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Abstract

Spontaneous very low frequency oscillations (<0.5 Hz), previously regarded as physiological
noise, have of late been increasingly analysed in neuroimaging studies. These slow oscillations,
which occur within widely distributed neuroanatomical systems and are unrelated to cardiac and
respiratory events, are thought to arise from variations in metabolic demands in the resting brain.
However, they also persist during active goal-directed processing, where they predict inter-trial
variability in evoked responses and may present a potential source of attention deficit during task
performance. This work presents a series of new approaches for investigating: (i) the slow waves
in electromagnetic (EM) brain signal recordings, (ii) their contribution in brain function, and (iii)
the changes that the slow wave mechanisms undergo during cognitive processing versus resting
states. State-of-the-art blind source separation methodologies, including single-channel and space-
time independent component analysis (SC-ICA and ST-ICA), are employed for denoising and
dimensionality reduction of multi-channel EM data, and to extract neurophysiologically
meaningful brain sources from the recordings. Particularly, magnetoencephalographic (MEG) data
of attention-deficit/hyperactivity  disorder (ADHD) and control  children, and
electroencephalographic (EEG) data recorded from healthy adult controls, are analysed. The key
analytical challenges and techniques available for the analysis of the slow waves in EM brain

signal recordings are discussed, and specific solutions proposed.

Core results demonstrate that the inter-trial variability in the amplitude and latency of the event-
related fields sensory component, the M100 (in MEG), exhibits a slow wave pattern, which is
indicative of the intrinsic slow waves modulating underlying brain processes. In a separate study,
phase synchronisation in the slow wave band was observed between fronto-central, central and
parietal brain regions, and the level of synchrony varied between rest and task conditions, and as a
function of ADHD. Furthermore, a new EEG experimental framework and a multistage signal
processing methodology have been designed and implemented in order to investigate brain activity
during task performance in contrast with that during rest. Here, the brain has been envisaged as an
oscillatory system onto which a graded load was imposed to yield a variable output response — the
P300. Specifically, results show that the amplitude and phase of the brain sources in the slow wave
band share essential similarities during rest and task conditions, but are distinct enough to be
classified separately. This is in keeping with the view that the intrinsic slow waves are
continuously influencing active brain sources and they are in turn affected by external stimulation.

These slow wave variations are also significantly correlated with the level of cognitive attention
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assessed by performance measures (such as reaction time and error rates). Moreover, the power of
the sources in the slow wave band is attenuated during task, and the level of attenuation drops as
the task difficulty level is increased, whilst their phase undergoes a change in structure (measured
through entropy).

These new methodologies, developed for gaining insight into the neurophysiological role of the
slow waves, could be used for assessing changes in the brain electrical oscillators as a function of
various psychiatric and/or neurobehavioural disorders such as ADHD. This could ultimately lead
towards a more scientific (and accurate) approach for the prognosis and diagnosis of these

disorders.
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Chapter 1

INTRODUCTION

1.1. Project Aim

“Men ought to know that from the human brain and from the brain only, arise our pleasures,
joys, laughter and jests, as well as our sorrows, pain, griefs and fears. Through it, in particular,
we think, see, hear and distinguish the ugly from the beautiful, the bad from the good, the

pleasant from the unpleasant.’

Hippocrates (460-370 BCE), the “Father of Medicine” in his book “The Sacred Disease”.

This amazing living organ that is the brain comprises billions of neurons in constant
communication, which elaborate into a surpassingly complex structure at the centre of our
nervous system. Humans have tried to gain insight into its anatomy and performance, with the
earliest record of brain function dating back as far as 4000 BC (Bear et al., 2001). Although the
road to discovery of how the human brain generates the vast range of functions that determine
our lives and shape our ever-vibrant world, is long and intricate, it is nonetheless achievable,

since as the Nobel Prize winner for Medicine (1981), Prof. Dr. David H. Hubel, affirmed:

“The brain is a tissue. It is a complicated, intricately woven tissue, like nothing else we know of
in the universe, but it is composed of cells, as any tissue is. They are, to be sure, highly
specialized cells, but they function according to the laws that govern any other cells. Their
electrical and chemical signals can be detected, recorded and interpreted and their chemicals
can be identified; the connections that constitute the brain's woven felt-work can be mapped. In

short, the brain can be studied, just as the kidney can.”

Such propositions have driven researchers from a wide range of disciplines — philosophers and
physicians, physiologist and psychologist, physicists, engineers and mathematicians — to explore
ways of enhancing our understanding of how cognition and behaviour emerge from this human

central processing unit. The last century has seen a vast body of systems, techniques and
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methodologies developed by biomedical engineers, medical physicists, signal processors and
computer scientists to provide windows into the human brain. Neuroimaging systems yield
detailed spatial mappings of the brain for the prognosis, diagnosis, and treatment of numerous
neurological and psychiatric pathologies (Al-Chalabi et al., 2006). Electrophysiology then
provides a direct, non-invasive neuronal probe that captures the electrical activity of the neurons
during perception, action and thought (Fisch, 1999). The human electroencephalogram (EEG),
first recorded by Hans Berger in 1929, reveals oscillations of varying frequencies, each having
different spatial distributions and associated with different neural states such as waking and
sleep. These oscillations, which represent the synchronized activity of thousands of neurons,
interact to form a number of dynamic, functional networks which vary according to the absence
or presence of stimulation (Buzsdki and Draguhn, 2004; Fox et al., 2005). For instance,
functional magnetic resonance imaging (fMRI) studies show that the brain remains active in an
organised manner during periods of ‘apparent’ rest (when no cognitive task is being performed)
and displays (amongst others) a neuro-anatomically robust default network of activity (Fox et al.,

2005).

Recently, it has been suggested that the brain oscillators span frequency bands from as low as
0.025 and up to 600 Hz (Buzsaki and Draguhn, 2004). Of particular interest are spontaneous
neuronal very low frequency oscillations (VLFO, <0.5 Hz) ak.a. slow waves, previously
regarded as physiological noise (Vanhatalo et al., 2005). These VLFOs, which appear to be
intrinsically generated by the brain and occur within widely distributed neuroanatomical systems,
have been consistently reported and analysed in fMRI blood oxygenation level dependent
(BOLD) imaging studies. They are more prominent in the resting brain and may be used to
promote synchronisation between diverse neuronal networks. When they persist into task
sessions, they are thought to contribute to inter-trial variability in evoked responses and
behaviour (Fox et al., 2006; Fox and Raichle, 2007), and may present a potential source of
interference during task performance leading to periodic lapses in attention (Sonuga-Barke and
Castellanos, 2007). These VLFOs have also been observed in electrophysiological signal
recordings linked with specific pathologies such as epileptic seizures, and in sleep studies

(Vanhatalo et al., 2004:2005).

EEG and magnetoencephalographic (MEG) data (the latter captures the magnetic fields
generated by the electrical activity of the neurons) are obtained from an inherently noisy
recording process and typically contain a mixture of physiological (for example, ocular and
muscular) and ambient artifacts, along with active brain sources. For this reason, blind source

separation (BSS) techniques are often employed to efficiently isolate neurophysiologically
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meaningful sources from the recorded signals (James and Hesse, 2005). Independent component
analysis (ICA) is one BSS technique that has been extensively used in the literature for
decomposing the signals into a number of statistically independent components (ICs) with a
distinct spatial profile. Single channel ICA (SC-ICA) is a variant of ICA which can be applied to
extract underlying processes from a single recording sensor by using only temporal information
inherent in the signal dynamics. Expansion of this technique has led to the development of
Space-time ICA (ST-ICA), whereby SC-ICA is applied to a number of recording channels, hence
providing both temporal and spatial information to inform the standard ICA algorithm. This
presents a specific form of BSS that exploits the rich, dynamical time structure of EEG/MEG

data as well as the multi-channel (spatial) nature of the recordings (James, 2008).

The main aim of this work has been to investigate the slow wave mechanisms and their
functional contribution in the human brain through the analysis of electromagnetic (EM) signal
recordings. First, the use of the aforementioned BSS techniques was explored for investigating
slow waves in MEG data recorded from control children and from children with attention-
deficit/hyperactivity disorder (ADHD), where the involvement of VLFOs in the periodic
attention lapses experienced by individuals suffering from this neurobehavioural disorder has
been implicated (Sonuga-Barke and Castellanos, 2007). Second, an experimental framework was
designed to test the functional significance of the slow waves, in contrast to other brain
oscillators, namely delta (0.5<f<4 Hz), theta (4<f<8 Hz) and alpha (8<f<12 Hz), during various
experimental conditions. EEG data was collected from healthy adult controls and a BSS
methodology, coupled with a neural network feature extraction and classification method, was
developed in order to assess variations in the slow wave characteristics during periods of quiet
wakefulness (termed as “rest”), and during the performance of visual tasks of various difficulty

levels. This thesis is organised as follows.

1.2. Thesis Organisation

A review of the literature surrounding the aim of this thesis is presented in Chapters 2 and 3. The
psychological and physiological background for this work; the notion of differing brain networks
activation patterns during default mode, i.e. when the brain is apparently at rest, and during
cognitive tasks is described in Chapter 2. In addition, the putative role of the slow waves in brain
function as understood from the literature to date is discussed. Chapter 3 then focuses on the key
analytical challenges in analysing VLF brain activity in EM brain signal recordings, and gives an
account of the signal processing techniques available for the extraction of spatial, temporal and

spectral information from the data. The brain recording systems are discussed in Chapter 4, with
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special emphasis on the mechanisms of EEG and MEG. Chapter 5 then provides a detailed

description of the ICA techniques used, particularly SC-ICA and ST-ICA; these techniques are

applied to epileptic seizure data as an illustration and for better understanding of this recently-

introduced source analysis framework, whereby data decomposition is undertaken through the

use of temporal/spatio-temporal information.

Chapter 6 gives an account of the methodologies employed for the analysis of VLFOs in EM

brain signals. This chapter is divided into two sections:

(@)

(i)

It has been acknowledged that the frequency spectrum of measured EM brain signals shows
a decrease in power with increasing frequency (Buzséaki and Draguhn, 2004). This spectral
behaviour may lead to difficulty in distinguishing task- or condition-related peaks from
ongoing brain activity in the EEG and MEG signals spectra. In this work a simple method
that can be used to compensate for this 1/f ¥ (0<y< 2) trend is proposed in order to achieve

spectral normalisation (as this can become an issue in the analysis of VLFOs).

The methodologies employed and the results obtained from two separate studies on MEG
recordings of children with ADHD and controls during selective attention and perception

tasks are described. These include:

Low frequency phase synchronisation analysis using SC-ICA.

In this section, a preliminary investigation on the level of connectivity in the brain
during task segments separated by resting periods is presented. SC-ICA is used to
isolate low frequency brain activity within the data in the presence of higher frequency
activity and artifacts. Phase synchrony analysis, which is a vital mechanism for
assessing the functional connectivity of neuronal networks (Lachaux et al., 1999), is
then carried out between the underlying sources extracted from selected channels of
interest in order to quantify any interaction between distant brain regions in the slow

wave band.

Trial-to-trial Variability in Evoked Neural Responses.

As explained earlier, fMRI BOLD imaging studies have shown that when VLFOs
persist into task sessions they can predict trial-to-trial variability in both evoked
behaviour and brain responses by providing a baseline onto which deterministic
responses elicited by the task are superimposed (Fox et al., 2006). Moreover, evidence
in the literature tentatively suggests that this VLF activity may not be present in the
data as distinct, independent source(s) per se but rather as a mechanism that modulates
and perhaps even governs underlying brain processes (Monto et al., 2008). This section

investigates the inter-trial variability observed in MEG event-related field (ERF)
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components, and examines whether this variability exhibits a VLF time signature in
order to indirectly infer information about the underlying slow waves. The focus is on
the visual component, the M100, understood to be regulated by attention. The notion of
whether individual differences in the M100 VLF pattern vary as a function of ADHD
is also explored by comparing 11 cases against 11 controls. The M100 component is
extracted from the data using ST-ICA, which allows trial-by-trial analysis to be

performed on the M100 for proper assessment of VLF modulation.

It is important to note here that the MEG data used for these studies has been supplied by the
Complutense, University of Madrid (UCM) in Spain, and was not recorded with the specific aim
of analysing VLF brain activity or for comparing brain activity during cognitive function and
rest conditions, which are both central to this work. For this reason, EEG experiments were
designed and carried out to specifically investigate the functional role of the slow waves in the
EEG during rest sessions (when participants were relaxed), and whilst performing stimulus-
based tasks, on a sample of 23 healthy adult controls. The tasks have been based on the Go No-
go paradigm (Datta et al., 2007) and the three-stimulus oddball paradigm with graded difficultly
levels (Comerchero and Polich, 1999), both are known to elicit a standard P300 response. This
event-related potential (ERP) component (occurring about 300 ms after stimulus onset) has been
extensively studied in the last forty years because of its relation to attention and memory
operations, and its sensitivity to task environments (Polich, 2007). The motivation behind and the

design of the experimental protocols are presented in Chapter 7.

Chapter 8 describes the multistage signal processing system that has been developed for the
analysis of this EEG data, namely: (i) the application of BSS for denoising the data and
extracting the underlying brain sources (ICs), (ii) subspace analysis of the task ICs based on
hierarchical clustering (Everitt, 1993), (iii) the extraction of features from the amplitude and
phase of the ICs in different frequency bands and, (iv) classification of these features based on a
neural network approach for pattern recognition using the Neuroscale algorithm (Lowe and
Tipping, 1997) and Gaussian Mixture Models (Bishop, 1995). This was done in order to quantify
the changes that the brain oscillators, particularly the slow waves, undergo in different
experimental conditions. The second section of this chapter shows specific and combined results

and further analysis carried out on the output of this multistage system.

At the end of the thesis in Chapter 9, the conclusions drawn from this work are summarised and

prospective future work is outlined. The thesis organisation is illustrated in Figure 1-1.
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Very low frequency neuronal oscillations (VLFOs <0.5 Hz)
Their putative role from neuroimaging studies
Application: ADHD

Chapter 2

h 4

Key analytical challenges in analysing VLF EM brain signals
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Chapter 3

A 4
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Chapter 4
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Signal processing tools: Blind source separation (BSS) techniques
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Chapter 5
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Figure 1-1. Thesis Organisation highlighting the main aspects of each chapter.
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1.3. Original Contributions

Due to the interdisciplinary nature of this work, the research problem has been tackled from a

signal processing and engineering, as well as from a neuroscience and psychological perspective;

this led to several contributions in both domains, namely:

Identification of the key analytical challenges for the analysis of the slow waves in EM
brain signal recordings, (Chapter 3). This was followed by the development of a
technique for normalising the intrinsic 1/f ¥ power spectrum of EEG and MEG signals,
which is useful for highlighting peaks of interest in the data as well as for comparing the

power in the very low and higher frequency bands, (Chapter 6).

Novel application of SC-ICA for the analysis of phase synchronisation in multi-channel
MEG recordings. Phase synchronisation estimation between two channels requires the
signals to be narrowband (Pikovsky et al., 2002). SC-ICA is an adaptive method that
extracts band-limited sources from the data, hence adhering to this requirement without
the need for band-pass filtering in the desired frequency band. For this reason, it has
been used for the first time as an optimal technique for phase synchrony analysis

between processes extracted from distinct brain regions, (Chapter 6).

Detailed explanation of the recently-introduced ST-ICA as an extension of SC-ICA for
the analysis of biomedical signals (Chapter 5). Novel application of ST-ICA for de-
noising of event-related data (M100 and P300) recorded from highly-dense multi-
channel EEG and MEG systems (Chapters 6 and 8).

Development of a new methodology for investigating the inter-trial variability of event-
related responses in EM brain signals. This was done in order to indirectly infer
information about the underlying VLFOs, posited to be modulating/affecting/governing

underlying brain processes, (Chapter 6).

Design of a new experimental procedure which renders three task-rest environments
with graded difficulty levels (Chapter 7). Design and implementation of a multistage
signal processing system for investigating the activity of the brain electrical oscillators
during different experimental conditions (Chapter 8, Section 1). The results obtained
from this system provide evidence that the slow wave features (such as their amplitude
and phase structure, and power) vary with mental load and behaviour. This indicates that
the slow waves play a specific neurophysiological role and are more than just
fluctuations arising from the recording process and/or the analysis procedure (Chapter 8,

Section 2).
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Some of these contributions are highlighted in publications which resulted from this work, as

listed next.

1.4.

1.4.1.

1.4.2.

Original Publications

Refereed Journal Articles

Demanuele, C., Capilla A., Pérez Hernandez, E., Sonuga-Barke, E.J.S. and James, C.J.
(in press). Trial-to-trial variability in evoked neural responses exhibit a very low
frequency temporal signature; A Magnetoencephalography study. Journal of
Psychophysiology.

Broyd, S. J., Demanuele, C., Debener, S., Helps, S.K., James, C.J. and Sonuga-Barke, E.
J. S. (2009). Default-mode brain dysfunction in mental disorders: A systematic review.

Neuroscience and Biobehavioral Reviews, 33, 279-296.

Demanuele C., James C.J. and Sonuga-Barke E.J.S. (2007). Distinguishing low
frequency oscillations within the 1/f spectral behaviour of electromagnetic brain signals.

Behavioural and Brain Functions Journal, 3(62), 14 pgs.

Refereed Conference Papers

Demanuele, C., Sonuga-Barke, E.J.S. and James, C.J. (2010). Slow neuronal oscillations
in the resting brain vs task execution: A BSS-based investigation of EEG recordings.
Submitted for the 32" IEEE Engineering in Medicine and Biology Annual International

Conference, (EMBS’10), Buenos Aires, Argentina.

James, C.J. and Demanuele, C. (2010). Space-Time Independent Component Analysis:
the definitive BSS technique to use in biomedical signal processing? Submitted for the
32" |EEE Engineering in Medicine and Biology Annual International Conference,
(EMBS’10), Buenos Aires, Argentina.

James, C.J. and Demanuele, C. (2009). On spatio-temporal component selection in
space-time Independent Component Analysis: An application to ictal EEG. (Oral
presentation), Proceedings of the 31% IEEE Engineering in Medicine and Biology
Annual International Conference, (EMBS’09), Minnesota, USA.
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1.4.3.

Demanuele, C., James, C.J. and Sonuga-Barke, E.J.S. (2009). Investigating the
functional role of slow waves in brain signal recordings during rest and task conditions.
(Poster presentation), Proceedings of the 5" IEEE EMBS Postgraduate Conference on
Biomedical Engineering and Medical Physics, (PGBIOMED’09), University of Oxford,
UK.

Demanuele, C., James, C.J., Capilla, A. and Sonuga-Barke, E.J.S. (2008). Extracting
event-related field components through space-time ICA: A study of MEG recordings
from children with ADHD and controls. (Oral presentation), Proceedings of the 4"
European Congress for Medical and Biomedical Engineering, (EMBEC’08), Antwerp,
Belgium.

Demanuele, C., James, C.J., Sonuga-Barke, E.J.S. and Capilla, A. (2008). Low
frequency phase synchronisation analysis of MEG recordings from children with ADHD
and controls using single channel ICA. (Oral presentation), Proceedings of the 4"
International Conference on Advances in Medical, Signal and Information Processing,
(MEDSIP’08), Sta. Margherita Ligure, Italy.

Awarded the Best Student Paper at the conference.

Demanuele, C., James, C.J. and Sonuga-Barke, E.J.S. (2007). Analysis of low frequency
oscillations in brain signal recordings of children with ADHD and controls. (Poster
presentation), Proceedings of the 3" Life Sciences Interface Conference, University of

Southampton, UK.

Other Oral and Poster Presentations

Demanuele, C., James, C.J. and Sonuga-Barke, E.J.S. Very low frequency oscillations in
brain signal recordings: Are these of relevance in ADHD? (Poster Presentation), Set for

Britain Event 2010, Westminster, London, 8™ March 2010.

Demanuele, C. and James, C.J. On the analysis of very low frequency neuronal
oscillations in electromagnetic brain signal recordings: A blind source separation

approach. (Public Lecture), University of Malta, 2™ June 2009.

Three one-hour oral presentations of the PhD work and results given in the School of

Psychology at the University of Southampton, (June 2007, December 2008, April 2010).

Three 15-minute oral presentations of the PhD work for the signal processing and

control group (SPCG), ISVR at the University of Southampton, (2007 till 2009).



Chapter 2

SLOW WAVES IN BRAIN SIGNALS:
A REVIEW OF THE LITERATURE I

This chapter provides a psychological and physiological basis for the analyses carried out in this
work. First, neural activity manifested in the EEG as a series of band-limited oscillators engaged
in dynamic functional networks is discussed. This is followed by an explanation of the current
understanding (through fMRI BOLD imaging) of the brain networks activation patterns during
rest as opposed to externally imposed cognitive tasks. Special emphasis is given to existing
theoretical models, hypotheses and evidence of VLF activity, derived from neuroimaging as well
as from electro- and magneto-physiological studies. Lastly, ADHD is introduced as a bio-

behavioural neurological disorder with implications in the slow wave band.

2.1. Networks of Brain Activity

The brain is believed to be a highly-distributed, self-organising system with different modules
linked dynamically by synchronous oscillations (Varela et al., 2001; Buzsaki and Draguhn,
2004; Penttonen and Buzséaki, 2003). Transient assemblies, comprising many neurons, act in
parallel in order to produce coherent perceptions, evaluation and behaviour depending on the
task to resolve. These assemblies have a dynamic topography emerging as structures oscillating
at multiple frequencies, (infraslow oscillations <0.1 Hz; slow oscillations <0.5 Hz; delta waves
0.5-4 Hz; theta 4-8 Hz; alpha 8—12 Hz; beta 13—20 Hz and gamma 25-100 Hz), each associated
with different aspects of cognition and different brain states (Bear et al., 2001; Buzsaki and
Draguhn, 2004). Large amplitude delta rhythms are observed in the human EEG during deep,
dreamless and non-rapid eye movement sleep, and during waking states with low levels of
arousal. Theta rhythms also occur during sleep and often represent a slowing of the alpha
frequency, as in phases of drowsiness (Levin and Liiders, 2000). The alpha rhythm is most
prominent during periods of non-agitation and tranquil relaxation, and is thought to reflect

cortical idling (Ben-Simon et al., 2008). Relaxed yet focused states involving mental activity
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(such as thinking) yield prominent beta waves, whilst high-level, information-rich task
processing results in prominent gamma activity (Lachaux et al., 1999). Interestingly, these
oscillators interact with each other and work together at various levels of synchrony; they can
temporally co-exist in the same or different neural structures, and slower oscillators appear to
group and modulate faster ones (Buzsaki and Draguhn, 2004; Balduzzi ef al., 2008; He et al.,
2008).

Three main classes of neural activity have been identified in the literature, namely (i) oscillatory
activity of the brain independent of stimulation (spontaneous), (ii) activity tightly correlated in
phase with the time of stimulus onset (evoked), and (iii) activity elicited by a stimulus but which
is not tightly phase-locked to it (induced) (Karakas et al., 2000). The notion is that spontaneous
ongoing activity represents the ready mode of the brain, i.e. the basic continuous activity in the
absence of stimulation. In contrast, the go mode is characterised by acute neuronal firing for
short periods of time (ii and iii), whereby distinct neuronal assemblies signal the presence of a
preferred stimulus and respond to a subset of features. Both modes of neural activity are vital for
specifying different cognitive states (Balduzzi et al., 2008). Furthermore, the empirically based
theory of oscillatory neural assemblies formulated by Basar suggests that oscillations reflect the
brain’s information processing (Karakas et al., 2000); it posits that each oscillator represents
multiple functions (like parallel processing systems) selectively distributed in the brain. These
oscillators interact and their activity is coordinated during cognitive processing. Accordingly, the
genesis of event-related (ER) morphology is a compound resulting from the superposition of
oscillatory responses, the characteristics of which vary with task conditions; for instance, the
P300 is the result of the additive effects of delta and theta oscillations, adhering to the principle
of superposition (Karakas et al., 2000; Yordanova et al., 2000). Another proposition is that all
cognitive functions can indeed be represented by a set of multiple oscillations, each responding
to changes in task conditions by varying the amplitude, latency, duration and strength of
stimulus-locking (Karakas et al., 2000). Such ER activity has been extensively used as a basic,
non-invasive method of neurophysiological investigation, providing sensory and cognitive
information for the evaluation of neural pathologies such as schizophrenia (Campanella et al.,

2006) and occipital epilepsies (Gokcay et al., 2003).

Buzsaki and Draguhn (2004) suggest that neuronal oscillators go above and beyond the
conventional EEG band (0.5<f<50 Hz) and potentially span frequencies from approximately
0.025 Hz to 600 Hz, (Figure 2-1). These frequency bands form a linear progression on a natural
log scale (Penttonen and Buzsaki, 2003). Ultrafast activity is likely to be apparent in the
electrophysiology of neurocognition and motor initiation (150<f<500 Hz) (Niedermeyer, 2005),

11
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whereas infraslow oscillations (0.01<f<0.1 Hz) have been recorded in the EEG of preterm
neonates, during epileptic seizure activity (Vanhatalo et al., 2005), and during sleep stages
(Steriade et al., 1993; Vanhatalo et al., 2004). Furthermore, it is suggested that for meaningful
classification of these brain oscillations the individual oscillatory classes must be generated by
distinct physiological entities. This leads to the prediction that such oscillatory patterns are
supported not only by different mechanisms but also by different networks. These network
oscillations are responsible for biasing input selection, temporally linking neurons into
assemblies, and facilitating synaptic plasticity in order to support long-term consolidation of

information (Buzséaki and Draguhn, 2004).
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Figure 2-1. Frequency bands of the oscillators in the rat cortex (Penttonen and Buzséki, 2003).

This is in keeping with fMRI BOLD imaging findings which suggest that “the human brain is
intrinsically organised into dynamic, anti-correlated functional networks”, as illustrated in
Figure 2-2 (Fox et al., 2005). In this study the authors identified two diametrically opposed,
widely distributed brain networks spanning regions that routinely experience task-related
activations or deactivations respectively. Both networks demonstrate patterns of spontaneous low
frequency correlations within their regions and anticorrelations with respect to the other network.
Similarly, studies on the classification of neuronal oscillations in the mammalian cortex in
various frequency bands indicate that spontaneous coherent low frequency neuronal oscillations
are present within a neuro-anatomically robust default network of brain activity (Buzsaki and
Draguhn, 2004; Fransson 2005:2006; Fox and Raichle, 2007). This has been reinforced by the
earlier works of Penttonen and Buzséaki (2003), and Steriade et al. (1993) which attempted to link
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neuronal activity to behaviour. These findings suggest that the basic rhythms of the EEG (delta,
theta, alpha, beta and gamma) represent only a part of the measured neuronal activity. Very low
frequency oscillations are a salient feature of this activity and can give access to new insight into

brain function.

Time (seconds)

Figure 2-2. Two diametrically opposed, widely distributed brain networks and their intrinsic correlations
between a seed region in the posterior cingulate/precuneus (PCC) and all the other voxels in the brain (for a
single subject during rest). Colour bars indicate the spatial distribution of the correlation coefficients. The
time series for the PCC (marked in yellow) shows that a region in the medial prefrontal cortex (MPF;
orange) is positively correlated with the PCC, whereas a region within the intraparietal sulcus (IPS; blue) is
negatively correlated with this seed region (Fox et al., 2005).

2.2. Cognitive Processing versus Resting States

Comparisons of brain activation patterns during periods of rest (i.e. when the individual is
undertaking no externally imposed cognitive task), and during task-oriented activity have led to
the hypothesis that the brain remains active in an organised manner during rest, in a way that
implicates multiple coherent networks which differ in their anatomical components, their
temporal signature and their phase relationships (Fransson, 2006; Sonuga-Barke and Castellanos,
2007). Neuronal activity during rest consumes approximately two-thirds of the brain’s energy
resources, which may be used to keep the brain’s synapses exercised or to maintain a kind of
“metastability” that allows the cortex to be ready to enter any required states or firing patterns
(Balduzzi et al., 2008). One of the networks that is active when the brain is apparently at rest is

known as the default mode network (DMN). The DMN incorporates the medial pre-frontal
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cortex, posterior cingulate/precuneus and lateral parietal cortex, and has been termed the “task-
negative” network as it is attenuated when one engages in task-specific, attention-demanding
activities. This is one of the two networks identified in Figure 2-2 as being temporally anti-
correlated with a second “task-positive” network, which is associated with task-related active
processing (Figure 2-3). As shown in this work (Fox et al, 2005) and in other related works
including (Fransson, 2005:2006; Sonuga-Barke and Castellanos, 2007) coherent VLFOs appear
to play a particularly important role in brain function during rest and seem to be crucial for
synchronising activity across these two networks. Moreover, Fox et al. (2005) suggest that the
DMN, although attenuated during tasks, provides a potential source of interference that could
contribute to lapses in attention during task performance, characterised by a low frequency time-

signature (0.01<f<0.1 Hz).
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Figure 2-3. Neuroanatomical components of anti-correlated task positive and task negative components of

the resting brain default network. This is shown as spontaneous fluctuations in the BOLD signal at rest.
(FEF: frontal eye fields, DLPFC: Dorsolateral prefrontal cortex), (Fox et al., 2005; Sonuga-Barke and
Castellanos, 2007).

Sonuga-Barke and Castellanos (2007) specify this interference as the Default Mode Interference
(DMI) hypothesis and describe it as follows:

“Spontaneous low frequency activity in the task-negative component of the default-

mode network which is routinely attenuated during goal directed tasks, can under
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certain circumstances (e.g. suboptimal motivational states or in individuals with
attention disorders) persist into or remerge during periods of task-related active
processing to such an extent that it competes with task-specific neural processing
and creates the context for periodic attentional intrusions/lapses and cyclical
deficits in performance; the temporal signatures of task-negative fluctuations being

mirrored in patterns of attention and performance.” (pp. 981).
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Figure 2-4. Illustration of the Default Mode Interference Hypothesis. The attenuation of the task negative
component at the onset of the task results in a high level of attention. Its re-emergence throughout the
course of the task leads to periodic attention lapses of a low frequency temporal signature (Sonuga-Barke
and Castellanos, 2007).

This theoretical model postulates that during the course of the task there is spontaneous low
frequency toggling between the task positive component (reflecting extroceptive, attentional
orientation with respect to the task at hand), and the task negative component (which reflects the
introspective state, related to mentalising and emotional processing, and is task-independent),

which could affect task performance (Figure 2-4).

2.3. Very Low Frequency Oscillations

Coherent spontaneous VLF neuronal oscillations (<0.1 Hz) have been first observed by Biswal et
al. (1995), within the motor cortex in fMRI signals during rest. Since then, oscillations in this
frequency band, which are not attributable to specific inputs or outputs and span widely

distributed neuroanatomical systems, have attracted a lot of attention in neuroscience (for a
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review see Fox and Raichle, 2007). These appear to be intrinsically generated by the brain, are
most prominent during rest and may allow temporal synchronisation to promote communication
across diverse brain networks (Buzsaki and Draguhn, 2004; Fransson, 2005:2006). All evidence
in the literature promotes the view that such slow waves, spontaneous or evoked, are not a

passive electrical phenomenon but real responses in the functioning brain.

Fox et al. (2006) demonstrated that VLFOs in human brain activity persist throughout the course
of the task and account for significant trial-to-trial variability in evoked BOLD responses. In fact,
the authors suggest that the measured neuronal responses consist of the task-evoked response
superimposed on the ongoing spontaneous VLF activity. Specifically, they showed that intrinsic
activity measured in the right somatomotor cortex, contributes to variability in the left
somatomotor cortex BOLD response evoked by right-hand button presses. Animal studies have
also provided experimental evidence supporting these conclusions (Azouz and Gray, 1999; Fiser
et al., 2004). Particularly, Arieli ef al. (1996) suggest that dynamically changing ongoing activity
reflects variations in brain states and is involved in the processing of sensory input in the visual
cortex. Moreover, Fox et al. (2007) found that VLF fluctuations in the human somatomotor
system are negatively correlated with trial-to-trial variability in the force of a button press,

suggesting a direct correspondence between spontaneous brain activity and performance.

Both the origin and function of these VLFOs in brain activity are as yet unclear but several
promising hypotheses have been proposed in recent literature. These oscillations may arise from
periodic increasing and decreasing of the neurons’ firing (say every 10 seconds) in the midbrain
reticular formation. Another possibility is that neurons slowly modulate their level of activity
because of intrinsic variations in ionic pumps, neurotransmitter transporters and glial cells
(Balduzzi et al., 2008; He et al., 2008). Meanwhile, these oscillations may be essential for the
development and organization of neuronal systems (Fox et al., 2006); alternatively they could be
emerging from the network(s) itself rather than from the individual neurons (He et al., 2008).
Furthermore, VLFOs may represent dynamic modulations in the internal brain representation,
providing a basis onto which perception and behaviour occur, and hence determining our
response to the outside world. Since this intrinsic brain activity is observed in both goal-oriented
tasks and resting periods, it may represent continuous processes which are vital for maintaining a

coherent neuronal representation of the ‘self” (Fransson, 2006).

Existing evidence of spontaneous VLF activity in the brain during rest comes mainly from

positron emission tomography (PET) and fMRI BOLD imaging studies, which offer excellent
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spatial resolution. However, the fMRI BOLD signal is not a direct measure of neuronal activity
since it reflects local variations in de-oxyhaemoglobin concentration determined by blood flow,
blood volumes and oxygen metabolism, and it is not yet clear how these changes relate to
concurrent changes in the spatial extent and magnitude of neuronal events (Debener et al., 2006).
Moreover, the temporal resolution of fMRI is poor when compared to electro- and magneto-
physiological techniques. Thus, EEG and MEG are employed to provide critical information
about the spatiotemporal patterns of neural activity associated with a variety of sensory,
perceptual, motor and cognitive processes, due to their real-time resolution (in the order of ms)
and their reasonable spatial resolution (in the order of mm) (Hillyard and Anllo-Vento, 1998;
Hillyard and Kutas, 2002). In fact, research by means of EEG and MEG can oftentimes

complement studies of the spontaneous VLF neural phenomenon using these modalities.

Simultaneous BOLD and invasive EEG has been employed by Shmuel and Leopold (2008) who
found a correlation between slow neuronal fluctuations and the low frequency BOLD signal in
anesthetized monkeys. Laufs et al. (2003) correlated EEG activity with VLF BOLD signal
fluctuations in the resting brain; Vanhatalo et al. (2005) observed VLFOs (0.02<f<0.2 Hz) across
diverse scalp regions and provided evidence of phase-locking between these oscillations and
traditional EEG bands. VLF signals during a short-term memory task were also observed in
studies of EEG recordings (Ruckin et al., 1990; Rama ef al., 1995). Furthermore, Leistner et al.
(2007) observed VLF MEG oscillations (= 0.1 Hz) during a motor task, highlighting the use of
MEG for temporal and spatial localisation of the brain activity of interest. Nakagawa et al.
(1999) reported VLF activity in magnetic field recordings, localized in the inferior part of the
occipital lobe, as a reflection of the storage process of the visual short-term memory. A recent
study by Monto et al. (2008) examined large-amplitude (0.01<f<0.1 Hz) electrical fluctuations in
ongoing brain activity of task-engaged humans and reported a high correlation between the
participants’ detection rate of the sensory stimuli and the phase of these EEG fluctuations, thus
revealing a direct electrophysiological correlate with human performance. Moreover, the study
found that amplitudes of the (1<f<40 Hz) EEG oscillations were strongly correlated with the
phase of these fluctuations. These findings suggest that infraslow fluctuations reflect the

excitability dynamics of cortical networks (Monto ef al., 2008).

Finally, disturbances in VLFOs in brain activity have been reported in numerous pathologies,
such as Alzheimer’s disease, multiple sclerosis, depression, schizophrenia, autism, epilepsy and
ADHD. These disturbances are often manifested as irregularities in the power and/or coherence
pattern of the VLFOs, and have been correlated with the level of severity of the disease (Fox and
Raichle, 2007; Broyd et al., 2009).
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24. ADHD - An Application

ADHD is a relatively common and impairing childhood developmental disorder, afflicting
5.29 % of school-age children (Polanczyk et al., 2007). As a disorder characterized by patterns
of inattention, hyperactivity and impulsivity which may persist throughout the lifespan, ADHD
can substantially affect the normal cognitive and behavioural functioning of the individual
(Mulas et al., 2006). A broad range of neuro-psychological, energetical and motivational
processes have been implicated (Taylor and Sonuga-Barke, 2008) with deficits in response
selection, motor adjustment and response inhibition characterising the cognitive phenotype
(Jonkman et al., 2004). ADHD children perform worse than control children on a broad range of
cognitive and attentional tasks (Jonkman et al., 1997; Johnstone et al., 2003). This variable
cluster of symptoms leads to three subtypes of ADHD - predominantly hyperactive,
predominantly inattentive and the combined type. Presence of this disorder during childhood
usually occurs before the age of seven and some of these symptoms may persists throughout the
lifespan — between 50% and 70% of children with ADHD continue to suffer from this disorder as
adults (Clarke et al., 2001). Evidence suggests that ADHD is primarily a polygenic disorder
involving at least 50 genes, including those encoding enzymes of neurotransmitter metabolism,
neurotransmitter transporters and receptors (Sonuga-Barke, 2003). Because of its polygenic
nature, ADHD is a highly comorbid disorder, often co-occurring with conduct disorder,
oppositional defiant disorder, anxiety disorders, major depressive disorder and learning

difficulties (Yordanova et al., 2006). Moreover, its strong genetic basis makes it highly heritable.

Neuropsychological studies reveal that ADHD is a disorder of prefrontal lobe function
(Wienbruch et al., 2005; Banaschewski and Brandeis, 2007). A ‘lazy’ frontal lobe results in
disinhibition of motor activity as well as disturbed attention. However, for some children with
ADHD, especially those with learning disorders, the parietal lobes are likely to be involved
(Comings et al., 2005). ADHD children miss stimuli more frequent (hence committing omission
errors), more often provide erroneous responses to insignificant stimuli (a.k.a. commission
errors), and their reaction time is slower than the general population indicating a weak or
underdeveloped cerebellum (Modarres-Zadeh et al., 2005). Increased response time variability is
another common finding in ADHD research, which may be indicative of frontal cortex

dysfunction and may also be related to deficits in sustained attention (Johnson et al., 2007).

All ADHD subtypes are generally treated by the prescription of methylphenidate and
dexamphetamine. These stimulant medications appear to produce their therapeutic effect by

increasing arousal to more normal levels (Clarke et al., 2003). This treatment is effective in 50-

18



Chapter 2 - Slow Waves in Brain Signals: A Review of the Literature I

75 % of children (Wienbruch ef al., 2005). Biofeedback is currently being used for assessing and
treating ADHD children as well as for increasing the attention span of children who suffer from
attention deficits. EEG biofeedback utilizes feedback from a game played on a TV screen in
attempt to train the brain to alter the levels of delta, alpha and beta waves (Comings et al., 2005).
It has been suggested that such treatment leads to reductions in hyperactive, inattentive and
disruptive behaviours and to improvements in academic performance and IQ scores (Cho ef al.,
2002). Recently, mindfulness meditation training has been proposed as a feasible intervention for
ADHD adults and adolescents since it may improve attention and lower anxiety (Zylowska et al.,

2000).

To date ADHD is diagnosed solely on the basis of patterns of observable behaviour, including
interviews to reveal the history of the child and various types of questionnaires to healthcare
professionals, parents and teachers (Nass, 2005). The most common form of diagnosis is done
according to the Diagnostic and Statistical Manual of Mental Disorders, 4™ Edition, Text
Revision, (DSM-IV-TR) published by the American Psychiatric Association (2000).
Neuroimaging and/or electrophysiological assessments have been given a great deal of attention
with the aim of providing a more reliable diagnosis for this disorder (Nass, 2005; Mulas et al.,
2006). Neuroimaging studies reveal differences in the brain anatomy of ADHD children, where a
notable 4% decrease in their total brain volume from normals has been reported (Solanto, 2002).
Single photon emission computed tomography (SPECT) studies found that ADHD participants
have reduced blood flow in frontal regions as well as enhanced blood flow in motor areas
(Wienbruch et al., 2005). Meanwhile, the EEG study by Clarke et al. (2001) suggests that for
ADHD participants excess beta activity (which rarely occurs in children and should not exceed
25 uV in amplitude) located primarily in the right frontal region could be related to dysfunction
in the frontal-lobe systems associated with self-regulation and inhibition control. This study also
showed that ADHD children had increased lower frequency activity (particularly in the theta

band) compared to normals.

Over the years, event-related studies have also been used to gain insight into brain activity during
attentional, inhibitory and preparatory processing of ADHD participants, and attempts have been
made to discriminate between clinical and control groups (for review see the work of Barry et
al., 2003). There is a wide range of ER components which vary as a function of this disorder and
although there are considerable consistencies within the ADHD-ER literature, there are many
contradictory findings and the conceptualisation of ERP and ERF differences associated with
ADHD is complex. A range of ADHD effects have been noted in the auditory oddball tasks with

ADHD children having slower responses to late ERP components, such as the P300 responses
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(Ozdag et al., 2004), and smaller N100 amplitudes as a result of auditory attention deficits
(Jonkman et al., 2004). ADHD participants had longer occipital P100 latency during a visual
stimuli-response compatibility task, whereas the visual P300 component was reported to
differentiate clinical from control children (Jonkman et al., 1997; Barry et al., 2003). Jonkman et
al. (1997) showed that ADHD patients exhibited smaller amplitude of this late positive ERP
wave during visual tasks. Stimulant medication such as methylphenidate have been shown to
normalize the ERP indices, suggesting that such treatment may be effective on impaired
information processing components (Ozdag et al., 2004). However, there was not a case reported
where a single ERF/ERP component has been consistently absent or abnormal in such a way as
to be diagnostic (Hillyard and Kutas, 2002). Apart from ER studies, other techniques such as
variable resolution electromagnetic tomography (VARETA) and quantitative EEG (QEEG) have
been used to help explain the pathophysiology of this disorder (Di Michela et al., 2005).

2.4.1. ADHD and Slow Wave Literature

Crucially, when time-series data recorded from ADHD participants are considered, a pattern of
greater trial-to-trial fluctuations in performance is generally observed, and these patterns exhibit
a VLF time signature. Sonuga-Barke and Castellanos (2007) have recently hypothesized that
performance fluctuations in ADHD mirror periodic (low frequency) lapses in attention caused by
the intrusion of spontaneous (slow) fluctuations in brain activity within the DMN. This suggests
that ADHD may be defined as a default-mode deficit disorder whereby sustained attention lapses
stem from the continuous intrusion of the task negative component, which may also cause
increased performance variability. fMRI studies have already reported DMN irregularities in
ADHD, such as decreased functional connectivity both within the network and between the
DMN and other brain regions, including the anterior cingulate cortex and the precuneus
(Castellanos et al., 2008; Uddin et al., 2008). In addition, the DMI hypothesis predicts the notion
that these spontaneous fluctuations in attention lead to a more variable performance for ADHD

children in comparison to controls, and this variability has a VLF time signature.

Consistent with this, Castellanos et al. (2005) demonstrated that ADHD children exhibit higher
reaction time (RT) variability for frequencies below 0.1 Hz (see also Johnson et al., 2007; Di
Martino et al., 2008). Of relevance is a finding by Helps et al. (2008) which found reduced
power in low frequency (0.06<f<0.2 Hz) resting state networks that was linked to high self-
reported inattentive symptoms in young adults. Interestingly, attenuation of low frequency
activity in this network following the transition from rest to a simple reaction time task was

negatively correlated with inattention symptoms. Moreover, the VLF variation in reaction time
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was correlated with the VLF activity in the EEG within the DMN regions — i.e. frontal and
posterior midline, (Helps et al., in press). An extension of this study compared DC-EEG
recordings of a sample of 16 clinic-referred adolescent boys with ADHD and 16 healthy age-
matched controls during rest and during a two choice reaction time task, and reported a reduction
in signal power in the (0.02<f<0.2 Hz) frequency band for ADHDs in comparison to controls.
ADHD children, who also exhibited reduced attention during task (assessed through performance
measures), showed less attenuation of power at these frequencies following a rest-to-task
transition. Although preliminary (due to limited statistical power), these findings suggest that
ADHD children may have difficulties in controlling the intrusion of the intrinsic slow waves,
leading to poorer task performance, and may be less able to maintain a “resting” brain state in

comparison to controls (Helps et al., 2010).

