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UNIVERSITY OF SOUTHAMPTON

ABSTRACT
FACULTY OF ENGINEERING,

SCIENCE AND MATHEMATICS
INSTITUTE OF SOUND AND VIBRATION RESEARCH
Doctor of Philosophy
INDEPENDENT COMPONENT ANALYSIS AND SOURCE ANALYSIS OF
AUDITORY EVOKED POTENTIALS FOR ASSESSMENT OF COCHLEAR
IMPLANT USERS
by Norma Castafieda Villa

Source analysis of the Auditory Evoked Potential (AEP) has been used before
to evaluate the maturation of the auditory system in both adult and children; in the
same way, this technique could be applied to ongoing EEG recordings, in response to
acoustic specific frequency stimuli, from children with cochlear implants (CI). This is
done in oder to objectively assess the performance of this electronic device and the
maturation of the child’s hearing. However, these recordings are contaminated by an
artifact produced by the normal operation of the CI; this artifact in particular makes
the detection and analysis of AEPs much harder and generates errors in the source
analysis process. The artifact can be spatially filtered using Independent Component
Analysis (ICA); in this research, three different ICA algorithms were compared in
order to establish the more suited algorithm to remove the CI artifact. Additionally,
we show that pre-processing the EEG recording, using a temporal ICA algorithm,
facilitates not only the identification of the AEP peaks but also the source analysis
procedure. From results obtained in this research and limited dataset of CI vs normal
recordings, it is possible to conclude that the AEPs source locations change from the
inferior temporal areas in the first 2 years after implantation to the superior temporal
area after three years using the ClIs, close to the locations obtained in normal hearing
children. It is intended that the results of this research are used as an objective

technique for a general evaluation of the performance of children with Cls.
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Chapter 1.

Introduction

The overall objective of this research is to develop a procedure to evaluate
objectively the maturation of the auditory system of children with cochlear implants
(Cls). The benefits of this electronic device, which assists in the rehabilitation of deaf
people, are assessed by the technique know as Independent Component Analysis
(ICA) followed by source analysis of the Auditory Evoked Potentials (AEP).

Different methods of measuring the effectiveness of a Cl in deaf children have
been devised of late, however most of these are subjective methods (Pure Tone
Average Audiometry, language comprehension and language production scores
[99;122]). It is important to have an objective method to follow the maturation of the
auditory system of an implanted child-Cl as a complete system; this procedure could
help in monitoring the quality of the sound generated by the CI on uncooperative
subjects, such as children. Furthermore this method should be suitable to be
implemented in a practical clinic. Multi-channel AEP recordings and source analysis
have been used to objectively study the maturation of the auditory system in young
children. The child-CI system could be studied in the same way, however this is
problematic as normal operation of the CI generates an electrical artifact; the ClI
artifact generally masks, either partially or totally, the brain auditory response and so

results in errors in the both the analysis and source analysis of the auditory response.

To solve this problem ICA is applied prior to the source analysis step of AEPs.
Assuming linear and instantaneous volume conduction in the brain, the use of ICA
algorithms for source separation from EEG data is plausible. The goal of ICA is to
recover independent sources using only sensor observations, which in our case is the
scalp EEG from children CI users; the sources to be extracted are the AEPs and the CI

artifact. The measurements at the electrodes x(t) are given by are a linear mixture of



Chapter 1. Introduction

the independent sources s(t), such that x(t)=As(t). A is the mixing matrix which
depends on the conductivity characteristics of the brain and where the electrodes are
placed. ICA calculates the de-mixing matrix, W, from the observations x(t) and
estimates the original sources as §(t)=Wx(t). ICA tells us what parts of the scalp are
most responsible for the activity (auditory in our case), identified by a spatial
projection of the Independent Components (ICs) onto the electrodes. The columns of
W are used to give the topographic maps (spatial weighting of the activity) that are
used to facilitate the source analysis process.

Multi-channel AEP recordings provide temporal resolution for the
chronological aspects of brain plasticity. However, looking for a complete indicator of
the auditory neuroplasticity in children with Cls, it is necessary to increase the spatial
resolution for the source analysis, in order to solve the so-called inverse problem. This
problem (the search of unknown source or sources underlying the scalp
measurements) is solved by first finding a solution of the forward problem (how the
electric potentials measured at the scalp arise from known sources). The electrical
potential is computed using the quasi-static approximation of Maxwell’s equations
(which state the fundamentals of electricity and magnetism); where the potential is
obtained by solving Poisson’s equation with proper boundary conditions.
Subsequently, to assess the auditory neuroplasticity in children with Cls, the changes
of the source analysis of the AEPs attributed to the length of time of use/implantation

of the CI on the child will be used in this research.

The contributions of this research include: (1) the application of ICA to not
only reduce the CI artifact (spatial filtering) but also to identify the AEP in children
with Cls (source extraction); (2) to identify the most adequate ICA algorithm, as well
as its parameters, for this type of biomedical signal analysis. Moreover, (3) to obtain a
method for the robust identification of ICs with physiological meaning as well as the
ICs associated with the CI artifact using the concept of Mutual Information and
Cluster Analysis. Finally, (4) this research provides a basis for a practical, clinical
procedure to assess the benefits of a Cl following the changes of the (modelled)
Equivalent Current Dipoles (ECD) of the AEPs, attributed to the length of time of

use/implantation of the CI on the child.
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This thesis is organized in the following way; Chapter 2 gives a review of the
Audiological topics used in this research, including Auditory Evoked Potentials,
auditory system maturation and Cochlear Implants, and describes the development of
the auditory system after cochlear implantation. The description of the protocol for
AEP recording, as well as a review of some signal processing techniques used to
recover and analyse these biomedical signals are included in Chapter 3. Chapter 4
presents a brief overview of the statistical concepts necessary to understand the
technique of BSS by ICA, used in the pre-processing of the AEPs. Moreover, it
explains the theory of BSS in general and ICA in particular, and reviews the principal
differences between three popular ICA algorithms (FastICA, Infomax and TDSEP-
ICA). Chapter 5 describes the procedure used to select the optimal parameters of these
three ICA algorithms mentioned above, for robust AEP component estimates. Chapter
6, which complements the previous chapter, shows the results of the assessment of the
variability and performance of those algorithms applied to auditory response
estimations. A novel procedure to choose ICs with physical and physiological
meaning using Mutual Information, as similarity measure between estimates, and
Cluster Analysis is included in chapter 7. Chapter 8 shows the results of using ICA
not only to de-noise the AEP of children with Cls but also to assess the maturation of
the auditory system in these children, using the topographic map of the ICs related
with the auditory response. The basic theory of source analysis, beginning with the
Maxwell’s equations and following with an explanation of how the parameters for
source analysis of the AEP were selected in this research are included in chapter 9;
results of the changes in the location of the sources of the auditory response in
accordance with the time of implantation are shown in this chapter. The final chapter,

chapter 10, is dedicated to the principal conclusions and future work of this research.

During this research the following papers and abstract have been accepted in

different specialist journal and conferences.

Journal Paper
N. Castaneda-Villa, J.M. Cornejo, and C. J. James. “Independent Component Analysis
for robust assessment of auditory system maturation in children with cochlear

implants” Cochlear Implant International Journal. Published Online: Feb 20009.
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N. Castafieda-Villa and C. J. James “Independent component analysis for Auditory
evoked potentials and cochlear implant artifact estimation: a comparison between

High and Second order statistic algorithms”. (In preparation)

Conference papers

C.J. James and N. Castafieda-Villa. “ICA of auditory evoked potentials of children
with cochlear implants: component selection”. 3" International Conference MEDSIP
2006 Advances in Medical, Signal and Information Processing, 17-19 July, Glasgow,
Scotland.

N. Castafieda-Villa and C. J. James. “Objective source selection in Blind Source
Separation of AEPs in children with Cochlear Implants” 29" Annual International
Conference of the IEEE Engineering in Medicine and Biology Society, 23-26 August
2007, Lyon France.

N. Castafieda-Villa and C. J. James. “Differences in source analysis accuracy of AEP
generators following FastiCA and TDSEP-ICA de-noising” 4" International
Conference MEDSIP 2008 Advances in Medical, Signal and Information Processing,
14-16 July 2008 Santa Margherita Ligure, Italia.

N. Castafieda-Villa and C. J. James “The selection of optimal ICA algorithm
parameters for robust AEP component estimates using 3 popular 1CA algorithms”
30" Annual International Conference of the IEEE Engineering in Medicine and
Biology Society “Personalized Healthcare through Technology” 20-24 August 2008

Vancouver, British Columbia.

Conference Abstracts

N. Castaneda-Villa, J.M. Cornejo-Cruz, and C. J. James. “Assessment of the
neurological maturation in children with Cls: Identification of AEPs by ICA”. 10"
International Conference on Cochlear Implants and Other Implantable Auditory
Technologies, 10-12 April 2008, en San Diego, California, US (Poster).
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N. Castaneda-Villa, J.M. Cornejo, P. Granados and C. Tirado. “Cochlear implant
fitting using middle latency auditory evoked potentials” 11" International Conference
on Cochlear Implants in Children, Charlotte NC, USA, 11-14 April 2008 (Oral
Presentation)

N. Castafieda, C. James and J.M. Cornejo. “Objective assessment of CI users by
source analysis of LLAEPs peak P;” 12" International Conference on Cochlear
Implants in Children, 17-20 June, 2009 Seattle, Washington.
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An overview of Audiological topics

Two major audiological topics are included in this research: Auditory Evoked
Potentials (AEPs) and Cochlear Implants (CIs). An AEP is the response of the
auditory system (in the brain) produced by a sound [58], this response is suitable to be
measured on the scalp with the appropriate techniques such as averaging out the
spontaneous electroencephalography (EEG) [100]. The clinical applications of the
AEPs are diverse, such as: estimation of the auditory sensitivity in very young
children, frequency specific estimation of the auditory sensitivity in older children and

adults, and to evaluate the maturation of the auditory system.

After setting forth the theory of AEPs, the general concepts of EEG and
Evoked Potentials (EPs) in general, a description of the way to evaluate the
maturation of the auditory system using AEPs is incorporated. A description of the
apparatus used in the rehabilitation of deaf people known as CI is included; its main
parts, as well as the principal stimulation strategies used by this electronic device to
emulate the human cochlea, are then explained. Finally, a description on the auditory

system maturation after cochlear implantation is incorporated.

2.1 The EEG

The EEG is the recording of the spontaneous electrical activity of the brain;
this activity is recorded from electrodes on the scalp [11]. The changes in the
characteristics of the EGG (amplitude and frequency) reveal the subject’s state of
consciousness; for example, EEG signals with large amplitude and low frequency
content are typical during deep sleep and widespread EEG signals with oscillation
near to sinusoidal are characteristic in eyes closed waking. More advanced techniques
used in clinical EEG can identify neurological disorders such as Alzheimer's disease,

epilepsy, brain tumor and sleep disorders [100].
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EEG analysis is usually described in terms of frequency bands. Most of the
common cerebral signals are in the range of 1-30 Hz; in clinical settings activity
below or above this range is generally considered an artifact. Examples of wave
pattern recognized on EEG are: delta (up to 3 Hz), theta (between 4 and 7 Hz), alpha
(8-12 Hz), beta (13 to 20 Hz) and gamma (20 to 30 Hz). Most of the EEG waves have
an inverse relationship between amplitude and frequency, for example alcohol or
drugs consumption may cause a reduction in the frequency and an increase in the
amplitude of EEG waves [98].

Delta tends to be the highest in amplitude and slower wave, its location is
frontal in adults and posterior in children; this wave could reveal subcortical lesions in
the elderly. Theta waves are seen normally in young children, there location may
involve many lobes of the brain and can be lateralized or diffuse [98]. Alpha waves
are widely used in the clinical practice; these waves are usually identified in a relaxed
awake subject, its amplitude is typically 20-50 uV with location in posterior regions
of head. Other alpha waves may occur in comatose subjects with cerebral lesion or
with patients under halothane anesthesia [100]. Beta waves have a frontal and
symmetrical distribution and low amplitude, they are present in the EEG signal when
the subject is concentrating; these waves are accentuated by drug consumption such as

barbiturates.

The basic EEG equipment recommended by the American Clinical
Neurophysiology Society (ACNS) includes electrodes, connecting wires, amplifiers, a
computer control module, and a display device [11]. Each electrode is connected to
one input of a differential amplifier and a reference electrode is connected to the other
input. In a digital EEG system, the amplified signal is digitized by an analog to digital
(A-D) converter (sampling rate between 256 and 512 Hz and resolution of 12 bits or
more), after the signal is passed through an anti-aliasing filter. For standard recordings
the settings for the low pass filter should be no higher than 1 Hz (-3dB) and the high
pass filter should be no lower than 70 Hz (-3dB). The recorded EEG can be visualized
on a computer screen or on paper [10]. Different type of EEG activity occurs
simultaneously at diverse locations on the head and so encourage the use of multiple

electrodes for simultaneous recordings.
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The type of electrodes used in the EEG recordings is fundamental to acquire a
good signal; recording electrodes should be free of acquired inherent noise and they
should not attenuate signals between 0.5 and 70 Hz [11]. Disk and needle are some of
the types of electrodes used in the EEG recording. Needle electrodes are made from a
bar of stainless steel, whilst disk electrodes are made from silver silver-chloride or
gold; the diameter of disk electrodes can vary from 4 to 10 mm, smaller diameter
electrode are optimal to be used with infants. The most commonly used electrodes in
AEPs recordings are the disk electrodes, silver-chloride electrodes are recommended
for recording very slow auditory responses. All the electrodes are designed to conduct

electrical activity at the frequency range of the AEPs.

In order to increase the quality of the recordings, it is necessary to introduce an
electrolyte (electrically conductive medium) between the scalp and the electrode.
Different electrolytes for EEG are commercially available; gels, conductive pastes
and creams. Most of the disk electrodes contain a hole so that the electrolyte can be
added after the electrode has been attached on the head.

Electrode attachment is checked by the interelectrode impedances; this
impedance is measured applying a small electrical AC current (30 Hz) to one of the
electrodes, and determining the amount of current reaching a second electrode. The
interelectrode impedance will be lower if the skin has been cleaned or rubbed to
remove surface oil and superficial layers of the epidermis; it is possible to use alcohol
or acetone for this purpose. Interelectrode impedances can be reduced to below 3 kQ
if the skin preparation and electrode selection is done well; impedances should not
exceed 5 kQ. The quality of the AEPs recordings is highly dependent on low and
balanced electrode impedances. The ACNS recommends checking the impedances as
a routine prerecording procedure and rechecking it during the recording when the
wave patterns might start to appear artifactual.

Most electrode sites in AEPs measurement can be designed by a specific
system of electrode positioning which has been recommended for the ACNS; this
standardized electrode placement system is know as the International 10-20 system
[12].
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2.1.1 International 10-20 electrodes system

The International 10-20 system uses particular anatomical landmarks (nasion
inion and left and right preauricular points) to locate different sites for a given subject.
The total distance between nasion (bridge of nose) and the inion (the occipital
protuberance) is divided into 10% and 20% intervals. The point at the initial 10% of
the distance away from the nasion is the electrode site ‘Fpz’; this is generally used as
ground in AEP recordings, the electrode site ‘Fz’ towards the rear an additional 20%
of the total distance nasion to inion is the frontal midline, the site ‘Cz’ towards the

back by another 20% is the coronal midline, etc.

This system is for 21 electrodes (see Figure 2.1); but it is designed so it can be
used with additional electrodes (the extended 10-20 system). The nomenclature for
the electrode positions is alphanumeric, consisting of one or two letters derived from
names of underlying lobes of the brain, or other anatomic landmarks as auriculars and
mastoids; this nomenclature provides a system of coordinates for positioning a
designated electrode. The system places odd numbers for electrodes on the left
hemisphere and even numbers on the right; a “z” identifies the electrodes in the
middle line; two other relevant sites are the left and right mastoids (M1 and M2,

respectively).

Figure 2.1 Electrode distribution in accordance with the standard international 10-20 system
for the 21 electrodes; Fpz is generally used as ground and M1-M2 linked as reference in
multi-channel AEPs recordings [32].
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The number of electrodes needed is based on the type of activity to be
recorded, the population studied, and the number of channels available. The American
EEG Society [11] considers that the minimum number of channels required showing
the areas producing most normal and abnormal EEG patterns are 16 simultaneous

recording; another factor to decide the number of electrodes is the montage used.

The term ‘montage’ refers to the particular combination of electrodes
examined at a specific point in the time; that to record the activity from all areas of
the scalp. Montages are designated for 16, 18 and 20 channels [13]. Two standard
montages can be used in EEG, bipolar and referential; bipolar montages are also so
called differential. In a referential montage, the recording of the EEG from each
single electrode is made with a neutral reference, whilst for a bipolar montage; two

areas of the brain are recorded through two independent electrodes.

The analysis and interpretation of the EEG could be a problem when the signal
is contaminated by artifacts. An artifact is electrical activity which is not part of the
EEG. The most common artifacts come from the recording equipment, such as
random fluctuations of the signal at 50 or 60 Hz (line noise) or problems with the
electrodes. Line noise is generally identified by high voltage which produces
saturation of the differential amplifiers; such behaviour is uncharacteristic of the brain

activity.

2.1.2 EEG Artifacts

A general classification of EEG artifacts could be biological or external
artifacts; blinking, cardiac and muscular artifacts are examples of the first type whilst
high electrode impedances, line and background noise are examples of the second
type. A frequent artifact is related to problems with the electrodes, broken electrodes
or improperly attached to the head. Cardiac artifact is interference resulting from the
heart QRS complex or pulse artifact which is a consequence of the blood pulsing
through a vessel under an electrode; it could occurs due to the expansion and
contraction of the scalp arteries [40]. Before the analysis and interpretation of the
EEG, these artifacts must be eliminated; EEG artifact removal is dealt with in part in
Chapter 4.

10
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Whilst what has been discussed so far can be termed spontaneous EEG,
another particular aspect of the EEG is Evoked Potentials, which involve the
measurement of spontaneous EEG activity time-locked to the repetitive presentation
of a specific stimulus; generally either auditory, visual, or somatosensory.

2.2 Evoked Potentials

According to the ACNS [14] an EP (some time known as an Event related
potential, or ERP) is an electrical potential recorded from a human or animal
following presentation of a stimulus. An EP can be used to assess peripheral sensory
function and to evaluate the function of sensory pathways in the central nervous
system. These potentials can be Auditory, Visual and/or Somatosensory, which have
clinical applications to the diagnosis of diverse neurological disorders. Figure 2.2
shows the human cortex division, visual and auditory stimuli are integrated by the
occipital and the temporal lobe respectably; the frontal lobe controls motor functions

whilst the parietal lobe processes somatosensory stimuli.

Occipital

Temporal Lobe

Lobe

Figure 2.2 Human cerebral cortex division; each lobe is specialized in processing different
stimuli; the temporal lobe integrates auditory stimuli whilst the occipital lobe integrates visual
stimuli. Motor functions depend on the frontal lobe and the parietal lobe processes
somatosensory stimuli [100].

Although the EP amplitude is small (from less than one to several uVs), the
potentials are time-locked with the stimuli, then it is feasible to use a coherent average
to recover them from background noise. Additionally to the basic EEG equipment
mentioned before the clinical evoked potential equipment includes an averager; this

should average several epochs or trials of EEG in order to recover the EPs. The onset

11
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of the averaging sweep should be synchronised with stimulus production; depending
on the type of EPs to record, two or four channels are usually required. A mechanism
to reject artifacts is indispensable; the criterion for artifact rejecting is generally
simply by amplitude (those trials that exceed the limits of the A-D converter are
excluded from the averaging process). The replication of the EP is essential to
demonstrate that responses are consistently repeatable and therefore are of neuronal

origin and not artifact.

The EPs in children in particular have demonstrated a great clinical utility
because of the possibility to objectively assess the development of neurological
function is these subjects. All types of standard EPs have been shown to mature and
develop during infancy and childhood; such as Auditory Brainstem Evoked Potentials
(ABR), Visual Evoked Potentials (VEP) and Somatosensory Evoked Potentials (SEP)

these have been established as clinically useful in infants and children [14].

2.3 Auditory Evoked Potentials

An Auditory Evoked Potential is the response of one or more parts of the
auditory system (which consists of the ear, the auditory nerve and the auditory cortex)
which is evoked by an acoustic stimulus [58]. Since the stimulus is sound, the
response occurs somewhere in the auditory system; on analyzing the characteristic of
the response (generally amplitude and latencies of the waveforms), it is possible to

establish the region or regions in the auditory system which generated the response.

The principal sounds used to elicit AEPs are clicks, tone-bursts, tone-pips (see
Figure 2.3) and speech. The standard auditory stimuli used in AEP are clicks; these
stimuli are brief wideband sounds of varying amplitude (intensity level) but constant
polarity and duration. Click improves synchronous neural activity and is effective to
generate rapid evoked responses. Their repetition time generally used in infants to
evoke an auditory response is 10/sec. Tone-bursts are pure tones enveloped with a
trapezoid and tone-pips are pure tone enveloped with a rhomboid. The typical
frequencies selected in both stimuli are the frequencies included in the audiometric

range (tones at octave frequencies from 125 to 8000 Hz). These stimuli are optimal to

12
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generate slow evoked responses. The selection of envelope characteristics (rise-decay

and plateau times) and the specific frequency tone is based on the objective of the test.

In general the repetition time should be as fast as possible, in order to reduce
the test time but without sacrificing the quality of the auditory response. The
fundamental principle is that fast repetition times generate rapid auditory response
whilst slow repetition times evoke slow responses. There are not standard numbers of
stimuli (repetitions) in AEPs measurement; this number depends on the amplitude of
the response and the amount of background noise in the recording; fewer repetitions

are necessary with larger signals and/or smaller noise.

e Stirmabas duration

Click — Iﬂmp]itude

Tone-hurst Amplitude

apecifle frequency Enrvelope

' — -
Tone-pip _@_@W Amplitude

Figure 2.3 Principal stimuli used to elicit AEPs, stimulus clicks are wideband sounds whilst
tone-burst and tone-pips are specific frequency sounds. The stimulus’ duration, the repetition
time as well as the amplitude and frequency of those sounds produce different components of
the AEPs.

The stimuli are usually delivered to the subjects under test either through
headphones or speakers; in the case of children it is important to adapt the headphones
to assure a proper fit and to avoid collapse of the external auditory canal. The
intensity levels (amplitude) of the stimuli are calibrated in dBsp. (decibels Sound
Pressure Level), where the sound pressure of a sound is measured relative to a
reference pressure value (20 uPa). The instruments used to calibrate the intensity level

of the stimuli are sound level meter, microphones and an artificial ear.
The AEPs are generally recorded in an attenuated sound room such as an

anechoic chamber, to ensure that the subject being tested is not influenced by external

or internal reflected sound or noise. An anechoic chamber is a shielded room designed

13
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to attenuate sound and/or electromagnetic signals. Anechoic chambers absorb sound
echoes produced by internal reflections of a room; additionally, the anechoic
chambers also provide a shielded environment for Radio Frequency and microwaves
[62].

As mentioned before, the scalp recording of the AEPs require three or four
electrodes placed according to the International 10-20 system [10], the electrode
connected to the positive input of the differential amplifier is generally the Cz
electrode. In humans, AEPs must consist of at least 15 reproducible waveforms (see
Figure 2.4). The analysis of the AEPs is based on latency and amplitude criteria. In
general, the amplitude of each wave of the AEPs is a function of the intensity level of
the stimuli such that sounds with a higher intensity produce a larger auditory
response. The latency (time at which each one of the waves of the AEP appear after
the stimulation) is shorter with higher intensities. The AEPs can be classified in
accordance with their latency, such as Short Latency Auditory Evoked Potentials or
ABRs, Middle Latency Auditory Evoked Potentials (MLAEPs) and Long Latency
Auditory Evoked Potentials (LLAEPS) [58]; it is the latter type that are used in this

research.

The peaks of AEPs are labelled with Roman numeral for ABR and capital P’s
and N’s for MLAEP and LLAEP. ABRs, associated with the eighth cranial nerve and
the auditory brainstem, are followed by the MLAEP which neural generators are in
the upper brainstem and/or the auditory cortex. It is now possible to identify the
LLAEP which includes the slow and the late cortical auditory response, Figure 2.4

shows only the slow waveforms; the LLAEP is originated in the auditory cortex [10].
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Figure 2.4 Auditory Evoked Potential classification: Auditory Brainstem Response (ABR),
Middle Latency Auditory Evoked Potential (MLAEP) and Long Latency Auditory Evoked
Potential (LLAEP); Cz electrode connected to the positive input of the differential amplifier
[15].

The clinical applications of these potentials are varied, for example: newborn
auditory screening [14], the objective determination of auditory thresholds in infants
and children who are difficult to test with standard audiometric techniques [21],
monitoring of anaesthesia levels and evaluation of the auditory system maturation
[44;58;132]. Recently, AEPs have been used to evaluate Hearing Aids (HA) and Cls
[84;111;112] as well as to investigate mental disorders such Schizophrenia and
Alzheimer’s disease [57;113]. The following paragraphs set forth each one of the
AEPs mentioned; including their measurement parameters, main characteristics,

generators and clinical applications.

A. ABR

The first components or generator of the AEPs occur between 1 and 10 ms post
stimulus. This potential is known as the ABR and is produced by a brief sound, a click
of varying intensity, constant polarity and duration (0.1 ms) and typically a stimulus
rate of 10/sec. The number of stimuli necessary to recover this response is variable,
from 500 to 4000; fewer stimuli are needed with normal hearing and quite subjects

and at high intensities.

The electrode montage conventionally used in ABR recording is with the

negative input of the differential amplifier connected to the mastoid of the stimulus
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side (ipsilateral recording), whilst the positive input of the differential amplifier
connected to the vertex (Cz electrode) or the midline forehead near the Fz site; the

ground can be localized in the forehead (Fpz) or on the contralateral mastoid.

ABR is one of the most common audiological tests recently used because of
its reliability and independence from the patient’s state of arousal. It is possible to
identify five or six peaks in ABR; each peak is labelled with a Roman numeral from |
to V or VI. The ABR is generally used to determinate auditory thresholds in very
young children or those difficult to test by traditional methods; as well as to detect

neurological abnormalities in the auditory nerve and the brainstem.

The neural generators of the ABR waveforms (see Figure 2.4) begin with the
distal and proximal portion of auditory nerve (wave | and Il), wave Il is originated in
the cochlear nucleus whilst the superior olivary complex generates wave IV, finally

wave V is associated with the lateral lemniscus [105].

B. MLAEP

At between 10 and 50 ms the MLAEP is recorded; clicks or brief duration pure
tone stimulus as tone-bursts are appropriate stimuli to evoke this response. The
repetition time is generally 7.1/sec and the number of stimuli is variable, depending
on size of the response and background noise.

The nomenclature used to label the peaks of the MLAEP is a capital letter “P” for
positive voltages and a capital letter “N” for negative voltages (considering the vertex
as positive). The sequence of peaks and valleys is denoted alphabetically; N, Pa, Np
and Py, (see Figure 2.4). The MLAEP is recorded with electrodes placed at Cz and M1
or M2 electrodes (contralateral to the stimuli). The number of stimuli to elicit a clear

response is approximately 1000.
The principal clinical applications associated with this potential are frequency-

specific estimation of auditory sensitivity in both older children and adults and as an

indicator of levels of anaesthesia [82]. The generators of the MLAEP are in the
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thalamus and primary auditory cortex. The P, peak arises from the posterior temporal
lobe and the thalamic medial geniculate body could be the generator of the N,
components. There is controversy about the possible generators for the rest of the
MLAEP [58].

C. LLAEP

The LLAEP appears from 50 to 250 ms after stimulation; tone-bursts are used
to elicit this response, the stimuli duration depends on the application but is generally
10 ms for the rise-decay time and 30 ms for the plateau and a stimulus rate of 1.1/sec
[58].

The amplitude of these waves is larger than ABR and MLAEP amplitudes,
about 3-10 pV or larger (see Figure 2.4). As before, the peaks of LLAEP are labelled
with capital letters “P” and “N” for positive and negative peaks respectively; the
sequence of waves is denoted by numbers, P1, Ny, P, and N,. These waves are known
as slow cortical waves because they appear before the late cortical waves (for example
the P300) [82]. Slow cortical waves are elicited by a repetitive stimulus of at least one
stimulus per second; the changes of these waves are best studied using the latency of

peaks because the amplitude is much more variable between subjects.

The LLAEP is a response from the central auditory system and optimally
responds to tone-burst stimuli of relatively long duration, greater than 5ms. The
LLAEP is also named the “obligatory potential” because is determined by the
physical characteristics of the stimulus, such as amplitude and frequency as well as
stimulus duration and repetition time [67]; this implies that a slight change in certain
stimulus characteristic can modify the response. The LLAEP, along with the ABR and
MLAEP, are all exogenous responses [96], this means that are dependent on stimulus
characteristics and are independent of the subject attending; in other words, it is not
necessary that the subject performs a specific task such as for the P300 (oddball
paradigm) [21]. LLAEP can be recorded from an awake subject who is very oblivious
to the sound presented, because of this many researchers record these potentials whilst

the subject is reading something or watching a TV program without sound [105].
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Although LLAEP does not depend on a specific task or the patient’s cooperation, it

could be susceptible to subject condition and drugs.

This potential has been used in the diagnosis of neurological disorders, for
example some waves of the LLAEP could be absent in mental disorders as
Alzheimer's disease [57]. In Schizophrenia patients, N; latency could be increased
whilst P, latency and N;-P, inter-peak latency could be reduced [113]. LLAEP has
been used to assess higher level auditory system functions [67] and as a frequency
specific estimator of hearing sensitivity [119]. Purdy and Kelly, 2001 [111] used
LLAEP as an objective technique for HA fitting in children. These authors compared
aided (with HA) versus unaided (without HA) LLAEP waveforms; they identified the
P1 wave only when the children were wearing their HAs; the test stimuli in this

research was a tone burst at 1000 Hz and 80 dBsp._ delivered binaurally.

The principal generator of LLAEP waves in adults is located within the
temporal cortex, for example intracerebral and magnetic recordings in humans
demonstrate that P1 has an origin in the lateral portion of Heschl’s gyrus whilst N is

originated in the auditory superior temporal cortex [85].

In the following sections the generators of P; are revised, general concepts
about the maturation of the auditory system, and how AEPs have been used to

evaluate the auditory system maturation is explained too.

2.4 Generators of the P, peak

This section explains the different generators or components (cerebral process)
which constitute the peak between 50 and 150 ms of the LLAEP, known as the P;
peak. At least six different cerebral processes contribute to form the P; peak. The
following paragraphs describe the three “obligatory” components of this peak which
depend on the physical and temporal features of the stimulus and by the general state
of the subject [96].

A. Generator 1, with peak latency at 100 ms and maximally recorded from the fronto-
central scalp, is generated in the cortex of the supratemporal plane. The degree of
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frontal spread and of left-right asymmetry differs from subject to subject because of
the variable orientation of the supratemporal plane between individuals. The

amplitude of this element increases with increasing of stimulus intensity.

B. Generator 2 is composed by a positive wave at about 100 ms after stimulus and a
negative wave at approximately 150 ms, generated probably at the superior temporal
gyrus (see Figure 2.5) with maximum amplitude at the midtemporal electrodes. The
radially oriented generator would be activated by connections from the primary
auditory cortex and the thalamus. The effects of intensity and inter-stimulus interval

are not clear in this element.

Figure 2.5 Superior temporal gyrus in the human brain [100].

C. Generator 3 is a vertex negative wave with peak latency at 100 ms post stimulus
approximately; this element can be generated in the frontal motor and pre-motor
cortex. The maximal amplitude of this component is at the vertex and the lateral
central electrodes. N&atanen and Picton [96] suggest that the generator of this element
is the cortical projection of a reticular process which facilitates motor activity. At
stimulus intensities greater than 60 dBsp, and inter stimulus interval greater than 4-5 s

this component is easier to record.

D. The rest of the generators are related to the process of attention to the auditory
stimulus; generator 4 is the mismatch negativity, generator 5 is the sensory- specific
processing negativity and generator 6 is a second element of the processing negativity
[96]. These generators could be variations related to the attention of the subject; an
unattended auditory stimulus could activate two areas of the cortex: the supratemporal

plane (generator 1) and the superior temporal gyrus (generator 2); whilst an attendant
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stimulus could facilitate interneural connections to increase the extension and degree

of cortical activation.

