V
2
ddi

(si), (6.5)

where fi(si) and Vddi
(si) take values depending on the voltage scaling coefficient si

(Table 6.1). For each set of voltage scaling coefficients, soft error-aware application task

mapping is carried out (step 2, Figure 6.5) to minimise the number of SEUs experienced.
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//C = no of cores, prevS = previous scaling


[nextS] = 
nextScaling
(prevS): 
begin

 1:  copy prevS into nextS

 2:  
for
 i := 1 to C

 3:    
if
 prevS[i] > 1: 
begin
 //1 is lowest scale


 4:      nextS[i] := prevS[i]-1;

 5:      break;

 6:    
end if

 7:    
else

 8:      
for
 k := i to C

 9:        nextS[k] = prevS[k]+1;

 10:     
end for

 11:   
end else

 12: 
end for

 13: 
return
 nextS;

end


Scaling Coefficients


(a)
 (b)


Iter.

#


Core 1,

s
1


Core 2,

s
2
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 1
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Figure 6.6: (a) Voltage scaling algorithm used for power minimisation, (b) example
of voltage scaling coefficients for four processing cores using voltage scaling algorithm

shown in (a)

6.4.2 Soft Error-Aware Application Task Mapping

The problem of application task mapping on MPSoC cores to minimise SEUs experi-

enced (Γ) is an NP-complete problem [74]. In this section, a soft error-aware application

task mapping is developed in two stages (step 2, Figure 6.5): the stage 1 is the initial

soft error-aware application task mapping, followed by stage 2 of search-based optimised

application task mapping. Figure 6.7 shows the initial soft error-aware application task

mapping algorithm (stage 1), InitialSEAMapping, which aims to simplify the optimisa-

tion process by reducing the number of task movements. The InitialSEAMapping starts

with mapping the task with no predecessor in task graph (G) (line 1). The dependants

of the currently mapped task in G are then sorted by SEUs experienced if they are to

be mapped with the current task. The sorted list of dependants is stored in L (line 5).

The task that gives the minimum SEUs in L is then mapped next (lines 6-10). This

is continued until the execution time of the current core does not exceed the real-time

constraint (TMref
) and the number of unmapped tasks left in task graph G is higher

than the number of remaining cores to ensure that tasks are mapped in all cores (lines

4-13). The unmapped tasks are stored in a queue, Q (line 10), which are then mapped

gradually to the other cores using the same criteria. After all tasks are mapped, the

initial mapping (M) is returned by InitialSEAMapping (lines 6-15).

After the initial soft error-aware task mapping (InitialSEAMapping, Figure 6.7), the

design optimisation is continued further through optimised mapping (stage 2, step 2,

Figure 6.5). The optimisation is carried out through iterative search-based mapping al-

gorithm, OptimisedMapping, Figure 6.8, employing the list scheduling for mapped tasks.
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//
 C
: no of cores, 
G
: application task graph with 
 N
 tasks, 
t
 is the current task

//M: mapping of all cores, 
 A
: MPSoC arch., 
Q
: task queue, 
L
: temporary list

[M] = 
InitialSEAMapping
 (G, C, A): 
 begin

 1:   push G[0] into Q  
 // push the first task into Q


 2:   
for
 i:= 1 to C-1 
 and
 Q is not empty

 3:   
 t := Q.front(); M[i].map(t); delete all mapped tasks from Q

 4:   
  while
 Ti < T


Mref

and
 no. of unmapped tasks in G > (C-i)


 5:     
 L : = dependents of
 t 
//(sorted by minimum SEUs)


 6:     
  if
 L is empty 
 and
 Q is not empty

 7:     
   swap last two elements in Q

 8:       
else if
 Q is not empty

 9:         t = first element in L
 //task with minimum SEUs and Time

 10:       M[i].map(t); delete t from L; move tasks in L into Q and empty L

 11:     
else 
break 
while; end if

 12:     t = Q.front();

 13: 
  end while

 14: 
end for

15
: 
return
 M;

end


Figure 6.7: Initial soft error-aware mapping algorithm, InitialSEAMapping

The aim of such scheduling is to make an ordered grouping of tasks in processing cores to

accommodate different constraints and task dependencies [74]. The OptimisedMapping

List Schedule M


Mbest 
is the

optimized mapping


YES


(A)


(B)


(C)


(G)


Task movement in M for

neighbouring solution
 List Sheduling M


SEUs(M)<SEUs(Mbest)

and
 T


M

(M)<=T


Mref


(D)


(E)


Time not over 
or

T


M

(M) > T


Mref

or


un
Schedulable(M)


(F)

YES


NO


NO


Mbest
 := M


Figure 6.8: Flowchart of optimised mapping, OptimisedMapping

starts with scheduling the initial task mapping, M (step A, Figure 6.8). The mapping

M is then checked to see if it violates the schedulability requirements or real-time con-

straints (step B). If any such violation is found within the search time, the optimisation

proceeds with generating neighbouring task movements to find out a possible next map-

ping solution (step C). With neighbouring task movement, the new mapping (M) is

then list scheduled, if schedulable (step D). This is followed by comparison with the
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the previous best solution, Mbest. If M is better than Mbest in terms of lower number

of SEUs experienced and meets the given real-time constraint, it is then updated as

the new Mbest (steps E-F). The optimisation steps C-F are repeated until the specified

search time is not over (step B). Once the search time is over, Mbest is returned as the

optimised design for the chosen voltage scalings (step G).

In OptimisedMapping, the multiprocessor execution time (TM , in seconds) for an appli-

cation task mapping is found by the dividing the total number of execution cycles of all

mapped tasks by the effective number of cycles executed by processing cores per second

for chosen voltage scaling (step B, E, Figure 6.8), i.e.

TM =





C
∑

i=1

N
∑

j=1

(

tij +
N
∑

k=1

di
j,k

)



 /

[

C
∑

i=1

αifi(si)

]

, (6.6)

where tij is the execution time (in clock cycles) of the j-th task mapped on i-th pro-

cessing core, di
j,k is the dependency cost (in clock cycles) between j-th and k-th task

(j, k = 1 : N) due to selection of j-th task on i-th processing core. The total number

of SEUs experienced (Γ) for an application task mapping with chosen voltage scaling

on MPSoC processing cores is found in InitialSEAMapping (line 5, Figure 6.7) and Op-

timisedMapping (step E, Figure 6.8) through (6.4). The per core execution time (Ti,

in clock cycles) and register usage (Ri, in bits per cycle) in (6.4) are given in terms of

mapped tasks as

∀i : Ti =

N
∑

j=1

(

tij +

N
∑

k=1

di
j,k

)

, and (6.7)

∀i : Ri = Avg







∣

∣

∣

∣

∣

∣





N
⋃

j=1

N
⋃

k=1

ri
j,k





∣

∣

∣

∣

∣

∣







, (6.8)

where ri
j,k is the set of registers shared between j-th and k-th tasks for being mapped on

i-th processing core (j=k defines the local register usage of j-th task). As can be seen

in (6.8), Ri is given by average cardinality of the register set over the execution time

arising out of union of register usages of mapped tasks (ri
j,k) in i-th processing core.

The proposed optimisation is carried out by iterative search through N tasks, with each

iteration generating maximum two task movements out of maximum search space of (N -

1) dependent tasks. This is followed by second stage search through maximum (N -1)

tasks for minimum number of SEUs experienced. As a result, OptimisedMapping has

worst-case complexity of O(2N(N − 1)(N − 1))≈O(N3).

An example illustrating the proposed soft error-aware application task mapping algo-

rithm is shown in Figure 6.9. In Figure 6.9(a), an application task graph with six tasks

is shown (all costs are multiples of 60×104 cycles) and in Figure 6.9(b)-(c) the appli-

cation registers and their distribution for different tasks are shown. Figure 6.9(d)-(g)
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show the incremental task mapping using InitialSEAMapping algorithm, Figure 6.7, and

finally, Figure 6.9(h)-(i) show scheduling and task movements using OptimisedMapping,

Figure 6.8.
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Figure 6.9: Example illustration of the soft error-aware application task mapping (a)
example application task graph, (b) sets of registers and their sizes, (c) register usage of
different tasks of the application, (d-f) initial soft error-aware application task mapping
(InitialSEAMapping, Figure 6.7) steps, and (g) optimised mapping (OptimisedMapping,

Figure 6.8) step
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The chosen voltage scaling for the processing cores are: s1=1, s2=2 and s3=2 and dead-

line is assumed to be TMref
=75ms. As can be seen, after the first task, t1, in the appli-

cation task graph, Figure 6.9(a), is mapped to processing core 1, the InitialSEAMapping

mapping algorithm selects t3, followed by t6 from dependency list, L. This is because

task t3 gives the least number of SEUs experienced compared to t2 and t5 shown in gray,

Figure 6.9(d), with the rj,k values from Figure 6.9(c). Note that after allocating t1, t3

and t5 on core 1, the deadline constraint cannot be satisfied with further allocation of

tasks and the mapping algorithm carries on with mapping of tasks t2 and t4 in core 2,

which give minimum SEUs experienced, Figure 6.9(f). Finally, the unmapped task t6 in

queue (Q) is mapped to core 3, Figure 6.9(g). After InitialSEAMapping (Figure 6.7) is

completed, OptimisedMapping list schedules the tasks, Figure 6.9(h), found through step

A, Figure 6.8. However, with the chosen voltage scalings for the architecture processing

cores, this mapping cannot satisfy the real-time constraint of 75ms. The OptimisedMap-

ping swaps t5 with t6 in the fourth iteration as a neighbouring task mapping (step C,

Figure 6.8) and gives the minimum number of SEUs experienced for the chosen voltage

scaling, while meeting TMref
=75ms.