2.5. Summary

This chapter was aimed at providing a physiological and psychological perspective behind the
main motivation of this work. Recent literature suggests that both spontaneous and event-related
neural activity, which produce coherent cognitive processing and behaviour, are the result of the
brain’s electrical oscillators working together at various levels of synchrony. These oscillators
span infraslow to ultrahigh (0.025<f<600 Hz) frequency bands and form specific networks of
activity depending on the level and type of input simulation (for instance, apparent rest a.k.a.
default mode activity versus stimulus-triggered active processing). Of particular interest, are very
low frequency oscillations first observed in fMRI BOLD imaging studies. These VLFOs,
particularly evident in the DMN during rest, are attenuated but not extinguished following a
transition from rest to task, indicating that they are modulated rather than interrupted by the
presence of stimulation. It is posited that when this intrinsic slow wave activity persists during
task, it competes and interferes with goal-directed processing hence compromising task
performance — this forms the basis of the DMI hypothesis. ADHD is a perfect candidate for
exploring the DMI given the impairments in sustained attention for its diagnosis and the vast
body of emergent literature investigating slow wave variations in this bio-behavioural disorder.
The putative role of the slow waves in brain function has been discussed. In the next chapter, the
key methodical challenges in analysing VLF EM brain activity are discussed, followed by a

review of selected signal processing techniques available in the literature.
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Chapter 3

ANALYSIS OF VERY LOW
FREQUENCY BRAIN ACTIVITY: A
REVIEW OF THE LITERATURE II

This chapter tackles the specific issues that arise when analyzing VLF activity in multichannel
electrophysiological recordings. An account of the 1/f spectral behaviour of EM brain signals is
presented, followed by an introduction to the BSS techniques required to achieve denoising and
dimensionality reduction of the data. Works in the literature demonstrate the ability of these
techniques to efficiently isolate neurophysiologically meaningful brain sources from the
recordings for a vast range of biomedical applications. Methods for the extraction of spatial,
temporal and spectral information from the EM brain signals are then discussed. Particularly,
coherence, phase synchrony and Granger causality are reviewed as tools for the investigation of

brain networks.

3.1. Issues on Analysing VLF Brain Activity

Very low frequency brain activity is notoriously difficult to study. Interference to the VLF
fluctuations in the fMRI BOLD signal may arise from low frequency cycles in respiration and
cardiac activity; for instance, Birn et al. (2006) showed that variations in respiration (= 0.03 Hz)
correlate highly with fluctuations in the DMN (<0.1 Hz). Meanwhile, the analysis of slow waves
in electromagnetic systems (EEG and MEG) below the conventional frequency range (i.e.
<0.5 Hz) has several implications. Longer time recordings (in the order of tens of minutes) may
be required to be able to accurately extract these VLFOs. This may compromise the compliance
of participants when given a repetitive task in an experiment. Technically, it also leads to loss of
stationarity and to drifts in the recordings — although these can be mediated by careful recording

of the data.
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VLF EM signal recordings require genuine DC-coupled amplifiers with high input impedance,
high DC stability and a wide dynamic range. Sufficiently stable electrodes and gels should be
used to provide a faithful EEG recording at such low frequencies (Vanhatalo et al., 2005). DC
drift, which is superimposed on any meaningful slow activity, can be an issue unless amplifiers
are reset every three minutes (Hennighausen et al., 1993) to ensure that the signal is kept in the
optimal range of the amplifier throughout the recording. The chosen sampling rate needs to be
set according to the Nyquist criterion; however, in most studies, it is better to ensure that it is
high enough to allow for comparison of the slow waves with activity in higher frequencies
bands. EM brain signals exhibit power spectra with high power at low frequencies; normalisation
of this 1/f trend is required to render a flat base spectrum when no extra low frequency activity is
present and to reveal distinct peaks related to specific cognitive tasks or mental conditions (such
as resting states). This is particularly important in the analysis of slow oscillations and for
comparison of activity in this band versus the traditional (delta, theta, alpha, beta and gamma)

frequency bands.

Moreover, the EM recording process is inherently noisy and yields data that comprises a mixture
of artifacts from a variety of sources (such as muscular and ocular components), along with
activity from various active, if not all superficial brain regions. This implies that denoising
techniques need to be used for proper network analysis. Modern EM systems have large sensor
arrays which result in a data deluge problem that entails practical considerations, including long
computational times and large memory requirements for the application of various signal
processing techniques. Large multi-dimensional datasets also bring with them issues related to

the appropriate choice of the analysis procedure.

Finally, it is crucial to explore the role that slow waves have in forming and maintaining coherent
and synchronised neuronal interactions between functional areas widely distributed across the
brain. Techniques such as cross correlation in the time domain and coherence in the frequency
domain (Shen et al., 2002), phase synchrony (Lachaux et al., 1999) and Granger causality (Hesse
et al., 2003) can be used to investigate how the VLF activity measured from different brain

regions is linked together and information exchanged.

3.2. 1/f Spectral Trend

Electrophysiological activity belongs to a broad class of physical signals which arise from a so-

called 1/f process. Such signals have a power law relationship of the form
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3.1)

constant
Sx ( f ) = f Y 2
where S, ( f ) is the power spectral density, f is the frequency and vy is a spectral parameter which
is usually close to 1 but can lie in the range 0 <y <2 (Keshner, 1982). Taking logs on both sides
of equation (3.1) and rearranging renders

InS, (f)=In(constant)-yIn(f) (3.2)

where v is the slope of the power spectrum.

Various works in the literature have acknowledged this intrinsic 1/f trend in the neuronal system,
and showed that the power-law scaling in the brain exhibits a decrease in log power with
increasing frequency, as illustrated in Figure 3-1. This was observed in the temporal and spatial
power spectral densities (PSDs) of EEG recorded both intracranially and on the scalp (Freeman
et al., 2003; Yamaguchi, 2003; Hermann and Demiralp, 2005), as well as in the PSDs of MEG
recordings (Mékinen et al., 2004).

10’
10°

10°

Figure 3-1. The PSD of a typical EEG channel with superimposed 1/ f7 curves.

The 1/f spectral behaviour of signals and systems was first reported in 1925 in an electric current
passing through a vacuum tube (Johnson, 1925). It also appears in economic and communication
systems, in electronic transistors and diodes, in the annual amount of rainfall and in the rate of

traffic flow (Keshner, 1982). Biological data such as the potential measured across nerves and
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physiological systems such as the cardiovascular and respiratory mammalian systems also
exhibit this kind of behaviour (Wornell, 1993). The work by Kobayashi and Musha (1982)
demonstrated that the human heartbeat period fluctuation exhibits this PSD trend for frequencies
below 0.02 Hz but the reason for this behaviour is unknown. This 1/f fluctuation has also been

observed in the body sway motion and in eyeball motion (Kobayashi and Musha, 1982).

The inverse relation of the PSD of EM signals with frequency in the mammalian cortex may be
the result of the physical structure of neural networks and the limited speed of neuronal
communication arising from axon conduction and synaptic delays (Freeman et al., 2003;
Hermann and Demiralp, 2005). A large cluster of neurons, each generating a unit activity, forms
a functional network which is held together by the neurons' synchronisation that ensures activity
control (Poupard et al., 1996). Such synchronised behaviour seems to attract further neurons and
causes the oscillation amplitude to increase. Moreover, the period of the oscillation is determined
by the size of this neuronal cluster that constitutes a given cycle. Thus, large neuronal areas are
associated with slow, high amplitude oscillations whereas a small, localised concentration of
neurons gives rise to higher frequency, low amplitude signals (Penttonen and Buzséki, 2003;
Buzsaki and Draguhn, 2004). This explains why most of the power of the EEG signals is
concentrated in the low frequency spectrum. MEG recorded data, which is sometimes preferred
over EEG recordings due to its high spatial resolution and the extremely high temporal
resolution, also exhibits this 1/f behaviour inherent in its power spectrum. This is to be expected
since these two systems share the same underlying model — MEG measures the minute magnetic
field generated by the electrical activity of neurons; this activity corresponds to that detected by

the EEG electrodes.

In order to be able to correctly identify any spectral activity superimposed on the 1/f, the
EEG/MEG power spectrum can be normalised by removing this trend (Buzsaki and Draguhn,
2004). Mékinen et al. (2004) employ a technique called Partition-Referenced Moment together
with wavelet transforms to obtain a level base spectrum; this method is then used for examining
ongoing oscillations and auditory ER brain responses in MEG recordings. This proposed
method, based in the frequency domain, is an involved approach. As will be shown in Chapter 6,

spectral normalisation can be achieved in the frequency domain by dividing any EEG/MEG

spectrum by an established background 1/ f* spectrum, or in the time domain by passing the raw
data through a filter (such as a \/T filter: assuming y=1, or a differentiator: assuming y=2) prior

to further data analysis. The latter approach provides a linear phase response hence preserving

the phase structure of the input signal.

25



Chapter 3 - Analysis of Very Low Frequency Brain Activity: A Review of the Literature II

3.3. Denoising and Dimensionality Reduction

Through electrophysiology one aims to obtain a detailed representation of the brain electrical
activity with a limited number of sensors attached to the scalp. Freeman et al. (2003) describe
the cortex as being “a mosaic of quasi-autonomous areas”, each area contributing its signal to
the scalp EEG; however, it overlaps with other signals both spatially and temporally by volume
conduction. This implies that scalp recordings represent a summation of electrical activity from
various brain regions, and can be considered as unknown mixtures of a number of underlying
sources that cannot be separately accessed and measured. The nature of artifactual and multi-
source recordings coupled with the data-deluge problem, make these ideal candidates for the use
of BSS strategies in order to remove artifacts, reduce dimensionality and single out actual brain

sources.

The fundamental aim of BSS techniques in electrophysiology is to extract information from a set
of EM measurements made over time without using any additional information about the time
series or spectra of the unknown sources (Belouchrani et al., 1997). These techniques provide an

automated methodology that (James and Hesse, 2005):
= Unmixes and isolates distinct sources given only sensor observations,
=  Provides information on the number of sources underlying the measurements,
= Provides the spatial distribution and time-series of each brain source, and

= Tracks changes in the number, spatial distribution and morphology of the sources over

time.

Over the years, numerous BSS methodologies have been developed. Neuroimaging methods
combined with source localization algorithms have been used to obtain a picture of
spatiotemporal patterns of event-related brain activity (Hillyard and Kutas, 2002). Wavelet
filtering has also been used to extract ER signals from ongoing background EEG, and to obtain
information about the temporal dynamics of auditory/visual processing (Heinrich et al., 2001).
Particularly, the application of ICA to EEG and MEG recordings, and to ER data has been well
documented in the literature (Makeig et al., 1997; Makeig et al., 1999a; Vigario et al. 2000; Jung
et al., 2001a; Muller et al., 2004). ICA is a linear BSS technique that can be used to decompose
EM datasets consisting of many scalp channels, stimulus types and task conditions into a sum of
temporally independent, spatially fixed and physiologically plausible independent components
(ICs). Hence it can separate out artifactual, stimulus-locked and ongoing brain activity (Vigario

et al., 1998; James and Hesse, 2005).

26



Chapter 3 - Analysis of Very Low Frequency Brain Activity: A Review of the Literature II

ICA in its basic form achieves the separation of spatially distinct sources from a set of
biosignals; the measured signals are assumed to be a mixture of underlying brain sources which
are statistically independent and non-Gaussian (Comon, 1994). It is also generally assumed that
the sources are mixed in a linear, square and invertible manner, and that the mixing process is
stationary. In essence, since EM brain signals are linear time invariant mixtures of source

components, the sensor measurements can be represented as
X=As, (3.3)
where X is a matrix containing N sensor measurements, A is an [n X b] mixing matrix and S is the

source matrix consisting of b underlying sources (b <n) (Hyvérinen et al., 2001).

Depending on the algorithm used, ICA provides estimates of brain sources, somewhere in
between the actual brain sources and the scalp signals, such that the recovered components are
maximally independent. Generally, separate ICs are grouped together to form subspaces

representing brain sources of interest (Hyvérinen et al., 2001).

As explained in Chapter 1, SC-ICA (James and Lowe, 2001; Davies and James, 2007) is an ICA-
BSS technique that has been recently introduced to isolate underlying processes within the data
from single channel recordings. This ICA algorithm learns a set of band-limited, adaptive filters
from the measured signal in order to extract underlying sources with disjoint spectra. An
augmentation of this algorithm comes in the form of ST-ICA, whereby SC-ICA is applied to a
number of channels, thus providing both temporal and spatial information to inform the standard
ICA process (Davies et al., 2007; James et al., 2007). These two algorithms are explained in

more detail in Chapter 5 of this work.

3.3.1. Other BSS Algorithms

Some researchers argue that the mixing model assumed by ICA (as in equation (3.3)) is not ideal
since although it is perfectly correct to assume that brain sources and artifacts are independent, it
is not as justifiable to assume that the brain sources themselves are mutually independent (Li et
al., 2003 and 2006). Physiologically interesting brain sources typically interact so ICA will fail
to characterise them properly (Nolte et al., 2005). In keeping with this view, Li et al. (2006)
suggest a sparse factorisation approach based on the wavelet packets transform to estimate A
from the observed EEG data matrix X, and present a linear programming method for evaluation
of the EEG source components S. The authors claim that, compared to ICA, the sparse
factorisation approach has two important advantages, namely: (i) the sources do not necessarily
have to be mutually independent, and (ii) the number of sources can be greater than the number

of sensors (i.e. an over-complete case with b>n), and it can even be unknown.
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In addition, Nolte et al. (2005) present a BSS technique called interacting source analysis, which
uses anti-symmetrised cross-correlation matrices and subsequent diagonalisation for the
suppression of spurious interactions stemming from volume conduction. This technique is based
on second order statistics but is only sensitive to interacting sources and thus can be applied to
systems with an arbitrary noise structure. Another powerful BSS strategy is the temporal
decorrelation source separation (TDSEP) algorithm developed by Ziehe and Miiller (1998). Here
the mixing matrix is determined by means of an approximate joint diagonalisation of several
time-lagged covariance matrices in order to minimise the temporal cross correlations between the

output signals. This method is suitable for signals with a strong and distinct temporal structure.

3.4. Extracting Spatial, Temporal and Spectral Information
from Brain Signal Recordings

Numerous signal processing methods exist to enable maximal extraction of spatial, temporal and
spectral information from EM brain signals, an area of constant research and development.
Spectral analyses involving the fast Fourier transform (FFT) have been widely used for the
analysis of neurophysiological signals (Bruns, 2004). However the FFT, which is a frequency
transformation of the measured signal, does not cater for variations in the statistical properties of
the data with time, making it unsuitable for non-stationary signals. For this reason, this analysis
is often carried out repeatedly with a sliding time window to provide a continuous evaluation of
spectral parameters over time. This method, known as the Short Time Fourier Transform
(STFT), is very useful in the study of brain dynamics (Bruns, 2004). An alternative to the STFT
is the Wavelet Transform (WT), which can represent finite, non-periodic and/or non-stationary
signals. The idea of the WT is to convolve the measured signal with a number of oscillatory filter
kernels, each representing different frequency bands. In this way, the temporal characteristics of
a signal are represented by its spectral components in the frequency domain. In STFT, a square-
wave window is used for all frequencies, such that the resolution of the analysis is the same at all
locations in the time-frequency plane. Wavelet theory furthers this idea by introducing variable-
sized windowing, where, in contrast to the STFT, short windows are used at high frequencies and
long windows at low frequencies. However, WTs take much longer to compute (Gramatikov and
Georgiev, 1995). These analyses provide spectral parameters such as amplitude and phase, from
which a variety of important coupling measures, such as coherence and phase synchrony, can be

derived.

As explained in Chapter 2, neurons and neuronal populations interact with each other in an

orchestral manner to enable the execution of different sensorimotor and cognitive tasks
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(Horowitz, 2003). Coherence (Shen et al., 2002), phase synchrony (Lachaux et al., 1999) and
Granger causality (Hess et al., 2003) have been studied extensively in the literature with the aim
of quantifying such neuronal interactions between widely distributed brain regions during

various cognitive processes (Quian Quiroga et al., 2002; Pereda et al., 2005).

3.4.1. Coherence

Coherence is a traditional linear method for calculating the degree of linear association between
two signals, i.e. the degree of correlation between two random processes as a function of
frequency (Shen et al., 2002). Phase coherence then represents the amount of phase lead/lag of
one process with respect to the other (Whiting et al., 1989). Hence coherence can be interpreted
as phase shifts and amplitude changes between two correlated sequences at one particular
frequency. The estimation of coherence is based on the Fourier Transform (FT) and is defined as
the average FT of the normalised cross-correlation of two simultaneously measured, discrete
univariate time series (Quian Quiroga et al., 2002). Some researchers have extended this concept
to the time-frequency domain in order to obtain information about the temporal structure of
coherence which is useful for the study of brain dynamics, leading to the concept of wavelet

coherence (Klein et al., 2006; Liu et al., 2006; Zhan et al., 2006).

However, this measure does not separate out the effects of amplitude and phase in the
interrelation between two signals. Lachaux et al. (1999) discuss the limitations of coherence as a
tool to indicate brain interactions, namely that coherence can be applied only to stationary signals
and that it does not specifically quantify phase relationships. Coherence increases with
amplitude covariance, although the relative contribution of amplitude and phase correlations in
the coherence value is not clear. As coherence mixes the amplitude information with that of
phase, it is not considered suitable for the detection of phase locking of brain oscillators. For
these reasons, phase synchrony — a measure that indicates whether the phase shift between two
signals is close to a constant over the specified time interval — is used as a separate measure.
Here, the phase component is obtained separately from the amplitude component for a given
frequency (Tcheslavski and Beex, 2006). Phase locking is in fact sufficient to conclude that two
brain signals interact. Moreover, phase synchrony can be properly detected in short data
segments although the detection of coupling is clearly improved as the length of the time series

increases.
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3.4.2. Phase Synchrony

Buzsaki and Draguhn (2004) suggest that band-limited oscillators in distinct brain areas can be
phase coupled and that such phase interactions may result in precise neuronal discharges without
direct anatomical connections. Phase synchrony (PS) is a viable indicator of this coupling (Quian
Quiroga et al., 2002; Pereda et al., 2005) and can be seen as a mechanism for dynamic
integration of distributed neuronal networks. On the other hand, decreased synchrony is
associated with active unbinding of the neural assemblies and preparation of the brain for the
next mental state (Song et al., 2005). PS is useful because it is independent of the signals
amplitude; Pereda et al. (2005) explain how the phases of two coupled nonlinear (noisy/chaotic)
oscillators may synchronize even if their amplitude remains uncorrelated. Thus, PS can indicate
instances where two signals are phase locked whilst their amplitudes vary independently
(Hurtado et al., 2004). In the study of human brain synchrony, two scales of PS can be
distinguished: (i) short range (local scale) synchrony between adjacent areas within the same
hemisphere, and (ii) long range (large scale) synchrony between widely separated brain regions,
i.e. between opposite hemispheres or not immediate special neighbours (Wang et al., 2006). PS

can be evaluated according to the following procedure:

(i) Estimation of the instantaneous phase of each signal
This can be achieved by using the Hilbert Transform as a means of estimating the
instantaneous phase, hence finding the phase difference between any two signals (Taner et
al., 1979; Rosenblum et al., 1996). Quyen et al. (2001) obtained the phases by convolving
each signal with a complex wavelet function and then compared the results with those
derived using the Hilbert Transform. This study demonstrates that the differences between
the two methods are minimal and they are fundamentally equivalent for the study of

neuroelectrical signals.

(i) Evaluating the degree of phase locking
This entails the formulation of a phase locking value as an index that gauges the phase
difference between two signals over a specified time window (Lachaux et al., 1999,

Hurtado et al., 2004).

(iii) Establishing a statistical criterion to quantify the degree of phase locking
Phase locking statistics determine the degree of statistical significance of each phase
locking value, hence distinguishing significant interactions from background fluctuations
(Lachaux et al., 1999). This is required since detecting phase locking between recordings
from two distant scalp sensors is largely hampered by background noise and volume

conduction.
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In scalp EEG, the signal to noise ratio is low and true synchrony is always buried in a
considerable amount of background noise (Wang et al., 2006), whereas the main limitation in the
understanding of short range synchrony is the distinction between volume conduction and true
synchrony (Lachaux et al., 1999). Human studies use surface electrodes that integrate neural
activity over large volumes; when the volumes recorded by two sensors overlap, the shared
neuronal population creates spurious connectivity between the signals. Thus distinction of this
type of conduction synchrony and actual neuronal coupling is required to assess significant brain
areas interactions. This separation is made even more difficult by the fact that in band-limited
EEG these two types of synchrony occur at the same latencies and in the same frequency band.
This goes against the general assumption that conduction synchrony is broadband and roughly
constant in time whereas true synchrony is more specific (Lachaux et al., 1999). To reduce
volume conduction one should rely on recordings with high spatial resolution in which the
overlap between the brain volumes recorded by different probes is minimal. The spatial precision
of EEG may be improved by using techniques such as inverse deblurring or surface Laplacian
(Srinivasan, 1999; Sweeney-Reed, 2007). Alternatively, MEG recordings may be used since
MEG has a higher spatial resolution as the brain’s magnetic field does not get diffused by its

tissue.

3.4.3. Applications of Coherence and Phase Synchrony Measures

Coherence and PS have been applied for a vast body of biomedical applications. They have been
used to investigate the interactions of the supplementary motor area and the primary motor area
during left and right hand movements; this is vital for assessing the recognition of motor imagery
in brain computer interfacing (BCI) (Song et al., 2005; Wang et al., 2006). Epilepsy is another
major area of application, particularly for predicting the onset of epileptic seizures (Mormann et
al., 2000). Pereda et al. (2005) reported that a decrease in PS was normally detected prior to the
onset of a seizure. Meanwhile, the work by Netoff and Schiff (2002) showed that
synchronisation increased as seizures decayed, which suggests that asynchrony is necessary to
maintain a high level of activity in neuronal networks for sustained periods of time. Wang et al.
(2006) then suggest that phase coupling between distant brain areas, (which was here manifested
as synchronisation in the alpha f-band), is critically important for maintaining spontaneous

functioning of the healthy brain.

Furthermore, it is suggested that subjects with pathologies usually have a decrease in long-range
synchrony (Pereda et al., 2005). The work by Barry et al. (2002) investigated the difference in

intra-hemispheric and inter-hemispheric EEG coherences between ADHD and control children
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and between children with combined and inattentive type of ADHD, and reported specific
differences in coherence in cortico-cortical circuits involving theta activity. Tcheslavski and
Beex (2006) employed PS and coherence, and claimed that by using the proper selection of
electrode pairs, EEG rhythm and task they could discriminate between the EEG of ADHD and
non-ADHD children by 63.2 % correct classification.

Other coherence applications include speech (Petsche et al., 1996) and language processing
(Weiss and Mueller, 2003) and the distinction between different modalities of the human
thinking processes (Schack and Krause, 1996). Schizophrenia studies (Spenser et al., 2003) and
studies on the mechanisms of memory maintenance (Tallon-Baudry et al, 2001) have made use
of PS measures. Tass et al. (1998) employed PS to study MEG recordings of Parkinsonian
patients. Note that PS amongst multi-channel MEG recordings is the result of a group of
synchronously firing neurons within a single area generating a magnetic field, which is then
captured by the MEG system. Any synchronous neural activity between remote brain areas is

then reflected as phase locking between the distinct MEG channels.

3.4.4. Granger Causality

In neuroscience the brain is seen as a dynamic system in which causal influences between
different components may have significant implications. These are often examined by means of
time series analysis techniques such as Granger causality (Hesse et al., 2003), which quantify
interdependencies between brain signals/processes. For a dynamic system, a process X is said to
Granger-cause another process Y if knowledge of the past of X improves the prediction of Y,
compared to when the past of process Y alone is used. This relation between time series is not
commutative; this means that X may cause Y without Y necessarily causing X. Granger
causality, unlike coherence and PS, provides insight into the directionality of information flow
(X—=Y) or (Y—X) (Astolfi et al., 2006). This measure is usually estimated by means of vector
autoregressive models (AR), where univariate and bivariate AR models are fitted to the signals
of interest (Hesse et al., 2003). Therefore, (following the above definition), in univariate AR
modelling the prediction error (i.e. the uncertainty in the prediction of the next signal value)
depends on the past of the signal itself. In the bivariate model, the prediction error depends on
the past of the signal itself together with the past of the second signal. Then, if the signal X
causes the signal Y, the variance of the prediction error decreases for the bivariate model when

the past of X is taken into account for the prediction of Y.

32



Chapter 3 - Analysis of Very Low Frequency Brain Activity: A Review of the Literature II

This procedure can be extended to multivariate systems by fitting an n-dimensional multivariate
vector AR model to the n-channel data (Winterhalder et al., 2005). Amongst others, Neumaier
and Schneider (2001) developed an algorithm (ARfit) for the estimation of the parameters of
these models. To substantiate the causality between two signals, statistical evaluation by means
of surrogate data is often performed (Hesse et al., 2003; Gautama and Van Hulle, 2003; Elsner,
2007). The surrogate time series retain the autocorrelation structure of the original series but
remove the specific temporal ordering. Surrogates may be created by randomisation of the
phases from the series’ Fourier spectrum (Kaplan, 1995). The inference of the Granger causality
in the frequency domain led to the development of techniques such as partial directed coherence
(Baccala and Sameshima, 2001; Schelter et al., 2006) and directed transfer function

(Franaszczuk and Bergey, 1998).

Finally, it is argued that the application of coherence, PS and Granger causality on scalp
recordings, which are only a diffused representation of the actual brain sources, may lead to
spurious results (Delorme et al., 2002). Moreover, (as explained earlier), volume conduction
effects make large parts of the cortex seemingly interact, although in reality such couplings are
purely artifactual. This can be avoided by applying these measures to the brain sources derived
from BSS methods, such as ICA. ICA removes the background coherence by eliminating the
“crosstalk” caused by volume conduction and by separating unrelated noise sources, while
maintaining the same time resolution as the recorded EEG/MEG. For instance, Londei et al.
(2007) combined ICA with Granger causality for the analysis of fMRI data involving the
listening of high frequency words, non-words and reversed words. The causality between ICs
was estimated in order to establish the functional relation between the sources, hence detecting

possible cognitive causal relationships in neuroimaging data.

3.4.5. ICA and the Notion of Independence

Once ICA demixes the sensor observations into a number of independent sources, coherence,
synchronisation and causality measures can be applied on the ICs. However, one may argue that
if two time series are completely independent their mutual synchronisation vanishes. Moreover,
theoretically, if the original source signals are synchronised, ICA cannot recover them since the
independence condition of ICA would be violated (as coupled sources are not independent). Yet,
Meinecke et al. (2005) show that synchronised signals remain synchronised even if they are
linearly transformed in the measurement space. Therefore, in such a case, ICA would not
succeed in extracting the original sources; nonetheless, the ICA estimates would still be

synchronous. If on the other hand, the brain sources are independent (not synchronised) ICA
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would be able to separate them, consequently removing any spurious synchronisation. Some
examples of this methodology can be found in the works by Hong et al. (2005:2006), where an
ICA-PS analysis was performed to investigate the dynamics of neural synchrony between

different cortical regions by measuring PS between ICs characterised by distinct spatial patterns.

Delorme and Makeig (2004) demonstrate that even though ICs are maximally independent over
the whole time range, they may exhibit partial but statistically significant synchronisation within
specific ER time-frequency windows. This is explained by the fact that ICs returned by ICA are
maximally (not completely) independent. Moreover, Delorme et al. (2002) suggest that the
interpretation of electrode coherence patterns can be ambiguous since these may arise from
various amplitude changes in several processes at different brain locations. For instance,
coherence increase between two electrodes may be accounted for by an increase in the power of
a single major EEG source projecting to both electrodes and thus synchronizing the recorded
activity. On the other hand, cross-coherences between different ICs can directly assess the
relationship between different brain areas. Furthermore, in practical applications of ICA, one can
often observe violations of the independence assumption and it is possible to find couples of
estimated ICs such that they are clearly dependent on each other. To this end, Hyvarinen et al.
(2001) proposed a new methodology whereby the residual dependency structure of the
components could be estimated and used to define a topographic order for the components based
on the distance between them. In this way, a linear decomposition into a set of approximately
independent components is obtained and the dependency of any two ICs is approximated by the

proximity of the ICs in the topographic representation.

3.5. Summary

In this chapter the key analytical challenges in analysing VLF brain activity in EM brain signal
recordings, including the intrinsic 1/f nature of electrophysiological data, have been identified.
Several BSS techniques, including ICA, have been introduced as a means of achieving denoising
and dimensionality reduction of multichannel EM recordings. These methods demix the sensor
measurements, which represent a summation of electrical activity from several brain sources
mixed with artifactual noise sources, in order to extract components of interest from the data.
Coherence and phase synchronisation can be used to quantify the brain networks activation
patterns during, for example, resting states and during task-related active processing, whereas
Granger causality provides a measure of linear feedback (noting the directionality of information
flow) between channels and/or brain sources. Their applications in the field of biomedical signal
processing have been discussed. These tools could be used (with caution) on the brain sources

extracted by the BSS algorithms in order to eliminate the effects of volume conduction, hence
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establishing a faithful representation of the true connectivity and/or causality of disparate brain
regions. It is important to note that although the focus of this work lies in the region below

0.5 Hz, these techniques are obviously not restricted to the analysis of such low frequencies.

The next chapter provides a brief description of several neuroimaging and EM recording
systems, which act as windows into the human brain, with special emphasis on the mechanisms

of EEG and MEG.
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Chapter 4

IMAGING AND
ELECTROMAGNETIC SENSOR
SYSTEMS IN NEUROSCIENCE

Being able to understand brain function and localising functional areas in the brain are major
milestones in neuroscience. This chapter describes some neuroimaging, and electro- and
magneto-physiological recording systems as valuable, non-invasive tools for gaining insight into
the integrated processing that takes place in the human brain. Whilst fMRI pinpoints functional
foci during vision, motor, language and memory tasks, EEG and MEG act as direct neuronal
probes that can be used to characterise the electrical activity of the central nervous system and
the associated magnetic fields. This is vital for exploring how the brain orchestrates the vast

array of dynamic processes contributing to all aspects of cognition, perception and action.

4.1. Neuroimaging Techniques

Different types of functional and structural neuroimaging methods, each exploiting different
physical principles and reflecting various neurophysiological processes, are available to explore
the human brain in a non-invasive, safe and well-tolerated manner (Buxton, 2009; Ulmer and
Jansen, 2010; Mulert and Lemieux, 2010). Computerized X-ray tomography (CT) scanners and
magnetic resonance imaging (MRI) are two such methods that render information on brain
structure and anatomy. CT scanners use digital geometry processing to generate a 3-dimensional
(3-D) image of the inside of the brain by means of a large array of 2-D X-ray images taken
around a single axis of rotation. This technique is limited by the skull but can pick up large
abnormalities of the brain tissue (such as tumours) and is often used to detect blood in or around
the brain soon after a haemorrhage. MRI, invented around the 1970s, provided a real

revolutionary methodology for neuroimaging, through its ability to represent the distribution of
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transverse magnetization in the brain with a spatial resolution of better than 1 mm (Al-Chalabi et

al., 2006). The basic concepts of this technology are briefly described below.

4.1.1. Magnetic Resonance Imaging (MRI)

In MRI, the signal that is measured arises from the nuclei of the tissue’s hydrogen atoms; nuclei
containing an odd number of protons and/or neutrons have a characteristic motion or precession.
Because nuclei are charged particles, this precession produces a small magnetic moment. When
placed inside a magnetic field, many of the free hydrogen nuclei align themselves with and
precess about the magnetic field direction — a movement termed as Larmor precession, (Figure
4-1). The frequency of Larmor precession is proportional to the applied magnetic field strength

as defined by the Larmor frequency:
o, =B, 4.1)

where K is the gyromagnetic ratio, which is a nuclei specific constant (42.6 MHz/T for

hydrogen), and By is the strength of the applied magnetic field (Mulert and Lemieux, 2010).

In brain imaging studies, the participant is placed in a cylindrical coil that surrounds the head.
The coil is exposed to a strong static magnetic field, By, which causes a macroscopic
magnetisation to build up parallel to this field. As a result, the brain’s hydrogen nuclei align with
the magnetic field and create a net magnetic moment, M, parallel to By, as illustrated in Figure
4-1 (b). A radio-frequency (RF) pulse, By, with the Larmor frequency and duration of a few
milliseconds is then applied perpendicular to By, which gives rise to a tilt and a subsequent
precession of the magnetisation vector, (Figure 4-1 (c)). This only works if the RF signal is at
exactly the protons’ Larmor frequency, hence exhibiting a resonance effect. Once the RF pulse
stops, the nuclei realign themselves such that their net magnetic moment, M, is again parallel to
By — a return to equilibrium termed as relaxation. During relaxation, the nuclei lose energy by
emitting their own RF signal, as shown in Figure 4-1 (d). A detector (a conductive field coil
placed around the object being imaged) tuned to the Larmor frequency is switched on to detect
the transmitted signal. Next, the spatial resolution of the protons — i.e. their x (left/right), y
(anterior/posterior) and z (superior/inferior) coordinates — is derived in order to obtain 3D grey-

scale MR spatial images.

Resolving along the three axes involves the concept of frequency encoding, phase encoding and

slice selection respectively (Buxton, 2009; Mulert and Lemieux, 2010):
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(a) (b)

(c) (d)

Figure 4-1. Magnetic Resonance Imaging (MRI): (a) In the absence of a strong magnetic field, hydrogen
nuclei are randomly aligned; (b) A strong magnetic field, B, causes the hydrogen nuclei to precess about
the direction of the field. (c) An RF pulse, By, causes the net magnetic moment of the nuclei, M, to tilt
away from By. (b) When the RF pulse stops, the nuclei return to equilibrium such that M is again parallel to
Bo. During realignment, the nuclei lose energy, emitting a measurable RF signal. Adapted from (Buxton,
2009).

= Frequency encoding (x-direction) — the magnetic field is known to increase linearly in
the x-direction. Therefore, during acquisition, the protons’ Larmor frequencies depend
on their positions inside the brain and their X-coordinates can be deduced from the

frequency spectrum (through the Fourier transform) of the signal they send out.
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= Phase encoding (y-direction) — protons with different y-coordinates precess with
different frequencies, leading to different starting points (phases) when the acquisition

begins. This implies that the y-coordinates can be deduced from their phases.

= Slice selection (z-direction) — protons with different z-coordinates have different Larmor
frequencies. This means that an RF pulse with a specific frequency (fy) can only excite
protons within a certain axial slice and cannot influence those in other parts of the brain
because their Larmor frequencies are higher or lower than f, such that no resonance is

possible.

Further details regarding these concepts go beyond the scope of this work but can be found in the

works by Buxton (2009), and Mulert and Lemieux (2010).

4.1.2. Functional MRI (fMRI)

fMRI in a broad sense refers to any MRI technique that goes beyond anatomical imaging and
provides information on physiological function. Functional brain imaging was first performed
using positron emission tomography (PET) in 1973. This technology makes use of a short-lived
radioactive tracer isotope (introduced in the body on a biologically active molecule such as
fludeoxyglucose, an analogue of glucose) which is usually injected into the patient’s (or
participant’s) blood circulation (Young et al., 1999). The system detects pairs of annihilation
gamma photons emitted indirectly by the tracer during positron emission decay. Computer
analysis is then employed to reconstruct images of the tracer concentration in 3-D space within
the brain. This technique is heavily used in oncology, for clinical diagnosis of dementia, and has
led to a greater understanding of Parkinson’s disease (Young et al., 1999; Al-Chalabi et al.,
2006). Single photon emission computed tomography (SPECT), provides similar information to
PET. However, in contrast with PET, the tracer used in these scans emits gamma radiation that is
measured directly, the scans provide a lower spatial resolution (around 1 cm) and are
significantly less expensive. SPECT has been used for mapping hemodynamic changes during

sleep and in epilepsy, amongst others (Baumgartner et al., 1998).

More recently, fMRI methods have dominated the field of functional neuroimaging primarily
based on a phenomenon known as the blood oxygenation level dependent (BOLD) effect. With
brain activation, glucose and oxygen metabolism, cerebral blood flow and blood volume all
increase in the active area. However, the fraction of the delivered oxygen that leaves the blood
and is metabolized in the cells decreases with activation, and this phenomenon is exploited in
fMRI in order to infer the underlying local changes in neuronal activity. In essence, this method

is founded on the hemodynamic response — blood releases oxygen to firing neurons more quickly
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than to inactive neurons. Haemoglobin is diamagnetic when oxygenated but paramagnetic when
deoxygenated. This implies that the MR signal of the blood will differ according to the level of
oxygenation — whenever the increases in cerebral blood flow exceed changes in oxygen
consumption the BOLD signal intensity is increased (and vice-versa). This is captured by the
MRI scanner and can indicate which areas of the brain are active during a particular thought,
action or experience (Buxton, 2009). Consequently, fMRI BOLD imaging has been extensively
used for providing a representation of the spatial organization of the healthy and the pathological

human brain (Ulmer and Jansen, 2010).

In a prototypical fMRI experiment, blocks of stimulus presentation (“on” periods of activation)
are altered with equally long (“off””) control periods while a series of dynamic images is collected
with an echo planar imaging pulse sequence (Buxton, 2009). The signal time course for each
voxel of the image is analyzed to test for significant correlations of the signal with the stimulus
(i.e. to test whether the signal increased during the “on” blocks). Alternatively, an fMRI
experimental protocol, analogous to an ERP experiment, is set up where single trials of a
particular stimulus are presented and the responses are averaged time-locked to the stimulus
onset; Figure 4-2 illustrates the characteristics of such an averaged BOLD response. This method
provides a direct measure of the hemodynamic response on a voxel-by-voxel basis. Since the aim
of these experiments is to detect a weak signal change (for example on the order of 1% for a 50%
change in cerebral blood flow at 1.5 T), many repetitions of one action or thought are required to
allow sufficient averaging for detecting such minute signal changes. Statistical analysis of BOLD
measurements is then carried out for reliable identification of these changes in the MR signal

(Buxton, 2009; Baudelet and Gallez, 2005).

Despite the vast use of the fMRI-BOLD method in neuroscience, it is as yet unclear how the
changes in the BOLD signal relate to concurrent spatial and magnitude variations of neuronal
events (Debener et al., 2006). The aspect of neuronal activity which best predicts changes in
BOLD contrasts (i.e. combined neuronal spiking, local field potentials, changes in spontaneous
rhythms, etc.) has not been established definitely (Huettel et al., 2004). Hence, there may be a
degree of incongruence between hemodynamic signals and electrical brain activity. Moreover,
despite the excellent spatial resolution of neuroimaging techniques, the temporal resolution is
poor; for example, whereas fMRI clinical scanners can have an in-plane resolution exceeding
1 mm, their temporal resolution is in the range of few hundred milliseconds or even 1 second,
depending on the technique and the paradigm used (Ulmer and Jansen, 2010). This means that
information of particularly fine temporal structure, which may be embedded in the time domain,

is not accessible to these techniques because they are limited by scan times and physiology, as
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well as by the sluggishness of the hemodynamic signal. For these reasons, EEG and MEG are
often employed to monitor the information processing in the brain; these high temporal
resolution modalities can also supplement the spatial information from fMRI (Mulert and

Lemieux, 2010).

BOLD change (%)
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Figure 4-2. A typical BOLD response (averaged over a number of stimuli) measured in the visual cortex at
3 T. Note the initial delay of 1-3 s after the initiation of the stimulus (marked by a horizontal bar), a 5-8 s
ramp-up towards a plateau, a post-stimulus ramp-down of several seconds and an undershoot (w.r.t. the
original baseline) which takes about 20 s to resolve (Buxton, 2009).

4.2. Electro- and Magneto- Neurophysiology

“With present methods the skull and the scalp are too much in the way, and we need some new
physical method to read through them. In these days we may look with some confidence to the

physicists to produce such an instrument, for it is just the sort of thing they can do.”

E.D. Adrian: Brain Rhythms, Nature (1944).

This forward-looking, challenging statement has been taken to heart by scientists, and today EEG
and MEG systems provide excellent tools by which electrophysiological correlates of neuronal
activity can be examined (Fisch, 1999; Bear et al., 2001; Khader et al., 2008). As illustrated in
Figure 4-3, cellular currents in an active neuron population give rise to extracranial electric
potentials and magnetic fields; EEG measures the potential differences on the scalp whereas
MEG captures the resultant magnetic fields. Hence both methodologies detect neural currents
directly rather than the associated hemodynamic changes, providing direct information on the
brain’s spatio-temporal activation during sensory, cognitive, attentional and motor information
processing. Moreover, EEG and MEG are the only two methods that offer sub-millisecond time

resolution and can thus record brain activity in real-time (Figure 4-4).
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Electroencephalography (EEG)

Magnetoencephalography (MEG)

Figure 4-3. Electro- and Magneto- Neurophysiology: EEG measures the potential differences on the scalp
which reflect the summation of synchronous activity of many neurons. This net effect of ionic currents
forms current dipoles; MEG records the extracranial magnetic fields surrounding the dipoles’ axis.
Adapted from (Elekta Neuromag® MEG System Description, 2006).

Figure 4-4. Temporal and spatial resolution, and the level of invasiveness of electromagnetic and
neuroimaging techniques. (IEEG — Intracranial EEG, MRS - Magnetic resonance spectroscopy); (Elekta
Neuromag® MEG System Description, 2006).
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4.2.1. Electroencephalography (EEG)

EEG was first introduced to the study of the human brain by Hans Berger in 1929, (Berger,
1929). The recorded signals are small voltage fluctuations, in the order of tens of micro-Volts,
generated by synaptic excitation and inhibition of dendrites of the pyramidal neurons in the
cerebral cortex, which constitute 80% of the brain’s mass (Bear et al., 2001). The recording is
done by means of sensors (electrodes) attached to the scalp (generally according to the
International 10-20 System: Jasper, 1958), which reflect the net average of the electrical
potentials in the corresponding areas of the cortex. It is believed that the EEG signal originates
from correlated post-synaptic potentials of cortical neurons with probable contribution from
intrinsic cell currents, rather than from individual action potentials, since the action potentials
field distribution is too small to be captured at scalp level (Fisch, 1999). The post-synaptic
potentials result from synaptic transmission caused by the release of chemical neurotransmitters
at the synapse (an area of near contact between two neurons) from the pre-synaptic neuron
(Figure 4-5). The signal is then modulated (attenuated) as it propagates through brain

parenchyma, dura, cerebrospinal fluid, bone, and scalp (Fisch, 1999).

Synchronous firing of millions of neurons enhances the amplitude of the EEG as the small
signals all sum up to create one large surface signal. EEG has limited anatomical specificity
when compared with neuroimaging techniques (Figure 4-4). Furthermore, since voltage fields
decay with the fourth power of the radius, the deeper the sources, the more difficult it becomes to
detect their activations at the scalp. EEG signals have the statistical properties of random
variables or band-limited white noise (Freeman, 1988), and so, as described in earlier chapters,

numerous signal processing methodologies can be employed to assist their interpretation.

Figure 4-6 shows the EEG electrode set-up for one participant who took part in the experiments
reported in Chapters 7 and 8 of this work, using a Neuroscan SynAmps2 70-channel EEG
System' located in the Institute of Disorders of Impulse and Attention (IDIA) lab of the School
of Psychology at the University of Southampton. The electroculogram (EOG), which measures
the resting potential of the retina (Levin and Liiders, 2000), was recorded using two electrodes

attached below the eyes to monitor eye blinks and eye movement.

! http://www.compumedics.conmy/ and http://www.neuroscan.com/
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Figure 4-5. Electric Currents in Axons and Dendrites: Neurons create action potentials, which are discrete
electrical signals that travel down axons and cause the release of chemical neurotransmitters at the synapse.
This neurotransmitter then fits into a receptor in the dendrite of the post-synaptic neuron. When combined
with the receptor, the neurotransmitter causes an electrical current within the dendrite of the post-synaptic
neuron. Action potentials (green curve) are short lived with rapidly diminishing fields, whereas
postsynaptic potentials (red curve) act like “small batteries” that contribute to the scalp EEG. Adapted from
(Elekta Neuromag® MEG System Description, 2006).

Figure 4-6. Recording of the EEG: A 66-channel EEG cap with Ag/AgCl electrodes; a high chloride,
abrasive electrolyte gel is inserted in each electrode location to achieve a DC-stable skin-gel contact for
stable operation of the electrodes. Electrodes attached below the eyes for recording of the EOG.
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4.2.2. Magnetoencephalography (MEQG)

MEG reflects the neurophysiological measurements of the minute magnetic field generated by
the electrical activity of neurons, as illustrated in Figure 4-3. The signals from a MEG system
derive from the net effect of ionic currents flowing in the dendrites of neurons during synaptic
transmission. These net currents (generated by more than 50,000 neurons for detectable signals)
form current dipoles, each having an associated position, orientation and magnitude but no
spatial extent, which in turn produce an orthogonally oriented magnetic field (in accordance with
Maxwell’s equations) that flows around the axis of its vector component (by Fleming’s right
hand rule), as illustrated in (Figure 4-7). As with EEG, MEG has a real-time resolution (in the
order of ms) but can provide a higher spatial resolution (in the order of mm) especially when
coupled with structural models for accurate source analysis (Malmivuo and Plonsey, 1995). This
is because the homogenous conductivity of MEG is not distorted by the scalp, skull, brain and

cerebrospinal fluid.

d

Figure 4-7. EM activity of the central nervous system captured by MEG: (a) The intracellular current in the
apical dendrite of a pyramidal cell is associated with a surrounding magnetic field B. (b) The tangential
currents contribute to the magnetic field detected by the SQUIDs. (c) Top view of a dipolar magnetic field
pattern (Malmivuo and R. Plonsey, 1995).