2.5 Auditory System Maturation

One of the established ways to evaluate the maturation of the auditory system
in children is by using the changes in latency and morphology of the AEP peaks
[109;111;119]; maturation of the auditory system is dependent on the age of the
subject and the auditory stimulation properties.

In ABR, various components mature in new born and preterm infants, such as
wave shape, wave latency, inter-peak intervals and relative wave V/I amplitudes. The
changes are more remarkable in infancy with peak latencies reaching near adult
values at about 2 to 3 years of age; the ABR can be a measure of neurophysiological

function and development.

Ponton, 1996 [107] described the LLAEP changes, in amplitude and latency
from infancy to adulthood as a measurement of auditory cortex maturation. In the case
of normal hearing children, from 5 to 9 years old, the typical response has a large
positive peak around 100 ms (see Figure 2.6) labelled P, followed by a negative peak
N;, P1-N; complex; the amplitude and latency of this positive peak decrease as a
function of age. P1 peak is generated by thalamic and cortical sources.

uv
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Figure 2.6 LLAEP waveform of a normal hearing child (7 y. 0.), a positive peak around 100
ms (P,) followed by a negative peak between 200 and 250 ms (N,) characterize this waveform
(N;-P; complex).
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This peak begins to spread out and finally divides into two positive peaks
separated by a negative peak; from 10 years of age onwards, the LLAEPs are similar

to an adult morphology.

The maturation of deeper layers of the auditory cortex may mature in the
absence of sound stimulation whilst the maturation of superficial layers requires

sound stimulation during a critical period [44].

2.6 Cochlear Implants

A CI emulates the principal function of the human cochlea, transforming an
acoustic signal into pulses of electric current, to stimulate directly the auditory nerve
[134]. The prime candidates for Cls must fulfil at least three conditions: they have
severe hearing losses in both ears, their auditory nerve should be intact and functional

and they have not benefitted significantly from HAs.

The CIs, surgically implanted, are divided into two principal parts, the
external and the internal; the external part includes a microphone, a speech processor
and a transmitter coil. The internal part includes a receiver and an array of electrodes,
implanted in the base of the cochlea (see Figure 2.7).

Figure 2.7 Parts of a cochlear implant: 1. Microphone and Speech Processor, 2. Transmitter
coil, 3. Receiver, and 4. Electrode Array [7].
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A. Speech processor

The speech processor is a Digital Signal Processor (DSP) chip that analyzes
and codifies the sound signals. Once the microphone has received the sound, the
speech processor should determine which electrodes must be activated. The FFT is
the main strategy used to divide the signal into different frequency bands. In
accordance with every each manufacturer of Cls, the parts of the speech processor
could be different, but in general, it includes band-pass filters, envelope detectors,

amplitude compressors and pulse modulators [114].

B. Electrodes and stimulation modes

The electrodes are made of a highly conductive material, such as platinum or
iridium and are placed on a silicone rubber tip. In the 1970’s, Cls were single-channel
devices. These Cls included a band-pass filter at a frequency band relevant for speech
(340-2700 Hz) and a modulator (16 kHz sinusoidal carrier) which is necessary for the
inductive coupling across the skin; the improvement of the speech perception is
achieved by the introduction of random patterns of neural discharges [114].
Nowadays, in accordance with manufacturers, the Cls can have 22 or 24 electrodes,
which provide pitch perception and speech recognition to the users. In the case of ClI
with 24 electrodes, 22 electrodes are intra-cochlear and 2 electrodes are extra-cochlear
or remote electrodes; the electrodes which are placed outside the cochlea function as
ground electrodes. If one intra-cochlear electrode is stimulated with reference to a
remote electrode, the stimulation is so called monopolar but if one intra-cochlear
electrode is stimulated with reference to another intra-cochlear electrode the

stimulation is termed bipolar [92].

C. Programming the speech processor

A trained audiologist is the professional responsible to program the CI for
each user individually. The audiologists determine the Threshold (T) and Comfort (C)
levels of electrical stimulation as well as the method that the CI transforms sound into
electrical stimulation, in other words the audiologist must select the coding strategy

most convenience for each CI user. The most important coding strategies are:
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Continuous Interleaved Sampling, Spectral peak extraction and Advanced
Combination Encoder [134].

i)

Continuous interleaved sampling (CIS). In the CIS strategy, there is a pre-
emphasis filter, after the microphone, which helps in the detection of weak
consonants. The output of the pre-emphasis filter passes through band-pass
channels which filter, compress and detect the envelopes of the speech; the
envelope detection could be calculated by the FFT or using the Hilbert
Transform. The output of band-pass channels modulates the amplitude of
biphasic pulse trains. Modulated pulses from channels with low centre
frequencies for the band-pass filter stimulate the apex of the electrodes
array in the Cl whilst modulated pulses from channels with high centre
frequency stimulate basal electrodes in the implant; this stimulation mode
replicates the tonotopic organization of a normal cochlea.

Spectral peak extraction (SPEAK). In the SPEAK strategy, the signal
transduced by the microphone is sent to a bank of 20 filters that have
centre frequencies from 250 to 10 kHz. This strategy selects the output of
the filters with the largest amplitude, to stimulate the corresponding
electrodes; the number of maxima varies from 6 to 10. The stimuli are
pulsed and the stimulation rate is approximately 250 Hz.

Advanced Combination Encoder (ACE). This strategy combines the
spectral maxima detection of SPEAK with higher stimulation rates, for
example 14,400 pulse per second (pps), in order to avoid aliasing effects.
The principal difference between ACE and the other strategies is that the
number of maxima and electrode stimulated can be specified for each CI
user. The number of maxima should be high enough to include all the
fundamental spectral information of the signal but lower than the electrode

used to conserve a high rate of stimulation.

A common characteristic of all these strategies is the interlacing of stimulus

pulses across electrodes; this is to eliminate a vector summation of the electric fields

from different electrodes simultaneously stimulated. The stimulation waveform of

CIS, SPEAK and ACE strategies is pulsed which consists of square-wave biphasic

pulses trains. As part of the process of fitting the CI, the Audiologist must select the
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pulse rate, pulse duration and the range of frequencies for each band-pass filters. The
general objective of these strategies is to stimulate the auditory nerve in such a
manner that both the temporal and spectral characteristics of the acoustic signal are
codified efficiently [102].

The eventual hearing performance of CI recipients depends on various factors;
age at implantation, duration of deafness, number of electrodes inserted in the
cochlea, and the therapy of rehabilitation, to name a few. The success of the
implantation depends on the ability of the auditory system to extract useful auditory
information from the electrical stimulation provided by the Cls [103]. There are
different ways to evaluate this performance, for example, Pure-Tone Average
Audiometry, Speech Scores and Language Scales, all of these tests are subjective
[50]. The convenience of using LLAEP to asses the performance of these children is

the objectivity; this is dealt with in the next section.

2.7 Auditory system maturation after cochlear implantation

Although the electrical stimulation of a Cl, elicits the beginning of maturation
of the auditory system in deaf children, this follows different patterns when compared
to normal hearing children [108]. Ponton and Eggermont 1996 [107], observed
prolonged P; latencies associated with auditory cortex immaturity in children fitted
with Cls, and suggested that the delayed maturation is approximately equal to the
period of deafness (see Figure 2.8). Although the latency of the P; decreases rapidly
in these children, in an approximately exponential fashion, it is not equal to that of
normal hearing children; the positive peak latency remains prolonged whilst the
amplitude of this peak continues larger in children with Cls compared to age-matched
normal hearing children. In some implanted children the LLAEPs consist of just the

prominent P; peak, like that of the youngest normal hearing children.
Finally, the authors concluded that a CI is sufficient to restore at least some

aspects of auditory system maturation. Eggermont and Ponton, 2000 [109] concluded

later that LLAEPs are an efficient tool to describe the maturation of human central
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auditory system and that the maturation of this system is a function of sound
stimulation.

Normal-Hearing Cochlear Implant Users

100 200 100 200
Latency (ms) Latency (ms)

Figure 2.8 Development of LLAEP waveforms of normal hearing children. Between 5 and 9
years, the morphology of LLAEPs is similar in both normal hearing children and CI users.
From 10 years old onwards, the response of normal hearing children is similar to the adult
morphology (Pi-N;-P, peaks) whilst the response of CI children remains dominated by a
positive peak [108].

It is not known exactly what the age limits is to restore the maturation of the
auditory system by implantation, however Eggermont et al [45] found that in two
children implanted older than 8 y.o., their Py latencies were significantly longer than
the rest of children fitted with cochlear implants (mean deafness 4 year 5 months),
recorded in their study. Dorman et al [41] suggest that children implanted after 7 y. o.
show abnormal waveforms and do not develop normal P; latencies even after years of
implantation. These authors found that the auditory system maturation in children
implanted before 3.5 y.o. is in the range of normal after 3-6 months post-implantation.
Finally, these authors conclude the age of implantation is a significant factor in the
development of oral speech and language function. They also infer that the plasticity

of the auditory system is maximal for a period of about 3.5 years in childhood.

Since, the LLAEP peaks change from electrode to electrode and from subject
to subject, looking for a better indicator of the maturation of the auditory system in
children with Cls, Ponton et al [106] proposed maturation tracking by dipole source

modelling. The problem is however, when the CI is working, there is an inherent
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artifact, that can hide partially or totally the LLAEP and achieve an erroneous source

analysis as a consequence.

Something important to highlight about the methodology used on the papers
reviewed in this chapter is the fact that the auditory response from the Cls users is
evoked by an electrical stimulus instead of the acoustic stimulus proposed in the next

chapter.

2.8 Summary

This chapter included a review of audiological topics which are a fundamental
part for this research. Mainly through a review of the general concepts about the EEG,
including acquisition and common artifacts in this recording. The concepts of EPs and
LLAEPs and an explanation of the way to evaluate the auditory system using
LLAEPs were covered. Some general concepts about Cls were discussed too;
including ClI parts, speech processor characteristics and stimulation strategies. At the
end of this chapter a review was given of some papers which describe the maturation
of the auditory system after implantation.

The next chapter includes the details about the acquisition of the data set used

in this research; consisting of the multichannel LLAEPs of 10 children with Cls, as

well as the auditory response of twenty normal hearing children as a control group.
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Chapter 3.

The experimental dataset

Multichannel AEP recordings were obtained from the Audiology Laboratory
at the Universidad Autonoma Metropolitana-1zt, Mexico City. The Ethical
Commission of the National Institute of Respiratory Disorder, Mexico City, approved
the protocol to record the dataset used in this research. Normal hearing children and
children CI users had their EEGs recorded after written informed consent had been
obtained from their parents; a written explanation about the test was handed to parents
of the children, some days before the test.

The experimental dataset consists of LLAEPS (see Chapter 2, section 2.1-2.3),
since it is known that the multichannel recording of this auditory response is a useful
tool for monitoring the development of the auditory system [106]. These potentials
provide information about how the human brain processes acoustic information and
how this processing could be modified in neurological disorders [105]. Taking this
into account, this technique was employed as an objective method for evaluating the
performance of children with Cls. The LLAEPs were used to evaluate how the brains
of these children codify the stimuli generated by the CI, in accordance with the use of

this electronic device.

This chapter begins with a description of the subjects (normal hearing children
and children with CIs) who participated in this research (Section 3.1). Section 3.2 and
3.3 describe the test’s recording parameters and stimulus characteristics, respectively.
Section 3.4 shows some AEP waveforms from normal hearing children and children
with Cls. The spectral characteristics of the CI artifact and various procedures used to
some authors to remove this artifact are explained in Section 3.5. The last section of
this chapter describes some AEP signal processing and analysis techniques which

could be used to reduce the Cl artifact.
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3.1 Subjects

A control group of twenty normal hearing children consisting of 13 females
and 7 males between 3 and 14 y.o. were tested; this group was divided according to
their age into four groups (see Table 3.1) to facilitate the comparison between their
AEPs and the auditory response of the children with Cls. The age range for children
younger than 7 years was one year (Group 1 and 2) that to observe the auditory
response changes over short time periods; the younger the children, the age-related
differences in the auditory response are more marked [105]. The age range was two
years for children from 7 to 9 years old (Group 3) and 4 years for group 4 (these
divisions are the accepted over the age of 8 years and among teenagers [105]); each
group had the same number of subjects (N=5).

Table 3.1 Normal hearing children were grouped according to age to facilitate comparison
between their AEPs and the auditory responses of ClI users.

Group | N (Male/Female) | Age range (years) | Mean age (years)
1 5 (3/2) 34 3.2

2 5 (1/4) 5-6 4.7

3 5 (2/3) 7-9 7.6

4 5 (1/4) 10-14 10.8

All the normal subjects have no personal or familiar history of disease of the
ear or neurological disorders and they were not taking prescription medication at the
time of the test. Their pure-tone threshold levels were <20 dBy_ for audiometric
frequencies between 125 and 8 kHz. An otoscopy in both ears was performed before
the test in order to discard wax or check for perforations in the eardrum, as well as for

infection or inflammation in the ear canal.

Ten profoundly bilateral deaf pre-linguistic children between 3 and 12 y.o.
(see Table 3.2) were tested before the CI surgery and at different periods after
implantation. The aetiologies of the hearing losses of those children are diverse;
including rubella in the first weeks of pregnancy, ototoxic drugs and meningitis, to

mention only a few.
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All the deaf subjects were fitted with HAs before implantation, but they did
not receive any benefit from them. They had a low level in the Test of Auditory
Perception Skill [50]; this test evaluates the comprehension, verbal reasoning, mature
ability and spontaneous language production of child candidates for implantation.

The entire cohort of CI subjects, except one, are users of Cochlear Nucleus 24
[7], using the ACE stimulation strategy (see section 2.4), a pulse width stimulus of 25
us, and 5760 pps total stimulation rate; at the moment of each test they were using the
control volume of their Cls set to the most comfortable level for each user. Subject 8
is a user of Clarion 1.2 CI (16 electrodes) developed by Advanced Bionics [8]; with a

CIS stimulation strategy and 5200 Hz signal processing resolution.

Table 3.2 Ten children with Cls were recorded at different time after implantation in this
research. M: male and F: Female; months (m) and years (y) after implantation when the
studies were realized and the side of implantation (right or left) is indicated for each subject.
*Subject 8 is a Clarion CI user.

Subject | Climplant | Study | Study | Study | Study | sex Age at
side 1 2 3 4 implantation

1 Right 5m ly 2y 6m | M 8y3m
2 Left 3m ly F 10y5m
3 Right ly 1y 8m | 5y 5m M 7y1lm
4 Right 4m 8m 1y 6m F 3y8m
5 Right ly9m | 2y 8m | 5y Im M 4y5m
6 Right 2y 5m F 4y2m
7 Right 1y 4m F Sy2m
8* Right 9m 1y 8m F 3y6m
9 Left 5m F 4y 3m
10 Right 5m M Sy 5m
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3.2 Recording parameters

The ongoing EEG was recorded with 19 electrodes connected to a Neuroscan,
Synamps system multi-channel amplifier [1]. This software-programmable amplifier
includes 32 channels, 16-bit A-D conversion and a real-time digital filtering using
high-speed DSPs; each channel is equipped with 28 monopolar and 4 bipolar
channels. The Synamps system can acquire data in discrete epochs at sample rates up
to 20 kHz for each of 32 channels, 50 kHz for each of 8 channels, or 100 kHz per

each of 4 channels.

The EEG was sampled at 2 kHz and filtered between 0.1 and 500 Hz, + 12
dB/octave. The analysis window consisted of a 450 ms window, including 150 ms of
pre-stimulus data (pre-stimulus baseline longer than 100 ms are enough to average out
residual noise [105]). 150 epochs were recorded, with 900 samples each; automatic

artifact rejection was used if the signal exceeded = 70 pV.

An internal calibration of the Synamps system was carried out before the EEG
recordings; using a sinusoidal signal (1 V amplitude); amplified and averaged by the

system with the same conditions mentioned above.

Medium and small Electro-Caps [6] were used as the EEG electrode
application technique; they are made of an elasticated fabric. The silver silver-
chloride electrodes on the caps, attached to the fabric, are positioned according with
the International 10-20 electrodes system (see section 2.1.1). The diameter of the head
of each subject was measured to determine the proper cap size to use; two cap straps
were fitted to the torso of the subjects to avoid movement of the cap. The electrodes
were attached to the scalp using an electro-gel which has been specifically formulated

for the use with these Electro-Caps [6].
A monopolar recording montage was used, the reference electrodes were the

linked mastoids (see Figure 3.1); together with linked earlobes, these references are

the most commonly used in AEP recordings because it is possible to pick up activity
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from the lateral and inferior aspect of the temporal lobe; Fpz was connected to

ground.

T—p Eef

Figure 3.1 Electrode distribution according to the standard international 10-20 system for the
19 electrodes used in this research; Fpz is ground and M1-M2 linked is the reference.

The inter electrodes impedances were checked after placing the Electro-Cap
and just before the recordings began; generally the impedances were balanced and
below 5 kQ. The impedances were rechecked during the recording if a pattern that

might be artifactual appeared in the EEG recording.

Only 19 electrodes were used, as since the subjects were not under sedation it
was considered important to reduce the testing time, and so decreasing the time to
attach the electrodes was important (assuring balance inter electrodes impedances <5
kQ). Using fewer electrodes could however have an effect on any accuracy of the
source analysis of the P, peak later on. Nevertheless, the exact electrode positions for
each of the subjects was digitized at the end of each test using a three-dimensional
Fastrak 3D digitizer [2], these locations were determined relative to three landmarks
(nasion, right and left auricula); these three landmarks were used to increase the
accuracy of the AEP source analysis, specifically the source analysis of the positive
peak, P1, between 50 and 150 ms after the stimulation. This is discussed later on in
this thesis (see Chapter 9).
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3.3 Stimulation

The stimuli were generated by a software package called STIM which is part
of the Neuroscan module [1]. The Sound Editor of this module has a dynamic range
of 130 dB, with a programmable attenuation in 0.75 dB steps, 16 bit quality digital
sampling, customizable digital filtering, mono or stereo processing, and a diversity of
windowing options; for example Rectangular, Hamming and Hanning windows.
Sounds can be synthesized as pure tones, clicks and noise; triggering is provided for

external devices such as the Synamps system.

Tone bursts were used as stimuli, with rise and decay times of 10 ms and 30
ms plateau time (see Figure 3.2), an inter-stimuli interval of 1s was used. Three
frequencies were selected: 500, 1000 and 2000 Hz with different audiometric intensity
levels, 50 and 70 dBy, for children with Cls and 60 and 80 dBy,_ for normal hearing
children.

The stimuli were windowed with a Hanning window and calibrated using a
Brilel & Kjer 6cm? ear simulator type 4152 and a precision sound level meter type
2234 [4]. In the case of normal children, the stimulation was binaural via TDH-39
headphones and a speaker was used to stimulate children with cochlear implants. The

speaker was localized one meter distant from the subject and with 0° azimuth.

Amplitude
PS

B A -

— 10ms — 30ms +— 10ms
1

Figure 3.2 Tone burst with rise-decay time of 10 ms and a plateau time of 30 ms; the inter-
stimuli interval is 1 s. The frequency of this tone burst is 500 Hz; the amplitude (intensity
level) is variable and is calibrated in dBy, .

Each test session included one recording of the spontaneous EEG without

stimulation; then each frequency and each intensity level was replicated in order to be

32



Chapter 3. The experimental dataset

sure about the reliability of the auditory responses. The total test time was
approximately one hour, including positioning the electrodes. The following table

summarises the principal parameters of the recordings.

Table 3.3 Summary of recording parameters; M1+M2 are left and right mastoids linked.

Parameter Value Comment

Electrode montage | 19 monopolar electrodes | International 10-20 system

Low pass filter 500 Hz -12 dB/oct

High pass filter 0.1Hz +12 dB/oct

Analysis window | 450 ms 150 ms of pre-stimulus
Stimulus type Tone burst 10-30-10 ms

Intensity Level 60-80/50-70 dBw. normal subject/ClI user
Frequency stimuli | 500, 1000 and 2000 Hz

Transducer Headphone/speaker normal subject/CI user
Number of epochs | 150 900 points/epoch
Repetition rate 1 pulse per second

Electrode reference | M1+M2

Artifact rejection | £70 pV On line

All measurements were carried out in an anechoic room (3.5x3.0m). During
the recordings the children were rested in a reclining chair, in half-light and were
asked to relax with eyes closed; their mothers remained in the room during the entire
test. The subjects were monitored using an infrared video camera; additionally their

mothers had access to a microphone to communicate with the researchers.

Although some authors [58;105] recommend recording the auditory potential
whilst the children are watching a video without sound, to best record the response;
the AEP recorded in normal hearing children (see Figure 3.3) using the recording
parameters described before does not suppress the P, peak and it is similar to the AEP
reported by Wunderlich, et al [132;133] in a group of children in response to pure

tones.

33



Chapter 3. The experimental dataset

3.4 The AEP waveforms recorded

Figure 3.3 shows the average of the AEP waveforms at Cz electrode from the
normal hearing children dataset (see Table 3.1), for Group 1, younger than 4 y.o0. a
broad positive peak with a maximum at 110 ms is recognized, in both Group 2 and 3
the P1-N; complex can be identified, the latency of both peaks are shorter in Group 3
(younger than 8 y.o.) than in Group 2. Finally, the AEP waveforms of Group 4 (older
than 10 y.o0.), show a negativity followed by a positive and negative peak (N1-P1-N;

complex), similar to the auditory response in adults.

The average latency of P, peak had a shift of 5.17 ms between Group 1 (138
ms) and Group 2 (132.83 ms), whilst the latency of P; (106.8 ms) in Group 3 is the
shortest of those three groups. In group 4 a negative peak substitutes P; peak, this
peak had an average latency of 88.1 ms. Both the age-related latencies changes of P,
as well as the appearance of a negative peak instead of the positive P; peak, in older
children, show the maturation of the auditory system in the control group; theses
results are similar to other authors [107;108;132;133].

A Suv]

M\Jt/b Group 4
|

% Group 3
|

WP/T\J Group 2
| Group 1
|

-100 0O 100 200 300
ms

Figure 3.3 Average AEP waveforms at Cz electrode of normal hearing children for each one
of the groups in Table 3.1. The latency of the positive peak decreases as a function of age.
Group 4 presents a negative peak instead of the positive peak of the others groups; this is
similar to the auditory response in adults.
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Four recordings from children with Cls were excluded from the analysis in
this research. The recordings from S8 (Stl and St2) were not included because, this
subject is using a different CI, then this could introduce a bias in the interpretation of
the results. At the time of the recording S4-St3 the subject had interrupted the use of
her Cls for more than 6 months. Since the objective of this research is evaluate the
changes of the AEP in accordance with the CI use, this recording is not consistent
with the rest of the recordings where the subjects have been using without
interruptions. During the recording S9-St1, the subject reported discomfort during the
test; the recording has too few epochs because most of they were saturated and were

automatically rejected

Figure 3.4 shows the AEPs for four different child Cl users at Cz electrode
and at different times after implantation, (a) S3-St1, (b) S3-St2, (c) S5-St2 and (d) S5-
Stl. It is possible to recognise a positive peak between 100 and 200 ms after stimuli.
The latency of Py is 172, 173, 150 and 124 ms in (a), (b), (c) and (d), respectively. The
N; peak was identified in all this recordings with latency between 200 and 300 ms.

In general, the latencies of P; peak in children with Cls are longer than in
normal hearing children; the amplitudes are higher in implanted children than in

normal children.

Appendix A includes the entire AEP recordings for both normal hearing
children and children with Cls, the latency and amplitude of P; peak are included as
well as general information about the subjects. The changes in the source analysis of

this peak in accordance with the time using the Cls are shown later on in this thesis.
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Figure 3.4 AEP waveforms at Cz electrode for four different children with Cls, (a) S3-St1,
(b) S3-St2, (c) S5-St2 and (d) S5-Stl. It is possible to recognize a positive peak between 100
and 200 ms after stimuli in all the recordings as well as a negative peak between 200 and 300
ms.

3.5 Cochlear implant artifact

The ClI artifact in the EEG recording is the result of the coupling between the
external and internal parts of the implant, a magnet maintains the attachment of the
radio frequency antenna on the scalp for the digital communication between both
parts; this artifact totally or partially obscures the AEPs, especially in the electrodes
that are around the CI. Figure 3.5 shows 20 epochs of ongoing EEG recordings from a
Cl user where it is possible to visualize the CI artifact; the antenna is localised around
the T4 and T6 electrodes.
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Figure 3.5 Twenty epochs of ongoing EEG recording from a Cl user, a large cochlear implant
artifact (blue ellipses) is present around T4 and T6 electrodes where the antenna of the
implant is located.

S

There are different reasons why the CI artifact may appear in the AEP
recordings, for example, the mode of stimulation of the Cls and localization of
reference electrode of the AEP recording; Gilley et al [52] reported a greater
incidence of the artifact in monopolar stimulation. This is not a new problem; many
authors have already recorded this artifact previously in their AEPs recordings
[39;102;118;130].

In AEP recordings from subjects without Cls, one strategy used to avoid the
stimulus artifact produced by high intensity sound levels, is to utilize alternate
polarity stimuli. However, the CI’s speech processor does not encode the phase of the
stimulus; because of this it is not a feasible alternative to solve the problem with Cls

users.
Conventional filtering procedures are not appropriate because the AEP and the

ClI artifact have common low frequency spectral components (see Figure 3.6). This
figure shows the magnitude of the FFT of both the AEP (blue) and the CI artifact

37



Chapter 3. The experimental dataset

(red); it is possible to see that the two signal share frequency components lower than
10 HZ.
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Figure 3.6 Magnitude of the FFT of both the AEP and the CI artifact, these singals have

common low frequency components (<10 Hz).

Several solutions have been proposed to try to eliminate or reduce the CI
artifact, for example Waring et al [130] removed the first part of the auditory response
recorded from CI users to eliminate a large stimulus artifact that was recorded; this
alternative is not guaranteed to preserve the auditory response and to eliminate only
the CI artifact.

Another solution, proposed by Pantev at al [102] was to analyze only the
contralateral hemisphere to the implant which is less contaminated by the artifact; the
inconvenience of this proposal is the loss of contralateral information which is
important to determinate hemispheric asymmetries in the response; additionally, the
ClI artifact could be spread out around all the electrodes. In a later publication Pantev
et al [101] proposed to use a frequency-shift stimulus which produced a 10 times

smaller artifact than the one originated by usual tone-burst stimulus, nevertheless the
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artifact would still be present for which the authors then applied Principal Component

Analysis to remove it.

Sharma et al [119] reported that the CI artifact hides the P; response to a
speech syllable /ba/; they moved the reference electrode of the AEP recording, so that
the amplitude of the artifact was minimal; nevertheless, they suggest that it is
necessary to develop signal processing techniques to minimize this artifact. The
following section includes a review of the principal AEP signal processing techniques
used to analyse AEPs as well as to remove the artifacts that confound their proper

analysis.

3.6 AEP signal processing and analysis techniques

The AEP is several times smaller than the ongoing EEG, because of that it is
necessary to do signal processing of the EEG to extract the auditory response from the
EEG and then to obtain the signal characteristics (amplitude, latency and waveform)
of clinical interest. AEP signal processing and analysis techniques have been on the

increase in biomedical signal processing over the last few decades.

The principal techniques used in AEP signal processing and analysis are:
Coherent averaging [21], Digital Adaptive Filtering [17;110], Regression Methods
[34], Multi-resolution methods by Wavelet Transforms (WT) [19], Principal
Components Analysis (PCA) [42] and Blind Source Separation (BSS) by Independent
Component Analysis (ICA) [24;31;93]. Most of these techniques look for recovering
the auditory response using the minimum number of epochs and keeping only good
quality responses. These techniques have been used to develop procedures for
automatic identification of the AEP peaks and to remove artifacts for the efficient
analysis of the AEPs. The artifacts are produced by external and internal sources;
external sources are, for example, line noise and interference from other medical
equipments. Internal sources are caused by subject movements, muscle or cardiac

activities and eye movements.

Coherent averaging is the traditional method to recover and then analyse the
AEP from the spontaneous EEG; this procedure consists of averaging a different
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number of epochs or trials of EEG. The i-th EEG epoch, xi(t), in an AEP recording
contains both the auditory response, r(t), and the background EEG e;(t)

X (t)=r(t)+e(t), 3-1

the coherent average estimates the auditory response as

Assuming that the auditory response is the same at every stimulus presented and in
contrast the background EEG is random, the average EEG decreases in proportion to
the square root of the number of epochs [21]. Since the amplitude of the different
types of AEP is variable the number of epochs to achieve a distinguish response is

different for each type.

The function of a filter is to remove noise from a signal or to extract parts of
the signal with certain frequency range. A digital filter performs numerical
calculations to reduce noise or to enhance components of the signal. The applications
of digital filters are diverse; one of the most common is to reduce or to remove
artifacts. Another application of digital filters is enhancement and/or the extraction the
characteristics of a signal of clinical interest; for example the processing of the EEG

to extract signals as the AEP.

Digital filters which self-adjust their characteristics are known as adaptive
filters; these filters consist of two parts: a digital filter with adjustable coefficients,
and an adaptive algorithm which modifies the coefficients of the filter. Removing of
ocular artifacts from EEG is one of the most popular applications of adaptive filters in
EEG [60;61].

The time-frequency characteristics of the AEPs have been analysed using
adaptive filters; these filters adjust their transfer function according to an additive
input signal formed by the desired signal and noise (both the desired signal and noise

are uncorrelated). The ABR signals are usually considered in three frequency bands: a
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low band up to 240 Hz, a medium band between 240 and 483 Hz, and a high
frequency band above 500 Hz [18]; an adaptable filter could be used for the peak
identification of the components at each of these frequency bands. Pratt et al [110]
indentified the ABR peaks using a digital filter at slow and medium frequencies, with
the medium filter the peaks I, 1l and V were enhanced and the slow filter was used to
enhance the peak V. After filtering, the peak identification was performance by

analysis of the voltage and latency of the peaks.

When a digital adaptive filter is used, for example, to reduce the residual EEG
or any other noise in the AEPs, it is necessary to choose a filter with a linear phase to
preserve the latency of the auditory response [110]; this characteristic is one of the
most important measures for clinical applications. A Wiener filter is an adaptive
linear filter which reduces the amount of noise in a signal by comparison with an
estimation of the desired noiseless signal. Two signals, yx (noise) and X, (signal and
noise), are applied simultaneously to the Wiener filter, X, is formed by a part which is
correlated with yx and another that is not. The output of the Wiener filter is an optimal
estimate §, of the part of x¢ which is correlated with yy. The filtering error, ey, is the

difference between the estimated signal and the true signal with some delay.

In the adaptive ocular artifact filtering, the adaptive filter requires four ocular
signals, from two electrodes placed near the external cantus of each eye (to record
horizontal movements) and two electrodes placed closely above and below both eyes
(to record vertical movements), the Fpz electrode is used as ground; this signals
compose the Electrooculograms, EOGs. The contaminated EEG and the EOGs are
used to obtain an estimate of the ocular artifact; this estimate is subtracted from the
contaminated EEG to yield the de-noised EEG. The fraction of the ocular artifact
removed from the adaptive filter depends on the degree of correlation between the
EOG and its components in the EEG [72].

Gharieb et al [51] proposed to use the Wiener filter together with singular
value decomposition (SVD) to reduce the number of epochs required to recover
evoked potentials. SVD of a dataset of signals contains information about their

energy, the number of sources and the noise level. The authors use the Wiener filter to
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improve the SNR of simulated data with different levels of white Gaussian noise.

After filtering, they apply SVD to identify the desired evoked potential.

Regression methods estimate and remove the portion of artifact that is present
in the EEG using a least squares criterion; this technique has been used mainly to
remove ocular artifacts from EEG [33;34]. A regression method calculates a

coefficient (B) using the EOG, y;, and EEG, x;, measured voltages at time i as

B=>"(y, —E{y}{x, —E{x})/ > (y, —Ely)), 33

B calculates the proportion of EOG which is present in the EEG. B is used to correct
the EEG using

CXi:Xi_B(yi)_Ca 3-4

cX; is the corrected EEG and C the constant from the least squares formula
C = E{x}-(B-E{y}). 3-5

This method could need more than one clean EOG channel to correct the EEG [34];
the use of more complex equations than Equations 3.3 and 3.4 (i.d. multiple
regression). There are different ways to calculate B in multiple regressions, the

correction obtained by each regression is different [33].

