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Source analysis of the Auditory Evoked Potential (AEP) has been used before 

to evaluate the maturation of the auditory system in both adult and children; in the 

same way, this technique could be applied to ongoing EEG recordings, in response to 

acoustic specific frequency stimuli, from children with cochlear implants (CI). This is 

done in oder to objectively assess the performance of this electronic device and the 

maturation of the child‟s hearing. However, these recordings are contaminated by an 

artifact produced by the normal operation of the CI; this artifact in particular makes 

the detection and analysis of AEPs much harder and generates errors in the source 

analysis process. The artifact can be spatially filtered using Independent Component 

Analysis (ICA); in this research, three different ICA algorithms were compared in 

order to establish the more suited algorithm to remove the CI artifact. Additionally, 

we show that pre-processing the EEG recording, using a temporal ICA algorithm, 

facilitates not only the identification of the AEP peaks but also the source analysis 

procedure. From results obtained in this research and limited dataset of CI vs normal 

recordings, it is possible to conclude that the AEPs source locations change from the 

inferior temporal areas in the first 2 years after implantation to the superior temporal 

area after three years using the CIs, close to the locations obtained in normal hearing 

children. It is intended that the results of this research are used as an objective 

technique for a general evaluation of the performance of children with CIs. 
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Chapter 1.  

 

Introduction 
 

 

 

The overall objective of this research is to develop a procedure to evaluate 

objectively the maturation of the auditory system of children with cochlear implants 

(CIs). The benefits of this electronic device, which assists in the rehabilitation of deaf 

people, are assessed by the technique know as Independent Component Analysis 

(ICA) followed by source analysis of the Auditory Evoked Potentials (AEP). 

 

Different methods of measuring the effectiveness of a CI in deaf children have 

been devised of late, however most of these are subjective methods (Pure Tone 

Average Audiometry, language comprehension and language production scores 

[99;122]). It is important to have an objective method to follow the maturation of the 

auditory system of an implanted child-CI as a complete system; this procedure could 

help in monitoring the quality of the sound generated by the CI on uncooperative 

subjects, such as children. Furthermore this method should be suitable to be 

implemented in a practical clinic. Multi-channel AEP recordings and source analysis 

have been used to objectively study the maturation of the auditory system in young 

children. The child-CI system could be studied in the same way, however this is 

problematic as normal operation of the CI generates an electrical artifact; the CI 

artifact generally masks, either partially or totally, the brain auditory response and so 

results in errors in the both the analysis and source analysis of the auditory response. 

 

To solve this problem ICA is applied prior to the source analysis step of AEPs. 

Assuming linear and instantaneous volume conduction in the brain, the use of ICA 

algorithms for source separation from EEG data is plausible. The goal of ICA is to 

recover independent sources using only sensor observations, which in our case is the 

scalp EEG from children CI users; the sources to be extracted are the AEPs and the CI 

artifact. The measurements at the electrodes x(t) are given by are a linear mixture of 
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the independent sources s(t), such that x(t)=As(t). A is the mixing matrix which 

depends on the conductivity characteristics of the brain and where the electrodes are 

placed. ICA calculates the de-mixing matrix, W, from the observations x(t) and 

estimates the original sources as ŝ(t)=Wx(t). ICA tells us what parts of the scalp are 

most responsible for the activity (auditory in our case), identified by a spatial 

projection of the Independent Components (ICs) onto the electrodes. The columns of 

W
-1

 are used to give the topographic maps (spatial weighting of the activity) that are 

used to facilitate the source analysis process. 

 

Multi-channel AEP recordings provide temporal resolution for the 

chronological aspects of brain plasticity. However, looking for a complete indicator of 

the auditory neuroplasticity in children with CIs, it is necessary to increase the spatial 

resolution for the source analysis, in order to solve the so-called inverse problem. This 

problem (the search of unknown source or sources underlying the scalp 

measurements) is solved by first finding a solution of the forward problem (how the 

electric potentials measured at the scalp arise from known sources). The electrical 

potential is computed using the quasi-static approximation of Maxwell‟s equations 

(which state the fundamentals of electricity and magnetism); where the potential is 

obtained by solving Poisson‟s equation with proper boundary conditions. 

Subsequently, to assess the auditory neuroplasticity in children with CIs, the changes 

of the source analysis of the AEPs attributed to the length of time of use/implantation 

of the CI on the child will be used in this research. 

 

The contributions of this research include: (1) the application of ICA to not 

only reduce the CI artifact (spatial filtering) but also to identify the AEP in children 

with CIs (source extraction); (2) to identify the most adequate ICA algorithm, as well 

as its parameters, for this type of biomedical signal analysis. Moreover, (3) to obtain a 

method for the robust identification of ICs with physiological meaning as well as the 

ICs associated with the CI artifact using the concept of Mutual Information and 

Cluster Analysis. Finally, (4) this research provides a basis for a practical, clinical 

procedure to assess the benefits of a CI following the changes of the (modelled) 

Equivalent Current Dipoles (ECD) of the AEPs, attributed to the length of time of 

use/implantation of the CI on the child. 
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This thesis is organized in the following way; Chapter 2 gives a review of the 

Audiological topics used in this research, including Auditory Evoked Potentials, 

auditory system maturation and Cochlear Implants, and describes the development of 

the auditory system after cochlear implantation. The description of the protocol for 

AEP recording, as well as a review of some signal processing techniques used to 

recover and analyse these biomedical signals are included in Chapter 3. Chapter 4 

presents a brief overview of the statistical concepts necessary to understand the 

technique of BSS by ICA, used in the pre-processing of the AEPs. Moreover, it 

explains the theory of BSS in general and ICA in particular, and reviews the principal 

differences between three popular ICA algorithms (FastICA, Infomax and TDSEP-

ICA). Chapter 5 describes the procedure used to select the optimal parameters of these 

three ICA algorithms mentioned above, for robust AEP component estimates. Chapter 

6, which complements the previous chapter, shows the results of the assessment of the 

variability and performance of those algorithms applied to auditory response 

estimations. A novel procedure to choose ICs with physical and physiological 

meaning using Mutual Information, as similarity measure between estimates, and 

Cluster Analysis is included in chapter 7. Chapter 8 shows the results of using ICA 

not only to de-noise the AEP of children with CIs but also to assess the maturation of 

the auditory system in these children, using the topographic map of the ICs related 

with the auditory response. The basic theory of source analysis, beginning with the 

Maxwell‟s equations and following with an explanation of how the parameters for 

source analysis of the AEP were selected in this research are included in chapter 9; 

results of the changes in the location of the sources of the auditory response in 

accordance with the time of implantation are shown in this chapter. The final chapter, 

chapter 10, is dedicated to the principal conclusions and future work of this research. 

 

During this research the following papers and abstract have been accepted in 

different specialist journal and conferences. 

Journal Paper 

N. Castaneda-Villa, J.M. Cornejo, and C. J. James. “Independent Component Analysis 

for robust assessment of auditory system maturation in children with cochlear 

implants” Cochlear Implant International Journal. Published Online: Feb 2009. 
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N. Castañeda-Villa and C. J. James “Independent component analysis for Auditory 

evoked potentials and cochlear implant artifact estimation: a comparison between 

High and Second order statistic algorithms”. (In preparation) 

 

Conference papers 

C.J. James
 
and N. Castañeda-Villa. “ICA of auditory evoked potentials of children 

with cochlear implants: component selection”. 3
rd

 International Conference MEDSIP 

2006 Advances in Medical, Signal and Information Processing, 17-19 July, Glasgow, 

Scotland. 

 

N. Castañeda-Villa and C. J. James. “Objective source selection in Blind Source 

Separation of AEPs in children with Cochlear Implants” 29
th

 Annual International 

Conference of the IEEE Engineering in Medicine and Biology Society, 23-26 August 

2007, Lyon France. 

  

N. Castañeda-Villa and C. J. James. “Differences in source analysis accuracy of AEP 

generators following FastICA and TDSEP-ICA de-noising” 4
th

 International 

Conference MEDSIP 2008 Advances in Medical, Signal and Information Processing, 

14-16 July 2008 Santa Margherita Ligure, Italia. 

 

N. Castañeda-Villa and C. J. James “The selection of optimal ICA algorithm 

parameters for robust AEP component estimates using 3 popular ICA algorithms” 

30
th

 Annual International Conference of the IEEE Engineering in Medicine and 

Biology Society “Personalized Healthcare through Technology” 20-24 August 2008 

Vancouver, British Columbia.  

 

Conference Abstracts 

N. Castaneda-Villa, J.M. Cornejo-Cruz, and C. J. James. “Assessment of the 

neurological maturation in children with CIs: Identification of AEPs by ICA”. 10
th

 

International Conference on Cochlear Implants and Other Implantable Auditory 

Technologies, 10-12 April 2008, en San Diego, California, US (Poster). 
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N. Castaneda-Villa, J.M. Cornejo, P. Granados and C. Tirado.   “Cochlear implant 

fitting using middle latency auditory evoked potentials” 11
th

 International Conference 

on Cochlear Implants in Children, Charlotte NC, USA, 11-14 April 2008 (Oral 

Presentation) 

 

N. Castañeda, C. James and J.M. Cornejo. “Objective assessment of CI users by 

source analysis of LLAEPs peak P1” 12
th

 International Conference on Cochlear 

Implants in Children, 17-20 June, 2009 Seattle, Washington. 
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Chapter 2. 

An overview of Audiological topics 
 

 

 

Two major audiological topics are included in this research: Auditory Evoked 

Potentials (AEPs) and Cochlear Implants (CIs). An AEP is the response of the 

auditory system (in the brain) produced by a sound [58], this response is suitable to be 

measured on the scalp with the appropriate techniques such as averaging out the 

spontaneous electroencephalography (EEG) [100]. The clinical applications of the 

AEPs are diverse, such as: estimation of the auditory sensitivity in very young 

children, frequency specific estimation of the auditory sensitivity in older children and 

adults, and to evaluate the maturation of the auditory system. 

 

After setting forth the theory of AEPs, the general concepts of EEG and 

Evoked Potentials (EPs) in general, a description of the way to evaluate the 

maturation of the auditory system using AEPs is incorporated. A description of the 

apparatus used in the rehabilitation of deaf people known as CI is included; its main 

parts, as well as the principal stimulation strategies used by this electronic device to 

emulate the human cochlea, are then explained. Finally, a description on the auditory 

system maturation after cochlear implantation is incorporated. 

2.1 The EEG 

 

The EEG is the recording of the spontaneous electrical activity of the brain; 

this activity is recorded from electrodes on the scalp [11]. The changes in the 

characteristics of the EGG (amplitude and frequency) reveal the subject‟s state of 

consciousness; for example, EEG signals with large amplitude and low frequency 

content are typical during deep sleep and widespread EEG signals with oscillation 

near to sinusoidal are characteristic in eyes closed waking. More advanced techniques 

used in clinical EEG can identify neurological disorders such as Alzheimer's disease, 

epilepsy, brain tumor and sleep disorders [100]. 
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EEG analysis is usually described in terms of frequency bands. Most of the 

common cerebral signals are in the range of 1-30 Hz; in clinical settings activity 

below or above this range is generally considered an artifact. Examples of wave 

pattern recognized on EEG are: delta (up to 3 Hz), theta (between 4 and 7 Hz), alpha 

(8-12 Hz), beta (13 to 20 Hz) and gamma (20 to 30 Hz). Most of the EEG waves have 

an inverse relationship between amplitude and frequency, for example alcohol or 

drugs consumption may cause a reduction in the frequency and an increase in the 

amplitude of EEG waves [98]. 

 

Delta tends to be the highest in amplitude and slower wave, its location is 

frontal in adults and posterior in children; this wave could reveal subcortical lesions in 

the elderly. Theta waves are seen normally in young children, there location may 

involve many lobes of the brain and can be lateralized or diffuse [98]. Alpha waves 

are widely used in the clinical practice; these waves are usually identified in a relaxed 

awake subject, its amplitude is typically 20-50 V with location in posterior regions 

of head. Other alpha waves may occur in comatose subjects with cerebral lesion or 

with patients under halothane anesthesia [100]. Beta waves have a frontal and 

symmetrical distribution and low amplitude, they are present in the EEG signal when 

the subject is concentrating; these waves are accentuated by drug consumption such as 

barbiturates. 

The basic EEG equipment recommended by the American Clinical 

Neurophysiology Society (ACNS) includes electrodes, connecting wires, amplifiers, a 

computer control module, and a display device [11]. Each electrode is connected to 

one input of a differential amplifier and a reference electrode is connected to the other 

input. In a digital EEG system, the amplified signal is digitized by an analog to digital 

(A-D) converter (sampling rate between 256 and 512 Hz and resolution of 12 bits or 

more), after the signal is passed through an anti-aliasing filter. For standard recordings 

the settings for the low pass filter should be no higher than 1 Hz (-3dB) and the high 

pass filter should be no lower than 70 Hz (-3dB). The recorded EEG can be visualized 

on a computer screen or on paper [10]. Different type of EEG activity occurs 

simultaneously at diverse locations on the head and so encourage the use of multiple 

electrodes for simultaneous recordings. 
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The type of electrodes used in the EEG recordings is fundamental to acquire a 

good signal; recording electrodes should be free of acquired inherent noise and they 

should not attenuate signals between 0.5 and 70 Hz [11]. Disk and needle are some of 

the types of electrodes used in the EEG recording. Needle electrodes are made from a 

bar of stainless steel, whilst disk electrodes are made from silver silver-chloride or 

gold; the diameter of disk electrodes can vary from 4 to 10 mm, smaller diameter 

electrode are optimal to be used with infants. The most commonly used electrodes in 

AEPs recordings are the disk electrodes, silver-chloride electrodes are recommended 

for recording very slow auditory responses. All the electrodes are designed to conduct 

electrical activity at the frequency range of the AEPs. 

 

In order to increase the quality of the recordings, it is necessary to introduce an 

electrolyte (electrically conductive medium) between the scalp and the electrode. 

Different electrolytes for EEG are commercially available; gels, conductive pastes 

and creams. Most of the disk electrodes contain a hole so that the electrolyte can be 

added after the electrode has been attached on the head. 

 

Electrode attachment is checked by the interelectrode impedances; this 

impedance is measured applying a small electrical AC current (30 Hz) to one of the 

electrodes, and determining the amount of current reaching a second electrode. The 

interelectrode impedance will be lower if the skin has been cleaned or rubbed to 

remove surface oil and superficial layers of the epidermis; it is possible to use alcohol 

or acetone for this purpose. Interelectrode impedances can be reduced to below 3 kΩ 

if the skin preparation and electrode selection is done well; impedances should not 

exceed 5 kΩ. The quality of the AEPs recordings is highly dependent on low and 

balanced electrode impedances. The ACNS recommends checking the impedances as 

a routine prerecording procedure and rechecking it during the recording when the 

wave patterns might start to appear artifactual. 

 

Most electrode sites in AEPs measurement can be designed by a specific 

system of electrode positioning which has been recommended for the ACNS; this 

standardized electrode placement system is know as the International 10-20 system 

[12]. 
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2.1.1 International 10-20 electrodes system 

 

The International 10-20 system uses particular anatomical landmarks (nasion 

inion and left and right preauricular points) to locate different sites for a given subject. 

The total distance between nasion (bridge of nose) and the inion (the occipital 

protuberance) is divided into 10% and 20% intervals. The point at the initial 10% of 

the distance away from the nasion is the electrode site „Fpz‟; this is generally used as 

ground in AEP recordings, the electrode site „Fz‟ towards the rear an additional 20% 

of the total distance nasion to inion is the frontal midline, the site „Cz‟ towards the 

back by another 20% is the coronal midline, etc. 