6.4.3 Iterative Assessment

With each set of voltage scaling coefficients resulting from the voltage scaling algo-

rithm (step 1, Figure 6.5) soft error-aware application task mapping (step 2, Figure 6.5)

is carried out to minimise the number of SEUs experienced through application task

mapping. The resulting power consumption (P ) and SEUs experienced (Γ) are then it-

eratively assessed using a score function, Z, to produce an optimised design in terms of

minimised power consumption and improved reliability, such that real-time constraints

are met (similar score function for joint optimisation is also used in [191]). The opti-

misation score function, Z, is defined by a linear combination of of normalised power

consumption and number of SEUS experienced, given by

Z = 0.5 ZP + 0.5 ZΓ , (6.9)

where ZP is the score related to power consumption (P ), ZΓ is the score related to

reliability improvement in terms of total number of SEUs experienced (Γ) and 0.5 is

the weighting factors for ZP and ZΓ (to give joint optimisation with equal weight to

power consumption and reliability improvement). The ZP value of a design is found by

normalising power consumption (P , defined by (6.5)) due to the chosen voltage scaling

(Section 6.4.1) and soft error-aware application task mapping (Section 6.4.2) by the

maximum power consumption, Pmax (given by (5.1) with the highest voltage settings,
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i.e. si=1), Section 5.2.1, Chapter 5), i.e.

ZP =
P

Pmax
=

CL

C
∑

i=1

αifi(si)V
2
ddi

(si)

CL

C
∑

i=1

fmaxV 2
maxi

. (6.10)

where fmax and Vmax are maximum operating frequency and supply voltage (for ex-

ample Vmax=1V, fmax=200MHz for the given scaling options in Table 6.1). The score

function related to SEUs experienced, ZΓ, in (6.9) of the same design is defined by the

ratio of SEUs experienced (Γ, given by (6.4)) to the maximum number of SEUs experi-

enced (Γmax, assuming maximum activity factor α=1 and highest voltage scaling, si=3,

in (6.4)), i.e.

ZΓ =
Γ

Γmax
=

TM

C
∑

i=1

Riαiλi

TM

C
∑

i=1

Riλmax

. (6.11)

where λmax is the maximum soft error rate due to highest voltage scaling (for example

Vdd=0.44V, f=66.7MHz for the given scaling options in Table 6.1). Using the optimi-

sation score function, Z, defined in (6.9), the iterative assessment (step 3, Figure 6.5)

identifies the design that gives the minimum Z value. Note that due to normalisation

of the power consumption of a design, (P ) by the maximum power consumption (Pmax)

in (6.10) ZP is reduced for low power consumption. However, due to normalisation

of SEUs experienced (Γ) by the maximum possible SEUs experienced (Γmax) in (6.11)

ZΓ is increased for such design. Similarly, when power consumption increases ZP is

increased at the cost of reduced ZΓ. As a result of this ZP and ZΓ relationship, the

optimisation score function Z gives the minimum value for a design that gives the best

trade-off between P and Γ. The design that gives minimum Z value and meets the

real-time constraint is chosen as the optimised design. Figure 6.10 shows an example

of iterative assessment using score function, Z, to effectively find an optimised design

for the MPEG-2 video decoder (Figure 6.2) using MPSoC architecture with four pro-

cessing cores (Figure 6.1). The horizontal axis shows the subsequent voltage scaling

iterations arising from voltage scaling algorithm (Figure 6.6(a)) and vertical axis gives

the ZP , ZΓ and Z values defined by (6.10), (6.11) and (6.9). As can be seen, the voltage

scaling starts with scaling by 3 on each processing core (Figure 6.6(b)). For such low

voltage scaling, ZΓ is high with higher SEUs experienced (Γ) but ZP but ZP is low due

to minimum power consumption. Higher ZΓ results in a higher score function, Z, for

this design. As the voltage scaling proceeds with next set of voltage scaling coefficients

(Figure 6.6(b)), Z value also varies due to the trade-offs between ZP and ZΓ. Note

that due to the voltage settings on processing cores (with Vdd=1V, f=200MHz on all
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Figure 6.10: Example iterative assessment for design optimisation using MPEG-2
video decoder with four processing cores

processing core), design produced in iteration 15 results in the highest score function,

Z. The design produced in iteration 7 (with Vdd=0.58V, f=100MHz on 3 processing

cores and Vdd=0.44V, f=66.7MHz on a processing core) gives the best design in terms

minimised Z value. Since real-time constraints are met for this design, it is returned as

the optimised design for MPEG-2 video decoder (Figure 6.2) using MPSoC architecture

with four processing cores (Figure 6.1).

6.5 Experimental Results

In this section, the effectiveness of the proposed soft error-aware design optimisation

is evaluated using four experiments, Table 6.3. The experiments are carried out using

MPEG decoder implemented with the architecture of Figure 6.1. The first three experi-

ments, Exp:1, Exp:2 and Exp:3, are soft error-unaware optimisation with different design

objectives using application task mapping obtained through simulated annealing [172].

Exp:4 is the proposed design optimisation. In all experiments, power minimisation is

obtained through iterative voltage scaling (step 1, Figure 6.5) after application task

mapping with an aim to meet the real-time constraint of decoding a tennis video se-

quence1 of 437 frames at 29 frames per second (fps). The mapped tasks, voltage scaling

on processing each core (si), per core execution time (Ti) and per core register usage

(Ri) are shown in column 3-6, while the power consumption (P , mW), register usage

(R, kbits/cyc), the multiprocessor execution time (TM , clock cycles) and the number of

1ftp://ftp.tek.com/tv/test/streams/Element/
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SEUs experienced (Γ) are given in columns 7-10 (Table 6.3). For each voltage scaling

of the MPSoC processing cores, a time-limit of 30 minutes to search the design space is

imposed. All experiments are carried out on an Intel(R) Core(TM)2 2GHz CPU running

RHEL5. The number of SEUs experienced (column 7, Table 6.3) is found by fault injec-

tion technique (Section 6.2.2) assuming an arbitrary SER of 10−9 SEUs/bit/cycle (i.e.

1 SEU per 10ms for 1kb register bank). The power values are obtained by (6.1), with

the α values found with the multiprocessor execution time (TM ) and execution times

(Ti) of processing cores from Table 6.3 (note that switching activity factor, α= Ti

TM
).



C
h
a
p
ter

6
S
o
ft

E
rro

r-A
w

a
re

D
esig

n
O

p
tim

isa
tio

n
151

Experiments MPSoC
Core

Mapped Tasks Voltage
scaling,
si

Execution
time, Ti,
×108 cyc.

Register
usage, Ri,
kb/cyc.

P, mW R=
∑

i Ri,
kb/cyc.

TM ,
(×108)
cyc.

Γ,
(×105)

Exp:1 (Optimised for
reduced register
usage [172])

Core 1 t1, t2, t3 2 14.4 17.3

9.53 80 38.1 3.46
Core 2 t4, t5 2 21.4 16.4

Core 3 t11 2 16.7 19.1

Core 4 t6, t7, t8, t9, t10 1 28.8 27.2

Exp:2 (Optimised for

parallelism [172])

Core 1 t1, t2, t3, t4, t9 3 24.6 37.7

4.04 114 28.6 5.22
Core 2 t8 3 18.5 19.4

Core 3 t5, t6, t7 2 21.2 29.3

Core 4 t10, t11 2 20.1 28

Exp:3 (Optimised for
register usage
&parallelism[172])

Core 1 t8, t9 3 23.1 23.6

4.15 92 30.9 4.18
Core 2 t10, t11 2 20.7 27.9

Core 3 t6, t7 2 21.8 22

Core 4 t1, t2, t3, t4, t5 2 17.9 19.1

Exp:4 (Proposed

optimisation)

Core 1 t9 3 14.1 17

4.25 89 31.8 3.93
Core 2 t10, t11 2 19.3 28

Core 3 t7, t8 2 25.8 20.4

Core 4 t1, t2, t3, t4, t5, t6 2 20.9 23.3

Table 6.3: Comparison of soft error-unaware and the proposed soft error-aware optimisations using MPEG decoder MPSoC with four cores
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Exp:1 demonstrates the impact of design optimisation with minimised register usage,

R. As expected, the design produced gives the least register usage (R=
∑

i Ri) when

compared to the other three experiments. The reduced R in Exp:1 is obtained at the

expense of the highest multiprocessor execution time (TM ) of 38.1 × 108 clock cycles

(as explained in Section 6.3). This makes it harder to scale down the voltages of the

decoder cores. As a result, Exp:1 gives a design that has higher power consumption

(9.53mW) than the optimised design produced in Exp:4 (4.25mW). However, the design

produced in Exp:1 experiences lower SEUs than that in Exp:4 (3.46×105 SEUs compared

3.93 × 105 SEUs). This is because, the proposed design optimisation in Exp:4 gives

lower voltages of the decoder cores, and hence lower power consumption compared to

the design produced in Exp:1. The design produced in Exp:2 is optimised for high

parallelism. This gives reduced multiprocessor execution time (TM ) of 28.6 × 108 clock

cycles, which allows the voltages of the decoder processing cores to be scaled down.