In multi-resolution analysis (MRA) the components of a signal are partitioned
into frequency bands of increasingly high resolution; at the end of the analysis the
signal is decomposed into coarse and detail components [125]. MRA is implemented
using low and high pass filters and subsampling. This technique has been used to
study the elements of a signal and to filter signals; unwanted components are removed
after signal decomposition and then the filtered signal is reconstructed using the

inverse procedure of MRA.

The Wavelet Transform is a mathematical tool which provides information

about the time, amplitude and frequency content of a signal; this is a commonly used
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method in MRA. In WT the signal values are weighted by wavelet functions, all the
wavelets are derived from a basic ‘mother’ wave, this wave has different properties:
oscillatory, band pass and invertible. The WT has been used in the analysis of EEG as
well as AEPs [17;19]. Decomposing the auditory response at different scales, results
in diverse features of the response (frequency bands) that can be analyzed. The
principal inquiries when the WT is used are the selection of the most appropriate WT

algorithm and the mother wavelet convenient for the analysis.

PCA is another technique commonly used in signal processing, for example in
dimensionality reduction, feature extraction, noise filtering and classification [30].
The aim of PCA is to obtain a small number of uncorrelated variables (principal
components) of a signal (with zero mean), retaining as much information as possible
from the original variables. PCA is usually implemented using SVD, finding an
orthogonal basis for a given signal. The optimal solution for PCA is based on second
order statistic (SOS), calculating the eigenvector and eigenvalues of the covariance
matrix of the data. The first eigenvector gives the direction of the maximum variance
of the signal; after the first component is extracted, the second component is extracted
from the remaining variability, and so on until there is essentially no variance left
[59]. PCA divides the signal into two subspaces: the signal subspace related to the
largest components (an approximation of the noiseless signal) and the noise subspace
associated with the minor components. PCA has demonstrated to be more efficient

than regression methods to remove artifact such as ocular artifacts [89].

BSS by ICA is a statistical algorithm whose aim is to represent a set of mixed
signals as a linear combination of statistically independent underlying sources or
components [24]. Recently, ICA has been used to separate and remove artifacts in
EEG data, such as eye movement, blinking, cardiac signals, muscle activity, and line
noise [63;78;80;123;129]. ICA has been employed in the analysis of EEG and
Magnetoencephalography (MEG) recorded using vibrotactile stimulus [128] and
auditory stimulus [52;93;123] and in the detection of epileptic seizures [74-76]. The
selection of the most appropriate signal processing techniques depends on the purpose
of the processing and the characteristics in time and frequency of the desired AEPs.
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AEP artifact removal

In the case of this research problem, the application of the signal processing
techniques have one main objective, the reduction of the CI artifact (see Figure 3.4
and 3.5); in order to obtain a clear representation of the AEP and thus to enhance the
accuracy source analysis of the P; peak. The implementation of some of the
techniques mentioned above to remove the CI artifact could have some inconvenience

as explained in the following paragraphs.

The implementation of regression methods to remove artifacts requires a good
regression channel for each artifact source which is not usually accessible; for
instance, Jung et al [80] indicated that regressing out muscle noise is not practical
since signals from multiple muscle group require different reference channels. In the
case of the CI artifact, it is not always the same for all the subjects (see Figure 3.4),
and depend on the stimulation strategy used in each child; additionally, the effect of
the CI artifact changes from electrode to electrode. Furthermore, it would be
necessary to determine if it was not cancelling out information of the AEP together
with the CI artifact.

PCA can not completely separate the ocular artifacts from EEG when they
have similar correlation [93]. Jung et al [77;79] carried out a comparison between
ICA and PCA to remove EEG artifacts, analysing the spectrogram of the EEG with
out the artifactual components obtained with both techniques, the authors concluded
the ICA removed only the EOG activity produced by eye movements whilst PCA
additionally removed a portion of the theta EEG activity; the authors suggest that ICA
recovers more brain activity in both simulated and real EEG data than PCA. In
general ICA better estimates biomedical signals than PCA. It is important to highlight
that PCA is used by many ICA algorithms to reduce the dimensionality of the data

whilst maintaining as much as possible of the variation present in the original dataset.
One advantage of using ICA to remove the CI artifact instead of any other of

the signal processing technique mentioned so far are that spectral analysis and WT are
applied to AEP averages whilst ICA is applied to ongoing EEG making it possible to
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reduce the number of epochs needed in the analysis and hence allowing a reduction in

the overall recording time.

The amount of data that ICA needs for reliable decomposition of a signal
depends on the number of channels. Since ICA is a statistical method, a large number
of data points can improve the decomposition; however there is a compromise
between the number of data points and the stationarity of the signal. Delorme and
Makeig [40;79] recommended a number of points at least a few times the square of
the number of channels (n) to obtain n stable decompositions; with the resolution of

our data, 900 points per epoch, 50 epochs assures this criterion.

Furthermore, most of the signals processing techniques mentioned before
remove only one type of artifact whilst ICA recovers components for each one of the
artifact of the EEG as well as the auditory response. The use of ICA not only removes
the AEP artifacts, including the CI artifact, but also recovers the auditory response, in
order to objectively evaluate the performance of child CI user. This is what is

proposed in this research.

3.7 Summary

This chapter included the specifications for the dataset recordings used in this
research. Also, the recordings of the AEPs for groups of both normal hearing children
and from children with implants were shown. The principal signal processing
techniques used in the AEP analysis were reviewed and the use of ICA to remove the
Cl artifact and isolate the AEPs over any of the other of the techniques mentioned was

proposed.

The next chapter includes an overview of the statistical topics necessary to
understand the techniques of BSS by ICA used in the pre-processing step of the
dataset before the AEPs source analysis stage. Moreover, this next chapter covers the
theory of BSS by ICA in general and the principal differences between three of the
more popular ICA algorithms (FastICA, Infomax and TDSEP-ICA) in particular.
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Chapter 4.

Blind Source Separation and

Independent Component Analysis

Blind Source Separation (BSS) is one of the many statistical techniques used
in the pre-processing of biomedical signals. The recording of biomedical signals is
essential to understand the function of physiological systems. However, these signals
are easily distorted by noise and interference [30]. Because of this, a pre-processing
step is fundamental to improve the signal quality and make easy the analysis for
prognostic and diagnostic proposes. Recently, BSS by Independent Component
Analysis (ICA) has been used to recover different biomedical signals, for example the
components of Evoked Potentials, Electrocardiac and muscular signals [22;123;128],
as well as to remove the classical artifacts of EEG, such as blinking, line-noise and
other background noise [78;129].

As mentioned in Chapter 3, ICA is used here primarily to remove the CI
artifact. This chapter will present some discussion on why the ICA algorithm is more
convenient to remove this artifact from the EEG. The next chapter then assesses three
popular ICA algorithms for AEP component estimates, as well as establishing the
criteria for selection of their optimal parameters to reduce the CI artifact. Before that,
it is useful to first define some statistical concepts used by ICA and provide some

details about the three ICA algorithms assessed.
This chapter is divided into three parts; the first reviews some of the statistical

concepts used in the theory of BBS and ICA, the second includes an explanation of

the ICA technique, including the principal assumptions that are made on applying this
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procedure, and finally, three ICA algorithms are listed which were used to extract the

AEPs and the Cl artifacts from the dataset used in this research.

4.1 Statistical concepts for BSS and ICA

BSS is a statistical technique which works on recovering a set of unobserved
signals from sensors that are linear mixtures of unknown independent sources [24].
This technique is known as “blind” because: 1) the source signals are not observed
and 2) only general information is available about the mixture.

The statement that different sensors receive different mixtures of the sources is
exploited by BSS; that is spatial diversity. Spatial diversity means that BSS looks for
structures across the sensors and not (necessarily) across time. BSS identifies the
probability distribution of the measurements, given a sample distribution. The
principal statistical concepts used by BSS and ICA are briefly explained in the

following paragraphs.

All the characteristics of a random variable X are defined by its probability
density function (pdf). The pdf is a function that assigns a probability density to each
value of the random variable. A probability distribution has a density such that the

probability in the interval [a, b] is given by

[P (X)ax . 4-1
The joint probability density function of X and Y is the distribution of the
intersection of both random variables; the joint probability of X and Y is written as

Py (X,Y). 4-2

Independence: if we consider two random variables, for example X and Y,
independence intuitively means that information on the value of X does not give us
any information on the value of Y. More formally, independence is defined by the
probability densities; X and Y are independent if and only if their joint pdf is equal to
the product of their individual pdfs, that is
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Py (X,Y) =P (X)R.(Y). 43

The pdf of n independent signals is shown by
P(sl,sz,...,sn):H::lP(si). 4-4

Random variables are independent and identically-distributed (iid) if each one
has the same probability distribution as the others and all are mutually independent.

In order to solve the source separation problem it is necessary to identify the
probability distribution of the data and to calculate a separating matrix (also called the
de-mixing matrix, W), proposing a statistical model with two components: a mixing
matrix (A) and the probability distribution of the data. A is a full rank matrix; it is

square, invertible and its columns are assumed to be linearly independent.
The simplest BSS model using a vector notation is given by
X=As, 4-5

where s is the vector of source signals (n is the number of sources) and x is the vector
of measured signals (m is the number of sensors). This is a multiplicative model
where the measured signals are the product of the mixing matrix A by the sources
[25].

Sometimes it is more convenient to express the model in Equation 4.5 as a
sum, a/ is the j-th element of the i-th column of the A matrix, then using a column

notation the model is written as

X, ()= als,(t). 46

ij=1
Where s; is the i-th element of vector s. This is an additive model where the measured

signals are a sum of the products of the columns of the mixing matrix by the sources
[23].
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A variety of ICA algorithms have been suggested in the literature, each one of
these algorithms proposes a contrast function, which is a real function of the
probability distribution of the data. The maximum likelihood estimation is a popular
statistical method used for fitting a model to some data; therefore, it is used to find the
contrast functions. Contrast functions can be defined using higher order statistics, for

example the kurtosis.

Kurtosis: measures the relative peakedness or flatness of a pdf, a distribution
with a positive kurtosis is named leptokurtic (super-Gaussian); a distribution with a

negative kurtosis is named platykurtic (sub-Gaussian). Kurtosis, kurt, is defined as

w4
kurt=w—3, 4-7
(o)

where o is the standard deviation of the random variable X; the constant term -3
makes the value zero for a normal distribution. High kurtosis value means more of the

variance is due to infrequent extreme deviations.

Sources such as the AEPs and artifacts in EEG recordings have a positive
kurtosis, and spontaneous brain activity (for example alpha waves) and power
interference have a negative kurtosis value [22]. One restriction in some ICA
algorithms is that sources must be non-Gaussian and that non-Gaussianity is measured

by kurtosis.

Decorrelation of the source signals can be used to simplify the BSS problem
(called whitening or sphering as a pre-processing step). This step, based only on
second order statistic, eliminates redundancy or reduces noise in the data [30]. A
whitening matrix M is chosen so that the covariance matrix of the source signals
becomes the unit matrix; in whitening, measured signals are pre-processed using the

following whitening transformation

X, (t) = Mx(t). 4-8
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The whitened signals are mutually uncorrelated and have unit variance, i.e.

TaaT T
Ry, = E{MX(t)x(1)' M"| =MR M" =1, 4-9
Whitening reduces the mixture to a rotation matrix Q, because it relates two spatially
white signals s(t) and xy(t) [24]. Then, the de-mixing matrix can be calculated as the

product of the whitening matrix and the rotation matrix

w=QM 4-10
The de-mixing matrix restores the maximal peakedness of the sources; the possible
approaches to source separation restore the mutual independence of the signals.

Hence, the estimation of the sources can be found by

$(t) = Wx() . 4-11

Some BBS algorithms utilize concepts originating from information theory
such as entropy, negentropy and mutual information. The different algorithms use
these statistical concepts as a quantitative measure of non-Gaussianity of a random
variable; BSS can be solved for example, by minimising the mutual information

between two variables.

Entropy: is a measure of the uncertainty associated with a random variable.
Entropy has to do with how much randomness there is in a signal or random event, in

others words how much information is carried by the signal.

If we consider a random variable X with a probability density function Px(X),

the entropy of this variable is defined by

H(X)=~E{log P, (X )}=~[" P (X)log P, dX . 4-12

Since the entropy of the mixing matrix tends to increase, then the separated
source signals should have minimum entropy. A Gaussian variable has the largest

entropy among all random variables with the same variance.
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Negentropy: is a statistical measure of ‘distance’ from Gaussianity of the

random variable X and is defined as

j P, (X )log ())(( )) dx 4-13

where P,_(X) is the probability density of a Gaussian variable with the same mean

and variance as Px(X); negentropy is always nonnegative and is zero if and only if the
probability distributions are identical.

Mutual information: (MI) is a measurement of the independence of two

variables. Two random variables (X and Y) are independent when they have a low Ml
value; on the contrary, if the Ml is high this means that the variables are dependent.
Only if Ml is zero can X and Y be strictly independent; the M1 is always non-negative

[87]. The MI between two random variables is defined as

P Y
I(X,Y):J'J‘PXYY(X,Y)IogPX;( ’Y dxdy 4-14
X

where Px(X) and Py(Y) are the individual pdf of X and Y respectively and Pxv(X, Y) is
the joint pdf of X and Y.

The joint entropy of two random variables is defined as

H(X,Y)=H(X)+H(Y)=-1(X,Y). 4-15

Through maximizing the individual entropies, H(X) and H(Y), and minimizing the Ml
I(X, Y) between the two signals, it is possible to maximize the joint entropy (see
Equation 4.15); that is a simple algorithm for BSS. An advantage of MI, over other
techniques, to measure independence is that the whole dependence structure of the
variable is being taken into account and not only the covariance, as is the case in
PCA.

Principal Component Analysis (PCA): is a statistical technique used to

decompose data into orthogonal components, PCA is generally implemented using

SVD; after the first component is extracted, the second component is extracted from

51



Chapter 4. Blind Source Separation and Independent Component Analysis

the remaining variability, and so on until there is essentially no variance left. The
resulting components are uncorrelated with each other (first order decorrelation) [59].
PCA computes the eigenvectors and eigenvalues for an estimated covariance matrix;
the covariance matrix is the correlation matrix of the vector with the mean removed, i.

e.

R, =E{x®)x"(t)} = VAV, 4-16

where A is a diagonal matrix, containing the eigenvalues, and V is the corresponding
orthogonal or unitary matrix consisting of the unit length eigenvectors. Next, the
measured signal is projected in the estimated signal subspace and then rescaled such

that each component has unit variance

X, ([t) =A"*VTIX(t). 4-17

PCA allows one to decompose mixed signals into two subspaces: the signal subspace
corresponding to the principal components associated with the largest eigenvalues,
and the noise subspace corresponding to minor components associated with the

smallest eigenvalues.

The principal applications of PCA are: data compression, feature extraction,
noise filtering and classification [30]. Although it has been argued that PCA may not
be the most appropriate method to estimate the components of physiological data, it is
used to pre-whiten the data set (see Equation 4.8), reducing the redundancy of the data
and estimating the number of mutually independent components to be found by other

techniques.

Resampling: Some authors propose using resampling techniques to evaluate
the reliability of the BSS-ICA algorithms. Resampling is a statistical method to
estimate, for example, the mean and the variance of a complete population by using
subsets of the available data. The idea is resample the data and calculate the mean of
this resample data to obtain the first bootstrap mean, the procedure is repeated to
obtain the second resample data and compute the second bootstrap mean, in order to
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have B bootstrap means. This represents an empirical bootstrap distribution of

sample mean.

Bootstrap is a resampling technique used in data analysis; writing the
measured signal as the vector x(t)=[X(t), Xa(t), ..., xm(t)]" the aim of bootstrapping is

to estimate some parameters of the complete population X, such as its mean and

variance [94]; the principal assumption is that the measuring signal is a good
representation of the complete population. Then, B new bootstrap samples

X(t)™ =(xIb,x§b,...,x;b) with | size, are generated with b=1, 2, ..., B, by taking m iid
random variables from the empirical distribution F . The estimator 6" =6, (x(t)") is

calculated for each bootstrap sample x(t)™ [43]. Complete knowledge about the

population is obtained from an empirical distribution function such as
- 1
FO)==2 1 .(%)- 4-18
n ,

A random variable from F takes values x; with equal probabilities 1/n. | is the
so-called indicator random variable which is defined to be equal to O for x; < X3, and
equal to 1 for x; x,. More advanced applications of the bootstrap involve estimating

various measures of error, for example the bias of an estimator. The bootstrap

estimate of the standard error of 6" is calculate as

SE, = \/%i(éi -4 4-19

4.2 Independent Component Analysis

ICA algorithms aim to decompose a set of mixed measurements as a linear
combination of statistically independent underlying sources or components [31].

In the most simplistic formulation of the ICA problem, the (noise free)
measured signals X(t)=[x.(t), Xa(t), ..., xm(t)] ', are a linear mixture of unknown but
statistically independent sources s(t)=[si(t), Sa(t),..., sa()] ', i.e. x(t)=As(t). The
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square mixing matrix A is also unknown but invertible. ICA calculates the de-mixing
matrix, W=A", from the observations x(t) and estimates the original sources as
S(H)=Wx(t).

ICA is different from popular methods such as PCA, in that ICA not only
decorrelates the signals (2" order statistics) but also reduces higher order statistical
dependencies; making the signals as independent as possible. The principal difference
between PCA and ICA is that in ICA the components are not necessary geometrically
orthogonal but are statistically independent; the independence is much stronger than

simply uncorrelatedness.

The different ICA algorithms in the literature have various statements about
the sources, channels and noise or artifacts. Some of the principal assumptions made

on applying ICA to a measured signal such as EEG include:

1) The measured signals x(t) are a result of a linear mixing of different
sources; volume conduction in the brain result in linear and
instantaneous mixing, then EEG recordings at the electrodes are
assumed to be a linear mixture of the underlying brain sources (AEP,
alpha, beta activities, etc) and the artifact signals (blinking, muscle
noise, CI artifact, etc). ICA assumes that different physical process
tend to generate different statistically independent signals [9].

i) Another restriction in standard ICA is that the number of underlying
sources is usually less than or equal to the number of measurements
(n<m). The dataset used in this research includes the recordings
from 19 electrodes; the numbers of stable estimations expected are
variable across subjects, but in general they could be one or two
sources related to the auditory response, two to three linked to the CI
artifact and one or two other artifacts such as blinking and line noise;
then n will be a maximum of about 6-7 independent sources.

iii) The sources are non-Gaussian and the measured signal is stationary
(over the short epoch measured). The CI artifact happens at the same
time in each EEG epoch and is time-locked with the stimuli,

therefore are considered stationary and with a non-Gaussian pdf
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[52]. Furthermore, the ICA sources can be estimated but with certain

indeterminacies; for example arbitrary scaling and permutation [25].

Figure 4.1 outlines the ICA algorithm including all the parts mentioned in this
section. The electrical activity produced by different brain sources is recorded using
the EEG; the EEG is a linear mixture of those sources and artifacts. Although the AEP
and CI are temporally correlated they are spatially independent signals; since the CI
artifact is generated by the array of electrodes and not by a brain source [52]. Using
the EEG, ICA calculates the mixing matrix A which depends on the conductivity
characteristics of the brain and where the electrodes are placed; the de-mixing matrix

used to estimate the sources is W=A™,

Finally, ICA indicates what parts of the scalp are most responsible for the
activity (auditory in our case) by interpolated topographic maps of the ICs. The
columns of W™, give the relative projection strengths of the respective components
onto each of the scalp electrodes [40]. These topographic maps indicate the

physiological origin of the estimated sources; for example: eye blinking, EP, muscle

activity, etc.
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Figure 4.1 The EEG is used to calculate an estimate of the statistically independent brain
sources; the CI artifact does not have a neurological origin, such as the brain sources do, then
ICA can be applied in this case. ICA calculates the de-mixing matrix W used to estimate the
sources; the spatial projections of the estimated sources are useful to identify the part of the
scalp responsible for each estimate.

In the first stage of this research both the waveforms of the estimated sources
and their spatial projections were used to identify the estimates related to the AEPs
and the CI artifact.
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4.3 ICA algorithms

Although a considerable amount of literature has been published on ICA
algorithms, three algorithms can be classed as the most popular: JADE, FastICA and
Infomax [16;26;71]. These algorithms have been modified, improved or extended by
different authors; for example 30 ICA algorithms are included in the Matlab toolbox
implemented by the group of Cichocki (ICALAB) [29].

One possible classification criterion of the different ICA algorithms could be
the means of assessing independence used for each method and the assumptions made

about the sources and the noise.

If only the second order statistics of the data are used, the algorithm is called
Second order statistic (SOS) ICA, it is called high order statistics (HOS) ICA
otherwise. Some general differences between the SOS and HOS are: in SOS methods
the principal assumption is that the sources have some temporal structure, whilst the
HOS methods minimize the mutual information between the source estimates. The
HOS methods cannot be applied to Gaussian signals; as the method does not allocate
more than one Gaussian source. Additionally, the SOS methods do not permit the
separation of sources with identical power spectra shape, independent and identically
distributed sources [30]. Two HOS ICA methods were assessed in this research
FastICA [71] and Infomax [16] and one SOS ICA algorithm, a modification of JADE
[26], called TDSEP-ICA [135].

The theory behind the three ICA algorithms is explained in the following.

Most of the ICA algorithms have two common steps in their implementation:

i) Centring: subtract the mean of the mixed signal, which simplifies the ICA

algorithm; x=x—E{x}, whereE{x}is the mean vector of the

measurements; when the algorithm is finished the mean vector is added.

i) Whitening: Find the whitening matrix (see whitening and PCA in section

4.1). The covariance matrix is calculated asR,, = E{x(t)x" (t)}, an eigen-

value decomposition (EVD) is performed on it; the decomposition is given
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by R=EAE" where E is the orthonormal matrix of eigen-vectors of R,
and A is the diagonal matrix of eigen-values. Transforming the covariance

matrix into an identity matrix, the whitening M matrix is calculated as

-1

M = (A1/2ET) . 4-20

4.3.1 FastICA

FastICA, is a fast fixed-point iteration algorithm. As proposed by Hyvérinen
and Oja [69-71] it calculates the required independent sources employing HOS. The
algorithm is based on a fixed-point iteration scheme, the negentropy of the mixture is
minimized such that uncorrelated and independent sources with as non-Gaussian
distributions as possible are obtained. This approach makes the algorithm
convergence faster than other ICA algorithms.

The authors introduce the following approximation of the negentropy [68]

I(y)=2.C [E {G (v)}-E{G (V)}]Z ) 4-21

where C; is a positive constant, v is a Gaussian variable with zero mean and unit
variance, the variable y is assumed to be of zero mean and unit variance, and G (.) is a
non-linear function; p is the number of functions used in the approximation of the
negentropy. In the case where only one non-linear function is used, the approximation

becomes

I(y) =< [E{G(y)}-E{G(V)}] . 4-22

The selection of G (.) depends on the problem; a comparison of the use of the
following three functions, in AEP recordings from both normal hearing children and

children with ClI, is show later on in section 5.1

@Gi(y)=Y". 4-23
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(b) Gz (Y) =tanh (aly) . 4-24

©) G:(Y)=yexp [_az y;} . 4-25

The default value for a; and a, is 1. After choosing an initial weight vector w, the
algorithm calculates the direction of w maximising the non-Gaussianity of the
projection w'x (linear combination of the measured signals). Since the signal is
already whitened, to make the variance of w'x unity it is sufficient to constrain the
w

norm of the pseudo-inverse of the initial weight vector w*, to be unity, w = W+/

if the old and new values of w do not point in the same direction, the algorithm

recalculates the direction of w. Finally, the de-mixing matrix is given by

W = w'"M and the estimations by § = WX .

4.3.2 Infomax (Information maximization)

Infomax, described by Bell and Sejnowski [16], is an ICA algorithm which
finds independent signals by maximizing the joint entropy H(y) (see Equation 4.13) of
the outputs of a neural network, minimizing the MI among the output components.
Infomax includes a linear pre-processing of the input data, xc=Gx called sphering,
where G=(E{xx"})¥ is a non orthogonal symmetrical decorrelator [91]. The de-
mixing matrix W, is found using stochastic gradient ascent, maximizes the entropy of
the input vector Xg, linearly transformed u=Wxg and sigmoidally compressed y=g(u).
Then W performs component separation whilst the nonlinearity g(.) provides the
necessary HOS information, g(u)=(1+exp(-u)))™*. This gives an update
rule 0, =1-2u; . Infomax is able to decompose signals into independent components

with sub and super-Gaussian distributions. The original learning rule for super-

Gaussian distributions is

AWoc[I—tanh(u)uT—uuT]W , 4-26
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where | is the identity matrix, and u are the estimated sources. The extended learning

rule (Ext-Infomax) [91], for sub-Gaussian distributions is

AW oc [ 1-Atanh(u)u" —uu” W | 427

The algorithm switches between two learning rules: one for sub-Gaussian and one for
super-Gaussian sources. A is a diagonal matrix which includes the switching criterion

between the two learning rules

4-28

_ |1 super - Gaussian
| -1 sub-Gaussian

The estimated sources are computed as
§=W1ly, 4-29

4.3.3 Temporal Decorrelation Source Separation ICA (TDSEP-ICA)

The standard algorithm of FastICA has been extended by Ziehe and Miiller,
Temporal Decorrelation Source Separation ICA (TDSEP-ICA) [135] includes the
temporal structures of signals such as the EEG (this algorithm contains
diagonalization as used in JADE [26]). The use of HOS is substituted by the use of
several time-delayed second-order correlation matrices for source separation. JADE
and TDSEP-ICA determinate the mixing matrix based on a joint approximate
diagonalization of symmetric matrices; the principal difference between these two
algorithms is that JADE maximizes the kurtosis of the signals whilst TDSEP-ICA
minimizes temporal cross correlation between the signals. Instead of using JADE in
this assessment, TDSEP-ICA was included, since this algorithm was used before on

biomedical signals and more reliable estimates were obtained, than using JADE [94].

TDSEP-ICA could be summarized as follows: firstly, Ziehe and Miiller [135]

define the following cost function that measure the correlation between the signals

X(t)
R; :Z<X‘ (t)xj(t)>2 +ZZ<Xi(t)Xj(t+Tk )>2 4-30
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where (.) denotes a time average. After whitening, the first term in the cost function
becomes zero; this equation imposes decorrelation over time. After that, they propose
an alternative technique for the joint diagonalization using a rotation [94]. In the
rotation step, the cost function can be minimized by approximate simultaneous
diagonalization of several correlation matrices through several elementary JACOBI

rotations [25], this to obtain the rotation matrix Q.

The TDSEP-ICA algorithm computes those matrices relying only on SOS and
diagonalizes the covariance matrices R, = E{X(t) X(t)T} for a time lag z = 0 and at the

same time  diagonalizes the covariance  matrix for a  given

.
delay R, = E{X(t)x(t—f) } The source covariance matrix R is diagonal for all

timelagsz=0,1,2...,N-1
RS = WRXW', 4-31

where R} is the signal covariance matrix. This algorithm determines the mixing

matrix based on a joint approximate digitalization of symmetric matrices. Finally,

using the whitening matrix M and the rotation matrix Q, an estimate of the mixing

matrix can be calculated as A =M™Q; the estimations are given by§= AX. An
advantage of TDSEP-ICA over other ICA algorithms is that it can separate signals

whose distributions are Gaussian.

4.4 Summary

Common statistical concepts used in BSS and ICA were explained in this
chapter. The general concepts and assumptions used in ICA, as well as the particular
theory of three ICA algorithms (FastICA, Infomax and TDSEP-ICA) were described.
Part of the aim of this research was to determine which of the algorithms described in
this chapter is more convenient to recover the auditory response by isolating the CI
artifact from the dataset used here. The results of these comparisons are included in
the next chapter. Furthermore, the criteria to select the optimal parameters for each

one of the algorithms are explained too.
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Chapter 5.

|CA parameter selection for robust AEP

component estimates

AEP recordings have been used to evaluate the performance of ICA
algorithms in the literature. Different authors [78, 79, 129] have demonstrated that
this procedure can remove the typical EEG artifacts i.e. blinking, muscle noise, line
noise etc; the CI artifact included. However, there are few studies about the selection
of the optimal parameters for estimating the AEP components, to reliably recover
both the auditory response and the specific artifact generated by the normal

functioning of a CI.

In this part of the research the optimal parameters of three ICA algorithms,
FastICA, Infomax and TDSEP-ICA for robust AEP component estimating were
determined (the theory behind of each algorithm was explained in Section 4.3). A
total of 35 EEG recordings, from normal hearing children (20 recordings) and
children with Cls (15 recordings), were used in this part of the research. This chapter
is divided into two sections, Section 5.1 includes both the procedures and criteria used
for the selection of the parameters of those ICA algorithms. Section 5.2 shows the
waveforms and topographic maps of the most robust ICs recovered by FastIiCA,
Infomax and TDSEP-ICA.

All the results shown in this and the following chapters correspond to auditory
stimuli of 1000 Hz at 70 dBy,_ for normal children and 80 dBy_ for children with Cls.
The analysis was repeated over many different numbers of epochs, from the original

number (150 epochs) to 50. Results analyzed over 75 epochs and using an ICA
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algorithm with spatial constraints were reported in James and Castafieda-Villa [73];

results with 50 epochs are shown in the rest of this document.

5.1 Selection of optimal ICA algorithm parameters

Many authors have proposed diverse methods to validate each of their ICA
algorithms [64;65;79;91;94]; either analyzing algorithmic stability or reducing the
variability of the estimated components. The procedures proposed by the authors, of
each one of the algorithms used in this research, were applied to select the model

parameters more convenient for robust AEP and ClI artifact estimation.

This section is focused on examining the differences between the estimates of
the AEP and the CI artifact, obtained first by FastlICA using three non-linear
functions, which this algorithm uses to measure the negentropy of the sources, as well
as two orthogonalization approaches (symmetric and deflationary). In the case of
Infomax the estimates recovered by the standard Infomax and Ext-Infomax are
compared using the kurtosis values and the pdfs of the estimated components. Finally,
the effect of different time delays on the AEP component estimates using TDSEP-ICA

was evaluated in this section too.

5.1.1 FastICA non-linearity function and orthogonalization approach selection

Himberg et al proposed a procedure, known as ICASSO [64;65], to investigate
the algorithmic and statistical reliability of the ICs recovered by FastICA, by running
this algorithm many times for three different initial conditions:

1. Random initial conditions (to evaluate the algorithmic reliability),

2. The same initial condition but the data are bootstrapped every time (to
evaluate the statistical reliability),

3. Random initial conditions and the data are bootstrapped every time (see

section 4.1), to evaluate both the algorithmic and the statistical reliability.
The estimated components are clustered according to their mutual similarities

(the criterion applied by the authors is agglomerative clustering with average-linkage)

and visualized as a 2-D plot; finally, the cluster quality (stability) index, Iy (see
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Equation 5.1), is calculated to evaluate the robustness of the estimated clusters. A
measurement of the similarity between the estimates is the absolute value of their
mutual correlation coefficients ri, i,j=1, 2,....K; the final similarity matrix has the

elements Ajj defined by Ajj=| rj; |

(Co )= Y A Y Y A, 5-1

ij
‘C i,jeC ‘Cm m.. | ieCp  jeC

m. Mint int lext Mint Mext

int

If Crn denotes the set of indices of all the estimates, C,, the set of indices that belong

in the m-th cluster and ‘Cmim‘ the size of the m-th cluster, then I, is computed as the

difference between the average intra-cluster similarities and the average extra-cluster

similarities; C,, is the set of indices that do not belong to the m-th cluster.

The cluster quality index gives a rank of the corresponding IC clusters
estimated. The ideal value of |4 is 1; the smaller the value, the less stable, compact
and isolated, the estimated cluster is. In the best case of dataset dimensions 19, the

estimates are concentrated into 19 compact and close to orthogonal clusters.

To determine the best parameters of FastICA to estimate the AEP components
from the dataset recordings used in the research, ICASSO was run using the initial
condition (3) mentioned before, in that manner both the algorithmic and statistical
reliability of FastICA were assessed. The two orthogonalization approaches proposed
by this algorithm, deflationary and symmetric were compared too. In the deflationary
condition, the ICs are found one at time; whilst in the symmetric approach all the ICs
are estimated at the same time. In addition, the three non-linear functions mentioned

in section 4.3.1 for FastICA were compared.