 

This system is for 21 electrodes (see Figure 2.1); but it is designed so it can be 

used with additional electrodes (the extended 10-20 system). The nomenclature for 

the electrode positions is alphanumeric, consisting of one or two letters derived from 

names of underlying lobes of the brain, or other anatomic landmarks as auriculars and 

mastoids; this nomenclature provides a system of coordinates for positioning a 

designated electrode. The system places odd numbers for electrodes on the left 

hemisphere and even numbers on the right; a “z” identifies the electrodes in the 

middle line; two other relevant sites are the left and right mastoids (M1 and M2, 

respectively). 

         
Figure 2.1 Electrode distribution in accordance with the standard international 10-20 system 

for the 21 electrodes; Fpz is generally used as ground and M1-M2 linked as reference in 

multi-channel AEPs recordings [32]. 
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The number of electrodes needed is based on the type of activity to be 

recorded, the population studied, and the number of channels available. The American 

EEG Society [11] considers that the minimum number of channels required showing 

the areas producing most normal and abnormal EEG patterns are 16 simultaneous 

recording; another factor to decide the number of electrodes is the montage used. 

 

The term „montage‟ refers to the particular combination of electrodes 

examined at a specific point in the time; that to record the activity from all areas of 

the scalp. Montages are designated for 16, 18 and 20 channels [13]. Two standard 

montages can be used in EEG, bipolar and referential; bipolar montages are also so 

called differential. In a referential montage, the recording of the EEG from each 

single electrode is made with a neutral reference, whilst for a bipolar montage; two 

areas of the brain are recorded through two independent electrodes. 

 

The analysis and interpretation of the EEG could be a problem when the signal 

is contaminated by artifacts. An artifact is electrical activity which is not part of the 

EEG. The most common artifacts come from the recording equipment, such as 

random fluctuations of the signal at 50 or 60 Hz (line noise) or problems with the 

electrodes. Line noise is generally identified by high voltage which produces 

saturation of the differential amplifiers; such behaviour is uncharacteristic of the brain 

activity. 

2.1.2 EEG Artifacts 

 

A general classification of EEG artifacts could be biological or external 

artifacts; blinking, cardiac and muscular artifacts are examples of the first type whilst 

high electrode impedances, line and background noise are examples of the second 

type. A frequent artifact is related to problems with the electrodes, broken electrodes 

or improperly attached to the head. Cardiac artifact is interference resulting from the 

heart QRS complex or pulse artifact which is a consequence of the blood pulsing 

through a vessel under an electrode; it could occurs due to the expansion and 

contraction of the scalp arteries [40]. Before the analysis and interpretation of the 

EEG, these artifacts must be eliminated; EEG artifact removal is dealt with in part in 

Chapter 4. 



Chapter 2. An overview of Audiological topics 

 
 

11 

Whilst what has been discussed so far can be termed spontaneous EEG, 

another particular aspect of the EEG is Evoked Potentials, which involve the 

measurement of spontaneous EEG activity time-locked to the repetitive presentation 

of a specific stimulus; generally either auditory, visual, or somatosensory. 

2.2 Evoked Potentials 

 

According to the ACNS [14] an EP (some time known as an Event related 

potential, or ERP) is an electrical potential recorded from a human or animal 

following presentation of a stimulus. An EP can be used to assess peripheral sensory 

function and to evaluate the function of sensory pathways in the central nervous 

system. These potentials can be Auditory, Visual and/or Somatosensory, which have 

clinical applications to the diagnosis of diverse neurological disorders. Figure 2.2 

shows the human cortex division, visual and auditory stimuli are integrated by the 

occipital and the temporal lobe respectably; the frontal lobe controls motor functions 

whilst the parietal lobe processes somatosensory stimuli.  

 
Figure 2.2 Human cerebral cortex division; each lobe is specialized in processing different 

stimuli; the temporal lobe integrates auditory stimuli whilst the occipital lobe integrates visual 

stimuli. Motor functions depend on the frontal lobe and the parietal lobe processes 

somatosensory stimuli [100]. 

 

Although the EP amplitude is small (from less than one to several Vs), the 

potentials are time-locked with the stimuli, then it is feasible to use a coherent average 

to recover them from background noise. Additionally to the basic EEG equipment 

mentioned before the clinical evoked potential equipment includes an averager; this 

should average several epochs or trials of EEG in order to recover the EPs. The onset 
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of the averaging sweep should be synchronised with stimulus production; depending 

on the type of EPs to record, two or four channels are usually required. A mechanism 

to reject artifacts is indispensable; the criterion for artifact rejecting is generally 

simply by amplitude (those trials that exceed the limits of the A-D converter are 

excluded from the averaging process). The replication of the EP is essential to 

demonstrate that responses are consistently repeatable and therefore are of neuronal 

origin and not artifact. 

 

The EPs in children in particular have demonstrated a great clinical utility 

because of the possibility to objectively assess the development of neurological 

function is these subjects. All types of standard EPs have been shown to mature and 

develop during infancy and childhood; such as Auditory Brainstem Evoked Potentials 

(ABR), Visual Evoked Potentials (VEP) and Somatosensory Evoked Potentials (SEP) 

these have been established as clinically useful in infants and children [14]. 

 

2.3 Auditory Evoked Potentials 

 

An Auditory Evoked Potential is the response of one or more parts of the 

auditory system (which consists of the ear, the auditory nerve and the auditory cortex) 

which is evoked by an acoustic stimulus [58]. Since the stimulus is sound, the 

response occurs somewhere in the auditory system; on analyzing the characteristic of 

the response (generally amplitude and latencies of the waveforms), it is possible to 

establish the region or regions in the auditory system which generated the response. 

 

The principal sounds used to elicit AEPs are clicks, tone-bursts, tone-pips (see 

Figure 2.3) and speech. The standard auditory stimuli used in AEP are clicks; these 

stimuli are brief wideband sounds of varying amplitude (intensity level) but constant 

polarity and duration. Click improves synchronous neural activity and is effective to 

generate rapid evoked responses. Their repetition time generally used in infants to 

evoke an auditory response is 10/sec. Tone-bursts are pure tones enveloped with a 

trapezoid and tone-pips are pure tone enveloped with a rhomboid. The typical 

frequencies selected in both stimuli are the frequencies included in the audiometric 

range (tones at octave frequencies from 125 to 8000 Hz). These stimuli are optimal to 
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generate slow evoked responses. The selection of envelope characteristics (rise-decay 

and plateau times) and the specific frequency tone is based on the objective of the test. 

 

In general the repetition time should be as fast as possible, in order to reduce 

the test time but without sacrificing the quality of the auditory response. The 

fundamental principle is that fast repetition times generate rapid auditory response 

whilst slow repetition times evoke slow responses. There are not standard numbers of 

stimuli (repetitions) in AEPs measurement; this number depends on the amplitude of 

the response and the amount of background noise in the recording; fewer repetitions 

are necessary with larger signals and/or smaller noise. 

 
Figure 2.3 Principal stimuli used to elicit AEPs, stimulus clicks are wideband sounds whilst 

tone-burst and tone-pips are specific frequency sounds. The stimulus‟ duration, the repetition 

time as well as the amplitude and frequency of those sounds produce different components of 

the AEPs. 

 

The stimuli are usually delivered to the subjects under test either through 

headphones or speakers; in the case of children it is important to adapt the headphones 

to assure a proper fit and to avoid collapse of the external auditory canal. The 

intensity levels (amplitude) of the stimuli are calibrated in dBSPL (decibels Sound 

Pressure Level), where the sound pressure of a sound is measured relative to a 

reference pressure value (20 Pa). The instruments used to calibrate the intensity level 

of the stimuli are sound level meter, microphones and an artificial ear. 

 

The AEPs are generally recorded in an attenuated sound room such as an 

anechoic chamber, to ensure that the subject being tested is not influenced by external 

or internal reflected sound or noise. An anechoic chamber is a shielded room designed 
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to attenuate sound and/or electromagnetic signals. Anechoic chambers absorb sound 

echoes produced by internal reflections of a room; additionally, the anechoic 

chambers also provide a shielded environment for Radio Frequency and microwaves 

[62]. 

 

As mentioned before, the scalp recording of the AEPs require three or four 

electrodes placed according to the International 10-20 system [10], the electrode 

connected to the positive input of the differential amplifier is generally the Cz 

electrode. In humans, AEPs must consist of at least 15 reproducible waveforms (see 

Figure 2.4). The analysis of the AEPs is based on latency and amplitude criteria. In 

general, the amplitude of each wave of the AEPs is a function of the intensity level of 

the stimuli such that sounds with a higher intensity produce a larger auditory 

response. The latency (time at which each one of the waves of the AEP appear after 

the stimulation) is shorter with higher intensities. The AEPs can be classified in 

accordance with their latency, such as Short Latency Auditory Evoked Potentials or 

ABRs, Middle Latency Auditory Evoked Potentials (MLAEPs) and Long Latency 

Auditory Evoked Potentials (LLAEPs) [58]; it is the latter type that are used in this 

research. 

 

The peaks of AEPs are labelled with Roman numeral for ABR and capital P‟s 

and N‟s for MLAEP and LLAEP. ABRs, associated with the eighth cranial nerve and 

the auditory brainstem, are followed by the MLAEP which neural generators are in 

the upper brainstem and/or the auditory cortex. It is now possible to identify the 

LLAEP which includes the slow and the late cortical auditory response, Figure 2.4 

shows only the slow waveforms; the LLAEP is originated in the auditory cortex [10].  
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Figure 2.4 Auditory Evoked Potential classification: Auditory Brainstem Response (ABR), 

Middle Latency Auditory Evoked Potential (MLAEP) and Long Latency Auditory Evoked 

Potential (LLAEP); Cz electrode connected to the positive input of the differential amplifier 

[15]. 

 

The clinical applications of these potentials are varied, for example: newborn 

auditory screening [14], the objective determination of auditory thresholds in infants 

and children who are difficult to test with standard audiometric techniques [21], 

monitoring of anaesthesia levels and evaluation of the auditory system maturation 

[44;58;132]. Recently, AEPs have been used to evaluate Hearing Aids (HA) and CIs 

[84;111;112] as well as to investigate mental disorders such Schizophrenia and 

Alzheimer‟s disease [57;113]. The following paragraphs set forth each one of the 

AEPs mentioned; including their measurement parameters, main characteristics, 

generators and clinical applications. 

A. ABR 

 

The first components or generator of the AEPs occur between 1 and 10 ms post 

stimulus. This potential is known as the ABR and is produced by a brief sound, a click 

of varying intensity, constant polarity and duration (0.1 ms) and typically a stimulus 

rate of 10/sec. The number of stimuli necessary to recover this response is variable, 

from 500 to 4000; fewer stimuli are needed with normal hearing and quite subjects 

and at high intensities.  

 

The electrode montage conventionally used in ABR recording is with the 

negative input of the differential amplifier connected to the mastoid of the stimulus 
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side (ipsilateral recording), whilst the positive input of the differential amplifier 

connected to the vertex (Cz electrode) or the midline forehead near the Fz site; the 

ground can be localized in the forehead (Fpz) or on the contralateral mastoid.  

 

ABR is one of the most common audiological tests recently used because of 

its reliability and independence from the patient‟s state of arousal. It is possible to 

identify five or six peaks in ABR; each peak is labelled with a Roman numeral from I 

to V or VI. The ABR is generally used to determinate auditory thresholds in very 

young children or those difficult to test by traditional methods; as well as to detect 

neurological abnormalities in the auditory nerve and the brainstem. 

 

The neural generators of the ABR waveforms (see Figure 2.4) begin with the 

distal and proximal portion of auditory nerve (wave I and II), wave III is originated in 

the cochlear nucleus whilst the superior olivary complex generates wave IV, finally 

wave V is associated with the lateral lemniscus [105]. 

 

B. MLAEP  

 

At between 10 and 50 ms the MLAEP is recorded; clicks or brief duration pure 

tone stimulus as tone-bursts are appropriate stimuli to evoke this response. The 

repetition time is generally 7.1/sec and the number of stimuli is variable, depending 

on size of the response and background noise. 

 

The nomenclature used to label the peaks of the MLAEP is a capital letter “P” for 

positive voltages and a capital letter “N” for negative voltages (considering the vertex 

as positive). The sequence of peaks and valleys is denoted alphabetically; Na, Pa, Nb 

and Pb (see Figure 2.4). The MLAEP is recorded with electrodes placed at Cz and M1 

or M2 electrodes (contralateral to the stimuli). The number of stimuli to elicit a clear 

response is approximately 1000. 

 

The principal clinical applications associated with this potential are frequency-

specific estimation of auditory sensitivity in both older children and adults and as an 

indicator of levels of anaesthesia [82]. The generators of the MLAEP are in the 
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thalamus and primary auditory cortex. The Pa peak arises from the posterior temporal 

lobe and the thalamic medial geniculate body could be the generator of the Na 

components. There is controversy about the possible generators for the rest of the 

MLAEP [58]. 

C. LLAEP 

 

The LLAEP appears from 50 to 250 ms after stimulation; tone-bursts are used 

to elicit this response, the stimuli duration depends on the application but is generally 

10 ms for the rise-decay time and 30 ms for the plateau and a stimulus rate of 1.1/sec 

[58]. 

 

The amplitude of these waves is larger than ABR and MLAEP amplitudes, 

about 3-10 μV or larger (see Figure 2.4). As before, the peaks of LLAEP are labelled 

with capital letters “P” and “N” for positive and negative peaks respectively; the 

sequence of waves is denoted by numbers, P1, N1, P2 and N2. These waves are known 

as slow cortical waves because they appear before the late cortical waves (for example 

the P300) [82]. Slow cortical waves are elicited by a repetitive stimulus of at least one 

stimulus per second; the changes of these waves are best studied using the latency of 

peaks because the amplitude is much more variable between subjects. 

 

The LLAEP is a response from the central auditory system and optimally 

responds to tone-burst stimuli of relatively long duration, greater than 5ms. The 

LLAEP is also named the “obligatory potential” because is determined by the 

physical characteristics of the stimulus, such as amplitude and frequency as well as 

stimulus duration and repetition time [67]; this implies that a slight change in certain 

stimulus characteristic can modify the response. The LLAEP, along with the ABR and 

MLAEP, are all exogenous responses [96], this means that are dependent on stimulus 

characteristics and are independent of the subject attending; in other words, it is not 

necessary that the subject performs a specific task such as for the P300 (oddball 

paradigm) [21]. LLAEP can be recorded from an awake subject who is very oblivious 

to the sound presented, because of this many researchers record these potentials whilst 

the subject is reading something or watching a TV program without sound [105]. 
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Although LLAEP does not depend on a specific task or the patient‟s cooperation, it 

could be susceptible to subject condition and drugs. 

 

This potential has been used in the diagnosis of neurological disorders, for 

example some waves of the LLAEP could be absent in mental disorders as 

Alzheimer's disease [57]. In Schizophrenia patients, N1 latency could be increased 

whilst P2 latency and N1-P2 inter-peak latency could be reduced [113]. LLAEP has 

been used to assess higher level auditory system functions [67] and as a frequency 

specific estimator of hearing sensitivity [119]. Purdy and Kelly, 2001 [111] used 

LLAEP as an objective technique for HA fitting in children. These authors compared 

aided (with HA) versus unaided (without HA) LLAEP waveforms; they identified the 

P1 wave only when the children were wearing their HAs; the test stimuli in this 

research was a tone burst at 1000 Hz and 80 dBSPL delivered binaurally. 