MEG uses extremely sensitive magnetometers known as superconducting quantum interference

devices (SQUIDS) that measure the strength of the magnetic field at a number of points around
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the head. These devices have noise levels as low as 3 fT-Hz * and act as low-noise, high-gain,
current-to-voltage converters that give the MEG system the ability to detect neuromagnetic
signals of only a few (10-100) femtoTesla (fT). They are immersed in liquid helium to
superconducting temperatures (-269 °C) and lie at a distance of 3-4 cm from the cortex (Pactau,
2002). Field distribution is sampled by pick-up loops at distinct locations which are configured
into a large number of channels (=300) using, for instance, triple sensor elements comprising two
planar gradiometers and one magnetometer (Figure 4-8). Such high density systems can provide
whole-head coverage that enables the mapping of activity throughout the cerebral cortex, or
beyond — this is critical for detecting propagating or widespread epileptic activity for example

(Ulmer and Jansen, 2010).

(@) (b)

Figure 4-8. Magnetoencephalography, Elekta Neuromag®: (a) The MEG system; (b) 306-sensor SQUID
sensor array, each sensor consists of two planar gradiometers and one magnetometer (Elekta Neuromag®
MEG System Description, 2006).

In order to reduce the magnetic noise reaching the bio-magnetometer from various sources such
as the earth’s steady magnetic field (=~ 10” T) and environmental noise fields (= 107 T), the MEG
system is operated in a magnetic and radio-frequency shielded room made of mu-metal and
aluminium. State of the art MEG systems passively dampen the interference by excellent wall
structures and feedback coils located inside and outside the room; any remnant interfering field is
measured and actively cancelled by noise cancellation algorithms (Ulmer and Jansen, 2010).
Head motion can severely compromise the quality of the MEG signals especially in recordings of
infants and patients suffering from pathologies such as Parkinson’s disease and epilepsy. New

MEG models comprise continuous head position monitoring, whereby four or five head position
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indicator coils are attached to the subject’s head and digitized. During the recording each coil is
energized continuously with sinusoidal signals that have different frequencies outside the
frequency range of the signals of interest such that the measured magnetic field is the sum of the
brain activity and the signals from the coils. The head positions with respect to the sensor array
are computed offline at selected intervals and the data is then transformed to a static reference

head position (Elekta Neuromag® MEG System Description, 2006).

The major limitation of MEG is that the localisation of the underlying brain sources of electrical
activity from the scalp magnetic measurement is complicated and does not have a unique
solution — the so-called ill-posed inverse problem. A priori constraints imposing assumptions on
the solution (based on its mathematical nature, and according to anatomical and physiological
knowledge) are commonly employed to evaluate a stable inverse solution (Ye and Hu, 2005).
Standardized and exact low resolution brain electromagnetic tomography (sLORETA and
eLORETA), equivalent current dipoles and synthetic aperture magnetometry are a few of the

solutions proposed in the literature (Darvas et al., 2004).

4.3. EEG and MEG Systems

Cheap instrumentation coupled with modest site requirements, make mobile, long-term
recordings easier to achieve through an EEG system. Moreover, EEG can extract both radial and
tangential sources (while MEG has only a tangential field pattern) and deep sources have a
stronger contribution than in MEG. On the other hand, MEG requires a much quicker setup since
no electrodes need to be fitted. DC and VLF signals are easier to measure with MEG and the
recordings are less susceptible to muscle artifacts. Due to its higher spatial resolution, brain
sources are easier to estimate because details of the conductivity geometry and actual
conductivity values have a small effect on the recordings. Moreover, in contrast to scalp EEG,
MEQG is reference-free — this is a remarkable advantage because an active reference can lead to

serious difficulties in the interpretation of EEG data.

Both systems have been extensively used to study cognition and for condition monitoring to aid
the prognosis and diagnosis of neuronal pathologies. Epilepsy is a major area of application for
EEG — long recordings are often collected in Epilepsy Monitoring Units in order to asses the
patient’s condition, localise seizure foci prior to surgery, characterise seizures for purposes of
treatment, and for predicting seizure onsets (Jerger et al., 2001; Gupta et al., 2008). Deep brain

stimulation for Parkinson’s disease, localisation of brain tumours and monitoring of the depth of
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anaesthesia in surgical wards, are amongst the vast range of applications of EEG. Particular
features within the EEG are also being exploited to control BCI (Wang and James, 2007). In
addition, EEG and MEG studies assist in the investigation of how normal processes are affected
in neuronal and biobehavioural disorders, such as schizophrenia, Alzheimer’s disease, autism

and ADHD, to distinguish clinical from control groups (Georgopoulos et al., 2007).

Finally, it is worth mentioning that the understanding of how the signals obtained from
neuorimaging and electrophysiology relate to each other, is a fundamental problem. For instance,
one might assume that increased signal in EEG or MEG would be positively correlated with an
increase in fMRI BOLD, but this is not always the case. This is partly due to the fact that the EM
response is a weighted sum of the postsynaptic potentials in the brain occurring on a millisecond
scale, whereas the BOLD signal is a hemodynamic response resulting from a convolution over
several seconds of the temporal mean of cortical activity (Ulmer and Jansen, 2010). Furthermore,
it is conceivable that some activity patterns picked up by the EEG are not visible in the BOLD
signal, and vice versa (Nunez and Silberstein, 2000). The same can be said for EEG and MEG —
both methodologies reflect synchronous activity of pyramidal neurons, but both measures are
differently sensitive to the orientation and distance of neural sources. Moreover, about 20% of
all grey matter neurons are of non-pyramidal type and express metabolic activity that may be
well reflected in the BOLD signal, but not in EEG or MEG. MEG and EEG signal amplitudes
depend on (amongst other biophysical properties) the number, orientation, and on the
synchronisation of pyramidal neurons, but the latter effect may not be well represented in the
BOLD signal. More multimodal research is definitely required; current progress in the field of
simultaneous EEG-fMRI research shows promising results which may aid in establishing a more
complete understanding of the precise relationship between the evoked neuro-electric and
magnetic response and the BOLD signal (Debener et al., 2006; for review see Herrmann and
Debener (2008); Mulert and Lemieux, 2010).

4.4. Summary

In this chapter the different neuroimaging methods available to neuroscience have been briefly
introduced as vital windows into the human brain. Functional neuroimaging techniques, in
particular fMRI-BOLD imaging, enable the precise localisation of the metabolic activity and
blood flow changes that follow neural activity. The identification of functional foci within the
brain could greatly improve surgical planning for epilepsy and tumor dissection, and potentially
for deep brain stimulation. Meanwhile, electro- and magneto- physiological systems (EEG and

MEQG) capture the fluctuating electric and magnetic fields (measured at the scalp or near the
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head), and provide ‘direct’ information on electrical events within the brain in a non-invasive
manner. For these reasons, they could shed light on how neuronal populations interact and
undergo self-organising processes to form dynamical assemblies for the execution of higher-
order functions such as thought, perception, memory and action. Lastly, multimodal research
comprising fMRI and EEG/MEG can play a significant role in improving our understanding of
brain activity by exploiting the advantages of both modalities, namely the high temporal
resolution of EEG/MEG and the better spatial coverage available from fMRI.

Further chapters in this work focus on the signal processing methodologies carried out on EEG

and MEG data to examine VLF neuronal activity. In particular, the next chapter gives a detailed

description of the ICA algorithms for the analysis of EM recordings.
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Chapter 5

ICA FOR NEUROPHYSIOLOGICAL
SIGNAL ANALYSIS

This chapter describes the ICA techniques, particularly single-channel and space-time ICA, for
the analysis of neurophysiological signal recordings. These are used for the first time in this
work to investigate the slow waves in EM data; hence a thorough grasp of the decomposition
process underlying each method is fundamental to this work. For this reason, these algorithms
were first applied to readily available and well-labelled epileptic seizure EEG data for better
understanding of this recently-introduced framework whereby source analysis is undertaken

through the use of temporal or spatio-temporal information.

5.1. Background

The EEG and MEG systems described in Chapter 4 are valuable tools that allow insight into the
human brain; in essence they provide recordings of sets of signals which are the result of brain
function added to other physiological (ocular, muscular and cardiac) and ambient (environmental
electric and magnetic disturbances) artifacts (Vigario et al., 2000; James and Hesse, 2005; James
and Gibson, 2005). These artifacts may have higher amplitudes than those of active brain sources
of interest, and their resemblance to neural responses may also lead to misinterpretation of the
data. Hence, it is required to efficiently isolate meaningful neurophysiological sources from the
recorded (mixed) signals. As explained in Chapter 3, ICA —a BSS technique for the extraction of
statistically independent components from a set of sensor measurements — has been extensively
used for the analysis of EM brain signals (Makeig et al., 1997; Vigario et al., 1998; Kobayashi et
al., 1999; Jung et al., 2001b; Muller et al., 2004), as well as other biomedical signals (McKeown
et al., 1998; Comani et al., 2004; Mantini et al., 2006), and other signal types altogether (Back
and Weigend, 1997; Torkkola, 1999).
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ICA on multiple-recording channels, in its basic form, achieves the separation of spatially
distinct sources due to the fact that multiple-recording channels usually have a distinct spatial
organisation. It does this through the assumption of statistical independence of the underlying
sources and is therefore more powerful in the separation process than classical methods such as
principal component analysis (PCA) which is based on decorrelation (second order statistics) of
the sources (Shlens, 2003). Multi-channel ICA is usually applied to ensemble time series
measurements — here this is called ensemble ICA (E-ICA) — and in practice, the observed time
series are generally a band-limited mixture of the signals of interest corrupted by noise.
However, in recent years, a new technique — single channel ICA (SC-ICA) — has been
introduced, which can be applied to extract underlying sources from a single recording channel
by using only the temporal information inherent in the signal dynamics (Hyvarinen ez al., 2001
pp. 355-370; James and Lowe, 2003; Davies and James, 2007). This algorithm has been
employed to extract epileptic seizure components from noisy EEG data (James and Lowe, 2000;
James and Hesse, 2005; James et al., 2006), as well as foetal heart sounds from noisy abdominal
phonograms (Jiménez-Gonzalez and James, 2009). Both E-ICA and SC-ICA make different
underlying assumptions for the separation process and result in differing capabilities for both

algorithms.

The natural extension of the SC-ICA algorithm comes in the form of Space-time ICA (ST-ICA)
whereby SC-ICA is in effect applied to a number of recording channels, hence providing both
temporal and spatial information to inform the ICA process (James et al., 2007; James, 2008).
This is a specific form of BSS that exploits the rich, dynamical time structure of
electrophysiological data as well as the multi-channel nature of the recordings. Consequently, it
is able to extract underlying temporal generators within the data by analyzing fewer channels
distributed across the scalp (James, 2008). ST-ICA has been successfully applied to ictal
(seizure) EEG data (James et al., 2008), and BCI data (Davies et al., 2007). The cost of adding
more channels, (hence providing more information to the ST-ICA algorithm), is a greater
processing load, as well as issues related to the assumed number of underlying sources being far

less than the number of measurement channels — this problem is compounded in ST-ICA.

In this chapter the theory behind E-ICA and SC-ICA is outlined, followed by an explanation of
the augmented ST-ICA algorithm. The SC- and ST-ICA methods are illustrated on a segment of
epileptic seizure data since the morphology of ictal sources is well recognised and explained in
the literature (Kobayashi ez al., 1999; James and Lowe, 2000; James, 2008). In the EEG, seizures
(sudden disturbances in brain activity) are manifest predominantly as rhythmic activity which

can be distributed as focal, multi-focal or generalised across the recording channels. Seizure
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activity is an appropriate candidate for ICA techniques because this activity is superimposed onto
the background EEG and its separation from ongoing activity and artifacts is generally beneficial
for the diagnosis and prognosis of the patient’s condition. Particularly, spatio-temporal
techniques such as ST-ICA are of great clinical relevance for this pathology since the multi-
dimensional nature of the recordings, in addition to the rich dynamical time structure of EEG
data, can be used to track changes in the spatial distribution and morphology of the epileptic
sources over time — two very useful pieces of information for epileptologists (James ez al., 2007;
James, 2008).

5.2. Ensemble ICA (E-ICA)

E-ICA (which can also be referred to as spatial ICA) represents the ‘standard’ ICA procedure
which is often employed in the literature for physiological data analysis (James and Hesse,
2005), feature extraction, audio signal processing (Torkkola, 1999), and for decomposing ER

brain signals (Makeig et al., 1997; Muller et al., 2004). In this model, the sensor measurements

X(¢) =[x, (£), ..., x, ()] , Obtained, say, from an EEG or MEG system, are assumed to be made

up of a linear instantaneous mixture of independent sources, s(¢) =[s,(¢),......,s, (£)]", such that
x(t) = As(¢) + n(z), (5.1)
where A denotes the [nxb] mixing matrix and n(?) is additive sensor noise (generally assumed

to be spatially or temporally white noise, or temporally coloured noise) corrupting the
measurements X(z). In this general case a linear solution is possible if the mixing matrix is full
column rank and the number of observations is greater than the number of source signals (n>5b)

(Hyvérinen, 2001). A schematic representation of the ICA method is given in Figure 5-1.

To simplify the extraction process it is further assumed that the mixing is square, linear and
noiseless (n(#)=0), and that both the source signals and the mixing process are stationary. Most
importantly, the input data are assumed to be a linear and instantaneous mixture of mutually
independent source signals. This means that each source is generated by a random process which
is independent of the random processes generating other sources. Provided that these conditions
are fulfilled, ICA produces an unmixing matrix W in order to demix the measurements and

provide an estimate, $(t), of the independent sources, s(z). This can be expressed by

y(1) =5(z) =Wx(z), (5.2)

such that y(¢) contains the independent components (Comon, 1994; Hyvarinen and Oja, 2000;

Stone, 2004:2005). Note that ICA arrives at an intermediate level (a thinner sphere of influence)
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between the brain sources and the measured signals such that the recovered components are as

independent as possible, and are not necessarily actual brain sources.

X(t)=As(t)

>d >0
Mixing ?.§ Unmixing .
Matrix >‘< Matrix ‘ y(t)=Wx(t)

A Be4q v ®
S @~ 50

n Observations X Estimated Sources y

2222

b Independent
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Figure 5-1. Schematic representation of the general ICA process: The sensor observations x(z) are assumed
to be linear mixtures of the independent sources s(z). ICA learns an unmixing matrix W (W = A™) to demix
the measurements, hence providing an estimate of the independent sources y(t).

Centering and whitening are usually performed prior to ICA in order to make the ICA estimation
problem simpler and better conditioned (Hyvarinen and Oja, 2000; Vigario et al., 2000).
Centering changes the observed vector x; into a zero-mean variable by subtracting its mean,
vi = E{x}, from x,. After estimating A with centered data, the mean of s, given by A™'v, can then
be added to the centered estimates of the sources. The centered signals are then linearly
transformed to obtain &, a set of measurements which are uncorrelated and their variances equal
to one. This procedure is referred to as whitening or sphering, and implies that the covariance

matrix of & becomes equal to the identity matrix
E{##¥}=1. (5.3)
Whitening is often achieved by means of an eigen decomposition of the covariance matrix

E{%¥ | =EDE’, (5.4)

where E is the orthogonal matrix of eigenvectors of E{)%%? } and D is the diagonal matrix of its

eigenvalues, D = diag(4,,...,4,). The whitening vector is then given by
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-112

%=ED"E'x, (5.5)

where DV/2 =diag(/11‘1’2,...,/1,jl’2).

This whitening transformation is generally possible (given that x is full rank, i.e. none of its
eigenvalues are zero), and is useful since it transforms the original mixing matrix into a new

orthogonal mixing matrix
%=ED E'As= As. (5.6)

Since A& is orthogonal, whitening reduces considerably the number of parameters to be

estimated, (say for an 7 xn mixing matrix one only needs to estimate n(n—1)/2 parameters).
Further simplification following the whitening procedure can be made by discarding the

eigenvalues of E{)%)? } which are too small — this has the effect of reducing noise and

preventing overlearning (Hyvérinen and Oja, 2000). Note that for the rest of this chapter it is

assumed that A and x are pre-processed, hence the tildes are omitted.

In most popular implementations of ICA one restriction is that in order for A to be identifiable,
the statistical distributions of each source must be non-Gaussian; in practice exactly one IC is
allowed to be Gaussian (Hyvérinen et al., 2001). Consequently, the search for independent
sources is replaced by a search for non-Gaussian sources and the ICs are extracted by
maximizing the non-Gaussianity of Wx(7). Higher order statistics (HOS) techniques which
implement ICA in this way use measures such as kurtosis, negentropy, mutual information and
maximum likelihood to quantify the non-Gaussianity and hence find linear projections within the
data that maximise the independence of the sources (Hyvérinen, 1999a,b; Hyvérinen et al.,
2001). Infomax (Bell and Sejnowski, 1995), JADE (Muller er al., 2004) and FastICA
(Hyvérinen, 1999b) are amongst the most popular ICA algorithms developed over the years and
all are HOS-based. FastlICA, which achieves the identification of non-Gaussian sources by
maximizing the norm of the kurtosis (the fourth order cumulant) is used extensively due to its
ease of implementation, and its speed and stability of convergence. This has been recently
refined as Robust ICA (Baloch ez al., 2005; Zarzoso and Comon, 2007).

5.2.1. Time Structure Based Methods

An alternative approach to ICA considers the time structure of the input data. This has several

advantages when compared to HOS-based methods; here the ICs need not be Gaussian and
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shorter sensor observations with fewer samples than that required for HOS techniques can be

successfully decomposed (Hyvarinen ez al., 2001; James and Hesse, 2005).

The basic aim of this approach is to capture the dependency structure of the observed sources

using a stack of matrices. The de-mixing matrix would then be the joint diagonaliser of the stack
Ci=wCw’, (5.7)

where C’ is the " covariance matrix of the data x, C/ is the corresponding covariance matrix of

the sources s and W is the de-mixing matrix (Figure 5-2). The assumption here is that
independent sources underlying the measurements do not have any spatial-temporal or spatial
time-frequency correlations. This implies that C! should be diagonal and therefore, the
coefficients of W can be optimised in such a way as to make this matrix as diagonal as possible.
The sum of the squared off-diagonal elements is used as a diagonality measure. Note that the
index & is a pointer into the matrix stack and can have different interpretations depending on the

quantities being measured (James and Hesse, 2005).

c=wC'w’
a7 k k
c B
[ [ N
[ [ N
I ‘ .

Figure 5-2. The relationship between the two covariance matrix stacks C’; and C’S‘ . The mixing matrix A

links the covariance stack of matrices of the sources to the measurements stack, while W links the two
stacks in the opposite direction. Adapted from (James and Hesse, 2005).

The simplest form of time structure is given by the covariance of the signal at different time
points — this forms the basis of ICA by temporal decomposition. Temporal decorrelation source
separation (TDSEP) algorithm developed by Ziehe and Mdiller (1998) is another popular ICA

technique based on this principle.
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A. TDSEP ICA

This is a specific time structure based ICA method which assumes a well-defined autocorrelation

of the underlying sources s. Here, a cost function / is defined as
2 N 2
Z(C!.].) = Z<yf (t)y; (t)> + ;Zb’i )y (t+7, )> ’ (58)
i#j =lizj
where 7 is a time lag, the choice of which is crucial since it needs to ensure that the N delayed
correlation matrices carry maximally different information, and < ) denotes a time average.

The cost function is then minimized with respect to C, using for example, the method of gradient

descent, ACoc—70l/0C (where 5 is the learning rate), in order for the cross-correlations

between the output signals to vanish. However, this is computationally expensive especially

when the number of sources is large (Ziehe and Miiller, 1998).

Therefore, the following procedure involving whitening and joint diagonalisation of the
covariance matrices is implemented instead:

(i) A sample estimate of the correlation matrix for the observed signals is defined as
C. =(XOX(t-7)").

(if) Whitening is performed such that the first term of the cost function in equation (5.8) is set
to zero.

The whitening transform T is determined by PCA or by taking the inverse square root of

the covariance matrix by means of an eigenvalue decomposition (previously explained),

B -2 B
T=Cyt =(VAVT) " =VA V', (5.9)
This transforms the sensor observations X to a transformed signal z in a new basis.

(iii) The transformation matrix is then estimated by several Jacobi rotations.

Following whitening, any time delayed correlation matrices for z should be approximately

diagonal up to a transformation R. This rotation matrix is orthogonal (I = RRT)and, for the

case of ¢ = 2, it can be obtained by eigenvalue decomposition of the time-delayed

correlation matrix such that
C,y =(z()2(t-7)")=R'C ,R=R'AR. (5.10)

For ©>2, R can be approximated by a sequence of elementary rotations (a.k.a. Jacobi

rotations), J, (¢k), each aiming to minimise the off-diagonal elements of the respective

correlation matrices. The final rotation is then obtained by R = HJ (d,)
k
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This procedure results in an estimate of the mixing matrix as follows

A-T'R. (5.11)

A further simplification of step (iii) is possible by taking the average over the set of delay
R N

matrices, 7, (kzl,...,N), Ce =%ZCW).This averaged correlation matrix is then used to
k=1

compute one rotation R instead of taking several rotations J, (¢, ) for every lagged correlation

matrix. This gives a crude approximation to the actual minimization of the cost function / but it

proves to be very efficient especially in high dimensional problems (Ziehe and Muller, 1998).

One issue with this algorithm is the appropriate choice of the number of time lags to use in order
to capture the spatio-temporal covariance of the data; this is usually set through empirical
observation (James and Hesse, 2005). Other time structure based methods include /CA by sub-
band decorrelation — where the time structure in different frequency bands is exploited (Cichocki
and Belouchrani, 2001), and ICA by time-frequency decorrelation — representing the signals
dependency structure in terms of their spatial time-frequency distributions (Amin and
Belouchrani, 1998).

Finally, note that all these ensemble-ICA techniques make use of spatial information from the
physical arrangement of the recording sensors in the separation process. Therefore, the columns
of the mixing matrix A represent a set of spatial filters derived from multi-channel observations,
and hence the extracted sources must have different spatial profiles for them to occupy distinct
columns of A. This implies that sources with non-distinct or completely overlapping spatial

distributions cannot be resolved by E-ICA.

5.3. Single Channel ICA (SC-ICA)

The possibility of extracting multiple underlying sources from single channel recordings starts
with the assumption that the brain can be modelled as a dynamical system, its dynamics residing
on some unobservable manifold embedded in the phase space. A relatively small number of
underlying generators contribute to this unobservable manifold, such that measured brain signals
are the result of nonlinear interactions of just a few degrees of freedom with additive noise
(James and Lowe, 2000:2001 and 2003; Woon and Lowe, 2004). Takens’ theorem allows for the
reconstruction of the unknown dynamical system that generated the measured time series
through the formation of a new state space based on successive observations of the time series
(Takens, 1981).
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This can be achieved by constructing a matrix Q of delay vectors ¥, for consecutive values of %,

from the scalar time series x(f)

T
Vi :|:xk’xk+r""'xk+(m—l)r] ,

X X, 6 XiiNe
X s X 6 X (V417
Q _ + + +(N+1) , (512)
7 7 9 7

xk+(m—l)‘r xk+mz' 6 xk+(m+N—l)r

where 7 is a lag term (usually set to 1 for simplicity), N is the vector length which must be set
such that Q(¢) covers a quasi-stationary signal, and m is the number of delay vectors (a.k.a. the
embedding dimension). This has to be large enough to capture the signal dynamics and if the
time series data is heavily correlated, then more time series samples are needed to make up the
required information content of the delay vector (James and Lowe, 2003). If the acquired data
has a sampling rate, f;, that is set according to the Nyquist criterion, the practical minimum size
for m can be approximated based on the lowest frequency of interest in the measured signal, 1,
such that (James and Lowe, 2001)

m=f1f,. (5.13)

This method is generally known as the method of delays (Broomhead and King, 1986) as
illustrated in Figure 5-3.

I/k > T ' X(f)

"’N" e P P WFWE"{““‘%N'WMMJWMW‘M\NMMJ'WMMW“‘111 r“w'ﬁ,g.‘..wmwm’#"‘ﬂwmw!‘vwﬁwmu

___________ 11 A

Matrix of 1 2 N e < m
delays

Figure 5-3. Method of Delays: A multidimensional representation of the measured signal x() is achieved
by constructing a matrix Q of delay vectors ¥, for consecutive values of &, from x(7). N is the number of
samples per channel, t is the lag term and m is the number of delay vectors.
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Each delay vector V; represents a point on the system manifold and together all the columns of
the delay matrix Q(#) trace a trajectory on this manifold generated by the Euclidean embedding
(James and Lowe, 2003). This trajectory can be spanned with an appropriate basis (such as ICA)
in an attempt to extract and interpret the underlying sources in the delay matrix. Note that the
mapping of a scalar time series onto a multidimensional model implies that the sources can only
be successfully identified provided that they have disjoint spectral support, i.e. non-identical
magnitude frequency responses. This is equivalent to learning a set of filters to discriminate
between data components with distinct frequency responses. Consequently, when ICA is applied
to Q(?) it learns a mixing matrix A, the columns of which contain sets of finite impulse response

(FIR) filters and shifted versions of the same filters.

We recall that in ‘standard’ ICA, x = As where A= [Al, An] , and the vectors 4; form a basis in

the signal space in such a way that an inverse equation can be uniquely defined as s = Wx, where
W = A™ and s is the matrix of underlying independent sources s;. Thus, source separation and
reconstruction in the observation domain can be achieved by the application of an unmixing and
mixing pair

X, =AW X, (5.14)

where x,’ is the " source projected back onto the measurement space.

It can be shown that for the temporal model represented by Q(), this procedure actually

translates to
; 1
x, (6)=—a,(=t)*w, () *x(?), (5.15)
m

which is equivalent to passing x(¢) through a set of separating filters £,, (* denotes convolution).

For each source p, the corresponding filter is then given by

1,0 =2a-0) * w@), (5.16)
m

where a,(z) is the FIR filter associated with the column of A(:,i) and wy(¢) is the FIR filter
associated with the row of W(;,.). If we assume that the signal has been pre-whitened, then
a(f)=w(?) since W is orthogonal, and the filters become symmetric around /=0 and have zero
phase. Note that spatial pre-whitening in standard ICA translates to temporal pre-whitening in
SC-ICA (Davies and James, 2007).
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5.3.1. Independent Mixtures of Processes in SC-ICA

The main question that arises from the above explanation is whether or not the extracted sources
x! () would be independent. Cardoso (1998) has shown that a random n-dimensional vector x
admits a multi-dimensional ICA (MICA) decomposition into C components if there exist C
linearly independent component subspaces, {E;,...,E.} of ", on which the linear components

of x are statistically independent. This decomposition can be obtained by “standard’ ICA, by first
estimating one-dimensional components and then grouping them based on dependency. Thus, the

mixing matrix A can be organised into a set of C submatrices, A = [Al,...,AC] , Where 4, spans

subspace E,. Consequently, MICA presents an appropriate model for SC-ICA.

Here it is assumed that the scalar time series x(¢z) can be decomposed into the sum of mutually

independent random processes, x,(z), such that
x(1)=>x,(t), (5.17)
p

where each x, e R" is the " multi-dimensional component spanned by an n,-dimensional

subspace E, and the set {E,,...,E..} are assumed to be linearly independent of each other.

It is further supposed that each stochastic process x,(f) is a filtered independent identically

distributed random process
x, () =h,(#)*s,(1), (5.18)

where £,(¢) is an FIR filter of length M.

If the time series is represented as an m-dimensional delay matrix Q(), as in equation (5.12),

then equation (5.17) can be written as Q(t)zZH ,S,(t) where H, is the Toeplitz matrix
P

associated with filter /, =[ 4,(0),...,h, (M —1)]T and

5,(0)=[s,(0).5,(t~1)....5,(t—=m~M +2)] , (Davies and James, 2007).

Now, for a single source, solving for s(¢) (i.e. C =1) is the blind deconvolution problem. When
full ICA is applied to Q(¢), it provides a full unmixing matrix W, the rows of which consist of m

approximate shifted versions of the deconvolution filter. If one assumes that there are multiple
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components, each 4, is non-invertible and each corresponding matrix H, is rank deficient, i.e. its
columns only span a subspace E, in R", then the vectors Q,(z)=H s, (¢) lie in this subspace.

Moreover, if all the subspaces, {£,}, are linearly independent then this becomes a valid MICA

model.

Therefore, ICA can decompose any such SC-ICA process into basis vectors a; which can be

grouped into C subsets J, that span the independent subspaces £, (i.. if i€, , then a, c E,).

Now these basis vectors spanning £, are shifted approximations of the generating filter 4,
implying that all the basis vectors associated with the subset 6, will have very similar spectral
support. On the other hand, the other basis vectors (filters) will have a disjoint spectral support,
and so components can be grouped based on the transfer function of their corresponding
generating filter. This implies that individual independent processes can be identified and
obtained by computing the summation of the contributions from the separate ICA components.
Each component contribution can be estimated using the filter defined in equation (5.16). This
renders the following estimate for x,(z),

x, ()= £ *x(t). (5.19)

ied,

5.3.2. Using ICA to solve the SC-ICA Problem

SC-ICA can be implemented according to the following procedure:

(1)  The matrix of delays Q(¢) is constructed out of the signal (as shown in Figure 5-3), which
is then temporally whitened and dimension reduction methods such as PCA are applied.
This is required since electrophysiological time series may contain short-term temporal
correlations, which may lead to correlations of the rows of the embedding matrix. This
step also provides the possibility of noise reduction (by, for example, truncation of the

PCA transformation after a certain number of eigenvectors: Shlens, 2003).
(i)  An ICA algorithm (such as FastICA) is applied to establish the mixing matrix A (and the

unmixing matrix W) and the corresponding set of ICs.

2
(iii)  The magnitude transfer functions of the columns of A, ‘Ai (a))‘ ,are calculated. Filters

with similar magnitude frequency response| f(a))| (but different phase responses) are

grouped into C subsets o, spanning linearly independent subspaces E,. This can be done
by using a standard clustering algorithm such as K-means (Jiménez-Gonzélez and James,

2009), or by manual selection.
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(iv)  The separating/reconstructing filter, f,, for each source p is then formed by

=37 where f; = A, W, . (5.20)

[65,,
(v) Q(p) is passed through these filters (i.e. projected back onto the measurement space),
ép (t)=f,Q, to form the independent processes {A,5 ,F.} spanned by {E,,5 ,E.}.
Therefore, each process P; spanned by subspace E; is manifested in the measurement space

by a matrix of delays Q,. Moreover, since this is a lossless procedure, summing

{(51,5 QC} returns the original time delay matrix Q.

(vi) These delay matrices are then unembedded to form the one-dimensional, independent

process time-series, x,(z), by performing an average of the rows of (5 b

x, (1) =

I |r

> 2 cekt) (5.21)
k=1

fort=1,2,...N, where Q,jf( | refers to the element of @p indexed by row & and column

t+k-1

(t+£-1).

The clustering of multiple ICs underlying each process (step (iii) above) can be avoided by using
a quicker approach introduced by Davies and James (2007) and updated into a completely
automated algorithm — fast independent process analysis (FastlPA) — by James and Davies
(2008). In FastIPA one component is extracted by ICA in a deflationary manner and a
separation filter g,(s) is formed. The signal x(f) = ry(¢) is filtered and the residual r,(z) is

calculated. The next source is then extracted from this residual
r,()=r,,(0)—g,)*r, (1. (5.22)

The process is terminated when no more sources can be found in the residual. This eliminates the
clustering procedure and is more computationally efficient. However, the filters are only an

approximation of the actual generating filter, making this technigue an approximate solution.

5.3.3. SC-ICA vs Empirical Mode Decomposition

A signal processing method that shares some similarities with SC-ICA is empirical mode
decomposition (EMD) first presented in geophysics by Huang et al. (1998). EMD is a data-
driven, time-frequency decomposition of a scalar signal into frequency modulated components

known as intrinsic mode functions (IMFs). EMD works as an iterative sifting process which
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progressively isolates high frequency oscillations from broadband signals. A residual containing
lower frequency information remains after every iteration and the process is repeated until the
mean-square error between consecutive IMFs becomes negligible. The overall sum of the IMFs

must be quasi-identical to the original signal
x(1) =D IMF,(t)+R, (1), (5.23)
i=1

where 7 is the total number of IMFs and R is the residue at the end of the sifting process at time ¢
(Huang et al., 1998).

The IMFs must satisfy two conditions: (i) the number of extrema and zero crossings must differ
by a maximum of one and, (ii) the mean value of the upper and lower envelopes, defined by
spline interpolation of local extrema, must be zero at all points. The use of splines implies that
information is extracted from the signal (or the residual) at local time points not globally, thus
allowing a physical interpretation by ensuring that the IMF properties are well localised in time

(with reference to the original time series).

Figure 5-4 shows an example of this technique when applied to synthetic data comprising two
pure sine waves (at 5 Hz and 25 Hz) and additional background EEG (acting as a known noise
source) at an SNR of 16 dB. The EMD algorithm used here is based on the MALTAB code
adapted from the work by Rilling et al. (2003). Twelve IMFs were extracted from the single
channel signal; only the time series and the PSDs (estimated using the Welch method: Welch,
1967) of the first six are shown here, the first two belonging to the two sine waves with the
highest frequency content. The other IMFs are related to the background EEG at lower
frequencies. This shows that potentially EMD acts as a time-variant, adaptive, signal-dependent
filter bank (Flandrin, 2004).

Therefore, as with SC-ICA, this technique provides a phase-preserving, time-frequency
decomposition of scalar time series and avoids the use of arbitrary bandpass filtering, since it
yields a signal decomposition that is adaptive to the frequency content of the data. However, the
main drawback of EMD is that it is by definition an empirical process and to date it does not
possess a theoretical basis. Moreover, it fails to decompose properly certain signals like chirps
(Sweeney-Reed, 2007) and transients such a spikes, and the decomposed IMFs cannot be defined

as statistically independent brain or artifactual processes.
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Figure 5-4. EMD single-channel decomposition: (a) 10 sec segment from the 2-minute signal composed of
2 sine waves at 5 Hz and 25 Hz with additional background EEG at an SNR of 16 dB; (b) The first 6 IMFs
and their corresponding PSDs (showing power per unit frequency).
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5.4. Space-time ICA (ST-ICA)

This is a simple augmentation of the SC-ICA method seen in the previous section, whereby the
matrix of delays is constructed from » channels of interest such that the new overall delay matrix

Q" becomes

Q :[(Ql)T (Q”)TJT . (5.24)

fot

Thus, for an n-channel system of N samples per channel, Q" has dimension (nm X (N-m+1)),
where m is the number of delay vectors (as in equation (5.12)). FastICA is then applied to Q™ to
obtain the mixing matrix A and the ICs. Every column of A (corresponding to one IC) contains »
superimposed filters, which have similar but not identical frequency responses due to possible
subtle variations of the underlying sources in different spatial locations. In this way, there is an
FIR filter for every selected scalp location representing full spatial-temporal filtering (Figure
5-5). As for SC-ICA, some of the columns of A and corresponding rows of W represent repeated
FIR filters pertaining to the same independent process (and hence spanning the same subspace),

which can be grouped together to form C sets of n generating filters. The multichannel

projections of the underlying independent processes {Pl,5 ,PC} are then obtained by filtering

and unembedding, as for the single-channel case.

= (@
& E E

N —

Figure 5-5. ST-ICA Procedure: A matrix of delays Q is created for each channel of interest to form the
overall delay matrix Q*, which is then decomposed into its constituent underlying independent processes
through an ICA algorithm. ICA learns a mixing matrix A, the columns of which contain sets of spatio-
temporal filters (i.e. an FIR mixing filter per measurement channel).

Q
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To date, the clustering (grouping) procedure is being based on the similarity of the magnitude
frequency response of these filters, although ST-ICA presents the opportunity to cluster based on

both the filters’ frequency responses and/or their spatial patterns. Furthermore, it is important to
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note that, as for SC-ICA, multiple mixing filters can span separate underlying subspaces,
although in this case the mixing filters are also distributed across » spatial locations. This means
that in ST-ICA a number of independent processes are extracted (as for the single channel case),
but spatial information is incorporated into the separation process. Consequently, ST-ICA also
yields information on the spatial distribution of the underlying independent processes.

5.4.1. Applying SC-ICA and ST-ICA to Seizure EEG Data — An Example

In this section the application of SC-ICA and ST-ICA is illustrated on multi-channel ictal scalp
EEG data recorded from patients who were undergoing continuous scalp EEG monitoring for
possible epileptic surgery. Five minute seizure segments, including a pre-ictal (pre-seizure)
period of 3 minutes were studied. The data were recorded using 19 electrodes placed on the scalp
according to the International 10-20 electrode placement system, using reference FCz. The data
were sampled at 200 Hz at 12 bit resolution and digitally stored. Figure 5-6 depicts one such
example of an ictal EEG segment with a rhythmic seizure component of a left fronto-temporal
origin occurring about 3 minutes into the segment. Note that the segment is severely

contaminated with ocular artifact throughout.
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Figure 5-6. A 5-minute segment of multi-channel ictal EEG is depicted; a seizure with a sudden left fronto-
temporal onset occurs at the point indicated by the marker (*). The recording is severely contaminated with
ocular artifact throughout.
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Figure 5-7. Decomposition of one channel of seizure EEG data T5, (as shown in Figure 5-6), by SC-ICA.
Processes (b) and (c) are ictal processes centered around 4 Hz and 10 Hz respectively, whereas processes
(@) and (d) are low and high frequency artifacts. Note the clear disjoint PSDs for each source (plotted on a
linear scale).

SC-ICA (m=95) was first applied to channel T5 (which is the recording channel sited over the
seizure focus) after first subtracting the mean value of the signal, constructing Q and reducing its
dimensionality by PCA to a dimension of 30, (obtained by observing the structure of the
singular-spectrum and choosing a value which depicts the start of the noise floor). Note that the
choice of m was based on earlier empirical work on determining the optimal embedding
dimension for this type of data (James et al., 2007). After ICA, the filters (columns of A) with the
same magnitude frequency response were manually grouped together to form a set of generating
filters with disjoint power spectra. The corresponding band-limited sources (after projection onto

the measurement space and unembedding) are illustrated in Figure 5-7. Groups (a) and (d) depict
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low and high frequency artifacts respectively, whilst groups (b) and (c) represent the seizure

sources, their onsets corresponding to the seizure onset times in the raw recordings.
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Figure 5-8. The characteristics of spatio-temporal filters obtained from ST-ICA for the seizure dataset

shown in Figure 5-6. Plots of the (a) impulse response and (b) frequency response of the 19 filters (of order
m=95) for each of the 40 columns of the mixing matrix, obtained by applying FastICA on the overall delay
matrix Q™. Note that: (i) Each column has 19 superimposed filters which have similar but not identical
coefficients and frequency responses, due to subtle variations of the underlying source in different spatial
locations; (ii) Some of the 40 columns contain repeated FIR filters pertaining to the same independent
process (for example, red circles represent Process 1, and black circles represent Process 2 (which are both
seizure processes) whereas the blue circles represent a slow process related to ocular artifacts).
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Next, ST-ICA was applied to all the 19 channels (m=95). Again, the mean value of each
recording was first subtracted and the dimensionality of Q" was reduced to 40 by SVD. The
columns of the mixing matrix A learnt by FastiCA were manually grouped according to the
spectral information they contained. An example of the impulse and frequency response of the
filters and their grouping is given in Figure 5-8. Projection of the corresponding groups of
components and unembedding of the resultant matrices yielded a number of multi-dimensional
identified processes underlying the measured EEG, three of which are illustrated in Figure 5-9.
Groups 1 and 2 depict ictal processes — note the onset times which are co-incident with the onset
times in the raw recordings and the left fronto-temporal focus of the seizure. Process 3
represents an ocular artifact, the amplitude and intensity of this artifact increases about
30 seconds into the seizure onset; this is evident in the raw recordings too.

(a) Process 1

(b) Process 2

':Ihll

Figure 5-9. Butterfly plots of three of the identified processes (projected to the measurement space)
underlying the measured data and their topographic distribution. (a) Process 1 and (b) Process 2 represent
ictal sources — note the onset times which are co-incident with the onset times in the raw recordings, and
their left fronto-temporal foci. (c) Process 3: ocular artifact with a frontal distribution, the amplitude and
intensity of this artifact increases about 30 s into the seizure onset (as in the raw recordings).
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As explained earlier, in this example and in all the other implementations of ST-ICA on EM data
in relation to the slow waves in this work, the selection of underlying independent processes is
solely based upon the similarity of the frequency responses of the FIR filters that ICA learns in
the ST-ICA model. This means that although spatial and temporal information is used in the ST-
ICA decomposition, the clustering part of the procedure could be neglecting useful information,
which may in turn lead to ill-defined processes. Further research is required in order to establish
an automated clustering method that uses both the spatial and spectral content of the filter such
that the underlying processes could be defined based on the similarity of both quantities, as

explained in James and Demanuele, (2009).

5.5. Summary

This chapter considered three types of BSS algorithms, namely E-ICA, SC-ICA and ST-ICA.
The popularity of standard ‘spatial’ ICA as a neurophysiological signal analysis tool evolved
over the years because of its potential not only to denoise the data by distinguishing artifacts
from the actual brain sources, but also to identify other independent sources within the data.
Crucially, the notion of statistical independence translates well to neurophysiological
independence, implying that the independent sources extracted by ICA are generally quite
neurophysiologically meaningful (James and Hesse, 2005). However, this form of ICA is limited
in that it can only extract sources which are spatially distinct and it does not fully exploit the
information embedded in the temporal dynamics of electrophysiological data. Consequently, SC-
ICA was developed as a temporal decomposition method, which is able to isolate sources from

single channel measurements (Davies and James, 2007).

SC-ICA is a much more powerful method than the traditional application of filters to a single
channel recording, which uses “general” filters that have been designed according to the
frequency bands of interest in the data and have fixed time-invariant coefficients. When an
ordinary filter is employed, even if its exact coefficients are known, these would have to be
adapted to cater for the changes in physiological signals for each participant and for every set of
recordings. On the other hand, SC-ICA is an exercise of feature discovery that explores the input
data to establish a set of band-limited filters from the data itself, which in turn results in the
extraction of the underlying independent sources. Moreover, unlike other single-channel and
adaptive methods such as EMD, SC-ICA has a strong mathematical derivation which facilitates
the interpretation of results. However, since the sources are extracted from a scalar time series,
SC-ICA does not provide any information about their spatial distribution. Another downside of

SC-ICA is spectral overlapping of the sources — the greater the overlap between the sources in
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the frequency domain, the more difficult it becomes for SC-ICA to learn a filter bank that

separates out the sources distinctly.

It was shown that the natural extension of the above two methods yields the newly-developed
ST-ICA algorithm, which learns a set of spatio-temporal filters from the data based on the
independence criterion of the underlying brain processes. ST-ICA allows for the extraction of
brain sources that overlap spatially or spectrally, and that hence cannot be extracted by either
ICA or SC-ICA separately. Moreover, ST-ICA facilitates the analysis of high density systems
(such as MEG systems), by allowing the extraction of brain sources from a few selected channels
of interest, hence reducing the system’s dimension. The data matrix (Q') contains both spatial
information (through n selected channels) and temporal information (through the method of
delays applied on each channel), which makes it possible to analyse fewer channels whilst still
retaining an information-rich dataset to inform and update the standard ICA algorithm. In
contrast, reducing dimensions in this manner is not advisable for ‘standard’ spatial ICA, because
this algorithm can only make use of spatial information (from the physical arrangement of the
recording sensors) in the separation process. ST-ICA also provides a wealth of information about
the spectral characteristics, the temporal dynamics and the spatial distribution of the extracted
sources, which facilitates the interpretation of these sources as well as any further analysis that
needs to be carried out on them. The downside of this algorithm is that it can lead to large data
matrices (due to the stacking of the delay matrices constructed for each channel of interest), thus

making it computationally expensive.

As can be seen, each of these algorithms has specific merits as well as shortcomings and it
ultimately depends on the researcher to select the technique that best suits the problem at hand.
The following chapters will show the application of these techniques for the analysis of MEG
data recorded from a high-density 148-channel system, and for exploring an EEG dataset
specifically recorded for the investigation of the slow waves during various experimental

conditions.
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INVESTIGATING SLOW WAVES IN
BRAIN SIGNAL RECORDINGS:
INITIAL FINDINGS

This chapter gives an account of the analyses carried out on EM brain signal recordings in
order to establish ways for investigating VLF (<0.5 Hz) activity, and to gain insight into the
effect the slow waves have on brain function. Primarily, a procedure for removal of the 1/f trend
in EM data is presented. Then, the methodologies and results obtained from two separate studies
on MEG recordings of children with ADHD and controls are described. These studies employ

the single channel and space-time ICA algorithms explained in the previous chapter.

6.1. 1/f Spectral Compensation

In this section two methods that can be used to achieve spectral normalisation, i.e. the removal of
the intrinsic 1/f'in EM brain signal recordings to provide a flat spectral base onto which task- or
condition-related brain activity is superimposed, are described. The first method is based in the
frequency domain, its main aim being to investigate the spectral characteristics of EM signals
and to provide a basis for normalisation. The second method is a time domain approach whereby
the spectral trend is removed by filtering the raw signals prior to further data analysis. This is a
simple but effective method which conserves the phase information of the input signal. For these
reasons, it is applied to a variety of EM brain signal recordings namely: epileptic seizures, VLF

EEG recordings, MEG recordings and ERP data to illustrate its function.