As a result, Exp:2 gives lower power consumption (4.04mW) than Exp:4 (4.25mW).

Note that this reduction in multiprocessor execution time (TM ) in Exp:2 is achieved

at the expense of the highest register usage (R=114kbits per cycle). Due to lower

voltage scaling of the decoder cores and higher register usage, the design optimised for

high parallelism, Exp:2, experiences the highest number of SEUs (Γ=5.22 × 105) when

compared to the other three experiments. In Exp:3, the design has been optimised for

both register usage (R) and high parallelism. Such optimisation gives a good trade-off

between multiprocessor execution time and register usage, and minimises the product:

TM×R in (6.4). However, this does not necessarily minimise of the number of SEUs

experienced since optimisation is carried using soft error-unaware task mapping. The

design produced in Exp:4 employs soft error-aware task mapping (and minimises Γ

in (6.4) by carefully mapping the tasks to minimise the product Ti×Ri on each core)

and therefore gives less number of SEUs experienced than the design produced in Exp:3

(3.93×105 SEUs for Exp:4 compared to 4.18×105 SEUs for Exp:3). Note that, although

the voltage scaling of the decoder cores are similar, the proposed design optimisation

(Exp:4) gives about 3% higher power consumption compared to the design produced in

Exp:3 due mapping of computation intensive tasks t7, t8 in core 3 and t1-t6 in core 4 of

the decoder. For all design optimisation approximate number of SEUs experienced can

also be found by (6.4) using the Ti and Ri values shown in columns 5 and 6 (Table 6.3).

To highlight the advantages of using the proposed design optimisation (Exp:4), Fig-

ure 6.11 shows comparison of power consumption (P ) and SEUs experienced (Γ) of the

decoder design in Exp:1, Exp:2 and Exp:3 compared to that of Exp:4. All experiments

are carried out with same voltage scaling coefficients (s1=2, s2=2, s3=3 and s4=2) for

an SER of 10−9. As can be seen, the design produced in Exp:4 reduces the number

of SEUs experienced by upto 38% compared to the optimised design in Exp:2, while

consuming 9% lower power. When compared with the design produced in Exp:1, the

optimised design in Exp:4 reduces SEUs experienced by 28%, while consuming only 7%
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Figure 6.11: Comparison of power consumption (P , in mW) and SEUs experienced
(Γ) of Exp:1, Exp:2 and Exp:3 when compared with Exp:4

higher power.

The design optimisations in Table 6.3 were carried out using MPEG-2 decoder. To

demonstrate the effectiveness of the proposed design optimisation with other applica-

tions, random task graphs of 20, 40, 60, 80 and 100 tasks are also used. The random

task graphs are generated using the random task and resource graph tool [179] (for

sample task graphs, see Appendix C). The cost and the number of dependants in the

random task graphs are generated using uniform probability distribution with computa-

tion cost between 1 and 30, communication cost between 1 to 10 (all costs as multiples

of 3.5×106 clock cycles), task register usage between 1kbits to 5kbits and the number

of dependants was found by exponential distribution between 0 to N/2, where N is the

number of tasks. The deadline for random task graphs are set to 15, 20, 30, 40 and

50 seconds for random task graph with 20, 40, 60, 80 and 100 tasks, respectively. For

these task graphs, the design optimisation is carried out with imposed time limits of

20, 30, 40, 50 and 60 minutes for 20, 40, 60, 80 and 100 tasks, respectively. Table 6.4

shows the results of using the proposed design optimisation (Exp:4) on the MPSoC using

four processing cores (Figure 6.1) with the random task graphs. The voltage scalings

on MPSoC processing cores, per core execution time (Ti) and per core register usage

(Ri) are shown in columns 3-5. The power consumption (P ), overall register usage (R),

multiprocessor execution time (TM ) and the total number of SEUs experienced (Γ) are

shown in columns 6-9 (Table 6.4).
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Application MPSoC
core

Voltage
scaling, si

Exec. time,
Ti, ×108 cyc.

Reg. usage,
Ri, kb/cyc.

P,
mW

R=
∑

i Ri,
kb/cyc.

TM ,cyc.
(×108)

Γ, (×105)

20 tasks

Core 1 3 8.3 19.1

4.34 66 12.8 2.27
Core 2 3 8.4 14.7

Core 3 2 12.8 15.3

Core 4 2 12.4 17

40 tasks

Core 1 3 10.9 26.9

5.2 90 23.6 2.87
Core 2 3 9.8 20.1

Core 3 2 9.3 21.3

Core 4 1 29.8 21.2

60 tasks

Core 1 2 13.6 25.5

5.1 107 31.2 4.82
Core 2 2 12.4 27.9

Core 3 2 19.5 30.3

Core 4 2 30.3 23.6

80 tasks

Core 1 3 15.5 25.2

4.4 129 41.3 6.13
Core 2 3 15.2 38.7

Core 3 2 23.6 29.9

Core 4 1 46.4 35.8

100 tasks

Core 1 3 15.9 32.4

4.8 149 53.7 8.25
Core 2 3 28.7 33.6

Core 3 2 38.9 38.1

Core 4 2 49.6 44.3

Table 6.4: Power consumption (P ), register usage (R) and SEUs experienced (Γ) for different applications using Exp:4
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As can be seen, depending on the application and its deadline the voltage scaling and

the corresponding power consumption (P , in mW) vary (Table 6.4). However, the total

register usage (R) arising from per core register usage (Ri) increases as the number of

tasks in the random task graphs increases. Also, the multiprocessor execution time (TM ,

in clock cycles) and per core execution time (Ti, in clock cycles) increase as the number

of tasks in the task graphs increase. Due to the increased per core register usage (R) and

per core execution time (Ti), the total number of SEUs experienced (Γ) also increases as

the number of tasks in the random task graphs increases. For example, the random task

graph with 100 tasks experiences the highest number of SEUs (i.e. 8.25 × 105 SEUs),

while the random task graph with 20 tasks experiences the lowest number of SEUs (i.e.

2.27 × 105). Figure 6.12(a) and (b) show the comparisons of power consumption (P )

and the number of SEUs experienced (Γ) using the design optimisations in Exp:3 and

Exp:4 for the different random task graphs. As can be seen, the design optimisation in
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Figure 6.12: Comparison of power consumption (P , in mW) and SEUs experienced
(Γ) between Exp:3 and Exp:4 for different random task graphs

Exp:4 consistently outperforms the design optimisation in Exp:3 in terms of the number

of SEUs experienced (Γ) due to soft error-aware application task mapping carried out

in Exp:4 (Section 6.4.2). For example, for the random task graph with 80 tasks the

proposed design optimisation (Exp:4) reduces the SEUs experienced by 9.6% compared
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Figure 6.13: Power consumption (P , in mW) and SEUs experienced (Γ) for different
scaling levels using the proposed design optimisation technique

to the design optimisation in Exp:3. This reduction in SEUs experienced is achieved

with only 5% increase in the power consumption (P ).

To show the impact of choice of voltage scaling levels, Figure 6.13 shows the power

consumption (mW) and the number of SEUs experienced (Γ) by the optimised designs

produced in Exp:4 with different voltage scaling levels. The design optimisations are

carried out using MPSoC with four processing cores with random task graph of 60

tasks and employing the following voltage scaling levels: 2 levels (with 1V−200MHz,

and 0.58V−100MHz), 3 levels (Table 6.1) and 4 levels (introducing 1.2V−236MHz in

Table 6.1). As can be seen, with 4 scaling levels the proposed design optimisation (Exp:4)

is able to minimise power further by 4% with only 3% increase in the number of SEUs

experienced compared to 3 scaling levels. This is because with more scaling options, the

power minimisation (step 1, Figure 6.5) has higher flexibility with more combinations

of voltage scaling generated by the voltage scaling algorithm (Figure 6.6(a)). With 2

scaling levels, it is possible to reduce the number of SEUs experienced by 42% at the cost

of 28% higher power consumption compared to 3 scaling levels due to limited voltage

scaling options (Figure 6.13).

6.6 Architecture Allocation

Architecture allocation is a system-level design step for MPSoCs that deals with al-

location of processing elements and their interconnections into the architecture (see

Section 2.4.2.1, Chapter 2 for further details). In this work, architecture allocation is

referred to as the allocation of number of processing cores in the MPSoC architecture.