 

The principal generator of LLAEP waves in adults is located within the 

temporal cortex, for example intracerebral and magnetic recordings in humans 

demonstrate that P1 has an origin in the lateral portion of Heschl‟s gyrus whilst N1 is 

originated in the auditory superior temporal cortex [85]. 

 

In the following sections the generators of P1 are revised, general concepts 

about the maturation of the auditory system, and how AEPs have been used to 

evaluate the auditory system maturation is explained too. 

2.4 Generators of the P1 peak 

 

This section explains the different generators or components (cerebral process) 

which constitute the peak between 50 and 150 ms of the LLAEP, known as the P1 

peak. At least six different cerebral processes contribute to form the P1 peak. The 

following paragraphs describe the three “obligatory” components of this peak which 

depend on the physical and temporal features of the stimulus and by the general state 

of the subject [96]. 

 

A. Generator 1, with peak latency at 100 ms and maximally recorded from the fronto-

central scalp, is generated in the cortex of the supratemporal plane. The degree of 
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frontal spread and of left-right asymmetry differs from subject to subject because of 

the variable orientation of the supratemporal plane between individuals. The 

amplitude of this element increases with increasing of stimulus intensity. 

 

B. Generator 2 is composed by a positive wave at about 100 ms after stimulus and a 

negative wave at approximately 150 ms, generated probably at the superior temporal 

gyrus (see Figure 2.5) with maximum amplitude at the midtemporal electrodes. The 

radially oriented generator would be activated by connections from the primary 

auditory cortex and the thalamus. The effects of intensity and inter-stimulus interval 

are not clear in this element. 

 
Figure 2.5 Superior temporal gyrus in the human brain [100]. 

 

C. Generator 3 is a vertex negative wave with peak latency at 100 ms post stimulus 

approximately; this element can be generated in the frontal motor and pre-motor 

cortex. The maximal amplitude of this component is at the vertex and the lateral 

central electrodes. Näätänen and Picton [96] suggest that the generator of this element 

is the cortical projection of a reticular process which facilitates motor activity. At 

stimulus intensities greater than 60 dBSPL and inter stimulus interval greater than 4-5 s 

this component is easier to record. 

 

D. The rest of the generators are related to the process of attention to the auditory 

stimulus; generator 4 is the mismatch negativity, generator 5 is the sensory- specific 

processing negativity and generator 6 is a second element of the processing negativity 

[96]. These generators could be variations related to the attention of the subject; an 

unattended auditory stimulus could activate two areas of the cortex: the supratemporal 

plane (generator 1) and the superior temporal gyrus (generator 2); whilst an attendant 
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stimulus could facilitate interneural connections to increase the extension and degree 

of cortical activation. 

2.5 Auditory System Maturation 

 

One of the established ways to evaluate the maturation of the auditory system 

in children is by using the changes in latency and morphology of the AEP peaks 

[109;111;119]; maturation of the auditory system is dependent on the age of the 

subject and the auditory stimulation properties. 

 

In ABR, various components mature in new born and preterm infants, such as 

wave shape, wave latency, inter-peak intervals and relative wave V/I amplitudes. The 

changes are more remarkable in infancy with peak latencies reaching near adult 

values at about 2 to 3 years of age; the ABR can be a measure of neurophysiological 

function and development. 

 

Ponton, 1996 [107] described the LLAEP changes, in amplitude and latency 

from infancy to adulthood as a measurement of auditory cortex maturation. In the case 

of normal hearing children, from 5 to 9 years old, the typical response has a large 

positive peak around 100 ms (see Figure 2.6) labelled P1 followed by a negative peak 

N1, P1-N1 complex; the amplitude and latency of this positive peak decrease as a 

function of age. P1 peak is generated by thalamic and cortical sources.  

 
Figure 2.6 LLAEP waveform of a normal hearing child (7 y. o.), a positive peak around 100 

ms (P1) followed by a negative peak between 200 and 250 ms (N1) characterize this waveform 

(N1-P1 complex). 



Chapter 2. An overview of Audiological topics 

 
 

21 

This peak begins to spread out and finally divides into two positive peaks 

separated by a negative peak; from 10 years of age onwards, the LLAEPs are similar 

to an adult morphology. 

 

The maturation of deeper layers of the auditory cortex may mature in the 

absence of sound stimulation whilst the maturation of superficial layers requires 

sound stimulation during a critical period [44]. 

 

2.6 Cochlear Implants  

 

A CI emulates the principal function of the human cochlea, transforming an 

acoustic signal into pulses of electric current, to stimulate directly the auditory nerve 

[134]. The prime candidates for CIs must fulfil at least three conditions: they have 

severe hearing losses in both ears, their auditory nerve should be intact and functional 

and they have not benefitted significantly from HAs. 

 

The CIs, surgically implanted, are divided into two principal parts, the 

external and the internal; the external part includes a microphone, a speech processor 

and a transmitter coil. The internal part includes a receiver and an array of electrodes, 

implanted in the base of the cochlea (see Figure 2.7). 

 
Figure 2.7 Parts of a cochlear implant: 1. Microphone and Speech Processor, 2. Transmitter 

coil, 3. Receiver, and 4. Electrode Array [7]. 
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A. Speech processor 

 

The speech processor is a Digital Signal Processor (DSP) chip that analyzes 

and codifies the sound signals. Once the microphone has received the sound, the 

speech processor should determine which electrodes must be activated. The FFT is 

the main strategy used to divide the signal into different frequency bands. In 

accordance with every each manufacturer of CIs, the parts of the speech processor 

could be different, but in general, it includes band-pass filters, envelope detectors, 

amplitude compressors and pulse modulators [114]. 

 

B. Electrodes and stimulation modes  

 

The electrodes are made of a highly conductive material, such as platinum or 

iridium and are placed on a silicone rubber tip. In the 1970‟s, CIs were single-channel 

devices. These CIs included a band-pass filter at a frequency band relevant for speech 

(340-2700 Hz) and a modulator (16 kHz sinusoidal carrier) which is necessary for the 

inductive coupling across the skin; the improvement of the speech perception is 

achieved by the introduction of random patterns of neural discharges [114]. 

Nowadays, in accordance with manufacturers, the CIs can have 22 or 24 electrodes, 

which provide pitch perception and speech recognition to the users. In the case of CI 

with 24 electrodes, 22 electrodes are intra-cochlear and 2 electrodes are extra-cochlear 

or remote electrodes; the electrodes which are placed outside the cochlea function as 

ground electrodes. If one intra-cochlear electrode is stimulated with reference to a 

remote electrode, the stimulation is so called monopolar but if one intra-cochlear 

electrode is stimulated with reference to another intra-cochlear electrode the 

stimulation is termed bipolar [92]. 

 

C. Programming the speech processor  

 

A trained audiologist is the professional responsible to program the CI for 

each user individually. The audiologists determine the Threshold (T) and Comfort (C) 

levels of electrical stimulation as well as the method that the CI transforms sound into 

electrical stimulation, in other words the audiologist must select the coding strategy 

most convenience for each CI user. The most important coding strategies are: 



Chapter 2. An overview of Audiological topics 

 
 

23 

Continuous Interleaved Sampling, Spectral peak extraction and Advanced 

Combination Encoder [134]. 

 

i) Continuous interleaved sampling (CIS). In the CIS strategy, there is a pre-

emphasis filter, after the microphone, which helps in the detection of weak 

consonants. The output of the pre-emphasis filter passes through band-pass 

channels which filter, compress and detect the envelopes of the speech; the 

envelope detection could be calculated by the FFT or using the Hilbert 

Transform. The output of band-pass channels modulates the amplitude of 

biphasic pulse trains. Modulated pulses from channels with low centre 

frequencies for the band-pass filter stimulate the apex of the electrodes 

array in the CI whilst modulated pulses from channels with high centre 

frequency stimulate basal electrodes in the implant; this stimulation mode 

replicates the tonotopic organization of a normal cochlea. 

ii) Spectral peak extraction (SPEAK). In the SPEAK strategy, the signal 

transduced by the microphone is sent to a bank of 20 filters that have 

centre frequencies from 250 to 10 kHz. This strategy selects the output of 

the filters with the largest amplitude, to stimulate the corresponding 

electrodes; the number of maxima varies from 6 to 10. The stimuli are 

pulsed and the stimulation rate is approximately 250 Hz.  

iii) Advanced Combination Encoder (ACE). This strategy combines the 

spectral maxima detection of SPEAK with higher stimulation rates, for 

example 14,400 pulse per second (pps), in order to avoid aliasing effects. 

The principal difference between ACE and the other strategies is that the 

number of maxima and electrode stimulated can be specified for each CI 

user. The number of maxima should be high enough to include all the 

fundamental spectral information of the signal but lower than the electrode 

used to conserve a high rate of stimulation. 

 

A common characteristic of all these strategies is the interlacing of stimulus 

pulses across electrodes; this is to eliminate a vector summation of the electric fields 

from different electrodes simultaneously stimulated. The stimulation waveform of 

CIS, SPEAK and ACE strategies is pulsed which consists of square-wave biphasic 

pulses trains. As part of the process of fitting the CI, the Audiologist must select the 
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pulse rate, pulse duration and the range of frequencies for each band-pass filters. The 

general objective of these strategies is to stimulate the auditory nerve in such a 

manner that both the temporal and spectral characteristics of the acoustic signal are 

codified efficiently [102]. 

 

The eventual hearing performance of CI recipients depends on various factors; 

age at implantation, duration of deafness, number of electrodes inserted in the 

cochlea, and the therapy of rehabilitation, to name a few. The success of the 

implantation depends on the ability of the auditory system to extract useful auditory 

information from the electrical stimulation provided by the CIs [103]. There are 

different ways to evaluate this performance, for example, Pure-Tone Average 

Audiometry, Speech Scores and Language Scales, all of these tests are subjective 

[50]. The convenience of using LLAEP to asses the performance of these children is 

the objectivity; this is dealt with in the next section. 

 

2.7 Auditory system maturation after cochlear implantation 

 

Although the electrical stimulation of a CI, elicits the beginning of maturation 

of the auditory system in deaf children, this follows different patterns when compared 

to normal hearing children [108]. Ponton and Eggermont 1996 [107], observed 

prolonged P1 latencies associated with auditory cortex immaturity in children fitted 

with CIs, and suggested that the delayed maturation is approximately equal to the 

period of deafness (see Figure 2.8). Although the latency of the P1 decreases rapidly 

in these children, in an approximately exponential fashion, it is not equal to that of 

normal hearing children; the positive peak latency remains prolonged whilst the 

amplitude of this peak continues larger in children with CIs compared to age-matched 

normal hearing children. In some implanted children the LLAEPs consist of just the 

prominent P1 peak, like that of the youngest normal hearing children. 

 

Finally, the authors concluded that a CI is sufficient to restore at least some 

aspects of auditory system maturation. Eggermont and Ponton, 2000 [109] concluded 

later that LLAEPs are an efficient tool to describe the maturation of human central 



Chapter 2. An overview of Audiological topics 

 
 

25 

auditory system and that the maturation of this system is a function of sound 

stimulation. 

 
Figure 2.8 Development of LLAEP waveforms of normal hearing children. Between 5 and 9 

years, the morphology of LLAEPs is similar in both normal hearing children and CI users. 

From 10 years old onwards, the response of normal hearing children is similar to the adult 

morphology (P1-N1-P2 peaks) whilst the response of CI children remains dominated by a 

positive peak [108].  

 

It is not known exactly what the age limits is to restore the maturation of the 

auditory system by implantation, however Eggermont et al [45] found that in two 

children implanted older than 8 y.o., their P1 latencies were significantly longer than 

the rest of  children fitted with cochlear implants (mean deafness 4 year 5 months), 

recorded in their study. Dorman et al [41] suggest that children implanted after 7 y. o. 

show abnormal waveforms and do not develop normal P1 latencies even after years of 

implantation. These authors found that the auditory system maturation in children 

implanted before 3.5 y.o. is in the range of normal after 3-6 months post-implantation. 

Finally, these authors conclude the age of implantation is a significant factor in the 

development of oral speech and language function. They also infer that the plasticity 

of the auditory system is maximal for a period of about 3.5 years in childhood. 

 

Since, the LLAEP peaks change from electrode to electrode and from subject 

to subject, looking for a better indicator of the maturation of the auditory system in 

children with CIs, Ponton et al [106] proposed maturation tracking by dipole source 

modelling. The problem is however, when the CI is working, there is an inherent 
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artifact, that can hide partially or totally the LLAEP and achieve an erroneous source 

analysis as a consequence. 

 

Something important to highlight about the methodology used on the papers 

reviewed in this chapter is the fact that the auditory response from the CIs users is 

evoked by an electrical stimulus instead of the acoustic stimulus proposed in the next 

chapter. 

 

2.8 Summary 

 

This chapter included a review of audiological topics which are a fundamental 

part for this research. Mainly through a review of the general concepts about the EEG, 

including acquisition and common artifacts in this recording. The concepts of EPs and 

LLAEPs and an explanation of the way to evaluate the auditory system using 

LLAEPs were covered. Some general concepts about CIs were discussed too; 

including CI parts, speech processor characteristics and stimulation strategies. At the 

end of this chapter a review was given of some papers which describe the maturation 

of the auditory system after implantation.  

 

The next chapter includes the details about the acquisition of the data set used 

in this research; consisting of the multichannel LLAEPs of 10 children with CIs, as 

well as the auditory response of twenty normal hearing children as a control group. 
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Chapter 3.  

 

The experimental dataset 
 

 

 

Multichannel AEP recordings were obtained from the Audiology Laboratory 

at the Universidad Autónoma Metropolitana-Izt, Mexico City. The Ethical 

Commission of the National Institute of Respiratory Disorder, Mexico City, approved 

the protocol to record the dataset used in this research. Normal hearing children and 

children CI users had their EEGs recorded after written informed consent had been 

obtained from their parents; a written explanation about the test was handed to parents 

of the children, some days before the test. 

 

The experimental dataset consists of LLAEPs (see Chapter 2, section 2.1-2.3), 

since it is known that the multichannel recording of this auditory response is a useful 

tool for monitoring the development of the auditory system [106]. These potentials 

provide information about how the human brain processes acoustic information and 

how this processing could be modified in neurological disorders [105]. Taking this 

into account, this technique was employed as an objective method for evaluating the 

performance of children with CIs. The LLAEPs were used to evaluate how the brains 

of these children codify the stimuli generated by the CI, in accordance with the use of 

this electronic device. 

 

This chapter begins with a description of the subjects (normal hearing children 

and children with CIs) who participated in this research (Section 3.1). Section 3.2 and 

3.3 describe the test‟s recording parameters and stimulus characteristics, respectively. 

Section 3.4 shows some AEP waveforms from normal hearing children and children 

with CIs. The spectral characteristics of the CI artifact and various procedures used to 

some authors to remove this artifact are explained in Section 3.5. The last section of 

this chapter describes some AEP signal processing and analysis techniques which 

could be used to reduce the CI artifact. 
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3.1 Subjects 

 

A control group of twenty normal hearing children consisting of 13 females 

and 7 males between 3 and 14 y.o. were tested; this group was divided according to 

their age into four groups (see Table 3.1) to facilitate the comparison between their 

AEPs and the auditory response of the children with CIs. The age range for children 

younger than 7 years was one year (Group 1 and 2) that to observe the auditory 

response changes over short time periods; the younger the children, the age-related 

differences in the auditory response are more marked [105]. The age range was two 

years for children from 7 to 9 years old (Group 3) and 4 years for group 4 (these 

divisions are the accepted over the age of 8 years and among teenagers [105]); each 

group had the same number of subjects (N=5). 

 

Table 3.1 Normal hearing children were grouped according to age to facilitate comparison 

between their AEPs and the auditory responses of CI users. 