6.1.1. Normalisation in the Frequency Domain

Normalisation of the spectrum can be achieved in the frequency domain by dividing any EEG

spectrum by an established background 1/ /7 spectrum. This concept was tested on the multi-
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channel EEG datasets of two participants recorded by the School of Psychology at the University
of Southampton as part of a larger unrelated study. 32 EEG channels were used and electrode
placement was set in accordance to the International 10-20 system. Impedance levels were set at
less than 5 kQ. No filters were switched on during the recordings such that DC activity could be
captured, and DC-stable sintered electrodes were used. The data was sampled at 250 Hz with a
12 bit ADC and was digitally stored. Before analysis the data was low-pass filtered to 5 Hz and
then downsampled to 10 Hz — this was done to ensure an adequate number of samples to
represent the very low frequencies, which were at the focus of the experiment. Detrending was

then carried out for removal of the mean shift (over 5 or 10 minutes) in each dataset.

In these recordings, every participant followed a 10-minute driving task, where the participant
was meant to trail a plain winding track on screen by pressing the arrow buttons on the keyboard.
This was followed by a 5-minute eyes-closed resting condition during which the participant was
seated on a reclining chair. A 10-minute arrows task followed, during which the participant was
asked to press a button whenever the arrow appearing on screen pointed left or right (according
to the instructions given). The participant’s recording was concluded by a 5-minute eyes-open
resting period again seated on a reclining chair. For every participant these segments of data were
analysed separately. The expectation was that these task conditions, which require the

participants’ attention, yield a predominant low frequency activity around 0.1 Hz.

For a particular participant, the spectrogram of one EEG channel was calculated. The median
across all time windows was found for every frequency point. Thus, a graph of the median PSD
value for every frequency was obtained. The same procedure was repeated for all the EEG
channels. Then, the overall median of the median PSD curves of all the channels was calculated.
The same was done for each of the task and rest conditions. The average was then calculated
across all conditions and this was used as the normalisation curve (black dashed curves in
Figure 6-1 (a) and (b)). The reason for considering all channels and all conditions to obtain this
curve was to be able to establish a general base picture of the underlying brain activity that gives

rise to this 1/ /7 distribution. The spectrogram of the EEG data to be analysed, (e.g., Participant

1, driving task), was then calculated and each time window of the spectrogram was divided by

this normalisation curve, in the frequency domain.
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Figure 6-1. Median PSD curves for participants 1-(a) and 2-(b), showing the relation of the EEG in all
conditions. For each participant, the median across the 4 conditions forms the normalisation curve (--).
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Figure 6-2. Normalisation in the frequency domain: (a) The PSD for one channel for Participant 1 during
the driving task, (b) Corresponding spectrograms, (c) The PSD for one channel for Participant 1 Eyes-open

condition, (d) Corresponding spectrograms.
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From the plots in Figure 6-1 the 1/ /" nature of the EEG can be observed in all median curves;
this gives confidence in the current method of estimation of the normalisation curve. The plots in
Figure 6-2 show the normalised spectrum — the 1/ f7 trend is removed and task-related peaks can
be easily distinguished from ongoing brain activity. A peak at 0.1 Hz can be clearly seen in (a),
and this is manifested in the normalised spectrogram of (b). In (c) no appreciable VLF peaks can
be seen and (d) shows the normalised spectrogram with no prominent VLF activity. Note that
Figure 6-2 (a) and (c) show the PSDs of the original and normalised signal at one electrode for

one time window in the spectrogram.

6.1.2. A Time Domain Spectral Normalisation Approach

This type of normalisation can be achieved by passing the EEG input signal through a filter that
cancels the 1/ f7 spectral behaviour prior to any signal analysis. This inverse filter can be

established by modelling the normalisation curve shown in Figure 6-1 by an autoregressive (AR)

or a moving average (MA) model and then reversing the coefficients to obtain its inverse. Hence

%xva ~AB, 6.1)

where A/ f7 is the EEG power spectrum with the intrinsic 1/ f7 characteristics, Bf" is the
inverse filter spectral contribution (which is square of the filter transfer function) and AB is the
result of their interaction, implying that the output is a whitened spectrum. The 1/ /" curve can

be modelled as an FIR model such that its inverse will be an infinite impulse response (IIR)
model. However the problem is the lack of control on the FIR coefficients since these are already
predetermined by the shape of the normalisation curve. Thus, if the resultant FIR model is not
minimum phase, the inverse [IR model will not have all its poles inside the unit circle and system
stability becomes a major issue. Moreover the filter needs to have a linear phase response to

avoid distorting the phase of the input signal — and an IIR filter will not meet this requirement.

Another possible approach is that of modelling the normalisation curve as an AR model such that
its inverse is an MA model and stability is guaranteed. The time domain representation of the
normalisation curve obtained in the frequency domain is found by computing its inverse FT. The
AR coefficients of an IIR filter are then obtained using the Yule-Walker equations (Hayes, 1996)
on the absolute value of this time domain signal. The AR frequency response obtained with filter
transfer function [1.0000, 1.0000 -0.9772 -0.0066 -0.0010 -0.0033 0.0013 -0.0070] ([b, a] where
b and a refer to the parameters used in extracting the system’s zeros and poles respectively)

provides an estimate of the normalisation curve as shown in Figure 6-3 (a). Reversing the
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coefficients of this model provides an MA (FIR) filter [1.0000 -0.9772 -0.0066 -0.0010 -0.0033
0.0013 -0.0070, 1.0000], which has a frequency response that is the inverse of the estimate of the

normalisation curve, Figure 6-3 (b).
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Figure 6-3. Modelling the inverse filter: (a) An estimate of the normalisation curve showing a
1/ /" frequency response obtained by a 6™ order AR model, (b) The inverse filter frequency response
obtained from the corresponding 6™ order MA model.
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Figure 6-4. Time domain spectral normalisation by ARMA modelling: (a) The PSDs (for one time window
in the spectrograms) showing normalisation achieved by the inverse (MA) filter, (b) The corresponding
spectrograms of the original EEG signal and of the filtered signal showing a dominant peak around 0.1 Hz.

Although this approach gives the expected results (as can be seen in Figure 6-4), it is quite an
involved method since it uses the normalisation curve in the frequency domain in order to derive

the appropriate inverse filter.
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A. Approximating the Inverse Filter by a Differentiator
Figure 3-1 shows 1/ f" curves superimposed on the power spectral density of a typical EEG

channel, with y varying from 1 to 3. Generally, the 1/ / and the 1/ f ? curves follow closely the

EEG spectral trend across the entire frequency band; the better fit of the two for the lower or

higher frequencies varies across recordings. Setting y to 1, i.e. assuming a 1/f spectral trend,
requires a filter with a\/7 frequency response (i.e. an f'squared magnitude response). This can be
designed through the MATLAB function fir2, which provides the transfer function /[n] of an

FIR filter, that approximate a given desired magnitude frequency response and exhibit a linear

phase response. In practice, some of the filter coefficients (representing 4[n]) can then be
tweaked to provide a response as close as possible to \/7 at all frequencies, as shown in Figure
6-5 (a) (a 16™ order filter, h[0] adjusted). Figure 6-5 (b) illustrates the PSD of one signal before
and after filtering, estimated using the Welch method (Welch, 1967; with a frequency resolution
of 0.02 Hz). The normalised PSD exhibits partial removal of the 1/f spectral trend shown as a
reduction in amplitude for frequencies below 0.05 Hz and an enhancement of the peak around

0.1 Hz, similar to that obtained in Figure 6-4 for the same dataset.

(a) (b) _xw’ PSD of original signal

10 PSD of filtered signal

Amplitude

o 01 02 03 04 08 0B 07 o8 08 1 0

Normalized frequency L] (8] 02 03 0.4 05 0.6 o7 0.8 0.8 1

f'{HzJ

Figure 6-5. Spectral normalisation by a [/ filter for removal of the 1/f EEG spectral trend: (a) The desired
JJf frequency response (red), the actual frequency response achieved by a 16™ order FIR filter (blue);

(b) The original and filtered PSDs of the signal, showing partial removal of the trend for frequencies below
0.05 Hz, and revealing the prominent peak around 0.1 Hz.

If the normalisation curve is approximated by a 1/ f ? curve, i.e. setting y to 2, the inverse filter

can be obtained by applying a differentiator with an f transfer function. This could be done using

the cfirpm function in MATLAB, which provides a set of filter coefficients that simulate a linear
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phase differentiator. Alternatively, the differentiator can also be modelled as a 2™ order MA

filter, given by

_ox(1) - x(-1)
y(t) = Ve (6.2)

where x(7) is the input signal, y(7) is the filtered output and Az =T, =1/f., f; being the sampling
frequency. Thus the MA filter coefficients can be set as 1/7; and -1/7,. This is more
straightforward method to implement than the \/7 filter: it requires fewer coefficients to model

its transfer function, and it does not need any tweaking of /4[n] to achieve the desired frequency
response. Moreover, it provides a better suppression of the spectral trend at very low frequencies

as demonstrated in the following sections.

B. Differentiator Characteristics

The differentiator, with its f frequency response cancels out a 1/ f ? trend in the EEG spectrum as

illustrated in Figure 6-6. Figure 6-7 then shows the magnitude and phase response of the
differentiator. The filter exhibits a linear phase response and a constant group delay. The linear
phase response makes it easier to compensate for the phase delay at one particular time instant by

sample-shifting the pre-recorded data accordingly.
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Figure 6-6. The function of the differentiator in spectral normalisation: f frequency response of the
differentiator (red), EEG PSD (blue).
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The effect of the differentiator on the phase of the input EEG signal can be seen in Figure 6-8.
Although the phase difference between the input and the output of the filter is not constant across
time, due to variation in the signal frequency content, the general shape of the phase is preserved.
Moreover since the phase response of the filter is known and fixed, any input signal will
experience the same phase delay at one particular frequency. Consequently if one is interested in
establishing the phase synchronisation between two channels (which is computed at one specific
narrow frequency band), the phase relationship of the two signals will not be distorted by the
filter since both signals will be delayed by the same amount at that frequency.
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Figure 6-7. Magnitude (blue) and phase (green) frequency response of the differentiator.
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Figure 6-8. The phase effect of the differentiator on the input EEG signal; the phase of the EEG signal
before (blue) and after (red) filtering.

This analysis shows that performing normalisation in the time domain by using a differentiator is

an attractive approach. This is because, although the frequency domain method produces a
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normalised spectrum without assuming that the underlying bias is a strict 1/f or 1/ f ? (since the

normalisation curve is modelled directly from the dataset), the phase information of the EEG
signal is lost. Consequently, it is not possible to fully reconstruct the time series from the

normalised spectra. Moreover, the differentiator is the simplest filter for normalisation in the
time domain in comparison to those achieved through ARMA models or the \/7 filter. For these

reasons, it 1s used here to filter different datasets in order to demonstrate its function as a tool for

spectral normalisation. The results are illustrated next.

6.1.3. Applying the Differentiator to Various Datasets

A. Synthetic Data

The differentiator was applied to two sinusoidal signals of frequencies 0.1 Hz and 0.5 Hz
respectively, superimposed on normal background EEG. The SNR of the higher frequency signal
(SNR2) was kept fixed at 15 dB whereas that of the lower frequency signal (SNR1) was varied
from 0 to 47 dB. Each SNR was measured by calculating the ratio of power of the sine wave to

that of the background EEG.

When SNRI is less than SNR2 (Figure 6-9 (a) and (b)) the filter attenuates the low frequency
component significantly by removing the 1/ f > trend. In the second case (Figure 6-9 (c) and (d))
the magnitude of the 0.1 Hz filtered component becomes equal to that of the 0.5 Hz component
since SNR1 is high enough to compensate for the 1/ f ? intrinsic spectral behaviour. This means
that the SNR of the lower frequency component needs to be twice that of the higher frequency
component to place it above the 1/ f ? curve and let it be apparent at the output. Any SNR1 value

exceeding this threshold results in the low frequency component being larger than the high

frequency component after filtering (Figure 6-9 (e) and (¥)).

Figure 6-10 shows the SNR for an input sine wave as its frequency is varied from 0.1 Hz to
12 Hz. It is clear that for every input frequency the SNR before filtering varies linearly with that
after filtering. Moreover, lower frequencies have a lower SNR after filtering due to the 1/f* base
spectrum. This is shown in Figure 6-11 where for a particular SNR before filtering, the SNR
after filtering increases as the frequency of the input signal becomes higher. The curves in this
figure can be approximated by an inverse 1/f% which implies that the differentiator is attenuating

lower frequencies more than higher frequencies hence compensating for the 1/f bias.
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Figure 6-9. Time domain signal consisting of 2 sine waves at 0.1 Hz and 0.5 Hz of varying SNR (SNR1
and SNR2 respectively) filtered through the differentiator and their corresponding spectra before and after
filtering: (a) SNR1 is less than SNR2, (c) SNR1 is approximately twice SNR2, (e) SNR1 is much higher
than SNR2; (b), (d) and (f) show the corresponding PSDs.
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Figure 6-10. SNR before and after filtering for various input frequencies of a sine wave used as the input
signal to the differentiator.

90
7"77",*,,,,,,,,,,,,, _ —
80 L ]
//”/// V +7”
=2 /
o 950F 4 ) ]
[5) oy
£ 4|/ ) |
5 |/f |
® / 1
o4 o 7
b4
»
—+— SNR before = 30 dB
—+— SNR before = 45 dB |
—+— SNR before = 59 dB
L —+— SNR before = 66 dB ||
aZ —+— SNR before = 81 dB
-10 ) ‘ | ‘ ‘
0 2 4 s : = |

frequency (Hz)

Figure 6-11. Variation across frequencies of the output SNR for fixed SNRs of the input signal.

B. Epileptic Seizure Data

Focal epileptic seizure data recorded using 25 electrodes placed on the scalp according to the
International 10-20 system with reference at FCz, was used as input to the differentiator. The 3-
minute long data recording was sampled at 200 Hz and digitally stored at 12 bit resolution. The
recording included pre-ictal, ictal and post-ictal activity, and the seizure was focused on the left-
temporal lobe (around T3). For this data, the relationship between SNR before and after filtering
showed the same linear trend as that obtained for synthetic data. Here, the SNR was computed by

finding the ratio of power of the 3-minute EEG incorporating seizure activity to the power of
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ongoing background EEG activity of the same duration recorded for the same subject. This

procedure was carried out on the data before and after passing it through the differentiator.

(a} PSD of original signal at T3 (b) PSD of original signal at T9
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Figure 6-12. The effect of the filter on the spectrum of the signals recorded around the seizure focus: (a) T3
signal spectrum, (b) T9 signal spectrum; Note the removal of the 1/ftrend and the clear peak around 4.5 Hz
indicative of the rthythmic seizure activity.
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Figure 6-13. The spectra of Fp2 (channel with ocular activity): Eye movement activity has lower frequency
peaks which are more pronounced in the normalised spectrogram.

Figure 6-12 and Figure 6-13 show the effect of filtering on the spectrum of selected EEG
channels; the spectra were computed using the Welch method with a frequency resolution of
0.2 Hz. After filtering the original spectra in Figure 6-12 (a) and (b) are flattened and the 1/f>
trend is clearly removed. Moreover, the peak around 4.5 Hz, which is related to the rhythmic

seizure activity, becomes much more pronounced in the filtered spectra. The spectrum of the
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frontopolar channel (Fp2) in is also whitened by the differentiator and low frequency peaks due

to eye-related activity become visible.

C. EEG Data with Low Frequency Activity

When the same EEG data used in Section 6.1.1 was applied to this filter the spectra were
normalised as expected, as shown in Figure 6-14. The 0.1 Hz activity visible in the original
signal spectra in (a) and (b) become more prominent after filtering; both spectra have been
computed using the Welch method with a frequency resolution of 0.02 Hz, and selected channels
for Participant 1 during the driving task are shown as an example (since the results for the other
datasets were very similar). No significant low frequency activity can be seen in the normalised
spectrum of (¢), during the eyes-open condition for the same participant. Thus the resultant
spectra obtained by normalising in the frequency domain and those obtained by normalising in
the time domain are very similar, in that they both show a peak around 0.1 Hz during the driving
task and a flat spectrum when no extra low frequency activity was expected: compare Figure 6-2
(a) (normalisation in the frequency domain) and Figure 6-14 (a) & (b) (normalisation in the time

domain) for the same dataset. Moreover, the result of Figure 6-14 (a) is also comparable to that
obtained by the \/7 filter in Figure 6-5 (b), implying that our approximation of the spectral trend

with v is 1 or 2 renders similar outputs and it indeed practical to use the simpler method.
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Figure 6-14. The normalised spectra (a), (¢) and (), and the corresponding spectrograms (b), (d) and (f) of
the EEG data with low frequency activity.
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D. MEG Data

Another useful application of the differentiator lies in the analysis of MEG data. A CTF Systems
151 channel MEG was used to record over 20 minutes of ongoing activity in a normal, healthy
volunteer. The data was downsampled to a sampling rate of 100 Hz, and was used as the input of
the differentiator. The original and the normalised spectra computed by the Welch method (with
a frequency resolution of 0.1 Hz) for some of these channels are shown in Figure 6-15. The
examples given here demonstrate that passing MEG data through the differentiator achieves

normalisation of its spectra.
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Figure 6-15. Normalised spectra of selected MEG channels: Note the prominent peaks in the PSDs of the
filtered signals (y-axis in linear scale), which were previously obscured by the 1/f* trend in the original
PSDs of the raw unfiltered signal (y-axis in logarithmic scale).

The peaks around 10 Hz and 20 Hz in Figure 6-15 (a) and (b) are barely visible in the original
PSD due to the 1/f* trend but become very evident after filtering. In (c) and (d), the distinct theta
frequency components around 7 Hz and 9 Hz are much more pronounced in the normalised
spectrum. Moreover, the filtered spectrum in (d) shows an artifactual peak at 44 Hz of a much

higher amplitude (relative to the lower frequency components) once the 1/f* trend is
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compensated for. This shows the importance of this technique for clearly distinguishing
prominent frequency components as well as for comparing signal power in different frequency
bands. Note that the original spectra are shown on a logarithmic y-axis scale to allow the higher
frequency peaks to be at least slightly visible prior to filtering, (if these are shown on a linear
scale any activity above 2 Hz will be completely masked because of the high amplitude
difference introduced by the intrinsic 1/f* trend).
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Figure 6-16. ERP data normalised by the differentiator: PSDs of original and filtered signals at Channel C3
(a), Cz (b) and C4 (c). Original spectra shown on a logarithmic y-axis scale for better visualisation. Note
the low frequency peak apparent at 10 Hz corresponding to a weak P300 response in (b), and the clear
prominent activity in the gamma band around 20-30 Hz in (a) and (c).

E. Evoked Response Potential Data

Another important set of EEG signals are those involving ERPs such as the P300 responses. One
minute worth of EEG data sampled at 240 Hz for electrodes C3, Cz and C4 (where the P300
response was expected to be most prominent) was used here. The participant was presented with
a 6 by 6 matrix of characters. The task was to focus attention on characters in a word prescribed

by the investigator, one character at a time. The data contained 35 epochs of 1.5 second duration
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each, (stimulus onset at 0.5 seconds). On computing the PSD of the three EEG signals using the
Welch method (with frequency resolution of 0.2 Hz), it became evident that these also exhibit
1/f? spectral behaviour. This was expected because evoked responses share the same physical
model as the EEG, the only difference being that evoked potentials are time-locked to a stimulus
and generally have lower amplitudes than ongoing EEG. Filtering can thus be used to normalise

their spectra for clearer data analysis, as shown in Figure 6-16.

6.1.4. Discussion

In this section, several procedures for achieving spectral normalisation have been explored as a

way of revealing relevant task- or condition-related peaks, which may otherwise be obscured by
the 1/ /" spectral trend inherent in EM brain signals. The most straightforward and simplest
method for normalisation was achieved in the time domain by assuming y=2, hence
implementing a 2™ order differentiator with an /' power spectrum and a linear phase response.
Suppression of the inherent trend was achieved for all types of EM recordings; this demonstrates
that the spectral trend for the underlying background EM brain activity can be considered as

1/ f?, and the approximation to model its inverse by a differentiator is suitable.

The following section describes two separate studies carried out on MEG recordings of children
with ADHD and controls. Details of the MEG dataset and the experimental protocols used are
first given, followed by a description of the motivation behind the two studies and the
methodologies employed in each. The first study tackles phase synchronisation in the slow wave
band between the processes extracted by SC-ICA. The second study explores a novel way of
investigating the effect of the slow waves on brain function by considering the nature of the trial-
to-trial variability in evoked neural responses, mainly the M100, which have been extracted

through ST-ICA. The results obtained from each study are presented and discussed.
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6.2. MEG dataset

The MEG dataset comprising recordings of ADHD and control children was supplied by the
MEG centre, Complutense, University of Madrid (UCM) in Spain. The data was collected by
means of a whole-head magnetometer (Magnes 2500®, 4D Neurolmaging Technologies Inc.,
San Diego CA, USA) consisting of 148 sensors (Figure 6-17) as part of an unrelated study. The
recordings were digitized at a rate of 678 Hz and subsequently downsampled offline to a rate of

100 Hz. Participants’ information and the experimental protocols are given below.

A. Participants

18 children with ADHD (11 boys) and 11 healthy controls (6 boys) took part in the study.
Children’s ages ranged from 7 to 11 years (mean age 8.7+1.1 years). All participants were right-
handed, had normal vision, and had an IQ higher than 85 (WISC-1V, Wechsler, 2005). ADHD
children who were treated with stimulant medication (Concerta®) (3 ten-year-old children — 1
boy and 2 girls) were asked to discontinue the treatment for 72 hours prior to the MEG
recordings. The rest of the sample was not taking any medication. Children with ADHD were

recruited from different schools from the urban and suburban district in Madrid.

ADHD diagnosis was based on the Behaviour Assessment Scale for Children (BASC, Reynolds
and Kamphaus, 1992). The BASC is a multimethod and multidimensional approach that
measures adaptive as well as clinical dimensions of behaviour and personality based on the
Diagnostic and Statistical Manual of Mental Disorders (DSM-III R, American Psychiatric
Disorder, 1987). Due to its excellent psychometric properties, the BASC is a frequently used
measure in the clinical domain (Ellison and Semrud-Clikeman, 2007; Semrud-Clikeman et al.,
2008). Furthermore, the BASC has been adapted and standardized for the Spanish population
(Reynolds and Kamphaus, 2004). The main constituents of the BASC are the Teacher Rating
Scales (TRS), the Parent Rating Scales (PRS) and the Self-Report of Personality (SRP). In
addition to these scales, a supplementary component of the BASC, the Structured Developmental

History (SDH), was used.

The first stage in the recruitment of the ADHD sample involved an interview to parents of sixty-
three potential participants. After signing the consent form, parents filled in the SDH and PRS.
This information was used to exclude potential participants who met criteria for either
psychiatric, neurological or behavioural disorders, or learning disabilities. In addition, children

who scored higher than 60 in the PRS Hyperactivity and/or Attention scales were selected for the
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next recruitment stage. Subsequently, teachers of the selected subsample filled in the TRS.
Eighteen children also showed a score above 60 in the TRS Hyperactivity and/or Attention scales
and therefore they were included in the study. After selecting the ADHD sample, control
participants from the same classroom were recruited and the same screening procedure was
repeated for them. Exclusion criteria for control children were the same as noted above. In
addition, the inclusion criteria were a score below 60 in both the PRS and the TRS Hyperactivity
and Attention scales of the BASC.

The ADHD and control groups were also matched by psychosocial adversity measure and
socioeconomic status. For the former measure two indices were used. The first one assessed six
areas (Brown et al., 1981; Max et al., 2005), namely: (1) child not living with biological or
adoptive parents; (2) sibship of at least four children or a person-to-room ratio exceeding one; (3)
admission of the child into the care of the local authority because of family difficulties; (4)
maternal “malaise inventory” score of 7 or more; (5) paternal criminality; and (6) father or
mother with an unskilled or semiskilled job. The second one provided a measure for parental
problems of adjustment (White, 1982; Fergusson et al., 1994), and included: (1) whether the
child's parents had ever used cannabis or other illicit drugs; (2) whether there was a parental
history of problems with alcohol or other substance abuse; (3) whether there was a parental
history of offending; all assessing the time before the children reached the age of 7. For each
item with no suggested adversity a score of 0 was given, whereas a score of 1 was assigned to
areas where there was adversity. The ADHD and control groups both had a psychosocial index
of (0.46+0.52) whilst their index for parental problems of adjustment was (0.27+£0.47) and
(0.19+0.41) respectively, hence showing group matching for both aspects.

Socioeconomic status (SES) assessment was accomplished through the Barratt Simplified
Measure of Social Status (BSMSS) (Barratt, 2006), which considers parents’ education levels
and job categories as measures for a socioeconomic status index. The BSMSS is built on the
work of the Hollingshead Four Factor Measure (Hollingshead, 1975) and provides an updated
list of occupations to better address current occupations as they relate to social status. Stay-at-
home mothers are not included in the BSMSS calculation. The Four Factor Index of Social
Status scores range from 8 to 66, with higher scores indicating higher educational and
occupational levels and higher SES. The SES media from the control group mean was 45.50 and

the ADHD group mean was 44.50 (cf. Table 6-1).

89



Chapter 6 - Investigating Slow Waves in Brain Signal Recordings: Initial Findings

Education level

Score occupation

GROUP | AGE Mother | Father (Mather's Mother | Father (Mather:
Father) /2 Father) /2
CTRL 7 12 9 10.5 25 30 27.5
CTRL 8 21 21 21 40 40 40
CTRL 8 9 6 7.5 25 15 20
CTRL 8 15 9 12 10 20 15
CTRL 8 12 15 13.5 25 30 27.5
CTRL 8 12 6 9 15 10 12.5
CTRL 8 21 21 21 45 45 45
CTRL 9 12 12 12 30 30 30
CTRL 9 18 21 19.5 35 40 37.5
CTRL 10 21 21 21 40 45 42.5
CTRL 10 21 21 21 35 35 35
ADHD 7 12 21 16.5 25 30 27.5
ADHD 8 21 21 21 35 35 35
ADHD 9 6 6 6 15 20 17.5
ADHD 9 15 15 15 35 35 35
ADHD 9 12 9 10.5 25 25 25
ADHD 10 12 21 16.5 35 17.5
ADHD 10 9 9 9 25 30 27.5
ADHD 10 21 21 21 45 35 40
ADHD 10 12 21 16.5 25 30 27.5
ADHD 10 12 21 16.5 25 30 27.5
ADHD 11 21 21 21 40 40 40

Table 6-1. Socioeconomic status assessment through the Barratt Simplified Measure of Social Status
(BSMSS) (Barratt, 2006), for ADHD and control groups.

Before the MEG recordings, written informed consent detailing the procedures of the study and

approved by the Ethics Committee of the Complutense University of Madrid in accordance with

the ethical standards laid down in the 1964 Declaration of Helsinki, was provided by a parent. In

addition, all children provided oral assent to participate in this study. Due to excessive head-

movement artifacts in the MEG signal, 7 ADHD children were excluded from the MEG analysis

since their recordings were unusable. This was decided upon calculation of the variance of the

signal as a test for non-biological noise in the recordings — a high variance is an indicator of

noisy recordings. The remaining ADHD subsample consisted of 11 children (8 boys).
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Figure 6-17. Location of the 148 channels in the Magnes 2500® Whole-Head MEG system (4D
Neurolmaging Technologies Inc., San Diego CA, USA).

B. Experimental Protocol

Two types of experiments were carried out for every participant, namely the perceptual (passive)
and the attention (active) tasks. In the perception task two stimuli (circles and lines) appeared on
the screen and the participants were advised to look at the centre of the screen without attending
to the stimuli. This task consisted of 3 blocks of 3 minutes each and lasted for around 11-
12 minutes, Figure 6-18 (a). The variability was due to the variable interstimulus interval and the
variable resting time for every participant (since the participants were allowed to decide when
they were ready to start the following block), Figure 6-18 (b). In the attention task, the same
stimuli appeared on the screen but the participants had to focus on the right, left, or on both sides
of the screen (depending on the instruction given, Figure 6-19 (a)) and press a button whenever a
line appeared on that side. Here the lines were the targets and the circles were the distractors,
each with a probability of occurrence of 50%. The participants were always instructed to look at
the centre of the screen, independently of the side where they were supposed to focus their
attention on. The attention task recording consisted of 5 blocks of 3 minutes each and lasted for

around 19-21 minutes, Figure 6-19 (b).
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Figure 6-18. Schematic representation of Perception task: (a) Stimuli appearing on the screen (on the
right/left/both sides) but no action required; (b) Three 3-minute task blocks separated by a variable resting
time (marked as ‘BREAK’ here).
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Figure 6-19. Schematic representation of Attention task: (a) Stimuli appearing on the right/left/both sides
of screen, button pressed whenever a target (line) appeared on that side, (b) Five 3-minute task blocks
separated by a variable resting time (marked as ‘BREAK’ here).
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Stimuli were 100 ms long, each followed by a variable interstimulus interval of 400-650 ms.
This duration was chosen to focus on aspects of selective rather than sustained attention. The
order of the two tasks was counterbalanced across participants. During the recordings
participants were lying in supine position and instructed to avoid head movements and eye
blinking as much as possible. The stimuli were presented by an LCD video projector (SONY
VPL-X600E) outside of the magnetically shielded room onto a series of in-room mirrors, the last

of which was suspended 1 m above the participant’s face.

6.2.1. Low Frequency Phase Synchronisation Analysis using SC-ICA

As explained in the first chapters of this work, fMRI studies have shown that the brains of
individuals undertaking no externally imposed cognitive tasks display patterns of spontaneous
intrinsic activity synchronised across widely distributed brain regions; one of such networks is
the default mode network (Fransson, 2005). Spontaneous VLFOs associated with the DMN are
commonly attenuated during task. However, they sometimes re-emerge during periods of active
processing, competing and interfering with goal-directed attention. This results in low frequency
toggling between the task-independent (-negative) and task-positive components and presents a
potential source of attention deficit during active task performance. This forms the basis of the
DMI hypothesis described in Chapter 2. Furthermore, Sonuga-Barke and Castellanos (2007)
consider the possibility of ADHD being a default-mode deficit disorder in relation to the
impairments in sustained attention experienced by individuals with this disorder. Application of
the DMI hypothesis to ADHD then suggests that such sustained attention lapses would be slow
and periodic, resulting from the intrusion of the task-negative component. In addition, most
ADHD studies postulate the involvement of multiple brain areas and are backed up by the notion

that ADHD is a highly heterogeneous disorder (Johnson et al., 2007).

The first study involved a preliminary investigation of these findings conducted on the MEG

recordings. The aim was to address the following issues:

(i) Can these VLFOs associated with the DMN be identified within MEG recordings?

(i) Which distinct brain areas are interacting during different rest and task conditions (forming
network(s) of brain activity)?

(iii) Is there a change in this interaction with a switch from rest to task?

(iv) What are the differences (if any) between ADHD and controls?

The interaction between pairs of distant MEG channels can be quantified by phase
synchronisation. As explained in Chapter 3, this is widely used in the literature as a vital

mechanism for dynamic integration of distributed oscillators within the brain (Lachaux et al.,
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1999; Quian Quiroga et al., 2002). It is a measure that shows whether the phase shift between
two signals is close to a constant over the specified time interval. Phase synchrony proves to be
very useful because it is independent of the signals’ amplitudes and can thus indicate instances
where two signals are phase locked whilst their amplitudes vary independently (Lachaux ef al.,

1999).

Classical methods for establishing phase synchrony, however, require the signals to be
narrowband (Quian Quiroga et al., 2002). This implies that phase locking results would depend
greatly on the chosen frequency band. It also requires filters with good resolution in both time
and frequency and which do not cause any phase distortion. The 148 channels of MEG data may
be phase locked in various frequency bands thus making the analysis quite cumbersome.
Furthermore, MEG data is obtained from an inherently noisy recording process, which implies
that denoising techniques involving BSS would be best employed for proper analysis of any true

underlying networks.

SC-ICA provides an optimal analysis method for this problem due to its ability to isolate
underlying components using only temporal information inherent in single channel recordings
(Davies and James, 2007). The 148 channel MEG system is highly dense and channels that are
close to each other tend to be influenced by activity from similar brain areas. By analysing fewer
channels in specific brain regions one would still be able to extract underlying temporal
generators contributing to the measured signals. Moreover, as explained in Chapter 5, the
separated independent sources identified by SC-ICA have disjoint spectra. This is very powerful
since it automatically locates the frequency bands of interest and allows for the extraction of
sources with some overlapping frequency content. Meanwhile, it simultaneously performs

denoising, extracting artifactual as well as neurophysiologically meaningful sources.

Consequently, this BSS technique has been used here to isolate the VLFOs associated with the
default network within the MEG recordings. Phase synchronisation analysis was then carried out
on the extracted band-limited sources to establish which brain areas were interacting throughout
the course of the task. Before moving on to the methodology applied for this analysis, the

procedure for measuring phase synchronisation is described next.
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A. Phase Synchronisation
This is defined as the locking of the phases of two oscillators for a specified time duration
Ap(t) = |ng,(t) - me, ()| = constant, (6.3)

where ¢(¢) and ¢,(¢) denote the instantaneous phase sequences of the 2 channels, and n and m
are integers which indicate the ratios of possible frequency locking. Since the multivariate
signals come from the same physiological system (the brain) we can consider n = m = 1 (Le van

Quyen et al., 2001).

As briefly introduced in Chapter 3, a measure for phase synchronisation between signal pairs can

be derived following a three step procedure:

(i)  Estimation of the instantaneous phase of each signal

This can be achieved using the Hilbert transform as a means for estimating the instantaneous
phase and hence finding the phase difference between two given signals. The Hilbert transform
(Rosenblum et al., 1996) gives the instantaneous amplitude and phase of a signal x(¢) via the

construction of an analytic signal, {(), which is a complex function of time defined as
C(0) = x(t) + iX) = A@t)e”". (6.4)

The function )O?(t) is the Hilbert transform of x(f) and is given by the convolution of the signal

with the function 1/ z¢

o) :lP.V.]O 2@ 4 (6.5)
T s (t-1)

where P.V. is the Cauchy principal value.

The instantaneous amplitude A(¢) and phase of the signal ¢(¢) are uniquely defined from

equation (6.4), where the phase is given by

o(t)= arctan% . (6.6)

Application of the convolution theorem turns equation (6.5) into
F(t) =—iFT ™ [FT[x(0)]sign(w) ], (6.7)
where FT denotes the Fourier transform and FT™ denotes its inverse.

Hence, this transform performs a phase shift of the original signal by 72'/ 2 in the frequency

domain while the power spectrum remains unchanged. In addition, the instantaneous phase as
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defined in equation (6.6) is restricted to the interval [0, 27] (Aihua and Yuhan, 2005). This
implies that the Hilbert transform is actually a filter with unit gain at every frequency so that the
whole range of frequencies is taken into account in defining the phase of the analytic signal. If
the signal is broadband, as usually happens with EEG/MEG, the Hilbert transform fails to give a
proper estimation of the phase (Pikovsky et al., 2002). Chavez et al. (2006) show that for a
broadband signal, this transform actually yields a representation which exhibits multiple centres

of rotations in the complex plane such that the instantaneous phase cannot be well defined.

Moreover, EEG and MEG signals are not periodic, and hence this notion of instantaneous
frequency and phase becomes important. The concept of PS is based on the assumption that there
is a dominant frequency in the signal that leads to a well defined and unique value of the phase
for each interacting channel. If the signals to be analysed have a broadband or a multimodal
spectrum, then the definition of the phase can be troublesome since instantaneous amplitude and
phase have a clear meaning only if the signal is narrowband. This is another reason why all
analyses are done around a specific frequency band and pre-filtering of the signals (with a filter

that does not introduce phase distortions) is necessary (Pereda et al., 2005).

Phase Wrapping

Hurtado et al. (2007) also demonstrate that for the phase construction to be meaningful it is
important that the time series is oscillatory — i.e. there are significant peaks in the power
spectrum. However, when dealing with noisy or chaotic systems such as EEG and MEG, it turns
out that the signal’s phase can exhibit rapid phase jumps (discontinuities) of 2z. Due to these
phase jumps, the instantaneous frequency is strongly affected by noise which makes it an
inadequate measure for synchronisation in noisy time series (Pikovsky et al, 2002).
Consequently, the signal’s phase is normally unwrapped by adding multiples of £21 when the
absolute jumps between consecutive points in the phase time series are greater than or equal to
the default jump tolerance of 7 radians. The unwrapped phases are then used to compute the
phase difference between the two signals (as in equation (6.3)). This observation is also made by

other researchers in the field (Tass ef al., 1998; Hurtado et al., 2007).

(i) Establishing an index to quantify phase synchrony
A popular coefficient is the phase locking value, (PLV), defined as
1 Niyiat

Z e./'(Af/J(th))

trial "=

PLV =

: (6.8)
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where N, is the length of the window in samples and Ag(#n) is the phase difference between

the two channels, n representing the time instant at which the analysis ends.

Hence, this index defines a measure of the inter-trial variability of the phase difference within a
given time window (Lachaux er al., 1999). The chosen length of the time window is very
important since if this is too long stationarity will be compromised whereas if it is too short
important interactions can be mimed especially if these are weak or masked by noise. A 1.5- to
20-second time window is usually considered (Hurtado et al., 2007). The PLV is independent of
the signals’ amplitude, makes no assumptions about the nature of the signals and provides a non-

parametric measure that quantifies the interaction of two signals over time.

| 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
time (sec)

Figure 6-20. The phase difference between two sine waves of different frequencies (5 Hz and 18 Hz)
accumulates over time.

From equation (6.8) it is evident that if the phase difference for a given time period varies very
little across trials then the PLV would be close to 1, otherwise it is close to zero. Moreover, for
periodic signals with a dominant frequency component, the PLV is expected to be high if both
signals are in the same frequency band since the phase difference between them, A@(¢,n)

remains constant. On the other hand, the phase difference between two signals at different
frequencies accumulates over time. This is shown in Figure 6-20 — here the phase difference of
the two sine waves of frequencies 5 Hz and 18 Hz starts at zero but increases monotonically over
the duration of time considered. Evaluation of the expected value of the PLV for two signals at

different frequencies can be found in the work by Tcheslavski (2005).
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Figure 6-21 shows an example of the phase locking between pairs of ictal EEG signals
containing an epileptic seizure with a left temporal focus. The signals were band-pass filtered
between 4 and 8 Hz. The signals’ instantaneous phases have been unwrapped (and also
detrended for illustration purposes only). It is clear that the phase difference between T3 and Fz
varied throughout the 2.6-minute recording (Figure 6-21 (a)) whereas that between T3 and T9
(around the seizure focus) remained relatively low (Figure 6-21 (b)). Therefore, when the PLV
was evaluated for 3-second time windows with 50 % overlap, T3-Fz had low PLVs whereas the
PLVs for T3-T9 were close to one for nearly all time windows, since the phase difference

between these two channels stayed relatively constant during the 3-second segments.
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Figure 6-21. PLV as an indicator of the phase difference Ap between two signals: (a) A varying phase
difference between T3 and Fz during the 3-second time windows results in a low PLV; (b) A more
constant phase difference between channels T3 and T9 during the 3-second segments results in a PLV
which is close to 1 for nearly all time windows.
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(iii) Establishing a statistical criterion to quantify the degree of phase locking

Phase locking statistics (PLS) are used to determine the degree of statistical significance of each
PLV in order to distinguish significant PLVs from background fluctuations. This is done by
comparing the original PLV between two channels to surrogate PLVs. There are several ways to
construct these surrogates such as, assembling surrogate time series by drawing samples from a
Gaussian distribution that preserves the mean and variance of the original series, or by generating
surrogate phase series directly (Hurtado et al., 2007). More commonly, surrogate values are
obtained from the original signals (say x and y) but after permuting the order of all the trials of y.
This can be achieved by shuffling the y time series as done by Lachaux et al. (1999). However, it
is argued that shuffling the data changes its autocorrelation structure, which may in turn affect
the values of the synchronisation indices. This is because shuffling provides a white noise-like
version of the data such that prominent autocorrelations inherent to neurophysiological signals
are destroyed. This turns the surrogates into very unlikely realisations of any neurophysiological

process (Pereda et al., 2005).

Therefore, it is essential to construct surrogates that preserve the individual structure of the data
while destroying all interdependencies between the signals. This can be achieved by comparing
the original version of one of the signals with a temporally shifted version of the other. Such
randomized time shifts destroy any temporal structure if present in the original time series
(Pereda et al., 2005). A significance threshold for the original PLV is then established by
comparing this value to a number of surrogates (typically 200) (Lachaux et al., 1999; Theoden et
al., 2002). This threshold is usually set by constructing a distribution for the surrogate PLVs and
then taking its 95% quantile. This is equivalent to taking the mean + twice the standard deviation
if the surrogates distribution is normal (Figure 6-22), (Theoden et al., 2002). This procedure is
carried out for each time window such that the PLS threshold also varies with time. With
reference to Figure 6-23, the original PLV between two channels is considered significant
whenever it lies outside the low (5%) and high (95%) percentiles. Due to the nature of the PLV
index, (i.e. high PLV implies synchronisation), the PLV is said to be significant whenever it
exceeds the 95% PLS threshold; otherwise it is considered spurious and is set to zero. It is
important to note that with such method the conclusions will depend strongly on the assumptions

that are made in generating the surrogate time series.
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Figure 6-22. Distribution of the surrogate PLVs for one particular time window.
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Figure 6-23. The original PLV between 2 channels (blue) is compared to the low (red) and high (green)
PLS percentiles derived from the 5% and 95% limits of the surrogates’ distribution for each time window.
When the original PLV lies outside these percentiles it implies significant phase synchrony.
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B. MEG Data Analysis

The SC-ICA and phase synchronisation methodology (based on the preceding theory), and the

results obtained from the MEG dataset are described below.

Pre-processing: The multichannel raw data was first analysed using FastICA (Hyvérinen,
1999b) and ICs related to eye blinks, eye movement and ECG were subtracted from the data.
This was done to ensure that any low frequency peaks inherent in the data were not due to known
artifacts having low frequency characteristics. This data was low pass filtered to 2 Hz by a 64"

order FIR filter, and down-sampled to a sampling rate of 10 Hz.

Channel Selection and SCICA: Since various brain regions may be involved in the underlying
networks, five channels were selected from distinct areas, namely the frontal, central, occipital,
and left and right parietal regions (Figure 6-24). The whole recording for both tasks (20 or
12 minutes) was used in the analysis to include enough cycles to accommodate the slow waves.
The delay dimension m for SC-ICA was chosen to be 200, providing a frequency resolution of
0.05 Hz (according to equation (5.13)). The selected channels were temporally whitened and
dimensional reduction was achieved by the discrete cosine transform (DCT); this transform
expresses the signal into a sum of cosine functions oscillating at different frequencies. The DCT
is widely used in signal and image processing because of its strong energy compaction property:
most of the signal information tends to be concentrated in a few low frequency coefficients, and
small high-frequency ones can be easily discarded (Feig and Winograd, 1992). The FastICA
algorithm was then employed in deflationary mode following the quicker approach, a.k.a.
FastIPA, explained in Chapter 5.3.2. For each channel, the underlying processes were extracted

and their magnitude frequency response was found, as shown in Figure 6-25.

Figure 6-24. Location of the MEG Channels chosen for SC-ICA analysis.