Table 5.1 summarizes the six different test conditions assessed for FastICA,
used in both EEG recordings from normal hearing children and children with Cls. For
each condition ICASSO run FastICA 10 times (with a maximal number of iterations
equal to 100) and the number of estimate clusters is equal to the data dimension, 19.

ICASSO returns a plot of the quality index Iy for each estimate cluster, with the

63



Chapter 5. ICA parameter selection for robust AEP component estimates

clusters ranked according with the index values. As mentioned before, the ideal case

is when the |4 values to all the estimate clusters are close to 1.

Table 5.1 The estimated components using six different test conditions for FastiICA where
compared in this research. The non-linear functions G (see Equations 4.22-4.24) are used to
measure the negentropy of the sources. In the deflationary approach, the sources are estimated
one at time and in the symmetric approach, all estimates are calculated at the same time.

Condition | Function | Approach
C1l Gi(y) | Deflationary
C2 G,(y) | Deflationary
C3 Gs(y) | Deflationary
C4 Ga(y) | Symmetric
C5 Ga(y) | Symmetric
C6 Gs(y) | Symmetric

The criteria to select the optimal parameters, non-linear function and

orthogonalization approximation, for FastICA are:

1. The test condition for the maximum number of estimate clusters with I, values
between 0.9 and 1.

2. Identify the largest number of estimates with physical or physiological
meaning (AEP, CI artifact and/or noise) ranked first according to the I, index.
The ICs were identified using both the waveform and the topographic maps of
the ICs at the centre of the estimated clusters.

3. The largest numbers of clusters with more than one estimate (the ideal would
be 19).

Table 5.2 and Table 5.3 (recordings from normal hearing children and children
with Cls, respectively) include the number of estimate clusters for each of the test
conditions in Table 5.1, with I, index values higher than 0.9, for the total dataset. The
red numbers indicate the condition (for each recording), which satisfied the three
criteria for the FastICA parameters selection above listed. When ICASSO was unable
to complete the procedure, because FastICA did not converge in 100 iterations after 6

attempts, the cells are empty.
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Table 5.2 Number of estimate clusters with Iy index between 0.9 and 1 (recordings
from normal hearing children) for the six conditions listed in Table 5.1. Red numbers
indicate the test condition, which satisfied the three criteria used to select the FastICA
parameters.

Recording | C1 | C2 |C3 | C4 | C5|C6
ad 9 |10 |8 |12 |11 |6
al 7 |7 |3 |12 |7 |4
an 11 (3 (0 (105 |4
ax 10 (12 (7 |9 |10 |5
bf 7 |8 |7 |18]8 |5
cc 7 |6 |6 |4 (9 |4
dt 10 (7 |9 |15 (13 |1
edg 1016 |5 |10 (4 |2
fc 5 12|19 |19 |9 |7
iv 7 |11 13 |12 |4 |4
ig 12193 [- [13]8
kc 3 |3 |2 |6 |1 |1
mar2 0 (2 |1 |10|2 |2
mp 4 |4 |4 |13 |3 |3
nan 18 |0 |6 |19 |18 |7
st 4 |4 |2 |17 |3 |2
of 3|5 |- |19 |5 |6
pf 7 [11]3 124 [4
ug 7 |6 |10 |16 |10 |6
xal 10 |8 |2 |11 |8 |6
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Table 5.3 Number of estimate clusters with I, index higher than 0.9 (recordings from children
with Cls). Red numbers indicate the test condition that satisfied the three criteria used for
selecting the FastICA parameters.

Recording [ C1 |C2 | C3 | C4 | C5|C6
S1-Stl 1516 |6 |11 |7 |2
S1-St2 8 |7 |5 |14 110 |2
S1-St3 8 |6 |3 |13 |3 |2
S2-Stl 7 |7 |5 |7 |7 |4
S2-St2 8 |9 |7 (107 |8
S3-Stl 3 |1 |3 (4 |5 |2
S3-St2 6 |9 |2 |15|6 |4
S3-St3 9 |8 |15|12|9 |5
S4-Stl 9 |8 |2 |14 110 |3
S4-5t2 16|17 |6 |14 |16 |5
S5-St1 8 |14 |9 |10 |8 |12
S5-St2 6 |8 |4 |16 |8 |7
S5-St3 6 |12 |5 |10 |6 |5
S6-St1 13|15 |4 |18 |7 |2
S7-Stl 7 |- |3 (1414 |3

In general, the performance of condition 4 is better than any other condition
(in normal hearing children). This condition achieved 19 estimated clusters in three
different recordings (fc, nan and of see Table 5.2) with I, index values higher than 0.9
in two recordings. In 14 of 20 recordings from normal hearing children analyzed, the
highest number of stable and isolated estimated clusters were obtained using the non-
linear function G;(y); moreover, reliable estimates were achieved using this function
together with a symmetric orthogonalization approach (test condition 4, Table 5.1). A
deflationary orthogonalization approach achieved zero estimated clusters with
stability indexes between 0.9 and 1 in three recordings (see an, mar2 and nan in
Table 5.2).

In 10 of 15 recordings from children with Cls, the highest number of robust
and isolated estimated clusters were obtained using the non-linear function G;(y); as

in the case of normal hearing children, more reliable estimates were achieved using
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this function simultaneously with a symmetric approach (test condition 4). In two
recordings, S5-Stl and S5-St3 (see Table 5.3), more stable estimated clusters were
achieved by condition 2 (non-linear function G,(y) and a deflationary approach), but
it was not possible to recognize the AEP in those clusters. This condition also

achieved the highest number of clusters with only one estimate.

In the following figures selected Iy stability index graphs are shown, in order
to illustrate the performance of the conditions tested in this section. In the case of
normal hearing children some graphs obtained with condition C4 are shown; this
condition achieved the highest number of clusters with I, index values between 0.9
and 1. In the case of children with Cls, Iy index graphs were selected in order to
illustrate the comparison between the conditions with the best and the worst
performance (condition 4 and 2, respectively), in terms of robust and isolated

estimated clusters in most of the recordings analysed.

Figure 5.1 shows the stability Iy index for the 19 estimated clusters using
FastICA with the non-linear function G;(y) and a symmetric orthogonalization
approach (Table 5.1, test condition 4) in four normal hearing children; this condition
achieves the most compact and isolated estimated clusters than any other condition,
for these recordings. In recording I: subject fc, 14 y.o., the 19 estimated clusters have
Iy index values between 0.9 and 1. Cluster 2 is related to a noisy electrode whilst
cluster 9 corresponds to the AEP. In recording II: subject bf, 6 y.o., only one of the
estimated clusters has Iq value lower than 0.9 (cluster 19); cluster 4 is linked to the
auditory response and cluster 14 correspond to a noisy electrode. In recording IlI:
subject mar2, 10 y.o., 10 estimated clusters have I, index values between 0.9 and 1;
two of those clusters are related to the AEP (cluster 1 and 5). Finally, in recording 1V:
subject mp, 11 y.o., 13 estimated clusters have I, values higher than 0.9; clusters 8
and 10 are related to the AEP.
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Figure 5.1 Stability index (I5) for 19 estimates clusters recovered by FastiCA using test
condition 4 (recordings from normal hearing children, I: fc, II: bf, Ill: mar2 and IV: mp); this
condition achieves the most robust clusters as well as reliable estimates of the conditions
tested; arrows indicate the estimate clusters related to the AEP and noise.

In recordings from normal hearing children, condition 4 achieved stable and
isolated estimated clusters, with ICs associated with the AEPs ranked first (according

with I index value), in most of these recordings.

Figure 5.2 shows a comparison between the I, indexes for the test conditions 2
and 4 (see Table 5.1) for four different recordings (children with CIs). Row I:
recording S1-St1, in the test condition 2 only 7 clusters have more than one estimate
(ICASSO cannot calculate the 1y indexes for clusters 1-12); it was not possible to
recognize neither the AEP nor the CI artifact in any of these estimated clusters.
Although test condition 4 does not have the largest number of estimated clusters with
Iq values between 1 and 0.9, it is the condition where a clear AEP can be recognized
(clusters 3 and 7) as well as which has a better estimate of the background noise,
cluster 11. Row II: recording S1-St2, for the test condition 2, only 8 estimated clusters

have more than one estimate each and none of those clusters are related to either the
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AEP or the CI artifact. Condition 4 has the most robust clusters with I, between 0.9
and 1; the clusters ranked first (cluster 1 and 3) correspond to noisy electrodes whilst
cluster 16 (with a I, index value lower than 0.9) is associated with the AEP. Row IlI:
recording S3-St2, for condition 2 the |y index was calculated for only five clusters (the
rest of the clusters, 1 to 14 have only one estimate each); cluster 16 is related to the CI
artifact; neither the AEP nor the background noise were recovered in these clusters. In
this recording the highest number of clusters with I, indexes more than 0.9 were
obtained using condition 4, clusters 6 and 17 are related to the CI artifact; the AEP
cannot be recovered clearly with any of the conditions. Row IV: recording S5-St3, the
performance of FastICA for all the conditions was similar, although condition 2 has
the highest number of clusters with Iy between 0.9 and 1 (14 clusters), it is also the
condition with more clusters with only one estimate each (cluster 1 to 5). In this
recording, test condition 4 estimates the most robust clusters for the components
associated with the CI artifacts (cluster 1 and 4); although it was not possible to

recover a clear cluster related to the AEP.
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Figure 5.2 Comparison between test conditions 2 and 4 in four different recordings I: S1-St1,
I1: S1-St2, 11I: S3-St2 and 1V: S5-St3 (recordings from children with CI, at different times
after implantation). Test condition 4 achieved the most robust clusters as well as the most
reliable estimates; arrows indicate the clusters related to the AEP, Cl artifact and noise.

In the majority of recordings from children with Cls, test condition 4

recovered the most robust and isolated estimate clusters. The estimated clusters
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ranked first were associated with the CI artifact and the background noise but not

necessarili with the AEP.

For FastICA the highest values of the Iy index, in other world the most stable
clusters, were obtained using the non-linear function Gy(y) together with a symmetric
orthogonalization approach. The estimate clusters ranked first (the highest |4 indexes
values) were different for each recording, generally they were related to the AEP in
normal hearing children and with the CI artifact in children with Cls. In 10 of the 13
recordings analysed from children with Cls, the number of clusters with a stability

index between 0.9 and 1 was greater using test condition 4 than any other condition.

5.1.2 Infomax vs. Ext-Infomax

Infomax is another of the most popular ICA algorithms used to remove
artifacts from EEG recordings [77;79;80;91]. It has also been used to remove the ClI
artifact from EEG recordings contaminated for that artifact [39;52]. Nevertheless,
there is no a comparative analysis between the original Infomax and the Ext-Infomax,
in order to determine the convenience of using one or other method in these

recordings contaminated by the CI artifact.

The purpose of this section is to compare and contrast the ICs recovered by
Infomax and Ext-Infomax such that to determine which algorithm achieves the most
robust estimates for the AEPs, Cl artifact and background noise. Two assumptions are

considered for the sources:

a) There are no sub-Gaussian sources, thus Infomax is enough to recover the
signals
b) It is necessary to apply the Ext-Infomax algorithm since the measures include

mixed sub- and super-Gaussian sources.
In order to compare the estimated components recovered using Infomax and

Ext-Infomax, the kurtosis values and the pdf of the estimates were used; along with if

it was possible to associate the waveform of the estimates with the components of
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interest, i.e. AEP, CI artifacts, and noise. Tables 5.4 and 5.5 include a comparison
between the kurtosis values of ICs related to the AEP and noise (in normal hearing
children) and with AEP, CI artifact and noise (in CI users) using Infomax and Ext-

Infomax.

In the recordings S1-Stl and S1-St2 (Table 5.5) the electrode lying over the ClI
were not connected during the test. In the case of the recordings S2-St1, S2-St2, S5-
Stl and S5-St3 the AEP was not recognised in any of the ICs calculated by Infomax
and Ext-Infomax. The algorithms did not converge using the recording S7-Stl.
Appendix B includes the pdf histograms for the ICs related to the AEP, CI artifact and

noise for all the dataset.

Table 5.4 Comparison between the kurtosis values for the ICs related to one component of
the AEP and noise in recordings from normal hearing children, the estimates were recovered
using Infomax and Ext-Infomax.

Infomax Ext-infomax
Recording | AEP | Noise | AEP | Noise
ad 1.09 099 |0.99 |0.90
al 099 |1.09 |0.90 |0.99
an 0.87 |1.10 |0.87 |4.27
ax 0.83 837 |1.42 |8.07
bf 451 285 |4.00 |4.00
cc 216 (047 |213 |0.48
dt 445 389 [4.84 |3.94
ed 1.49 | 254 |163 |256
fc 152 |0.31 |281 |0.38
iv 27.93 | 753 | 27.14|7.30
ig 511 |579 |5.15 |5.92
kc 093 |450 |0.87 |3.90
mar2 512 204 |511 |1.99
mp 115 | 486 |127 |4.82
nan 291 |20.47 |3.73 |20.25
of 431 013 |437 |0.11
pf 7.37 | 453 |9.50 |3.59
st 1.13 | 287 |0.79 |2.63
ug 401 |23.32 392 |2327
xal 3.44 19.27 |3.44 |9.06
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Table 5.5 Comparison between the kurtosis values for the ICs related to one component of
the AEP, the Cls artifact and noise in recordings from children with Cls, the estimates were
recovered using Infomax and Ext-Infomax. In the case of the empty cells the ICs were not
identified in any of the estimates.

Infomax Ext-Infomax

Recording | AEP | Clart | Noise | AEP | Clart | Noise
S1-St1 9.55 - 1096 |8.80 - -0.85
S1-St2 341 - 0.88 | 3.46 - -1.25
S1-St3 1.61 - 0.05 |1.68 - -0.87
S2-St1 - | 236 |12.88 - 1232 12.83
S2-St2 - 259 [-0.15 - | 261 -0.64
S3-St1 1.26 | 1.88 - 141 | 1.81 -
S3-St2 4.68 | 6.18 - 4.64 | 6.19 -
S3-St3 533 | 347 | 038 |5.38 348 -1.34
S4-St1 4.77 | 28.15 - 4.46 | 28.22 -
S4-St2 7.88 - 1.79 |7.88 - 1.87
S5-St1 - 110.71 1 0.72 - 110.98 |-0.54
S5-St2 5.69 | 3.93 - 5.61 | 3.84 -
S5-St3 - | 797 ]0.19 - | 7.85 -1.35
S6-St1 7.40 | 78.81 - 8.10 | 256.52 -
S7-St1 - - - - - -

Figure 5.3 shows the pdfs and the kurtosis values for selected estimate
components using Ext-Infomax in four normal hearing children (there were not
considerable differences between the estimated components using the standard
Infomax and Ext-Infomax, see appendix B). Estimated components related to the AEP
and noisy electrodes were the principal ICs recovered for these algorithms. The
kurtosis values of the AEP estimates were positive in all the recordings analysed.
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Figure 5.3 Probability distributions and kurtosis values for selected estimates recovered using
Ext-Infomax (recordings from normal hearing children, I: fc, 1l: bf, 1ll: mar2 and IV: mp).
The AEP and noise were the principal ICs recovered by this algorithm.

There were no considerable differences between the AEP component
estimates, in recordings from normal hearing children, using Infomax and Ext-
Infomax. The kurtosis values of the ICs related to the AEP were positive, as expected
(Jung et al [78] used the original Infomax to estimate super-Gaussian components
with positive kurtosis, such as the AEP). At least two ICs can be clearly associated
with the AEP and background noise in all the recordings from normal hearing

children.

Figure 5.4 shows the pdfs and kurtosis values for selected estimates for four
different recordings (children with CIs), using Infomax and Ext-Infomax. In Row I:
recording S1-St1, the estimates associated with the AEP (Infomax: 1C16 and Ext-
Infomax: 1C17) are essentially the same for both algorithms, although some
differences can be observed in both the probability distribution histograms and
kurtosis values of the noise estimate (IC6 in both algorithms). In row II: recording S1-
St2, the difference between the estimates related to the AEPs are small using Infomax
(1C16) and Ext-Infomax (IC10); the principal differences are in the noise estimates
from electrodes with high impedance (IC6 and IC1), the pdf shape had modifications
and the kurtosis value changed from positive (close to zero) to negative. In row IlI:
recording S3-St2, the estimated components of the CI artifact are similar using

Infomax (IC8) and Ext-Infomax (IC7), with a small difference in the pdf histograms
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and kurtosis values. The estimates of the AEP (IC5 and 1C6, Infomax and Ext-Infomax

respectively) are almost the same too, although it is not clear in both ICs, the CI

artifact still being mixed with the auditory response. In row IV: recording S5-St3, the

principal difference between both algorithms is the estimates of the background noise

(IC3); it was not possible to identify a clear AEP neither with Infomax nor with Ext-

Infomax.
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Figure 5.4 Comparison between the pdfs and kurtosis values for selected estimates (using
Infomax and Ext-Infomax) for four different recordings from children with Cls (I: S1-St1, II:
S1-St2, 1I: S3-St2 and 1V: S5-St3); the principal difference between those algorithms is the

noise estimates.
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In recordings from children with Cls, the kurtosis values of the estimates in
both original Infomax and Ext-Infomax for the AEPs and CI artifact are similar; the
values for the estimates of the AEPs are positive, as expected. The kurtosis values of
the CI artifact estimate depend on the part of the artifact recovered (the transient at the
beginning and/or end of the artifact or the stimuli pulses). The principal differences
between Infomax and Ext-Infomax are in the noise estimate components; Ext-Infomax

IS more appropriate to estimate sources with pdfs close to Gaussian distributions.

Based on the kurtosis values, Ext-Infomax was finally selected since the noise
recovered is better than in the original Infomax, which result in an easier identification
of the estimates related to the AEPs, however, in 5 of the 13 recordings from children
with Cls analyzed using Ext-Infomax the AEPs cannot be associated with any of the
estimate components. This algorithm has been used to remove the CI artifact from
AEP recordings for other authors before; this allows comparing the results of this

research with those of these authors.

5.1.3 TDSEP-ICA time delay selection

TDSEP-ICA is based on several time delayed (7z) correlation matrices; ther
parameter must be chosen to take advantage of the temporal structure of the signals.
Meinecke et al [94] propose the use of resampling methods to assess the reliability of
TDSEP-ICA and the variance of the estimates as a measure of the separation error.
They suggest using this information for selecting the parameters in their algorithm,
such as, the time delay value. The procedure used by Meinecke to do that can be

summarized as follows:

1. Estimate the mixing matrix A and calculate the ICs as $(t)=A"x(t),

2. Produce N, surrogate datasets B from §(t) and whiten these datasets. In order to
avoid destroying the temporal structure of the signals, when the dataset are
surrogated, Meinecke et al. calculate the resampled time delayed correlation

matrices as

R; ( ZLZa‘[X [(t=7)+x (t—7)x (t)] 5-2
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where the length of the time series is L, the bootstrap resampling defines a
serieswith > a =L.

3. For each of the surrogate datasets produce a set of rotation matrices Q (which
is approximated by a sequence of rotations) and calculate the variance of
rotation parameters angles (), each component ¢ of e is the angle of rotation
in the i-j plane.

4. Calculate each one of the elements of the separability matrix S (see Equation

4.19) in the rotation parameters angles as

S = %Z(&gb)z , 5-3

and identify the different one or high-dimensional subspaces according to the
block structure of S; a low value corresponds to a good separation. The
separability matrix measures how unstable the estimate is with respect to the

rotation in the i-j plane.

To identify the different one or high-dimensional independent subspaces in the
separability matrix, the notion of Multidimensional Independent Components
(MICA) introduced by Cardoso [23] could be used. MICA is a generalization
of ICA. Instead of the multiplicative model of ICA, where the principal
assumption is that all the sources are mutually independent (see Equation 4.4),
Cardoso reformulates the ICA model as an additive model (see Equation 4.6),
where the measured signal is a sum of n one-dimensional independent sources.
Instead of that assumption, Cardoso considers that the sources form k higher
dimensional independent components; there is a set of components that fulfill
Equation 4.3, subsequently. In other words, Cardoso proposes that after run an
ICA algorithm to obtain the one-dimensional estimated independent
subspaces, determine which estimations actually are independent and which
should be grouped together as parts of a high-dimensional independent

subspace because they are parts of the same component.
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To determinate the best time delay parameter for the dataset of this research, =
for TDSEP-ICA was varied from 1 to 20 in steps of 5. It was selected such that 7 had
the lowest separability matrix values, and a clear block structure in the matrix where
the AEPs, CI artifact and background noise could be recognized and also associated
with one- or high-dimensional 1Cs. Appendix C includes the separability matrixes for
different time values for the complete dataset of this research (the diagonal of the

separability matrix was fixed to zero in all the cases).

Figure 5.5 shows the separability matrixes for four different recordings from
normal hearing children; the most stable estimate components were obtained using a
=0, 1, 2, ..., 20. In recording I, subject fc, the two-dimensional independent subspace
IC2-1C3 is associated with the AEP, the noise produced by a electrode with high
impedance was recovered in a one-dimensional IC, IC18. In recording Il, subject bf,
again a two-dimensional subspace 1C9-1C10 is associated with the AEP and a one-
dimensional IC is related to noise (IC1). A clear one-dimensional estimate IC1 linked
to the AEP was recovered in recording Il (subject mar2); in addition IC9 and IC11
are related to the auditory response. In recording IV, subject mp, two one-dimensional
ICs can be recognized in the block structure of the separability matrix, one related to a
noisy electrode (IC1) and another to the AEP (IC5).
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Figure 5.5 Separability matrix for four different normal hearing children using TDSEP-ICA
(I: fc, II: bf, 11l: mar2 and 1V: mp), the most stable estimates components were obtained with
=0, 1,2,...,20; arrows indicate ICs related to the AEP and noise.

In recordings from normal hearing children, the separability matrix values
decrease in agreement with the increase of the time delay. For =0,...,1 TDSEP-ICA
only identifies one-dimensional ICs always related to noise. Once the time delay is
increased, the block structure of the separability matrix is clearer until =0, 1, 2, ..., 20
where one-dimensional 1Cs can be related to the AEP and noise in most of the normal

hearing children recordings.

Figure 5.6 shows a comparison between the separability matrix using a time
delay =0,...,1 and =0, 1, 2, ..., 20 for four different recordings (children with CIs).
The comparison between TDSEP-ICA using a time delay from 0 to 1 and from 0 to 20
for recording S1-Stl is shown in row I, the separability values for the noise estimates
are similar between both conditions (z=0,...1, IC1-IC2 and =0, 1, 2, ..., 20, IC18-
IC19) whilst the AEP estimated separability values are smaller for =0, 1, 2, ..., 20
(IC2) than #=0,...,1 (IC12). The values of the separability matrix for recording S1-St2
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are markedly lower using a time delay from 0 to 20 (row II). For =O0,...,1 the
estimate related to the AEP is IC8 and IC1 to =0, 1, 2, ..., 20; the estimates for the
background noise are 1C1-1C2 and IC18-1C19, respectively. For recording S3-St2 in
row Il1, using a time delay from 0 to 1 only the CI artifact can be recovered clearly
(IC 1, 2 and 3 one-dimensional ICs) whilst using a z=0, 1, 2, ..., 20, more components
are related to the CI artifact (IC16 to 1C19) and some components can be associated
with the AEP (IC7 and IC9). Row IV, recording S5-St3, TDSEP-ICA with z=0,...,1,
IC1 and IC18-1C19 are related to noise and IC2 to the CI artifact. In TDSEP-ICA 7=0,
1, 2, ..., 20, IC5, IC8 and IC18 are related to the CI artifact, whilst IC15 is linked to
the AEP; although the CI artifact still being mixed with 1C15 (neither FastICA nor
Ext-Infomax recovered the AEP in this recording).
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Figure 5.6 Comparison between the separability matrixes with two different time delays
using TDSEP-ICA, column 1 #=0,...,1 and column 2 =0,1,2,...,20, for four different
recordings I: S1-St1, II: S1-St2, I1l: S3-St2 and 1V: S5-St3. In general the separability matrix
values were the lowest with 7=0, 1, 2, ..., 20; in most of the recordings one-dimensional ICs
can be associated with the AEP, ClI artifact and noise using this time delay.
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Clearer block structures were identified using TDSEP-ICA with 7=0,1,2,...,20
than with 7=0...1, in recordings from children with Cls. Resulting in a notable
separation between the ICs related to the CI artifact and noise and the AEP estimates.

The time delay with separability matrixes with one-dimensional ICs related to
the AEP and the CI artifact was selected. For TDSEP-ICA, the lowest values for the
separability matrix were obtained using t =0, 1, 2, ..., 20 in normal hearing children,
also in children with Cls. At this time delay, it was possible to identify a one-
dimensional IC related to the AEP and another to the CI artifact [27]. In general, the
separability matrix values are lower when the time delay is higher; some tests were
performed varying the time delay with values higher than 20 (see Appendix E) but the

ICs recovered do not have significant differences.

5.2 Waveform and topographic maps of robust AEP component

estimates

This section includes the waveforms and topographic maps of the estimates
components with physical and physiological meaning identified in the previous
section, after the selection of the optimal parameters for robust AEP component
estimates using FastICA, Ext-Infomax and TDSEP-ICA.

5.2.1 FastICA

Figure 5.7 shows the IC waveforms, in the centre of the estimate clusters, and
the topographic maps of those components. Recordings from normal hearing children,
using FastICA with test condition 4 (this condition achieves the most compact and
robust estimate clusters); it was possible to recover the AEP in all these recordings. In
recording I, subject fc, the background noise remains in the AEP, I1C9. In recording II,
subject bf, it was possible to indentify a clean AEP, IC4, although the corresponding
topographic map is not well defined. Clear AEP components and topographic maps

were recovered in recordings 111 and IV (subjects mar2 and mp, respectively).
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Figure 5.7 Topographic maps and waveforms of selected estimates using FastlICA symmetric
orthogonalization and non-linear function G;(y), for four normal hearing children (I: fc, II: bf,
I1l: mar2 and IV: mp). The waveforms correspond to the IC in the centre of the estimates
clusters; Figure 5.1 complements this figure.

Figure 5.8 shows the waveforms and topographic maps of selected estimate
components, after determining the optimal parameters for FastICA for recordings
from children with Cls (I: S1-St1, II: S1-St2, 1ll: S3-St2 and IV: S5-St3). As for the
case of normal hearing children, test condition 4 achieved the most compact and
isolated estimated components (see Figure 5.2). However, it was not possible to
recover the AEP in all the recordings (see recording Il and IV, in this figure). The
waveforms correspond to the estimates in the centre of the clusters; clear topographic
maps were obtained for the CI artifact ICs (11l: 1C6 and IC17 and IV: IC1 and IC4)
and noise ICs (I: IC11 and II: IC1).
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Figure 5.8 Topographic maps and waveforms of selected ICs using FastICA with symmetric
orthogonalization approach and the non-linear function G,(y) for four different recordings
from children with Cls (I: S1-Stl, II: S1-St2, Ill: S3-St2 and IV: S5-St3); Figure 5.1
complements this figure.

5.2.2 Ext-Infomax

Figure 5.9 shows the topographic maps and waveforms of selected estimates
using Ext-Infomax for four recordings from normal hearing children (see Figure 5.6
for complementary information). The principal ICs recovered using this algorithm
were the AEP and noise. Although Ext-Infomax is recommended to decompose noisy
recordings, it was not possible to recover the AEP without background noise in

recordings I, 11l and 1V.
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Figure 5.9 Topographic maps and waveforms of selected estimates using Ext-Infomax in four
recordings from normal hearing (I: fc, II: bf, I1l: mar2 and IV: mp). The AEP (I: IC12, 1I: IC1
and IC3, 11I: 1IC3 and IV: IC12) together with noisy electrodes (I: IC9 and Il: IC17) were the
principal ICs recovered for this algorithm.

Figure 5.10 shows the waveforms and topographic maps of selected ICs using
Ext-Infomax in recordings from children with Cls (I: S1-St1, I1I: S1-St2, 11l: S3-St2
and 1V: S5-St3). In recordings | and 11, is possible to recognize the AEP in IC17 and
IC10, respectively. Clear components linked to the CI artifact were recovered from
recording 11l (IC7 and 1C9) and from recording IV (IC7 and IC11). The component
related to the AEP is not clear in recording 111, some of the artifact still being mixed in
the auditory response (IC6). In recording 1V, none of the estimated components show

clear auditory response morphology.

85



Chapter 5. ICA parameter selection for robust AEP component estimates

Ext-Infomax

iy WWWWWMW

0 100 200 300

0 100 200 300

Ic10

1C17 Ic17

02
i 11
02

. - 00 200 300

-100 ] 1 0o 200 300

IC18

ms b
ICe o4 W l I
0.z
0 - 100 200 300
0.2
0.4
-0.6

ms
WEIEI 200 300 JL

1EIEI 200 300

Ic7

,VWL\

100 200 300

IC9 Ica

o = oW

[=]

I11

1c11

—

1DD 200 300

Lo = m

=

100 200 300

Figure 5.10 Waveforms and topographic maps of selected ICs recovered using Ext-Infomax
in four different recordings from children with Cls (I: S1-St1, 1I: S1-St2, 1ll: S3-St2 and IV:
S5-St3). The AEP can be recognized in recordings I: C17, 1I: 1C10 and I11: IC6, although the
Cl artifact still being mixed in IC6. Ext-Infomax could not recover the AEP in recording IV.

5.2.3 TDSEP-ICA

Figure 5.11 shows the ICs indicated with arrows in Figure 5.5 using TDSEP-
ICA with 7=0,1,2,...,20. I: The two-dimensional structures 1C2-1C3 of the separability
matrix have a clear physiological meaning (it can be associated with the AEPs) whilst
IC18 correspond to a one-dimensional IC related to a noisy electrode. 1I: The one-
dimensional estimate IC1 is associated with a noisy electrode and the two-
dimensional structure IC9-1C10 is linked to the AEP. 1ll: The AEP was recovered in a
one-dimensional component IC1 and in a high-dimensional independent subspace;
IC9 and IC11 are part of that subspace. Finally, two one-dimensional ICs were
recovered in recording IV, IC1 and IC5 are associated with noise and the AEP,

respectively. Clear topographic maps of the ICs of interest were obtained.
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Figure 5.11 Topographic maps and waveforms of the estimate components indicated with
arrows in Figure 5.5, using TDSEP-ICA with =0, 1, 2, ..., 20 (recordings from normal
hearing child, I: fc, II: bf, I1l: mar2 and 1V: mp), this condition recovers the most stable ICs
related to the AEP.

Figure 5.12 shows selected ICs recovered using TDSEP-ICA with
=0,1,2,...,20 (see Figure 5.6 for complementary information) for four different
recordings from children with Cls (I: S1-St1, II: S1-St2, 1lI: S3-St2 and IV: S5-St3).
The block structure of the separability matrices show diverse one-dimensional ICs, for
example in recording I, IC2 and 1C18 are related to the AEP and a noisy electrode,
respectively. In recording II, it was possible to identify two one-dimensional ICs
related to contiguous noisy electrodes 1C18-1C19, and IC1 related to the AEP. In
recording 111, IC7 is linked to the AEP (this component is part of a high dimensional

subspace). The one-dimensional component IC9 is related to the AEP whilst 1C18 and
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IC19 (one-dimensional ICs) are related to the CI artifact. Finally, in recording 1V,
three one-dimensional I1Cs have physical or physiological meaning, IC5 and IC18
related to the CI artifact, and IC15 related to the AEP (the CI artifact still being mixed
in this IC); another component of the CI artifact was recovered in a high dimensional
subspace (IC8 is part of this subspace). Clear topographic maps of the ICs selected
were obtained.
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Figure 5.12 Topographic maps and waveforms of the ICs indicated with arrows in Figure 5.6
(using TDSEP-ICA with 7=0,1,2,...,20, recordings from children with Cls, I: S1-St1, II: S1-
St2, I11: S3-St2 and 1V: S5-St3), the most stable estimate components correspond to the AEP,
the ClI artifact and noisy electrodes.

Of all the ICA algorithms, the most widely used to remove artifacts from
biomedical signal is FastICA [71]. However, in the case of EEG analysis, algorithms

that include the temporal structure of this signal are better suited to extract meaningful
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estimations; this is the case of the dataset of this research where TDSEP-ICA take

advantage of time coherence of the CI artifact onset time.

5.3 Summary

The optimal parameters to recover both the AEP (in normal hearing and
children with CI), as well as the CI artifact (in recordings from children with CIs) for
the three ICA algorithms assessed in Section 5.1 are: a) FastICA with a symmetric
orthogonal approach and the non-linear function Gy(y)=y* (Table 5.1, test condition
4). b) Ext-Infomax instead of Infomax, and c¢) TDSEP-ICA with time delay
=0,1,2,...,20.