 

Group N (Male/Female) Age range (years) Mean age (years) 

1  5 (3/2) 3-4 3.2 

2 5 (1/4) 5-6 4.7 

3 5 (2/3) 7-9 7.6 

4 5 (1/4) 10-14 10.8 

  

All the normal subjects have no personal or familiar history of disease of the 

ear or neurological disorders and they were not taking prescription medication at the 

time of the test. Their pure-tone threshold levels were ≤20 dBHL for audiometric 

frequencies between 125 and 8 kHz. An otoscopy in both ears was performed before 

the test in order to discard wax or check for perforations in the eardrum, as well as for 

infection or inflammation in the ear canal. 

 

Ten profoundly bilateral deaf pre-linguistic children between 3 and 12 y.o. 

(see Table 3.2) were tested before the CI surgery and at different periods after 

implantation. The aetiologies of the hearing losses of those children are diverse; 

including rubella in the first weeks of pregnancy, ototoxic drugs and meningitis, to 

mention only a few.  
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All the deaf subjects were fitted with HAs before implantation, but they did 

not receive any benefit from them. They had a low level in the Test of Auditory 

Perception Skill [50]; this test evaluates the comprehension, verbal reasoning, mature 

ability and spontaneous language production of child candidates for implantation. 

 

The entire cohort of CI subjects, except one, are users of Cochlear Nucleus 24 

[7], using the ACE stimulation strategy (see section 2.4), a pulse width stimulus of 25 

s, and 5760 pps total stimulation rate; at the moment of each test they were using the 

control volume of their CIs set to the most comfortable level for each user. Subject 8 

is a user of Clarion 1.2 CI (16 electrodes) developed by Advanced Bionics [8]; with a 

CIS stimulation strategy and 5200 Hz signal processing resolution. 

 
Table 3.2 Ten children with CIs were recorded at different time after implantation in this 

research. M: male and F: Female; months (m) and years (y) after implantation when the 

studies were realized and the side of implantation (right or left) is indicated for each subject. 

*Subject 8 is a Clarion CI user. 

 

Subject CI implant 

side 

Study 

1 

Study 

2 

Study 

3 

Study 

4 

sex Age at 

implantation 

1 Right 5m 1y  2y 6m M 8y 3 m 

2 Left 3m 1y   F 10y 5 m 

3 Right 1y 1y 8m 5y 5m  M 7y 1 m 

4 Right 4m 8m 1y 6m  F 3y 8 m 

5 Right 1y 9m 2y 8m 5y 1m  M 4y 5 m 

6 Right 2y 5m    F 4y 2 m 

7 Right 1y 4m    F 5y 2 m 

8* Right 9m 1y 8m   F 3y 6 m 

9 Left 5m    F 4y 3 m 

10 Right 5m    M 5y 5m 
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3.2 Recording parameters 

 

The ongoing EEG was recorded with 19 electrodes connected to a Neuroscan, 

Synamps system multi-channel amplifier [1]. This software-programmable amplifier 

includes 32 channels, 16-bit A-D conversion and a real-time digital filtering using 

high-speed DSPs; each channel is equipped with 28 monopolar and 4 bipolar 

channels. The Synamps system can acquire data in discrete epochs at sample rates up 

to 20 kHz for each of 32 channels, 50 kHz for each of 8 channels, or 100 kHz per 

each of 4 channels.  

 

The EEG was sampled at 2 kHz and filtered between 0.1 and 500 Hz, + 12 

dB/octave. The analysis window consisted of a 450 ms window, including 150 ms of 

pre-stimulus data (pre-stimulus baseline longer than 100 ms are enough to average out 

residual noise [105]). 150 epochs were recorded, with 900 samples each; automatic 

artifact rejection was used if the signal exceeded ± 70 μV.  

 

An internal calibration of the Synamps system was carried out before the EEG 

recordings; using a sinusoidal signal (1 V amplitude); amplified and averaged by the 

system with the same conditions mentioned above. 

 

Medium and small Electro-Caps [6] were used as the EEG electrode 

application technique; they are made of an elasticated fabric. The silver silver-

chloride electrodes on the caps, attached to the fabric, are positioned according with 

the International 10-20 electrodes system (see section 2.1.1). The diameter of the head 

of each subject was measured to determine the proper cap size to use; two cap straps 

were fitted to the torso of the subjects to avoid movement of the cap. The electrodes 

were attached to the scalp using an electro-gel which has been specifically formulated 

for the use with these Electro-Caps [6]. 

 

A monopolar recording montage was used, the reference electrodes were the 

linked mastoids (see Figure 3.1); together with linked earlobes, these references are 

the most commonly used in AEP recordings because it is possible to pick up activity 
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from the lateral and inferior aspect of the temporal lobe; Fpz was connected to 

ground. 

 
Figure 3.1 Electrode distribution according to the standard international 10-20 system for the 

19 electrodes used in this research; Fpz is ground and M1-M2 linked is the reference. 

 

The inter electrodes impedances were checked after placing the Electro-Cap 

and just before the recordings began; generally the impedances were balanced and 

below 5 kΩ. The impedances were rechecked during the recording if a pattern that 

might be artifactual appeared in the EEG recording. 

 

Only 19 electrodes were used, as since the subjects were not under sedation it 

was considered important to reduce the testing time, and so decreasing the time to 

attach the electrodes was important (assuring balance inter electrodes impedances 5 

kΩ). Using fewer electrodes could however have an effect on any accuracy of the 

source analysis of the P1 peak later on. Nevertheless, the exact electrode positions for 

each of the subjects was digitized at the end of each test using a three-dimensional 

Fastrak 3D digitizer [2], these locations were determined relative to three landmarks 

(nasion, right and left auricula); these three landmarks were used to increase the 

accuracy of the AEP source analysis, specifically the source analysis of the positive 

peak, P1, between 50 and 150 ms after the stimulation. This is discussed later on in 

this thesis (see Chapter 9). 
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3.3 Stimulation  

 

The stimuli were generated by a software package called STIM which is part 

of the Neuroscan module [1]. The Sound Editor of this module has a dynamic range 

of 130 dB, with a programmable attenuation in 0.75 dB steps, 16 bit quality digital 

sampling, customizable digital filtering, mono or stereo processing, and a diversity of 

windowing options; for example Rectangular, Hamming and Hanning windows. 

Sounds can be synthesized as pure tones, clicks and noise; triggering is provided for 

external devices such as the Synamps system. 

 

Tone bursts were used as stimuli, with rise and decay times of 10 ms and 30 

ms plateau time (see Figure 3.2), an inter-stimuli interval of 1s was used. Three 

frequencies were selected: 500, 1000 and 2000 Hz with different audiometric intensity 

levels, 50 and 70 dBHL for children with CIs and 60 and 80 dBHL for normal hearing 

children. 

 

The stimuli were windowed with a Hanning window and calibrated using a 

Brüel & Kjær 6cm
3
 ear simulator type 4152 and a precision sound level meter type 

2234 [4]. In the case of normal children, the stimulation was binaural via TDH-39 

headphones and a speaker was used to stimulate children with cochlear implants. The 

speaker was localized one meter distant from the subject and with 0˚ azimuth. 

 

 
Figure 3.2 Tone burst with rise-decay time of 10 ms and a plateau time of 30 ms; the inter-

stimuli interval is 1 s. The frequency of this tone burst is 500 Hz; the amplitude (intensity 

level) is variable and is calibrated in dBHL. 

 

Each test session included one recording of the spontaneous EEG without 

stimulation; then each frequency and each intensity level was replicated in order to be 
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sure about the reliability of the auditory responses. The total test time was 

approximately one hour, including positioning the electrodes. The following table 

summarises the principal parameters of the recordings. 

 
Table 3.3 Summary of recording parameters; M1+M2 are left and right mastoids linked. 

 

Parameter Value Comment 

Electrode montage 19 monopolar electrodes International 10-20 system 

Low pass filter 500 Hz -12 dB/oct 

High pass filter 0.1 Hz +12 dB/oct 

Analysis window 450 ms 150 ms of pre-stimulus 

Stimulus type Tone burst 10-30-10 ms 

Intensity Level 60-80/50-70 dBHL normal subject/CI user 

Frequency stimuli 500, 1000 and 2000 Hz   

Transducer Headphone/speaker normal subject/CI user  

Number of epochs 150 900 points/epoch 

Repetition rate 1 pulse per second   

Electrode reference M1+M2   

Artifact rejection 70 V On line 

 

All measurements were carried out in an anechoic room (3.5x3.0m). During 

the recordings the children were rested in a reclining chair, in half-light and were 

asked to relax with eyes closed; their mothers remained in the room during the entire 

test. The subjects were monitored using an infrared video camera; additionally their 

mothers had access to a microphone to communicate with the researchers. 

 

Although some authors [58;105] recommend recording the auditory potential 

whilst the children are watching a video without sound, to best record the response; 

the AEP recorded in normal hearing children (see Figure 3.3) using the recording 

parameters described before does not suppress the P1 peak and it is similar to the AEP 

reported by Wunderlich, et al [132;133] in a group of children in response to pure 

tones.  
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3.4 The AEP waveforms recorded 

 

Figure 3.3 shows the average of the AEP waveforms at Cz electrode from the 

normal hearing children dataset (see Table 3.1), for Group 1, younger than 4 y.o. a 

broad positive peak with a maximum at 110 ms is recognized, in both Group 2 and 3 

the P1-N1 complex can be identified, the latency of both peaks are shorter in Group 3 

(younger than 8 y.o.) than in Group 2. Finally, the AEP waveforms of Group 4 (older 

than 10 y.o.), show a negativity followed by a positive and negative peak (N1-P1-N1 

complex), similar to the auditory response in adults. 

 

The average latency of P1 peak had a shift of 5.17 ms between Group 1 (138 

ms) and Group 2 (132.83 ms), whilst the latency of P1 (106.8 ms) in Group 3 is the 

shortest of those three groups. In group 4 a negative peak substitutes P1 peak, this 

peak had an average latency of 88.1 ms. Both the age-related latencies changes of P1 

as well as the appearance of a negative peak instead of the positive P1 peak, in older 

children, show the maturation of the auditory system in the control group; theses 

results are similar to other authors [107;108;132;133]. 

 

 
Figure 3.3 Average AEP waveforms at Cz electrode of normal hearing children for each one 

of the groups in Table 3.1. The latency of the positive peak decreases as a function of age. 

Group 4 presents a negative peak instead of the positive peak of the others groups; this is 

similar to the auditory response in adults. 
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Four recordings from children with CIs were excluded from the analysis in 

this research. The recordings from S8 (St1 and St2) were not included because, this 

subject is using a different CI, then this could introduce a bias in the interpretation of 

the results. At the time of the recording S4-St3 the subject had interrupted the use of 

her CIs for more than 6 months. Since the objective of this research is evaluate the 

changes of the AEP in accordance with the CI use, this recording is not consistent 

with the rest of the recordings where the subjects have been using without 

interruptions. During the recording S9-St1, the subject reported discomfort during the 

test; the recording has too few epochs because most of they were saturated and were 

automatically rejected  

 

Figure 3.4 shows the AEPs for four different child CI users at Cz electrode 

and at different times after implantation, (a) S3-St1, (b) S3-St2, (c) S5-St2 and (d) S5-

St1. It is possible to recognise a positive peak between 100 and 200 ms after stimuli. 

The latency of P1 is 172, 173, 150 and 124 ms in (a), (b), (c) and (d), respectively. The 

N1 peak was identified in all this recordings with latency between 200 and 300 ms. 

 

In general, the latencies of P1 peak in children with CIs are longer than in 

normal hearing children; the amplitudes are higher in implanted children than in 

normal children. 

 

Appendix A includes the entire AEP recordings for both normal hearing 

children and children with CIs, the latency and amplitude of P1 peak are included as 

well as general information about the subjects. The changes in the source analysis of 

this peak in accordance with the time using the CIs are shown later on in this thesis. 
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Figure 3.4 AEP waveforms at Cz electrode for four different children with CIs, (a) S3-St1, 

(b) S3-St2, (c) S5-St2 and (d) S5-St1. It is possible to recognize a positive peak between 100 

and 200 ms after stimuli in all the recordings as well as a negative peak between 200 and 300 

ms. 

 

3.5 Cochlear implant artifact 

 

The CI artifact in the EEG recording is the result of the coupling between the 

external and internal parts of the implant, a magnet maintains the attachment of the 

radio frequency antenna on the scalp for the digital communication between both 

parts; this artifact totally or partially obscures the AEPs, especially in the electrodes 

that are around the CI. Figure 3.5 shows 20 epochs of ongoing EEG recordings from a 

CI user where it is possible to visualize the CI artifact; the antenna is localised around 

the T4 and T6 electrodes.  
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Figure 3.5 Twenty epochs of ongoing EEG recording from a CI user, a large cochlear implant 

artifact (blue ellipses) is present around T4 and T6 electrodes where the antenna of the 

implant is located. 

 

There are different reasons why the CI artifact may appear in the AEP 

recordings, for example, the mode of stimulation of the CIs and localization of 

reference electrode of the AEP recording; Gilley et al [52] reported a greater 

incidence of the artifact in monopolar stimulation. This is not a new problem; many 

authors have already recorded this artifact previously in their AEPs recordings 

[39;102;118;130]. 

 

In AEP recordings from subjects without CIs, one strategy used to avoid the 

stimulus artifact produced by high intensity sound levels, is to utilize alternate 

polarity stimuli. However, the CI‟s speech processor does not encode the phase of the 

stimulus; because of this it is not a feasible alternative to solve the problem with CIs 

users. 

 

Conventional filtering procedures are not appropriate because the AEP and the 

CI artifact have common low frequency spectral components (see Figure 3.6). This 

figure shows the magnitude of the FFT of both the AEP (blue) and the CI artifact 
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(red); it is possible to see that the two signal share frequency components lower than 

10 HZ.  

 

Figure 3.6 Magnitude of the FFT of  both the AEP and the CI artifact, these singals have 

common low frequency components (<10 Hz).  

 

Several solutions have been proposed to try to eliminate or reduce the CI 

artifact, for example Waring et al [130] removed the first part of the auditory response 

recorded from CI users to eliminate a large stimulus artifact that was recorded; this 

alternative is not guaranteed to preserve the auditory response and to eliminate only 

the CI artifact.  

 

Another solution, proposed by Pantev at al [102] was to analyze only the 

contralateral hemisphere to the implant which is less contaminated by the artifact; the 

inconvenience of this proposal is the loss of contralateral information which is 

important to determinate hemispheric asymmetries in the response; additionally, the 

CI artifact could be spread out around all the electrodes. In a later publication Pantev 

et al [101] proposed to use a frequency-shift stimulus which produced a 10 times 

smaller artifact than the one originated by usual tone-burst stimulus, nevertheless the 
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artifact would still be present for which the authors then applied Principal Component 

Analysis to remove it. 

 

Sharma et al [119] reported that the CI artifact hides the P1 response to a 

speech syllable /ba/; they moved the reference electrode of the AEP recording, so that 

the amplitude of the artifact was minimal; nevertheless, they suggest that it is 

necessary to develop signal processing techniques to minimize this artifact. The 

following section includes a review of the principal AEP signal processing techniques 

used to analyse AEPs as well as to remove the artifacts that confound their proper 

analysis. 

3.6 AEP signal processing and analysis techniques 

 

The AEP is several times smaller than the ongoing EEG, because of that it is 

necessary to do signal processing of the EEG to extract the auditory response from the 

EEG and then to obtain the signal characteristics (amplitude, latency and waveform) 

of clinical interest. AEP signal processing and analysis techniques have been on the 

increase in biomedical signal processing over the last few decades. 