102



Chapter 6 - Investigating Slow Waves in Brain Signal Recordings: Initial Findings

(a) (b)
—_— Channel 13 Channel 36 Channel 13 Channel 3
| | _ | 2000/ il “ il
T T Nttt Moyl
“‘ ! | FIf _2000| I | | |
1 1) 1
-5000 -4000
200 400 600 80O 10001200 200 400 60O BOO 1000 1200 290 90 00 GG 558 D A ST B 7508
lime {sec) tima (sec) time (sec) time (sec)
100 100
= | 2
8 Il g
Ll ¥
o 1 2 3 0 1 2 3 0% i ) 3 0 1 z 3
100 _ 100
= &
o | I
e S0 5 s0
151 |
A J 0 i JJ']. Ml
% 1 2 3 1 2 3 a 1 2 3 1] 1 2 3
100 f' 100
= i
B ol ' c =t
g ® ](m # |r' g .J w | | .I
= W AL il VI | 11#
"o &z 3 0 1 2 "o 1 2 3 o 1 2 3
Fi Frequency
requency (Hiz) b it Frequency (Hz) Frequency (Hz)
1
o.a[
> ] S
& 06 Z
8 =
w w
0.
é 4| 5 0.
0.2[

ul M\j\ /|

time windows
(c) (d)
Channel 13 Channel 61 Channel 36 Channel 3
5000
| [ 4 ‘h.} 4 l it J‘
W p;,‘l*'n*w" » 11 AW | e
0| Wt‘t\s‘% A\'#Wl%ﬁ” \4“ w 0 |IJM ' Hﬁkﬁk@} 4;’”; \Nﬁ"%‘.'ﬁ ,IW“J,\H’
Ir'
-5000
400 soo 200 400 600 200 400 600 200 400 60O
lIMB (sec) time: (sec) time (sec) time (sec)
= 150 200 |
& 100
g | - I
a | | = ’
,-/-‘-l s, o2 \
0 7 z 3 0 1 z 3 Nal /L
150 [] 1 2 3 0 1 2 3
p= | 200
100 -
5 | s
50 b &= 100
J Wk - il
0g 7 Z 3 0 i z 3 1 Lol
150 Yo 1 2 3 0 1 2 3
200
= 100
E I ’ } h E
£ 50| 100
w { -_—
- |-"|!||.P.',l J'||i* W Lu = ﬂ:‘» 'u' |||I
% 1 2 3 0 2 3 ALY ALY,
Frequency (Hz F H 0 1 2 3 0 1 2 3
i ey el I‘snusmy[ 2 Frequency (Hz) Frequency (Hz)
- 08
-
%06
w
# 04
=]
0.2
) 5 10 15 20 25 30 35 o 3 0 15 20 25 30 35

time windows time windows

Figure 6-25. Each quadrant shows two channels (ECG and eye artifacts removed), and the frequency response graphs
of their independent processes extracted by SC-ICA; |Sfft(7)| denotes the magnitude of the single-sided amplitude
spectrum for process (7). The 95% significant PLV plot for the two channels shows the overall phase synchrony
obtained by considering the maximum significant PLV between all pairs of processes with overlapping frequency
content. The resting periods are shaded in grey, following the task periods. Quadrant (a) shows ADHD attention, (b)
Controls attention, (c) ADHD perception and (d) Controls perception task.
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Phase Synchrony: For each participant only the phase locking between processes having
overlapping frequency bands was considered, since those with non-overlapping frequencies
could not be phase locked (as explained in Figure 6-20). The processes time series were divided
into time windows of 20 second duration, and the PLV and the corresponding 95% PLS were
calculated for each window. The PLS was found by considering 200 randomly cycle-shifted
surrogates. Once all the relevant phase locking between the processes belonging to a particular
pair of channels had been established, a graph of the maximum 95% significant PLV was plotted
(Figure 6-25). This showed the overall significant phase locking between the two channels. The
timing of the rest and task block periods recorded during the experiment were then superimposed
on the phase locking graph to give an indication of the fluctuations in phase synchrony of these
channels when switching from task to rest. This was done for all combinations of pairs of
channels considered and for every set of recordings (one participant - one task). This procedure
was repeated on the 8 datasets considered. Selected results for ADHD and control children whilst
performing the different tasks are shown in Figure 6-25 to highlight the typical responses

obtained.

C. Discussion

This preliminary investigation showed that SC-ICA decomposition was able to single out
processes of a low frequency time signature (below 1 Hz and as low as 0.05 Hz) from the MEG
data. Results show phase synchronisation between fronto-central, central and parietal areas thus
providing evidence of the underlying networks of activity across diverse brain areas. A drop in
phase locking can be noted in all the significant PLV plots in the four quadrants following a
switch from task to rest. There are more fluctuations in synchronisation during attention task
blocks for ADHD than for control participants, (Figure 6-25 (a) and (b)). In general,
synchronisation was higher for controls during the attention task. These results can be viewed in
relation to the DMI hypothesis; the drop in synchronisation during resting periods may be due to
suppression of the task-positive component in the resting brain, and may represent
desynchronisation in preparation for the next cognitive act. Meanwhile, task-negative
components may re-emerge in a more persistent manner during task blocks for ADHD
participants causing synchronisation levels to drop more often. These drops in synchronisation
may be linked to lapses in attention during the course of the task (which are more frequent in

ADHD).

Although these results are promising, the procedure is quite involved for repetition on a large
number of participants, mainly because of the separate channel decomposition achieved by SC-

ICA. Moreover, the experimental protocol used for the MEG recordings led to relatively short
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(< 1 minute) and variable resting periods in comparison to task blocks. This limited the choice of
analysis for comparison between these two conditions. Consequently, the MEG dataset was
further exploited by examining the responses to stimuli within task blocks, particularly the M100
responses, in order to (i) shed light on how the brain of ADHD and control participants
distinguishes and filters relevant and irrelevant information, and (ii) investigate whether these
early sensory components, elicited during task, were in any way being affected by the slow
waves in the brain. In the following study, the ST-ICA algorithm was used because of its
capability to simultaneously extract spatially or temporally distinct brain sources from multi-

channel recordings.

6.2.2. Trial-to-trial Variability in Evoked Neural Responses

As explained in earlier chapters, fMRI studies have shown that when the intrinsic spontaneous
and task-independent VLF oscillations evident in the BOLD signal during rest persist into task
sessions, they can predict trial-to-trial variability in both evoked behavior and brain responses.
The general notion is that they provide a baseline onto which deterministic responses elicited by
the task are superimposed (Fox et al., 2006; Fox and Raichle, 2007). Moreover, recent works in
the literature indicate that this VLF activity may not be visible in the data as specific brain
source(s), but rather, as a mechanism(s) that modulates or even stimulates and/or controls
underlying brain processes — analogous to the function of a heart’s pacemaker (Monto et al.,
2008). To this end, an alternative approach for investigating the contribution of VLFOs in brain
function in MEG recordings is considered here, based on the assumption that brain sources are
superimposed on this intrinsic slow wave activity. This is tested by investigating the inter-trial
variability in the amplitude and latency of the evoked brain responses associated with stimulus
processing, and examining whether this variability demonstrates a very low frequency nature,
which could then infer information about the underlying slow waves. Therefore, the question
raised is: does the trial-to-trial variability in MEG ERF components exhibit a VLF temporal
signature, in the same frequency range as the previously observed spontaneous fluctuations in the

BOLD responses?

The focus is on the visual M100 component which is known to be regulated by attention. This is
a marker, localized in the vicinity of the primary visual areas, the amplitude of which is higher
when stimuli are attended, as opposed to irrelevant unattended stimuli — the so-called attentional
effect (Jonkman et al., 2004; Mulas et al., 2006). This attenuation is due to an inhibitory
mechanism for invalid stimuli. Recent studies demonstrate that ADHD children have specific

early selective-attention deficits, which may be due to an early filtering deficit, in both the
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auditory (Jonkman et al., 1997; Ozdag et al., 2004; Mulas et al., 2006) and visual modalities
(Karayanidis et al., 2000; Jonkman et al., 2004). Particularly, in a visual ERP study, Perchet et
al. (2001) show that control children exhibit the attentional effect, whereas ADHD children have

equal M 100 amplitudes in response to relevant and irrelevant stimuli.

This work first investigates the attentional effect. Then it assesses the extent to which the M100
component is modulated by VLFOs and explores variations in these effects as a function of the
presence of ADHD by comparing 11 cases against 11 controls. The aims of this pilot study have

been to:

(i)  Extract M100 components by the newly-developed ST-ICA algorithm employed to

perform denoising and dimensionality reduction of the 148-channel MEG data.

(i) Investigate the attentional effect in ADHD and controls by comparing the amplitude

of the M100 components during attention and perception tasks.

(i) Investigate the trial-to-trial variability of individual M100 components during the
attention task by analysing the ‘clean” M100 processes extracted by ST-ICA, thus
making sure that the inter-trial variability does not arise from internal and/or external

noise sources.
(iv) Examine whether this variability exhibits a VLF time signature.

(v)  Explore whether these VLF patterns of modulation are different for ADHD and

control children.

The methodology used in this work is illustrated in Figure 6-26.

It is important to mention here that generally ER data is analysed by evaluation of the coherent
average of the evoked responses. Although this is good for noise reduction, it neglects the fact
that the response to individual stimuli may vary widely across trials in amplitude, time course
and scalp distribution. Hence, such averaging presents only a first approximation of the brain
response to the stimuli and conceals any temporal and spatial variability (Kolev and Yordanova,
1997). On the other hand, the analysis of single trial event-related epochs can potentially reveal
more information about the brain dynamics but suffers from poor SNR and masking by artifacts
(Jung et al., 2001a). These effects can be eliminated by applying the trial-by-trial analysis on the
processes extracted by ST-ICA rather than on the raw MEG data itself.
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Figure 6-26. Testing the VLF modulation of the M100: (a) The MEG data comprises a mixture of artifacts
and brain activity, which are thought to be superimposed on spontaneous VLFO intrinsically generated by
the brain. (b) ST-ICA is employed to learn a set of spatio-temporal filters that demix the data into its
constituent independent processes, which are affected by these VLFO. (c) Trial-by-trial analysis is then
carried out on the extracted M100 process in order to obtain the amplitude, a, and latency, d, of each
individual M100 response. This generates two time series, a(¢) and d(¢). The frequency characteristics of
a(f) and d(f) are then investigated to infer information about the underlying VLFO, which may be
modulating the M100 process, hence accounting for the inter-trial variations of the sensory responses.
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Figure 6-27. Behavioral data: (a) Percentage of correct responses (including % of hits and % of correct
rejections) and percentage of incorrect responses (including % of misses to target presentations and % of
false alarms), (b) Mean reaction time to button presses during the attention task for all participants in the
two groups.

A. Behavioural data

Preliminary analyses were performed on the behavioural data. The following measures were
recorded for the attention task: reaction time to button presses, percentage of hits and percentage
of correct rejections (together forming the correct responses), as well as percentage of misses to

target presentations and percentage of false alarms (comprising the incorrect responses). There
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was no significant difference between the two groups for the mean reaction time during task
performance and for the percentage of correct responses (cf. Table 6-2). Figure 6-27 shows (a)
the percentage of correct and incorrect responses, and (b) the mean RT during task for all

participants in the two groups.

Mean Reaction Time Correct Responses
Mean Controls: 377.21 ms 66.17 %
Mean ADHD: 364.77 ms 61.84 %
T (statistic): 0.764 1.242
Degrees of freedom 20 20
95 % Confidence Interval for | [-21.51 46.38] ms [-2.94 11.59] %
the difference between groups
p-value 0.454 (>0.05) 0.229 (>0.05)

Table 6-2. Performance data for ADHD and control groups during the attention task. Note that there is no
significant difference between the two groups for the mean reaction time during task and for the percentage
of correct responses, both having a p-value greater than 0.05.

B. Extraction of M100 process by ST-ICA

As previously explained, the MEG data is obtained from an inherently noisy recording process;
the recordings are the result of brain function added to other physiological and ambient artifacts,
which may be many orders of magnitude larger than the signals of interest. Moreover, the large
148-array of sensors creates a data deluge problem resulting in long computational times and
large memory requirements for any subsequent data analysis. For these reasons, the ST-ICA
algorithm was employed here and the analysis was carried out on 16 channels (out of the 148-
MEG channels) chosen such that their position coincided with the channel location of the
International 10-20 System, as shown in Figure 6-28. This considerably reduced the number of
spatial channels in the analysis thus achieving dimensionality reduction, whilst still rendering an
overall representation of the spatial distribution of activation of the brain sources around the
head. The delay matrix Q" corresponding to the n™ channel was constructed with an embedding
dimension m of 200 in order to provide a frequency resolution of 0.5 Hz (James and Lowe,

2001). Thus the overall delay matrix Q had a length of 3200 (i.e. 200x16), which had its

dimensionality reduced in the usual manner by SVD (from 3200 to 100 or 40 depending on the

structure of its eigenvalues) in order to reduce excessive redundancy.

FastICA (Hyvirinen, 1999b) was then applied on the resultant Q" to learn a set of space-time

filters (residing in the columns of the mixing matrix) for the extraction of the underlying
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independent processes. The columns of A were manually grouped according to the overall shape
of their frequency response and the corresponding ICs were then projected back onto the
measurement space to form the independent processes. Once the processes underlying that
dataset were established, the coherent average of the 16 projected ICs forming each process was
found. The M100 process was chosen according to two criteria: (i) the coherent average of the
ICs forming that process had a peak around 100 ms following stimulus onset, and (ii) the process
topography had most power in the occipital region — typical of the M100 response, in accord
with previous research (Jonkman et al., 2004). Other brain or artifactual processes would have a

different coherent average, different scalp topography and/or time-frequency characteristics.

72(Fpl) | 94(Fp2)
73(F3) 93(F4)

14(F1)

33(FC) 47(FC)

116(T5) s9@3)
120001) | 123(02)

Figure 6-28. Selected MEG channels for ST-ICA analysis. 16 out of the 148 MEG channels, their position
chosen to correspond to the channel location of the International 10-20 system. The channels from 1 to 16
are in the following order: [Fpl, Fp2, F3, F4, Fz, FC(left), FC(right), C3, C4, Cz, P3, P4, O1, 02, T5, T6].

The time and frequency characteristics of a typical M100 process are shown in Figure 6-29 (a)-
(f). It is important to note the very clear dipolar structure of the MEG responses in separate brain
locations as illustrated by the positive and negative peaks in (e). In contrast, (g)—(j) show the
characteristics of an artifactual process. The topographies in this figure illustrate the spatial
distribution of the root mean square (RMS) power of the 16 projected ICs forming one process.
Note that the power of the M 100 process is concentrated in the occipital region (as shown in (f)).
This procedure was repeated on all the datasets considered (namely two 3-minute task blocks
which involved attending or perceiving to the right, for each participant) in order to extract the
process corresponding to the M100 response. As can be seen from Figure 6-29 (d) and (j), ST-
ICA provides 16 projected ICs which together constitute one process. In order to facilitate further
analysis of the M100 process, the cross-correlation between its 16 ICs was calculated, these
bipolar components were separated accordingly, and the sign of the negative waveforms was

altered in order to establish an overall positive M100 time series for each dataset.
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Figure 6-29. Processes extracted by ST-ICA. The MI100 process: (a)-(c) The impulse response, RMS power
distribution and frequency response of the filters for this process, learnt by the algorithm. (d) Waveforms of the 3-
minute long ICs when passed through these filters, i.e. when projected back onto the measurement space. (¢) The
coherent average of the projected ICs showing a positive/negative peak around 100 ms. (f) Topography of the RMS
power distribution of these projected components forming the M100 process. An artifactual process: (g)-(i) The time
and frequency responses of the filters for this process, and the topography of the RMS power distribution of the
projected ICs respectively; (j) The projected (3-minute long) ICs.
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C. Testing the attentional effect

The individual (per patient) and the grand coherent averages across patients (per group, per task)
for the M100s are illustrated in Figure 6-30. The amplitude of the grand average M 100 responses
(represented as dotted curves in this figure) was noted to investigate the attentional effect of the
two groups during the attention and perception tasks. A 2-way analysis of variance (ANOVA)
test was performed on these results to test for significance of this interaction (group X task).
Although the interaction was not significant, a Tukey post-hoc test showed that in the perception
condition the ADHD group has a tendency to have a higher amplitude than the control group (p-
value = 0.072).

ADHD Controls
Attention Attention

Perception

200 0 200 400 -200 0 200 400
time (msec) time (msec)

Figure 6-30. Investigating the attentional effect. Individual (colored curves) and grand (dotted curves)
coherent averages of the M100 responses for the ADHD and control groups during the attention (active)
and the perception (passive) tasks. Control children show an attenuation of the M100 response during the
perception task (mean group amplitude = 0.87) in comparison to the attention task (mean group amplitude
= 1.1), hence exhibiting the attentional effect and showing proper distinction between relevant and
irrelevant stimuli. The amplitude of the M100 grand average remains nearly intact during the two tasks for
ADHD children due to deficits in early (0-250 ms post-stimulus onset) selective attention.

112



Chapter 6 - Investigating Slow Waves in Brain Signal Recordings: Initial Findings

D. Trial-to-trial variability

Next, the variability in the amplitude @ and latency d of the sensory ERF component was
investigated by considering individual responses to stimuli within a post-stimulus interval of 0-
250 ms. For this part of the study, a single 3-minute attention task block was considered for
every participant. The M 100 process time-series extracted for the attention task block by ST-ICA
was subdivided into 300 segments, time-locked to the stimuli. For each segment, the amplitude
and latency of the M100 response were recorded to form two sets of points, a and d (see Figure
6-26 and Figure 6-31(a)). The null values (where no clear M100 peak was detected in that
segment) were disregarded. Cubic, shape-preserving interpolations were constructed for these
points in order to form time series a(f) and d() with an equal sampling period. This was done in

order to compensate for the variable inter-stimulus delays, as shown in Figure 6-31 (b).

The PSDs of a(f) and d(f) were found using the Welch method. Two power ratios were then
computed on these PSDs: (i) the ratio of power in the infraslow (0.01<f<0.1 Hz) band to the total
power in the series (0-50 Hz), and (ii) the ratio of power in the (0.1<f<0.5 Hz) band to the total
power in the series (0-50 Hz). These were found to examine the VLF modulatory effect on the
trial-to-trial variability of the M100 process. Independent #-tests were computed to test for any
significant differences between the ADHD and control groups power ratios. These gave p-values

greater than 0.05 for the power ratios in both frequency bands (Table 6-3).

t-value Degrees of p-value
freedom
(i) Band 0.01<f<0.1 Hz PSD(a(?)) 0.133 20 0.895
Band 0.01<f<0.1 Hz PSD(d(?)) -0.703 20 0.490
(i) Band 0.1<f<0.5 Hz PSD(a(?)) 1.061 20 0.301
Band 0.1<f<0.5 Hz PSD(d(?)) 1.434 20 0.167

Table 6-3. t-tests on (i) the ratio of power in the infraslow-f band (0.01<f<0.1 Hz) to the total power (0-
50 Hz), and (ii) the ratio of power in the frequency band (0.1</<0.5 Hz) to the total power (0-50 Hz), in the
spectra of the inter-trial amplitude and latency variations for M100 processes, [i.e. PSD(a(¢)) and
PSD(d(#))], to test for any significant differences between ADHD and control groups.

This indicates that the inter-trial amplitude and latency VLF variations were no different for the
two groups. In order to obtain a representation of the overall frequency characteristics of the
inter-trial variability for the two groups, the group average M100 process was calculated. The
PSD of the a(¢) and d(¢) for the groups’ M100s are illustrated in Figure 6-32. Spectrograms

showing the time-frequency characteristics of this variability were also obtained in order to show
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that the VLF fluctuations of the M100 are deterministic because the power in these frequency
bands is evenly distributed across the entire task block. Figure 6-33 shows the spectrogram for

the control group as an example (since the spectrograms for the ADHD group showed similar

characteristics).
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Figure 6-31. An example of the trial-to-trial variability in the amplitude and latency of the M100 responses
(showing results for the grand M100 process of the control group): (a) 300 a and d values of the M100
time-series (one for each trial/stimulus); (b) Cubic, shape-preserving interpolations constructed through
these points (0) to attain time series a(¢) and d(¢), with an equal sampling period. Note the cyclical behavior
in the time series indicating VLF modulation of these sensory responses.
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Figure 6-32. Spectra of the inter-trial amplitude and latency variations for the groups’ overall M100
processes. Note the very low frequency peaks (<0.1Hz) indicating that the trial-to-trial variations in the
amplitude and latency of the M100 responses follow a slow wave pattern, which is in keeping with the
notion of VLF modulation.
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Figure 6-33. Spectrogram showing the time-frequency characteristics of the inter-trial variability of the
M100 process. Variability in the: (a) amplitude and (b) latency of the M100 responses; the spectrograms
for the control group are shown as an example. Note the variation in the frequency content and the
persistent presence of low frequency activity indicating a deterministic effect of the VLFOs.
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E. Discussion

This study primarily investigates the attentional effect, i.e. the attenuation of the M100 response
in the presence of irrelevant stimuli. The results presented show that, for the analysed datasets,
the amplitude of the average M100 response stays relatively the same during attention and
perceptual tasks for the ADHD group, whereas the control group experiences a tendency of
decrease in the M100 amplitude during the perception task, appropriately exhibiting the
attentional effect. Despite this tendency in the ERF analysis, the performance data recorded for
this study showed no significant difference between ADHD and control groups. This concurs
with the findings reported in several ADHD-ERP studies which show differences in ER
components in the absence of significant performance disparities in their datasets (Barry et al.,
2003; Andreou et al., 2007). This may be due to a processing deficit that behavioural measures
are not sensitive enough to detect, or because of compensatory strategies during task

performance.

The second part of the analysis assesses whether the trial-to-trial variability in the amplitude and
latency of the visual M100 response follows a VLF pattern. In line with our hypothesis
(Figure 6-26), children showed clear evidence of the VLF modulation of the M100 component
(Figure 6-32). The VLF nature of this variability may arise due to the spontaneous intrinsic
fluctuations in brain activity. Consequently, these results can be interpreted in view of previous
findings in BOLD imaging studies, which show that the evoked responses and the intrinsic VLF
brain activity are superimposed, the latter accounting for trial-to-trial variations in evoked
responses (Fox et al., 2006; Fox and Raichle, 2007). The difference between the ADHD and
control groups in the infraslow (<0.1 Hz) band of the inter-trial variability spectra was minimal
and was not statistically significant (cf. Table 6-3). Meanwhile, group differences were more
pronounced in the (0.1<f<0.5 Hz) band; here the ADHD group exhibits more power than
controls in the spectra of the M 100 trial-to-trial variations, and shows other high-energy peaks in

the a(¢) PSD, which are not apparent in the a(f) PSD of the control group (Figure 6-32).

Although these results do not significantly distinguish between the clinical and control groups,
closer inspection suggests that there may be potential differences in the effect that the VLFOs
have on the two groups. They tentatively suggest that the ADHD group is spreading the VLF
power during task performance. This could be indicative of effortful attention - ADHD children
have to stretch the VLF power and may increase the overall power in order to compensate for
and disrupt the dominant intrinsic VLF activity in their brains. This is in keeping with the

premise that ADHD children fail to appropriately modulate slow wave activity during neuronal
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events (Castellanos et al., 2005). Controls, on the other hand, exhibit a more narrowband
spectrum for the amplitude and latency variability of the M100 responses, which could indicate
that the VLF modulation of the responses is more specific, and that this group could attend to the
task at hand irrespective of the presence of intrinsic slow waves. The lack of statistical
significance may be attributed to the simplicity of the experimental task and to the small sample

size, which is a major limitation of this study.

6.3. Summary

The first part of this chapter has shown that the 1/ f7 trend inherent in EM brain signals results in

spectra with high power at low frequencies. Spectral normalisation renders a flat base spectrum
when no extra low frequency activity is present in the data and reveals distinct peaks related to
specific cognitive tasks or mental conditions (such as resting states). This is particularly
important for the analysis of very low frequency oscillations (<0.5 Hz) apparent in EEG and
MEG signals. In this work a time domain normalisation approach, which employs a
differentiator to cancel the 1/f trend, was proposed. This is a simple, non-parametric solution,
which leaves the signal phase intact due to its linear phase characteristics. Its application on a
broad range of physiological signals, including epileptic seizure data, EEG data with very low
frequency characteristics, MEG data and ERP recordings, was demonstrated. In each case,

spectral normalisation helped to highlight peaks of interest across the spectra.

The second part of the chapter dealt with two studies carried out on the MEG data which was
supplied from the University of Madrid. This data was not recorded with the specific aim of
analysing low frequency brain activity or the distinction between rest and task conditions, which
are both central to this work. Nonetheless, it was successfully exploited and new ways have been
proposed for the investigation of the presence and effect of the slow waves in the MEG
recordings with the use of newly-developed BSS algorithms. First, a SC-ICA and phase
synchronisation methodology was employed to isolate low frequency brain processes within the
data in the presence of higher frequency brain activity and artifacts, and to investigate brain areas
interactions during rest as opposed to attentional and perceptual tasks. Preliminary results
indicate potential phase locking between fronto-central, central and parietal areas, as well as

variations in the phase locking of ADHD and controls following a switch from rest to task.

The second study on the MEG recordings examined the responses to stimuli within task blocks.

The focus was on the M100 component known to be regulated by attention, in order to provide
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information about the early stages of stimulus processing (i.e. 0-250 ms post stimulus onset) for
ADHD and controls. The VLF modulation of evoked responses was then investigated from a
magnetophysiological perspective. It was posited that this modulation would manifest itself in
the trial-to-trial variations of attentional processes, indexed by the M100 component. Space-time
ICA, which uses both temporal and spatial information of selected MEG channels to inform a

standard ICA algorithm such as FastICA, was used for the extraction of the M100 process.

The results demonstrate, for the first time, the potential of this BSS algorithm for the analysis of
systems with high spatio-temporal complexity. ST-ICA was able to extract the M100 process in
the presence of artifactual components and allowed for dimensionality reduction of the high
density MEG system by just considering 16 out of the available 148 channels, whilst still
achieving a reliable decomposition of the underlying processes. Moreover, a trial-by-trial
analysis on the ‘clean” M 100 processes could be conducted — an analysis which would have been
much harder to perform reliably on raw data given the poor SNR of individual ERF responses.
Results show that children with ADHD tend to fail to exhibit the attentional effect when subject
to irrelevant stimuli (i.e. during the perception task), this being indicative of early selective
filtering deficits in comparison to controls. More central to the aim of the work however, are the
results which demonstrate that the trial-to-trial variability in the amplitude and latency of the
M100 responses exhibits a very low frequency time signature (<0.1 Hz). This may arise due to
spontaneous VLFOs intrinsically generated by the brain which were observed in BOLD imaging

studies.

The next chapter describes a complete set of EEG experiments that were specifically designed
for direct investigation of the slow waves within electrophysiological data of normals, during

periods of quiet wakefulness and whilst performing tasks of various difficulty levels.
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Chapter 7

THE DESIGN OF EEG STUDIES TO
TEST THE BRAIN UNDER LOAD

This chapter describes the EEG experiments designed with the aim of investigating the
functional role of slow waves in brain signal recordings and the changes that they undergo
during various task and rest conditions. The rationale behind the experiments, the experimental
protocol and participants’ information are presented, followed by a brief description of the
analysis to be carried out on the data. The analysis methodology and results are described in the

next chapter.

7.1. Motivation

The human scalp EEG displays oscillations of varying frequencies, ranging from 0.5 Hz up to
several hundreds of hertz, which arise from the coordinated excitation of many neurons within
cortical networks (Buszaki and Draguhn, 2004). A large body of literature has attempted to
characterise the functional and clinical correlates of these relatively fast oscillations. In addition,
in recent years some studies have also demonstrated VLF fluctuations during, for instance, deep
sleep and epileptic events (Vanhatalo et al., 2003). The mechanism of these slow rhythms is as
yet unclear, however evidence suggests that they have a neurological origin and are not simply
physiological noise. These oscillations consume approximately two-thirds of the brain’s energy
resources and are thought to be present in order to maintain a stable ‘ready’ state, which allows
the cortex to execute different cognitive functions depending on the presence or absence of
stimulation (Balduzzi et al., 2008). It is proposed that they represent an intrinsic continuous
process which is required to maintain awareness of ourselves, of our surroundings and of the
passage of time (Fransson, 2006). As seen in Chapter 6, these slow waves may cause inter-trial
variability in evoked responses and may be promoting synchronisation between diverse neuronal
networks. Moreover, BOLD studies in fMRI have shown that infraslow fluctuations observed

during the course of a task are smaller than those during rest (Fox and Raichle, 2007). This
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suggests that they are, to some extent, being attenuated during task in order to allow goal-
directed active processing to dominate. However, the DMI hypothesis posits that this is not
always the case — sometimes these oscillations re-emerge, they compete and interfere with task-
oriented processing, hence presenting a potential source of attention deficit during task

performance.

The study presented in this chapter has been specifically designed to investigate the functional
role of these slow waves in the EEG during rest sessions (when participants are relaxed), and
whilst performing stimulus-based tasks. In these experiments, the brain is viewed as a system
consisting of a number of band-limited sources, or oscillators (Karakas et al., 2000; Buzséaki and
Draguhn, 2004), which are interacting together in an unknown (linear — additive, or non-linear)
manner, as illustrated in Figure 7-1. During rest, the system is in its most basic, spontaneous
(background) state. Stimulus-based tasks load the brain and tax the underlying oscillators
eliciting a definitive standard evoked response in the EEG, namely the P300. In fact, one of the
models for ERP generation (termed as the phase reset model) suggests that stimulus processing
causes the oscillators to undergo a change in phase such that activity at particular frequencies
becomes phase locked, resulting in a non-zero average evoked response (Sauseng et al., 2007).
The parameters of this response (such as its amplitude and latency) would then somehow reflect

the loading levels on the brain.

/

Variable >
Load

EEG
(ERP)

/

Stimuli

Brain System

Figure 7-1. The brain is modelled as a system comprising a number of oscillators which interact in a
linear/nonlinear manner. Stimulus-based tasks impose a variable load on the brain, taxing these oscillators.
This impact can be assessed by the parameters of the ERP response.

It is important to note here that the slow waves can be viewed as a distinct oscillator that is

affected by the input stimuli and interacts with higher frequency oscillators in order to generate
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the output response. Alternatively, they could be providing the background activity of the cortex,
this being like a “sea undulating gently” and the evoked task-related responses are like “small
ripples on its surface” (Balduzzi et al., 2008). In this case, the slow wave mechanism affects,
drives or perhaps even governs the other underlying brain processes, as suggested by the M100

study reported in Chapter 6.

Throughout the course of this experiment, three task conditions have been implemented such that
the load was varied in a graduated manner (higher loading implies greater task difficulty) in
order to further assess the impact on the underlying oscillators, particularly the slow waves. This
also allows for a more thorough comparison between rest and task activity. For example, the
amount (if any) of attenuation of the slow waves during task as opposed to the default mode
(rest), as indicated by the DMI hypothesis, can be investigated. One can also test whether this

attenuation varies with the level of task difficulty.

7.2. P300 Responses

The P300 is the most studied late ERP component which is evoked using a stimulus delivered by
one of the sensory (visual, auditory or somatosensory) modalities. It is thought to be produced by
a distributed network of brain processes associated with attention and memory operations
(Polich, 2007). There is a vast amount of literature devoted to the understanding of this ERP, its
subcomponents and its biological correlates, mainly because of its sensitivity to cognitive
processing (Karakas et al., 2000; Herrmann and Knight, 2001; Datta et al., 2007; Polich, 2007,
Smallwood et al., 2007). Its amplitude reflects the probability and task-relevance of a stimulus
while its latency indicates the duration of stimulus evaluation. This component is also strongly

affected by genetic factors (Polich, 2007).

The context-updating theory of the P300 provides a theoretical framework for stimulus
processing underlying the generation of this ERP component. When stimuli enter the processing
system, a memory comparison between the current and the previous stimulus is performed. If the
incoming stimulus has not changed, the neural model of the stimulus environment is also
unchanged and only the sensory evoked potentials (N100, P200, N200) are prominent in the
coherent average. When the individual is exposed to a different, infrequent stimulus (dubbed the
“target”), more attentional resources are allocated to the stimulus, which causes the neural

representation to be updated and a P300 potential generated in addition to the sensory evoked
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potentials (Polich, 2007). Consequently, discriminating the target from a majority of standard

stimuli produces a robust P300.

This P300 response is then affected by the probability of occurrence of the stimuli. For example,
Katayama and Polich (1996) have shown that component amplitude is inversely proportional to
the probability, whereas no reliable latency effects were reported. Moreover, it is proposed that
the size of this ERP component is proportional to the amount of change required to update the
memory representation of the task environment during stimulus processing. This may be the
reason for a lower P300 amplitude and higher component habituation during passive tasks
(where the intentional discrimination between stimuli is not required) as opposed to active tasks,
this being more emphasised in visual than in auditory modalities. In addition, the amplitude of
the response is further reduced for passive tasks due to more attentional resources being
appointed to task-unrelated events (Bennington and Polich, 1999; Jeon and Polich, 2001).
Target-to-target interval is another attribute affecting the P300 amplitude since it determines how

quickly resources can be redirected to process target stimuli (Polich, 2007).

The P300 amplitude is also influenced by the intensity, energy required and level of arousal tied
to a specific task — easy tasks generally result in relatively large amplitude and short peak
latency, whereas tasks that recruit more attentional resources generate responses of smaller
amplitudes and longer latencies, since more processing resources are allocated for task
performance (Comerchero and Polich, 1998; Hagen et al., 2006). Furthermore, neurological
disorders typically show a reduction in amplitude, schizophrenia being a case in point suggesting

impairment of controlled information processing (Jeon and Polich, 2003).

The latency of the P300 varies across the scalp, with a shorter latency over frontal than parietal
regions. Across individual participants, it is found that this is correlated with cognitive
performance — a shorter latency being indicative of superior cognitive capabilities. P300 latency
decreases as children develop and increases with normal aging, dementia, brain injury and

schizophrenia (Polich, 2007; Jeon and Polich, 2003).

7.2.1. The P300 Complex

The P300 response is composed of two subcomponents namely, the P3a and P3b, and the
resultant P300 scalp topographies vary with the stimuli and task conditions eliciting them. The

P3a component (also termed as the ‘novelty’ P300) is large over frontal/central areas and has
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been reported for all sensory modalities. It is thought to mark initial signal evaluation since it
seems to originate from the frontal lobe and readily habituates (Comerchero and Polich, 1998;
Hagen et al., 2006). Meanwhile, the centro-parietal P3b is elicited by the infrequency target
stimuli. This subcomponent is generated when subsequent memory processes are engaged to
store stimulus information and represents the executive control of focussed attention (Bledowski

etal., 2004; Polich, 2007).

Various ERP and fMRI studies suggest that the P300 responses, arising from different stimulus
contexts, reflect brain areas that are related to specific stimulus evaluation processes.
Correlations between volume measurements obtained from MRI gray matter and P300
amplitudes indicate that frontal areas produce stronger associations with non-targets, whereas
parietal areas are more linked to target stimuli. Moreover, such studies indicate frontal lobe
activity for the detection of rare but alerting stimuli (Comerchero and Polich, 1998).
Specifically, in a combined event related and fMRI study, Bledowski et al. (2004) found that
frontal areas and the insula contributed mainly to the P3a, whereas the P3b was mainly produced
by parietal and inferior temporal areas. This is the first indication that higher visual areas in the
inferior temporal cortex contribute to the P3b scalp potential. Although these two ERP
subcomponents have distinct topographic amplitude distributions, they exhibit a spatiotemporal
overlap; however, they can still be successfully separated into independent processes via spatial

ICA decomposition (Makeig et al., 1999b; Debener et al., 2005).

Therefore, the formation of cognitive P300 activity can be described as follows: when sensory
input is processed, activation of the frontal lobe from the attention-driven working memory
changes generates the P3a, while the activation of temporal/parietal lobe from memory updating
operations produces the P3b. Together these two subcomponents indicate a circuit pathway for
transmission of task/stimulus information between frontal (P3a) and temporal/parietal (P3b)
brain regions. Various neurotransmitter mechanisms underlying P300 generation are implicated,
with P3a more commonly associated with frontal/dopaminergic and P3b with

parietal/norepinephrine pathways (Polich, 2007).

7.2.2. Time-frequency Analysis of the P300

The findings discussed above suggest that the P300 is not a unitary phenomenon but is composed
of a number of overlapping functional processes. For this reason, wavelet transforms have been
extensively used to construct a time-frequency decomposition of this heterogeneous ERP (Kolev

et al., 1997). The study by Yordanova et al. (2000) suggests that ER oscillations, particularly
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delta (0.1-4 Hz), theta (4-7 Hz) and alpha (7-14 Hz), are sensitive to the processing conditions
eliciting the P300, and that P300 variations are directly influenced by these oscillations. For
example, in the late P300 time period, there is a parietal delta component reflecting a mechanism
for processing resources, in parallel with a frontal theta component that may be related to
working memory. Moreover, Karakas et al. (2000) show (by means of a band pass filtering
method) that the interplay between delta and theta oscillations is responsible for the morphology
and amplitude of the P300 component during two different (mismatch negativity and oddball)

experimental paradigms.

It is worth mentioning here that there is a broad range of applications for the P300 in scientific
research, ranging from investigating attention disorders (ADHD), anxiety disorders such as
obsessive compulsive disorder and post-traumatic stress disorder, to depression and alcoholism
(Hansenne, 2000). Moreover, the consistent nature of the P300 waveform, the fact that it is
elicited under specific conditions in nearly all individuals and is easily detectable with standard
measurement techniques, makes it an ideal candidate for applications in BCI (Piccione et al.,
2006). Advances in this field aim to provide a means for decision making and communication
mechanism for patients suffering from severe motor impairments. Audiology is another field of
interfacing where the P300 could be used as a measure of quality for cochlear implants — if the
target is poorly transferred or distorted by the hearing apparatus it will not elicit a substantial

P300 (Beynon and Snik, 2004).

7.2.3. Experimental Paradigms for the P300

Oddball and Go No-go paradigms are two ER task-types particularly aimed at eliciting the P300
response, which have been well tested and documented in the literature (Katayama and Polich,
1996; Comerchero and Polich, 1998; Hagen et al., 2006; Datta et al., 2007; Smallwood et al.,
2007).

A. Oddball Paradigm

The traditional form of the oddball paradigm involves the recognition of an infrequent target
stimulus, from a sequence of more frequently occurring standard stimuli. This task is very
popular amongst researchers since it engages a number of important resources, including
attention allocation, short term memory, memory updating for stimulus recognition and decision
making for a response (Karakas et al., 2000). A variation of this task involves the addition of a
non-target stimulus, termed as the ‘distractor’, that does not require a response (Katayama and

Polich, 1996; Comerchero and Polich, 1998; Hagen et al., 2006). In this scenario, while the
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attentional system is captured by the physical difference between the target and the standard
stimuli, it is repeatedly disrupted by the forceful distractor. Hence, the P300s from this infrequent
but typical stimulus renders useful information about the neural operations which is not readily
available from the traditional task.

In such experiments, the perceptual discrimination difficulty between the target and standard
stimuli can be varied to provide an easy or difficult task environment. When the target/standard
discrimination task is relatively easy, a central/parietal P300 is elicited. A high discrimination
difficulty (i.e. smaller physical differences between the target and the standard stimuli) recruits
more sensory and working memory functions. This appears to engage frontal attentional
mechanisms more strongly, producing large frontal/central P300 components when a distracting
stimulus interrupts attentional control (Comerchero and Polich, 1998; Hagen et al., 2006).
Moreover, high difficulty levels are thought to increase the attentional resources consumed for
the task, resulting in P3b amplitude reduction and a longer peak latency. Such effects are more

likely to be seen if the difficulty levels induce more than 10-15% error rates (Hagen et al., 2006).

B. Go No-go Task

The Go No-go sustained attention to response task (SART) requires the participant to respond to
one stimulus type (Go) and withhold a response to an infrequent stimulus (No-go) appearing in
an unpredictable manner. As the name indicates, the SART assesses self-maintained attention to
current action. The rhythmic nature of the task, together with the lack of selection, is designed to
establish a relatively automatic, task-driven response (Datta et al., 2007). This has proven to be
sensitive to the frequency of everyday action lapses in both traumatically brain injured patients
and in healthy controls, and can thus be used to establish a measure for sustained attention
(Smallwood et al., 2007). For example, Datta et al. (2007) found that when the P300 amplitude
was relatively low, errors were more likely. This implies that an increased P300 amplitude across
a task may be indicative of an individual’s capacity to achieve a higher resistance to inhibition
errors, hence maintaining an overall attentive state. Moreover, a lower error rate with respect to
No-go trails is related to how well individuals are able to maintain active control over their
responses, rather than allowing themselves to be “driven along” by the rhythmic tempo of the

task, entering into a state of “mind wandering” (Smallwood et al., 2007).

In this respect, Smallwood et al. (2007) suggest that mind wandering competes with task-
relevant information, thus diminishing the cognitive analysis of external events. Here, the P300
ERP component for non-targets was found to decrease prior to both behavioural and subjective
reports of mind wandering. This study revealed that the mind naturally flows into off-task

thinking whenever it tries to engage attention in a sustained manner, and the extent to which this
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happens can be indexed by the P300. Interestingly, fMRI studies have linked such behavioural
lapses to increased BOLD activity in the default network; when the mind wanders it is no longer
being externally stimulated, so the default mode network is recruited. Otherwise, stimulus
processing may be partially inhibited by the default network activity such that the attentional
resources are split between external stimuli processing and the default mode — as indicated by the
DMI hypothesis (Sonuga-Barke and Castellanos, 2007). ADHD is a group shown to experience
recurrent phases of mind wandering coupled with poor response inhibition due to dysfunction in

premotor and prefrontal systems (Wodka et al., 2007).

The study carried out here involved two sets of recordings, one based on the three stimulus
oddball paradigm with Easy and Hard task conditions, and another one based on the Go No-go
task. In each recording, task blocks were separated by a resting block for testing of the

hypothesis presented.

7.3. Experiments

The study was approved by the ethics committees of the School of Psychology and of the ISVR
at the University of Southampton in compliance with the University policy. Twenty-three
healthy adult controls aged between 24 and 40 were recruited and written informed consent was
obtained. Before the EEG recording, the Barkley Adult ADHD rating scales and demographics
data (re: epileptic seizures incidents, head injuries, vision or hearing problems and the
participants’ use of medication or psychoactive substances) were collected for every participant.
The former is an ADHD self-report scale which contains 18 questions derived from the 18
ADHD symptom criteria for both inattention and hyperactivity/impulsivity factors reported in the
DSM-IV. For clinical diagnosis of ADHD a participant must show 12 out of the 18 symptoms.
None of the participants recruited for this study reached this limit, as can be seen from the
participants’ information in Table 7-1. Moreover, none of the participants were taking any
medication, none suffered from any head injuries or pathologies and all had normal or corrected-

to-normal vision. All the relevant forms related to this experiment can be found in Appendix 1.

7.3.1. EEG Recording

The scalp DC-EEG was recorded using a Neuroscan SynAmps2 70-channel EEG system' at
250 Hz, with a low-pass filter at 70 Hz (Figure 7-2). Participants were fitted with an electrode

! http://www.compumedics.com/ and http://www.neuroscan.com/
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cap (Easycap; Hersching, Germany) and EEG was recorded from 66 equidistant Ag/AgCl

electrodes, with the reference electrode attached to the nose as shown in Figure 7-3. The EOG

was recorded using electrodes below the left and right eye. Impedance for all electrodes was kept

below 5 kQ. A high chloride, abrasive electrolyte gel was used to achieve a DC-stable skin-gel

contact in order to ensure stable operation of the Ag/AgCl electrodes (Vanhatalo et al., 2005).

Cap Diameter
Participant ID Sex Age (years) Handedness | ADHD score (cm)
cdo1 Male 33 Left 0 58
cd02 Female 40 Right 0 56
cd03 Female 28 Right 0 56
cd04 Male 29 Right 10 58
cd05 Female 29 Right 2 58
cd06 Female 36 Right 2 56
cd07 Male 25 Right 0 58
cd08 Female 25 Right 0 54
cd09 Male 36 Right 7 58
cd10 Female 24 Right 3 58
cd1l Male 24 Right 0 58
cd12 Male 29 Right 7 56
cd13 Male 26 Right 1 58
cd14 Female 29 Right 0 56
cd15 Male 24 Right 2 56
cd16 Female 27 Left 0 56
cd17 Male 26 Right 4 58
cd18 Female 26 Left 1 56
cd19 Female 30 Right 0 56
cd20 Female 38 Right 0 58
cd21 Male 29 Right 0 56
cd22 Female 25 Right 3 58
cd23 Male 26 Left 3 58

Table 7-1. Participants’ Information.
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Figure 7-2. Experimental set-up and recording using Neuroscan Synamps” 70-channel EEG System, in
IDIA Lab, School of Psychology, University of Southampton.

Ch 67 (red) and Ch 68 (blue) J

1.5 mm-pins, 10 cm HD-cable
from 80Ch-3M-Connector

128



Chapter 7 - The Design of EEG Studies to Test the Brain under Load

Figure 7-3. 66 Channel Infracerebral EEG Recording Cap. The positions on the central anterior-posterior
line are equivalent to 10%-positions (e.g. 1 = Cz, 32 = Fpz, 50 = Iz, etc).

A. Protocol for the Three-Stimulus Oddball Task

Participants were asked to complete a 22-minute three-stimulus oddball visual task, consisting of
two 8-minute task blocks separated by a 6-minute rest block. In this task, the target stimulus
(probability of occurrence of 0.12) was a blue circle 4 cm in diameter, and the distracter stimulus
(probability of occurrence of 0.12) was a 16 cm” square with a black and white checkerboard
pattern (1 cm checks). As for the target, the standard stimulus was a blue circle (probability of
occurrence of 0.76), the diameter of which was systematically altered from 2.8 cm for the Easy
to 3.6 cm for the Hard task conditions. This was done in order to grade the perceptual
discrimination difficulty, and increase error rates and response time across task conditions, as in
the work by Comerchero and Polich (1999). The stimuli were presented once every 1.2 seconds
for a 250 ms duration, (i.e. 400 stimuli per task block). Stimuli presentations were randomised
and condition order counterbalanced across participants. Participants were given a practice block
consisting of 15 stimulus trails before each condition. During the rest block participants were
asked to look at the computer screen in a relaxed manner while focussing on a fixation cross at

the centre of the screen in order to avoid extraneous movement.

B. Protocol for the Go No-go (SART) Task

The Go No-go SART task consisted of two 10-minute task blocks separated by a 6-minute rest
block. During this task single, randomised digits from 1 to 9 were presented on the computer
screen at a regular, invariant rate. Participants were asked to use the index finger of their
preferred hand to press a single button for each digit as it appears with the exception of the digit
3, as in the work by Datta et al. (2007). Stimuli were presented every 1.2 seconds for a 250 ms
duration (Datta et al., 2007), implying a total of 500 stimuli per task block, amongst which 60
were No-go stimuli (i.e. 12% No-go stimuli). As for the oddball task, during the rest block

participants were asked to focus at the fixation cross at the centre of the screen.