Table 6.5 shows the mapped tasks using the optimised mapping in Exp:4 for differ-

ent allocations from two cores to six cores using MPEG-2 video decoder task graph
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Allocation Core Mapped Tasks

2 Cores
Core 1 t1, t2, t3, t4, t9, t10, t11

Core 2 t5, t6, t7, t8

3 Cores

Core 1 t1, t2, t3, t4, t5

Core 2 t6, t7, t8

Core 3 t9, t10, t11

4 Cores

Core 1 t1, t2, t3, t4, t5, t6

Core 2 t7, t8

Core 3 t9

Core 4 t10, t11

5 Cores

Core 1 t1, t2, t3, t4

Core 2 t5, t6

Core 3 t7, t8

Core 4 t9

Core 5 t10, t11

6 Cores

Core 1 t1, t2, t3, t4

Core 2 t5, t6

Core 3 t7

Core 4 t8

Core 5 t9

Core 6 t10, t11

Table 6.5: Task distribution of MPEG-2 video decoder (Figure 6.2) among cores for
different architecture allocations using the optimised task mapping in the proposed

design optimisation technique (Figure 6.5)

(Figure 6.2). The architecture allocation is shown in column 1 and per core mapped

tasks of the decoder task graph (Figure 5.7) are shown in columns 2-3 (Table 5.11). To

demonstrate the impact of architecture allocation, Figure 6.14 shows the multiprocessor

execution time (TM , in clock cycles) and register usage (R, in kbits per cycle) using

MPEG decoder MPSoCs. The voltage scaling of processing cores is carried out using

three scaling levels (Table 6.1) and application task mapping is performed with the

optimised mapping algorithm, OptimisedMapping, of the proposed design optimisation

(Exp:4). The TM and R are found while decoding a tennis video sequence of 437 frames

at 29 frames per second. The architecture allocation is varied from two processing cores

to six processing cores. As can be seen, with increase in the number of allocated cores,

the register usage increases (Figure 6.14(a)). This is because with increased number of

allocated cores the tasks mapping or distribution causes more duplication of the shared

register resources among tasks. Also, as expected with increased number of allocated

cores in the MPSoC architecture, the multiprocessor execution time (TM ) decreases with
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Figure 6.14: (a) Register usage (R, in kbits/cycle), and (b) multiprocessor execution
time (TM , in clock cycles) of the MPEG-2 decoder MPSoC for different architecture

allocations

higher parallelism among the mapped tasks on processing cores (Figure 6.14(b)). Ta-

ble 6.6 shows the impact of architecture allocation on the power consumption (P ) and

the number of SEUs experienced (Γ) using the optimised design produced in Exp:4. A

number of applications, including MPEG decoder and random task graphs of 20, 40, 60,

80 and 100 tasks were used. The power consumption (P , in mW) and the number of

SEUs experienced (Γ) for different architecture allocations are shown in columns 2-6 (Ta-

ble 6.6). Two observations are made. Firstly, the architecture allocation with minimum

power consumption (P ) depends on the application and given real-time constraint. For

example, in the case of the MPEG decoder, the least power consumption is found with

four cores for the given real-time constraint of decoding tennis video sequence at 29fps.

Secondly, with increased number of architecture cores, the number of SEUs experienced

increases. The increased number of SEUs can be explained as follows. With higher

number of cores, multiprocessor execution time (TM ) reduces and the overall register

usage (R) increases (Figure 6.14). Due to reduced multiprocessor execution time, there

is more opportunity for voltage scaling to reduce power consumption, which eventually

increases the SER and the SEUs experienced. This is further exacerbated by the in-
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creased register usage caused by distribution of tasks with increased number of cores

in MPSoC architecture (Figure 6.14(a)). For example, the decoder with six processing

cores experiences the highest number of SEUs, compared to the lowest for the decoder

with 2 processing cores (row 2, Table 6.6). Similar observations for power consumption

and the number of SEUs experienced are also observed with the random task graphs.
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Application
2 Cores 3 Cores 4 Cores 5 Cores 6 Cores

P ,
mW

Γ
×105

P ,
mW

Γ
×105

P ,
mW

Γ
×105

P ,
mW

Γ
×105

P ,
mW

Γ
×105

MPEG (11 tasks) 9.1 2.13 5.9 3.17 4.25 3.93 6.34 4.95 7.24 5.36

20 tasks 10.1 0.47 4.15 1.13 4.34 2.27 5.16 2.73 6.36 3.49

40 tasks 6.2 1.07 5.1 1.78 5.2 2.87 6.16 3.46 7.11 4.35

60 tasks 7.8 1.87 4.13 3.25 5.1 4.82 4.9 5.74 5.3 7.15

80 tasks 11.2 1.95 6.1 3.76 4.4 6.13 6.14 7.24 6.69 9.13

100 tasks 10.4 2.40 5.48 4.58 4.8 8.25 5.94 8.83 6.34 11.13

Table 6.6: Power consumption (P , in mW) and SEUs experienced (Γ, ×105) for different applications and different architecture allocations
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Figure 6.15: Comparison of power consumption (P , in mW) and SEUs experienced
(Γ) between Exp:3 and Exp:4 for different architecture allocations using random task

graph of 60 tasks

To compare between the soft error-aware and soft error-unaware design optimisations for

different architecture allocations, Figure 6.15 shows the power consumption (P , in mW)

and the SEUs experienced (Γ) by the optimised designs produced in Exp:4 and Exp:3

using the random task graph of 60 tasks. As can be seen, the proposed optimisation,

Exp:4, consistently outperforms the design produced using joint optimisation of reduced

R and high parallelism, Exp:3, with upto 7% reduction of SEUs experienced for an

SER of 10−9. This reliability improvement is achieved with only 3% higher power

consumption using an MPSoC with six processing cores.

6.7 Concluding Remarks

This chapter has investigated the impact of application task mapping on the reliability

of MPSoC (Section 6.3). Based on this investigation, a novel soft error-aware design op-

timisation has been proposed for low power and time-constrained MPSoCs (Section 6.4).

The proposed design optimisation has been carried out using joint power minimisation

using voltage scaling and reliability improvement in terms of minimised number of SEUs

experienced through application task mapping. Using an MPEG decoder and random

task graphs, it has been shown that the proposed optimisation technique can significantly

reduce the number of SEUs experienced compared to soft error-unaware optimisation

techniques, while power consumption is minimised and the real-time constraint is met

(Section 6.5). Furthermore, the impact of architecture allocation on the power consump-

tion and the number of SEUs experienced using the proposed optimisation technique

has been examined (Section 6.6).



Chapter 7

Conclusions and Future Work

The overall aim of this research is to improve key aspects of multiprocessor system-

on-chip (MPSoC) design with emphasis on performance, low power consumption and

reliability. To meet this aim, an effective fault injection simulator is developed to enable

reliability analysis and investigation into efficient and reliable on-chip communication

architecture is carried out. Also, power minimisation techniques are developed for low

power and reliable design. The reliability in the presence of soft errors is evaluated at

application-level to reduce fault tolerance cost. A number of applications are used to

validate the techniques developed in this work, including MPEG-2 video decoder and

random task graphs. Section 7.1 presents a summary of research contributions made by

this thesis and Section 7.2 outlines a number of worthy future research directions.

7.1 Summary and Research Contributions

Power minimisation is a prime objective in MPSoC design to extend battery life. Due to

technology scaling and increased computational complexity of applications on these de-

vices, scalable and efficient on-chip communication architectures are required for future

MPSoCs. An emerging challenge in the design of MPSoCs is reliability in the presence

of soft errors, particularly due to single-event upsets (SEUs) caused by radiation. Un-

derpinning these MPSoC design issues and challenges, the following contributions have

been made in this thesis:

SystemC Fault Injection Simulator : To facilitate reliability analysis and fault in-

jection, a novel SystemC fault simulator was presented in Chapter 3. The fault

simulator works by replacement of the original data and signal types to fault

injection enabler types to initiate fault injection. Due to simple type replace-

ment, the fault simulator merits from minimum design intrusion but yet high fault

162
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representativeness when compared with some recently proposed fault simulation

techniques. For validation and comparisons a number of example models were

shown, including MPEG-2 video decoder. The fault injection simulator was used

for evaluating the impact of SEUs in Chapters 4, 5 and 6.

Comparative Analysis of On-Chip Communication Architectures : In Chap-

ter 4 comparative performance and reliability analysis was carried out between the

on-chip communication architectures: advanced microprocessor bus architecture

(AMBA) and emerging network-on-Chip (NoC); using MPEG-2 video decoder-

based real application traffic. The performance comparison showed that NoC-

based decoder outperforms AMBA-based decoder in terms of less operating fre-

quency to decode a given video bitstream at specified frame rate due to higher

core efficiency, concurrency and channel bandwidth. The reliability comparison

showed that NoC-based decoder experiences less SEUs during computation due

to less execution time but it experiences higher SEUs during communication due

to higher register usage and channel latency. The impact of SEUs experienced

in the decoders was also evaluated and compared at application-level using peak

signal-to-noise ratio (PSNR) and frame error ratio (FER) metrics.