 

The principal techniques used in AEP signal processing and analysis are: 

Coherent averaging [21], Digital Adaptive Filtering [17;110], Regression Methods 

[34], Multi-resolution methods by Wavelet Transforms (WT) [19], Principal 

Components Analysis (PCA) [42] and Blind Source Separation (BSS) by Independent 

Component Analysis (ICA) [24;31;93]. Most of these techniques look for recovering 

the auditory response using the minimum number of epochs and keeping only good 

quality responses. These techniques have been used to develop procedures for 

automatic identification of the AEP peaks and to remove artifacts for the efficient 

analysis of the AEPs. The artifacts are produced by external and internal sources; 

external sources are, for example, line noise and interference from other medical 

equipments. Internal sources are caused by subject movements, muscle or cardiac 

activities and eye movements. 

 

Coherent averaging is the traditional method to recover and then analyse the 

AEP from the spontaneous EEG; this procedure consists of averaging a different 
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number of epochs or trials of EEG. The i-th EEG epoch, xi(t), in an AEP recording 

contains both the auditory response, r(t), and the background EEG ei(t) 

 

     i it t t x r e ,    3-1 

 

the coherent average estimates the auditory response as 
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Assuming that the auditory response is the same at every stimulus presented and in 

contrast the background EEG is random, the average EEG decreases in proportion to 

the square root of the number of epochs [21]. Since the amplitude of the different 

types of AEP is variable the number of epochs to achieve a distinguish response is 

different for each type. 

 

The function of a filter is to remove noise from a signal or to extract parts of 

the signal with certain frequency range. A digital filter performs numerical 

calculations to reduce noise or to enhance components of the signal. The applications 

of digital filters are diverse; one of the most common is to reduce or to remove 

artifacts. Another application of digital filters is enhancement and/or the extraction the 

characteristics of a signal of clinical interest; for example the processing of the EEG 

to extract signals as the AEP. 

 

Digital filters which self-adjust their characteristics are known as adaptive 

filters; these filters consist of two parts: a digital filter with adjustable coefficients, 

and an adaptive algorithm which modifies the coefficients of the filter. Removing of 

ocular artifacts from EEG is one of the most popular applications of adaptive filters in 

EEG [60;61]. 

 

The time-frequency characteristics of the AEPs have been analysed using 

adaptive filters; these filters adjust their transfer function according to an additive 

input signal formed by the desired signal and noise (both the desired signal and noise 

are uncorrelated). The ABR signals are usually considered in three frequency bands: a 
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low band up to 240 Hz, a medium band between 240 and 483 Hz, and a high 

frequency band above 500 Hz [18]; an adaptable filter could be used for the peak 

identification of the components at each of these frequency bands. Pratt et al [110] 

indentified the ABR peaks using a digital filter at slow and medium frequencies, with 

the medium filter the peaks I, II and V were enhanced and the slow filter was used to 

enhance the peak V. After filtering, the peak identification was performance by 

analysis of the voltage and latency of the peaks. 

 

When a digital adaptive filter is used, for example, to reduce the residual EEG 

or any other noise in the AEPs, it is necessary to choose a filter with a linear phase to 

preserve the latency of the auditory response [110]; this characteristic is one of the 

most important measures for clinical applications. A Wiener filter is an adaptive 

linear filter which reduces the amount of noise in a signal by comparison with an 

estimation of the desired noiseless signal. Two signals, yk (noise) and xk (signal and 

noise), are applied simultaneously to the Wiener filter, xk is formed by a part which is 

correlated with yk and another that is not. The output of the Wiener filter is an optimal 

estimate ŝk, of the part of xk which is correlated with yk. The filtering error, ek, is the 

difference between the estimated signal and the true signal with some delay. 

 

In the adaptive ocular artifact filtering, the adaptive filter requires four ocular 

signals, from two electrodes placed near the external cantus of each eye (to record 

horizontal movements) and two electrodes placed closely above and below both eyes 

(to record vertical movements), the Fpz electrode is used as ground; this signals 

compose the Electrooculograms, EOGs. The contaminated EEG and the EOGs are 

used to obtain an estimate of the ocular artifact; this estimate is subtracted from the 

contaminated EEG to yield the de-noised EEG. The fraction of the ocular artifact 

removed from the adaptive filter depends on the degree of correlation between the 

EOG and its components in the EEG [72]. 

 

Gharieb et al [51] proposed to use the Wiener filter together with singular 

value decomposition (SVD) to reduce the number of epochs required to recover 

evoked potentials. SVD of a dataset of signals contains information about their 

energy, the number of sources and the noise level. The authors use the Wiener filter to 
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improve the SNR of simulated data with different levels of white Gaussian noise. 

After filtering, they apply SVD to identify the desired evoked potential. 

 

Regression methods estimate and remove the portion of artifact that is present 

in the EEG using a least squares criterion; this technique has been used mainly to 

remove ocular artifacts from EEG [33;34]. A regression method calculates a 

coefficient (B) using the EOG, yi, and EEG, xi, measured voltages at time i as 

 

           yyxxyy EEEB iii / ,    3-3 

 

B calculates the proportion of EOG which is present in the EEG. B is used to correct 

the EEG using 

 i i ic B C  x x y ,     3-4 

  

cxi is the corrected EEG and C the constant from the least squares formula 

 

     yx EBEC  .    3-5 

 

This method could need more than one clean EOG channel to correct the EEG [34]; 

the use of more complex equations than Equations 3.3 and 3.4 (i.d. multiple 

regression). There are different ways to calculate B in multiple regressions, the 

correction obtained by each regression is different [33]. 

 

In multi-resolution analysis (MRA) the components of a signal are partitioned 

into frequency bands of increasingly high resolution; at the end of the analysis the 

signal is decomposed into coarse and detail components [125]. MRA is implemented 

using low and high pass filters and subsampling. This technique has been used to 

study the elements of a signal and to filter signals; unwanted components are removed 

after signal decomposition and then the filtered signal is reconstructed using the 

inverse procedure of MRA. 

 

The Wavelet Transform is a mathematical tool which provides information 

about the time, amplitude and frequency content of a signal; this is a commonly used 
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method in MRA. In WT the signal values are weighted by wavelet functions, all the 

wavelets are derived from a basic „mother‟ wave, this wave has different properties: 

oscillatory, band pass and invertible. The WT has been used in the analysis of EEG as 

well as AEPs [17;19]. Decomposing the auditory response at different scales, results 

in diverse features of the response (frequency bands) that can be analyzed. The 

principal inquiries when the WT is used are the selection of the most appropriate WT 

algorithm and the mother wavelet convenient for the analysis. 

 

PCA is another technique commonly used in signal processing, for example in 

dimensionality reduction, feature extraction, noise filtering and classification [30]. 

The aim of PCA is to obtain a small number of uncorrelated variables (principal 

components) of a signal (with zero mean), retaining as much information as possible 

from the original variables. PCA is usually implemented using SVD, finding an 

orthogonal basis for a given signal. The optimal solution for PCA is based on second 

order statistic (SOS), calculating the eigenvector and eigenvalues of the covariance 

matrix of the data. The first eigenvector gives the direction of the maximum variance 

of the signal; after the first component is extracted, the second component is extracted 

from the remaining variability, and so on until there is essentially no variance left 

[59]. PCA divides the signal into two subspaces: the signal subspace related to the 

largest components (an approximation of the noiseless signal) and the noise subspace 

associated with the minor components. PCA has demonstrated to be more efficient 

than regression methods to remove artifact such as ocular artifacts [89]. 

 

BSS by ICA is a statistical algorithm whose aim is to represent a set of mixed 

signals as a linear combination of statistically independent underlying sources or 

components [24]. Recently, ICA has been used to separate and remove artifacts in 

EEG data, such as eye movement, blinking, cardiac signals, muscle activity, and line 

noise [63;78;80;123;129]. ICA has been employed in the analysis of EEG and 

Magnetoencephalography (MEG) recorded using vibrotactile stimulus [128] and 

auditory stimulus [52;93;123] and in the detection of epileptic seizures [74-76]. The 

selection of the most appropriate signal processing techniques depends on the purpose 

of the processing and the characteristics in time and frequency of the desired AEPs. 



Chapter 3. The experimental dataset 

 
 

44 

AEP artifact removal  

 

In the case of this research problem, the application of the signal processing 

techniques have one main objective, the reduction of the CI artifact (see Figure 3.4 

and 3.5); in order to obtain a clear representation of the AEP and thus to enhance the 

accuracy source analysis of the P1 peak. The implementation of some of the 

techniques mentioned above to remove the CI artifact could have some inconvenience 

as explained in the following paragraphs. 

 

The implementation of regression methods to remove artifacts requires a good 

regression channel for each artifact source which is not usually accessible; for 

instance, Jung et al [80] indicated that regressing out muscle noise is not practical 

since signals from multiple muscle group require different reference channels. In the 

case of the CI artifact, it is not always the same for all the subjects (see Figure 3.4), 

and depend on the stimulation strategy used in each child; additionally, the effect of 

the CI artifact changes from electrode to electrode. Furthermore, it would be 

necessary to determine if it was not cancelling out information of the AEP together 

with the CI artifact. 

 

PCA can not completely separate the ocular artifacts from EEG when they 

have similar correlation [93]. Jung et al [77;79] carried out a comparison between 

ICA and PCA to remove EEG artifacts, analysing the spectrogram of the EEG with 

out the artifactual components obtained with both techniques, the authors concluded 

the ICA removed only the EOG activity produced by eye movements whilst PCA 

additionally removed a portion of the theta EEG activity; the authors suggest that ICA 

recovers more brain activity in both simulated and real EEG data than PCA. In 

general ICA better estimates biomedical signals than PCA. It is important to highlight 

that PCA is used by many ICA algorithms to reduce the dimensionality of the data 

whilst maintaining as much as possible of the variation present in the original dataset. 

 

One advantage of using ICA to remove the CI artifact instead of any other of 

the signal processing technique mentioned so far are that spectral analysis and WT are 

applied to AEP averages whilst ICA is applied to ongoing EEG making it possible to 
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reduce the number of epochs needed in the analysis and hence allowing a reduction in 

the overall recording time. 

 

The amount of data that ICA needs for reliable decomposition of a signal 

depends on the number of channels. Since ICA is a statistical method, a large number 

of data points can improve the decomposition; however there is a compromise 

between the number of data points and the stationarity of the signal. Delorme and 

Makeig [40;79] recommended a number of points at least a few times the square of 

the number of channels (n) to obtain n stable decompositions; with the resolution of 

our data, 900 points per epoch, 50 epochs assures this criterion. 

 

Furthermore, most of the signals processing techniques mentioned before 

remove only one type of artifact whilst ICA recovers components for each one of the 

artifact of the EEG as well as the auditory response. The use of ICA not only removes 

the AEP artifacts, including the CI artifact, but also recovers the auditory response, in 

order to objectively evaluate the performance of child CI user. This is what is 

proposed in this research. 

 

3.7 Summary 

 

This chapter included the specifications for the dataset recordings used in this 

research. Also, the recordings of the AEPs for groups of both normal hearing children 

and from children with implants were shown. The principal signal processing 

techniques used in the AEP analysis were reviewed and the use of ICA to remove the 

CI artifact and isolate the AEPs over any of the other of the techniques mentioned was 

proposed. 

 

The next chapter includes an overview of the statistical topics necessary to 

understand the techniques of BSS by ICA used in the pre-processing step of the 

dataset before the AEPs source analysis stage. Moreover, this next chapter covers the 

theory of BSS by ICA in general and the principal differences between three of the 

more popular ICA algorithms (FastICA, Infomax and TDSEP-ICA) in particular. 
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Chapter 4. 

Blind Source Separation and 

Independent Component Analysis 

 

 

 

Blind Source Separation (BSS) is one of the many statistical techniques used 

in the pre-processing of biomedical signals. The recording of biomedical signals is 

essential to understand the function of physiological systems. However, these signals 

are easily distorted by noise and interference [30]. Because of this, a pre-processing 

step is fundamental to improve the signal quality and make easy the analysis for 

prognostic and diagnostic proposes. Recently, BSS by Independent Component 

Analysis (ICA) has been used to recover different biomedical signals, for example the 

components of Evoked Potentials, Electrocardiac and muscular signals [22;123;128], 

as well as to remove the classical artifacts of EEG, such as blinking, line-noise and 

other background noise [78;129]. 

 

As mentioned in Chapter 3, ICA is used here primarily to remove the CI 

artifact. This chapter will present some discussion on why the ICA algorithm is more 

convenient to remove this artifact from the EEG. The next chapter then assesses three 

popular ICA algorithms for AEP component estimates, as well as establishing the 

criteria for selection of their optimal parameters to reduce the CI artifact. Before that, 

it is useful to first define some statistical concepts used by ICA and provide some 

details about the three ICA algorithms assessed. 

 

This chapter is divided into three parts; the first reviews some of the statistical 

concepts used in the theory of BBS and ICA, the second includes an explanation of 

the ICA technique, including the principal assumptions that are made on applying this 
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procedure, and finally, three ICA algorithms are listed which were used to extract the 

AEPs and the CI artifacts from the dataset used in this research. 

4.1 Statistical concepts for BSS and ICA 

 

BSS is a statistical technique which works on recovering a set of unobserved 

signals from sensors that are linear mixtures of unknown independent sources [24]. 

This technique is known as “blind” because: 1) the source signals are not observed 

and 2) only general information is available about the mixture. 

 

The statement that different sensors receive different mixtures of the sources is 

exploited by BSS; that is spatial diversity. Spatial diversity means that BSS looks for 

structures across the sensors and not (necessarily) across time. BSS identifies the 

probability distribution of the measurements, given a sample distribution. The 

principal statistical concepts used by BSS and ICA are briefly explained in the 

following paragraphs. 

 

All the characteristics of a random variable X are defined by its probability 

density function (pdf). The pdf is a function that assigns a probability density to each 

value of the random variable. A probability distribution has a density such that the 

probability in the interval [a, b] is given by 

 
b

a
X dXXP .     4-1 

 

The joint probability density function of X and Y is the distribution of the 

intersection of both random variables; the joint probability of X and Y is written as 

 , ,X YP X Y .     4-2 

 

Independence: if we consider two random variables, for example X and Y, 

independence intuitively means that information on the value of X does not give us 

any information on the value of Y. More formally, independence is defined by the 

probability densities; X and Y are independent if and only if their joint pdf is equal to 

the product of their individual pdfs, that is 

 



}Chapter 4. Blind Source Separation and Independent Component Analysis 

 
 

48 

     , ,X Y X YP X Y P X P Y .    4-3 

 

The pdf of n independent signals is shown by 
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Random variables are independent and identically-distributed (iid) if each one 

has the same probability distribution as the others and all are mutually independent. 

 

In order to solve the source separation problem it is necessary to identify the 

probability distribution of the data and to calculate a separating matrix (also called the 

de-mixing matrix, W), proposing a statistical model with two components: a mixing 

matrix (A) and the probability distribution of the data. A is a full rank matrix; it is 

square, invertible and its columns are assumed to be linearly independent. 

 

The simplest BSS model using a vector notation is given by  

 

=x As ,     4-5 

 

where s is the vector of source signals (n is the number of sources) and x is the vector 

of measured signals (m is the number of sensors). This is a multiplicative model 

where the measured signals are the product of the mixing matrix A by the sources 

[25]. 