The order of the two tasks was counterbalanced across participants. Throughout the recordings
participants were seated on a comfortable chair in a quiet room free from distractions and with
the LCD screen standing around 60 cm away. They were asked to avoid unnecessary head
movements and to respond to the task at hand ‘as quickly and as accurately as possible’. After
the first task participants were allowed to take a break until they felt ready to continue with the
experiment. The length of the experiment recordings was specifically chosen to accommodate the

long-period slow waves.
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7.4. Avenues for Data Analysis

The data analysis proposed has two main approaches:
(a) Preliminary analysis of the evoked potentials within the task blocks, and

(b) Analysis and comparison of EEG activity during task and rest blocks in order to differentiate

between brain activity in the presence and absence of stimulation (i.e. under load/ no load).

As explained in the previous sections, the nature of the task protocols selected for this study
allows for the use of ERP component measures (such as the P300 amplitude and latency) to
gauge the amount of loading on the brain as well as to monitor the participants’ performance
during tasks (Herrmann and Knight, 2001). For example, the level of sustained attention could
be established by considering the mean value of the P300 across the whole SART block
(Katayama and Polich, 1999). Behavioural data, such as reaction times, error rates and
percentage of false alarms could also be used for this purpose. Therefore, the first part of the
investigation deals with the analysis of ERPs and performance measures for the three

experimental conditions (SART, Oddball Easy and Oddball Hard).

Secondly, a BSS-ICA methodology is employed in order to isolate neurophysiologically
meaningful brain sources, such as the P300 complex, from the rest and task blocks separately. As
seen in the MEG data analysis, ICA is compatible with the assumption that an ERP is the sum of
coherent activations in a number of brain regions, their spatial projections being fixed across
time and task conditions (Makeig et al., 1999b). In keeping with that held in the literature, the
view adopted here is that slow waves act as a driver which affects the overall brain activity in
both conditions. Therefore, these slow oscillations may not be apparent in the data as
independent sources per se but rather as a mechanism that affects underlying brain processes. For
this reason, the slow waves are objectively investigated by considering all the independent
components comprising each task block when filtered in the (0<f<0.5) Hz band, rather than

choosing and analysing only those brain sources ( i.e. ICs) with a low-frequency time signature.

Furthermore, as explained above, the DMI hypothesis proposes an attenuation of slow wave
power with a switch from rest to task. To this end, a new approach based on neural networks is
implemented in order to provide an objective comparison between the brain sources in the slow
wave band during rest and task conditions. The notion of whether different tasks and difficulty
levels (i.e. different loading) are an attribute of this variation is investigated. The results for the

slow waves are also contrasted with those of the delta, theta and alpha oscillators.
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7.5. Summary

This chapter presented the motivation and design of an experimental framework to test the
functional significance of the slow waves (in contrast to other brain oscillators) during resting
states (spontaneous brain activity) and task-related (triggered) active processing. Details about
the experiments carried out on 23 healthy adult controls were presented. The brain has been
envisaged as an oscillatory system, which reacts (and may be reorganised) by the presence of
external stimulation. This view is supported, amongst others (Karakas et al., 2000; Buzsaki and
Draguhn, 2004), by a very recent publication entitled “Brain oscillations forever” by
Rothenberger (2009) which, based on current research, suggests that several child psychiatric
problems such as Tourette’s syndrome, ADHD and autism may be related to dysfunctional brain
oscillations that could be disturbing certain vulnerable neural circuits. Rothenberger goes on to

propose that:

... for forward-thinking future research in child psychiatric neurophysiology, the brain should
be considered primarily as an oscillatory system and investigating stability and/or variation of

certain brain oscillation frequencies under different conditions should play the major role.”

This ties very strongly with the work conducted in this study, whereby two main paradigms, the
Go No-go (SART) and a three-stimulus oddball task with two difficulty levels (Easy and Hard),
have been employed to tax the brain oscillators, and in turn elicit a P300 response — a well-
studied ER component associated with attention and memory operations. The tasks have been
specifically chosen to grade the imposed load from the simple repetitive SART to the more
attention-demanding oddball task. Features of the brain oscillators in different frequency bands
during these tasks would then be contrasted with those during set periods of rest, when the

oscillators generate spontaneous brain activity.

In the next chapter, each step of the methodology developed for the data analysis briefly
introduced here will be explained in detail, and the group results obtained will be presented and

discussed.
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ON THE ANALYSIS OF BRAIN
OSCILLATIONS IN REST AND TASK
EEG

This chapter deals with the methodology and the results obtained from the EEG experiments
carried out for comparison of brain activity during rest and task conditions, as explained in the
previous chapter. The first section provides a description of each module in the multistage system
developed for this analysis, namely: (i) the application of blind source separation for denoising
the data and extracting the underlying brain sources, (ii) subspace analysis of the task ICs based
on hierarchical clustering, (iii) the extraction of features from the amplitude and phase of the ICs
in different frequency bands, and (iv) classification of these features based on a neural network
approach for pattern recognition using the Neuroscale algorithm and Gaussian Mixture Models.
This procedure was then applied to the EEGs of 20 participants collected during the Go No-go
(SART) and Oddball (OB) tasks. The second section of this chapter presents specific and
combined results and describes further analysis carried out on the output of this multistage

system.

Section 1 - The Multistage System

8.1. Preliminary Data Analysis

EEG data recorded at 250 Hz was low pass filtered at 16 Hz, and downsampled offline to a
sampling frequency, f; of 100 Hz. Gross artifact laden channels, arising mainly from faulty
electrodes in the electrode-cap, were replaced by the average of their neighbouring channels and
the overall dataset was re-referenced to the average of all the channels. Twenty-five out of the 66
channels were then selected, their position corresponding to the electrode location of the

International 10-20 System as shown in Figure 8-1 (a). Since the experiment was based on visual
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stimuli the data was heavily contaminated by ocular artifacts (Figure 8-1 (b)). Consequently, each
recording was divided into 4-5 minute segments, and decomposed by TDSEP-ICA (Ziehe and
Miiller, 1998) in order to identify the underlying brain sources and artifacts. The length of each
segment was determined to ensure that an adequate number of low frequency cycles (including

infraslow (<0.1 Hz) oscillations) could fit into each segment.
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Figure 8-1. (a) 25 out of the 66 recording channels selected for analysis (marked in yellow), their position
corresponding to the electrode-location of the International 10-20 System. (b) A sample of 5 minutes of raw
data from 12 electrodes prior to denoising by ICA.
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8.2. Extracting Brain Sources by TDSEP-ICA

As explained in Chapter 5.2.1, TDSEP is a specific ICA algorithm that achieves source separation
by minimising temporal cross-correlations between the output signals. In essence, this algorithm
determines the demixing matrix W for a set of sensor observations X, by performing joint

diagonalisation of several time-lagged covariance matrices, C, =<x(t)x(t—r)T>, such that the

source covariance matrix C; is diagonal for all time lags 7, C; =WC W " where C is the signal

covariance matrix (Ziehe and Miiller, 1998). TDSEP was chosen since, unlike HOS-based
methods such as FastICA (Hyvérinen, 1999b), it exploits the strong temporal structure inherent in
ERP signals.

Figure 8-2. TDSEP-ICA decomposition (results of 1 participant shown as an example): (a) Five of the 25
ICs and their spatial distribution extracted by TDSEP-ICA during SART, and (b) Rest.
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Figure 8-3. An example of two P300 processes (a) and (b) extracted by employing 8-channel ST-ICA
(m=200) on one dataset. For each process is shown: the frequency response of the spatial filters (columns of
the mixing matrix), the waveforms of the ICs projected back onto the measurement space, the topography of
the RMS power distribution of these projected components forming the P300 process, and the coherent
average of the projected ICs showing a peak around 400 ms.
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Figure 8-2 (a) shows 5 of the 25 Task ICs of one participant during the Go No-go task; note the
clear eye blink component (IC9), a low frequency component (IC11) and the strongest ER ICs (IC
2, 23 and 24) with central and parietal spatial distributions typical of the P300 complex.
Meanwhile, Rest ICs show most power in the frontal regions (due to visual fixation) and occipital

regions (alpha power associated with relaxation and absence of task-engagement), Figure 8-2 (b).

Note that ST-ICA could also be applied here as a BSS tool to extract the P300 processes, as shown
in Figure 8-3. However, as explained in Chapter 5, in ST-ICA the number of delay vectors m
needs to be approximately greater than f,/f,, f; being the lowest frequency of interest in the

signal. Therefore, in our case we would need around 1000 delay vectors (f;=100 Hz and f;<0.1 Hz
ideally) in order to be able to directly investigate the slow waves within the recordings, in addition
to long signal durations. This leads to very large delay matrices (<1000 by 30,0000 samples for
each channel of interest) which would drastically increase computational time and memory
requirements. Moreover, further research is required on ST-ICA to interpret and analyse the
extracted processes, and to manipulate the wealth of spatial and temporal information inherent in
each. Since the problem at hand is novel it is best tackled with well-established algorithms that
render a manageable output. This is another reason for choosing TDSEP-ICA for decomposing the

data in these EEG experiments.

8.3. Hierarchical Clustering of Task ICs

Implementation of ICA on data recorded during task sessions renders three types of ICs: ER (task-
related) ICs such as those forming the P300-complex, ICs constituting the background brain
activity and artifacts, as illustrated in Figure 8-2. This grouping is commonly done by visual
inspection of the topographies and time series of the estimated sources. Here, a more objective
method based on hierarchical clustering (HC) is proposed in order to group together ICs with
similar morphology, thus forming a hierarchy of nested partitions (Everitt, 1993). The procedure is

as follows:

(i)  Compute the coherent average of the ICs forming an r-by-s matrix £ where r is the number
of ICs and s is the number of samples comprising each coherent average (in this case, 111

samples covering from -200 ms before to 900 ms after stimulus onset).

(ii))  Find the Euclidean distance between the coherent averages as a measure of similarity.

For every pair of averages in the dataset, i.e. for vectors E, and E, , this is defined as
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1
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(iii)) Link pairs of averages which are in close proximity to generate a hierarchical tree, i.e. a

dendrogram, using a distance measure between the binary clusters.

This step uses the distance information generated in (ii) to pair objects into binary clusters.
Then, the newly formed clusters are grouped into larger ones until a dendrogram is formed.
Here, several distance measures can be used as a proximity measure including weighted or
unweighted average distances, Centroid distance or the Ward distance (a.k.a. the inner
squared distance). The latter is often used because it tends to produce homogenous compact
groups (Milanesi ef al., 2008). The Ward metric uses the incremental sum of squares, i.e.
the increase in the total within-cluster sum of squares as a result of joining clusters a and b.
Specifically, the within-cluster sum of squares is defined as the sum of the squares of the
distances between all objects in the cluster and the centroid of the cluster. The equivalent

distance is given by

2
X, _xb”z
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where n, and n, are the number of objects in clusters @ and b respectively, and || || , denotes

the Euclidean distance between the centroids of clusters X, and X, . These are defined as

. . thoge . . .
X, = —me., where x,; is the i" object in cluster a, i.e. the Euclidean distances from step
n

a i=1

(i1), (MathWorks Documentation, 2007).

(iv) Determine the number of natural clusters in the data by selecting an appropriate level on the

dendrogram.

This is done by comparing the height of the links in the cluster tree with the heights of
neighbouring links below it in the tree. Links where the distance between the objects joined
is approximately the same as the distances between the objects they contain, exhibit a high
level of consistency and shows natural cluster divisions in the data (e.g. the blue cluster in

Figure §8-4).

Note that the cluster tree can be verified by calculating the cophenetic correlation coefficient. This
compares the height of the links (a.k.a. the cophenetic distances) with the Euclidean distances

generated in step (ii). If the clustering is accurate, the linking of objects in the dendrogram would
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be strongly correlated with the distances between objects in the Euclidean distance vector, and the

coefficient would have a value close to one (MathWorks Documentation, 2007).

Figure 8-4 shows an example of this HC procedure applied to the 25 SART ICs of which 5 are
shown in Figure 8-2. The blue cluster in the dendrogram corresponds to the background ICs
(including IC11), the red and green clusters and the individual branches correspond to the ER
components, with the exception of IC9 (eye blinks are often time-locked to the visual stimuli thus
having a high coherent average). The cluster tree has a cophenetic correlation coefficient of 0.89
implying a good representation of the natural grouping in the input data (i.e. the coherent averages

of the ICs).
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Figure 8-4. Hierarchical Clustering. Dendrogram built on the coherent averages of the ICs (selected traces
shown): blue cluster corresponds to the background ICs, the red and green clusters and the individual
branches correspond to the large ER-ICs, with the exception of IC9 (eye blinks).

To verify this result, an ERP-image as proposed by Delorme and Makeig (2004) was constructed
for selected ICs (Figure 8-5). This is a two-dimensional representation of the event-related data
sorted in order of some relevant measure (in this case, the participant’s reaction time (RT) to
button presses). Every horizontal line in the ERP image represents a potential time series during a

single epoch, with changing colour values indicating the potential at each time point in the trial. A
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moving average across adjacent single trials is being used as a way of smoothing in order to
highlight trial-to-trial consistency. The ERP images for ICs 2, 23 and 24 show consistent evoked
responses for every trial whereas IC11 (which forms part of the blue cluster in the dendrogram) is
clearly not event related. This conforms to the results from the HC procedure, which illustrates

that this method is successfully separating the two types of task ICs.
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Figure 8-5. ERP images of selected ICs evoked responses (trials ordered according to their corresponding
reaction time). The blue curve underneath each image represents the coherent average across trials. The
black curve superimposed on the images shows the participant’s RT for each trial (used to sort the individual
trails comprising the image in ascending order)

The above BSS and HC procedure was employed on 4-5 minutes data segments from the EEG
recordings during task in order to form a databank of ER and Background task ICs. Artifactual
ICs, such as eye-blinks and eye movements, were immediately eliminated based on their
morphology and topography. The remaining steps of the multistage system are demonstrated in
the next sections on a subset of EEG recordings of ten participants during the Oddball Hard task
environment (i.e. Oddball Hard — Rest). Here, TDSEP and HC were applied to three 4-minute
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task segments (1% 4 minutes, 2" 4 minutes and an overlap - i.e. 2 to 6 minutes) consecutively, and
for every participant. Across participants this gave a databank of 371 ER and 316 Background ICs
after HC. The Rest ICs were then extracted from a 4-minute segment (1-5 minutes into the rest

block), with a total of 230 Rest ICs across the 10 participants.

8.4. RestICs

Typically the Rest ICs do not exhibit a specific response and should represent the activity of the
brain in default mode — i.e. in the absence of stimulation. However, visual inspection of the Rest
ICs after the removal of obvious artifactual sources showed that three types of components were
manifested in each recording, mainly: the ICs with a slow and low-delta time-signature, those with
an intermediate (high-delta and theta) frequency content, and those with a dominant alpha
frequency content. Therefore, for better understanding of brain activity during the resting state, the
Rest ICs were ordered based on their frequency content. For each IC, the ratio of power in the
slow and low-delta frequency band (0<f<1 Hz) to the total power in (0<f<f,/2 Hz) was found and
the ICs were grouped accordingly, as shown in Figure 8-6. Note that this grouping procedure is

suboptimal and is simply done to aid in the interpretation of results in later stages.

8.5. Extracting IC Features

The previous steps resulted in a databank comprising three main classes of ICs, namely: Task-ER,
Task-Background and Rest. Next, ways of assessing the differences between the classes as a
function of frequency had to be established in order to understand how the presence or absence of
stimulation (i.e. external loading) was affecting the brain’s oscillators, with particular attention to
the slow waves. Therefore, it was required to describe the ICs by a set of features which could
then be classified based on their level of similarity. Consequently, the ICs were filtered in four
frequency bands: slow (0<f<0.5 Hz), delta (0.5<f<4 Hz), theta (4</<8 Hz) and alpha (8<f<12 Hz)
band, and for each band-limited IC the instantaneous amplitude and phase were obtained using the

Hilbert transform (explained in Chapter 6.2.1; Le Van Quyen et al., 2001).
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Figure 8-6. Ordering of Rest ICs based on their frequency content: (a) When the ratio of power in the
(0<f<1 Hz) band to the power from 0-f/2 was greater than 0.95, the ICs were marked as slow ICs. For
power ratios between 0.7 and 0.95 the ICs had an intermediate frequency content. When the power ratio was
less than 0.7 the ICs had a predominantly high (alpha) frequency content; (b) An example of each type of IC
and their PSDs.
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8.5.1. First Set of Features

Each IC was represented by 16 features: the power in the instantaneous amplitude envelope and
the second to forth order moments of the instantaneous phase (i.e. the variance, skewness and
kurtosis) for each frequency band (i.e. 4 features per frequency band). Figure 8-7 illustrates the
method of feature extraction for the slow wave band. Figure 8-8 then shows the power in the slow
wave envelope and the moments of the slow wave phase for each IC in the three classes; the
Oddball Hard task environment features are shown as an example. At first glance, these features
already indicate that both the amplitude and phase of the ICs in the slow wave band undergo a
change in the three classes. However, these features may not be capturing the whole morphology
and structure over the 4 minute time-series for each IC. Therefore, a second set of features was
derived by fitting 12™ order AR models to the instantaneous amplitude and phase time series of

each IC separately and for each frequency band.
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Figure 8-7. Extracting IC features: One IC (blue trace), 0</<0.5 Hz filtered IC (superimposed red trace), the
instantaneous amplitude [IC(f;;)| and phase ¢(IC(f;)) of the filtered IC; the instantaneous slow wave phase
PDF.
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Figure 8-8. (a) The power in the slow wave envelope; (b) The phase kurtosis, skewness and variance for the
slow wave phase for each IC in the Oddball Hard task environment. Blue (+) represent the ER, red (+) the
Background and black (+) the Rest ICs features.
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8.5.2. AR Models

Autoregressive (AR) models are used to model a signal at the output of an all-pole filter driven by
a spectral white input. One of the most commonly employed methods is linear prediction, which
involves defining the signal x as a p™ order AR process such that the current value, x(n), can be

predicted from p past samples
P
¥n)==Y ax(n-k). (8.3)
k=1

The coefficients a; are chosen to minimise the prediction error e(n), (i.e. the uncertainty in the

prediction of the next signal value), such that e(n)=x(n)—%(n).

The Yule Walker (ak.a. the autocorrelation) method is often employed to estimate the AR
parameters by minimising e(n) in the least-squares sense. Essentially, the Yule Walker equations
describe the relationship between the AR parameters and the autocorrelation function of x(r), and
are solved using the Levinson-Durbin recursion algorithm (Hayes, 1996). Since the method
characterises the data using an all-pole model, model order selection is of fundamental
importance. If the model order is too low the ability of the linear system for modelling the data
will be limited, whereas if it is too high there will be over-fitting of the data with spurious

information present in the output.

In order to characterise the changes in the instantaneous amplitude or phase of the ICs at one
particular frequency band, these time series were individually parameterised with an AR model.
Here, the AR model was intended to capture the structure of the time series across the 4 or 5
minute segment considered. Then, the distance between ICs (i.e. the degree of similarity between
the ICs belonging to one class and dissimilarity between ICs of different classes) needed to be
estimated by calculating the distance between the two sets of AR parameters for each pair of ICs
instantaneous amplitude or phase time series. Note that the Euclidean distance between the AR
models is not an appropriate measure because the AR parameters of two separate time series may
be heavily correlated. For example, two sets of parameters for two different time series may
exhibit strong correlations between some of their parameters (say for the first three parameters,
since the difference between them might reside in the detail, i.e. in the remaining parameters).
This could potentially lead to artificial similarity, as in the Euclidean distance measure the
parameters are all equally weighted. A measure is needed that quantifies the similarity between
the signals being modelled, rather than the similarities between the pairs of model parameters
alone; for this reason the Itakura-Saito Distance (Itakura, 1975) was employed here, as explained

next.
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8.5.3. Itakura-Saito Distance

The Itakura-Saito Distance (ID) is widely used in speech processing applications (Itakura, 1975)
but has also been applied for quantifying changes in the EEG due to brain damage in neonates
(Kong et al., 1995), during epileptic seizure, as well as to investigate the connection between EEG
and EOG signals during different sleep stages (Estrada et al., 2005). The ID is computed as
follows. Suppose the band-limited (filtered) IC,, x(n) time series, is modelled by an AR process

a =[l -a, -a, ... -q,] and ICy, y(n), is modelled by a, =[l -a,, -a,, ... -a,,]. The mean
square error (MSE) for x(n) is defined as

MSE_ . =a.R (p)a (8.4)

x

where R.(p) is the p+1 autocorrelation matrix for x(n), given by R, ( p) =F {x(n)x(n)T} .

Meanwhile, the MSE of y(n) passing through the model for x(n) is MSE, =ayTR)r ( p)ay.

Therefore, the ID for IC, with respect to IC; can be defined as
MSE a'R a
id, | = log| 2 | = jog| L\ )% (P)a, ) (8.5)
- MSE ., a R, ( p) a,

The MSE of x(n) passing through the y(7) model, MSE, _, can also be found in order to establish

the ID in the other direction (i.e. IC; with respect to 1C,),
MSE a'R (p)a
id, . =lo 22\ =log| ————|. 8.6
v g[M J g[aT,R, | (8.6)

The symmetric ID for ICs 1 and 2 can then be obtained by combining equations (8.5) and (8.6)
such that (Estrada et al., 2005)

X

D, =(id,, +id,.). (8.7)

An example of the symmetric ID matrix between the parameters of the AR models for the
instantaneous amplitude of the ICs in the slow wave band during the Oddball Hard task
environment is illustrated in Figure 8-9. The ID between the ICs features pertaining to the same
class should be close to zero (blue); whilst that between different classes should be higher (tending
towards red). Here, note the difference in the ID of the three classes, where ER class contains
parameters corresponding to ICs 1:371, the Background (Bgd) contains parameters of ICs

372:687 whereas the parameters of ICs 688:917 form the Rest Class. It is already evident that
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there is overlap between the Rest class with both the Background and ER classes: the features of
the Rest ICs with a slow morphology overlap with the Background class (hence the continuation
from the Background into the Rest for 687:805), whilst the features of the Rest ICs with a higher
frequency morphology (806:971) overlap with the ER class.
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Figure 8-9. Scaled image of the ID between the AR models of the ICs slow wave instantaneous amplitude
for the Oddball Hard task environment. Note that points 1:371 represent the ER class, 372:687 the
Background class and 688:917 the Rest class.

8.6. Classification of ICs Parameters: A Neural Network
Approach

At this stage there was a P-dimensional space representing the ICs in the three classes; P varied
from 16 (for the 1% set of features based on amplitude power and phase moments) to 13 (for the
2" set based on 12" order AR models and ID method). The next step was to perform a nonlinear
transformation of this P-dimensional space into a 2-D space for better visualisation of the natural
divisions already apparent in the data. This was implemented through a neural network approach,

known as the Neuroscale algorithm.

8.6.1 Neuroscale

Neuroscale is a clustering process (Lowe, 1993; Lowe and Tipping, 1996:1997; Nabney, 2004)
which performs a dimension-reducing, nonlinear transformation of the original input data. This

‘topographic’ transformation optimally preserves the geometric structure of the data by ensuring
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that the inter-point distances in the feature space correspond as closely as possible to the distances
in the data space. This is implemented by means of a radial basis function (RBF) neural network
(Bishop, 1995) which is used to predict the co-ordinates of the data in the transformed feature
space. The weights of the network are adjusted in order to indirectly determine the locations of the
feature points. The transformation is then achieved by optimising the network parameters such

that a suitable error measure is minimised. This procedure is described below.

Consider a P-dimensional input space of N data points X;; the RBF generates a O-dimensional

feature space of points y; on condition that the relative positions of y; minimise the stress term

E,., =Zﬁ(d;‘- ~d, ). (8.8)

Jo>j

* . . . . . * T
where the d; are the inter-point Euclidean distances in the data space d;; = \/ (X,. -X j) (Xl -X; )

and the dj are the corresponding distances in the feature space d, =\/(y,. -y, )T (y,. -y j).

Therefore, minimising £

stress

ensures that the inter-point distances in the feature space are matched

with those in the data space.

Specifically, y; = f(x;W), where f is the nonlinear transformation obtained by the RBF with

weights W. Therefore, the distances in the feature space can be expressed as d;, = Hf (y)—fy, )H

such that

(8.9)

=3[ -od)-a b <))

where ¢, () are the basis functions, C; are the ‘fixed’ centres of the functions and Wy are the

weights from the basis functions to the output (Lowe and Tipping, 1996).

The disadvantage of this method is that, being a nonlinear optimisation process, it can be
computationally expensive to train and the dimensions of the desired feature space needs to be
specified a priori. On the other hand, neuroscale results in a generative solution and provides a
transformation rather than a mapping of the ‘training’ (input) data points. Consequently, new test
data can be projected onto the feature space using the fixed RBF structure learnt in the training
stage by simply modifying the parameters of the network (Lowe, 1993). Note, however, that the
output of this algorithm is strictly determined by the spatial distribution of the data points and does
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not take into consideration additional information, such as class labels, linked to the input data. To

overcome this limitation supervised neuroscale was developed in Low and Tipping (1996:1997).

Supervised Neuroscale

This is a modification of the above method which allows for the inclusion of subjective

knowledge in the training process. This additional information could, at varying degrees, affect the

objective topology generated by the spatial input data. The distance being used for training d; is
replaced by J;

5,=(1-a)d, +as,, (8.10)

where d;. is the Euclidean distance between input data points (for the first set of features), or the ID

matrix (for the second set). s is another distance metric, where the distance between points in the
same class is set to zero, while that between points in different classes is non-zero (Nabney, 2004).
For example, this study entails three main classes. Based on prior knowledge regarding the ICs
morphology and type of brain activity in the three conditions, the distance between ER and
Background was assigned to one (since these two classes, though different, both represent task
activity), distance between Background and Rest was 2 whereas that between ER and Rest was set
to 3 (since brain activity during rest was expected to differ more from event-related than from
background activity during task), as shown in Figure 8-10. Note that these numbers for s have

been chosen to indicate expected relative differences between the three classes.
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Figure 8-10. Scaled image of the distance matrix S (i.e. the distance metric s defined for each pair of points
in the whole dataset) used in supervised neuroscale as a means of introducing subjective information in the
training process.
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The parameter o, varies from 0 — the original, objective, unsupervised method based solely on the
distribution of the original data, to 1 — the completely supervised method that is no longer
explicitly dependent on the data distribution. A value of a = 0.5 strikes a balance between
objective and subjective approaches, hence maintaining the spatial topology of the original data
whilst improving the visualisation of the feature points by achieving a more distinct separation

between the classes (Lowe and Tipping, 1996).

Figure 8-11. The 2-D output from supervised neuroscale (o = 0.5, number of basis functions centres = 80)
for the 13-D input space based on the slow wave amplitude features derived using AR models and 1D
method for Oddball Hard task environment. Blue represent ER ICs features, red the Background features
and black the Rest features. (Note that the axis scales are arbitrary).

Figure 8-11 shows an example of the supervised neuroscale algorithm 2-D output (trained using
number of basis functions centres k£ = 80 (chosen by trial and error) and a = 0.5), for the ICs slow

wave features derived by the AR ID method, and using the ID matrix of Figure 8-9 (for d;.) and

the s matrix in Figure 8-10. The three classes occupy specific locations in the 2-D space, with the
ER and Background features being well separated, whilst the Rest class overlaps with the two task
classes. This is in keeping with existing theoretical models and fMRI BOLD imaging studies on
the slow waves (Fox et al. 2006; Fransson, 2006; Fox and Raichle, 2007), which suggest that
despite experiencing changes during different brain states, the slow wave mechanism is always

actively affecting underlying brain processes.

149



Chapter 8 - On the Analysis of Brain Oscillations in Rest and Task EEG

This example demonstrates that although the neuroscale clustering process can separate the three
classes, both the features and the classifier itself are not perfect. This leads to misclassification of a
number of input data points. Moreover, as in the example given, the classes themselves may
naturally possess overlapping traits. For this reason, the PDF space formed by the three classes
must be characterised in order to be able track the probability of classification per class, i.e. the
probability of each data point (in this 2-D space) belonging to each of the three classes. This was
done via Gaussian Mixture Models (GMMs).

8.6.2 Mixture Models

Mixture models belong to the class of pattern recognition systems and are extensively used as a
classification tool in a wide variety of applications, when the data of interest comprises a number
of populations mixed together in varying proportions (Bishop, 1995; Nabney, 2004). Each
population or cluster is mathematically represented by a parametric component distribution such
as Gaussian (continuous) or Poisson (discrete). Mixture models with high likelihood tend to have
component distributions with high peaks such that the data points in one cluster are tight.
Moreover, the data is well-covered in order to capture all its dominant patterns. These models are
a semi-parametric alternative to non-parametric histograms and provide greater flexibility and
precision in modelling the underlying statistics of sample data. Once a model is generated,
conditional probabilities can be computed for each input data point. Mixture models can also be
viewed as a form of generalised RBF network in which each component is a basis function or
‘hidden’ unit. The component probabilities can then be viewed as weights in an output layer
(Bishop, 1995; Nabney, 2004). Mixture models that use a multivariate Gaussian mixture density
to define the probability density function of the observed variables are commonly known as
GMMs. Given a series of inputs, the weights of each distribution are computed by means of

expectation-maximization algorithms (Martinez and Martinez, 2002).

A. Gaussian Mixture Models

In GMMs, the probability density function is expressed as a linear combination of Gaussian basis
functions. Let the conditional density of a data point (for example, one data point in the 2-D
output feature space generated by neuroscale) be a mixture with M component densities (Bishop,
1995; Martinez and Martinez, 2002)

p(¥)=2.P(j)p(]J). (8.11)

M
—

J
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where a mixing parameter P( j ) corresponds to the prior probability that data point y was
M
generated by component /, and where Y P(j)=1.

J=1

The latter requisite arises because for a function to be a valid PDF it must be non-negative
everywhere and integrate to 1 over the entire space. This mixture model is generative since it
involves the process of generating samples from the density it represents (Franc and Hlavac, 2004;

Nabney, 2004). Primarily, one of the components ;j is chosen at random with prior

probability P(j). A data point is then generated from the corresponding density p(y| j). The

corresponding posterior probabilities can then be written, using Bayes’ theorem, in the form

PO PG)
P(jly) ==l (8.12)
U==2005
where p(y) is given by equation (8.11). These posterior probabilities satisfy the constraints
M
> P(jly)=1 0<P(jly)<L (8.13)

Jj=

Since each mixture component is a Gaussian with mean vector p of dimension d and covariance
matrix X, (which, for a spherical covariance mixture model, this is some scalar multiple of the
identity matrix I, such that %, =0'12.I, (Nabney, 2004)), its density function can be defined as
(Franc and Hlavac, 2004)

1 1 T
1 P — ——y—p ) T (y—u. )}, 8.14
P el s e

B. Expectation-Maximisation Algorithm

The GMM parameters for a set of training data are estimated by the maximum likelihood criterion
using the well-established expectation-maximization algorithm (Nabney, 2004; Martinez and
Martinez, 2002). This algorithm iteratively modifies the GMM parameters in order to minimise

the negative log likelihood E (i.e. maximize the likelihood) of the data

N N M
E=-InL= —Zlnp(y")Z —Zln{Zp(y"
n=I Jj=1

n=l1

j)P(j)}, (8.15)

at each step until a local minimum is found (Bishop, 1995). It calls for a priori model order
selection in the form of the number of M components which are to be incorporated into the model.
Often a suitable number may be selected by the user roughly corresponding to the number of

distinct classes forming the dataset to be modelled (in this case, the feature space) or by using
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exploratory data analysis to look for clusters or other group structures. This algorithm also
requires an initial estimate for the value of the component parameters. This can be achieved by
performing a rough clustering of the data using, for example, the K-means algorithm as explained

in the work by Nabney (2004).

The posterior probabilities, which show the likelihood that a point belongs to each of the separate
component densities, are determined according to equation (8.12). This estimated posterior
probability is then used to obtain a weighted update of the parameters (i.e. prior probabilities,

means and variances) for each component (Bishop, 1995; Martinez and Martinez, 2002).

The mixing coefficients update equation is defined as

P((J)ﬁﬁfﬁ(j

n=1

y”), (8.16)

where j = 1,..., M, which implies that the prior probability for the /™ component is given by the

posterior probabilities for that component, averaged over the dataset.

Moreover, the mean of the /™ component is the mean of the data vectors, weighted by the posterior
probabilities that the corresponding data points were generated from that component

(0.

(2P0

y”)y
.——(—
T

y”)

n

(8.17)

The variance of the /™ component is then given by the variance of the data with respect to the

mean of that component, again weighted by the posterior probabilities

(
LIS A

A

(8.18)

In summary, the procedure of the expectation-maximization algorithm can be described as follows
(Martinez and Martinez, 2002):
1. Determine the number of component densities M in the mixture (i.e. the dataset).
2. Initialise the component parameters, i.e. the mixing coefficients, means and variance
matrices for each normal density.
3. Calculate the posterior probabilities using equation (8.12) for each data point.
4. Update the parameters of the individual components following equations (8.16) to (8.18).
5. Repeat steps 3. and 4. until the estimates converge (i.e. until changes in the estimates at

each iteration are less than some pre-set tolerance).
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C. GMM:s on the Neurosale Output

In this step, a set of GMMs were obtained in order to define the distributions of the neuroscale
output. Figure 8-11 indicates that the task ER and Background classes were separable, whereas the
Rest had some overlap with both other classes. Therefore, the assumption used here was that the
task ER and Background data could be confidently labelled as process A and B respectively,
whereas from the Rest data there could be unlabelled points that belonged to either labelled sets.
Therefore, the structure was first set up and the two GMMs of the labelled data were trained. Then
these GMMs, derived from the two definite (strong) processes, were used to train a new GMM for
the unlabelled data, (which is here being called process C for convenience but it was not defined
as a distinct process per se because of the overlap with the first two). Figure 8-12 shows the
contour plots for these GMMs; note the distinct ER and Background contour plots (each derived
with M = 2) whilst the Rest GMM (M = 5) overlaps with both. The posterior probabilities obtained
by each GMM, namely P, Pg and P, were normalised such that together they added up to one,

as illustrated in Figure 8-13.

Task-Bgd

Rest

Figure 8-12. The three GMMs derived for the neuroscale output for the Oddball Hard task environment
based on the slow wave amplitude features. Note the distinct ER (modelling the blue points in Figure 8-11)
and Background (modelling the red points) GMMs; the Rest GMM (modelling the black points) overlaps
with both, but still occupies a partially-distinct space.
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Figure 8-13. Normalised posterior probabilities for the 3 GMMs such that the probability for each data point
adds up to one across the 3 classes.

The statistical error for the classification (based on a particular set of features) could then be
derived by considering the maximum class probability for each data point representing one IC. For
example, for the first data point (representing IC,) P, was 0.82, Pg was 0.08 and P, was 0.1, thus
it was classified as belonging to process A, i.e. it was an ER task IC. From these values, the
statistical error for classification, i.e. how distinct the ER, Background and Rest classes were
based on the ICs features in that particular frequency band, could be computed. The interpretation

(for class A only) is given in Table 8-1 (Linn, 2004).
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Actual condition

Test result Belongs to class A Does not belong to class A

Classified as element of class A | True Positive False Positive

Classified as element of class B ) )
False Negative True Negative
or class C

Table 8-1. Definition of statistical error measures as applied to the 3-class problem.

The sensitivity of classification for class A was then defined as
Sensitivity , . =1-FNR_, ., (8.19)

where FNR . A 1s the false negative rate for class A given by

_ number of ICs that belong to class A misclassified as class B or C

class A

FNR (8.20)

total number of ICs that belong to class A

These indices for each class were portrayed in a confusion map. In the normalised map of
Figure 8-14 the diagonals show the sensitivity of classification for each class. The off-diagonal
terms of the first column represent the number of ICs that belong to A but are classified as either B
(1" off-diagonal term) or C (2™ off-diagonal term), each divided by the total number of ICs that
belong to A. Hence, the colour bar in this figure indicates the fraction of correctly or incorrectly
classified ICs from the total number of ICs in one class (read column-wise). This decision was

based on the maximum posterior probabilities across the three classes (from Figure 8-13).

From a neurophysiological perspective, the result in Figure 8-14 suggests that the ER and the
Background brain activity could be distinguished very clearly using only the amplitude
characterises of the brain sources in the slow wave band. 43% of the Rest slow wave amplitude
features were distinct from those during task whereas 20% and 37% were not separable from the
ER and Background features respectively. This indicates that the characteristics of the slow wave
mechanism share essential similarities during rest and task but are distinct enough to be classified
separately. This is in keeping with view that the default slow waves are consistently affecting

underlying brain processes, and they are in turn affected by stimulation.
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Class A: ER

Class B: Bgd

Class C: Rest

Class A: ER Class B: Bgd Class C: Rest

Figure 8-14. Confusion map for the classification based on slow wave amplitude ICs features. Diagonal
values show the sensitivity of classification whereas the off-diagonal terms (column-wise) show the fraction
of misclassified ICs for each class.

8.6.3 Test data

As explained earlier, neuroscale provides a transformation of the training data points onto the 2-D
feature space. Therefore, a new set of test data can be mapped onto this space by simply
modifying the parameters of the fixed RBF structure learnt in the training stage. As an example,
the ICs extracted from 4 minutes of data recorded from three new participants during the Oddball
Hard task environment were used. The Task ICs were taken together as one class, i.e. they were
not previously classified into ER and Background by hierarchical clustering, and the Rest ICs
were not ordered according to their frequency content. The AR and ID method was used to
characterise the slow wave amplitude features of the ICs. This new set of input data points were
first projected onto the 2-D space using the RBF structure learnt from the first ten participants (the
training data), and the PDFs of this output were then characterised by projection onto the three
GMMs obtained from the training process.

Results show that the Task ICs (1:70), although they were not pre-ordered into ER or Background,
were clearly projected onto different GMMs as shown in Figure 8-15 (some are definitely
classified as ER and some are definitely Background). Meanwhile, the Rest class overlapped with
both ER and Background classes as expected. Classification of the test ICs based on the maximum

posterior probability for each IC across the three classes gave a 3-class output, as shown in

Figure 8-16 (b).
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Figure 8-15. Probabilities characterising the neuroscale 2-D output for the test data when projected onto the
three GMMs obtained from the training data.

(a) (b)
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+ : i
Task-ER
Task Task-Bgd
Rest Rest

Figure 8-16. (a) The original clustering of the test data from neuroscale (141 points in 2-D space). (b) The
classified data when projected onto the three GMMs obtained from the training data — classification based
on the maximum probability of each data point across the three classes.

Figure 8-17 then shows the topographies of two ER, two Background and two Rest ICs from the
test data which have been correctly classified by the trained GMMs. Note that the ER ICs
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topographies show very clear P300 spatial distributions, whereas the Rest ICs show more parietal-

occipital (alpha) and frontal activity as expected.

(a) ERICs

Figure 8-17. Topographies of two ER, two Background and two Rest correctly-classified ICs from the test
data. Note that the ER topographies show very clear P300 spatial distributions, whereas the Rest ICs show
more parietal-occipital (alpha) and frontal activity.
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The methodology explained so far was employed on the whole dataset shown in Table 7-1. The
data from two participants were unusable due to poor quality recordings, whilst one participant
was unable to perform the tasks correctly (obtaining a 78.5% and 88% error rate during Go No-go
and the Oddball Hard task respectively, and reported impatience and anxiety during the rest
periods). Such performance would create outliers in the otherwise normal population and could
potentially skew the final results; thus the dataset was eliminated. The remaining fourteen and six
participants’ recordings were used to form the training and test databanks respectively for each of
the three task environments (SART — Rest, Oddball Easy — Rest and Oddball Hard — Rest), as
shown in Table 8-2.

Task Condition
Go No-go (SART) | Task Block 1 (10 mins) | Rest (6 mins) Task Block 2 (10 mins)
Oddball Easy/Hard (8 mins) Rest (6 mins) Easy/Hard (8 mins)

Table 8-2. Task Environments. Note that for the Oddball task, the order of the Easy and Hard task blocks
was counterbalanced across participants. The order of the two tasks was also counterbalanced.

For the Go No-go (SART) task, 5 minute data segments were considered, namely the first 5
minutes, the second 5 minutes and an overlap (2.5-7.5 minutes) for each task block. TDSEP-ICA
and HC were then applied to each segment separately. Since the protocol remained the same
throughout the task, the ICs extracted from the two task blocks were grouped together. For the
rest condition, ICs were extracted from a 5 minute data segment (0.5 — 5.5 minutes into the rest
block). This was carried out for every participant. The ICs of 14 participants were then grouped
together, which rendered a total of 2300 ICs, (896 ER and 1077 Background task ICs as identified
by HC, and 327 Rest ICs), forming the SART training databank. The ICs of the remaining 6
participants formed the SART test databank consisting of 317 ER and 305 Background task ICs,
and 117 Rest ICs.

For the Oddball task, TDSEP and HC were applied to three 4-minute segments (1 4 minutes, 2™
4 minutes and an overlap - i.e. 2 to 6 minutes) consecutively, for the Easy and the Hard task
blocks separately and for every participant. Across 14 participants this gave two databanks of 519
ER and 444 Background task ICs, and 501 ER and 462 Background task ICs for the Easy and
Hard task conditions respectively, after HC. The Rest ICs were extracted from a 4-minute segment
(1-5 minutes into the rest block), with a total of 321 Rest ICs across the 14 training participants.
The data of the remaining 6 participants resulted in an Oddball Easy test databank of 183 ER and
162 Background task ICs, and 115 Rest ICs, and an Oddball Hard test databank of 160 ER and
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185 Background task ICs, and 115 Rest ICs. Note that both the Easy and Hard task environments

shared the same rest period, hence their databanks contained the same Rest ICs.

In the following section of this chapter the group results obtained are presented, analysed and

discussed.

Section 2 - RESULTS

8.7. P300 Responses

Preliminary analysis investigated the P300 responses during the three task environments for the
whole dataset (i.e. 20 participants). The data was first decomposed by TDSEP ICA which
successfully isolated the three main types of P300 responses shown in Figure 8-18. Note that a
robust P300 with a central distribution was elicited during the SART (a); during the Oddball task
P300s with a frontal topography were elicited in response to distractor stimuli (indicating a
dominant P3a subcomponent) shown in (b), whereas the targets generated P300s with a parietal
focus (indicating a dominant P3b complex) shown in (c). For every recording (i.e. one participant,
one task block), the artifactual components were removed, and the resultant ICs were then
projected back onto the measurement space in order to investigate the coherent average of the

responses for various stimuli and task conditions.

200 0 200 400 600 800  -200 O 200 400 600 800  -200 O 200 400 600 800
time(s) time(s) time(s)

@) (b) ()

Figure 8-18. Three types of P300 responses extracted by TDSEP-ICA during the two tasks: (a) P300 with a
central topography elicited during SART; (b) P300 response with a strong frontal focus elicited by distractor
stimuli (c) and P300 for target stimuli with a parietal focus, for the Oddball task.

160



Chapter 8 - On the Analysis of Brain Oscillations in Rest and Task EEG

8.7.1. SART

The SART, being a relatively easy and repetitive task, provided robust P300 responses with a
maximal central distribution as shown in Figure 8-19. The No-go and Go responses were
compared by considering the largest positive-going peak (relative to the pre-stimulus baseline)
within a latency window of 300 to 600 ms. The peak latency was measured from the time of
stimulus onset. Paired t-test analyses for the amplitude of the No-go and Go responses yielded p-
values below 0.05 for central and parietal channels as shown in Table 8-3. This implies that (as
expected) the No-go stimuli, with 12% probability of occurrence, evoked significantly larger P300
amplitudes for both task blocks in central and central-parietal brain regions, a result that is in
keeping with the literature (Katayama and Polich, 1996; Polich, 2007). For both task blocks, No-
go responses generally exhibited longer latencies; however this effect was not always statistically
significant (Table 8-3). The grand coherent average responses across the 20 participants for
channels corresponding to C3, C4, Cz and Pz, for task blocks (TB) 1 and 2 are illustrated in
Figure 8-19.

TB1 TB2
Channel Amplitude Latency Amplitude Latency
(%) (ms) (%) (ms)
Cz t(1,19) 4.78 2.26 459 2.60
p-value <0.001 0.051 0.001 0.029
Go Mean * Std 4.99 +1.97 387 +51.22 453+1.84 389 +50.43
No-go Mean £ Std | 11.92 +4.39 437 +43.22 11.84 +5.07 449 + 45.08
C3  (1,19) 4.79 2.14 3.97 2.42
p-value <0.001 0.061 0.003 0.038
Go Mean + Std 4.07+1.50 397 £45.96 3.27 +1.87 400 + 45.46
No-go Mean £ Std | 7.99 £2.95 452 +£57.89 7.41+3.59 447 + 36.22
C4  t(1,19) 4.54 1.30 5.55 2.09
p-value 0.001 0.227 <0.001 0.066
Go Mean + Std 333172 418 +£72.69 262+131 391 +£52.38
No-go Mean + Std | 6.88 +2.58 459 £52.8 6.56 £ 2.54 447 + 50.56
Pz 1(1,19) 4.48 6.31 3.92 5.66
p-value 0.002 <0.001 0.004 <0.001
Go Mean + Std 442 +1.67 365+19.01 3.78+1.77 357 +£18.89
No-go Mean £ Std | 7.89 +2.49 443 +£37.73 7.60+3.51 454 +42.74

Table 8-3. Paired t-test results (19 degrees of freedom) and the group’s mean and standard deviation (Std)
for the Go and No-go responses. The p-values <0.05 represent a significantly larger amplitude for the No-go
responses during both task blocks. The latency is also generally longer for No-go P300s.
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Figure 8-19. Grand coherent average across the 20 participants showing robust P300 responses during both
SART task blocks.