FastICA, test condition 4, achieved the highest number of clusters with I
index values between 0.9 and 1 (in 9 of the total recordings analysed in children
implanted); the robustness of clusters and reliability of the estimates were better than
any other test condition. Most of the times, those clusters are related to the CI artifact

components and noise, but are not necessarily related to the AEP.

The principal differences between the estimated components using Infomax
and Ext-Infomax were in the background noise; the kurtosis values of the estimates
change from positive (close to zero) to negative; the pdf histograms have different

shapes for the AEP, CI artifact and noise using Ext-Infomax.

TDSEP-ICA, with 7=0,1,2,...,20 achieved the lowest separability matrix values
and the structure of the matrix is the clearest over all the time delays evaluated. One-
dimensional ICs are related to the CI artifact and noise whilst one- or high-
dimensional ICs are associated with the AEP, depending on the symmetry of the
auditory response. In most of the children implanted, the response is lateralized,
opposite to the CI.

The three algorithms recover at least two components for the CI artifact; one
related to the transient at the beginning and/or the end of the artifact and another to
the stimuli pulses. When the recording SNR is poor, only TDSEP-ICA with time

delays from 0 to 20 recovered the AEP in recordings from children with Cls.
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If the objective is to apply ICA to reduce the CI artifact both FastICA and Ext-
Infomax are more than enough to do that. However, to also recover the AEP in EEG
recordings contaminated by the CI artifact, TDSEP-ICA is better positioned to carry
this out, because the assumption of this algorithm (temporal structure of the signal and
the spatial uncorrelation between the auditory response and the CI artifact) best place
it to do so. TDSEP-ICA relies only on simple lagged second-order correlations, which
is estimated robustly, compared with the HOS methods that are generally less robust
because the difficulty of the -calculations. Additionally some authors have
demonstrated that may be hard to estimate robust ICs if some temporal overlap is
present in the sources [128; 129; 135]; which could occur in the dataset used in this

research.

Once the optimal parameters for robust AEP component estimates for
FastICA, Ext-Infomax and TDSEP-ICA have been selected, it is important to asses the
performance and variability of the 1Cs recovered by the three ICA algorithms. The
procedure proposed by Meinecke, summarized in section 5.1.3, was used to compare
the algorithms (under the same condition). In the following chapter, the results of this

comparison are shown.
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Chapter 6.

Assessment of the performance and
variability of ICA algorithms applied to

AEP estimation

The performance and variability of three ICA algorithms (FastlCA, Ext-
Infomax and TDSEP-ICA), whose optimal parameters for robust AEP component
estimates were determined in the previous chapter, are now assessed in this chapter.
In section 6.1, the procedure suggested by Meinecke et al. (see section 5.1.3) which
utilizes the block structure of the separability matrix (S) to evaluate the stability of the
estimate components, is used to evaluate the performance of the ICA algorithms. In
section 6.2, the Signal to Interference Ratio index [55] is used to measure the quality
of the estimates recovered for each algorithm. Finally, in Section 6.3, the variability

of the algorithms is measured, after repeating the estimate several times.

6.1 Reliability of AEP component estimates

Meinecke et al. proposed to use the separability matrix, S, of the ICs (see
Equation 5.3) not only to select the parameters of TDSEP-ICA but also as a means of
choosing between different algorithms that rely on different assumptions about the
dataset and their criteria to measure independence. This matrix was used here to
evaluate the reliability of three ICA algorithms, after selection of the optimal

parameters for each one as described in the previous chapter.

To evaluate the reliability of the ICs recovered for the three algorithms (under
the same conditions), the estimates were each repeated 10 times (N=10) using each of
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the ICA algorithms; the number of ICs was set at equal to the dataset dimension, 19.
The separability matrices, for the three algorithms were calculated for all the 1Cs and
their block structures were compared. Three considerations were taken into account to
compare the separability matrixes: 1) the values of the elements of S (low values
correspond to a good separation). 2) The structure of S, the possibility to identify clear
one-, two- or high-dimensional ICs. 3) The possibility of recognizing ICs with
physical or physiological meaning (AEP, CI artifact and noise) in the one- and two-
dimensional ICs. Appendix D includes a comparison between the separability

matrixes, for the ICA algorithms mentioned, for the complete dataset of this research.

Figure 6.1 shows a comparison between the separability matrixes using
FastlCA, Ext-Infomax and TDSEP-ICA, in recordings from four normal hearing
children. Row I: recording fc, only TDSEP-ICA recovers the recording noise
(background noise and noisy electrodes) in one-dimensional ICs (IC10-1C19),
resulting in clearer estimates of the AEP (one-dimensional estimate, 1C9, and two-
dimensional estimates, 1C2 and IC3) than FastICA and Ext-Infomax. In the second
recording, row Il: subject bf, the three algorithms recover the noise generated by a
noisy electrode, but only FastiCA and TDSEP-ICA identify a one-dimensional IC
with this noise (IC17 and IC1 respectively); Ext-Infomax recovers this noise in
different ICs (IC6, IC9 and IC17). Clear ICs can be related to the AEP using the three
algorithms (FastICA: 1C2, Ext-Infomax: 1C18 and TDSEP-ICA: IC17). One two-
dimensional IC can be identified in each algorithm (FastICA: IC3-IC4, Ext-Infomax:
IC5-1C6 and TDSEP-ICA: I1C9-1C10), the two-dimensional ICs of FastiICA and Ext-
Infomax correspond to noisy AEPS, whilst the two-dimensional IC of TDSEP-ICA is
related to two clear components of the AEP. In recording IlI: subject mar2, both
FastICA and TDSEP-ICA recovered the AEP in one-dimensional ICs (IC1s for both
algorithms). The three algorithms indentified two-dimensional ICs (FastICA: IC8-
IC9, Ext-Infomax: 1C4-IC5 and TDSEP-ICA: IC6-IC7), but only the two-dimensional
ICs recovered by FastlCA had a clear physiological meaning (components of the
AEP). Finally, in recording IV, subject mp, it is possible to recognize the AEP using
the three ICA algorithms, all with low separability matrix values (FastICA: IC14, Ext-
Infomax: IC14 and TDSEP-ICA: IC5), but only TDSEP-ICA recovered clear one-
dimensional ICs related to noise: IC1, IC18 and IC19.

92



Chapter 6. Assessment of the performance and variability of the ICA algorithms

applied to AEP estimation

B Separability FastiCA
514
I : 0.2
0
0.1
5
0
= 5 10 15
[~ Separability Fastica
I 04
0.2
0
| 5 10 15
Separability FastiCA
— : 04
0.3
0.2
0.1
0
0.2
0.1
0

Separability Infomax

5 10 15

Separability Infomax

Separability Infomax

5 10 15

Separability Infomax

0.2

0.1

04

0.2

0.2

0.1

0.2

0.1

|
|
Hii
|

Separability TDSEP-ICA

5 10 15

Separability TDSEP-ICA

Separability TDSEP-ICA

|
H
|

0.2

0.1

04

0.2

04

0.3

0.z

0.1

0

Figure 6.1 A comparison between the separability matrices using FastICA, Infomax and Ext-
Infomax, for four different recordings (all normal hearing children, I: fc, 1I: bf, 1ll: mar2 and
IV: mp), TDSEP-ICA (column 3) is the algorithm with clearer block structure, in each case
one and two-dimensional ICs are related to the AEP and background noise.

Although in most of the recordings from normal hearing children the

separability values of S in both FastlCA and Ext-Infomax are lower than the values of

TDSEP-ICA, the block structure of this matrix is the clearest (see section 5.1.3); one-

dimensional ICs related to the AEP and noise were identified in all the recordings.

Figure 6.2 show the separability matrices, S, for four different recordings from
children with Cls, using FastlCA, Ext-Infomax and TDSEP-ICA. In recording I:
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subject S1-St1, all the algorithms recover the background noise (FastlCA: IC3 and
IC7, Ext-Infomax: IC18 and TDSEP-ICA: IC18 and IC19) but only TDSEP-ICA
identified a clear one-dimensional IC for this noise (IC19); with respect to the AEP,
TDSEP-ICA is the only algorithm which identified a one-dimensional ICs related to
the auditory response (IC2). In recording Il: subject S1-St2, two nearby electrodes had
high impedance, although the three algorithms recover this noise, only FastICA and
TDSEP-ICA estimated it into one-dimensional ICs (FastICA: IC14 and IC16 and
TDSEP-ICA: IC18 and 1C19), the ICs for the noisy electrodes for Ext-Infomax were
IC1 and IC14 (only IC1 shows a clear one-dimensional structure). FastlCA
indentified a one-dimensional IC for the AEP (IC11); TDSEP-ICA recovered the
auditory response in a two-dimensional space (IC11-1C12), additional to the IC1. The
AEP is not clear in any of the I1Cs estimated by Ext-Infomax. In recording Ill, subject
S3-St2, all the one-dimensional ICs recovered by FastICA correspond to components
of the CI artifact (it was not possible to identify the AEP in the rest of the ICs).
Although it is possible to identify some elements of the CI artifact in the ICs
recovered by Ext-Infomax, the lack of a clear block structure in S, implies low reliable
estimates. TDSEP-ICA shows the clearest S structure with a two-dimensional
subspace (IC6-IC7) related to the AEP and three one-dimensional ICs (IC9: AEP and
IC18 & IC19: Cl artifact). Finally, in recording 1V, subject S5-St3, all the algorithms
recover a noisy signal (FastICA: IC16, Ext-Infomax: 1C19 and TDSEP-ICA: IC19).
The reliability of the estimates related to the CI artifact is similar for the three
algorithms (FastICA: IC16, IC17 and IC8, Ext-Infomax: 1C16, IC17 and IC18 and
TDSEP-ICA: IC5, IC8 and IC18). Only TDSEP-ICA indentified a one-dimensional IC
for the auditory response (IC15).
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Figure 6.2 A comparison between the separability matrices using three ICA algorithms from
four different recordings (children with Cls, I: S1-St1, II: S1-St2, I1I: S3-St2 and IV: S5-St3),
FastICA (1¥ column) indentifies the AEP in high-dimensional ICs in all the recordings, Ext-
Infomax (middle column) does not show a clear block structure; clear one- and two-
dimensional ICs were recovered by TDSEP-ICA for the AEP, CI artifact and noise (3"
column).

Figure 6.3 shows a comparison between the separability matrix for the three
ICA algorithms for both normal children and children with Cls (using the optimal
parameters determined in the previous chapter for each algorithm). Although Ext-
Infomax has the lowest separability values, it is not possible to identify a clear block

structure in S. Neither FastICA nor Ext-Infomax recovers a clear estimate of the AEP
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in these recordings from children with Cls. From the block structure of the
separability matrix, it appears that Ext-Infomax recovered the less stable ICs in both

normal hearing children and children with Cls.
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Figure 6.3 A comparison between the separability matrices for all the ICs estimated by three
ICA algorithms (recordings from a normal hearing child, fc, and child with CI, S3-St2), the
arrows indicate the ICs with physical or physiological meaning. In normal hearing children, it
is possible to recognize the AEP and background noise with all the algorithms (although those
estimates are not one-dimensional ICs using FastICA and Ext-Infomax); whilst in children
with Cls only TDSEP-ICA recovers the auditory response in one-dimensional IC.

Ext-Infomax does not show a clear block structure in recordings from normal
hearing children, this algorithm cannot recover the background noise as well as
FastICA and TDSEP-ICA. In general, FastlICA recovers more stable ICs than Ext-
Infomax, in both recordings from normal hearing children and children with Cls, but it
was not always possible to identify clear one- or two-dimensional ICs associated with
the AEP in some of the separability matrixes achieved using this algorithm. TDSEP-
ICA is able to find more one-dimensional ICs than any other of the ICA algorithm
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compared in this research. Most of the time, these one-dimensional ICs have a clear

physiological (AEP) or physical meaning (CI artifact and noise).

The resampling approach used in this section to compare FastlCA, Ext-
Infomax and TDSEP-ICA showed that TDSEP-ICA is the most suitable algorithm for
recovering stable ICs related to the AEP as well as the CI artifact in the dataset

recordings used in this research.

Up to this point, the comparison between the three ICA algorithms has been
using principally qualitative parameters, mainly the waveforms and topographic maps
to relate ICs with physiological events, and the block structure of the separability
matrix to establish the quality of the separation. In the following section, a
quantitative parameter is used to assess the performance and the variability of the ICs

recovered by FastlCA, Ext-Infomax and TDSEP-ICA on real, physiological data.

6.2 The performance of the ICA algorithms

The performance of the ICA algorithms can be evaluated by different
procedures

1) An inspection of the plots of the estimate,

2) Using an index such as SNR, or

3) Calculating the interference between the estimated sources.

The different methods to evaluate the performance of the algorithms depend
on the data that are available, in other words, if the true mixing matrix (W) is known
or not. In the case of synthetic data, the performance of an ICA algorithm can be
measured using for example the Amari Index, Am, (see Equation 6.1) which is an
assessment of the interference of source n on measurement m [9]; a perfect separation
E; results in an index of zero; this method has been used by different authors [97;135]
to compare diverse ICA algorithms for EEG components estimates and to analyze the
quality of the separation in a hybrid mixture of acoustic signals (for example, speech

and music) and synthetic sources.
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n n ‘ n n ‘p”‘

Am = — 14+ — -1 6-1
3 St el
where P=(pi;)=(WA); P is a permutation matrix.

In the case of real data and when the mixing matrix is unknown, there are
different indexes to measure the performance of the estimate of ICA, the Signal to
Interference Ratio (SIR) [55] is the index most frequently used, and is defined as
follows
<§i13i>|2

R=— —, 6-2
S 2||Si||2_ <si,si>|

where $; represents the estimated sources, and s; the real sources (reference signal);

here the inner product is a measurement of the distance between two signals. When

the estimated source is orthogonal to the true source, SIR is equal to zero; but if the
estimated source is equal to a gain factor g of the true source, S, = gs,, SIR is infinite.

Higher values of SIR indicate a better estimate quality.

The reference signals: to assess the quality of the estimates of both the AEP and CI
artifact, it was necessary to generate an accurate reference signal for both cases. AEP
reference signals, for four age ranges, were obtained by averaging the auditory
response of the normal hearing children in each control dataset group (see Table 3.1).
The AEP references signals (target 1 to target 4 in Figure 6.4) correspond to the
response at electrode site Cz, that are known to display the maximum amplitude for P,
peak. The reference signal for the CI artifact was achieved by averaging the electrodes

closest to the CI (around the temporal area) from five children with CI.

Target 1 Target 2 Target3 Targetd Cl Artifact

AN TN A L

Figure 6.4 Average AEP waveforms for four groups of normal hearing children for different
age range (see Table 3.1), target 1 to 4, and CI artifact signal used as reference signals in
Equation 6.2.
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Using Equation 6.2, the SIR index values for the 19 estimates recovered by
each of the ICA algorithms, were calculated. The reference signal was changed from
target 1 to target 4 in both recordings from normal hearing children and children with
Cls; additionally the SIR values with the CI artifact as reference was calculated in
children with Cls. The purpose of this test was to determine which algorithm achieved

the highest values of SIR, to determine better quality estimates.

In order to establish the minimal SIR index values permitted for the AEP a
first test was carried out, the SIR values for all the ICs recovered for the three
algorithms were calculated using the four AEP reference signals (see Figure 6.4), but
in the recordings from children without stimulation (where no one IC estimated is
related with the AEP). The average SIR index values for the AEP in recordings from
20 normal hearing children without stimulation were SIRpastica=0.61, SIRg:.
infomax=0.61 and SIRtpsep.1ca=0.76; the average for the three algorithms was
SIRaverage=0.66+0.08.

In a similar fashion, the reference signal of the CI artifact was used to
calculate the SIR index of the ICs recovered by the three algorithms in normal hearing
children (where of course no one IC estimated is related with this artifact). The SIR
index values for the CI artifact in 22 recordings from normal hearing children were
SIRFastica=0.55, SIRgxt-infomax=0.53 and SIRtpsep-ica=0.46; the average for the three
algorithms was SIRayerage=0.51+0.05.

With these results, it was established that recordings from both normal hearing
children and children with Cls with the AEP SIR index values close to or less than
0.66 were discarded. In the same manner, if the SIR values of the CI artifact were
close to or less than 0.51 in recordings from children with Cls the recordings were not
taken into account for further analysis. Appendix F includes tables with the entire SIR
index values for both normal hearing children and children with Cls, using the AEP

and the CI artifact as reference signals.

Figure 6.5 shows the highest SIR index values calculated (using FastICA, Ext-

Infomax and TDSEP-ICA) for two normal hearing children. (a) In recording xal, 4 y.o
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the highest values, for the three algorithms, were obtained using target 2 as reference
signal. (b) For the normal hearing child mp, 11 y.o., the highest values were obtained
with target 4; the results of both subjects are in accordance with the age group of each
child. The waveforms of the ICs with the maximal SIR values for each algorithm are

shown at the right hand side of each one of the SIR histograms.
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Figure 6.5 SIR index values for 19 estimates using FastICA, Ext-Infomax and TDSEP-ICA for
two different normal hearing children (a) xal, 4 y.o and (b) mp, 11 y.o. The waveforms of the
ICs with the maximum SIR value are shown at the right hand side of each of the histograms.

In general, in recordings from normal hearing children the three ICA
algorithms, achieved the highest SIR values when the AEP target was in accordance
with their age range; the waveform of the 1Cs with maximal SIR values corresponded

to the auditory response in all the recordings.

Figure 6.6 shows the SIR index value histograms for the 19 estimates of the
three ICA algorithms (FastICA, Ext-Infomax and TDSEP-ICA) for the recording from
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one child with CI (S6-St1, 2.5 years using her CI); in this recording the highest SIR
values for the three algorithms were calculated using the AEP target 2 as reference
signal (see Figure 6.6(a)). In 6.6(b) the SIR values for the three algorithms, with the
Cl artifact signal as reference, are plotted. At the right hand side of each SIR index
histogram the waveform of the estimates with the maximum SIR values are shown.
Resulting estimates were compared by visualizing, TDSEP-ICA recovers the clearest
ICs related to the AEP; almost with no CI artifact present; the SIR index values for
these estimates were the highest compared with the other algorithms. Ext-Infomax

achieved the highest CI artifact SIR values in this recording.

() (b)
SIR FastiCA IC max SIR Target2  siR FastiCA IC max SIR Cl Artifact
2 ! 5 14
5
15 05 1
4
045
1 . ff\J\/ ,
o
z
0s 05 08
1
-1
0 -1 0
0 5 0. 15 @ 00 0 00 0 30 0 s 10 15 0 00 0 00 00 =00
Estimation e Estimation ms
SIR  Ext-Infomax IC max SIR Target 2 SIR  Ext-infomax IC max SIR Cl Artifact
15 1 7 15
&
05 1
; 5
4
o \_,-’N_IJ : 08
o
05
05 2
1 -05
Pa 5 . 0, 15 0 TS wo o am % 5 10, 15 0 o0 0 o0 0 =00
Estimation e Estimation ms
SIR  TDSEP-ICA IC max SIR Target 2 SIR  TDSEFP-ICA IC max SIR Cl Artifact
248 1 248
3 3 1 \'\
05
25 25 0 \A‘M_\
2 o z E
15 15 -
1 .05 1 ] -z
045 045
i 1 i 3 . .
5 M, 15 il T 0 00 w0 3m 0 5 10 15 20 00 0 100 0 =00
Estimation e Estimation ms

Figure 6.6 SIR index value histograms (19 estimates) of the three ICA algorithms and the
waveforms of the estimates with the maximal SIR values for a child with CI, recording S6-St1
(2.5 years after implantation). (a) Target 2 and (b) ClI artifact as reference signals.

Figure 6.7 shows the SIR index histograms for the 19 estimates of three ICA
algorithms (FastlCA, Ext-Infomax and TDSEP-ICA) for the recording from one child
with CI (S5-St2, approximately 2.5 years after implantation); (a) the highest SIR
values were obtained using the AEP target 2 as reference signal. In (b) the SIR values
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for the three algorithms, with the CI artifact signal as reference, are plotted. At the
right hand side of each SIR index histogram the waveforms of the estimates with the
maximum SIR values are shown. Both FastICA and Ext-Infomax recover the AEP but
the CI artifact still being mixed in the components. Visual inspection suggests that
TDSEP-ICA recovers the clearest IC related to the auditory response and its SIR index
value is the highest compared with the other algorithms. In this recording, the CI
artifact SIR index value for Ext-Infomax and TDSEP-ICA are similar and higher than
the values for FastICA.
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Figure 6.7 SIR index value histograms (19 estimates) of three ICA algorithms and the
waveforms of the estimates with the maximum SIR value (child with CI, recording S5-St2).
() Using the AEP target 2 as reference signal and (b) the CI artifact signal as reference.

Table 6.1 includes the average of the SIR index values for each of the three
ICA algorithms for the AEP in recordings from normal hearing children (SIRaep nw).
The AEP SIR index values for children with Cls (SIRaep ci) and the SIR index value

for the CI artifact (SIRc) are included in this table also.
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Table 6.1 The average of the SIR index values for the AEP in recordings from normal hearing
children for each of the ICA algorithms.

FastICA Ext-Infomax TDSEP-ICA
SIRAEP_NH 2.87+1.30 2.04+1.02 2.43+1.35
SIRAep_ci 1.95+0.76 1.86+0.51 2.40+1.20
SIRc) 3.49+2.13 3.21+1.88 3.27+1.79

In recordings from normal hearing children, the AEP SIR index values are
somewhat higher using FastlCA; Ext-Infomax achieved the lowest values. The three
algorithms achieved the highest index values using the reference signal in accordance

with the age range for each child.

In recordings from children with Cls, the maximal values of AEP SIR index
(for the three algorithms) were achieved using target 1 (in children with less than 2.5
year using their CIs) and with target 2 (in children with more than 2.5 year using their
Cls). Although the dataset includes children with more than 5 years post-implantation,
it was not expected to have maximal SIR index values using target 3 and 4. This is
because the maturation of the auditory system in those children is different to normal
hearing children, the waveform of the AEP remains dominated by the peak P; as in
the first years in normal hearing children (see section 2.5). In these recordings,
FastICA achieved the highest SIR index values for the CI artifact and TDSEP-ICA

achieved the next best index values for the AEP.

6.3 Variability of the AEP estimates

It is important to know the variability of the AEP component estimates
because one of the objectives of this research is to objectively select the AEP
estimated components in children with Cls. To evaluate the variability of the
estimates, 20 repetitions were realized in the calculation of the ICs for the three ICA
algorithms already mentioned. The SIR index was calculated, using a convenient
signal reference, for each of the 20 repetition for all the estimates; the histograms of

the maximal SIR indexes for the three algorithms are shown in this section.
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Figure 6.8 shows the histograms of the maximal SIR indices for four different
recordings from children with Cls (I: S3-St1, II: S5-St1, llI: S4-St1 and IV: S4-St2),
calculated for the estimates of both (a) the CI artifact and (b) the AEP. In all the cases,
FastICA shows a larger spread of the SIR values than Ext-Infomax and TDSEP-ICA.
In most of the recordings, TDSEP-ICA shows the higher values of the AEP SIR index.
The range of values of the SIR index for the estimation of the CI artifact, using
FastICA and Ext-Infomax, are similar in all the recordings shown in this figure. The
ranges of values of the SIR index for the estimation of the AEP for the three
algorithms are similar in recordings | and 1V; in recordings Il and Il TDSEP-ICA
shows the higher values of the AEP SIR index.
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Figure 6.8 Comparison between, Ext-Infomax, FastICA, and TDSEP-ICA for (a) CI artifact
separation and (b) AEP separation in 20 IC estimates (recordings I: S3-St1, Il: S5-St1, I1I: S4-
Stl and 1V: S4-St2). Both Ext-Infomax and FastICA show a larger spread of values of the SIR
than TDSEP-ICA.
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With these results, it is possible to conclude that TDSEP-ICA is the algorithm
with the smallest variability in the estimate of the ICs; this algorithm is the one that
best estimates the AEPs as well as the artifact. Both FastICA and Ext-Infomax recover
efficiently the components related to the CI artifact; however, only TDSEP-ICA
successfully recovers the AEPs in all the subjects with Cls. In conclusion, the
performance of the TDSEP-ICA algorithm is better and more optimal for the dataset

analyzed in this research.

6.4 Summary

Although FastICA and Infomax are maybe the most popular ICA algorithms
used to estimate the components of the AEP in normal hearing subjects, here it was
found that the algorithm with the more stable IC estimates is TDSEP-ICA with =0, 1,
2, ..., 20. In normal hearing children, although TDSEP-ICA does not have the lowest
separability matrix values, the block structure of this matrix is always clearer than
FastICA and Ext-Infomax. One-dimensional ICs can be related with both the AEP and

noise.

In children with Cls, FastlCA and Ext-Infomax have problems in recovering a
clear AEP (without the CI artifact), especially when the recordings have low SNR.
TDSEP-ICA recovers the AEP in one- or two-dimensional ICs. All the algorithms
estimate the CI artifact reasonable well, although only TDSEP-ICA recovers it in one-
dimensional ICs. TDSEP-ICA is the algorithm with the best separation of noise in

these recordings.

The average value of the AEP SIR index is higher with FastICA than with Ext-
Infomax and TDSEP-ICA than in recordings from normal hearing children. In
children with Cls, TDSEP-ICA is the algorithm with the highest AEP SIR index
values whilst FastICA is the algorithm with the highest CI SIR index.

It can be seen that using the SIR index, the variability of the estimation of

three ICA algorithms, Infomax, FastICA and TDSEP-ICA, can be estimated. In both
recordings, from normal hearing children and children with Cls; TDSEP-ICA is the
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algorithm with the smallest variability in the AEP component estimates. This permits
to conclude that TDSEP-ICA has the most robust and efficient estimate of the AEPs
and this is to be expected over shorter window sizes and for a technique that makes

use of the inherent information available in the time-series itself.

On the other hand, standard implementation of the ICA algorithm results in
the number of ICs being equal to or less than the number of measurements, although it
is generally the case that some of the components do not have a physiological
significance; for this reason it is fundamental to know the number of sources to be
estimated. It is convenient to have an objective method to select the ICs with

physiological meaning.
In the next chapter, a procedure to select objectively ICs with physiological

and physical meaning, using the concepts of Mutual Information and clustering is

described.
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Chapter 7.

Selection of Independent Components
using Mutual Information and

Clustering

A crucial part of applying ICA to any neurophysiological data is the selection
of relevant ICs; in other words, to decide which 1Cs have neurophysiological meaning
(in our case the auditory response). Standard ICA implementation supposes a square
mixing matrix; this results in as many ICs as EEG channels (19 in our case).
Responses to repetitive stimuli are the most important signals here; so the ICs of
interest should be repetitive and time-locked with the stimuli. In this chapter a novel
procedure for the selection of ICs using MI and cluster analysis is presented (an

introduction of Ml is included in Section 4.1).

Section 7.1 explains the basic theory of Cluster Analysis including the basic
terminology used in hierarchical clustering, used in the procedure proposed in this
chapter. Section 7.2 includes the description of this procedure to identify robust ICs
associated with the AEP and the CI artifact, using M1 combined with cluster analysis
theory. This procedure is a modification of the method implemented by Kraskov et al
[86]. The authors utilize MI between the ICs as a similarity measure and recursively
using the grouping property of the MI, they cluster the output of ICA of biomedical
signals. Section 7.3 shows the results of hierarchical agglomerative clustering of the
ICs recovered by TDSEP-ICA from children with Cls. The dendrograms produced by
the agglomeration of the ICs are showed together with the most robust clusters in four

different recordings.
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7.1 Cluster Analysis

Cluster Analysis divides a collection of inputs or objects into a smaller number
of clusters; a cluster is a collection of objects which are similar or related between
themselves and are dissimilar or unrelated to the objects belonging to other clusters;
the aim of cluster analysis is to determine the intrinsic grouping in a set of unlabeled
objects (data). The concept of clustering is referred to an entire group of clusters;
ideally all the clusters are well separated from each other, in other words the distance
between two different clusters is larger than the distance between any two objects

within a cluster.

One of the most important applications of clustering is in biology, specifically
in taxonomy and hierarchical classification, where objects are classified according to
their characteristics in species, classes or families; the concept of hierarchical refers to
organising the objects into a “tree”. Clustering has been used in biology for example

to group genes which have similar functions [46;86].

There are different similarity criteria to merge the collection of objects, a
criterion of similarity could be the distance between the objects [46]. Data to be
clustered can be presented by a data matrix or by a dissimilarity matrix D with dj;
elements, dj is the dissimilarity between the i-th and j-th objects. The set of objects

belonging to a cluster satisfy a minimum of three conditions:

1. The dissimilarity between objects i and j is positive d;;>0.
2. The dissimilarity is equal to zero if the object is the same d;;=0.

3. The dissimilarity is symmetric d;j=d;.

In some applications it is more convenient to consider the similarity Ajj,
between the i-th and j-th objects instead of the dissimilarity; the dissimilarity must

satisfy the conditions listed before.
In general there are different types of clustering, the three principal types are:

hierarchical, partitional, and constructive clustering [46]. Hierarchical clustering

methods are more commonly used, and this is the method used in this research. In
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hierarchical clustering, the data are fused or partitioned in a series of steps.
Hierarchical clustering using agglomerative methods consists in fusing n objects into
groups where the last group contains all the objects at each step; in the agglomerative
method, the most similar pair of objects is clustered. A divisive method consists in
separating a number of objects into groups where every group contains only one
individual; at the beginning of the divisive clustering there is one cluster containing

all the data, at each step of the clustering an existing cluster is divided into two [83].

The two-dimensional diagram that illustrates the fusion or division made
during the hierarchical clustering is called a dendrogram (see Figure 7.1). The
dendrogram or rooted tree diagram is a mathematical and pictorial representation of
the complete clustering procedure. The height, h, in this tree represents the distance at
which each fusion is made and the nodes (labelled from A to E) in the diagram
represent clusters; for each pair of objects (i, j), the smaller the value of h;; the more
similar objects i and j are. This diagram displays the order in which the clusters were
fusioned. Each of the terminal nodes represents one of the objects clustered
(numbered from 1 to 6); the arrangement of nodes and heights is the topology of the
tree. The node E is called the root of the tree and is the cluster which includes all the

objects.

The dendrogram in Figure 7.1 is a binary dendrogram, it has n-1 internal nodes
and each internal node has two nodes lying below it in the tree; all the dendrograms
included in this chapter are binary. Since there are 2" different ways of representing
each binary dendrogram, the left-right ordering of the edges leading down from each

internal node can be interchanged.
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Figure 7.1 A dendrogram or rooted tree diagram, objects clustered are numbered from 1 to 6
and nodes are labelled from A to E, height is the distance at which cluster is made.

Different measures have been proposed to calculate the proximities between the
data, typically measured by dissimilarities or the inter-objects distances [46]. Given a
m x n data matrix X, the m entries of X are 1 x n row vectors Xi, Xz,..., Xm, the
commonly used distances measures between the vector x; and X; are defined as

follows:

n 2
e Euclidean distance, d;; = «%Z(Xik —X)
k=1

e City Block metric, d; = Z‘Xik - Xjk‘
j=1

n o P
e Minkowski metric, dij = {Z‘Xik ~ Xjk }
k=1

For the special case of p = 1, the Minkowski metric gives the City Block metric,
and for the special case of p= 2, the Minkowski metric gives the Euclidean

distance.

The most commonly used distance measure is the Euclidean distance; this can be

interpreted as physical distance between two points in the Euclidean space.

111



Chapter 7. Selection of Independent Components using Mutual Information and
Clustering

There are three basic agglomerative methods used in hierarchical clustering to
measure the inter-cluster similarity [65], all methods use generally a proximity matrix

as input:

1) Single linkage clustering, also known as the nearest neighbour technique,

defines the distance between groups as that of the closet pair of individuals.

2) Complete linking clustering or furthest neighbour is the opposite of single

linkage and defines distance between groups as that of the most distant pair of

individuals.

3) Group average clustering defines distance between groups as the average of

the distances between all pairs of individuals.