Voltage Scaling Technique for Power Minimisation : Chapter 5 established a re-

lationship between power consumption and reliability in the presence of SEUs eval-

uating the impact of SEUs at application-level. Based on this relationship, a novel

system-level power minimisation technique was proposed for MPSoCs to give opti-

mised voltage scaling on processing cores. The aim was to generate designs that are

optimised in terms of power consumption, while providing acceptable reliability at

application-level and specified real-time decoding rate. To validate the proposed

technique, MPEG-2 video decoder and synthetic examples were used. Using peak

signal-to-noise ratio (PSNR) metric to evaluate the reliability of the decoder, it

was shown that significant power reduction can be achieved using the proposed

technique, while maintaining an acceptable PSNR and real-time performance. Fur-

thermore, the impact of application task mapping and architecture allocation was

investigated on the trade-offs between power consumption and reliability.

Soft Error-Aware Design Optimisation : Chapter 6 presented an investigation into

the impact of application task mapping on reliability in terms of the number of

SEUs experienced. Based on this study, a novel soft error-aware design optimi-

sation technique was proposed using joint power minimisation through voltage

scaling and reliability improvement through application task mapping. The aim

was to minimise the number of SEUs experienced for a suitably identified voltage

setting such that low power is consumed, while real-time constraints are met. The

effectiveness of the proposed design optimisation was evaluated using a number of

different applications, including MPEG-2 video decoder and random task graphs.
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It was shown that the proposed soft error-aware design optimisation technique can

effectively reduce the power consumption and improve reliability compared to soft

error-unaware design optimisation techniques, while meeting a specified real-time

constraint. Furthermore, the impact of architecture allocation on the proposed

design optimisation technique was examined.

With the above contributions, this thesis focused on investigation into low power and

reliable MPSoC design. The investigations carried out in the thesis were substantiated

by a number of different experiments and comparisons involving different applications.

It is hoped that the findings in this thesis would contribute towards current research

efforts in efficient and appropriate design techniques for low power and reliable MPSoCs.

7.2 Future Research Directions

As part of future research, a number of worthy and interesting research challenges were

identified. Two such research directions are shown below:

1. Soft error-aware leakage power minimisation, and

2. Online soft error-aware design optimisation.

The different aspects of these future research directions are described next.

7.2.1 Soft Error-Aware Leakage Power Minimisation

With technology scaling, leakage power of an integrated circuit is becoming increasingly

important part of the total power consumption [177]. In Chapters 5 and 6, power min-

imisation has been carried out using dynamic power considerations. To achieve effective

overall power minimisation, consideration of the leakage power is an interesting area of

future research. An effective leakage power minimisation techniques is to incorporate

adaptive body biasing (ABB) for DVS-enabled systems, which employs variable thresh-

old voltage control through different body biasing conditions. However, reduction in

leakage power through threshold voltage control directly affects soft error rate, as soft

errors are induced by particle hits that can effectively collect enough charge to overcome

threshold voltage to cause an upset [62]. As a result, reduction in leakage power causes

increase in the number of soft errors. For example, it has been shown in [192] that using

reverse body bias voltage of 0.5V worsens soft error rate by 36%. To achieve effective

soft error-aware leakage power minimisation, the following aspects can be incorporated:
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1. Formulation of power minimisation problem including ABB for DVS-enabled sys-

tem and analysis of its effects on the reliability.

2. Establishing relationship between voltage scaling and application-level correctness

considering the effect of ABB for DVS-enabled MPSoCs.

3. Development of a soft error-aware dynamic and leakage power minimisation tech-

nique employing DVS and ABB, while maintaining a specified application-level

correctness and real-time performance.

7.2.2 Online Soft Error-Aware Design Optimisation

The voltage scaling techniques in Chapters 5 and 6 employ determination of supply

voltages and operating frequencies with each processing core that are kept constant

throughout the execution time. However, it is possible to achieve further power reduc-

tion using task-level voltage scaling assignment that allow runtime variations of supply

voltages and operating frequencies. To employ such voltage scaling with an aim to

achieve soft error-aware design optimisation, the impact of application task mapping on

power minimisation and reliability need to be formulated. Based on such study, each

task can be allocated a voltage setting to give optimised design in terms of minimised

power consumption and minimised number of SEUs experienced. Also, with given real-

time constraint, the voltage settings of application tasks can also be determined online

using different techniques, such as workload prediction, worst-case execution time con-

sideration. To evaluate the impact of online voltage scaling and task mapping on the

reliability at application-level, the relationship between task-level voltage scaling and

application-level correctness (Section 5.4.3, Chapter 5) needs to be revisited. A number

of benefits of using such online voltage scaling has been demonstrated in detail in [193].



Appendix A

MPEG-2 Video Decoder

MPEG-2 video decoder constitutes a major component of MPSoC applications and has

been used in Chapters 4, 5 and 6 as application case studies. Section A.1 presents the

basics of MPEG-2 video decoder and Section A.2 shows example implementation of the

decoder.

A.1 MPEG-2 Video Decoder Basics

MPEG-2 video decoder is an ISO standard for the generic coding of moving pictures [124].

It describes video decompression technique and is widely used in embedded multimedia

systems, such as digital television, digital video discs (DVDs), digital video broadcasting

(DVB), portable video devices, etc. In this work, MPEG-2 video decoder has been thor-

oughly used as an example of application-specific MPSoCs. Figure A.1 shows a block

diagram of simplified video decoding process used in MPEG-2 standard.
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Figure A.1: Simplified MPEG-2 video decoding process

MPEG-2 video decoder takes encoded video bitstreams as inputs and generates decoded

frames in specified format. As can be seen, the decoding process from coded bitstream is

formed of five major processes (Figure A.1). The decoding is initiated by variable length

166
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decoding process, followed by inverse scan, inverse quantisation, inverse discrete cosine

transformation and motion compensation. After motion compensation, the decoding

process is finished and the decoded video frames are stored in a frame buffer. In the

following, the major processing steps and their inputs are briefly described.

• Encoded Video Bitstream: The coded video bitstream is the main input to

the decoder, which is previously encoded by an MPEG-2 video encoder. Such

encoder identifies the useful part of a raw video signal (called the entropy) and

compresses it in a predefined format. The video encoding process is lossy process

as some precision to the original video data are lost during compression due to

time/frequency transformations and usage of fixed size value holders.

• Variable Length Decoding: The variable length decoding process splits the

coded video bitstream in two sequences: header sequence and video sequence.

The headers contain the necessary flags and parameters required to decode the

video sequence and are arranged in predefined data structure and the video se-

quence contains the actual video data. The video is organised as groups of pictures

(GOP) with different types of frames or pictures in sequence: intra (I), predicted

(P) or bi-directional (B) picture, each picture with a hierarchical data structure.

Figure A.2 shows hierarchical video data structure used in MPEG-2 video. As

I
 B
 B
 P
 B
 B
 P
 B
 B
 P
 B
 B
 ….
I


(8 x 8) pixels


Group of Pictures (GOP)


Picture


Slice


Macroblock

Block


Figure A.2: Hierarchical video data structure used in MPEG-2 video

shown in Figure A.2, each picture contains slices, which are formed of contiguous

macroblocks (MBs). Each macroblock is the 16 pixel segment, having four (8× 8)

blocks in each. Apart from decoding raw video into the hierarchical data structure,

the variable length decoding process also performs necessary scaling and scanning

as described in the different headers.

• Inverse Scanning: The quantisation matrices and video sequence blocks decoded

by variable length decoder process are organised into one-dimensional array (i.e.

64 = 8 × 8). Inverse scan process transforms these arrays into two-dimensional

arrays. The inverse scan patterns are defined in the header sequence.
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• Inverse Quantisation: The resulting array of two-dimensional coefficients is in-

verse quantised to produce the reconstructed discrete cosine transformation (DCT)

coefficients. This process is essentially a multiplication by the quantiser step size.

The quantiser step size is modified by two mechanisms: weighting matrices and

scale factor. As quantisation leaves some values to overflow, saturation is also

carried out in the inverse quantisation process. The saturation process necessar-

ily contains the values within the window, [−2048 : 2047]. During quantisation

process, mismatch control is also performed by summing all of the reconstructed,

saturated coefficients to determine and correct mismatches that may exist within

the DCT coefficients.

• Inverse Discrete Cosine Transformation: Quantisation is followed by the in-

verse discrete cosine transformation (IDCT) process, which is similar to inverse

Fourier transform, allowing the actual time domain picture information to be re-

trieved in a lossy manner. The DCT process is followed by sturation to contain

within the range for coefficients as [−2048 : +2047].

• Motion Compensation and Storage / Display: After IDCT process, the

video blocks are picture ready but not in proper sequence in terms of time and

space. Hence, the motion compensation process forms predictions from previously

decoded pictures which are combined with the coefficient data (from the output of

the IDCT process) to recover the final decoded samples. In the case where a block

is not coded, either because the entire macroblock is skipped or the specific block is

not coded, the decoded samples are derived through prediction. After the motion

compensation is completed, the video blocks are then added and reconstructed to

form uncompressed video (in sequence of frames). The decodes sequence of video

frames are stored in the memory.