8.7.2. Oddball Task

The group P300 responses elicited by the three stimuli — standard, distractor and target — during
the Easy and Hard task conditions for selected frontal, central and parietal channels are illustrated
in Figure 8-20. During the Easy task (when the perceptual discrimination difficulty between the
standard and the target stimuli was low), the target P300s had a significantly higher amplitude in
comparison to the Hard task condition. This is particularly evident in central and parietal areas
where the P3b component is most prominent (Table 8-4). Moreover, on the central areas the
target P300 exhibits significantly shorter latencies during the Easy task (Cz: t(1,19) = -2.61, p-
value = 0.0287; C4: t(1,19) = -2.22, p-value = 0.0535; and C3: t(1,19) = -3.39; p-value = 0.0095).
Meanwhile, the more frontal P300 subcomponent, the P3a, elicited by the distractor stimuli,
showed significantly higher amplitude for the Hard task condition, as shown in Figure 8-20,
whereas its latency varied very little across the two tasks. These effects suggest that distractor
processing was engaged more strongly during the harder task, in order to increase focal attention
for resource allocation operations and thus enhancing P3a responses, as clearly shown in the
coherent average for the fronto-central channels (Ch8 and Ch18). No significant difference was
found for the P300 elicited by the frequently occurring standard stimuli in both task conditions.

These results replicate the findings by Comerchero and Polich (1999), and Hagen et al. (2006).
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Target: Easy vs Hard
Channel t(1,19) p-value Group Mean = Std (pV)
Easy Hard
Cz 6.22 <0.001 7.01+2.87 5.15+2.93
C3 4.23 0.036 5.13+1.83 3.67+2.46
C4 3.65 0.005 4.56 +2.28 3.59+2.03
Pz 5.31 <0.001 8.85 + 3.67 5.95+3.24
Distractor: Easy vs Hard
Fz (right) -3.17 0.011 2.78 +1.99 4.86+2.45
Fz (left) -4.61 0.001 2.79+1.68 5.34 +2.46
FC (right) -2.90 0.018 1.39 +1.58 2.70+1.76
FC (left) -2.84 0.019 1.74+2.27 3.33+1.73

Table 8-4. Paired t-test results, and the group mean and standard deviation for the amplitude of the Oddball
P300 responses elicited during the Easy and Hard task conditions.

Ch10=C4

Ch8 = Fz (right)

Ch18 = Fz (left)

time (ms)

Ch13 =Pz Ch20 = FC (right) Ch30 = FC (left)
S S LR
200 0 200 400 600 800  -200 O 200 400 600 800 -200 O 200 400 600 800

time (ms)
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—e— Standard Hard
Distractor Easy
Distractor Hard
— Target Easy
—®— Target Hard

time (ms)

time (ms)

Figure 8-20. P300 responses for the three stimuli (standard, distractor and target) during Oddball Easy and
Hard task conditions for 8 channels located in central, parietal, frontal and fronto-central areas.
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8.8. Behavioural Data

Analysis of performance measures, namely reaction time (RT), error rates and false alarms, was
carried out for both tasks. This was done in order to further assess whether the required task
environments (with variable loading levels) have been created by the task protocols, and to

determine how well participants carried out the experiment at hand.

8.8.1. SART

The mean and standard deviation of the global RT (i.e. RT across both task blocks) and the
percentage error rate for every participant are shown in Figure 8-21. The error rates were derived
from the number of false alarms, i.e. button presses to No-go responses; the number of misses to
Go’s was negligible. Across task blocks and participants the overall average RT and error rates
were (440.99 + 58.02) ms and (mean: 25.41, range: [4.55 48.19]) % respectively. Note that the
robust P300’s for the Go and No-go stimuli and the relatively low error rates indicate a high level

of attention throughout the course of the task for most participants.
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Figure 8-21. SART performance data: Mean and standard deviation for the global RT (across TB1 and
TB2); the mean RT for TB1 (green) and TB2 (magenta); the percentage error rate (during TB1: green, TB2:
magenta and their average: blue) for every participant.
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Since the underlying aim of this work has been to assess the general influence of the slow waves
on brain function, the variability in the RT across the entire 10 minute task blocks was
investigated in order to observe whether this exhibited a slow wave pattern. Consequently, for
every task block, a time series for the RT to hits (i.e. Go’s) was formed. A cubic spline
interpolation was then constructed for this time series in order to obtain an equally-sampled RT
curve to compensate for the cases when a No-go stimulus was present (i.e. when no response was
given), and its frequency response was calculated using the Welch method. It is important to note
that this response was limited by the inter-stimulus interval: essentially, the time series had a
sampling frequency of 1/1.2sec = 0.833 Hz, hence a maximum discernible frequency of 0.417 Hz.
Nonetheless, the results in Figure 8-22(a) suggest that the RT variability exhibits slow wave

fluctuations throughout the course of the task.

Since the frequency response of the RT variability was found to decay in a 1/f manner (Figure
8-22 (b)), the frequency-domain normalization approach was employed to cancel this trend and
reveal predominant peaks in the power spectra. Following the procedure explained in
Section 6.1.1, the normalization curve was obtained from the task data of three participants during
5-minute recordings within TB1, 5-minute recordings within TB2 and 5 minutes of rest data. The
median frequency curve, across the three conditions and the three participants, was then used as
the normalization curve. The RT variability curves of all participants were then normalized and
their average obtained (as shown in Figure 8-22 (b), 2™ row). Here, specific VLF peaks previously
masked by the 1/f trend are clearly visible, with a predominant peak around 0.2 Hz for both task
blocks. This indicates that the RT was varying about every five seconds (i.e. approximately after

every four stimuli) across the entire ten-minute task block.
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Figure 8-22. RT variability for the SART: (a) RT time series across the 10 minute task blocks — note the

VLF variation in the time series (results of one participant shown as an example). (b) 1% row: The frequency

response of this RT variability for all participants for TB1 and TB2; the average PSD across participants is

shown by the (*-) curve. (b) 2™ row: The normalised average PSD curve shows predominant VLF peaks

around 0.2 Hz.
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8.8.2. Oddball Task

Mean RT, percentage error rate: misses to targets, and percentage of false alarms: hits to standard
stimuli (since none of the participants responded to distractors) were computed for the Easy and
Hard task blocks consecutively; the mean values across participants are shown in Table 8-5.
Results show that when the target was very distinct from the standard stimuli, i.e. in the Easy
condition, error rates were significantly smaller (t(1,19) = 8.39, p-value <0.001) and RT
significantly shorter (t(1,19) = 9.16, p-value <0.001) than when the target was similar to the
standard stimulus (Hard condition); this is also visible from Figure 8-23. This is because small
standard-target perceptual differences demand more stimulus processing as previously shown in
the literature (Comerchero and Polich, 1999; Hagen et al. 2006). Moreover, the percentage of false
alarms with respect to standard stimuli was significantly larger for the Hard task (t(1,19) = 3.53, p-

value <0.002). These results confirm the successful manipulation of graded task difficulty.
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Figure 8-23. Mean RT, % Error rate (misses to targets) and % of false alarms (w.r.t. standard stimuli) for the
Oddball task during the Easy (green) and Hard (magenta) task conditions.
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Oddball Easy Oddball Hard
RT(ms) Mean + Std 592.18 + 72.86 700.64 + 98.29
Max & Min values | [480.75 712.87] [571.69 908.44]
Error Rate (%) Mean 2.81 32.40
Max & Min values | [0 16.67] [6.25 66.67]
False Alarms (%) Mean 0.30 2.73
Max & Min values | [01.97] [010.2]

Table 8-5. Mean of RT, % Error Rate and % False Alarms (w.r.t. standard stimuli) across participants for the
Oddball Easy and Hard task conditions.

8.9. Multistage System Analysis Results

As seen in the previous sections, the P300 responses and performance results from the
experimental protocols chosen replicated those found in the literature. Moreover, a task
environment that gradually amplified the load on the brain has been successfully implemented. By
using the multistage system designed in the previous section, the change that the brain’s oscillators
underwent in the three different task environments could be investigated. This was done by
assessing how distinct the I1Cs were, i.e. how well they could be classified into Task-ER, Task-
Background and Rest classes, when classification was based only on ICs’ features in one specific

frequency band.

Note that the results based on the AR model and ID method for feature extraction are shown here
rather than on the features obtained from the amplitude and PDF moments of the instantaneous
phase because the former provided more robust results. Nonetheless, comparable classification
patterns were achieved from the first set of features, with weaker sensitivity of classification; some
examples can be found in Appendix Il (A). In order to ensure the AR model correctly captured the
time series structure, the delta, theta and alpha amplitude or phase time series (each having an
approximate bandwidth of 4 Hz) were downsampled to 12 Hz prior to model fitting. The slow

wave band time series (0<f<0.5 Hz) were downsampled to 5 Hz.

8.9.1 Training Data

Figure 8-24 to Figure 8-29 show the classification results based on the ICs amplitude or phase
features when filtered in the slow wave band during the three task environments for the training
databank. Note the clear distinction between the ER and Background ICs features and the
consistent overlap between Rest and Task classes. The sensitivity of classification for the Rest

improves as the task difficulty increases from SART to Oddball Hard, (Slow wave amplitude
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features: SART — 31.1%, Oddball Easy — 38.3%, Oddball Hard — 43.6%; Slow wave phase
features: SART — 32.4%, Oddball Easy — 42.1%, Oddball Hard — 46.1%). This implies that the
amplitude and phase in the slow wave band are undergoing enhanced changes from task to rest as
the loading on the brain is increased. Moreover, the features of the Rest ICs with a predominant
slow frequency content overlapped with those of the Background ICs, whereas those with a

predominant theta and alpha frequency content overlapped with the ER ICs.

_ GMM - Task ER (A) _

@ i ® |

—GMM-BgdER(B)

(c)

Class A: ER

Class B: Bgd

Class C: Rest

Class A: ER Class B: Bgd Class G Rest
Figure 8-24. Training data classification results based on Slow Wave Amplitude features of the ICs for the

SART task environment; (a) GMM contour plots for the neuroscale output, (b) Posterior probabilities from
the GMM s of the three classes, (¢) Confusion map showing sensitivity of classification on the diagonal.
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Figure 8-25. Training data classification results based on Slow Wave Phase features of the ICs for the SART
task environment: (a) GMM contour plots for the neuroscale output, (b) Posterior probabilities from the
GMNMs of the three classes, (c) Confusion map showing sensitivity of classification on the diagonal.
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Figure 8-26. Training data classification results based on Slow Wave Amplitude features of the ICs for the
Oddball Easy task environment: (a) GMM contour plots for the neuroscale output, (b) Posterior probabilities
from the GMMs of the three classes, (c) Confusion map showing sensitivity of classification on the

diagonal.
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Figure 8-27. Training data classification results based on Slow Wave Phase features of the ICs for the
Oddball Easy task environment: (a) GMM contour plots for the neuroscale output, (b) Posterior probabilities
from the GMMs of the three classes, (c) Confusion map showing sensitivity of classification on the
diagonal.
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Figure 8-28. Training data classification results based on Slow Wave Amplitude features of the ICs for the
Oddball Hard task environment: (a) GMM contour plots for the neuroscale output, (b) Posterior probabilities
from the GMMs of the three classes, (c) Confusion map showing sensitivity of classification on the
diagonal.
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Figure 8-29. Training data classification results based on Slow Wave Phase features of the ICs for the
Oddball Hard task environment: (a) GMM contour plots for the neuroscale output, (b) Posterior probabilities
from the GMMs of the three classes, (c) Confusion map showing sensitivity of classification on the
diagonal.

Figures 8-30 to 8-32 show training data classification results based on delta, theta and alpha
features respectively for selected task environments (similar patterns were obtained for all three
task environments, as shown in Appendix Il (B)). Interestingly, for these frequency bands, the ER
and Background task classes are not as separable as those for the slow wave band, whilst the Rest
class is more distinct.
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Figure 8-30. Training data classification results based on Delta f-Band Amplitude features of the ICs for the
Oddball Hard task environment: (a) GMM contour plots for the neuroscale output, (b) Posterior probabilities
from the GMMs of the three classes, (¢) Confusion map showing sensitivity of classification on the
diagonal.
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Figure 8-31. Training data classification results based on Theta f-Band Phase features of the ICs for the
Oddball Easy task environment: (a) GMM contour plots for the neuroscale output, (b) Posterior probabilities
from the GMMs of the three classes, (c) Confusion map showing sensitivity of classification on the

diagonal.
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Figure 8-32. Training data classification results based on Alpha f-Band Amplitude features of the ICs for the
Oddball Easy task environment: (@) GMM contour plots for the Neuroscale output, (b) Posterior
probabilities from the GMMs of the three classes, (¢) Confusion map showing sensitivity of classification on
the diagonal.

The distinctive separability of the brain sources features during rest and task, particularly in the
alpha f-band, comes as no surprise and has been well acknowledged in the literature (Herrmann
and Knight, 2001; Ben-Simon et al., 2008). The alpha oscillator is believed to act like a “stand-
by” state or a “self-resonance” system that allows the brain to return more rapidly to goal-oriented
cognitive functioning if and when required. When the primary visual cortex receives no or little
input, it oscillates predominantly in the alpha range at a relatively high amplitude. In fact, as seen
from these experiments, the most prominent activity in the EEG at rest is the ongoing alpha

oscillatory component, which is thought to reflect cortical idling. This activity is desynchronised
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by the presence of stimulation and the total alpha power is decreased (Herrmann and Knight,
2001). Furthermore, stimulation resets the randomly distributed phase of the alpha waves, leading
to increased phase-locked alpha activity. This explains the very high sensitivity of classification
for the Rest class during all task environments, for both amplitude and phase I1Cs features in the

alpha f-band.
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Figure 8-33. Training data classification results based on All f-Bands Amplitude features of the ICs for the
SART task environment: (2) GMM contour plots for the Neuroscale output, (b) Posterior probabilities from
the GMM s of the three classes, (¢) Confusion map showing sensitivity of classification on the diagonal.

Finally, in order to get an overall picture of how the four oscillators were changing together during
rest and task, the AR models of the amplitude of the four f-bands were concatenated and used in
the classification method. The results shown in Figure 8-33 illustrate high sensitivity of

classification for the three classes.
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The sensitivity of classification for the training databank for the three task environments when
using the characteristics of the amplitude or phase of the ICs in the four frequency bands is
illustrated in Figure 8-34. Note the consistency of the results across different tasks, for both the
amplitude and phase of the oscillators. The slow waves experience the highest level of overlap
(lowest sensitivity) between the rest and task classes, whilst achieving the highest separation for

the Task-ER and Task-Background classes in comparison to the other oscillators.
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Figure 8-34. Training data sensitivity of classification for the three task conditions when using the
characteristics of the amplitude or phase in the four frequency bands.
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8.9.2 Test Data

As explained in Section 8.6.3, the test databank containing the 1Cs features (derived using the AR
and ID method) of the remaining 6 participants was then mapped onto the 2-D feature space
provided by the neuroscale output for the corresponding training databank (i.e. same task
environment and frequency band). The PDFs of the 2-D output mapping were then characterised
by projection onto the three corresponding training GMMs. Note that, as for the training data, the
test data task ICs have been separated into ER and Background classes using the hierarchical
clustering procedure described in Section 8.3, and the Rest ICs have also been ordered according
to their frequency content (as explained in Section 8.4), prior to feature extraction and neuroscale

mapping procedures.

Figure 8-35 shows an example of test data classification based on the slow wave amplitude
features of the ICs for the SART task environment. The posterior probabilities after projection of
the neuroscale 2-D output onto the 3 training GMMs (obtained from the training data of 14
participants based on SART slow wave amplitude features) very clearly distinguish the ER and
Background classes. Moreover, a similar trend to that obtained for the training data is again shown
for the Rest ICs: the features of those ICs with a predominant slow frequency content overlapped
with the Background ICs, whereas those with a predominant theta and alpha frequency content

overlapped with the ER ICs.

The neuroscale mapping and GMM projection procedures were repeated for the three task
environments using the characteristics of the amplitude or phase of the test databank ICs in the
four frequency bands, and the corresponding results for the sensitivity of classification are
summarised in Figure 8-36. Although, as expected, the sensitivity values are lower than those
obtained for the training data (shown in Figure 8-34), the two sets of results are comparable; for
example, using the slow wave features, the ER and Background classes can be separated with the
highest sensitivity in comparison to the other oscillators, whereas the alpha-based features show
the greatest distinction between rest and task for all task environments. Interestingly, the test data
also demonstrates a rise in the slow wave sensitivity (i.e. in the percentage of correct
classification) for the Rest class as the task difficulty level increases (Slow wave amplitude
features: SART — 24.2%, Oddball Easy — 26.6%, Oddball Hard — 29.5%; Slow wave phase
features: SART — 22.2%, Oddball Easy — 24.8%, Oddball Hard — 32.4%).
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Figure 8-35. Test data classification of the Slow Amplitude features of the ICs for the SART task
environment. |. Probabilities characterising the Neuroscale 2-D output mapping after projection onto the 3
GMMs obtained for the corresponding training data. 1. (2) 2-D Neuroscale output; (b) Classified data after
projection onto the training GMMs.
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Figure 8-36. Test data sensitivity of classification for the three task conditions when using the characteristics
of the amplitude or phase in the four frequency bands.

8.10. Investigating the Classification Results based on Slow
Wave Features

Some of these results demonstrate that by using only the slow wave amplitude or phase features
one can distinguish between three distinct types of brain activity. Hence, the slow wave oscillators
are exhibiting and/or the slow wave mechanisms are causing considerable change in ER and
background task activity, and between rest and task brain activity. Various questions arise from

these observations, including:

(i)  What specific changes are the slow waves undergoing?
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(i) Can these changes be quantified?
(iii)  Where in the brain are these changes most prominent?

An attempt has been made to tackle these questions by considering the slow wave power and
phase of these brain sources, and by projecting the classified sources onto the measurement space

in order to investigate the topographies that arise from the three classes.

8.10.1. Slow Wave Power

For every task environment the slow wave power was calculated by considering the Task-ER,
Task-Background and Rest ICs of all 20 participants (i.e. training and test databanks taken
together), for each task environment. The average power during Rest and Task (ER and
Background taken together) was then obtained by dividing the total power in each class with the
number of Rest or Task ICs. This was done to compensate for the fact that the Rest and Task

groups contained a different number of ICs.

Task

Average Power SART Oddball Easy Oddball Hard
Task (Pr) 6.29x10° 4.29x10° 4.78x10°

[1.03x10* 3.84x107] | [6.23x10° 8.92x10°] | [7.65x10° 1.12x107]
Rest (Pr) 1.15x10° 6.87x10° 6.87x10°

[1.54x10* 4.46x10"] | [1.03x10* 1.15x10"] | [1.03x10* 1.15x10']
Rest & Task (Prr) 8.90x10° 5.58x10° 5.82x10°
% Diff = (Pr-P1)/Prr | 58.64 46.24 35.91

Table 8-6. Average and [minimum maximum] power of the ICs during the three different task
environments, and the percentage difference between Rest and Task power.

The average slow wave power during the tasks was always lower in comparison to that during
Rest, with the biggest difference (58.6%) exhibited during the SART (this being the easiest, most
rhythmic task) and the lowest difference (35.9%) experienced during the Oddball Hard task
environment. Moreover, the average slow wave power during the Oddball Hard Task was 11%
higher than that during the Easy task. The results shown in Table 8-6 suggest that the slow wave
power is attenuated during goal-directed active processing, as predicted by the DMI hypothesis,

and the change between rest and task varies with the level of task difficulty.
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8.10.2. Slow Wave Phase

In order to characterize the structure of the instantaneous phase of each IC, the entropy was
computed as a statistical measure of randomness. The ICs for all 20 participants (i.e. training and
test databanks) were considered for this analysis. The results illustrated in Figure 8-37 show that
the slow wave phase undergoes a change in structure in the three conditions. The phase of the ER
ICs has a low entropy (high structure), whereas that for the Background ICs and the Rest ICs with
a slow frequency morphology exhibit a much lower structure. The remaining of the Rest ICs,
corresponding to those with a predominant high-delta, theta and alpha frequency content,
experience low entropy levels. This partially explains the consistent overlap of the Rest ICs
features with both ER and Background task classes in the results obtained from the classification

procedure.

0 200 400 600 800 1000 1200 1400 1600
ICs

1200 1400

Figure 8-37. Entropy of the instantaneous slow wave phase of the ER (blue) Background (red) and Rest
(green) ICs for (a) SART, (b) Oddball Easy and (c) Oddball Hard task environments.
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8.10.3. Slow Wave Projections

Here, those 1Cs which have been correctly classified into the three classes based on slow wave
amplitude features were selected and filtered in the frequency band (0<f<0.5 Hz). Since these ICs
have been properly classified according to their slow wave features, they must exhibit significant
changes in the slow wave band in three conditions (ER, Background and Rest), and therefore
when filtered and back-projected onto the measurement space, they may provide some
information on the location of the slow wave activity or relative changes during the three states.
The training dataset ICs have been chosen for this purpose since the training set classification
results were more robust. The slow wave projections during ER, Background and Rest conditions
for each task environment are illustrated in Figures 8-38 to 8-40. The topographies represent the

mean square power for each of the 25 channels of the projection.

Throughout the three task environments, the topography for the Background slow wave projection
showed a central focus, whereas that for the Rest demonstrated an occipital focus with some
frontal power. Meanwhile, the ER slow wave topography varied across tasks, from a left

temporal-parietal focus (for the SART) to a more parietal-occipital focus (for the Oddball Hard).

Complexity of Projections

The slow wave projections’ time-series of the ER, Background and Rest for different task
environments (shown in Figures 8-38 to 8-40) were compared by means of a complexity measure
described by James and Lowe (2000). This measure captures the temporal dynamics of the signals
by means of dynamical embedding. Here, a matrix of delays (dimension 90) was constructed for
10-second time windows with 50% overlap along the 4-minute projections for each of the 25
channels. The number of system states, derived from the entropy of the normalised eigenvalues of
the embedding matrix, was obtained as a measure of complexity of the underlying system. A brief

description of this procedure is given below.

Let X; be the embedding matrix for segment i (from channel j) consisting of m delay vectors. SVD

is employed on X; in order to obtain its eigenvalues, A, which are then normalised such that

M= / > (8.22)
An entropy measure is then obtained by

H =Y Ailog,k, , (8.22)
k=1
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and the number of system states defined as:

Q=2 (8.23)

ER projection of ALL properly classified ICs
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Figure 8-38. SART slow wave projections comprising all correctly classified ER (a), Background ICs (b)
and Rest (c) ICs. The ICs have been filtered in the (0<f<0.5 Hz) band prior to back projection.
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Figure 8-39. Oddball Easy slow wave projections comprising all correctly classified ER (a), Background ICs
(b) and Rest (c) ICs. The ICs have been filtered in the (0<f<0.5 Hz) band prior to back projection.
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Figure 8-40. Oddball Hard slow wave projections comprising all correctly classified ER (a), Background
ICs (b) and Rest (c) ICs. The ICs have been filtered in the (0<f<0.5 Hz) band prior to back projection.

The more information the projection contains, the higher is the number of system states required
to describe it. Figure 8-41 shows the average complexity values across the 25 channels for ER,
Background and Rest slow wave projections during the three task environments. In all cases, the
Background projections have a sinusoidal morphology and therefore require a lower number of
states to describe them — this is also visible from the waveforms in Figures 8-38 to 8-40 (b). The
complexity of the Rest projections lies in between that of the Task-ER and Task-Background. This
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is because, the rest recording, albeit the lack of time-locked activity to specific stimuli, still
comprises a variety of brain activity. For example, Rothenberger (2009) suggests that the alpha
component during rest represents a further neurophysiological correlate of the default mode
network, which is related to a relaxed but nonetheless attentive state that allows some
preparedness for changes (for example, to start task execution). Recall that throughout this work,
rest activity has been further separated into three subclasses of brain sources, namely those with a
predominantly slow, middle (high-delta and theta), and alpha frequency content. These, when
filtered in the slow wave band (0<f<0.5Hz) will all naturally have a different morphology,
topography and a different level of complexity, mirroring distinct brain activities co-occurring
during rest. In fact, when these three subclasses were projected separately onto the measurement
space, three different topographies were obtained. The Rest topographies for the Oddball Easy

task environment are shown as an example in Figure 8-42, which obviously add up to the total

Rest topography of Figure 8-39 (c). Their complexity curves can be found in Figure 8-43.
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Figure 8-41. Complexity measure (number of system states) for the ER (blue), Background (red) and Rest
(black) projections for (a) SART, (b) Oddball Easy and (c) Oddball Hard task environments. Traces show
the average measure across the 25 channels for 10-second time windows with 50% overlap.
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Figure 8-42. Oddball Easy slow wave projections comprising all the correctly classified Rest ICs with a
predominantly slow: slow and low delta (a), middle: high delta and theta (b), and alpha (c) frequency
content.
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Figure 8-43. Complexity measure (number of system states) for the slow & low-delta (cyan), high-delta &
theta (magenta), alpha (green) and combined (black) Rest projections for Oddball Easy task environment.
Traces show the average measure across the 25 channels for 10-second time windows with 50% overlap.

Classification based on Projections

In order to further investigate the extent to which the ER, Background and Rest ICs, which have
been correctly classified by the slow wave features, varied from a topographical perspective, the

following test was carried out:

1. The topographies (i.e. columns of A) of the correctly classified ICs (based, for e.g. on

the slow wave amplitude features) only were considered.

2. The power in the frontal, central, parietal and occipital regions were calculated for

each topography (hence establishing a matrix of n correctly-classified ICs x 4).

3. The Euclidean distances between the 4 power values of each topography with those
of every other topography were obtained (hence forming an n square matrix of

distances) as shown in Figure 8-44.

Three distinct classes are also visible in Figure 8-44, implying that those 1Cs which have been
properly distinguished as ER, Background and Rest based only on the slow wave amplitude
features, have also very clear distinct spatial profiles. The result for Oddball Easy task
environment is shown as an example in Figure 8-44, (those for the other two task environments
were similar). However, it is important to note here that, although this is a way of checking the
slow wave classification results, it is not specifying exactly where the changes in the slow wave
band are happening in the three brain states (since each column of the mixing matrix acts as a

spatial filter for the corresponding IC rather than for its band-limited version).
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Figure 8-44. Euclidean distance matrix between the power in the frontal, central, parietal and occipital
regions of the topographies of the correctly classified ICs (these I1Cs have been formerly classified based on
the slow wave amplitude features) for the Oddball Easy task environment (shown as an example). Note the
three distinct classes are clearly visible here (ER — 1:376; Background — 377:740; Rest — 741: 867).

8.11. Investigating the Relationship between Classification
Results and Behavioural Data

The sensitivity values of the classification results obtained from the training data, based on band-
limited IC features for different task environments, were correlated with behavioural data, namely
reaction time, percentage error rate, and number of false alarms (the latter is only applicable to the
Oddball task). This was done in order to assess whether the difference between the three brain
states could be linked with performance throughout the course of the task. Recall that a high
sensitivity of classification indicates that the relative change in the amplitude or phase features
between brain sources related to task processing (ER), the Background brain sources during task
and those during Rest, is significant enough for them to be classified separately. Significant
correlation results are shown in Table 8-7, (the -- marks indicate no significant correlations, i.e. a
p-value generally above 0.1). Note that the training dataset has been used for this purpose, since its
classification results were more robust, and more data points were available (14 training rather

than 6 test datasets) for computing the correlation coefficients and p-values.

For the slow wave features, the percentage of correct classification for the ER and Background

classes was always negatively correlated with behavioural data (Figure 8-45), and there were more
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significant correlations for the Oddball Hard task environment (i.e. for the hardest task). This

implies that the lower the RT, percentage of error rates and number of false alarms, i.e. the better

the participants’ performance, the higher was the difference in the slow wave band between, for

example, the ER brain state and the other (Background and Rest) states.

Slow Amplitude Features

Slow Phase Features

ER Bgd Rest ER Bgd Rest
SART RT - -- -- - - R =-0.48
p=0.08
OB Easy | RT R=-050 | -- R=0.60 R=-057 | -- R=0.45
p=0.07 p=0.065 | p=0.042 p=0.14
RT R=-043 | R=-0.46 R=0526 | -- -- R=0.42
p=009 |p=0.103 | p=0.053 p=0.101
OB Hard | Error R=-046 | -- -- -- R=-055 | --
Rate p=0.10 p=0.044
False -- R=-070 | -- -- R=-045 | --
Alarms p = 0.005 p=0.09
Delta Amplitude Features Delta Phase Features
ER Bgd Rest ER Bgd Rest
SART RT -- -- R=-058 | -- R =-0.45 R=-0.45
p=0.03 p=0.108 | p=0.104
OB Easy | Error -- -- R=0.70 -- R =0.60
Rate p=0.01 p=0.02
OB Hard | False - - R =0.62 -- -- -
Alarms p=0.02
Theta Amplitude Features Theta Phase Features
ER Bgd Rest ER Bgd Rest
RT - R=-041 |- - - -
SART p= 0.105
Error -- -- R =0.60 - - R=-0.54
Rate p=0.03 p=0.046
RT -- -- R =0.66 R=0.66 -- --
OB Easy p=0.01 p=0.01
Error -- -- -- R=-056 | -- R=041
Rate p=0.04 p =0.105
OB Hard | RT R=-0.76 | - - - - -
p = 0.002
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Alpha Amplitude Features

Alpha Phase Features

ER Bgd Rest ER Bgd Rest

RT -- -- R =0.58 R =-058 -- --
SART p=0.04 p =0.045

Error -- -- R =0.62 -- -- --

Rate p=0.02
OB Easy | Error R=-049 | -- R=047 -- -- --

Rate p=0.07 p=0.09

RT -- -- -- R=-051 | R=-0.62
OB Hard p=0.06 |p=0.04

Error R=-059 | -- R=0.45 -- -- --

Rate p= 0.027 p=0.102

All-f Amplitude Features All-f Phase Features
ER Bgd Rest ER Bgd Rest

RT -- -- -- -- -- R=-0.61
SART p=0.02

Error -- -- -- R=-068 | -- R=0.45

Rate p = 0.008 p=0.105

RT -- -- -- -- R=-055 | R=-0.54
OB Easy p=0.042 | p=0.04

Error R=0.53 -- -- --

Rate p=0.05

RT -- -- -- -- -- R =-0.65
OB Hard p=0.011

Error -- -- R=-056 | R=0.67 - --

Rate p=004 |p=001

Table 8-7. Correlations between the sensitivity of classification (ER, Background and Rest) and behavioural
data (reaction time, % error rate and number of false alarms). The -- marks indicate no significant
correlations, i.e. p-value generally above 0.1; R is the correlation coefficient.

Similar correlation results could be found for classification values based on amplitude or phase

features in other frequency bands for the three task environments (Figures 8-45 and 8-46).

However in some cases, namely (delta, phase features, Oddball Easy; theta, phase features,

Oddball Easy; All-f, phase features, Oddball Hard), the percentage of correct classification in ER

and Background was positively correlated with behavioural data (as shown in Table 8-7).
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Figure 8-45. Sensitivity of classification based on the slow wave amplitude or phase features (for Oddball
Easy and Hard task environments) is negatively correlated with behavioural data.
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Figure 8-46 Sensitivity of classification based on delta, theta, alpha and All-f bands amplitude or phase
features (for SART and Oddball Hard task environments) negatively correlated with behavioural data.
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Some of the significant correlation results between the sensitivity of classification for the Rest and
behavioural data are illustrated in Figures 8-47 and 8-48. This requires some interpretation
because behavioural data is actually measured during the course of the task (in rest there is no
response to stimuli). However, as previously explained, the classification results are a differential
measure: they are indicating how distinct the band limited features are in the three different brain
states. Therefore, the sensitivity of classification for the Rest is also reflecting what’s happening
during task; for instance, if the hypothesis is that during a task the slow waves are being taxed,
then they will differ to those during rest, when the brain has “no load” imposed on it. This has
been demonstrated in Section 8.9.1, where the sensitivity of the Rest classification was enhanced
as task difficulty level was increased from SART to Oddball Hard task environments. This

supports why behavioural data could also show correlations with the Rest classification sensitivity

values.
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Figure 8-47. Sensitivity for the Rest classification based on slow and alpha amplitude features (for SART
and Oddball Hard task environments) positively correlated with behavioural data.
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Figure 8-48. Sensitivity for the Rest classification based on slow, theta and All-f amplitude or phase features
(for SART and Oddball Hard task environments) negatively correlated with behavioural data.

It is important to note here that the main aim of this work has been to investigate the slow waves,
and despite the long recordings that have been used to obtain the classification results (which
makes them robust), the number of participants (and hence the number of available performance
data points) is small to perform reliable statistics on. Moreover, the work has been done on a
normal, adult population (although some variability in the behavioural data is clearly visible). This
implies that the interpretation of these correlation results needs to be made with caution, and the

whole procedure merits further investigation on a clinical and control sample.
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8.12. Summary

In this chapter, a methodology for investigating the measurable effects of the intrinsic slow waves
in brain activity during periods of quiet wakefulness (rest), and whilst performing stimulus-based
tasks of various difficulty levels has been developed. Here, the brain was envisaged as an
oscillatory system onto which a graded load was imposed, which produced a variable output
response. Particularly, the following questions have been raised: (i) How are the slow waves being
affected at different loading levels? (ii) What differences are they undergoing or causing from
when the brain is at rest? Furthermore, other frequency bands have also been considered, namely
delta, theta and alpha, in keeping with the view that the brain comprises a system of oscillators
working together at different levels of synchrony (Buzséki and Draguhn, 2004). The experimental
protocols used successfully elicited “standard’” P300 responses and the difficulty levels rendered
expected variations in the P300s amplitude and latency, which were in keeping with the literature.
The hypothesis underlying this work was that the slow waves provide a mechanism that modulates
and perhaps even governs/controls underlying brain processes. Therefore, they may not appear in
the data as distinct independent components, and information about their activity during different
conditions (in various brain states) can be obtained by investigating all the relevant sources in the

slow wave (0<f<0.5 Hz) band.

The multistage methodology developed can be summarised as follows. For each task

environment;

(i)  Divide the recordings into 4-5 minutes overlapping segments in order to accommodate the
slow waves; employ a BSS algorithm (such as TDSEP-ICA) to denoise these segments and

extract neurophysiologically meaningful brain sources (ICs).

(i)  Divide the brain sources during task into ER (related to task processing) and Background
(ongoing brain activity) using hierarchical clustering based on the coherent average of the
ICs.

(iii)y Derive the ICs from resting-state recordings; these can be ordered (sub-optimally)

according to their frequency content.

(iv) Repeat steps (i)-(iii) for all participants in order to form a databank of ER, Background and

Rest ICs, (this is essentially the training databank).

(v)  Filter the databank ICs in the four frequency bands of interest (slow, delta, theta and alpha)

and obtain the instantaneous amplitude and phases for each (using the Hilbert transform).

(vi) Extract a set of amplitude and phase features of these time series for each filtered IC, using

for example AR models.
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(vii) Employ a neural network approach (here the Neuroscale algorithm was used) to classify
these features based on a distance metric derived, for example, from the Itakura Distance

between the AR model parameters.

(viii) Obtain Gaussian Mixture Models in order to track the classification probability in each of
the three classes based on that particular set of features.
This classification marks variations in the frequency bands, i.e. in the four oscillators’

amplitude or phase, during the three types of brain activity (ER, Background and Rest).
(ix)  Perform further analysis on the ICs in order to quantify and localise these variations.

Since Neuroscale and GMMs derive a transformation (rather than a simple mapping) from the
training data, a new batch of recordings can be treated as a test dataset, their features (obtained by
following steps (i)-(vi)) can be projected onto the output of the training system, and the

classification probabilities derived accordingly.

In this study, classification results show consistent variations between the brain sources during ER
and Background task activity, and during Rest for all four oscillators. Particularly, using only the
slow wave amplitude or phase features one can distinguish between the three distinct types of
brain activity, and the sensitivity of classification is enhanced for higher task difficulty (from
SART to Oddball Hard). Moreover, both the amplitude and phase of the ER and Background task
brain sources are very different in the slow wave band. From the projections shown in
Figures 8-38 to 8-40, this distinction could be due to the different morphology of these two types
of task 1Cs. Meanwhile, the consistent overlap between the rest and task classes is consistent with
the slow wave theoretical models found in the literature (Fox and Raichle, 2007; Sonuga Barke
and Castellanos, 2007) — the slow wave mechanism that is affecting the brain sources and/or that
is being affected by the different loadings during task does not operate in a binary fashion, i.e. it is
not naturally turned “on” and “off” following a rest-to-task transition. Furthermore, results suggest
that slow wave mechanisms share essential similarities in the two scenarios but are distinct enough
to be classified separately. It is important to note here that these classification patterns are robust
since they are derived from long datasets (48 minutes) of twenty (14 training and 6 test) control

participants and are repeatable across the three task environments.

Specifically, slow wave power during different task environments was lower in comparison to the
rest condition. This is in keeping with the DMI hypothesis since it shows that slow wave power is
attenuated during task, with rest power being 58.6% (for SART), 46.2% (for Oddball Easy) and
35.9% (Oddball Hard) higher than task power. Hence, the level of attenuation of the slow waves

drops as the task difficulty level is amplified. Moreover, the slow wave phase undergoes a change
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in structure (entropy) in the three states; the phase of the ER and the Rest ICs with a predominant
high-delta, theta and alpha frequency content had a much higher structure than that of the Rest ICs
with slow and low-delta frequency content, and the Background ICs. Slow-wave projections of the
classified 1Cs onto the measurement space showed interesting topographies and variations in their

morphology and complexity for the three types of brain activity.

Lastly, the percentage of correct classification based on the slow wave features for the ER and
Background classes was found to be negatively correlated with behavioural data, and there were
more significant correlations for the Oddball Hard task environment, this being the most taxing of
the three tasks. This indicates that the better the participants’ performance (i.e. the lower the
reaction time, percentage of error rates and number of false alarms) the greater was the difference
in the slow wave band between, for instance, the Task-ER and the other (Task-Background and
Rest) brain activity, hence the higher the sensitivity of classification. It would be interesting to test
whether the same pattern would arise if the procedure had to be repeated on a larger dataset
comprising a clinical group that is generally characterised by low performance measures (such as
ADHD participants) and controls. Such a test could provide useful information on the relationship
between brain electrical oscillations and behaviour, which is vital for the understanding of the
behavioural patterns of children suffering from various psychiatric disorders (Rothenberger,

2009). Such a dataset was unobtainable for this work however.

The next chapter concludes this dissertation and presents suggestions for prospective future work
on the investigation of the slow waves in brain signal recordings and their relation to

neurobehavioral disorders.
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Chapter 9

CONCLUSIONS AND FUTURE
WORK

9.1. Conclusions

Existing work in the literature suggests that when the brain is supposedly at rest, a.k.a. being in
its default mode of activity, spontancous VLFOs (<0.5 Hz) consume two-thirds of its energy
resources. These slow waves appear to be vital for functional and/or resting-state connectivity by
allowing synchronisation between diverse neuronal networks (Fox et al., 2006; Fox and Raichle,
2007; Balduzzi, 2008). Their consistent presence during different resting states (such as periods
of quiet wakefulness and sleep) and during task-related activity (Leistner et al., 2007; Helps et
al., 2008; Monto et al., 2008) suggests an intrinsic, continuous process, which is required to
maintain awareness of ourselves, of our surroundings and of the passage of time, almost
independently of any activity we engage in (Fransson, 2006). Another possibility is that this
spontaneous activity reflects dynamic modulations in the brain’s internal representation of the
intrinsic probabilistic model for foreseen events, which the brain develops and maintains over
time (Fox et al., 2006). On the other hand, these VLFOs may be affecting performance during
goal-directed activity by interrupting efficient information processing, resulting in periodic
fluctuations in attention and performance (Sonuga-Barke and Castellanos, 2007). These theories
raise several questions, including: are the VLFOs in brain activity, to a certain extent, insensitive
to changes in perception, attention or any other internal task-oriented neuronal activity? Are they
de-activated to some degree during task in order to facilitate focused attention, similar to the de-
activation of the task-negative component of the default mode? Moreover, are event related
components, such as the M100s and the P300s, being modulated by VLFOs such that all the
brain processes oscillate in and out of synchrony because of the fluctuating neuronal activity
baseline they provide? Finally, is the slow wave mechanism affecting or perhaps even governing
underlying brain processing — analogous to the function of a heart’s pacemaker — forming a basis

which shapes our perception and behaviour to the outside world?
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A vast amount of research is currently being undertaken to successfully address these questions
and to tackle the corresponding challenges. As discussed in Chapter 3, VLF brain activity is
notoriously difficult to study and one must ensure that such activity is entirely neuronal and is
not the result of other physiological (respiratory, cardiac and vasomotion) processes (Auer, 2008)
and/or a function of the data analysis procedure. A straightforward approach for investigating
these intrinsic VLFOs is to specifically analyse the raw data in the frequency range below 0.5 Hz
by standard FFT-based methods. However, this approach proves to be very long and
cumbersome to apply on multi-dimensional systems, such as the 148-channel MEG, because the
dense and noisy nature of the recordings makes the interpretation of the results highly subjective.
Denoising by proper filtering methods or by BSS techniques is definitely required and even then,
the extracted low frequency sources need to be subjectively classified as purely neuronal or
artifactual. Moreover, since the premise is that this spontaneous VLF activity acts as a ‘baseline’
that underlies brain activity elicited by the task, it may not appear as ‘oscillations’ in the classical
sense of having peaks in the power spectra of the EEG or MEG channels per se, or as separate

independent processes following the demixing procedure.

The fundamental aim of this work has been to explore the slow wave mechanisms in EM brain
signal recordings and investigate their contribution in brain function. Psychology and
neuroscience literature continuously raises the need for discovering the origin of this neural
activity, its purpose, and the best way to assess and quantify it (Fox et al., 2006; Fox and
Raichle, 2007; Balduzzi, 2008, Rothenberger, 2009). Consequently, the first step in this research
has been to look at existing work (both neuroimaging and electrophysiological studies), theories
and hypothesis regarding the slow waves, one of which being the DMI hypothesis (Sonuga-
Barke and Castellanos, 2007), which posits that the default mode slow waves undergo an
attenuation in power during cognitive active processing. This theoretical model however does
not take into account the phase of these slow waves, whilst ample work (on the origin of ER
responses, for example) consider the notion of phase-reordering to be vital in explaining the
way brain oscillators interact and neural networks react to input stimuli (Sauseng et al., 2007).

Hence, this work needed to take into consideration both characteristics of these oscillations.

Next, it was important to understand the signal processing challenges that had to be overcome
in analysing this VLF activity, which algorithms were readily available that could be exploited
for this purpose, and what further methodologies had yet to be developed — an example being
the normalisation filter to remove the intrinsic 1/f  trend, which psychologists were finding to
be a hindrance when comparing the slow wave power with that of other higher frequency

oscillators. Moreover, as explained earlier, one had to ensure that any noted slow wave effects
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were not due to artifacts within the data, and that they were objectively interpreted. Standard
BSS techniques could be employed for denoising purposes, as well as to achieve a closer
representation of the underlying independent brain sources. The independent components
following the BSS decomposition represent estimates of these sources, hence arriving at a

thinner sphere of influence between the scalp recordings and the true signal generators.

However, the choice of the BSS technique which is best suited for the type of data at hand is
crucial; for example, applying a spatial ICA algorithm, such as FastICA (Hyvérinen, 1999b),
on the 148-channel MEG data potentially renders 148 ICs which need to be classified and
interpreted, and slow wave information properly extracted from each. Using fewer channels
may compromise the quality of the decomposition because standard ICA has only spatial
information (from the sensor locations) to use in the separation process. In this work, state-of-
the art variants of ICA, namely SC-ICA and ST-ICA, whereby source analysis is undertaken
through the use of temporal or spatio-temporal information available in EM data, were proven to
be more efficient for analysing such high density systems. The input data matrix leads to a
meaningful decomposition from a single (or a few) recording channel(s) since the method of
delays, which forms the basis of these two algorithms, creates a rich representation of the

underlying mixture of brain processes.

For these reasons, SC-ICA was first employed to extract sources of interest underlying the MEG
data (supplied by the University of Madrid) from single channels in selected scalp locations. The
low-frequency functional and resting state connectivity were explored by means of phase
synchronisation analysis between the brain sources derived from channels of interest. This
presented a way of investigating significant interactions between band-limited slow wave
sources, although the method was found to be too laborious for repetition on large datasets.
Preliminary results showed variations in phase locking between ADHD and control groups and
indicated a corresponding change in phase synchrony between the corresponding brain regions at

periods of rest and when a task was being performed.