Once the clustering procedure has been completed, the number of clusters
must be decided by properly dividing of the dendrogram. There are two principal
criteria to divide this hierarchical tree, by finding the natural divisions in the original
data or by specifying an arbitrary number of clusters. In agglomerative clustering the
number of cluster is performed by cutting the dendrogram at a particular height. The
inconsistency coefficient can be use to identify the cutoff or height of comparison in
the dendrogram [120]; each link between nodes in the hierarchical clustering is
compared with adjacent links two levels below it. Another criterion is to determine
the number the elements in each cluster according with the number the objects

grouped [83].

The criterion used in this research, to cut off the dendrogram, in order to find
the number of clusters in each “tree” was the 70% of the maximum height between
clusters [83]. This criterion was considered more convenient than any other of the
criteria mentioned since those involve make a subjective decision about the number of

clusters or the number of elements in each cluster.
The objective of applying clustering to ICA is, for example, when the

reliability of an ICA algorithm is assessed, that repeating the estimates several times

in order to identify robust ICs. Himberg and Hyvarinen [64;65] propose to use
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clustering to identify common components between estimates calculated by running
FastiICA many times. After performing ICA, it could be important to identify
equivalent components across subjects, this is another application of clustering of ICs
[40]. Stogbauer proposes to use clustering of mutually independent components to

identify one- or multi-dimensional components [121].

The agglomerative method used in this research was single linkage clustering
and the criterion of similarity measure was the Euclidean distance of the MI between
the ICs calculated by TDSEP-ICA; when the Euclidean distance is used to measure
similarities between values with different scales is convenient to normalize them
(mean zero and standard deviation one). Authors in the literature who have used
hierarchical clustering to group the ICs calculated by ICA include Himberg et al 2003
[65] and Krashov et al 2005 [86].

7.2 Objective estimation selection in ICA of AEPs

Standard implementation of the ICA algorithm results in the number of ICs
being equal to or less than the number of measurements, although it is generally the
case that some of the components do not have a physiological significance; for this
reason it is fundamental to know the number of sources to be estimated. There are
different methods that could be used to select the ICs with physiological meaning,
such as by visual inspection of the topographies of the estimated sources or, say,

based on a threshold imposed on the variance of the ICs.

Krashov et al [86] propose to use MI as a similarity measure for hierarchical
clustering of the ICs computed by ICA from the ECG of pregnant women; MI values
between variables satisfies the conditions to cluster objects (positive, symmetric and
equal to zero only if the variable are the same or the variables are independent). The

procedure proposed by the authors can be summarized as:

1. Calculate the MI matrix between the ICs.
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2. Merge the closest two clusters i and j; the distance between clusters is

LCY))
H(, J)

computed by d; =1 , where | is the MI and H is the entropy

between the clusters.

3. Create a new cluster by combining i and j, using the joint MI.

4. Update the MI matrix between the new clusters using the grouping
property of MI, where the mutual information of two clusters is

conditioned on a third, I (i, j.k) =1(i, )+ 1((i, j).k).

5. Repeat steps 1-4 until only one cluster remains.

At the end of the procedure the authors indentify two big clusters related to different
sources. Additionally, the authors use the MI to identify the one- and
multidimensional independent components (see section 5.1.3) and to measure the
reliability of ICA estimates [121].

This method was slightly modified in this research, in order to objectively
select the ICs associated with the AEPs, from ongoing EEG recorded from children
with Cls, as well as to identify the ICs related to the CI artifact. The procedure
introduced here to objectively select ICs has two steps (see Figure 7.2 and Figure 7.3),
the first to reduce the number of estimates to compute and the second to cluster the

most robust estimates [28]. The procedure can be summarized as follows:

Step 1) Reduction of number of electrodes: Most of the ICA algorithms use PCA to

estimate the number of ICs to be found; however, when PCA was applied in a pre-
processing step in the dataset, the first principal components are related only to the CI
artifact in most of the recordings. This reduction in dimension may eliminate the
principal components associated with the auditory response (especially in recordings
with large CI artifact).

If we consider that more channels of measurements generally imply more
complex calculations, reducing the number of channels included in the estimation
might help reduce the complexity. An alternative could be to randomly select a subset

of m channels, from all the channels. In this way, the number of channels to be
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analyzed would be gradually (and pseudo-randomly) reduced e. g. to 3, whilst making
sure that in each selection, channels representative of all the areas of the brain are

included.

The pseudo-random reduction of electrodes used in this procedure is
graphically explained in Figure 7.2. The electrode labels were arranged in a 5 x 5
matrix (elemat, shown in matrix 7.1), in accordance with their position on the scalp
(see Figure 3.1, the electrode distribution according to the standard international 10-
20 system). For example, the first two rows correspond to the frontal electrodes (row
1: FP1 and FP2 and row 2: F7, F3, FZ, F4, F8), and so on until the fifth row where the
occipital electrodes where located. The elements of this matrix without electrodes
were filled in with zeros (elemat;;, elemat;s, elemat;s, elemats;, elematss, and
elematss). From elematy; until the last element of this matrix, elematss, arrays with
alternate nonzero electrodes and size equal to number of channel to process (6 in this
example) were selected from this matrix (see Figure 7.2(a)). In order to have more
combinations of electrodes arrays, the rows and columns of elemat where circularly

shifted several times and the selection of electrodes repeated.

O FP1 0 FP2 O
F7 F3 FZ F4 F8
elemat=| T3 C3 CZ C4 T4
5 P3 PZ P4 T6

0O 01 0 02 o

Using TDSEP-ICA with a time delay 7=0,1,2,...,20, the ICs for each subset of
electrodes obtained pseudo-randomly in the reduction of electrodes, were calculated
(see Figure 7.2(b)). In the recording S6-Stl is possible to recognize clear ICs related
to the AEP and the ClI artifact in the subset shown.

The MI between the ICs in each subset is calculated and used as a similarity
measure to the cluster analysis. Using the residual MI between the ICs, the estimate
with the minimal dependency with the rest of the estimations is selected in each
subset, to do that, instead of the clustering procedure proposed by Krashov et al and

listed in above paragraphs, the dendrogram construction was reformulated by finding
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the Euclidean distance between the elements of the MI matrix [56]; the proximity of
the ICs is defined as the minimum distance (maximum of the MI). Figure 7.2(c)
shows the dendrograms obtained with this procedure and the ICs selected in specific
subsets. The minimally dependent IC in subset 1 corresponds to the AEP, whilst it

corresponds to artifacts in subsets 4 and n.

Step 2) Clustering estimates: The ICs selected in the preceding step are grouped using

the Euclidean distance as measure of similarity; the hierarchical agglomerative
dendrogram for these ICs is shown in figure 7.3(a). The final number of clusters is
determined selecting an appropriate level in the dendrogram; the 70% of the
maximum distance (height) between clusters. Only the clusters with more than one
estimate were considered as robust clusters (clusters 2, 5 and 6 in this example, figure

7.3(b)). The trace in red is the average of the estimation in each cluster.
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Figure 7.2 Outline of the electrodes reduction in the procedure to objectively identification of
consistent ICs through MI and clustering (recording S6-St1). (a) For each electrode subsets, 6
electrodes selected pseudo-randomly, (b) the ICs were calculated using TDSEP-ICA. (c)
These ICs were grouped using the residual M1 between them; the IC last merged was selected
in each subset (1C4 for subset 1, IC6 for subsets 4 and n).
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Figure 7.3 All of the ICs selected in the previous step (see figure 7.2) were clustered using
the Euclidean distance as a similarity measure. The hierarchical agglomerative dendrogram
(top) was cutoff at 70% of the maximum distance between ICs. Three robust clusters can be
seen in this example (botton), CL2 and CL5 related to the AEP (with a frontal distribution)
and CL6 associated with the CI artifact (recording S6-St1, Cl in the right side).
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7.3 Hierarchical agglomerative clustering results

The procedure described before was carried out in 7 recordings from children
with Cls. Recordings S1-St2 and S4-St2 were excluded from the analysis because the
electrodes around the CI were not connected during the AEP recording. Since the
objective is to recognise the most robust ICs related to both the AEP and the CI
artifact, the identification of the CI artifact was expected to be more difficult in those
recordings; additionally the comparison between results could not be viable.

Figure 7.4 shows the dendrogram and the most robust estimates for recording
S5-St1 (CI user at 8 m after implantation); in this case each subset of channels
analysed includes 6 electrodes. The final number of clusters, using the criteria of 70%
of the maximum dendrogram height is 5. Three robust clusters (with more than one
IC) were observed in this recording. Using the spatial projection of the average IC
(trace in red) for each robust cluster the estimates were identified; two clusters are
related to the AEP: CL3 and CL5 and one cluster with the CI artifact CL4. The
topographic maps associated with the AEP have a distribution predominantly central
whilst the distribution of the estimate related to the CI artifact is principally between

electrodes T6 and O2 where the antenna of the Cl is positioned.

Figure 7.5 shows the dendrogram and the most robust estimations for subject
S3-St2, this child has been using his CI for 1 year; these results were obtained using 4
electrodes in each subset analysed; the maximum number of cluster using the criteria
of 70% of the maxima height is 11, but only two clusters have more than one estimate
each (robust clusters). The spatial projections of the average IC in CL10 show a
central distribution which could be associated with the AEP whilst the principal
activity in the topographic map of CL 9 is in the right hemisphere where the CI is
located.
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Figure 7.4 Dendrogram (top) and robust ICs and average spatial projections for child S5-St1
Cl user (bottom), 8m after implantation; two clusters are related to the AEP CL3 and CL5 and
one cluster is associated with the CI artifact (CL4).
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Figure 7.5 Dendrogram (top) and estimations clustering and topographic maps (bottom) for
subject S3-St2 (subsets of 4 electrodes were analysed). The number of cluster using the 70%
of the maximum distance between clusters is 2; one cluster is related to the AEP (CL10) and
one with the Cl artifact (CL9).
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Figure 7.6 shows the hierarchical dendrogram robust cluster and spatial
projections of the ICs for the same subject of figure 7.4 but 5 years and 5 months after
implantation; the ICs in clusters CL1 and CL3 are two components of the AEP and
cluster CL2 is noise electrodes around the CI; the trace in red is the average of the
estimation. In this recording 5 electrodes for each subset were selected and the final
the number of clusters was 3. The spatial projections of the average ICs related to the

AEPs shown lateralised distribution opposite to the CI.

Figure 7.7 shows the hierarchical dendrogram and the most robust ICs
recovered from recording S5-St2; subsets of 4 electrodes were analysed. The final
number of clusters obtained using the 70% of the maximum distance between clusters
was 3. The spatial projections of the average ICs in each cluster indicate that CL4 is
related to the AEP with a frontal distribution lateralised opposite to the CIl. CL5 could
be another element of the AEP with a frontal distribution. Finally, the spatial
projection of the average IC in CL6 shows activity around the electrodes where the ClI
Is located; the noise could be generated by the CI itself.

Three robust clusters were recovered by the procedure proposed in this chapter
in recording S4-St1 (see Figure 7.8); subsets of 9 electrodes were analysed. According
with the spatial projections of the average ICs in each cluster it is possible to say that
clusters CL2 and CL3 are related to the CI artifact whilst cluster CL4 is associated

with the AEP with a posterior distribution.

Robust ICs related to the AEP and CI artifact were identified in recording S5-
St3 (Figure 7.9); subset of 7 electrodes were analysed in this recording. Using the
criteria of the 70% of the maximum distance between cluster, 4 clusters were
recovered. Two clusters are related to artifacts; CL2 corresponds to the CI artifact and
Cl6 with noisy electrodes (F4, F8 and C4). The spatial projections of the average ICs
in CL3 shows activity opposite to the CI location but predominant parietal and frontal
in CL7.
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Figure 7.6 Dendrogram (top) and estimations clustering and topographic maps (bottom) for
subject S3-St3 (child with CI, 5y 5m after implantation). The number of clusters using the
70% of the maximum distance between clusters is 3; two clusters are related to the AEP (CL1
and CL3) and one to noisy electrodes around the CI (CL2).

ICCL1

123



Chapter 7. Selection of Independent Components using Mutual Information and
Clustering

Dendrogram using MI

280 -

200 |-

150

100

13 18 & 4 B 12 16 27 2% 30 10 1 3 9 28 7 8§ 1§ 20 28 1 2 2% 2 23 3 24 11 14 19 21

> IC CL4

JEE 1 I 1 4 4
A0 00 &0 0 10 150 200 B0 30
ms

ICCLS

IC CLA

055

0.5

L ! L L L L L L
-180 100 -50 u] 50 100 150 200 250 300
ms

IC CL6

Figure 7.7 Dendrogram (top) and estimations clustering and topographic maps (bottom) for
subject S5-St2 (subsets of 6 electrodes were analysed). The number of cluster using the 70%
of the maximum distance between clusters is 3; two clusters are related to the AEP (CL4 and
CL 5) and one with noise generated by the CI (CL6).
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Figure 7.8 Dendrogram (top) and estimations clustering and topographic maps (bottom) for
subject S4-Stl (subsets of 9 electrodes were analysed). The number of cluster using the 70%
of the maximum distance between clusters is 3; two clusters are related to the ClI artifact (CL2
and CL 3) and one with the AEP (CL4).
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Figure 7.9 Dendrogram (top) and estimations clustering and topographic maps (bottom) for
subject S5-St3 (subsets of 7 electrodes were analysed). The number of cluster using the 70%
of the maximum distance between clusters is 4; two clusters are related to artifacts (CL2 and
CL 6) and one or two possibly related to the AEP (CL3 and CL7).
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The number of robust clusters indentified across subjects was diverse; in
general one or two for the AEP (it could be related to the symmetry of the auditory
response and the time after implantation). One or two related to the ClI artifact and one
related to another type of component (blinking, line noise or spontaneous EEG
activity). In general, the AEP is more robust and is in accordance with the time of
implantation (compare Figures 7.4 and 7.5). The advantage of the procedure proposed
in this chapter over the methodology proposed by Krashov et al is that it is the less
time consuming to run; approximately one octave of time to run the procedure

proposed by those authors.

Since the CI artifact is located in a very specific area of the brain (right or left
temporal lobe), the performance of TDSEP-ICA is better in recovering the AEP when
distant electrodes to the CI were selected. The AEP and the ClI artifact are spatially
uncorrelated, this procedure emphasises this between both signals and better positions
TDSEP-ICA to carry out the estimates.

Although the clustering of the estimations is correct visually, and the
topographic maps of the average ICs in each robust cluster are close to the expected, it
IS necessary to compare different agglomerative methods as well as to determine the
optimal number of clusters in each dendrogram. Furthermore, it is necessary to
include criteria to determinate the number of clusters in accordance with the reduction
of electrodes. For that, the consistency between links of the clusters could be used, for
example. If the length of a link does not vary significantly from the length of
neighbouring links, it means that the objects merged at that level of dendrogram have
similar characteristics (there is consistency between the objects). Another option is
use a silhouette plot which reflects the strength of a clustering to the nearest stable

cluster, compared to the next best cluster [46].

Moreover, it is important to analyse the convenience of using a partitional
clustering instead of hierarchical agglomerative clustering used in this chapter. Since
the objective of this thesis was to propose a method to evaluate objectively the
maturation of the auditory system of children with CI and not necessarily to develop a
procedure to select the ICs with physical and physiological meaning after using ICA,

it was decided do not use the procedure proposed in this chapter, as mentioned before
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more work is needed to obtain reliable results that can be used in the analysis of

sources of the AEPs.

Finally, it is possible to mention that this part of the research opens an
alternative line of study to extend the use of cluster analysis applied to this type of
dataset (AEP recordings with ClI artifact).

7.4 Summary

A fundamental stage when applying ICA to neurophysiological data is the
selection of relevant ICs. The standard implementation of ICA supposes a square
mixing matrix; this results in as many ICs as EEG channels (19 in this case). Because
of that it is important to have an objective procedure to select the relevant ICs
consistently. The procedure for robust selection of ICs proposed in this chapter can be

summarized in two steps:

1. The number of channels to be analysed using ICA was gradually and pseudo-
randomly reduced from the original 19 to 3 (ensuring the inclusion of electrodes
representative of all the areas of the brain), the best results were obtained using from 9
to 4 electrodes. The ICs with least dependence on the rest of the ICs was selected in
each data subset; the parameter used to measure the dependence between the ICs is
the MI.

2. The ICs selected in the preceding step are grouped using the Euclidian distance as a
measure of similarity. Clusters with the most robust (stable across the different data

subsets) ICs for each subject were then obtained.

The number of robust clusters obtained with the procedure proposed was from
2 to 4 depending on the number of electrodes selected at the beginning of the
procedure. In general, the most robust ICs correspond to the AEP and the CI artifact.
The principal advantage of the procedure proposed in this chapter over the Krashov et

al procedure is the favourable computational cost. On the other hand, it is necessary to
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include a systematic study about the optimal number of electrodes to select in order to

obtain the most number of robust clusters with physical and physiological meaning.

The number of robust clusters and ICs in each cluster is different for each
subject, which introduce more variables in the source analysis procedure; making the
interpretation of the results for the assessment of children with Cls very difficult.
Because of this, it was decided to not use the procedure proposed in this chapter in the

source analysis of the AEPs.

At this point, the most optimal ICA algorithm (TDSEP-ICA) and its best
parameters to remove the CI artifact of the dataset used in this research have been
selected. In addition, a procedure to recover the most robust components in each
recording has been explained. The AEPs recovered after removing the ICs associated
with the CI artifact are now shown and discussed in Chapter 8; moreover the changes
in the topographic maps of the ICs related to the auditory response are analyzed in
order to establish their relative changes with respect to the time of use of the CI.
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Chapter 8.

Assessment of the neurological

maturation of children with Cls

The objective of this chapter is to show that TDSEP-ICA can be used not only
to reduce the CI artifact of contaminated AEP recordings, which is fundamental to the
next part of this research (to facilitate and increase the accuracy of the source analysis
of the AEPSs), but also demonstrates that it is possible to use the topographic maps
(spatial projections) of the ICs associated with the auditory response to follow the

auditory maturation of children with Cls.

In section 8.1, the ICs recovered by TDSEP-ICA related to the AEP in normal
hearing and implanted children are shown, together with an analysis of changes in the
P peak latency in accordance with the age of normal subjects and with the time of
implantation in child CI users. After that, the topographic maps of relevant ICs in
children with Cls are shown. Section 8.2 includes an explanation of how the changes
of the spatial projections of the ICs related to the AEP can be used to evaluate the
maturation of the auditory system in children with Cls. Finally, section 8.3 includes
some examples of de-noised AEP recordings which were used in the last part of this

research.

All the results shown in this chapter correspond to 1000 Hz and 70 dBy.
sound stimuli and using TDSEP-ICA (7=0,1,2,...,20) applied to the 19 EEG recordings
with only 50 epochs; plots have arbitrary units for the amplitude of the ICs. Each one
of the plots was labelled with the implanted subject number and the number of the
study (see Table 3.2), whilst the plots for the normal children were labelled with a
sequence of letters.
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8.1 Identification of the AEP in normal hearing and implanted children
using TDSEP-ICA

First, TDSEP-ICA was applied to ongoing EEG recordings from normal
hearing children with number of ICs equal to number of channels (19). Figure 8.1
shows the I1Cs associated with the AEP in three different children for the groups listed
in Table 3.1. In group 1, children from 3 to 4 years old, it is possible to identify a P;
peak with latencies between 175 and 225 ms; in group 2 the latency of P; is between
140 and 170 ms. In group 3 the latency of this positive peak is around 100 ms.
Finally, in group 4 instead of Py, a negative peak around 100 ms is present in the
response (similar to the adult auditory response morphology). The changes in the Py
peak latency in children younger than 10 y.o. are as expected, the latency of the peak

decrease as a function of age [109;132;133].

Group 1: 34 years old Group 2: 56 years old Group 3: 70 years old Group 4: 10-14 years old
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Figure 8.1 ICs related to the AEP in normal hearing children. For children less than 10 years
old the components have a positive peak with difference latencies at different ages, whilst
between 10 and 14 years old, it is possible to recognize a negative peak around 100 ms,
instead of the positive peak.
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Figure 8.2 shows the ICs related to the AEP in six implanted children at
different times after implantation. Although the reduction of the CI artifact is not
total, it is possible to recognize the P; peak in all of the recordings, the latency of this
peak is variable from 130 to 200 ms across the recordings. A transversal comparison
between the latencies of the P; is not possible since the number of recordings in each
group is reduced. In a longitudinal comparison, the latency of P; peak is shorter in
accordance with the time of use of the CI (length of time since implantation). Even
though the latency of P; decreased, it remains prolonged compared with age-matched

normal hearing children.
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Figure 8.2 ICs related to the AEPs in six different child CI users, at different times after implantation. A positive peak between 130 and 200 ms can be
identified in all the recordings.
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The waveforms of the ICs related to the AEP in three different subjects, one
normal hearing and two implanted children, are compared more closely in Figure 8.3;
the latencies of P, and N; in kc, normal hearing 7 y.o. child, are 109 and 210ms
respectively. Subject S3-St3 has used his implant for 5 years and 5 months, P
(168.3ms) and N; (273ms) can be recognized in this subject. Both P, and N; were
recognized in subject S6-St1 with latencies at 174 and 279ms respectively; this
subject has used her implant for 2 year and 6 months. Although the IC waveforms of
the implanted children are similar to the IC of the normal hearing child, the P;-N;
complex is presented in the three subjects, the latencies of this complex are prolonged
in S3 and S6.
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Figure 8.3 ICs associated with the AEP in three different subjects; (a) kc is a normal hearing
child, 7 y.o. and (b) S3-St3 and (c) S6-Stl are two children with different times of
implantation; subject S3 was implanted at 7 y.o. whilst subject S6 was implanted at 4 y.o.

In addition to the AEP ICs, several artifacts were identified during the analysis
of the dataset; Figure 8.4 shows the waveform and spatial projections (views were
selected for easier visualization of the ICs) of three of the most common ICs
associated with artifacts in the subjects. The artifacts shown in this figure were
observed in three different recordings; the ICs associated with the CI artifact (Figure

8.4(a)) have two distinguishing characteristics:

1. Waveform and duration, pulses with width <100 ms

2. Spatial projection centred over the CI site (temporal area). Others artifact

identified were blinking (Figure 8.4(b)) and noisy electrodes (Figure 8.4(c)).
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Figure 8.4 Waveforms (top) and spatial projections (bottom) of the most consistent ICs
related to artifacts in all the subjects. (a) The IC of the Cl artifact is a pulse with a width of 67
ms and spatial projection around T4 and T6 which corresponds to the localization of the Cl in
S1-St3, (b) the topography of this IC should be associated with blinking, (c) this IC is related
to a noisy electrode (C4).
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8.2 Assessment of the neurological maturation of children with Cls
using TDSEP-ICA

Neurological maturation of the auditory cortex or cortical plasticity refers to
structural and functional changes of neural properties which occur on different
temporal and spatial scales; the temporal scale extends from seconds to a whole life
and the spatial scale extends from the molecular level to changes on topographic
(scalp) maps [85]. The changes in the morphology of the ICs offer us a way to
evaluate the temporal aspect of the plasticity whilst the changes seen in the
topographic maps give us the opportunity to follow the spatial aspect of maturation in
children with Cls.

Figure 8.5 shows both the ICs and spatial projections related to the AEP in all
the children implanted. Each row corresponds to different subjects whilst columns
correspond to time after implantation. A closer analysis of the modification of the
spatial projections in accordance with the time of implantation is shown in the rest of

the figures in this chapter.
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Figure 8.5 Waveforms and spatial projections of the ICs related to AEPs in all the subjects with Cls.
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The changes in the IC waveforms associated with the AEP, as well as their
spatial projection in the first year of implantation of three different subjects (S1, S2
and S4), are shown in Figure 8.6. In (a) the subjects have used their Cls for less than
one year (5 months on average); (b) shows the recordings of the same subjects at one
year after implantation. The changes in the latency of P; peak of the ICs associated
with the AEP between both recordings varied among subjects, 16 ms in S1 and only 3
and 4 ms in S2 and S4, respectively. However, changes of the spatial projections are

similar in the three subjects, from parietal to front-central at one year of using their

implants.
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Figure 8.6 Changes in the IC waveforms and spatial projections of three different subjects
(S1, S2 and S4) during the first year of use of their Cls; (a) Stl: less than one year post-
implantation and (b) St2: approximately one year post-implantation.

Figure 8.7 shows the changes in the topographic maps and waveforms of the
ICs related to the AEP in two subjects at different times after implantation. In subject
S3 the latency of P; changed from 165 ms to 160 ms whilst in subject S5 the latency
changed from 156.3 to 143 ms; the spatial projections of these components changed
from central (1-2 years post-Cl) to fronto-central contra-lateral to the CI (>5 years

post-Cl). Both subjects have their Cls on the right side.
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Figure 8.7 Changes in the IC waveforms and spatial projections of two different subjects (S3
and S5); (a) between one and two years post-implantation and (b) more than five years post-
implantation.

Figure 8.8 shows the ICs related to the AEPs and their spatial projections of
one subject (S5, implanted at 4 y.o. in the right side) at two different times of use of
his Cl (Study 1: 1 year and 9 months and Study 2: 2 years and 8 months post
implantation), compared to a normal hearing child (xal, 4 y.0.). The latencies of P;
and N; remain similar between study 1 and study 2, there is a difference of one year
between these two recordings; however, the spatial projection of the ICs related to the
auditory response changes from fronto-central almost symmetric to frontal lateralized

in the left side. The topographic map in study 2 is very similar to that of a normal

hearing child.
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Figure 8.8 Changes in the ICs related to the AEP and their spatial projections of one subject
(S5, implanted at 4 y.o. in the right side), at two different time of use of his implant,
compared with a normal hearing child (xal, 4 y.0.).
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Figure 8.9 shows the ICs associated with the AEPs and their spatial
projections of one subject (S3, implant at 7 y.o. in the right side) at two different
times of use of his Cl (Study 1: 1 year and Study 2: 1 year 8 months post
implantation), compared with a normal hearing child (kc, 7 y. 0.). In study 1, only a P;
peak is observed; the latency of P; shifted from 200ms in study 1 to 163 ms in study
2; moreover the spatial projection is more central and localized and is more similar to

the topographic map of a normal child.
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Figure 8.9 Changes in the IC of the AEP and its spatial projection of one subject at
two different times of use of his ClI (S3, implanted at 7 y.o. in the right side),
compared with a normal hearing child (kc, 7 y. 0.).
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Figure 8.10 shows the ICs associated with the AEP and their spatial projection of
three different subjects (S3, S5 and S6, implanted in the right side) with more than
two years using their Cls (2 year 5 months on average); it is possible to identify both
P1 and N; peaks in all subjects. The latency of P; is 160.3, 148.3 and 174 ms
respectively. The spatial projections have a fronto- to fronto-central distribution

lateralized opposite to the CI.
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Figure 8.10 ICs associated with the AEPs and their spatial projection of three different
subjects (S3 implanted at 7 y.0., S5 and S6 implanted at 4 y.0.) with more than two years
using their CI (implanted in the right side); it is possible to identify both P; and N; peaks in
all subjects. The spatial projections have a front to front-central distribution lateralized
opposite to the CI.

The latencies of the P, peak in the ICs related to the AEP among subjects are
diverse and it is not possible to identify the complex P1-Nj in all the subjects (S1-St1,
S2-Stl and S3-St1). In general the latency of this positive peak is shorter as a function
of the use of the CI. It is difficult to draw any conclusion about the auditory system
maturation of these children using just this parameter. Nevertheless, the spatial
projection of these 1Cs shows more consistent changes in accordance with the use of
the CI, across all the subjects. Although it is necessary to increase the number of
subjects and recordings, in order to have more reliable results, it is possible to say that
subjects implanted younger present topographic maps more focussed in a specific area
contra-lateral to the CI than children implanted at an older age (compare for example
Figures 8.8 and 8.9).

In general, the spatial projections of the AEPs’ ICs are spread out around the
head with no focus in any specific area, although predominantly parietal when the
children have used their Cls for less than one year. At one year after implantation the
spatial projections are characterized by a central to fronto-central distribution. Finally,
the spatial projections of the ICs have a distribution fronto- to fronto-central, contra-
lateral to the CI implantation at more than two years post-implantation. The spatial

projections of the ICs related to the AEP show similarities with normal hearing
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children’s spatial projections, which could be used for an objective assessment of the

maturation of the auditory system in children with Cls.

8.3 De-noising the AEP

In this section the original signals and the de-noised signals after removing
artifactual ICs, using TDSEP-ICA (7z=0,1,2,...,20), are shown. The columns of the
mixing matrix corresponding to those components were made zero to generate the de-
noised signal. Appendix G includes all the artifactual ICs identified in the recordings
from children with Cls. The principal artifact recovered were those related to the ClI
artifact and noisy electrodes; additionally, both the original and the de-noised signal
after removing those artifacts are shown in this appendix too. Some examples of those

signals are shown in the following figures.

The original and de-noised signals (plots on red and black, respectively) for
recording S2-St1 (female implanted in the left side) are shown in Figure 8.11. The ICs
related to the CI artifact and noisy electrodes were removed from this recording. After
removing those artifacts, it is possible to identify P; peak in the electrodes around the
Cl (T3 and T5).
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Figure 8.11 Comparison between the original (red) and de-noised signal (black) in recording
S2-St1, the ICs related to the Cl artifact and noisy electrodes were removed in this recording.

Figure 8.12 shows the original signals and their de-noised version (after
removing the I1Cs associated with the CI artifact using TDSEP-ICA) for three different
recordings. The reduction of the CI artifact is not total but it is now possible to
identify the AEP in the electrodes that were contaminated by this artifact (T4 and T6
for these subjects). Subject S3-St1 is a child one year post implantation; it is possible
to identify a positive peak at 166 ms. The complex P;-N; was identified after de-
noising in subject S3-St2 and S6-St1. For the case of subject S3-St2 who had used his
Cl for 1 year and 8 months at the time of this recording, the latency of P; is 171 ms
and 276 ms for N;. Subject S6-St1 had used her CI for 2 years and 5 months; the

latency of Py is 174 ms and 279 ms for the negative peak.
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Figure 8.12 Butterfly plots of both the original signal (left column) and the signal after
removing the ICs associated with the CI artifact (right column); both P; and N; were
identified in subject S3-St2 and S6-St1 whilst only P; was detected in subject S3-St1.

8.4 Summary

This part of the research consisted of applying the ICA technique not only to
reduce the CI artifact [39;52] but also to detect AEPs in ongoing multi-channel
recordings. After that, using the spatial projection of the ICs associated with the
AEPs, which provides a global representation of the response to the auditory stimulus,
it was possible to follow the auditory system maturation of children with Cls in

accordance with the time of use of their implants.

The topographic maps related to the AEP change from being spread out
around the head with parietal predominance, to fronto-central localization contra-
lateral to CI implantation. The spatial projections of the ICs related to the AEP show
similarities with normal hearing children’s spatial projections in accordance with the
time of implantation, which could be used for a robust and objective assessment of the
maturation of the auditory system in children with Cls. Furthermore, this method

should be suitable to be implemented in practice in a clinic.
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One advantage of ICA is that it can be applied directly to un-averaged EEG data
with the possibility of reducing the number of epochs and hence the testing time. The
results obtained using TDSEP-ICA with only 50 epochs show that it is feasible to
reduce the time of the recording to one third of the original EEG recording time; this
is particularly useful, since it is hard to obtain good results from children without

sedation, over long experimental sessions.

Once all the artifacts have been removed, the source analysis for the P; peak of
the AEPs of both normal hearing and children with Cls is carried out. In the following
chapter a review of the most important concepts involved in source analysis theory
are included; moreover the assumptions of the head model, type of dipoles and the
mode to validate the source analysis results are mentioned in this chapter. Finally, the
results of the source analysis of the AEPs to assess the performance of CI users are

shown at the end of that chapter.
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Chapter 9.

Source analysis of the AEP in children
with ClIs

The results shown so far exposed the changes in the topographic maps of the ICs
associated with the AEPs in accordance with the use of Cls over time. It is interesting
however, to follow the changes in neural sources in the form of Equivalent Current
Dipoles (ECDs) of these potentials, at different times post implantation. This gives a
basis for an objective technique to evaluate the maturation of child CI users. The aim
is for this to be an objective procedure to assess the maturation of the auditory system
of an implanted Child-Cl as a complete system, viable for implementation in a

practical clinic.