 

Sometimes it is more convenient to express the model in Equation 4.5 as a 

sum, j

ia  is the j-th element of the i-th column of the A matrix, then using a column 

notation the model is written as  
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


n
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i

j
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1,

.    4-6 

 

Where si is the i-th element of vector s. This is an additive model where the measured 

signals are a sum of the products of the columns of the mixing matrix by the sources 

[23]. 
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A variety of ICA algorithms have been suggested in the literature, each one of 

these algorithms proposes a contrast function, which is a real function of the 

probability distribution of the data. The maximum likelihood estimation is a popular 

statistical method used for fitting a model to some data; therefore, it is used to find the 

contrast functions. Contrast functions can be defined using higher order statistics, for 

example the kurtosis. 

 

Kurtosis: measures the relative peakedness or flatness of a pdf, a distribution 

with a positive kurtosis is named leptokurtic (super-Gaussian); a distribution with a 

negative kurtosis is named platykurtic (sub-Gaussian). Kurtosis, kurt, is defined as  

 

4

4

{ }
3

E X X
kurt


 


,    4-7 

 

where  is the standard deviation of the random variable X; the constant term -3 

makes the value zero for a normal distribution. High kurtosis value means more of the 

variance is due to infrequent extreme deviations. 

 

Sources such as the AEPs and artifacts in EEG recordings have a positive 

kurtosis, and spontaneous brain activity (for example alpha waves) and power 

interference have a negative kurtosis value [22]. One restriction in some ICA 

algorithms is that sources must be non-Gaussian and that non-Gaussianity is measured 

by kurtosis. 

 

Decorrelation of the source signals can be used to simplify the BSS problem 

(called whitening or sphering as a pre-processing step). This step, based only on 

second order statistic, eliminates redundancy or reduces noise in the data [30]. A 

whitening matrix M is chosen so that the covariance matrix of the source signals 

becomes the unit matrix; in whitening, measured signals are pre-processed using the 

following whitening transformation 

  ( )w t t Mx x .    4-8 
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The whitened signals are mutually uncorrelated and have unit variance, i.e. 

 

    T T T

w wx x xxE t t  R M M MR M Ix x .  4-9 

 

Whitening reduces the mixture to a rotation matrix Q, because it relates two spatially 

white signals s(t) and xw(t) [24]. Then, the de-mixing matrix can be calculated as the 

product of the whitening matrix and the rotation matrix  

 

=W QM .     4-10 

The de-mixing matrix restores the maximal peakedness of the sources; the possible 

approaches to source separation restore the mutual independence of the signals. 

Hence, the estimation of the sources can be found by 

 

 ˆ ( )t t Ws x  .    4-11 

 

Some BBS algorithms utilize concepts originating from information theory 

such as entropy, negentropy and mutual information. The different algorithms use 

these statistical concepts as a quantitative measure of non-Gaussianity of a random 

variable; BSS can be solved for example, by minimising the mutual information 

between two variables. 

 

Entropy: is a measure of the uncertainty associated with a random variable. 

Entropy has to do with how much randomness there is in a signal or random event, in 

others words how much information is carried by the signal. 

 

If we consider a random variable X with a probability density function PX(X), 

the entropy of this variable is defined by 

 

      



 dXPXPXPEXH XXx loglog .  4-12 

Since the entropy of the mixing matrix tends to increase, then the separated 

source signals should have minimum entropy. A Gaussian variable has the largest 

entropy among all random variables with the same variance. 
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Negentropy: is a statistical measure of „distance‟ from Gaussianity of the 

random variable X and is defined as 

   
 
  dX
XP

XP
XPXJ

GX

X
X log ,   4-13 

where ( )
GXP X  is the probability density of a Gaussian variable with the same mean 

and variance as PX(X); negentropy is always nonnegative and is zero if and only if the 

probability distributions are identical. 

 

Mutual information: (MI) is a measurement of the independence of two 

variables. Two random variables (X and Y) are independent when they have a low MI 

value; on the contrary, if the MI is high this means that the variables are dependent. 

Only if MI is zero can X and Y be strictly independent; the MI is always non-negative 

[87]. The MI between two random variables is defined as 

 

   
 

    dXdY
YPXP

YXP
YXPYXI

YX

YX

YX

,
log,,

,

, ,  4-14 

 

where PX(X) and PY(Y) are the individual pdf of X and Y respectively and PX,Y(X, Y) is 

the joint pdf of X and Y.  

 

The joint entropy of two random variables is defined as 

 

     ( , ) ,H X Y H X H Y I X Y   .  4-15 

 

Through maximizing the individual entropies, H(X) and H(Y), and minimizing the MI 

I(X, Y) between the two signals, it is possible to maximize the joint entropy (see 

Equation 4.15); that is a simple algorithm for BSS. An advantage of MI, over other 

techniques, to measure independence is that the whole dependence structure of the 

variable is being taken into account and not only the covariance, as is the case in 

PCA.  

Principal Component Analysis (PCA): is a statistical technique used to 

decompose data into orthogonal components, PCA is generally implemented using 

SVD; after the first component is extracted, the second component is extracted from 
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the remaining variability, and so on until there is essentially no variance left. The 

resulting components are uncorrelated with each other (first order decorrelation) [59]. 

PCA computes the eigenvectors and eigenvalues for an estimated covariance matrix; 

the covariance matrix is the correlation matrix of the vector with the mean removed, i. 

e. 

 

 T Tˆ ( ) ( )xx E t t R V Vx x  ,   4-16 

 

where  is a diagonal matrix, containing the eigenvalues, and V is the corresponding 

orthogonal or unitary matrix consisting of the unit length eigenvectors. Next, the 

measured signal is projected in the estimated signal subspace and then rescaled such 

that each component has unit variance 

 

T( ) ( )w t t Vx x .    4-17 

 

PCA allows one to decompose mixed signals into two subspaces: the signal subspace 

corresponding to the principal components associated with the largest eigenvalues, 

and the noise subspace corresponding to minor components associated with the 

smallest eigenvalues. 

 

The principal applications of PCA are: data compression, feature extraction, 

noise filtering and classification [30]. Although it has been argued that PCA may not 

be the most appropriate method to estimate the components of physiological data, it is 

used to pre-whiten the data set (see Equation 4.8), reducing the redundancy of the data 

and estimating the number of mutually independent components to be found by other 

techniques. 

 

Resampling: Some authors propose using resampling techniques to evaluate 

the reliability of the BSS-ICA algorithms. Resampling is a statistical method to 

estimate, for example, the mean and the variance of a complete population by using 

subsets of the available data. The idea is resample the data and calculate the mean of 

this resample data to obtain the first bootstrap mean, the procedure is repeated to 

obtain the second resample data and compute the second bootstrap mean, in order to 
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have B bootstrap means.  This represents an empirical bootstrap distribution of 

sample mean.  

 

Bootstrap is a resampling technique used in data analysis; writing the 

measured signal as the vector x(t)=[x1(t), x2(t),…, xm(t)]
T
 the aim of bootstrapping is 

to estimate some parameters of the complete population X, such as its mean and 

variance [94];  the principal assumption is that the measuring signal is a good 

representation of the complete population. Then, B new bootstrap samples 

 * * * *( ) , ,...,b b b b

1 2 mt x x xx  with l size, are generated with b=1, 2, …, B, by taking m iid 

random variables from the empirical distribution F . The estimator  * *ˆ ˆ ( )b b

i i t  x  is 

calculated for each bootstrap sample x(t)
*b

 [43]. Complete knowledge about the 

population is obtained from an empirical distribution function such as 

 

   ,
1

1
( )

n

ix
i

F x I x
n




  .   4-18 

 

A random variable from F takes values xi with equal probabilities 1/n. I is the 

so-called indicator random variable which is defined to be equal to 0 for xi < x1, and 

equal  to 1 for xi xn. More advanced applications of the bootstrap involve estimating 

various measures of error, for example the bias of an estimator. The bootstrap 

estimate of the standard error of b

i

*̂ is calculate as 

 

 



B

i

b

iiB
B

SE
1

2*ˆˆ1
    4-19 

 

4.2 Independent Component Analysis 

 

ICA algorithms aim to decompose a set of mixed measurements as a linear 

combination of statistically independent underlying sources or components [31].  

In the most simplistic formulation of the ICA problem, the (noise free) 

measured signals x(t)=[x1(t), x2(t),…, xm(t)]
 T

, are a linear mixture of unknown but 

statistically independent sources s(t)=[s1(t), s2(t),…, sn(t)]
 T

, i.e. x(t)=As(t). The 
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square mixing matrix A is also unknown but invertible. ICA calculates the de-mixing 

matrix, W=A
-1

, from the observations x(t) and estimates the original sources as 

ŝ(t)=Wx(t). 

 

ICA is different from popular methods such as PCA, in that ICA not only 

decorrelates the signals (2
nd

 order statistics) but also reduces higher order statistical 

dependencies; making the signals as independent as possible. The principal difference 

between PCA and ICA is that in ICA the components are not necessary geometrically 

orthogonal but are statistically independent; the independence is much stronger than 

simply uncorrelatedness. 

 

The different ICA algorithms in the literature have various statements about 

the sources, channels and noise or artifacts. Some of the principal assumptions made 

on applying ICA to a measured signal such as EEG include: 

 

i) The measured signals x(t) are a result of a linear mixing of different 

sources; volume conduction in the brain result in linear and 

instantaneous mixing, then EEG recordings at the electrodes are 

assumed to be a linear mixture of the underlying brain sources (AEP, 

alpha, beta activities, etc) and the artifact signals (blinking, muscle 

noise, CI artifact, etc). ICA assumes that different physical process 

tend to generate different statistically independent signals [9]. 

ii) Another restriction in standard ICA is that the number of underlying 

sources is usually less than or equal to the number of measurements 

( n m ). The dataset used in this research includes the recordings 

from 19 electrodes; the numbers of stable estimations expected are 

variable across subjects, but in general they could be one or two 

sources related to the auditory response, two to three linked to the CI 

artifact and one or two other artifacts such as blinking and line noise; 

then n will be a maximum of about 6-7 independent sources. 

iii) The sources are non-Gaussian and the measured signal is stationary 

(over the short epoch measured). The CI artifact happens at the same 

time in each EEG epoch and is time-locked with the stimuli, 

therefore are considered stationary and with a non-Gaussian pdf 
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[52]. Furthermore, the ICA sources can be estimated but with certain 

indeterminacies; for example arbitrary scaling and permutation [25]. 

 

Figure 4.1 outlines the ICA algorithm including all the parts mentioned in this 

section. The electrical activity produced by different brain sources is recorded using 

the EEG; the EEG is a linear mixture of those sources and artifacts. Although the AEP 

and CI are temporally correlated they are spatially independent signals; since the CI 

artifact is generated by the array of electrodes and not by a brain source [52]. Using 

the EEG, ICA calculates the mixing matrix A which depends on the conductivity 

characteristics of the brain and where the electrodes are placed; the de-mixing matrix 

used to estimate the sources is W=A
-1

. 

 

Finally, ICA indicates what parts of the scalp are most responsible for the 

activity (auditory in our case) by interpolated topographic maps of the ICs. The 

columns of W
-1

, give the relative projection strengths of the respective components 

onto each of the scalp electrodes [40]. These topographic maps indicate the 

physiological origin of the estimated sources; for example: eye blinking, EP, muscle 

activity, etc. 

 
Figure 4.1 The EEG is used to calculate an estimate of the statistically independent brain 

sources; the CI artifact does not have a neurological origin, such as the brain sources do, then 

ICA can be applied in this case. ICA calculates the de-mixing matrix W used to estimate the 

sources; the spatial projections of the estimated sources are useful to identify the part of the 

scalp responsible for each estimate. 

 

In the first stage of this research both the waveforms of the estimated sources 

and their spatial projections were used to identify the estimates related to the AEPs 

and the CI artifact. 
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4.3 ICA algorithms 

 

Although a considerable amount of literature has been published on ICA 

algorithms, three algorithms can be classed as the most popular: JADE, FastICA and 

Infomax [16;26;71]. These algorithms have been modified, improved or extended by 

different authors; for example 30 ICA algorithms are included in the Matlab toolbox 

implemented by the group of Cichocki (ICALAB) [29]. 

 

One possible classification criterion of the different ICA algorithms could be 

the means of assessing independence used for each method and the assumptions made 

about the sources and the noise. 

 

If only the second order statistics of the data are used, the algorithm is called 

Second order statistic (SOS) ICA, it is called high order statistics (HOS) ICA 

otherwise. Some general differences between the SOS and HOS are: in SOS methods 

the principal assumption is that the sources have some temporal structure, whilst the 

HOS methods minimize the mutual information between the source estimates. The 

HOS methods cannot be applied to Gaussian signals; as the method does not allocate 

more than one Gaussian source. Additionally, the SOS methods do not permit the 

separation of sources with identical power spectra shape, independent and identically 

distributed sources [30]. Two HOS ICA methods were assessed in this research 

FastICA [71] and Infomax [16] and one SOS ICA algorithm, a modification of JADE 

[26], called TDSEP-ICA [135]. 

 

The theory behind the three ICA algorithms is explained in the following. 

Most of the ICA algorithms have two common steps in their implementation: 

 

i) Centring: subtract the mean of the mixed signal, which simplifies the ICA 

algorithm;  E x x x , where  E x is the mean vector of the 

measurements; when the algorithm is finished the mean vector is added. 

ii) Whitening: Find the whitening matrix (see whitening and PCA in section 

4.1). The covariance matrix is calculated as  T( ) ( )xx E t tR x x , an eigen-

value decomposition (EVD) is performed on it; the decomposition is given 
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by TR E E
 
where E is the orthonormal matrix of eigen-vectors of R, 

and  is the diagonal matrix of eigen-values. Transforming the covariance 

matrix into an identity matrix, the whitening M matrix is calculated as 

 

 
1

1/ 2 T


M E=  .    4-20 

4.3.1 FastICA  

 

FastICA, is a fast fixed-point iteration algorithm. As proposed by Hyvärinen 

and Oja [69-71] it calculates the required independent sources employing HOS. The 

algorithm is based on a fixed-point iteration scheme, the negentropy of the mixture is 

minimized such that uncorrelated and independent sources with as non-Gaussian 

distributions as possible are obtained. This approach makes the algorithm 

convergence faster than other ICA algorithms. 

 

The authors introduce the following approximation of the negentropy [68] 

 

       
2

1

p

i i i

i

J y C E G y E G v


    ,  4-21 

 

where Ci is a positive constant, v is a Gaussian variable with zero mean and unit 

variance, the variable y is assumed to be of zero mean and unit variance, and G (.) is a 

non-linear function; p is the number of functions used in the approximation of the 

negentropy. In the case where only one non-linear function is used, the approximation 

becomes 

       
2

J y E G y E G v    .   4-22 

 

The selection of G (.) depends on the problem; a comparison of the use of the 

following three functions, in AEP recordings from both normal hearing children and 

children with CI, is show later on in section 5.1 

 

(a)   3

1G y y  .    4-23 
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(b)    2 1tanhG y a y .   4-24 

(c)  
2

3 2exp
2

y
G y y a

 
  

 
.   4-25 

 

The default value for a1 and a2 is 1. After choosing an initial weight vector w, the 

algorithm calculates the direction of w maximising the non-Gaussianity of the 

projection w
T
x (linear combination of the measured signals). Since the signal is 

already whitened, to make the variance of w
T
x unity it is sufficient to constrain the 

norm of the pseudo-inverse of the initial weight vector w
+
, to be unity,  w w w ; 

if the old and new values of w do not point in the same direction, the algorithm 

recalculates the direction of w. Finally, the de-mixing matrix is given by 

T
W w M= and the estimations by ŝ Wx= . 

 

4.3.2 Infomax (Information maximization) 

 

Infomax, described by Bell and Sejnowski [16], is an ICA algorithm which 

finds independent signals by maximizing the joint entropy H(y) (see Equation 4.13) of 

the outputs of a neural network, minimizing the MI among the output components. 