A.1.1 Frame Formats

Common intermediate format (CIF) is the standard video frame format commonly used

in different video applications, such as video tele-conferencing, broadcast, etc. The sizes

of other video frames are generally expressed as a function of the size of a CIF video

frame. Table A.1 shows the different frame formats used in MPEG-2 video decoder with

their resolution in number of pixels per frame. For example, sub-quarter CIF (SQCIF)

has (128×96) pixels, while 2CIF has (352×576) pixels (Table A.1).

A.1.2 Decoding Rates

MPEG-2 video decoder has two different rates for video decoding: phase alternate line

(PAL) and national television system committee (NTSC). Standard PAL decoding rate is
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Format Video Resolution (pixels)

SQCIF 128×96

QCIF 176×144

CIF 352×288

2CIF 352×576

4CIF 704×576

16CIF 1408×1152

DCIF 528×384

Table A.1: Different frame formats used in MPEG-2 video decoder

25 frames per second, while that of NTSC is 29.97 frames per second. The PAL standard

has 20% more number of pixels in the vertical direction. For example, CIF format video

in PAL decoding standard has (352×288) pixels, compared to (352×240) pixels in NTSC.

MPEG video with different size and rates have been used in Chapters 4, 5 and 6.

A.1.3 MPEG Fidelity

The fidelity of decoded MPEG frames is often evaluated using various metrics. Peak

signal-to-noise ratio (PSNR) is a popular metric used by [23, 24]. PSNR is found as the

ratio of peak video signal power to the mean-squared-error or noise power as

PSNR = 10 log10
1

ML

M
∑

m=1

L
∑

l=1

2552

(xm,l − ym,l)
2 . (A.1)

where M is the number of frames coded in the video sequence, L is the number of

pixels in a frame, xm,l and ym,l are the l-th pixels in m-th reference and decoded frames.

Frame error ratio (FER) is another useful metric to describe how effectively MPEG-based

systems can decode the frames and used in [145]. FER defines the ratio of erroneous or

lost frames over total number of frames available as

FER =
Lost or Erroneous Frames

Total Frames
. (A.2)

FER gives a measure of temporal quality in terms of effectives of decoding frames within

a video bitstream or sequence. PSNR and FER has been used to evaluate reliability at

application-level in Chapters 4 and 5.
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A.2 MPEG-2 Video Decoder Implementation

In this work, two different MPEG-2 video decoder implementations have been used. In

Chapter 4, MPEG-2 video decoder has been developed using behavioural modelling in a

cycle accurate simulation environment in NIRGAM [25] (brief introduction to NIRGAM

is presented in Appendix B, Section B.1) and in Chapter 5, C/C++ implementation

of MPEG-2 video decoder has been ported to MPARM (brief introduction to MPARM

is presented in Appendix B, Section B.2) with SystemC wrapper classes. Figure A.3

shows example SystemC prototype variable length decoder (VLD) core implementation

used in Chapter 4. As shown in line 10, Figure A.3, each core extends the core interface

in NIRGAM (refer to Appendix B, Section B.1), which requires implementation of the

two processes, send and recv (line 50, 51, Figure A.3). The incoming data is fed by

network interface (NI) to the core by data in and outgoing data is fed to NI by data out,

each of which are structure of packetdata type (line 49, Figure A.3). The core activity

is monitored by MPEGMonitor class (line 13) and mapping of local variables (line 15-

26) is done through MPEGMemory class (line 12) through the constructor (line 47).

The variable length decoder functionality is carried out through modular functions (line

27-44).

Figure A.4 shows example prototype MPEG-2 video decoder initialiser class used in

MPARM environment (see Appendix B, Section B.2), which has the job of message

queue definition and task allocation for a given architecture allocation of 4 cores. As can

be seen, the prototypes for different tasks of Figure 5.7 are given in lines 6-10 and their

definitions are given in lines 59-61 (Figure A.4). These taks are allocated to different

processing cores using Multiprocessing configuration RTEMS (real-time executive for

embedded systems [163]) system variable in lines 35, 46 and 48 (Figure A.4. The different

message queues for inter-processor communication are defined (lines 16-33, Figure A.4.

These message queues are then mapped via interconnects through MPARM.
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1 //================= VLD Header file =================

2 #ifndef _MPEGVLDecoder_H_

3 #define _MPEGVLDecoder_H_

4 #include "../../ core/ipcore .h"

5 #include <fstream >

6 #include <string >

7 #include <math.h>

8 using namespace std;

9

10 class MPEGVLDecoder : public ipcore {

11 public :

12 MPEGMemory memory ;

13 MPEGMonitor monitor ;

14

15 sc_biguint <64> tempdata ;

16 short int msb , intra_macroblock_count , non_intra_macroblock_count ;

17 int isid , conid , block_count , scalable_mode , f_code [4][4] , packet_no ;

18 float total_wait_time , avg_wait_time , total_latency , avg_latency ;

19 short int start_code , chroma_format;

20 int pict_scal , spatial_temporal_weight_code_table_index ,

21 macroblock_type , motion_vector_count , mv_format , dmv ,

22 h_r_size , v_r_size , vertical_size , picture_coding_type ,

23 picture_structure , pattern_code[12], block [12],

24 dc_dct_pred [3], slice_no ;

25 ...

26 /// Other VLD -related variables

27 ...

28 void read_a_packet(); void next_start_code();

29 void read_next_packet ();

30 void write_cmd_packet( unsigned char , unsigned int );

31 void write_data_packet(int , unsigned int );

32 void write_packet(int , int , unsigned int );

33 void write_term_packet(unsigned int );

34 ....

35 /// Other MPEG -related function prototypes

36 ....

37 void sequence_header ();

38 void extension_header ();

39 void user_data_start_header ();

40 void group_start_header ();

41 void picture_start_header ();

42 void slice_start_header ();

43 long GetBits (unsigned char bits);

44 void Decode_MPEG2_Non_Intra_Block (int );

45 void Decode_MPEG2_Intra_Block (int );

46

47 /// Constructor

48 SC_CTOR (MPEGVLDecoder);

49

50 packetdata data_out , data_in ;

51 void send (); /// send flit/packet PROCESS

52 void recv (); /// receive flit/packet PROCESS

53 };

54 #endif

55 //================= VLD Header End =================

56

Figure A.3: Example SystemC prototype class for MPEG variable length decoder
(VLD) core used in Chapter 4
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1 //================= Start of MPEG Init for RTEMS =================

2 #define TEST_INIT

3 #include "system .h"

4 #include <stdlib .h>

5

6 rtems_task decode_header_sequence (rtems_task_argument argument );

7 ...

8 /// Other tasks

9 ...

10 rtems_task store_frame ( rtems_task_argument argument );

11

12 rtems_task Init(rtems_task_argument ignored )

13 {

14 rtems_status_code status ;

15

16 // Creating Message Queue for Task 1

17 Queue_name [0] = rtems_build_name(’Q’, ’U’, ’1’, ’ ’);

18 status = rtems_message_queue_create (Queue_name [0], MAX_MES ,

19 sizeof (1024 * rtems_unsigned32), RTEMS_GLOBAL , &Queue_id [0]);

20 directive_failed( status , " rtems_message_queue_create " );

21 // Creating Message Queue for Task 2

22 Queue_name [1] = rtems_build_name(’Q’, ’U’, ’2’, ’ ’);

23 status = rtems_message_queue_create (Queue_name [1], MAX_MES ,

24 sizeof (1024 * rtems_unsigned32), RTEMS_GLOBAL , &Queue_id [1]);

25 directive_failed( status , " rtems_message_queue_create " );

26 ....

27 /// Creating more Message Queues for Task 3-10

28 ....

29 // Creating Message Queue for Task 11

30 Queue_name [11] = rtems_build_name(’Q’, ’U’, ’1’, ’1’);

31 status = rtems_message_queue_create (Queue_name [11], MAX_MES ,

32 sizeof (1024 * rtems_unsigned32), RTEMS_GLOBAL , &Queue_id [11]);

33 directive_failed( status , " rtems_message_queue_create " );

34

35 if( Multiprocessing_configuration .node ==1){

36 Task_name [0] = rtems_build_name(’0’, ’0’, ’1’, ’ ’);

37 status = rtems_task_create(Task_name [0], MAX_MES ,

38 RTEMS_MINIMUM_STACK_SIZE , RTEMS_TIMESLICE ,

39 RTEMS_LOCAL , &Task_id [0]);

40 directive_failed( status , " rtems_task_create" );

41 status = rtems_task_start(Task_id [0], ( rtems_task_entry)

42 decode_header_sequence , ( rtems_task_argument )0);

43 directive_failed(status , "rtems_task_start" );

44 }

45 ....

46 /// Creating more Tasks and mapping tasks

47 ....