An alternative way for investigating the slow waves’ modulatory effect on the brain processes in
a robust manner was then achieved by means of a trial-by-trial procedure that was carried out on
the same MEG data. This study proposed an objective method which looked for circumstantial
evidence of the VLF activity; it exploited the well-defined nature of the evoked response
processes and extracted ‘clean’ M100 time series by means of ST-ICA. This ensured that the

inter-trial variations in the amplitude and latency of the responses could not be attributed to
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physiological and/or environmental artifacts. Moreover, the frequency characteristics of these
variations were found to be slightly variable across subjects (showing that it is unlikely for these
effects to be artifactual), but they all fell within the frequency range of the intrinsic slow waves

reported in fMRI BOLD imaging studies.

Next, a new experimental framework for investigating default mode brain activity in contrast
with that during externally imposed cognitive tasks of various difficulty levels was developed in
order to gain insight into the functional role of the slow waves persisting throughout in a more
direct manner. In these experiments, the brain was envisaged as a system comprising a number
of oscillators at varying frequencies (Rothenberger, 2009), onto which a graded load was
imposed to yield a variable output response — the P300. EEG data were recorded from 23 healthy
adult controls and a new multistage signal processing system was developed for its analysis. This
comprised: (i) The application of BSS for denoising the data and extracting the underlying brain
sources; (ii) Subspace analysis for the objective separation of the task ICs into brain sources
related to stimulus processing (ER-ICs) and those related to background brain activity, based on
hierarchical clustering; (iii) The extraction of features from the amplitude and phase of the ICs in
different frequency bands. Note that here it was posited that the slow waves might not appear in
the data as distinct brain sources (ICs), therefore information about their activity during different
states was obtained by investigating all the brain sources in the slow wave (0<f<0.5 Hz) band.
(iv) Classification of these features based on a neural network approach for pattern recognition
using the Neuroscale algorithm and Gaussian Mixture Models. This provided a way of
quantifying the changes that the slow waves (together with the delta, theta and alpha oscillators)

underwent following a task-to-rest transition.

Results suggest that features of the slow wave mechanisms, such as their amplitude and phase,
shared essential similarities during various rest and task conditions, but were distinct enough to
be classified separately. Specifically, the slow wave power during different tasks of various
difficulty levels was lower in comparison to the rest condition. This is in keeping with the DMI
hypothesis since it showed that slow wave power was being attenuated during task, and the level
of attenuation dropped as the task difficulty level was increased. Meanwhile, the slow wave
phase underwent a change in structure (measured through entropy). Moreover, slow wave
projections of the classified ICs onto the measurement space showed interesting topographies
and variations in their complexity and structure for ER and background task activity, and for
brain activity during rest. The level of cognitive attention (assessed by means of performance
measures, namely reaction time, error rates and false alarms) exhibited significant correlations

with the changes that the slow waves underwent between rest and task (assessed through the
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sensitivity of classification based on the slow wave features). This points towards a relationship
between slow electrical oscillations and behaviour, a link that has been explored in the works by
Fox et al. (2007), Monto et al., (2008) and Helps et al. (in press), and is fundamental for
advances in the assessment of child psychiatric disorders (Rothenberger, 2009). These
experiments and results provided a basis for testing and demonstrating that very low frequency
oscillations in the EEG play a specific role in brain function and are far more than irrelevant
noise. The original signal processing and neurophysiological contributions which resulted from

this research are illustrated in Figure 9-1.

Identification of the key analytical challenges and techniques available for the analysis
of the slow waves in EM brain signal recordings
Method for normalising the intrinsic 1/f” spectral trend of EM brain signals

Chapter 3

h 4

Explanation of ST-ICA as an extension of SC-ICA for the analysis of biomedical signals
Its application to ER data for the extraction of slow wave information

Chapters 5 & 6

hd

Analysing VLFOs through BSS techniques

!
v

Slow waves related to dysfunctional
attentional processes in ADHD?

(1) Analysis of low frequency phase
synchronisation (PS) in high-density
MEG recordings through SC-ICA:

= PS observed between fronto-central,
central and parietal brain regions

= Level of synchrony varied between
rest and task conditions, and as a
function of ADHD

(i) Method for performing a trial-by-
trial analysis of ER responses in EM
brain signals using ST-ICA:

= Indirectly deduce information about
the underlying VLFOs posited to be
modulating underlying brain sources

» Inter-trial variability in the amplitude
and latency of the ERF sensory
component, the M100, exhibits a
slow wave pattern - indicative of the
infrinsic slow waves modulating
underlying brain processes

Chapter 6

Slow waves in the resting brain: Are
they affected during cognitive function?

(i) Design of an experimental procedure
which renders 3 task-environments
with graded difficulty levels; (ERP
and default mode study) Chapter 7

(i1) Design and implementation of a
multistage signal processing
methodology:

= BSS coupled with a neural network
feature extraction and classification
method

= Features of the brain sources in the
slow wave band (their amplitude,
phase entropy, and power) vary with
mental load and behaviour

= Useful procedure for assessing
variations in band limited neural
sources during various mental
conditions, and as a function of
psychiatric and/or biobehavioural
disorders such as ADHD

Chapter 8

Figure 9-1. Summary of the original contributions of this research.
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9.2. Future Work

As acknowledged in the first chapter of this work, the road to discovery of how the human brain
generates cognition and behaviour, and the contribution of the slow waves towards this, is long
and intricate. We are still somewhat at the beginning of this road, and although the findings that
resulted from this work are promising, further research and development is clearly merited. In
keeping with this research, the most viable approach seems to be one that incorporates
psychology, neuroscience and engineering to: (i) advance the neurophysiological and
psychological understanding of the slow wave mechanisms by formulating new theoretical
models and hypothesis, and revising existing ones; (ii) improve current signal processing
techniques, and develop new methodologies in order to test and challenge these hypothesis.

Some prospective future work that would be highly beneficial to this field is outlined below.

9.2.1. Signal Processing Advances

Studies on coherent and phase synchronous structures are essential for investigating the active
integration of distributed oscillators within the brain (Quian Quiroga et al., 2002; Pereda et al.,
2005). These tools, when coupled carefully with BSS algorithms, can provide a reliable measure
of brain areas interactions during various task environments. They could also aid in significantly
identifying active seed regions (for example, in prefrontal areas and in the temporal and parietal
cortex) in relation to the slow waves. An interesting addition to the multistage system developed
in this work would be to establish a robust method for locating which areas of the brain are
exhibiting the attenuation of power and/or the change in phase following the task-to-rest
transition. Moreover, it would be useful to locate a slow wave network(s) of activity (by means
of coherence or phase synchronisation measures) during rest and to examine how this is altered
during tasks of various difficulty levels. As explained in Chapter 2, fMRI BOLD imaging studies
revealed two diametrically opposed brain networks spanning regions that regularly experience
task-related activations or deactivations; these networks demonstrate patterns of VLF
correlations within their regions and anticorrelations with respect to the other network (Fox et al.,

2005). Whether such patterns could be observed in the EM data remains open to investigation.

The novel application of ST-ICA for the extraction of ER brain processes from high density and
noisy recordings in this work, demonstrate the potential of this newly-introduced algorithm as a
spatio-temporal decomposition approach. However, further research is necessary on interpreting
the extracted processes, each comprising n projected components (one per channel of interest),
and on establishing ways for exploiting this information to assess the functional connectivity of

various brain regions. Currently, the clustering of the spatio-temporal filters present in the
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columns of the mixing matrix (learnt by FastICA) is performed manually based on the spectral
characteristics of these filters. To this end, future work is required to develop an automated
clustering method that makes use of the spatial, temporal and spectral modalities available in this

framework.

Moreover, work in the literature shows that the phases of the brain oscillators carry crucial
information about their dynamics (Buzsaki and Draguhn, 2004; Monto et al., 2008). This calls
for the development of BSS strategies that base their separability criterion on the degree of
significant phase locking between the sensor measurements for the extraction of underlying brain

sources which are maximally non-phase synchronous.

9.2.2. Neurophysiologic and Psychological Advances

From this aspect, extensive clinical and control groups need to be recruited in order to assess
variations in the slow waves (for example, by using the experimental framework developed in
this work) as a function of neurological and biobehavioural disorders, such as epileptic
seizures, ADHD, autism and schizophrenia, amongst others. Furthermore, the link between
the findings obtained from EM and neuroimaging studies still needs to be established. This is
because, as explained in Chapter 4, although the fMRI BOLD signal is closely linked to
ongoing neuronal events in the brain’s excitatory synapses, the actual relation between
spontaneous BOLD activity and electrical/magnetic fluctuations measured by EEG and MEG
remains to be determined (Huettel et al., 2004; Debener et al., 2006, Herrmann and Debener,
2008). Thus, for instance, direct comparisons between the 0.1 Hz fluctuations observed in the
BOLD signals and the VLF activity patterns obtained in this work need to be considered with
caution. Multimodal studies that include combined EEG, MEG and fMRI can provide a more
solid understanding of the underlying neuronal dynamics, therefore providing additional

insights into the presence and functionality of this intrinsic VLF activity.

Lastly, parallel advances in both domains are essential for broadening our understanding of the
elaborate architecture of the human brain. This will pave the way for the prevention, accurate

diagnosis and treatment of various psychiatric and neurobehavioural disorders.
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Appendix I

FORMS FOR THE EEG EXPERIMENTS

Insurance and Research Governance Application Form
Ethics Form for the School of Psychology Ethics Committee
Risk Assessment Form

Participant Information Sheet

Consent Form for Research Participants - EEG experiment
Debriefing Statement for Research Participants - EEG
Experiment

Barkley Adult ADHD Rating Scales

Demographics Questionnaire
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Insurance and Research Governance Application for Projects Requiring
Approval by Ethics Committee and Involving Research on Human Subjects,

their tissues, organs or data, by Staff and/or Students of the University of
Southampton

The project must not commence until insurance, ethics approval and sponsorship are obtained

PART A - PLEASE COMPLETE ALL QUESTIONS

Ethics Submission

Number: Cb2

Title of Very low frequency EEG-ERP recordings for testing the Default Mode Interference
Study: Hypothesis in a normal adult population

End
date:

Start date:  (02/02/2009)

(30/07/2009)

Researcher’s Details

Title:  Miss Charmaine Demanuele
University School: Psychology & Institute of Sound &Vibration Research
University . .
Department/Division: Signal Processing & Control Group, ISVR,
2.
Address: Tizard Building 13, I
University of Southampton, Highfield, I
Southampton, SO17 1BJ
Tel: 023 8059 4932 Email  cd3@soton.ac.uk
3. Are student researchers involved with this project? Yes [X] No[ ]
Is the study based solely on questionnaires, or other research not
4 involving invasive techniques or medicinal products? vesDJ No[]
. L i Minors
Please estimate numbers of volunteers participating in the study: Adults |
Patients

Healthy human

25
volunteers

* Minors under 18 years of age

5. |s this a Multi Centre Trial? Yes [ ] No[X

If yes and the trial is sponsored by UoS or SUHT, or managed by UaoS, please estimate
numbers of volunteers participating in the study overall:

Adults | Minors
Patients
Healthy human
volunteers
6.  Does the study involve invasive techniques? Yes [ ] No[X
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Doeg the stqdy involve the use of a medicinal product or the testing of a Yes [] No[X]
medical device?

" JFAN INVESTIGATIVE MEDICINAL PRODUCT IS
INVOLVED Phase 1, 2, 3,4
Please indicate which phase category the study falls into
Who is the Research . .

8. Sponsor? School of Psychology & ISVR Rayleigh Scholarship

9.  Who is the Funder? N/A

10. For Commercial trials only, is an ABPI Indemnity being given? Yes[ ] No[]

IF YES: the ABPI Indemnity form, preferably in triplicate, should be forwarded with this form for
signature by an Authorised Signatory on behalf of the University.

Will any part of this study take place outside the UK? Yes[] No[X

If Yes, in which
country(ies)?

PART B - PLEASE COMPLETE QUESTIONS AS APPLICABLE

Eggjg;ltjsdent Student status: PG
Supervisor’s
Details
Title:  Professor Name: Edmund Sonuga-Barke
University School School of Psychology
1 B?vli\g?c:ilty Department of School of Psychology
Address: University of Southampton
Highfield,
Southampton, SO17 1BJ
Tel: 023 8059 4604 Email ejb3@soton.ac.uk

For multi site studies
How many sites are involved?

12.
Is Southampton the lead site?
Avre any sites outside the UK?
Are contracts/site agreements in place?
For studies involving the NHS Patients, staff or resources
13. Is the study approved by the NHS Trust R+D office? Yes [] No [] Pending[]
Is the study approved by NHS ethics committee? Yes [] No [] Pending[]
!:or Cllnlgal Trials involving drugs, devices or clinical Reference Number
interventions
Is the study registered with the MHRA? ES [ No
14. Is the study registered on the European Clinical Yes[] No
Trials (EudraCT) database? [l
Is the study registered on the National Research ~ Yes [ ] No
Register (Clinical trials database)? [l
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For studies using tissue samples

15. Are the tissue samples accessed via a licensed tissue bank? E'?S [ No
Are you seeking ethical approval for your study? Yes[] No[]
For all studies, will the Applicant be responsible for:
16.  Reporting amendments to the protocol Yes X No []
Reporting adverse events and significant developments Yes X No []
If No, who will be responsible?
For Research Governance information, please contact:
Research Governance Office, Email: rgoinfo@soton.ac.uk  Tel: 02380 598849
Website:  http://www.resourcel.soton.ac.uk/legalservices/rgo/index.html
For Insurance information, please contact:
Finance Department, Insurance Services, Email: insure@soton.ac.uk Tel: 02380 592417

Website  http://www.soton.ac.uk/finance/insurance/index.html

Please send this form with all other supporting documents to:
Research Governance Office, University of Southampton, B37/4009, Highfield, Southampton
SO17 1BJ or email to rgoinfo@soton.ac.uk.
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| Ethics Form |

This ethics form submission is for working with humans .

1. General Information

Study Title: Very low frequency EEG-ERP recordings for testing the Default Mode Interference
Hypothesis in a normal adult population

Submitters:

Charmaine Demanuele
Dr Christopher James
Prof Edmund Sonuga-Barke

Advert for Psychobook:

N/A

How may you be contacted?

cd3@soton.ac.uk

Into which category does your research fall?

PhD Research

Supervisors

Dr Christopher James
Prof Edmund Sonaga-Barke

2. Study Protocol

Motivation

It has been suggested that the human brain is intrinsically organised into dynamic, anti-correlated functional networks (Fox et
al., 2005).The aim of the researcher’s work is to investigate the so-called default mode network (Broyd et al., in press) — which
is active when the brain is apparently at rest — and networks of brain activity related to a given task, in
electroencephalographic (EEG) recordings. Thus, it is required to collect EEG data during various rest and task conditions
which will then be analysed using novel blind source separation techniques, in particular independent component analysis
(ICA) (Hyvérinen et al., 2001).

Background

Functional magnetic resonance imaging (fMRI) studies of the brain have shown that brains of individuals undertaking no
externally imposed cognitive tasks display patterns of spontaneous, intrinsic activity synchronised across widely distributed
brain regions. This ‘default mode’ network is particularly observable during resting states and is associated with stimulus
independent processes (Fransson, 2005). Spontaneous low frequency oscillations (LFOs) associated with this network are
commonly attenuated during goal-directed tasks. However, they sometimes re-emerge during periods of task-related active
processing, competing and interfering with goal-directed attention. This results in low frequency toggling between the task-
independent (-negative) and task-positive components and presents a potential source of attention deficit during active task
performance. This forms the basis of the default mode interference (DMI) hypothesis (Sonuga-Barke & Castellanos, 2007).

Event-related potentials (ERPs) are a basic, non-invasive method of neurophysiological investigation. The P300 is a well-
studied late ERP component which is produced by a distributed network of brain processes associated with attention and
memory operations (Polich, 2007). Oddball paradigms and Go No-go tasks are two ERP task-types particularly aimed at
eliciting the P300 response which have been well tested and documented in the literature (Comerchero & Polich, 1998; Datta
et al., 2007; Hagen et al, 2006; Katayama & Polich, 1996; Polich, 2007; Smallwood et al., 2008). The three-stimulus oddball
paradigm involving a target, a standard stimulus and a distracter, where subjects respond to an infrequently occurring target
stimulus, is often employed (Katayama & Polich, 1996). The perceptual discrimination difficulty between the target and the
more frequently occurring standard stimuli can be varied to provide an easy or difficult task scenario — a high discrimination
difficulty appears to engage frontal attentional mechanisms more strongly, producing large frontal/central P300 components
(Comerchero & Polich, 1996; Hagen et al., 2006). On the other hand, the Go No-go sustained attention to response task
(SART) requires the participant to respond to one stimulus type (go) and withhold a response to an infrequent stimulus (no-go)
appearing in an unpredictable manner. The rhythmic nature of the task is designed to establish a relatively automatic, task-
driven response (Datta et al., 2007). This has proved to be sensitive to the frequency of everyday action lapses in both
traumatically brain injured patients and in healthy controls, and can thus be used to establish a measure for sustained
attention (Smallwood et al., 2008).

This study will involve two separate sets of recordings, the first one based on the three stimulus oddball paradigm and the
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second one based on the Go No-go task. In each recording, task blocks will then be separated by rest blocks for testing the
DMI hypothesis.

Analysis
Data analysis will have two main approaches:
(a) Approaching the recordings as being blocks of task and rest EEG activity, hence differentiating between brain
activity in the presence and absence of stimulation,
(b) Analysing the evoked potentials within the task blocks (ERP data),
both approaches taken in relation to the DMI hypothesis.

First, data analysis will be aimed at addressing questions such as: (i) Can the LFOs associated with the default network be
identified within EEG recordings? (ii) Are distinct brain areas interacting during different rest and task conditions, forming a
network of brain activity? (iii) Is there a change in this interaction with a switch from rest to task? Various ICA algorithms and
techniques (Davies & James, 2007; Debener et al., 2005; Demanuele et al., 2008; Hyvarinen et al., 2001) will be employed to
isolate neurophysiologically meaningful, low frequency brain sources in the presence of higher frequency brain activity and
artifacts. Interaction between these sources will then be quantified by coherence and phase synchronisation measures.
Coherence is a measure of the linear correlation of two signals as a function of frequency, whereas phase synchrony indicates
whether the phase shift between the two signals is close to a constant over the specified time interval. These are widely used
in the literature as vital mechanisms for dynamic integration of distributed oscillators within the brain (Lachaux et al., 1999;
Quiroga et al., 2002).

Due to the nature of the tasks chosen for this study, ERP component measures such as P300 amplitude and latency could be
exploited to formulate an index for the level of attention during tasks (Polich, 2007). This could then be compared and
contrasted with brain networks’ activation patterns obtained as described above. Particularly, the Go No-go SART task could
be used to indicate the individual’'s capacity to maintain active attention control over the responses instead of being carried
along with the regular pacing of the task (Datta et al., 2007; Smallwood et al., 2007). Hence, an index for sustained attention
could be established by considering the mean value of P300 amplitude across the whole SART. Relationship between P300
amplitude and error rates could also be used for this purpose (Datta et al., 2007). Moreover, the modulation of the P300
response by the LFOs on a trial-by-trial basis leads to periodic amplitude fluctuations of the P300. This could be associated
with fading in and out of attention caused by the intrusion of the task negative component during task blocks, which reduces
the cognitive resources allocated for the task. The length of the experiment recordings is chosen to accommodate the long-
period slow waves, and to be adequate to measure sustained attention.
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What intervention/procedure will be used? (Briefly describe the design. Explain what the participants will experience,
including the duration of any task/test).

Before the EEG recording, the Barkley Adult ADHD rating scales and demographics data attached hereunder (re: epileptic
seizures incidents, head injuries, vision or hearing problems and the participants’ use of medication or psychoactive
substances) will be collected for every participant.

EEG Recording

The scalp direct-current (DC) EEG will be recorded using a Neuroscan Synamps2 70 channel EEG system' at 500 Hz, with a
low-pass filter at 70 Hz. Participants will be fitted with an electrode cap (Easycap; Hersching, Germany) and EEG will be
recorded from 68 equidistant Ag/AgCl electrodes, with the reference electrode attached to the nose. The electro-oculogram
(EOG) will be recorded using electrodes below the left and right eye. Impedance for all electrodes will be kept below 5 kQ. A
high chloride, abrasive electrolyte gel will be used to achieve a DC-stable skin-gel contact that ensures stable operation of the
Ag/AgCI electrodes?.

Three-stimulus Oddball Task

Participants will be asked to complete a 22-minute three-stimulus oddball task, consisting of two 8-minute tasks blocks
separated by a 6-minute rest block. In this task, the target stimulus (probability of occurrence = 0.12) will be a blue circle 4 cm
in diameter, and the distracter stimulus (0.12) will be an 16 cm? square with black and white checkerboard pattern (1cm
checks). The size of the standard stimuli will be systematically altered by using blue circle stimuli of 2.8 cm or 3.6 cm for the
easy and hard task blocks respectively (0.76). This will increase error rates and response time across task conditions. The
stimuli will be presented once every 1.2 seconds for a 250 ms duration, (i.e. 400 stimuli per task block). Stimuli presentations
will be randomised and condition order counterbalanced across participants. Participants will be given a practice block
consisting of 15 stimulus trails before each task condition. During the rest block participants will be asked to look at the
monitor in a relaxed manner while focussing on a fixation cross at the centre of the screen in order to avoid extraneous
movement.

Go No-go (SART) Task

The Go No-go SART task will consist of two 10-minute task blocks separated by a 6-minute rest block. During this task single,
randomised digits from 1 to 9 will be presented on the computer screen at a regular, invariant rate. Participants will be asked
to use the index finger of their preferred hand to press a single button for each digit as it appears, with the exception of the
digit 3. Stimuli will be presented every 1.2 seconds for a 250 ms duration, implying a total of 500 stimuli per task block, among
which 60 will be No-go stimuli (i.e. 12 % No-go stimuli). As for the previous task, during the rest block participants will be
asked to focus at the fixation cross at the centre of the screen.

The order of the two tasks will be counterbalanced across participants. Throughout the recordings participants will be in a
quiet room free from distractions and will be seated on a comfortable chair with the 17" LCD screen positioned approximately
60 cm away. They will be asked to avoid unnecessary head movements and to respond to the task at hand ‘as quickly and
accurately as possible’. After the first task participants are allowed to take a break until they feel ready to continue with the
experiment.

! http://www.compumedics.com/ and  http://www.neuroscan.com/

2 Vanhatalo, S., Voipio, J., and Kaila, K. (2005). Full-band EEG (FbEEG): an emerging standard in electroencephalography,
Clinical Neurophysiology, 116,1-8.

What measurement procedures will be used? Please attach copies of any questionnaires to be used or copy and
paste the link to your online survey.

(a) The Barkley Adult ADHD rating scales, (b) Demographics questionnaire

3. Participants

About 25 postgraduate students from the University of Southampton.

How will they be identified, approached and recruited?

PhD students who are colleagues of the researcher will be approached and asked if they are interested and willing to
patricipate in this study. It will be emphasised to participants that their participation is entirely voluntary, and if they decline to
participate it will not affect their relationship with the ISVR or the School of Psychology in any way. Those who agree to make
an appointment, will first be provided with the Participant Information Sheet upon their visit to the lab, detailing all aspects of
the experimental procedure. Secondly, the experimenter will familiarise participants with the laboratory. If the participant is
then happy to continue with the experiment, they will be asked to complete and sign a Consent Form (please see the attached
documents).

How will you obtain the consent of participants?

Participants will be asked to sign a Consent Form after reading the Participant Information Sheet (attached).
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Is there any reason to believe participants may not be able to give full informed consent? If yes, what steps do you
propose to take to safeguard their interests?

No

If participants are under the responsibility of others (such as parents/carers, teachers or medical staff) have you
obtained permission to approach the participants to take part in the study?

N/A

Detail any possible discomfort, inconvenience or other adverse effects the participants may experience, including
after the study, and how this will be dealt with.

There are no risks involved in this study. An EEG system records electrical activity of the brain by means of scalp electrodes,
and hence it is a completely non-invasive technique. However, the abrasive gel used to provide good attachment of the
electrodes to the skin might create some discomfort, (although participants will be informed about this beforehand). The
researcher will apply a small amount of gel to their skin (e.g. on their hand) before the experiment starts in order to test for any
possible allergies. Moreover, they will be given wet-wipes and paper towels to clean their hair after the experiment.

How will it be made clear to participants that they may withdraw consent to participate at any time without penalty?

Participants will be informed in the Consent Form and in the Participant Information Sheet that they can withdraw from the
study at any time and that their decision will not affect their legal rights or their treatment by the Institute/School.

Will the procedure involve deception of any sort?

No

How do you propose to debrief participants and/or provide them with information about the findings of the study?

Participants will be given a copy of the Debriefing Statement (attached) once the study is completed. Furthermore,
participants will be informed that they have the option to contact the researcher for a summary of the research findings once
the study is completed.

How will information obtained from or about participants be protected?

The data will be anonymous - each participant’s file will be assigned a key-code which has no relation to the name, student
number or other personal identification of the participant. EEG data will be coded and stored on a password-protected
computer, and/or a password-protected hard-disk which will be locked in a filing cabinet in an academic office and to which
only the researcher and the supervisors will have access. Coded questionnaires, consent forms and demographic information
will be stored in a locked filing cabinet in an academic office.

4. Equipment Safety Check ( A risk form must also be submitted)

Experimental apparatus employed must be approved for safety by Martin Hall. Has this approval been given?

‘ -<
(0]
(2]

5. Additional Checks

Do you intend to make a submission to the NHS Research Ethics Committee?
(certain projects may need NHS Ethical Approval, please check with your Supervisor)

No

Does this research involve work with children?

6. Technical Specifications

‘
o

Please detail below any equipment required to carry out this research.

Equipment required:

Neuroscan Synamps 70 channel EEG system; and all equipment (electrogel etc) associated with EEG recording procedures;
A data acquisition computer;

3 LCD Computer screens: (Stimulus presentation monitor for the participants, Stimulus presentation monitor for the
researcher; and EEG recording monitor);

Stimulus presentation program which will involve programming of markers during rest blocks and programming of the two
tasks;

Neurscan software for Data acquisition;

Brain Vision Analyser Software for Data analysis;

Matlab Software for Data analysis.
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School of Psychology Risk Assessment Form
(As Part of the Ethics Submission Procedure)

Study Title

Very low frequency EEG-ERP recordings for testing the Default Mode Interference
Hypothesis in a normal adult population

Brief outline of the study

This study investigates electrophysiological activity during periods of rest and during
visual, stimuli-based tasks. EEG will be recorded for the whole duration of the
experiment, using a Neuroscan Synamps2 70-channel EEG system. Participants will
be fitted with an electrode cap (Easycap; Hersching, Germany) and EEG will be
recorded from 68 equidistant Ag/AgCl electrodes with the reference electrode
attached to the nose. Two electro-oculogram (EOG) electrodes will be attached
beneath the left and right eye to record ocular activity. During the experiments
participants will be seated on a chair positioned approximately 60cm away from a
computer, LCD screen. Participants will be asked to perform two tasks each
containing a resting period. In these resting periods, they will be asked to relax and
focus on a fixation point presented in the centre of the screen. During the tasks they
will be required to respond as quickly and accurately as possible to the visual stimuli
presented.

The first task will be 22 minutes long, consisting of two 8-minute task blocks
separated by a 6-minute rest block. The second task will consist of two 10-minute task
blocks separated by a 6-minute rest block. The whole duration of the experiment is
anticipated to be approximately 2 hours, which includes the completion of a
demographics questionnaire, the Barkley Adult ADHD Rating Scales, and the cap
fitting.

Location

Institute of Disorders of Impulse and Attention Lab, Room 3111, School of Psychology,
University of Southampton.

Significant Hazards

EEG is a standard non-invasive technique and provided all the precautionary
measures necessary are taken this procedure will not pose any significant hazards to
any party involved in the experiment. All associated equipment will be sanitised using
appropriate sanitisation procedures: there will be no cross-contamination of the
electrogel, all equipment will be appropriately cleaned following every use, and the
electrocap will be regularly sterilised.

In the unlikely event of an emergency concerning either the experimenter or the
participant, the phone number and location of a first aid officer and the phone number
of security will be clearly displayed within the laboratory. Furthermore, a landline will
be available for use in emergencies within an adjacent office at all times.

Participants, who will be colleagues of the researcher and are therefore known by the

researcher, will be given the option to perform the experiment during weekends or
after normal working hours. In this case, a university security and a significant other
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will be informed of the testing location and the approximate duration of the data
collection session to ensure the safety of the both the researcher and participant.

Who might be exposed to the hazards?

This procedure does not pose a significant hazard to either the experimenter or the
research participant, provided that all precautionary measures mentioned above are
taken.

Existing control measures:

Control measures include cleaning and sterilisation products to sanitise all equipment
associated with the EEG recording.

As stated above the phone number and location of a first aid officer and the phone
number for University security will be clearly displayed at all times. A landline will be
available for use at all times in case of emergency.

Are risks adequately controlled?

Yes all necessary precautionary measures will be taken to ensure the risks are
adequately controlled for.
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Participant Information Sheet — EEG Experiment

Study Title: Very low frequency EEG-ERP recordings for testing the Default Mode
Interference Hypothesis in a normal adult population

Researcher: Charmaine Demanuele
PhD Student
School of Psychology and Institute of Sound and Vibration Research,
University of Southampton,
Highfield,
Southampton,
SO17 1BJ

Phone: 02380 594932
Email: cd3@soton.ac.uk

Ethics number: CD2
Dear Participant,

Please read this information carefully before deciding to take part in this research. If
you are happy to participate you will be asked to sign a consent form.

What is the research about?

In this study we are recording the electrical brain activity during various rest and task
conditions, through the use of an electroencephalogric (EEG) system. The aim of the
experiment is to try and establish brain networks activation patterns during task-
related activities as opposed to default mode activity, i.e. during rest, in the absence
of external stimuli and goal-directed activity. This will be done in order to test the so-
called Default Mode Interference Hypothesis.

Why have | been chosen?
You are being approached to take part in this study because we want to test this
hypothesis on a sample of normal adult controls.

What will happen to me if | take part?

During the study, your electrical brain activity, i.e. your EEG, will be recorded whilst
you perform various task blocks separated by periods of rest. Your participation will
take approximately 2 hours. You will be fitted with an electrode cap, a reference
electrode attached to the nose and two electro-oculogram electrodes (to measure eye
activity). An electrolyte gel will be used to achieve good contact for the electrodes —
this can be easily washed away after the experiment. Throughout the experiment, you
will be sitting down in a quiet room on a comfortable chair and you will be asked to
perform two stimulus-based, visual tasks each containing a resting period. In these
resting periods, you will be asked to relax and focus on a fixation point presented in
the centre of an LCD screen. During the tasks you will be required to respond as
quickly and accurately as possible to the visual stimuli presented. In between the two
tasks you will be given a break until you feel ready to proceed with the experiment.
EEG will be recorded in all experimental sessions. Prior to the EEG recording, you
will be asked to fill out a questionnaire assessing a variety of demographic factors and
to complete the Barkley Adult ADHD rating scales.There will be no follow up visit.
However you are given the opportunity to contact the researcher for more information
about the findings of this study once it is completed.
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Are there any benefits in my taking part?

There may be no specific benefit to you, other than getting knowledge about how
electrical brain activity is recorded. However, since this is novel research work, your
participation will help add to current knowledge in this field. Analysis of the data
collected from this work could shed light on the cause of attention lapses experienced
in several neurobehavioral disorders such as Attention Deficit/Hyperactivity Disorder
(AD/HD).

Are there any risks involved?

There are no risks involved in this study. An EEG system records electrical activity of
the brain by means of scalp electrodes, and hence it is a completely non-invasive
technique. Before placing the electrodes on the scalp, nose and around the eyes,
these sites will be gently cleaned with alcohol. Abrasive gel will also be used to
provide good attachment of the electrodes to the skin. This might create some
discomfort and you will be consulted first to ensure that you are comfortable with this
procedure. You will be given wet-wipes and paper towels to clean your hair after the
experiment.

Will my participation be confidential?

This research complies with the Data Protection Act and University Policy. The data
will remain anonymous — your file will be assigned a key-code which has no relation to
your name, student number or other personal identification. Collected data will be
treated confidentially. It will be coded and stored on a password-protected computer
to which only the researcher and the supervisors will have access.

What happens if | change my mind?
You can withdraw from the study at any time and your decision will not affect your
legal rights or your treatment by the Institute/School.

What happens if something goes wrong?

If you have any concerns or complaints about this research, or if you have any
questions about your right as a participant in this study, please contact: the researcher
(cd3@soton.ac.uk) or the Chair of the Ethics Committee on:

Chair of the Ethics Committee
School of Psychology
University of Southampton
Southampton, SO17 1BJ.
Phone: (023) 8059 5578.

Where can | get more information?

If you would like any further information about this study, kindly contact the researcher
(cd3@soton.ac.uk) or Dr. Christopher James (C.James@soton.ac.uk) and Prof
Edmund Sonuga-Barke (ejb3@soton.ac.uk) who are supervising this study, and they
will gladly answer any other queries that you may have.
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Consent Form for Research Participants — EEG experiment

Very low frequency EEG-ERP recordings for testing the Default Mode
Interference Hypothesis in a normal adult population

Information sheet

| am Charmaine Demanuele, a third year PhD student. My project is a collaboration between
the School of Psychology and the Institute of Sound and Vibration Research (ISVR) at the
University of Southampton. | am requesting your participation in a study for the recording of
electrical brain activity during various rest and task conditions, through the use of an
electroencephalogram (EEG) system. You will be fitted with an EEG electrode cap and your
participation will take approximately 2 hours. Throughout the experiment, you will be sitting
down in a quiet room on a comfortable chair and you will be asked to perform two stimulus-
based, visual tasks each containing a resting period. In these resting periods, you will be
asked to sit quietly and relax, while during the tasks you will be required to respond as quickly
and accurately as possible to stimuli presented on an LCD screen. In between the two tasks
you will be given a break until you feel ready to proceed with the experiment. Prior to the EEG
recording, you will be asked to fill out a questionnaire assessing a variety of demographic
factors and to complete the Barkley Adult ADHD rating scales. Personal information will not be
released to or viewed by anyone other than researchers involved in this project. Results of this
study will not include your name or any other identifying characteristics, and by doing such,
confidentiality will be ensured.

Your participation is voluntary and you may withdraw your participation at any time. If you
choose not to participate there will be no consequences to your grade or to your treatment as
a student in the School of Psychology or in the ISVR. If you have any questions please ask
them now, or contact Charmaine Demanuele at 023 8059 4932 or cd3@soton.ac.uk

Signature: Date:
Charmaine Demanuele

Statement of Consent

| have read the above informed consent form. | understand that | may withdraw my consent
and discontinue participation at any time without penalty or loss of benefit to myself. |
understand that data collected as part of this research project will be treated confidentially, and
that published results of this research project will maintain my confidentially. In signing this
consent letter, | am not waiving my legal claims, rights, or remedies. A copy of this consent
letter will be offered to me.

| give consent to participate in the above study.

Signature; Date:

Name: (please print)

| understand that if | have questions about my rights as a participant in this research, or if | feel
that | have been placed at risk, | can contact the Chair of the Ethics Committee, Department of
Psychology, University of Southampton, Southampton, SO17 1BJ. Phone: (023) 8059 5578.
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Debriefing Statement for Research Participants — EEG Experiment

Very low frequency EEG-ERP recordings for testing the Default Mode
Interference Hypothesis in a normal adult population

The aim of this research was to investigate the default mode network(s) — i.e. the
brain network that is active when the brain is apparently at rest — and networks of
brain activity related to a given task, in electroencephalographic (EEG) recordings.
The ‘default mode’ network is particularly observable during resting states and is
associated with stimulus independent processes. Spontaneous low frequency
oscillations associated with this network are commonly attenuated during goal-
directed tasks. However they sometimes re-emerge during periods of task-related
active processing, competing and interfering with goal-directed attention. This
produces a potential source of attention deficit during active task performance, and
could be the consequence of attention lapses experienced in several neurobehavioral
disorders such as Attention Deficit/Hyperactivity Disorder (AD/HD). Analysis of your
data will help our understanding of brain activity during different brain stimulation
conditions, and in relation to the level of attention during specific tasks. Once again
results of this study will not include your name or any other identifying characteristics.
The experiment/research did not use deception. You may have a copy of the
summary of the research findings once the project is completed.

If you have any further questions please contact Charmaine Demanuele at 023 8059
4932 or cd3@soton.ac.uk.

Thank you for your participation in this research.

Signature: Date:

Name:

If you have questions about your rights as a participant in this research, or if you feel
that you have been placed at risk, you may contact the Chair of the Ethics Committee,
Department of Psychology, University of Southampton, Southampton, SO17 1BJ.
Phone: (023) 8059 5578.
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Barkley Adult ADHD Rating Scales

Subject code:

Please circle the response which best describes your behaviour over the
past six months:

Frequency Code: O=never
1=occasionally
2=often
3=very often

1. Fail to give close attention to details or make careless o 1 2 3
mistakes at work

2. Fidget with hands or feet or squirm in seat o 1 2 3

3. Have difficulty sustaining attention in tasks or fun activites 0 1 2 3

4. Leave seat in situations where seating is expected o 1 2 3
5. Don’t listen when spoken to directly o 1 2 3
6. Feel restless o 1 2 3

7. Don'’t follow through on instructions and fail to finish work o 1 2 3

8. Have difficulty engaging in leisure activities quietly o 1 2 3
9. Have difficulty organizing tasks and activities o 1 2 3
10. Feel “on the go” or “driven by a motor” o 1 2 3
11. Avoid, dislike, or are reluctant to engage in work that 0 1 2 3

requires sustained mental effort
12. Talk excessively o 1 2 3
13. Lose things necessary for tasks and activities o 1 2 3

14. Blurt out answers before questions have been completed 0 1 2 3

15. Easily distracted 0o 1 2 3
16. Have difficulty awaiting turn o 1 2 3
17. Forgetful in daily duties o 1 2 3
18. Interrupt or intrude on others o 1 2 3
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Demographics Questionnaire

Subject code:

Dear Participant,

Please answer all questions listed below. If you have any questions about the following,
please do not hesitate to ask the researcher.

Contact phone number: ............c.ooiiiii

Dateof birth: ...
Sex (circle): Male / Female
Your handedness (circle): Left / Right

Please circle Yes or No to the following questions:
Have you consumed any product containing caffeine in the last two hours? Yes/No

Are you currently on any form of medication? Yes/No

Is English your first language? Yes/No
Have you used any psychoactive substance in the past 24 hours? Yes/No

Have you used any psychoactive substance more than once a month in the last 6 months?
Yes/No
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Appendix I1

ADDITIONAL CLASSIFICATION RESULTS

(A) Classification based on the first set of features derived for the ER, Background and Rest ICs (as
described in Chapter 8.5.1), namely the power in the instantaneous amplitude envelope and the 2™
to 4" order moments of the instantaneous phase (i.e. the variance, skewness and kurtosis) for each
frequency band. The results below show some of the cases when the ICs were characterised by (i)
the four features of the slow, delta, theta and alpha frequency bands (16 features from All f-bands),
or (ii) the four features of the slow wave band. They were obtained by using 10 participants as
training data.

(a) (b) GMM - Task ER (A}

GMM - Bgd ER (B)

ER o= TR o Xl kol P
GMM - Rest (C)

(c) 1
0.9
Class A; ER 0.2070 0.3432 s
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06
Class B: Bgd 0.3093 0.5
H04
0.3
10.2

Class C: Rest 0.1011 0.1430 |
10

i . N |
Class A: ER Class B: Bgd Class C: Rest

Figure 11-1. Classification results based on 16 features (from All-f bands) of the ICs for the SART: (a)
GMM contour plots for the neuroscale output, (b) Posterior probabilities from the GMMs of the three
classes, (¢) Confusion map showing sensitivity of classification on the diagonal.
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Figure 11-2. Classification results based on 16 features (from All-f bands) of the ICs for the Oddball

Easy task environment: (a)

GMM contour plots for the neuroscale output, (b) Posterior probabilities

from the GMMs of the three classes, (¢) Confusion map showing sensitivity of classification on the

diagonal.
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Figure 11-3. Classification results based on 16 features (from All-f bands) of the ICs for the Oddball
Hard task environment: (a) GMM contour plots for the neuroscale output, (b) Posterior probabilities
from the GMMs of the three classes, (c) Confusion map showing sensitivity of classification on the
diagonal.
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Figure 11-4. Classification results based on 4 features (from slow wave band) of the ICs for the Oddball
Easy task environment: (&) GMM contour plots for the neuroscale output, (b) Posterior probabilities
from the GMMs of the three classes, (c) Confusion map showing sensitivity of classification on the
diagonal.
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Figure 11-5. Classification results based on the 4 features (from slow wave band) of the ICs for the
Oddball Hard task environment: (a) GMM contour plots for the neuroscale output, (b) Posterior
probabilities from the GMMs of the three classes, (c) Confusion map showing sensitivity of
classification on the diagonal.
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(B) The following plots illustrate further classification results based on the AR-ID method
for different oscillators during various task environments. The results were based on the

training data comprising the ICs of 14 participants, (similar to those shown in
Chapter 8.9.1).

(a) (b)

GMM - Task ER (A)

GMM - Task Bgd (B)

GMM - Rest (C)

200 400 . 800 860 .1500 1200

(©)

Class A: ER
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Class C: Rest

Class A: ER Class B: Bgd Class C: Rest

Figure 11-6. Training data classification results based on Delta f-Band Amplitude features of the ICs for
the Oddball Easy task environment: (a) GMM contour plots for the neuroscale output, (b) Posterior
probabilities from the GMMs of the three classes, (c) Confusion map showing sensitivity of
classification on the diagonal.
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Figure 11-7. Training data classification results based on Delta f-Band Phase features of the ICs for the
Oddball Hard task environment; (a) GMM contour plots for the neuroscale output, (b) Posterior
probabilities from the GMMs of the three classes, (c) Confusion map showing sensitivity of
classification on the diagonal.
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Figure 11-8. Training data classification results based on Theta f-Band Amplitude features of the ICs for
the SART task environment: (&) GMM contour plots for the neuroscale output, (b) Posterior
probabilities from the GMMs of the three classes, (c) Confusion map showing sensitivity of

classification on the diagonal.
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Figure 11-9. Training data classification results based on Theta f-Band Phase features of the ICs for the
Oddball Hard task environment: (a) GMM contour plots for the neuroscale output, (b) Posterior
probabilities from the GMMs of the three classes, (c) Confusion map showing sensitivity of
classification on the diagonal.
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Figure 11-10. Training data classification results based on Alpha f-Band Amplitude features of the I1Cs for
the SART task environment: (a) GMM contour plots for the neuroscale output, (b) Posterior
probabilities from the GMMs of the three classes, (c) Confusion map showing sensitivity of
classification on the diagonal.
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Figure 11-11. Training data classification results based on Alpha f-Band Phase features of the ICs for the
Oddball Easy task environment: (a) GMM contour plots for the neuroscale output, (b) Posterior
probabilities from the GMMs of the three classes, (c) Confusion map showing sensitivity of
classification on the diagonal.
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Figure 11-12. Training data classification results based on All f-Band Phase features of the ICs for the
SART task environment: (a) GMM contour plots for the neuroscale output, (b) Posterior probabilities
from the GMMs of the three classes, (c) Confusion map showing sensitivity of classification on the

diagonal.
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Figure 11-13. Training data classification results based on All f-Band Amplitude features of the I1Cs for
the Oddball Hard task environment: () GMM contour plots for the neuroscale output, (b) Posterior
probabilities from the GMMs of the three classes, (c) Confusion map showing sensitivity of
classification on the diagonal.
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Appendix 111

ACADEMIC ACTIVITIES THROUGHOUT
THE PHD

Faculty’s Generic Skills Training Programme for Postgraduate Research
Students

= Introduction to Demonstrator Training — October 2006
= Library Information Resource — October 2006

= Research Methodology and Ethics — October 2006

= Presenting your Research — March 2007

= Project Management — March 2007

= Technical Writing — April 2007

Taught Modules

= Biomedical Application of Signal Processing, Digital Signals and Systems, and Signal
Processing (Masters Courses, ISVR, October 2006)

= Adaptive Methods, Introduction to Random Signals (ISVR, 2007)

Demonstrating Experience

Demonstrating for undergraduates and master students at the University of Southampton,
from October 2007 till January 2010:

= Maths Tutorials

= Signal Processing Labs

Professional Experience

= Followed training courses in Public Engagement and Outreach Skills and took part in
several outreach activities for promoting biomedical engineering and neuroscience to
school children, (Science Week organised by the University of Southampton, July
2007, March 2008 and March 2009, amongst others).

= Was in the organisation committee of and chaired the 5" IEEE EMBS UK & Republic
of Ireland Postgraduate Conference on Biomedical Engineering and Medical Physics,
PGBIOMED’09, University of Oxford, UK, 12-14" July 2009.
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