Infomax includes a linear pre-processing of the input data, xG=Gx called sphering, 

where G=(E{xx
T
})

-1/2
 is a non orthogonal symmetrical decorrelator [91]. The de-

mixing matrix W, is found using stochastic gradient ascent, maximizes the entropy of 

the input vector xG, linearly transformed u=WxG and sigmoidally compressed y=g(u). 

Then W performs component separation whilst the nonlinearity g(.) provides the 

necessary HOS information, g(ui)=(1+exp(-ui))
-1

. This gives an update 

rule ˆ 1 2i i u u . Infomax is able to decompose signals into independent components 

with sub and super-Gaussian distributions. The original learning rule for super-

Gaussian distributions is 

 

  T Ttanh     W I u u uu W  ,   4-26 
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where I is the identity matrix, and u are the estimated sources. The extended learning 

rule (Ext-Infomax) [91], for sub-Gaussian distributions is 

 

  T Ttanh     W I u u uu W  .  4-27 

The algorithm switches between two learning rules: one for sub-Gaussian and one for 

super-Gaussian sources.  is a diagonal matrix which includes the switching criterion 

between the two learning rules  

1 super - Gaussian

1 sub-Gaussian
ii


 


 .     4-28  

 

The estimated sources are computed as 

 

1ˆ s W y .     4-29 

4.3.3 Temporal Decorrelation Source Separation ICA (TDSEP-ICA)  

 

The standard algorithm of FastICA has been extended by Ziehe and Müller, 

Temporal Decorrelation Source Separation ICA (TDSEP-ICA) [135] includes the 

temporal structures of signals such as the EEG (this algorithm contains 

diagonalization as used in JADE [26]). The use of HOS is substituted by the use of 

several time-delayed second-order correlation matrices for source separation. JADE 

and TDSEP-ICA determinate the mixing matrix based on a joint approximate 

diagonalization of symmetric matrices; the principal difference between these two 

algorithms is that JADE maximizes the kurtosis of the signals whilst TDSEP-ICA 

minimizes temporal cross correlation between the signals. Instead of using JADE in 

this assessment, TDSEP-ICA was included, since this algorithm was used before on 

biomedical signals and more reliable estimates were obtained, than using JADE [94]. 

 

TDSEP-ICA could be summarized as follows: firstly, Ziehe and Müller [135] 

define the following cost function that measure the correlation between the signals 

x(t) 

        
  


ji

N

k ji

kjijiij txtxtxtxR
1

22

 ,   4-30 
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where . denotes a time average. After whitening, the first term in the cost function 

becomes zero; this equation imposes decorrelation over time. After that, they propose 

an alternative technique for the joint diagonalization using a rotation [94]. In the 

rotation step, the cost function can be minimized by approximate simultaneous 

diagonalization of several correlation matrices through several elementary JACOBI 

rotations [25], this to obtain the rotation matrix Q. 

 

The TDSEP-ICA algorithm computes those matrices relying only on SOS and 

diagonalizes the covariance matrices     T

0 E t tR x x for a time lag τ = 0 and at the 

same time diagonalizes the covariance matrix for a given 

delay     T
E t t  R x x . The source covariance matrix 

s
R is diagonal for all 

time lags τ = 0, 1, 2…, N-1  

 

T

 s x
R WR W ,    4-31 

 

where 

x
R  is the signal covariance matrix. This algorithm determines the mixing 

matrix based on a joint approximate digitalization of symmetric matrices. Finally, 

using the whitening matrix M and the rotation matrix Q, an estimate of the mixing 

matrix can be calculated as 1ˆ A M Q ; the estimations are given by
-1ˆˆ =s A x . An 

advantage of TDSEP-ICA over other ICA algorithms is that it can separate signals 

whose distributions are Gaussian. 

4.4 Summary 

 

Common statistical concepts used in BSS and ICA were explained in this 

chapter. The general concepts and assumptions used in ICA, as well as the particular 

theory of three ICA algorithms (FastICA, Infomax and TDSEP-ICA) were described. 

Part of the aim of this research was to determine which of the algorithms described in 

this chapter is more convenient to recover the auditory response by isolating the CI 

artifact from the dataset used here. The results of these comparisons are included in 

the next chapter. Furthermore, the criteria to select the optimal parameters for each 

one of the algorithms are explained too. 
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Chapter 5. 

ICA parameter selection for robust AEP 

component estimates 

 

 

 

AEP recordings have been used to evaluate the performance of ICA 

algorithms in the literature. Different authors [78, 79, 129] have demonstrated that 

this procedure can remove the typical EEG artifacts i.e. blinking, muscle noise, line 

noise etc; the CI artifact included. However, there are few studies about the selection 

of the optimal parameters for estimating the AEP components, to reliably recover 

both the auditory response and the specific artifact generated by the normal 

functioning of a CI. 

 

In this part of the research the optimal parameters of three ICA algorithms, 

FastICA, Infomax and TDSEP-ICA for robust AEP component estimating were 

determined (the theory behind of each algorithm was explained in Section 4.3). A 

total of 35 EEG recordings, from normal hearing children (20 recordings) and 

children with CIs (15 recordings), were used in this part of the research. This chapter 

is divided into two sections, Section 5.1 includes both the procedures and criteria used 

for the selection of the parameters of those ICA algorithms. Section 5.2 shows the 

waveforms and topographic maps of the most robust ICs recovered by FastICA, 

Infomax and TDSEP-ICA. 

 

All the results shown in this and the following chapters correspond to auditory 

stimuli of 1000 Hz at 70 dBHL for normal children and 80 dBHL for children with CIs. 

The analysis was repeated over many different numbers of epochs, from the original 

number (150 epochs) to 50. Results analyzed over 75 epochs and using an ICA 
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algorithm with spatial constraints were reported in James and Castañeda-Villa [73]; 

results with 50 epochs are shown in the rest of this document.  

5.1 Selection of optimal ICA algorithm parameters 

 

Many authors have proposed diverse methods to validate each of their ICA 

algorithms [64;65;79;91;94]; either analyzing algorithmic stability or reducing the 

variability of the estimated components. The procedures proposed by the authors, of 

each one of the algorithms used in this research, were applied to select the model 

parameters more convenient for robust AEP and CI artifact estimation. 

 

This section is focused on examining the differences between the estimates of 

the AEP and the CI artifact, obtained first by FastICA using three non-linear 

functions, which this algorithm uses to measure the negentropy of the sources, as well 

as two orthogonalization approaches (symmetric and deflationary). In the case of 

Infomax the estimates recovered by the standard Infomax and Ext-Infomax are 

compared using the kurtosis values and the pdfs of the estimated components. Finally, 

the effect of different time delays on the AEP component estimates using TDSEP-ICA 

was evaluated in this section too. 

5.1.1 FastICA non-linearity function and orthogonalization approach selection 

 

Himberg et al proposed a procedure, known as ICASSO [64;65], to investigate 

the algorithmic and statistical reliability of the ICs recovered by FastICA, by running 

this algorithm many times for three different initial conditions: 

1. Random initial conditions (to evaluate the algorithmic reliability), 

2. The same initial condition but the data are bootstrapped every time (to 

evaluate the statistical reliability), 

3. Random initial conditions and the data are bootstrapped every time (see 

section 4.1), to evaluate both the algorithmic and the statistical reliability. 

 

The estimated components are clustered according to their mutual similarities 

(the criterion applied by the authors is agglomerative clustering with average-linkage) 

and visualized as a 2-D plot; finally, the cluster quality (stability) index, Iq (see 
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Equation 5.1), is calculated to evaluate the robustness of the estimated clusters. A 

measurement of the similarity between the estimates is the absolute value of their 

mutual correlation coefficients rij, i,j=1, 2,…,K; the final similarity matrix has the 

elements ij defined by ij=| rij | 

 

  2
,

1 1
int

m m mint int extint ext
int

q m ij ij

i j C i C j Cm mm

I C
C CC   

       .  5-1 

 

If Cm denotes the set of indices of all the estimates, 
intmC the set of indices that belong 

in the m-th cluster and 
intmC  the size of the m-th cluster, then Iq is computed as the 

difference between the average intra-cluster similarities and the average extra-cluster 

similarities; 
extmC  is the set of indices that do not belong to the m-th cluster. 

 

The cluster quality index gives a rank of the corresponding IC clusters 

estimated. The ideal value of Iq is 1; the smaller the value, the less stable, compact 

and isolated, the estimated cluster is. In the best case of dataset dimensions 19, the 

estimates are concentrated into 19 compact and close to orthogonal clusters. 

 

To determine the best parameters of FastICA to estimate the AEP components 

from the dataset recordings used in the research, ICASSO was run using the initial 

condition (3) mentioned before, in that manner both the algorithmic and statistical 

reliability of FastICA were assessed. The two orthogonalization approaches proposed 

by this algorithm, deflationary and symmetric were compared too. In the deflationary 

condition, the ICs are found one at time; whilst in the symmetric approach all the ICs 

are estimated at the same time. In addition, the three non-linear functions mentioned 

in section 4.3.1 for FastICA were compared. 

 

Table 5.1 summarizes the six different test conditions assessed for FastICA, 

used in both EEG recordings from normal hearing children and children with CIs. For 

each condition ICASSO run FastICA 10 times (with a maximal number of iterations 

equal to 100) and the number of estimate clusters is equal to the data dimension, 19. 

ICASSO returns a plot of the quality index Iq for each estimate cluster, with the 
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clusters ranked according with the index values. As mentioned before, the ideal case 

is when the Iq values to all the estimate clusters are close to 1. 

 

Table 5.1 The estimated components using six different test conditions for FastICA where 

compared in this research. The non-linear functions G (see Equations 4.22-4.24) are used to 

measure the negentropy of the sources. In the deflationary approach, the sources are estimated 

one at time and in the symmetric approach, all estimates are calculated at the same time. 

 

Condition Function Approach 

C1 G1(y) Deflationary 

C2 G2(y) Deflationary 

C3 G3(y) Deflationary 

C4 G1(y) Symmetric 

C5 G2(y) Symmetric 

C6 G3(y) Symmetric 

 

The criteria to select the optimal parameters, non-linear function and 

orthogonalization approximation, for FastICA are: 

 

1. The test condition for the maximum number of estimate clusters with Iq values 

between 0.9 and 1. 

2. Identify the largest number of estimates with physical or physiological 

meaning (AEP, CI artifact and/or noise) ranked first according to the Iq index. 

The ICs were identified using both the waveform and the topographic maps of 

the ICs at the centre of the estimated clusters. 

3. The largest numbers of clusters with more than one estimate (the ideal would 

be 19). 

 

Table 5.2 and Table 5.3 (recordings from normal hearing children and children 

with CIs, respectively) include the number of estimate clusters for each of the test 

conditions in Table 5.1, with Iq index values higher than 0.9, for the total dataset. The 

red numbers indicate the condition (for each recording), which satisfied the three 

criteria for the FastICA parameters selection above listed. When ICASSO was unable 

to complete the procedure, because FastICA did not converge in 100 iterations after 6 

attempts, the cells are empty.  
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Table 5.2 Number of estimate clusters with Iq index between 0.9 and 1 (recordings 

from normal hearing children) for the six conditions listed in Table 5.1. Red numbers 

indicate the test condition, which satisfied the three criteria used to select the FastICA 

parameters. 

 

Recording C1 C2 C3 C4 C5 C6 

ad 9 10 8 12 11 6 

al 7 7 3 12 7 4 

an 11 3 0 10 5 4 

ax 10 12 7 9 10 5 

bf 7 8 7 18 8 5 

cc 7 6 6 4 9 4 

dt 10 7 9 15 13 1 

edg 10 6 5 10 4 2 

fc 5 12 9 19 9 7 

iv 7 11 3 12 4 4 

jg 12 19 3 - 13 8 

kc 3 3 2 6 1 1 

mar2 0 2 1 10 2 2 

mp 4 4 4 13 3 3 

nan 18 0 6 19 18 7 

st 4 4 2 17 3 2 

of 13 5 - 19 5 6 

pf 7 11 3 12 4 4 

ug 7 6 10 16 10 6 

xal 10 8 2 11 8 6 
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Table 5.3 Number of estimate clusters with Iq index higher than 0.9 (recordings from children 

with CIs). Red numbers indicate the test condition that satisfied the three criteria used for 

selecting the FastICA parameters. 

 

Recording C1 C2 C3 C4 C5 C6 

S1-St1 15 6 6 11 7 2 

S1-St2 8 7 5 14 10 2 

S1-St3 8 6 3 13 3 2 

S2-St1 7 7 5 7 7 4 

S2-St2 8 9 7 10 7 8 

S3-St1 3 1 3 4 5 2 

S3-St2 6 9 2 15 6 4 

S3-St3 9 8 15 12 9 5 

S4-St1 9 8 2 14 10 3 

S4-St2 16 7 6 14 16 5 

S5-St1 8 14 9 10 8 12 

S5-St2 6 8 4 16 8 7 

S5-St3 6 12 5 10 6 5 

S6-St1 13 5 4 18 7 2 

S7-St1 7 - 3 14 4 3 

 

In general, the performance of condition 4 is better than any other condition 

(in normal hearing children). This condition achieved 19 estimated clusters in three 

different recordings (fc, nan and of see Table 5.2) with Iq index values higher than 0.9 

in two recordings. In 14 of 20 recordings from normal hearing children analyzed, the 

highest number of stable and isolated estimated clusters were obtained using the non-

linear function G1(y); moreover, reliable estimates were achieved using this function 

together with a symmetric orthogonalization approach (test condition 4, Table 5.1). A 

deflationary orthogonalization approach achieved zero estimated clusters with 

stability indexes between 0.9 and 1 in three recordings (see an, mar2 and nan in 

Table 5.2). 

 

In 10 of 15 recordings from children with CIs, the highest number of robust 

and isolated estimated clusters were obtained using the non-linear function G1(y); as 

in the case of normal hearing children, more reliable estimates were achieved using 
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this function simultaneously with a symmetric approach (test condition 4). In two 

recordings, S5-St1 and S5-St3 (see Table 5.3), more stable estimated clusters were 

achieved by condition 2 (non-linear function G2(y) and a deflationary approach), but 

it was not possible to recognize the AEP in those clusters. This condition also 

achieved the highest number of clusters with only one estimate. 

 

In the following figures selected Iq stability index graphs are shown, in order 

to illustrate the performance of the conditions tested in this section. In the case of 

normal hearing children some graphs obtained with condition C4 are shown; this 

condition achieved the highest number of clusters with Iq index values between 0.9 

and 1. In the case of children with CIs, Iq index graphs were selected in order to 

illustrate the comparison between the conditions with the best and the worst 

performance (condition 4 and 2, respectively), in terms of robust and isolated 

estimated clusters in most of the recordings analysed. 

 

Figure 5.1 shows the stability Iq index for the 19 estimated clusters using 

FastICA with the non-linear function G1(y) and a symmetric orthogonalization 

approach (Table 5.1, test condition 4) in four normal hearing children; this condition 

achieves the most compact and isolated estimated clusters than any other condition, 

for these recordings. In recording I: subject fc, 14 y.o., the 19 estimated clusters have 

Iq index values between 0.9 and 1. Cluster 2 is related to a noisy electrode whilst 

cluster 9 corresponds to the AEP. In recording II: subject bf, 6 y.o., only one of the 

estimated clusters has Iq value lower than 0.9 (cluster 19); cluster 4 is linked to the 

auditory response and cluster 14 correspond to a noisy electrode. In recording III: 

subject mar2, 10 y.o., 10 estimated clusters have Iq index values between 0.9 and 1; 

two of those clusters are related to the AEP (cluster 1 and 5). Finally, in recording IV: 

subject mp, 11 y.o., 13 estimated clusters have Iq values higher than 0.9; clusters 8 

and 10 are related to the AEP. 
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Figure 5.1 Stability index (Iq) for 19 estimates clusters recovered by FastICA using test 

condition 4 (recordings from normal hearing children, I: fc, II: bf, III: mar2 and IV: mp); this 

condition achieves the most robust clusters as well as reliable estimates of the conditions 

tested; arrows indicate the estimate clusters related to the AEP and noise. 