48 if( Multiprocessing_configuration .node ==4){

49 Task_name [11] = rtems_build_name(’0’, ’0’, ’1’, ’1’);

50 status = rtems_task_create(Task_name [11], MAX_MES ,

51 RTEMS_MINIMUM_STACK_SIZE , RTEMS_TIMESLICE ,

52 RTEMS_LOCAL , &Task_id [11]);

53 directive_failed( status , " rtems_task_create" );

54 status = rtems_task_start(Task_id [11], (rtems_task_entry)

55 store_frame , ( rtems_task_argument )0);

56 directive_failed(status , "rtems_task_start" );

57 }

58 }

59 ...

60 /// Define all MPEG tasks and their communications

61 ...

62 //================= End of MPEG Init for RTEMS =================

63

Figure A.4: Sample of MPARM initialiser class for defining MPEG-2 video decoder
tasks highlighting task mapping to processing cores, used in Chapter 5
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Simulation Tools Used

A number of simulation tools have been used throughout this research. Section B.1

presents NIRGAM simulation tool for NoC-based simulations [25], developed at Univer-

sity of Southampton and used in Chapter 4 and Section B.2 details MPARM simulation

tool [21], which has been used for cycle-accurate power and performance profiling in

Chapter 5. Simulated annealing tool ASA [178] is introduced in Section B.3 and Cocen-

tric System Studio [67] (a cycle-accurate tool by Synopsys and used for AMBA-based

simulations in Chapter 4) is described in Section B.4.

B.1 NIRGAM: NoC Interconnect Routing and Applica-

tion Modelling

NIRGAM [25] is a SystemC-based discrete-event, cycle-accurate simulator for research

on network-on-chip(NoC). It provides substantial support to experiment with NoC de-

signs in terms of routing algorithms and applications on various topologies. Different

topologies have been implemented in NIRGAM, which are i) 2-D mesh, and ii) 2-D torus.

Different packet switching technique has been implemented, such as i) wormhole, and

ii) store and forward. The following routing algorithms are also implemented i) deter-

ministic XY, ii) adaptive odd-even(OE), and iii) source-based routing. The simulator

provides different synthetic traffic generation techniques, suich as i) source (sender) traf-

fic only, ii) sink/receiver-based traffic only, and iii) random traffic generator, etc. The

traffic implementations can also be controlled using the following techniques: i) constant

bit rate, ii) bursty, and iii) trace-based.

The simulator uses plug-in SystemC classes for applications and routers for easy cus-

tomisation among different communication techniques as shown in Figure B.1. Different

NoC parameters are made configurable from a global configuration file (Figure B.1).

The different configurable paremeters are: i) topology size (m × n), ii) clock frequency,
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Figure B.1: Simplified block diagram of NIRGAM NoC simulator

iii) buffer depth, iv) packet type, v) flit size, and vi) virtual channel sizes, etc. The

customisations can be carried out easily using global configuration file. The simulator

is currently open source and is available at [25].

B.2 MPARM

MPARM [21] is a multi-processor cycle-accurate architectural simulator. Its facilitates

system-level analysis of design trade-offs in the usage of different processors, intercon-

nects, memory hierarchies and other devices. MPARM output includes accurate profil-

ing of system performance, execution traces, signal waveforms, and, for many modules,

power estimation. The OCP 2.0 point-to-point link is deployed to connect system com-

ponents and xPIPES [87] is incorporated for NoC-based simulations. The MPARM

platform includes hardware components and software components. Currently, a port

of the RTEMS [163] operating system runs on MPARM as shown in Figure B.2 . The

MPARM used in this work uses software instruction set simulation (ISS) platform for

ARM (called SWARM), implementing functionalities of ARM7TDMI [194] processor.

The RTEMS environment gives easy integration between software implementation using

C/C++ and hardware implementation using SystemC wrapper classes for interconnects

and other hardware components (Figure B.2). This makes MPARM a good platform

for easy HW/SW codesign. The architecture allocation is specified within MPARM us-

ing configuration scripts and application task mappings can be easily carried out using

RTEMS task mapping with semaphore-based resource sharing between tasks. Chapter 5

uses MPARM to employ voltage scaling in MPSoC cores and obtain power consumption

results.
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Figure B.2: Simplified block diagram of MPARM hardware/software codesign

B.3 Adaptive Simulated Annealing Tool

Adaptive Simulated Annealing (ASA) [178] is a C-language code developed to statisti-

cally find the best global fit of a non-linear constrained non-convex cost-function over a

D-dimensional space. This algorithm permits an annealing schedule for ”temperature”

T decreasing exponentially in annealing-time k, T = T0exp(−ck1/D). The introduction

of re-annealing also permits adaptation to changing sensitivities in the multi-dimensional

parameter-space. This annealing schedule is faster than fast Cauchy annealing, where

T = T0/k, and much faster than Boltzmann annealing, where T = T0/loge k. ASA has

over 100 OPTIONS to provide robust tuning over many classes of non-linear stochastic

systems.

ASA is widely used tool for simulated annealing experiments due to its easy customisa-

tion and access. The tool requires definition of the cost function that would be optimized.

The mapping optimisation is carried out in this work (Chapters 5 and 6) using group

migration-based task movement algorithm [172], which is used to map task graphs on

multiple processing cores in a greedy fashion. Group migration is easy to implement and

suitable for automatic architecture exploration and application task mapping [172]. For

application task mapping, the cost function is considered as a equally weighted param-

eters with low memory consumption and/or high parallelism (i.e. low multiprocessor

execution time). The cost function is found by these two factors from a mapped system

by scheduling a given task graph. The optimisation starts with all application tasks

mapped on a single core among a given number of allocated cores. In each iteration, a

new movement is carried out to improve the cost function until improvement is minimal

in subsequent moves. The improvement of cost function is characterised by temperature
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cooling function within the ASA tool. In this work, the initial temperature is assumed to

be 1.0 and the final temperature is expected to be 0.0001 using temperature proportion

of 0.95.

B.4 Cocentric System Studio

The CoCentric System Studio [67] by Synopsys is an integrated environment for SystemC-

based hardware description and simulations. The tool provides graphical interface of

SystemC hardware or software classes and monitors, making it easier to carry out

simulation-specific tasks. It employs object oriented modeling throughout using pre-

built SystemC classes. The System Studio offers a wide variety of modelling capabilities,

providing designer with the means to capture complex systems quickly and efficiently.

The modelling paradigms supported can be hierarchically mixed at all levels, making

System Studio an extremely versatile system modelling platform. The tool also contains

a number of pre-built models to facilitate simulations, such as AMBA AHB, AHB mas-

ter, AHB slave, arbiter and decoder. In Chapter 4 Cocentric System Studio has been

used to develop AMBA AHB shared-bus architecture for comparison with network-on-

chip (NoC).
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Random Task and Resource

Graphs

In this research, a number of random task graphs have been used as synthetic appli-

cation examples to help evaluate the effectiveness of the design techniques proposed in

Chapters 5 and 6. These task graphs are generated using the random task and resource

graph tool [179], specifically developed for this research. In this chapter, a number of

different random task graphs are shown. To demonstrate how the task graphs are de-

scribed, example task graph with 10 tasks are shown with and without the associated

register resources in Sections C.1 and C.2. Later, example descriptions of task graph

with 20 tasks, 40 tasks are shown in Section C.3.

C.1 Example Task Graph: 10 Tasks without Resource

The following task graph description is a random task graph with 10 tasks without

showing resource mapping, i.e. the register usage of each task. The description is

organised as follows:

1. The first line contains the number of tasks in the task graph.

2. Each following line contains the task description. Each task is denoted by it’s

number followed by the computation cost.

3. The number followed by the computation cost is the number of dependants of the

task. This is then followed by the dependant nodes as pairs with the dependant

node number and communication cost.

4. The last node has 0 number of dependencies as expected.
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The cost and the number of data dependencies in the random task graphs were gener-

ated using uniform probability distribution with computation cost between 1 and 40,

communication cost between 1 to 10 (all costs as multiples of 3.5 × 106 clock cycles).

The number of dependencies were given by exponential distribution between 0 to N/2,

where N is the number of tasks. Figure C.2 shows the diagrammatic representation of

1 //================= Start of Task Graph with 10 Tasks =================

2 10

3 1 34 3 2 2 3 5 4 4

4 2 16 1 3 4

5 3 38 3 4 9 5 6 6 5

6 4 15 2 5 2 6 1

7 5 31 3 6 7 7 1 8 7

8 6 13 3 7 2 8 3 9 1

9 7 26 1 8 3

10 8 16 2 9 2 10 4

11 9 15 1 10 4

12 10 19 0

13 //================= End of Task Graph with 10 Tasks =================

14

Figure C.1: Example task graph description with 10 tasks without resource mapping

the task graph with 10 tasks shown in Figure C.1. The nodes in Figure C.2 describe
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Figure C.2: Example task graph with 10 tasks without resource mapping showing
computational tasks as nodes and communication tasks as edges
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the name of the task (for example, t1 meaning task 1). The numbers within the nodes

describe the computational cost (for example, t2 has computational cost of 16). The

arrows between nodes show the direction of communication and the numbers on them

describe the communication cost between tasks (the communication cost between t1

and t2 is 2). Next, a random task graph with 10 tasks is shown with mapped register

resources.