This chapter is organized as follows: Section 9.1 includes an introduction of
source analysis theory, the assumptions behind the use of the ECDs considered in this
theory, as well as an overview of some electromagnetic equations relevant to model
the EEG in this way. Source analysis consists of solving the forward and the inverse
problem, both these topics are described in Section 9.2. In Section 9.3 the parameters
used in commercial software used here for the source analysis of AEPs are described.
In Section 9.4, the description of an alternative procedure, which uses TDSEP-ICA in
the pre-processing step of the source analysis of the AEPs, is detailed. In Section 9.5
results of the source analysis of the AEP Py peak, in both normal hearing children and
children with Cls, are shown. Finally, in Section 9.6 source analysis of the P; peak for

the assessment of CI users is explained.
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9.1 Brain Source analysis

Using functional data (multi-channel EEG or MEG) and anatomical data, such
as Magnetic Resonance Image (MRI) and Computer Tomography (CT), it is possible
to obtain an estimate of the localization of the current sources generated by specific
neurological events within the brain. Useful for example, for determining the location
of epileptic focii and EPs which are generated within the cerebral cortex. This activity
is the consequence of depolarisations or hyperpolarisations in concert, giving in result
a dipolar current source generally orthogonally oriented to the cortical surface; the
active regions in the cortex could be focal or distributed [37]. Focal source models
are suitable for electrical activity within small areas of the brain whilst distributed
sources models represent the activity with a grid containing hundreds of dipolar
sources with fixed position and orientations. The first model is solved using single
dipole fits, whilst the second model is computed by current density methods; these
models are able to describe extended sources, estimating the time course for each one
of the dipoles. The problem of recovering the current sources from superficial EEG
recordings is that it is intrinsically ill-posed; it is impossible to uniquely determine the
spatial configuration of neural activity based on EEG recording alone [115], no matter

how many recording channels are used.

Source analysis consists of calculating the current sources and potential fields
within the brain; for this, a model of the source and the head is assumed in order to
calculate a solution of the inverse problem (nonlinear and intrinsically ill-posed)
which is obtained (usually) by an iterative process. This iterative process consists of
moving a ECD, whilst its amplitude and orientation are changing within the head
model, to obtain the best fit between the EEG data (as measured at the scalp) and
those produced by the source in the model. As already mentioned, there is no unique
solution to this inverse problem since different internal source configurations can
produce equal external electromagnetic fields; the quality of the solutions depends on
the source and head models used. The most simplistic source model is a single dipole
which is convenient if the distance between disparate dipoles is large or the dipoles
are thought to have different temporal activities. There are different volume conductor
head models used to solve the inverse problem; spherical models with 3, 4 or 5 shells
and realistic head models calculated from MRI data. A spherical model is the most
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simplistic volume conductor; this model contains concentric layers that represent the
scalp, cerebrospinal fluid (CSF), skull, and brain, each one with different electrical
conductivity [127]. The Boundary Element Method (BEM) is a realistic head model
which approximates compartments of the head by triangular meshes with a limited
(but large) number of nodes [47;48]. The solution of the inverse problem depends on

the geometry and conductivities of the volume conductor selected.

Three principal prior assumptions in source analysis should be considered:

1) A small number of focal sources that can be modelled by ECDs to generate
EP.

2) The localization, orientation and activity over time of each ECD are
interactively determined by minimizing the difference between the predicted
and the actual EP.

3) The electrical activity is generated by the pyramidal cells of the brain i.e.
the sources of the recorded potentials are located in the cerebral cortex.

Maxwell’s equations (Equations 9.1-9.4), which state the fundaments of
electricity and magnetism, are used to compute the electrical field E and the magnetic

field B generated by neural currents density J; ¢is the permittivity of the medium.

VE=pl¢, 9-1
VxE = —@ , 9-2
ot
VB=0, 9-3
and VxH=J +%. 9-4

Equation 9.1 (Gauss’ law for electricity) states that the electrical potential E is
proportional to the charge density p, at the same time E is proportional to the time
rate of change of magnetic field B (Equation 9.2, Faraday’s law of induction).
Equation 9.3 (Gauss’ law for magnetism) state that the magnetic field, B, has

divergence equal to zero.
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Equation 9.4 tell us that the magnetic fields (H, due only to macroscopic
currents) may be generated in two distinct way, by currents J or by a time varying
electric field (the electric displacement D); these relations are linear in conductive,
dielectric and magnetic senses, that is

J=0cE, 9-5
D=¢E, 9-6
and B=uH. 9-7

ois the electrical conductivity of the medium, ¢is the permittivity of the medium, and

L is the permeability of the magnetic material.

At the low frequencies of brain dynamics, the electric and magnetic fields are
separate then the magnetic field may be calculated from the Biot-Savart law which
describe the magnetic field generated by an electric current. This equation is a special
case of Equation 9.4

H=Pxr 9-8

Ay
where H is the magnetic field, P is the current dipole moment, and r is the vector
from the dipole to the field point; the direction of H is circular, enfolded around the

dipole axis.

The conservation of free charges, the charge is neither created nor destroyed,
follows from Equations 9.1 and 9.4 that is

V-J+a—p:O. 9-9
ot

The equations listed in this section constitute the basis to model the electrical
activity into the brain. The current flow causes an electrical field and also a potential

inside the human head which can be calculated using these equations.
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9.2 Inverse and Forward problem

The inverse problem consists of calculating the localization and magnitudes of
the ECD(s) within the brain using: a set of electric potentials from discrete sites on the
scalp, the associated electrode position of those measurements, and both the geometry
and conductivity of the different regions in the head. Each ECD source has six
parameters, three which correspond to localization coordinates (X, y, z), two with the
orientation (¢, ¢) and one with the time-dependent source strength, (see Figure 9.1
[127]). In order to solve the inverse problem is necessary to solve the forward
problem first where the strength, location and orientation of a source inside the head
are known whilst the measurements on the outside of the head are unknown; in this

case the problem has a unique solution.

Figure 9.1 Each one of the ECDs, S, has six parameters, three which correspond to
localization coordinates (X, y, z), two with the orientation (6, ¢) and one with the time-
dependent source strength.

Constraints are needed to single out one solution to the inverse problem; once
the source model (focal or distributed), the number of sources (symmetric in both
hemispheres or not), as well as an anatomical constraint (specific area in the brain)
must be included then the inverse problem can be solved. Information on sensor
location is required to compute the solution too. Using landmarks positions (often the
nasion, inion and pre-auricular points), the centre-of-gravity of these landmarks is

then the most well defined location.
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Basic equations for the forward problem

The EEG is the result of the intracellular currents generated by specific
neurons in the grey matter (pyramidal neuron cells). Mathematical models in EEG
include the so-called volume conductor models. The basic equations of these models
relate current and potentials produced in the volume conductor. These currents can be
modelled by the Poisson’ equation, this equation is derived via Maxwell’s equations
(Equations 9.1-9.4). Poisson’s equation follows directly from Ohm’s law for an

isotropic conductor (see Equation 9.5).

Equation 9.1 gives the relation between the electrical field and the charge

density; additionally, the electrical field is related to the electrical potential, V, by
E=-VV. 9-10

The Poisson equation relates the electrical potential with the charge density

vy =2, 9-11

&
in a charge free region of the space, this becomes Laplace’s equation, which is
appropriated for calculation of potentials at the membrane scale. Once the electric
potential has been calculated, the electrical field is computed by the gradient of the
potential, when the charge distribution has spherical symmetry, the Laplacian is used

in polar coordinates.

The potential at any location in the head volume conductor due to brain

sources can be expressed as
V(r,t)z”J'G(r,r')P(r',t)dV(r'), 9-12

where P (r, t) is the current dipole moment per unit volume at location r and time t.
The Green’s function G (r, r’), which includes all the volume conductor properties,
weight the integral; when the electrical distance between the recording localization r

and the source location r’ is small, the G (r, r’) is large.
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The forward problem, which involves calculation of scalp potentials from
known current sources, may be solved by Equation 9.12 for potentials V due to known
source magnitudes and locations. The inverse problem consists of finding the
locations and strengths of the current sources of Equation 9.12, from EEG recordings,

with respect to some reference, in the scalp [100].

In order to solve the inverse problem, the brain volume is divided into N
voxels of volume AV with a dipole moment pp(rn,ti)=P(rn,ti) AV.

Then Equation 9.12 may be replaced by

N

Ve (rot) =G, (r.r,) p, (1, t). 0-13
n=1
Equation 9.13 can be interpreted as: the surface potentials Vs are generated by dipole

moments pn(rn,ti) in voxels AV located at rp,.

Then, the basic inverse problem in EEG is to experimentally estimate the
potential distribution at the scalp surface Vs (ry, ti) to invert Equation 9.12, that is, to
solve this integral, for the function P(r, t) using a head volume conductor model to
specify the function G(r, r’). As mentioned, the inverse problem is intrinsically ill-
posed, there are a very large number of functions P(r, t) that will give up the same
surface distribution Vs (ry, t;); then, the inverse solution requires constraint given the

non-uniqueness of the inverse problem.

9.3 Curry for source analysis

Curry [3], from NeuroScan Lab, is a software package which combines
functional data and anatomical images, for determining electrical activity within the
brain. Curry provides powerful techniques for accurately localizing the source of such
activity; all of this in a research context. The following paragraphs summarize the
procedure implemented in Curry, as well as the criteria to select the parameters used
in the source analysis of the AEP, P; peak, in children with Cls as used in this

research.
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Data Pre-processing

Noise estimation: One of the most important parts in the pre-processing step of source

analysis is determining the SNR of the data. SNR is fundamental in the regularization
of the parameters (sensor weighting); correct noise estimation leads to correct
regularization parameters. The weight of any sensor is inversely proportional to its
noise. The SNR of each recording was calculated using the standard deviation of the
pre-stimulus interval (150 ms). According to the Curry’s user Manual [38] this is

appropriate for epoched files containing EP data.

Reference selection: A reference has to be selected before performing the source

analysis. For EEG, the common average reference (CAR) is usually used; this
reference is more appropriate for source analysis comparison than a single reference
site [105].

Included in the pre-processing step is the baseline correction to remove the DC
offset from the data and the selection of the number of epochs to be averaged. In both
normal hearing children and children with Cls the number of epochs averaged was

chosen to be 50.

Parameters

PCA and ICA Decomposition: Using PCA Curry reduces the number of variables in

the dataset; PCA is used to pre-white the data and to find the number of valid
components in the ICA step. ICA is applied to filter artifactual components before the

source analysis.

The Mean Global Field Power (MGFP): is a measure that indicates the strength of the

signal against the noise background. MGFP is commonly used to obtain a quick
overview of the measured EEG time courses, since it collapses the information of all
electrodes into a single trace. One can easily distinguish latency ranges with
meaningful signal from noise or background activity periods, which is useful to

identify the components of the EPs.
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The MGFP is an average of the common average re-referenced data and is
computed as follows: x; is the measured data, i=1,2,...,m; where m is the number of

electrodes for a given time point. The steps to calculate to MGFP are:

1. The common average Cqay is: C,, :%Zx :

2. The re-referenced measured data R; = X; - Cayg.

m 2
3. Finally, MGFPz[%Z(Ri ‘R, )}
i=1

In other words, MGFP is an averaged measure for the signal power [116;117];
estimating the SNR from the MGFP together with the residual standard deviations
percentage can tell us if the chosen source model is at least able to explain in part the
data.

Source Analysis

Volume conductor head model: The head is a volume conductor which distorts the

potential of the sources in the brain. The very complex shape of a human head with all
its anatomical details is represented by a simplified model; in order to solve the
inverse problem it is necessary to know its shape and electrical conductivities of the
head model [95]. The human head parts such as the brain or the skull are represented
by different compartments with each compartment being assigned an electrical
conductivity; the shape of these compartments could be spherical, or could derive
from anatomical data; the latter improves the accuracy of the solution of the forward

problem.

Curry uses a concentric spherical volume conductor head models with one to
four shells, values of their conductivities and relative radii are listed in Table 9.1; the
spherical model assumes constant cranial curvature and constant scalp and skull
thickness [35]. In a three shells spherical head model the inner sphere represents the

brain, the middle shell represent the skull and the outer layer represent the scalp.
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Table 9.1 Conductivities and relative radii for four concentric structures for a spherical head
model (CSF: Cerebrospinal fluid) [100].

Structure | Conductivities [2™/m] | Relative Radii [%]
Brain 0.33 83.0

CSF 1.00 85.0

Skull 0.0042 93.0

Scalp 0.33 100.0

The real varying thickness and curvatures of the skull assumed by the spherical head
model could vary the source analysis solution; the so-called realistic head models

would be more accurate than spherical head models.

In each compartment of the standardized Boundary Element Method (BEM)
model (realistic model), the electrical conductivity is modelled to be homogeneous,
isotropic and ohmic [36;104]. This volume conductor head model is derived using an
automated routine, from an average T1-weighted MRI dataset included in the
software from Montreal Neurological Institute and Hospital [5]; 91 axial slices with
91x109 pixels and a voxel size of 2x2x2 mm?®. It is possible to choose between a low
discretization with approximately 3000 nodes, medium with 4000 nodes, and high

with approximately 5000 nodes.

The spherical shells head model is fast and numerically stable but BEM is
superior in non-spherical parts of the head like temporal and frontal lobes and basal
part of the head. Most of the volume conductor models for solving the inverse
problem have less accuracy with deep dipoles [95]; in our case the dipoles for the
AEP are cortical dipoles so the models mentioned before should be sufficient to

recover these type of dipoles.

Dipole type: the dipoles types calculated by Curry are: Moving, Rotating, Regional
and Fixed Coherent models. The moving dipole solution consists in dipole analysis in
a serie of time points, the six ECD’s parameters are determinated to minimize the
deviation between measured and forward calculated data. The rotating dipole solution
is an approach where the position of the dipole is fixed for all time points and its

components (orientation and strength) can freely vary with time [131]. The regional
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dipole is computed when three orthogonal main dipoles orientations are extracted
from a rotating dipole, using PCA; their dipole strengths are calculated as a function
of time. Finally, in the fixed coherent dipole solution both the location and the
orientation are kept fixed for all time points and the dipole strength can vary with
time; when more than one dipole is fitted, they have coherent loadings. For both
moving and rotating dipole solutions, the optimum dipole is determined by an
optimisation of the three location parameters. In the case of fixed dipole the optimum
requires the simultaneous optimisation of the three location parameters as well as the

two orientation parameters, for all time points [126;127].

Number of sources: the number of generators for the AEP N; peak in adults, which is

equivalent to peak Py in children, can be as many as six [96], see Section 2.4. The
number of dipoles that may fit the data is limited by the number of surface
measurements (electrodes, m), in general m=6d where d is the number of dipoles [40];
in our case m=19 then d=3. Additionally, the number of ECDs used in the literature
for AEP source analysis is two -symmetric in both hemispheres [22;81;106;109;123];
source analysis using one and two symmetric ECDs has thus been compared in this

research.

Electrode positions and landmarks: three landmarks (nasion, left and right

preauricular points, determined using a 3-Dimensional digitizer [2]) were used; their
centre-of-mass is near the centre of the head. When a spherical shell volume
conductor is used the electrode position are fitted to the outermost shell and when a
BEM model is used, the electrode are fitted to the outermost surface, which both cases

represent the skin.

The PAN co-ordinate system (Pre-Auricular point and nasion) and landmarks
are used to match the BEM with the electrode system. In the PAN system with
direction of the axes R: right, A: anterior, S: superior, the x axis goes through
auricular left and auricular right and point right, the y axis goes through the nasion
and the z axis points up (see Figure 9.2). Curry introduces a global scaling factor in
order to improve the match between the BEM model dimension and the electrodes. It
is calculated from the average of the ratios of the nasion-origin distances and the left-

right pre-auricular point distance [38].
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Figure 9.2 The PAN coordinates system with direction of axes x, y, z, as right, anterior,
superior [32]. The positions of electrodes used in the source analysis were obtained by
projecting the locations of the electrodes (relative to three points —nasion and two preauricular
points) onto the external surface (skin).

Visualization of results

Anatomy of the human auditory cortex: a brain atlas with all the structures listed in

the Talairach system is included in Curry; the Talairach coordinate system, developed
by Talairach and Tournoux (1988) [66], identifies brain structures in the MRI data in
terms of their anatomy or function. The Curry user can segment automatically any of
the structures listed in the Talairach system or may click on a point in the MRI data to
see in which structure of the brain the ECDs are localized. Using this Curry option
both the location and Brodmann areas where the ECDs are situated were identified.

ECDs were superimposed onto cortex segmentation from averaged MRI.

The Brodmann area is a map, proposed by Korbinian Brodmaan in 1909, of
the organization of the cortical areas in humans (and any other species) [85]. Figure
9.3 shows the Broadmann areas of the temporal lobe: a) the primary auditory cortex
includes areas 41 and 42; superior, middle and inferior temporal lobe are areas 22, 21
and 20, respectively. Brodmann area 38 is part of the middle temporal lobe whilst area
37 identifies the Fusiform gyrus. b) The medial temporal lobe includes the Amydala,

Hippocampus, Parahipocampal gyrus (areas 27, 28, 34, 35 and 36).
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Figure 9.3 Brodmann areas of the human temporal lobe (a) lateral surface of the brain and (b)
medial temporal lobe.

Validation of the results

Two parameters were used to validate the source analysis results:

a) The Residual standard deviation (Res. Dev.). Res. Dev. is a parameter to

validate the ECD location; it is a measure of how well the source model
explains the measured data. The percentage of the Res. Dev suggest by Curry

as a good fit parameter is less than 10%, dipole fit and is calculated as

2 (R -F )R -F, ))Tz
> (R R)

Where F; are the calculated signal in the source analysis procedure

Res.Dev = {

b) The confidence ellipsoid (CE). CE is computed by slightly moving the

coordinates (X, y, z) of the best-fit dipole by small increments, in the order of 1
mm, for each dipole independently. The confidence range of the individual
ECDs can be estimated comparing the field variation and the noise level;
confidence ellipsoids and the SNR of the measured data are inversely
proportional [20;49]. Curry computes the confidence ellipsoids to visualize the
localization accuracy; a SVD is used to determine the orientation and length of
the confidence ellipsoids. The confidence ellipsoids are characterized by their
axes and volumes, the size of the axes is inversely proportional to the SNR of
the data whilst the confidence volume is inversely proportional to the third
power of the data. The confidence ellipsoids can be used to determine the

number of ECDs; superfluous dipoles have large confidence volumes.
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9.4 Alternative source analysis procedure

In Chapter 6 the reliability of three popular ICA algorithms was assessed; this
included the ICA algorithm used in Curry to remove the signal artifacts in the pre-
processing step -FastICA. The principal conclusion in that chapter was TDSEP-ICA is
better to recover the AEP and to remove the CI artifact than FastiCA and Ext-
Infomax. In this section, the source analysis of the AEPs of children with Cls using
TDSEP-ICA and the algorithm implemented in Curry to remove artifact was

compared.

Figure 9.4 shows a block diagram of the principal steps of the Curry procedure
for source analysis of EPs. In order to assess the effect of using TDSEP-ICA instead
of FastICA in the source analysis of AEP generators, the next procedure was followed
in order to generate two sets of signals (de-noised and original signals). Using
TDSEP-ICA the ICs associated with artifacts were identified, the columns of the
mixing matrix corresponding to those components were made zero to generate the so-
called de-noised signal; for this signal the artifact removal step of Curry was omitted.
In the so-called original signal, each one of the steps of Curry was followed (see
Figure 9.4). In the pre-processing step of Curry the ICs related to artifact were
removed from the original signals, whilst all the ICs with SNR>1 were left in the de-
noised signal. With both original and de-noised signals the generators of AEPS,
normal hearing children and children with Cls, were calculated using the rest of the

steps of the Curry procedure.
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Figure 9.4 Outline of the Curry procedure for source analysis of EPs. The alternative method
proposed in this research adds a step in the data pre-processing step where TDSEP-ICA was
used to remove the CI artifact, instead of the ICA algorithm implemented by default in this
software.

Two volume conductor models were used and compared in this research; the
characteristics for each one are as follow:

a) Three concentric spherical head model. The conductivities of the three shells

volume conductor head models were 0.33, 0.0042 and 0.33 [™'/m] brain,

skull and scalp respectively [100].

b) BEM head model (average head model). It consists of three surfaces (skin 10
mm, outer skull 9 mm, and inner skull 7 mm) with 2710, 2578, and 3196
overall. The skin, skull, and brain comportments are triangulated using a mean
triangle side length of 9 mm, 6.8 mm, and 5.1 mm; resulting in 1357, 1291 and
1600 nodes respectively [47;48].

Fixed coherent (i.e., only the strength of the dipole varies) sources were fitted
in a window of approximately 10 ms before and after the AEP P; peak, which was
identified using the MGFP. Three land-marks digitized at the moment of the test for
each one of the subject were included in the source analysis procedure. The source

analysis was carried out for four conditions:

C1: One ECD with a three shell spherical head model
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C2: One ECD with a BEM head model
C3: Two symmetric ECDs with a three shells spherical head model
C4: Two symmetric ECDs with a BEM head model

In additional to the MGFP, the ICs related to the AEP in both normal children
and children with Cls (see Figures 8.1 and 8.2) were used to identify the P; peak in

the source analysis procedure.

9.5 Source analysis in normal hearing children and children with CI.

Figure 9.5 shows the ECDs (including their confidence ellipsoids), using the
four conditions mentioned in the previous section, of four normal hearing children. kc
is a female 7 y.o. child; condition C4 has the smallest confidence ellipsoid whilst
condition C1 has the largest ellipsoids. The location of the ECDs is better using two
dipoles and a BEM head model (less Res. Dev). In subject cc, female 9 y.o., the
location of the ECDs is in the expected brain area when the number of dipoles was
increased from one to two and using a BEM head model. However, the confidence
ellipsoids are largest in conditions C3 and C4. In subject ug, male 10 y.o., all the
conditions have a good dipole location but the increase of the number of dipoles
produces larger confidence volumes; something similar happens in subject mp, female

11y.o.
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Subj: ke Subj:ug

Figure 9.5 Source analyses for the P; peak of the AEP from four normal hearing subjects (kc,
cc, ug and mp). ECDs were fitted using a fixed coherence model and superimposed onto
cortex segmentation from averaged MRI. Every one of the rows corresponds to each one of
the conditions used in the source analysis process.

Table 9.2 shows the Res. Dev. percentages, location and time of best fit for the
ECDs in condition C4 for the four normal hearing children shown in Figure 9.5. The
times of best fit of the ECDs for all the normal children were slightly different but
close to the expected latency, 100 ms; the location of the dipoles was always in the
temporal lobe; middle and superior temporal gyrus, and Brodmann areas 21 and 22.
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Table 9.2 Residual standard deviation, localization and time of best fit for the ECDs in test
condition C4 for four normal hearing children.

Subject | Res. Dev. [%] Location Brodmann Time [ms]
kc 13.9 Superior Temp. Gyrus 22 100.5
cc 18.7 Superior Temp. Gyrus 22 97
ug 20.6 Superior Temp. Gyrus 22 104.5
mp 22.7 Middle Temp. Gyrus 21 100.5

Figure 9.6 shows the ECDs of the P; peak including their confidence
ellipsoids of one subject at different times after implantation. Every one of the rows
corresponds to each one of the conditions described in section 9.4. In all the original
signals (pre-processed using FastICA) the confidence ellipsoids were larger than in
the de-noised signal (pre-processed using TDSEPICA) except in conditions C3 and
C4 in recording S5-St2, although the fitted dipoles are not in the expected area
(temporal lobe). In the original signals the anatomical locations of the dipoles were
diverse and were not in the expected zone, only in condition C2 in both recordings
S5-Stl1 and S5-St2, the locations were acceptable (inferior and superior temporal
gyrus, respectively). The anatomical localizations using the de-noised signal were
next to or in the temporal lobe and the confidence ellipsoids were the smallest for
condition test condition C2.
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Figure 9.6 Source analyses for the P, peak of the AEP from two different recordings (S5-St1,
1y 9m after implantation and S5-St2, 2y 8m post-implant). ECDs were fitted using a fixed
coherence model and superimposed onto cortex segmentation from averaged MRI. Every one
of the rows corresponds to each one of the conditions used in the source analysis processes;
the dipoles obtained with the original and de-noised signals are shown for comparison.

Res. Dev. dipole fit, of four different recording in the four conditions
previously described, between the original and de-noised signals are shown in Table
9.3. Lowest Res. Dev. was obtained in condition C4 for all the subjects except in one,

S5-St3; the SNR in this recording is lower than in the rest of the recordings.

Table 9.3 Res. Dev. [%] of ECD fit of four different recordings in four conditions of source
analysis; C: conditions, O: original signal and D: De-noised signal.

S3-Stl S5-St1 S5-St2 S5-St3
C @) D @) D @) D @) D
1 44.1 214 59.9 36.7 40.3 22.3 61 50.9
2 42 225 56.6 40.1 41.3 211 54.6 535
3 23 151 33.6 18.3 38.2 12.9 58.8 46.4
4 25.1 14.9 32.9 16.1 36.0 13.5 40.6 48
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In general the confidence ellipsoids, in both normal hearing children and
children with Cls, were smaller in the de-noised than in the original signals. The
spatial filtering using TDSEP-ICA facilitated both the identification of the AEP P,
peak in the MGFP as well as the source analysis process. The lowest Res. Dev. was
obtained in the de-noised signals (using 2 symmetric ECDs with a BEM head model).
Even though the Res. Dev. are not lower than 10% (the percentage recommended by
Curry), the anatomical location of the dipoles from these signals were in the temporal
lobe (superior, transverse, middle and inferior temporal gyrus).

In children with Cls the MGFPs of the original signals were dominated by the
ClI artifact with a maximum peak in the first 50 ms post-stimulus; after removing the
ICs related to the CI using TDSEP-ICA, the maxima of MGFPs produced by the CI
artifact decreased on average by 50%. The reduction of the CI artifact in the de-noised

signals facilitated the source analysis procedure.

After comparing the four conditions mentioned before, in both normal hearing
children and children with cochlear implants, the final parameters for the source
analysis of the AEP were: two symmetric fixed coherent dipoles and BEM head
models. Sources were fitted in a window of approximately 10 ms before and after the
P1 peak, this peak was identified using both the MGFP and ICs related to the auditory
response recovered using TDSEP-ICA and shown in Chapter 8, Figure 8.1 and 8.2.

The locations of the fitted dipoles were determined using the Talairach
coordinate system and the Brodmann areas included in Curry. The position of the
electrodes was obtained from three landmarks digitised at the moment of the test and
projecting it onto the external surface of the head model (skin). Finally, the ECDs
were superimposed onto cortex segmentation (3mm thickness) from average MRI.

Figure 9.7 shows the ECDs locations for the AEP, P; peak, from normal
hearing children grouped according to age (see Table 3.1). The locations of the
dipoles are the superior temporal lobe in all the subjects except in Group 1. In this
group, the ECDs are in the inferior temporal gyrus (Brodman area 20), contiguous to

Brodmann area 38 (middle temporal gyrus).
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Group 1

Group 2

Group 3

Group 4

Figure 9.7 ECDs for the P, peak of the AEP from normal hearing children grouped in
accordance with age. The locations of the dipoles in group 1 are the inferior temporal gyrus
and the superior temporal gyrus to Group 2-4. Two symmetric fixed coherent dipoles and
BEM head models were used in the source analysis process.

9.6 Source analysis of AEPs for the assessment of CI users

Figure 9.8 shows two symmetric fixed coherent ECDs (the position of the
dipoles is fixed and only the strength of the dipole vary) for different subjects at
different time after implantation. Sources were fitted in a window of approximately
10 ms before and after the AEP P; peak with a BEM head model, a standard 10-20
system was used to project the 19 electrodes position on the scalp surface of the head
model. Subject are organized into four group (based on time after implantation); the
confidence ellipsoids were not included for a better visualization of the ECDs. The
location of the ECDs in the group at one year after implantation was the inferior lobe
(Brodmann area 20). In the group between one and two years after implantation the

ECDs are located at middle temporal lobe (Brodmann area 38). At 3 year and more
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than 5 years post-implantation the locations of the ECDs were the superior temporal

lobe (including the Brodmann areas 22, 41 and 42); contra-lateral to the Cls.

~1ypostCI 1-2ypostCI ~3ypostCI >5ypostCI

S1

S3

S4

SS

S6

Figure 9.8 Changes in the ECDs locations for the P, peak of the AEP from different subjects
at different time post-implantation. ECDs were fitted using a fixed coherence model and
superimposed onto cortex segmentation from averaged MRI.

Although the AEPs for each child at less than one year after implantation
(between 3 and 9 months after implantation) was recorded, it was not possible the find
the ECDs of P; peak with low residual values and small confidence ellipsoids, in most
of the cases; additionally, the anatomical locations of the dipoles were not necessarily
in the temporal area.

Figure 9.9 shows the changes in the localization of the P; peak of the AEP in
accordance with the time of implantation for three different subjects. ECDs were
fitted using two symmetric fixed coherence dipoles and superimposed onto cortex

segmentation from averaged MRI. The ECDs location changed from inferior or
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middle temporal gyrus (Brodmann area 20 and 21) to superior temporal gyrus

(Brodmann area 42).

1-2y using aCl >3y using aCl

S1

S3

S5

Figure 9.9 Changes in the location of the P; peak of the AEP from three subjects in
accordance with the time of use of their Cls (between 1 and 2 year and more than 5 year after
implantation). ECDs were fitted using two symmetric fixed coherence dipoles and BEM head
model.

Figures 9.10 shows the global changes in the localization of the P; peak of the
AEP in accordance with the time of implantation in subject S3; the ECD location
changes from inferior temporal gyrus (Brodmann area 20) to middle temporal gyrus

(Brodmann 38) and finally to the superior temporal gyrus (Brodmann area 22).

S3-Stl 1y using a Cl S3-St2 1y 8m using aCl  S3-St3 5y 5m using a Cl

Figure 9.10 Changes in the location of the P, peak of the AEP from one subject in accordance
with the time of use of his Cl. ECDs were fitted using two symmetric fixed coherence dipoles
and BEM head model; the ECDs were superimposed onto cortex segmentation from averaged
MRI.
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Figure 9.11 shows another example of the changes in the location of ECDs in
a child after using his implant for more than 5 years. In this case, the position of the
dipoles changed from the middle temporal to the superior temporal gyrus at 2 y and 8
m after implantation. At 5 years 1 month after implantation the position of the dipoles
remains in the superior temporal gyrus (Brodmann area 41), but closer to the location

of normal hearing children (see Figure 9.7)

S5-St1 1y 9m using a Cl S5-St2 2y 8m using a Cl  S5-St3 5y 1m using a Cl

Figure 9.11 Changes in the ECDs location in accordance with the time of implantation, for
subject S5. After 2y 8m after implantation, the positions of the fixed coherent dipoles are in
the superior temporal gyrus.

In both normal hearing children and children with Cls, the BEM head model
gets better localization (as expected because this head model best fit the temporal
lobes and the base of the head), but not necessarily smaller ellipsoids according to the
number of ECDs, this could be because of the low number of electrodes used in this

dataset.

The lowest Res. Dev. value obtained in the de-noised signals is 13.4% for
condition C4; even though the Res. Dev. is no lower than 10%, the anatomical
location of these dipoles for the de-noised signal were in the temporal lobe (superior,
middle and inferior temporal gyrus). One way to increase the accuracy of the source
analysis is by increasing the number of electrodes, however increasing the number of

electrodes increases the test time and the complexity of the analysis.

9.7 Summary

In this chapter the basic theory of source analysis and the parameters used in a
commercial software package to determine the electrical activity in the brain, were
included. The differences in the source analysis accuracy of the P; peak between a
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temporal ICA (TDSEP-ICA) algorithm and a statistically based algorithm (FastICA —
default ICA algorithm implemented in Curry) used for spatial filtering of EEG from
children with Cls and normal hearing children are shown. The results of the ECDs of
the P, peak for both normal hearing children and children with Cls were shown; in
general source analysis was simplest after removing the CI artifact using TDSEP-ICA

—as expected.

Moreover, the changes of the location of the dipoles in children with Cls, in
accordance to the time of use of their implants, are shown at the end of this chapter. In
the first period after implantation, the locations of the ECDs are principally in the
inferior temporal lobe (Brodmann area 20); between 1 and 2 years after implantation
the sources are located at the middle temporal gyrus (Brodmann area 21 and 38).
From 3 year and more than 5 year after implantation the position is the superior

temporal lobe (Brodmann areas 22, 41 and 42).