C.2 Example Task Graph: 10 Tasks with Resource

The following task graph description is a random task graph with 10 tasks without

showing resource mapping, i.e. the register usage of each task. The description is

organised as follows:

1. The first line contains the number of register usage components.

2. Each line is then followed by the register usage.

3. The line following contains the number of tasks in the task graph.

4. Each following line contains the task description. Each task is denoted by it’s

number followed by the computation cost.

5. The number followed by the computation cost is the number of dependencies of the

task. This is then followed by the node numbers of dependants and communication

costs as pairs.

6. It is then followed by the number of register resource components, followed by

their numbers.

7. The last node has 0 number of dependencies as expected.

The cost and the number of data dependencies in the random task graphs were gener-

ated using uniform probability distribution with computation cost between 1 and 40,

communication cost between 1 to 10 (all costs as multiples of 3.5×106 clock cycles). The

task register usage is generated using uniform distribution between 1kbits to 20kbits and

the number of dependencies were given by exponential distribution between 0 to N/2,

where N is the number of tasks. Figure C.4 shows the diagrammatic representation

of the task graph with 10 tasks shown in Figure C.3. As shown in Figure C.2, a set

of register resources are associated with each node. For example, task t1 has register

resources r1 and r2, while task t3 has register resources r1, r2, r3 and r4. These two

tasks share the registers r1 and r2 between them.



Appendix C Random Task and Resource Graphs 180

1 //================= Start of Task Graph with 10 Tasks =================

2 7

3 20480

4 4096

5 6144

6 19456

7 5120

8 10240

9 20480

10 10

11 1 34 3 2 2 3 5 4 4 2 1 2

12 2 16 1 3 4 2 2 1

13 3 38 3 4 9 5 6 6 5 4 3 4 1 2

14 4 15 2 5 2 6 1 4 4 1 2 3

15 5 31 3 6 7 7 1 8 7 2 1 2

16 6 13 3 7 2 8 3 9 1 2 2 1 4

17 7 26 1 8 3 5 2 3 4 5 1

18 8 16 2 9 2 10 4 4 4 1 2 3

19 9 15 1 10 4 2 1 2 6

20 10 19 0 4 2 4 6 7

21 //================= End of Task Graph with 10 Tasks =================

Figure C.3: Example task graph description with 10 tasks with resource mapping
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Figure C.4: Example task graph with 10 tasks with resource mapping showing com-
putational tasks as nodes, communication tasks as edges and register resources with

each task
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C.3 Other Example Task Graphs

Figure C.5 shows an example task graph with 20 tasks with associated register resources.

A total of 10 registers are used.

1 //================= Start of Task Graph with 20 Tasks =================

2 10

3 20480

4 4096

5 6144

6 19456

7 5120

8 10240

9 20480

10 15360

11 11264

12 15360

13 20

14 1 38 3 2 13 3 10 4 7 7 1 2 3 4 5 6 7

15 2 15 2 3 2 4 1 7 2 3 4 5 6 7 1

16 3 31 3 4 10 5 2 6 10 2 1 2

17 4 13 3 5 3 6 5 7 2 3 1 2 3

18 5 26 1 6 5 10 5 6 7 8 9 10 1 2 3 4

19 6 16 2 7 2 8 6 8 6 7 8 1 2 3 4 5

20 7 15 2 8 1 9 5 6 1 2 3 4 5 6

21 8 15 3 9 11 10 6 11 3 6 2 3 4 5 6 1

22 9 28 3 10 10 11 7 12 2 5 4 5 1 2 3

23 10 12 2 11 7 12 6 8 2 3 4 5 6 7 8 1

24 11 28 4 12 6 13 12 14 2 15 11 9 2 3 4 5 6 7 8 9 1

25 12 21 3 13 5 14 1 15 9 7 5 6 7 1 2 3 4

26 13 24 3 14 3 15 1 16 5 3 1 2 3

27 14 17 2 15 7 16 9 7 7 1 2 3 4 5 6

28 15 22 3 16 11 17 9 18 10 2 1 2

29 16 13 1 17 12 3 1 2 3

30 17 19 1 18 2 7 3 4 5 6 7 1 2

31 18 30 1 19 7 10 8 9 10 1 2 3 4 5 6 7

32 19 36 1 20 2 6 1 2 3 4 5 6 10

33 20 21 0 10 1 2 3 4 5 6 7 9 10

34 //================= End of Task Graph with 20 Tasks =================

Figure C.5: Example task graph description with 20 tasks with resource mapping

Figure C.6 shows an example task graph with 40 tasks with associated register resources.

A total of 19 registers are used.
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1 //================= Start of Task Graph with 40 Tasks =================

2 19

3 20480

4 4096

5 6144

6 19456

7 5120

8 10240

9 20480

10 15360

11 11264

12 15360

13 16384

14 14336

15 7168

16 17408

17 11264

18 4096

19 10240

20 8192

21 5120

22 40

23 1 18 1 2 2 12 1 2 3 4 5 6 7 8 9 10 11 12

24 2 12 2 3 9 4 3 10 2 3 4 5 6 7 8 9 10 1

25 3 14 2 4 7 5 2 10 3 4 5 6 7 8 9 10 1 2

26 4 11 2 5 5 6 2 11 4 5 6 7 8 9 10 11 1 2 3

27 5 32 2 6 2 7 5 13 5 6 7 8 9 10 11 12 13 1 2 3 4

28 6 30 3 7 5 8 1 9 4 3 3 1 2

29 7 23 2 8 4 9 7 13 7 8 9 10 11 12 13 1 2 3 4 5 6

30 8 39 2 9 8 10 2 16 8 9 10 11 12 13 14 15 16 1 2 3 4 5 6 7

31 9 34 2 10 6 11 4 2 1 2

32 10 28 3 11 5 12 7 13 2 2 2 1

33 11 19 1 12 3 9 2 3 4 5 6 7 8 9 1

34 12 23 3 13 6 14 4 15 6 15 12 13 14 15 1 2 3 4 5 6 7 8 9 10 11

35 13 29 3 14 1 15 2 16 1 17 13 14 15 16 17 1 2 3 4 5 6 7 8 9 10 11 12

36 14 13 2 15 2 16 2 14 14 1 2 3 4 5 6 7 8 9 10 11 12 13

37 15 30 1 16 4 20 15 16 17 18 19 20 1 2 3 4 5 6 7 8 9 10 11 12 13 14

38 16 36 1 17 5 9 7 8 9 1 2 3 4 5 6

39 17 37 1 18 7 13 4 5 6 7 8 9 10 11 12 13 1 2 3

40 18 39 2 19 8 20 9 12 6 7 8 9 10 11 12 1 2 3 4 5

41 19 17 3 20 6 21 3 22 2 10 9 10 1 2 3 4 5 6 7 8

42 20 14 4 21 2 22 6 23 1 24 4 17 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 1 2

43 21 18 3 22 3 23 4 24 7 18 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1 2

44 22 29 1 23 2 11 11 1 2 3 4 5 6 7 8 9 10

45 23 33 2 24 9 25 9 8 7 8 1 2 3 4 5 6

46 24 16 2 25 6 26 7 13 11 12 13 1 2 3 4 5 6 7 8 9 10

47 25 12 4 26 7 27 3 28 3 29 9 10 5 6 7 8 9 10 1 2 3 4

48 26 20 1 27 8 2 2 1

49 27 14 1 28 6 15 12 13 14 15 1 2 3 4 5 6 7 8 9 10 11

50 28 28 4 29 5 30 5 31 5 32 7 13 2 3 4 5 6 7 8 9 10 11 12 13 1

51 29 30 4 30 1 31 3 32 8 33 3 8 5 6 7 8 1 2 3 4

52 30 19 4 31 8 32 7 33 5 34 4 6 6 1 2 3 4 5

53 31 12 2 32 1 33 3 9 4 5 6 7 8 9 1 2 3

54 32 23 2 33 4 34 2 17 15 16 17 1 2 3 4 5 6 7 8 9 10 11 12 13 14

55 33 14 2 34 2 35 9 14 5 6 7 8 9 10 11 12 13 14 1 2 3 4

56 34 14 2 35 4 36 4 15 4 5 6 7 8 9 10 11 12 13 14 15 1 2 3

57 35 18 3 36 5 37 2 38 2 14 7 8 9 10 11 12 13 14 1 2 3 4 5 6

58 36 31 4 37 7 38 6 39 7 40 9 13 10 11 12 13 1 2 3 4 5 6 7 8 9

59 37 33 4 38 6 39 7 40 6 41 9 5 2 3 4 5 1

60 38 20 0 4 2 3 4 1

61 39 28 1 40 9 20 19 20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

62 40 12 0 11 7 8 9 10 11 1 2 3 4 17 19

63 //================= End of Task Graph with 40 Tasks =================

Figure C.6: Example task graph description with 40 tasks with resource mapping
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