The number of electrodes used in these recordings is limited (19 electrodes
plus 2 reference electrodes and 1 ground); the electrodes resolution does not permit us
to determine in detail the changes in the tonotopy of the auditory cortex at different
stimuli frequencies, but this was not the fundamental aim of this research [88]. The
purpose is to determine the global changes in the ECD localization, in accordance
with the time of implantation in order to implement an objective procedure to follow
the maturation of the auditory system in those children that can be put into clinical

practice.
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Chapter 10.

Conclusions and future work

Since CI began to be used as an alternative procedure in rehabilitation of deaf
people, it has been a challenge to understand how the brain processes the new
information supplied by the CI. One question that needs to be answered is how the
auditory system of ClI subject matures in accordance with the time of use of the CI.
Some authors have proposed to explain the central auditory system maturation, using
multi-electrodes recordings of AEPs. Deaf children who have been deprived of sound
for a period of time and then have been implanted make it possible to determine the
effects of that deprivation on the maturation of the central auditory system, and, in
general, children with CI present delayed auditory responses compared to normal

hearing children of the same age.

Authors, who have researched the auditory system maturation in adult subjects
with Cls following the development of AEP, reported the presence of a negative wave
around 100 ms, Nj, after cochlear implantation. Instead of this peak observed since
adolescence, the AEP for both normal hearing children and children with CI is
dominated by a positive peak, P1, around 100 ms; this peak could be delayed in
children with CI, depending of diverse factors, for example the age of implantation.
The latency of the P; wave of AEPSs has been used as a biomarker of the development
and plasticity of the central auditory system in children with a HA and/or CI receiver.

Some authors have used multi-channel AEP recordings to study the maturation
of the auditory system; however, the amplitude and latency of the peaks of the
potential change electrode-by-electrode, i.e change according to location. The analysis
of brain (spatial) maps may be suitable in a longitudinal study; however in a
transversal study it could be inappropriate because brain map patterns might be

variables from subject to subject. Because of this some authors have chosen source
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analysis, which includes the AEP information of all electrode localization, to describe

the central auditory system maturation.

With all these arguments in mind, the objective of this research was to
describe the auditory system maturation of children with CI, tracing the development
of the components of the AEP by ICA and source analysis. However, there is an
inconvenience when the AEP has been recording from CI patients, in the presence of
the artifact associated with the stimulus; this artifact usually covers the AEP partially
or totally. Because of this the first part of this research was to review the state-of-the-
art in ICA and to evaluate the applicability of this technique to detect and to isolate
the AEP and the CI artifact from ongoing multi-channel EEG in children with ClI
receivers. Three algorithms were tested and compared (FastiCA, Infomax and
TDSEP-ICA). The most adequate ICA algorithm, as well as its parameters, for this
type of biomedical signal analysis in this research was identified. IC selection is a
problem when ICA is applied to real data, so a new procedure to differentiate ICs with
physiological and physical meaning, through MI and cluster analysis was
implemented here. Although promising results were obtained with this procedure, it is
necessary to include an assessment of the cluster formation as well as the criteria to

determine the number of clusters in each subject before it can be used formally.

The maturation of the auditory system in children with Cls was evaluated
using the modification of the topographic maps of the ICs related to the AEP, since
the latencies of these ICs were variable; the data of implanted children were analysed
in sub-groups based on time of implantation. After removing the CI artifact, it was
possible to begin the localisation of the generators of the P; peak of the AEP. This
was done using and average MRIs provided in commercial software for 3-D source
localization and standard coordinates of the electrode position. It was necessary to
decide both source type and spherical head model; also the expediency of using a
realistic model. This research provides a basis for a practical, clinical procedure to
assess the benefits of a Cl following the changes of the modelled ECDs of the AEPs
attributed to the length of time of use/implantation of the CI on the child.
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Conclusions

In this research an important innovation in the analysis of brain signals
through ICA of CI users was presented. ICA shows promise as a means of isolating

AEPs in ongoing multi-channel EEG recordings contaminated by a CI artifact.

Although ICA is a statistical technique which requires sufficient data points to
reliably calculate estimations, satisfactory results were obtained reducing the number
of epochs from 150 to just 50 EEG epochs; the results obtained using only 50 epochs
show that it is possible to reduce the time of the recording to one third of the original
EEG recording time and still get superior results. This is particularly useful since it is
hard to obtain good results from children over long experimental sessions without
sedation. A short-time test, without participation of the subjects and low complexity
off-line analysis is feasible to implement in routine audiological practice; the test

would be particularly useful in young implanted children.

The SIR index was used to asses the variability of the estimations of three ICA
algorithms, FastlCA, Infomax, and TDSEP-ICA. Although FastICA and Infomax are
maybe the most popular ICA algorithms used to reduce the artifact of the AEPs, the
algorithm that is the least variable and that best estimates both the AEP and the ClI
artifact is TDSEP-ICA; FastICA and Infomax correctly identify the AEPs in normal
hearing children recordings, but has problems when estimating the auditory response
from children with Cls, especially when the artifact is extended onto most of the
recording electrodes; this is especially useful to detect the presence of the auditory
response in the electrodes around the CI (temporal area). All the algorithms estimate
the CI artifact, although only TDSEP-ICA recovers it in a one-dimensional subspace;
making identification easier. This demonstrates that this algorithm in recovers the
most robust and efficient estimations of the AEPs; this is to be expected over shorter
window sizes and for a technique that makes use of the inherent information available
in the time-series itself. This condition better situates TDSEP-ICA as an algorithm for

the implementation of an objective method for selection of ICs.

A procedure for the objective selection of the ICs associated with the AEPs

and with the CI artifact was also introduced and implemented in this work; this
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procedure uses the concept of MI, cluster analysis and the pseudo-random reduction
of the number of recording electrode. The procedure proposed in this research
identifies principally 3 robust clusters related to the AEPs, the CI artifact and noise.
However, although the hierarchical clustering of the estimations is correct visually, it
is still necessary to include an assessment of the cluster formation as well as the
criteria to determine the correct number of clusters in accordance with the reduction

of electrodes proposed in the procedure.

Due to the fact this method needs to be subjectively calibrated for each
recording, it was decided not to use this for the source analysis of AEPs for the
assessment of Cl users; the main reason being that the possible differences in the
method due to the subjectivity could modify the real expected variability in the source
analysis for Cl maturation and lead to erroneous conclusions being made. However,
this part of the research was useful in order to obtain experience to identify first the
ICs related to the auditory responses which were used to evaluate the maturation of
children with ClIs and the ICs associated with different artifacts which were
subsequently removed from the recordings before the source analysis based on the P,
peak in the AEPs.

Using the optimal parameters selected to TDSEP-ICA and applying this
algorithm on the original number of electrodes, the relevant ICs in each recording
from children with Cls were identify using the morphology and topographic maps
(spatial projection) of the ICs. The latencies of the P; peak of the ICs recovered by
TDSEP-ICA and related to the AEPs among subjects are diverse and it was not
possible to identify the complex P;-N; in all the subjects; in general the latency of this
peak is shorter as a function of the use of the CI —although it is difficult to draw any
conclusion on the auditory system maturation of these children using just this
parameter. However, using the spatial projection of the I1Cs associated with the AEP
(which provides a global representation of the response to the auditory stimulus at the
scalp), it is possible to conclude the following about the auditory system maturation of
children with Cls:

173



Chapter 10. Conclusions and future work

e The spatial projections of the AEPs’ ICs come into being spread out around
the head with no focus in any specific area, although predominantly parietal
when the children have used their Cls for less than one year.

e At a year after implantation the spatial projections are characterized by a
central to fronto-central distribution.

e Finally, the spatial projections of the ICs have a distribution front to fronto-
central, contra-lateral to the Cl implantation, after more than two years post-
implantation; the spatial projections of the ICs related to the AEPs show
similarities with normal hearing children’s spatial projections, which could be
used for an objective assessment of the maturation of the auditory system in
children with Cls. This procedure could be performed routinely every few
months, for instance after fitting the current levels of Cl, to assess the benefits
of this adjustment. Changes in the spatial projections could be correlated with
the results obtained in other audiological tests such as the level of
comprehension and production of speech in determining the overall

performance of children implanted.

After removing the CI artifact, it was possible to begin the localisation of the
generators of the P, peak in the AEPs; using fixed coherent ECDs and BEM head
models implemented in commercial software (Curry, by NeuroScan). Spatial filtering,
using TDSEP-ICA in the pre-processing step of source analysis, results in better ECD
fits than when using FastICA, implemented in this software package. The alternative
method for source analysis proposed in this research, facilitates the identification of

the P; peak and the source analysis procedure.

At the moment, only 19 electrodes have been used (as the data was collected
using a standard clinical paradigm) which does not have the highest accuracy in the
source analysis, but it is enough for the proposes of this research as a proof-of-
principle; one way to increase the accuracy of the source analysis is by increasing the
number of electrodes, however increasing the number of electrodes increases the test
time and the complexity of the analysis. It is important highlight that although the
number of electrodes is higher the source analysis problem will still be ill-posed and
will not give 100% accuracy. An alternative solution to increase the accuracy could
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be to constrain the localization to a specific area (e.g. the temporal lobe) and to use

the real position of the electrodes that were digitally acquired at test time.

The effect of using the position of the electrodes and the MRI for each patient
in the source analysis of the AEP P; peak should be assessed in a further research.
The coordinate axis used in the source analysis procedure is calculated in the MRI,
using three or four anatomical landmarks and the electrode position information; the
head coordinates have to be scaled to fit into the MRI coordinate system [90].
Realistic head model from the MRI of each subject as well as the location of every
electrode on the scalp at the moment of the EEG recording could increase the
precision of the coordinate axis calculation as well as the accuracy of the source

analysis solution.

It is shown that it is plausible to follow the maturation of the auditory system
in children with Cls using the location of the dipoles and the time of best ECD fit (this
parameter is less variable inter-subject than the strength of the ECD); in general the
position of the dipoles changed from the inferior temporal gyrus (Broadmann area
20), to the superior temporal gyrus (Brodmann area 41 and 42), in accordance with
the time of use of the Cls; close to the normal hearing children location. The results of
this research could be used as an objective technique for a general assessment of the
performance of children with Cls. The maturation of the auditory system of these
children could be evaluated using both the changes in the topographic maps of the ICs
related with the AEP and the changes in the location of the ECD of the P; peak. A
procedure to evaluate the fitting of Cls in young children could be derived from this
research by observing the changes of the topographic maps in accordance with
changes in the CI levels of current. Since the analysis of the database used in this
research through TDSEP-ICA allowed the identification of ICs associated not only
with the AEP and the CI artifact but also with noise generated by the implant, this

procedure could be also extended to detect technical problems of the implants.

Future work

Currently, both ICA and source analysis have been completed in data for a

stimulus of 1000 Hz and 70 dBy,; future work would compare the results of these
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techniques over different frequency tones and intensity levels. Some modifications of
the current protocol could be pertinent, for example to reduce the sample rate of the
EEG, to increase the number of electrodes to 32 or 64 but reducing the number of
epochs recorded, since it was possible to obtain robust ICs related to the AEPs and the

Cl artifact with only 50 trials.

As mentioned before, in order to increase the accuracy of the source analysis,
it is important to include the digitization position of the electrodes at the moment of
the recording as well as the MRI for each one of the subjects. Source analysis solution
requires the co-registration of functional with anatomical data; this co-registration is
perform by the rotation, translation and scaling of three or four landmarks digitised in
the EEG and/or MEG coordinate system [38]. The typical landmarks used are the
nasion and the two pre-auricular notches; using those points a coordinate system

whose origin is the centre of the head is defined [32].

Using stimuli centred at the frequency bands of the Cls, it could be feasible to
establish the changes of the ECD locations in accordance with these stimuli
frequencies, in order to develop a procedure to objectively fit the Cls to children.
Additionally, this way of stimulation together with high-resolution EEG recordings
could allow tracing the development of the tonotopic organization of the auditory
cortex in children with Cls; in adults with Cls this tonotopic organization is similar to
the tonotopy of normal hearing subjects [54]. Extending the type and complexity of
stimuli (syllables, words and even sentences) to evaluate cognitive processes in
children with Cls could be plausible. More over, a procedure to investigate how the
brain of CI users proceses speech characteristics as pitch and intonation could be
feasible. At this point a comparison between the ECD locations of the P; peak and
even the N; peak and the improvement of language perception and development in
children with Cls is necessary to globally evaluate the rehabilitation of these children
[53].

Furthermore, it would be useful to establish if it is plausible to follow the
maturation of the auditory system in children with Cls using simultaneous EEG and
functional MR1 (fMRI) and/or MEG-fMRI recordings, by means of the changes of the
blood oxygenation level-depend (BOLD) contrast mechanism and the ECDs in
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Chapter 10. Conclusions and future work

accordance with the time of use of this electronic device. Giraud et al [53] review
different brain imaging techniques and discuss the viability of these techniques for
studies in implant subjects; finally the authors suggest that fMRI is a promising
system for examining CI users. Some authors have obtained functional images from
Cl users (their devices did not have electronics in the internal part of the implants) to

study the electrically-evoked brain activity [90].

It is important to identify neuroimaging approaches which can be applied to
ultimately improve diagnosis and rehabilitation of deaf people using Cortical
Auditory Evoked Potentials; regarding maturation and plasticity of the auditory

system and auditory cortex after cochlear implantation.
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Appendix A. AEP recordings: Normal hearing children and

children with Cls

In this appendix the AEP recordings from normal hearing children and
children with Cls are shown. Details about the recording parameters are included in
Chapter 3. Information about the latency and amplitude of the most prominent peak in
the AEPs in each normal hearing subject are included. In the case of children with
Cls, information about the latency and amplitude of P; peak were included when it

was possible to measure it.

Normal hearing children AEP recordings

F7

oy Y

T3 C3 CZ C4 T4

'y

TS F3

Al

FB

ES
3

¢

t
LR
<

P4

4
1%

1S
o1 0z 10

0= T0ms

+

-10

3
=3

Figure A.1 Subject ad (female, 8 y.o) P, peak latency and amplitude at Cz electrode, 127.8
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Figure A.26 Recording S3-St1, male 1 year after implantation. P, peak latency and amplitude
at Cz electrode, 172.9 ms and 6.31 pV (Cl in the right side).
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Figure A.28 Recording S3-St3, male 5 year and 5 months after implantation. P; peak latency
and amplitude at Cz electrode, 146.8 ms and 16.49 pV (Cl in the right side).
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Figure A.30 Recording S4-St2, female 1 year and 1 month after implantation. P; peak latency

and amplitude at Cz electrode, 185 ms and 4.3 uV (CI in the right side).
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Figure A.34 Recording S5-St3, male 5 year and 1 month after implantation. P, peak latency
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latency and amplitude at Cz electrode, 173.9 ms and 16.54 uV (CI in the right side).

196



Appendices

FP2

M

FI Fa Fa

NN N,

F7

{

ERE
RESE IR S
g

jord 4 T4
Pz 21! T
%
o1 02 15

0
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latency and amplitude at Cz electrode, 164.3 ms and 10.78 uV (CI in the right side).
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Appendix B. Comparison between the kurtosis values and

pdf histograms using Infomax and Ext-Infomax.
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Appendix B. Comparison between

Infomax and Ext-Infomax.

the kurtosis values and pdf histograms using

Normal hearing children
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Appendix B. Comparison between the kurtosis values and pdf histograms using
Infomax and Ext-Infomax.
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Appendix B. Comparison between the kurtosis values and pdf
Infomax and Ext-Infomax.
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Figure B.1 Comparison between the estimates related to the AEP (row 1-2) and the
background noise (rows 3-4) using (a) Infomax and (b) Ext-Infomax for S1-St1; this subject
The estimates associated with the AEP are
essentially the same for both algorithms whilst some differences can be observed in both the
histogram and kurtosis values of the back noise estimates.

has been using his CI for less than 1 year.
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Appendix B. Comparison between the kurtosis values
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Figure B.2 Comparison between the estimates using (a) Infomax and (b) Ext-Infomax for S1-
St2; this subject has been using his CI for more than 1 year. The principal difference between
the algorithms is in the background noise; Infomax recovers only one background noise
estimate (IC19) while that Ext-Infomax recovers components with negative kurtosis and
almost cero kurtosis IC1 and IC 18, respectively.
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Figure B.3 Comparison between the estimates using (a) Infomax and (b) Ext-Infomax for S1-
St3. The principal difference between the algorithms is in the background noise.
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Appendix B. Comparison between the kurtosis values and pdf histograms using
Infomax and Ext-Infomax.
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Figure B.4 Comparison between the estimate of the CI artifact (rows 1 and 2) and the
background noise (bottom row) using (a) Infomax and (b) Ext-Infomax for S2-St1; this subject
has been using his CI for less than 1 years. There are not significant differences between the
estimate between (a) and (b); neither Infomax nor Ext-Infomax recovered a clear AEP.
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Figure B.5 Comparison between the estimates recovered using (a) Infomax and (b) Ext-
Infomax for S2-St2. There is not significant difference between both algorithms; it was no
possible to identify a clear AEP.

206



Appendix B. Comparison between the kurtosis values

Infomax and Ext-Infomax.

and pdf histograms

using

IC2 kurt=1.8788 Infomax IC2 kurt=1.808 Ext-Infomax
3000 3000 3
3
2 2
2000 2000
1 1
1000 0 1000 0
1 1
0
-10 -5 0 5 10 -100 0 100 200 300 -10 5 0 5 10 -100 0 100 200 300
ms ms
IC14 kurt=1.9836 Infomax ICA5 kurt=2 0701 Ext-Infomax
4000 4000 2
3000 1 3000 1
2000 0 2000 0
1000 A 1000 .
2 2
0 0
-20 -10 0 10 20 -100 0 100 200 300 -20 -10 0 10 20 -100 0 100 200 300
ms ms
IC9 kurt=1.2562 Infomax IC5 kurt=1.4059 Ext-Infomax
2500

s = = o
E o o &

0.5
2000
1500
0
1000
500
0 05
5 0 5

-100 0 100 200 300
ms

-100 0

(a) (b)
Figure B.6 Comparison between the estimates recovered using (a) Infomax and (b) Ext-
Infomax for S3-St1; this subject has been using his CI for one year. There is not significant
difference between both algorithms; it was no possible to identify a clear AEP.
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Figure B.7 Comparison between the estimates using (a) Infomax and (b) Ext-Infomax for a
subject (S3-St2) who has been using his CI for more than 1 year. The estimate of the AEP is
not clear neither in (a) nor (b). In both cases the Cl artifact still being in the auditory response
(row 1-2). The estimates of the CI artifact are similar in both cases with a small difference in
the histograms and kurtosis values.
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Appendix B. Comparison between the kurtosis values and pdf histograms using
Infomax and Ext-Infomax.
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Figure B.8 Comparison between the estimate of the background noise and the CI artifact
(row 3) using (a) Infomax and (b) Ext-Infomax for S3-St3; this subject has been using his Cl
for more than 5 years. The principal difference between both algorithms is the estimate of the
background noise; it was no possible to identify the AEP clearly, the CI artifact effect is
significant in both Infomax and Ext-Infomax.
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Figure B.9 Comparison between (a) Infomax and (b) Ext-Infomax for subject S4-St1 (this
child has been using her CI for less than one year). There are not significant differences
between the estimates using those algorithms of the CI artifact and the background noise
(rows 3 and 4, respectively). The AEPs estimates (rows 1 and 2) have components of the CI
artifact.
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Figure B.10 Comparison between the estimates using (a) Infomax and (b) Ext-Infomax for
subject S4-St2 (this child has been using her CI for one year approximately). In this case the

AEPs can be recognized in rows 1 and 2 although contaminated by the background noise.
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Figure B.11 Comparison between the estimate of the background noise (top row) and the CI
artifact using (a) Infomax and (b) Ext-Infomax for S5-St1; this subject has been using his ClI
for more than 1 years. There are not important differences between the estimates associated
with the CI artifact between (a) and (b); neither Infomax nor Ext-Infomax separated a clear

AEP.
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Figure B.12 Estimates for S5-St2 (2.5 year after implantation); there are no difference neither
in the histogram nor the kurtosis values between (a) Infomax and (b) Ext-Infomax. The AEPs
can be recognised in the ICs of the rows 3 and 4 however the estimates are contaminated by
the background noise or the CI artifact.
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Figure B.13 Comparison between the estimates of the background noise (rows 1, 2 and 3)
and the CI artifact (rows 4 and 5) using (a) Infomax and (b) Ext-Infomax for S5-St3; this
subject has been using his CI for more than 5 years. The principal difference between both
algorithms is the estimate of the background noise; it was no possible to identify a clear AEP
neither with Infomax nor Ext-Infomax.
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Appendix B. Comparison between the kurtosis values and pdf histograms using
Infomax and Ext-Infomax.
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3000
3 2
2000 2 2000 .
1
1000 0 1000 0
o A 0 1
q0 0 10 q00 0 10 200 3 0 o 10 00 0 100 200 300
ms ms
IC1 kurt=7.4006 11 IC1 kurt=8.102 1
3000 04 3000 04
2000 02 2000 uz
o 0
1000 0a 1000 02
i} -0.4 i] 04
M 0 W™ q00 0 10 20 3 5 0 5 q00 0 100 200 300
ms ms
(@) (b)

Figure B.14 Comparison between the estimate of the Cl artifact (row 1) and the AEP (row 2)
using (a) Infomax and (b) Ext-Infomax for S6-St1; this subject has been using her CI for 2.5
years. Some differences can notice between the estimates of the CI artifact components; the
estimate associated with the AEP is essentially the same for both algorithms.
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Appendix C. Separability matrix values

Appendix C. Separability matrix values

This appendix shows the changes of the separabilty matrix in accordance with
the increasing of <. Significant changes in the structure of the matrix can be observed
between t=0...1 and 1=0...5 in most of the recordings. After those values the structure
of the separability matrix remains almost without changes but the separability values
are lower, with the lowest value at t=0...20. In normal hearing children, the one
dimensional subspaces correspond to noise whilst the high dimensional subspaces are
related to components of the AEPs. In children with Cls one dimensional subspace is
related to the CI artifact and noise whilst high dimensional subspace can be associated
with the AEP. Chapter 5 includes the waveform and topographic maps of relevant ICs

from both normal hearing children and children with Cls.
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Appendix C. Separability matrix values
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Appendix C. Separability matrix values
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Appendix C. Separability matrix values

Subject ax t=0...1 1=0...15 1=0...20
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Appendix C. Separability matrix values
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Appendix C. Separability matrix values
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Appendix C. Separability matrix values
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Appendix C. Separability matrix values
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Appendix C. Separability matrix values
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Appendix C. Separability matrix values
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Appendix C. Separability matrix values
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Appendix C. Separability matrix values
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Appendix C. Separability matrix values

Children with Cls
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Appendix C. Separability matrix values
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Appendix C. Separability matrix values

St3-Stl t=0...1 1=0...15 1=0...20
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Appendix C. Separability matrix values
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Appendix C. Separability matrix values
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Appendix C. Separability matrix values

S5-St3 1=0...1 1=0...5 1=0...15 1=0...20
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Appendix D. Separability matrices uisng three ICA algorithms

Appendix D Separability matrixes using three ICA

algorithms
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Appendix D. Separability matrices uisng three ICA algorithms
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Appendix D. Separability matrices uisng three ICA algorithms
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Appendix D. Separability matrices uisng three ICA algorithms
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Appendix D. Separability matrices uisng three ICA algorithms
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Appendix E. ICs recovered using TDSEP-ICA with time

delays up to 90.

This appendix includes the ICs recovered using TDSEP-ICA with a time delay higher
than 20, up to 90. Recordings from two children with Cls are included; the ICs

recovered do not have significant differences.
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Figure E.1 Recording S5-St1, (female CI user), ICs recovered by TDSEP-ICA with time
delays higher than 20.

237



Appendix E. ICs recovered using TDSEP-ICA with time delays up to 90

18

16

14

12

10

)

18

16

14

12

10

o

N

N

TDSEP-ICAtau=0:20

18

16

14

12

10

©

TDSEP-ICAtau=0:30

18

16

14

12

10

©

=)

TDSEP-ICAtau=0:40

18

16

14

12

10

©

o

N

TDSEP-ICA tau=0:50

-100 0 100 200 300
TDSEP-ICAtau=0:60

1 1 1 J

18

16

14

12

10

©

N

-100 0 100 200 300
TDSEP-ICAtau=0:70

18

16

14

12

10

o

-100 0 100 200 300
TDSEP-ICAtau=0:80

S
=y
W
e
%

18

16

14

12

10

o

N

-100 0
TDSEP-ICAtau=0:90

p——
o

100 200 300

-100 0 100 200 300

-100 100 200 300

-100 0 100 200 300

-100 100 200 300

Figure E.2 Recording S3-St3, (male Cl user), ICs recovered by TDSEP-ICA Wlth time delays
higher than 20.
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Appendix F. SIR index values

Table F.1. SIR index values for basal recordings (without acoustic stimulation) using the AEP
as reference signal. The SIR average for the three algorithms is SIRayerage=0.65946+0.084521

Basal FastICA Ext-Infomax TDSEP-ICA
recordings

1 0.73 0.42 0.69
2 0.55 0.78 0.98
3 0.42 0.48 0.30
4 0.49 0.65 0.51
5 0.47 0.58 0.45
6 0.49 0.34 0.51
7 0.62 1.21 1.47
8 0.39 0.71 0.68
9 0.78 0.35 0.46
10 0.85 0.84 0.33
11 1.28 0.54 2.80
12 0.38 0.53 1.09
13 0.30 0.40 0.53
14 0.28 0.31 0.27
15 0.53 0.37 0.56
16 0.75 0.38 0.63
17 0.59 0.96 0.92
18 0.88 0.57 0.55
19 0.48 0.28 0.63
20 0.92 1.56 0.79
SIR 0.61+0.14 0.61+0.23 0.76+0.35
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Table F.2. SIR index values for recordings from normal hearing children recordings using the

Cl artifact as
SIRayerage=0.515583+0.045662

reference signal.

The SIR average for the three algorithms

is

NH FastICA Ext-Infomax TDSEP-ICA
recordings

1 0.46 0.46 0.49
2 0.56 0.34 0.30
3 1.02 0.56 0.69
4 0.22 0.18 0.33
5 0.14 0.14 0.15
6 0.59 0.59 0.57
7 0.76 0.75 0.35
8 0.17 0.18 0.16
9 0.72 0.73 0.31
10 0.26 0.38 0.72
11 0.98 0.38 0.37
12 0.94 1.31 0.55
13 0.29 0.48 0.41
14 0.21 0.36 0.32
15 0.54 0.57 0.38
16 0.57 0.60 0.29
17 0.37 0.51 0.68
18 0.75 1.12 0.93
19 0.57 0.40 0.26
20 0.56 0.41 0.26
21 0.56 0.62 0.84
22 0.87 0.63 0.84
SIR 0.55+0.27 0.53+0.28 0.46%0.23
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Appendix G. Artifactual ICs and De-noised signals

The first part of this appendix includes the artifactual 1Cs identified in the
recordings from children with Cls, using TDSEP-ICA (t=0,1,2,...,20). The principal
artifact recovered were those related to the CI artifact and noisy electrodes. The
columns of the mixing matrix corresponding to those components were made zero to
generate the de-noised signal. Additionally, both the original and the de-noised signal
after removing those artifacts are shown. In most of the de-noised signal P, peak can
be observed; those signals were used in source analysis of P;.
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Figure G.1 Subject 1 (male, age of implantation: 8y 3m), in both recordings S1-Stl and S1-
St2 the electrodes around the CI were not connected. The ICs removed correspond to noisy
electrodes and with the CI artifact (S1-St3).
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Figure G.2 In both recordings of subject S2 (female, age of implantation: 10y 5m), two
components of the Cl artifact and noisy electrodes were removed.
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Figure G.3 Two or three components related to the CI artifact and noise were removed from

the subject S3 recordings (male, age of implantation: 7y 1m).
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Figure G.4 In subject 4 (female, age of implantation: 3y 8m) the ICs related to the CI artifact
and noise were removed from the original AEP signal.
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Figure G.5 From two to three components related to the CI artifact and noisy electrodes were
eliminated from the AEP recording in subject S5 (male, age of implantation: 4y 5m).
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Figure G.6 Three ICs related to the CI artifact were removed from the AEP recordings in
subject S6 (female, 4y 2m).
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Figure G.7 ICs related to the CI and noisy electrodes were eliminated from the AEP
recordings in subject S7 (female).
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De-noised Signals
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Figure G.8 Butterfly plots of both the original signal (left column) and the signal after
removing the ICs associated with the CI artifact and noisy electrodes (right column). S1,
male, recordings at 5 months , 1 year and 2 years and 6 months after implantation (St1, St2

and St3, respectively).
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Figure G.9 Butterfly plots of both the original signal (left column) and the signal after
removing the ICs related to two components of the CI artifact and noisy electrodes (right
column). S2, female, recordings at 3 months and 9 months after implantation (St1 and St2,

respectively).
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Figure G.10 Butterfly plots of both the original signal (left column) and the signal after
removing the ICs related to two components of the CI artifact and noisy electrodes (right
column). S3, male, recordings at 1 year, 1 year and 8 months and 5 year and 5 months after
implantation (St1, St2 and St3, respectively).
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Figure G.11 Butterfly plots of both the original signal (left column) and the signal after
removing the ICs related to two components of the CI artifact and noisy electrodes (right
column). S4, female, recordings at 8 months, 1 year and 1 month and 1 year and 6 months
after implantation (St1, St2 and St3, respectively).
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Figure G.12 Butterfly plots of both the original signal (left column) and the signal after
removing the ICs related to two components of the CI artifact and noisy electrodes (de-noised
signal, right column). S5, male, recordings at 1 year and 9 months, 2 year and 8 months and 5

years and 1 month after implantation (St1, St2 and St3, respectively).
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Figure G.13 Butterfly plots of both the original signal (left column) and the signal after
removing the ICs related to two components of the CI artifact (right column). S6, female,

recording Stl at 2 year and 5 months after implantation.
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Figure G.14 Butterfly plots of both the original signal (left column) and the signal after
removing the ICs related to one components of the CI artifact (right column). S7, female,

recordings at 1 year and 4 months after implantation.
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Journal Paper

N. Castaneda-Villa, J.M. Cornejo, and C. J. James. “Independent Component Analysis
for robust assessment of auditory system maturation in children with cochlear

implants” Cochlear Implant International Journal. Published Online: Feb 20009.

N. Castafieda-Villa and C. J. James “Independent component analysis for Auditory
evoked potentials and cochlear implant artifact estimation: a comparison between
High and Second order statistic algorithms”. (In preparation)

Conference papers

C.J. James and N. Castafieda-Villa. “ICA of auditory evoked potentials of children
with cochlear implants: component selection”. 3" International Conference MEDSIP
2006 Advances in Medical, Signal and Information Processing, 17-19 July, Glasgow,
Scotland.

N. Castafieda-Villa and C. J. James. “Objective source selection in Blind Source
Separation of AEPs in children with Cochlear Implants” 29™ Annual International
Conference of the IEEE Engineering in Medicine and Biology Society, 23-26 August
2007, Lyon France.

N. Castafieda-Villa and C. J. James. “Differences in source analysis accuracy of AEP
generators following FastiCA and TDSEP-ICA de-noising” 4" International
Conference MEDSIP 2008 Advances in Medical, Signal and Information Processing,
14-16 July 2008 Santa Margherita Ligure, Italia.

N. Castafieda-Villa and C. J. James “The selection of optimal ICA algorithm
parameters for robust AEP component estimates using 3 popular ICA algorithms”
30" Annual International Conference of the IEEE Engineering in Medicine and
Biology Society “Personalized Healthcare through Technology” 20-24 August 2008
Vancouver, British Columbia.
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Conference Abstracts

N. Castaneda-Villa, J.M. Cornejo-Cruz, and C. J. James. “Assessment of the
neurological maturation in children with Cls: Identification of AEPs by ICA”. 10"
International Conference on Cochlear Implants and Other Implantable Auditory
Technologies, 10-12 April 2008, en San Diego, California, US (Poster).

N. Castaneda-Villa, J.M. Cornejo, P. Granados and C. Tirado. “Cochlear implant
fitting using middle latency auditory evoked potentials” 11" International Conference
on Cochlear Implants in Children, Charlotte NC, USA, 11-14 April 2008 (Oral
Presentation)

N. Castafieda, C. James and J.M. Cornejo. “Objective assessment of CI users by

source analysis of LLAEPs peak P,” 12" International Conference on Cochlear
Implants in Children, 17-20 June, 2009 Seattle, Washington.
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