 

In recordings from normal hearing children, condition 4 achieved stable and 

isolated estimated clusters, with ICs associated with the AEPs ranked first (according 

with Iq index value), in most of these recordings. 

 

Figure 5.2 shows a comparison between the Iq indexes for the test conditions 2 

and 4 (see Table 5.1) for four different recordings (children with CIs). Row I: 

recording S1-St1, in the test condition 2 only 7 clusters have more than one estimate 

(ICASSO cannot calculate the Iq indexes for clusters 1-12); it was not possible to 

recognize neither the AEP nor the CI artifact in any of these estimated clusters. 

Although test condition 4 does not have the largest number of estimated clusters with 

Iq values between 1 and 0.9, it is the condition where a clear AEP can be recognized 

(clusters 3 and 7) as well as which has a better estimate of the background noise, 

cluster 11. Row II: recording S1-St2, for the test condition 2, only 8 estimated clusters 

have more than one estimate each and none of those clusters are related to either the 
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AEP or the CI artifact. Condition 4 has the most robust clusters with Iq between 0.9 

and 1; the clusters ranked first (cluster 1 and 3) correspond to noisy electrodes whilst 

cluster 16 (with a Iq index value lower than 0.9) is associated with the AEP. Row III: 

recording S3-St2, for condition 2 the Iq index was calculated for only five clusters (the 

rest of the clusters, 1 to 14 have only one estimate each); cluster 16 is related to the CI 

artifact; neither the AEP nor the background noise were recovered in these clusters. In 

this recording the highest number of clusters with Iq indexes more than 0.9 were 

obtained using condition 4, clusters 6 and 17 are related to the CI artifact; the AEP 

cannot be recovered clearly with any of the conditions. Row IV: recording S5-St3, the 

performance of FastICA for all the conditions was similar, although condition 2 has 

the highest number of clusters with Iq between 0.9 and 1 (14 clusters), it is also the 

condition with more clusters with only one estimate each (cluster 1 to 5). In this 

recording, test condition 4 estimates the most robust clusters for the components 

associated with the CI artifacts (cluster 1 and 4); although it was not possible to 

recover a clear cluster related to the AEP. 
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Figure 5.2 Comparison between test conditions 2 and 4 in four different recordings I: S1-St1, 

II: S1-St2, III: S3-St2 and IV: S5-St3 (recordings from children with CI, at different times 

after implantation). Test condition 4 achieved the most robust clusters as well as the most 

reliable estimates; arrows indicate the clusters related to the AEP, CI artifact and noise. 

 

In the majority of recordings from children with CIs, test condition 4 

recovered the most robust and isolated estimate clusters. The estimated clusters 
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ranked first were associated with the CI artifact and the background noise but not 

necessarili with the AEP. 

 

For FastICA the highest values of the Iq index, in other world the most stable 

clusters, were obtained using the non-linear function G1(y) together with a symmetric 

orthogonalization approach. The estimate clusters ranked first (the highest Iq indexes 

values) were different for each recording, generally they were related to the AEP in 

normal hearing children and with the CI artifact in children with CIs. In 10 of the 13 

recordings analysed from children with CIs, the number of clusters with a stability 

index between 0.9 and 1 was greater using test condition 4 than any other condition. 

 

5.1.2 Infomax vs. Ext-Infomax  

 

Infomax is another of the most popular ICA algorithms used to remove 

artifacts from EEG recordings [77;79;80;91]. It has also been used to remove the CI 

artifact from EEG recordings contaminated for that artifact [39;52]. Nevertheless, 

there is no a comparative analysis between the original Infomax and the Ext-Infomax, 

in order to determine the convenience of using one or other method in these 

recordings contaminated by the CI artifact. 

 

The purpose of this section is to compare and contrast the ICs recovered by 

Infomax and Ext-Infomax such that to determine which algorithm achieves the most 

robust estimates for the AEPs, CI artifact and background noise. Two assumptions are 

considered for the sources: 

 

a) There are no sub-Gaussian sources, thus Infomax is enough to recover the 

signals 

b) It is necessary to apply the Ext-Infomax algorithm since the measures include 

mixed sub- and super-Gaussian sources. 

 

In order to compare the estimated components recovered using Infomax and 

Ext-Infomax, the kurtosis values and the pdf of the estimates were used; along with if 

it was possible to associate the waveform of the estimates with the components of 
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interest, i.e. AEP, CI artifacts, and noise. Tables 5.4 and 5.5 include a comparison 

between the kurtosis values of ICs related to the AEP and noise (in normal hearing 

children) and with AEP, CI artifact and noise (in CI users) using Infomax and Ext-

Infomax.  

 

In the recordings S1-St1 and S1-St2 (Table 5.5) the electrode lying over the CI 

were not connected during the test. In the case of the recordings S2-St1, S2-St2, S5-

St1 and S5-St3 the AEP was not recognised in any of the ICs calculated by Infomax 

and Ext-Infomax. The algorithms did not converge using the recording S7-St1. 

Appendix B includes the pdf histograms for the ICs related to the AEP, CI artifact and 

noise for all the dataset.  

 
Table 5.4 Comparison between the kurtosis values for the ICs related to one component of 

the AEP and noise in recordings from normal hearing children, the estimates were recovered 

using Infomax and Ext-Infomax. 

 

 Infomax Ext-infomax 

Recording AEP Noise AEP Noise 

ad 1.09 0.99 0.99 0.90 

al 0.99 1.09 0.90 0.99 

an 0.87 1.10 0.87 4.27 

ax 0.83 8.37 1.42 8.07 

bf 4.51 2.85 4.00 4.00 

cc 2.16 0.47 2.13 0.48 

dt 4.45 3.89 4.84 3.94 

ed 1.49 2.54 1.63 2.56 

fc 1.52 0.31 2.81 0.38 

iv 27.93 7.53 27.14 7.30 

jg 5.11 5.79 5.15 5.92 

kc 0.93 4.50 0.87 3.90 

mar2 5.12 2.04 5.11 1.99 

mp 1.15 4.86 1.27 4.82 

nan 2.91 20.47 3.73 20.25 

of 4.31 0.13 4.37 0.11 

pf 7.37 4.53 9.50 3.59 

st 1.13 2.87 0.79 2.63 

ug 4.01 23.32 3.92 23.27 

xal 3.44 9.27 3.44 9.06 
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Table 5.5 Comparison between the kurtosis values for the ICs related to one component of 

the AEP, the CIs artifact and noise in recordings from children with CIs, the estimates were 

recovered using Infomax and Ext-Infomax. In the case of the empty cells the ICs were not 

identified in any of the estimates. 

 

 Infomax Ext-Infomax 

Recording AEP CI art Noise AEP CI art Noise 

S1-St1 9.55 - 0.96 8.80 - -0.85 

S1-St2 3.41 - 0.88 3.46 - -1.25 

S1-St3 1.61 - 0.05 1.68 - -0.87 

S2-St1 - 2.36 12.88 - 2.32 12.83 

S2-St2 - 2.59 -0.15 - 2.61 -0.64 

S3-St1 1.26 1.88 - 1.41 1.81 - 

S3-St2 4.68 6.18 - 4.64 6.19 - 

S3-St3 5.33 3.47 0.38 5.38 3.48 -1.34 

S4-St1 4.77 28.15 - 4.46 28.22 - 

S4-St2 7.88 - 1.79 7.88 - 1.87 

S5-St1 - 10.71 0.72 - 10.98 -0.54 

S5-St2 5.69 3.93 - 5.61 3.84 - 

S5-St3 - 7.97 0.19 - 7.85 -1.35 

S6-St1 7.40 78.81 - 8.10 256.52 - 

S7-St1 - - - - - - 

 

 

Figure 5.3 shows the pdfs and the kurtosis values for selected estimate 

components using Ext-Infomax in four normal hearing children (there were not 

considerable differences between the estimated components using the standard 

Infomax and Ext-Infomax, see appendix B). Estimated components related to the AEP 

and noisy electrodes were the principal ICs recovered for these algorithms. The 

kurtosis values of the AEP estimates were positive in all the recordings analysed. 
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Figure 5.3 Probability distributions and kurtosis values for selected estimates recovered using 

Ext-Infomax (recordings from normal hearing children, I: fc, II: bf, III: mar2 and IV: mp). 

The AEP and noise were the principal ICs recovered by this algorithm. 

 

There were no considerable differences between the AEP component 

estimates, in recordings from normal hearing children, using Infomax and Ext-

Infomax. The kurtosis values of the ICs related to the AEP were positive, as expected 

(Jung et al [78] used the original Infomax to estimate super-Gaussian components 

with positive kurtosis, such as the AEP). At least two ICs can be clearly associated 

with the AEP and background noise in all the recordings from normal hearing 

children. 

 

Figure 5.4 shows the pdfs and kurtosis values for selected estimates for four 

different recordings (children with CIs), using Infomax and Ext-Infomax. In Row I: 

recording S1-St1, the estimates associated with the AEP (Infomax: IC16 and Ext-

Infomax: IC17) are essentially the same for both algorithms, although some 

differences can be observed in both the probability distribution histograms and 

kurtosis values of the noise estimate (IC6 in both algorithms). In row II: recording S1-

St2, the difference between the estimates related to the AEPs are small using Infomax 

(IC16) and Ext-Infomax (IC10); the principal differences are in the noise estimates 

from electrodes with high impedance (IC6 and IC1), the pdf shape had modifications 

and the kurtosis value changed from positive (close to zero) to negative. In row III: 

recording S3-St2, the estimated components of the CI artifact are similar using 

Infomax (IC8) and Ext-Infomax (IC7), with a small difference in the pdf histograms 
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and kurtosis values. The estimates of the AEP (IC5 and IC6, Infomax and Ext-Infomax 

respectively) are almost the same too, although it is not clear in both ICs, the CI 

artifact still being mixed with the auditory response. In row IV: recording S5-St3, the 

principal difference between both algorithms is the estimates of the background noise 

(IC3); it was not possible to identify a clear AEP neither with Infomax nor with Ext-

Infomax. 

 
 

Figure 5.4 Comparison between the pdfs and kurtosis values for selected estimates (using 

Infomax and Ext-Infomax) for four different recordings from children with CIs (I: S1-St1, II: 

S1-St2, III: S3-St2 and IV: S5-St3); the principal difference between those algorithms is the 

noise estimates. 
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In recordings from children with CIs, the kurtosis values of the estimates in 

both original Infomax and Ext-Infomax for the AEPs and CI artifact are similar; the 

values for the estimates of the AEPs are positive, as expected. The kurtosis values of 

the CI artifact estimate depend on the part of the artifact recovered (the transient at the 

beginning and/or end of the artifact or the stimuli pulses). The principal differences 

between Infomax and Ext-Infomax are in the noise estimate components; Ext-Infomax 

is more appropriate to estimate sources with pdfs close to Gaussian distributions. 

 

Based on the kurtosis values, Ext-Infomax was finally selected since the noise 

recovered is better than in the original Infomax, which result in an easier identification 

of the estimates related to the AEPs, however, in 5 of the 13 recordings from children 

with CIs analyzed using Ext-Infomax the AEPs cannot be associated with any of the 

estimate components. This algorithm has been used to remove the CI artifact from 

AEP recordings for other authors before; this allows comparing the results of this 

research with those of these authors. 

5.1.3 TDSEP-ICA time delay selection  

 

TDSEP-ICA is based on several time delayed () correlation matrices; the  

parameter must be chosen to take advantage of the temporal structure of the signals. 

Meinecke et al [94] propose the use of resampling methods to assess the reliability of 

TDSEP-ICA and the variance of the estimates as a measure of the separation error. 

They suggest using this information for selecting the parameters in their algorithm, 

such as, the time delay value. The procedure used by Meinecke to do that can be 

summarized as follows: 

 

1. Estimate the mixing matrix Â and calculate the ICs as ŝ(t)=Â
-1

x(t), 

2. Produce N, surrogate datasets B from ŝ(t) and whiten these datasets. In order to 

avoid destroying the temporal structure of the signals, when the dataset are 

surrogated, Meinecke et al. calculate the resampled time delayed correlation 

matrices as 

         
1ˆ

2
ij t i j i jR a x t x t x t x t

L
        ,  5-2 



Chapter 5. ICA parameter selection for robust AEP component estimates 

 
 

77 

where the length of the time series is L, the bootstrap resampling defines a 

series with ta L . 

3. For each of the surrogate datasets produce a set of rotation matrices Q (which 

is approximated by a sequence of rotations) and calculate the variance of 

rotation parameters angles (), each component ij of  is the angle of rotation 

in the i-j plane.  

4. Calculate each one of the elements of the separability matrix S (see Equation 

4.19) in the rotation parameters angles as 

 

 
2

*

1

1
ˆ

B
b

ij ij

b

S
B




  ,    5-3 

 

and identify the different one or high-dimensional subspaces according to the 

block structure of S; a low value corresponds to a good separation. The 

separability matrix measures how unstable the estimate is with respect to the 

rotation in the i-j plane. 

 

To identify the different one or high-dimensional independent subspaces in the 

separability matrix, the notion of Multidimensional Independent Components 

(MICA) introduced by Cardoso [23] could be used. MICA is a generalization 

of ICA. Instead of the multiplicative model of ICA, where the principal 

assumption is that all the sources are mutually independent (see Equation 4.4), 

Cardoso reformulates the ICA model as an additive model (see Equation 4.6), 

where the measured signal is a sum of n one-dimensional independent sources. 

Instead of that assumption, Cardoso considers that the sources form k higher 

dimensional independent components; there is a set of components that fulfill 

Equation 4.3, subsequently. In other words, Cardoso proposes that after run an 

ICA algorithm to obtain the one-dimensional estimated independent 

subspaces, determine which estimations actually are independent and which 

should be grouped together as parts of a high-dimensional independent 

subspace because they are parts of the same component. 
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To determinate the best time delay parameter for the dataset of this research,  

for TDSEP-ICA was varied from 1 to 20 in steps of 5. It was selected such that  had 

the lowest separability matrix values, and a clear block structure in the matrix where 

the AEPs, CI artifact and background noise could be recognized and also associated 

with one- or high-dimensional ICs. Appendix C includes the separability matrixes for 

different time values for the complete dataset of this research (the diagonal of the 

separability matrix was fixed to zero in all the cases). 

 

Figure 5.5 shows the separability matrixes for four different recordings from 

normal hearing children; the most stable estimate components were obtained using a 

=0, 1, 2, ..., 20. In recording I, subject fc, the two-dimensional independent subspace 

IC2-IC3 is associated with the AEP, the noise produced by a electrode with high 

impedance was recovered in a one-dimensional IC, IC18. In recording II, subject bf, 

again a two-dimensional subspace IC9-IC10 is associated with the AEP and a one-

dimensional IC is related to noise (IC1). A clear one-dimensional estimate IC1 linked 

to the AEP was recovered in recording III (subject mar2); in addition IC9 and IC11 

are related to the auditory response. In recording IV, subject mp, two one-dimensional 

ICs can be recognized in the block structure of the separability matrix, one related to a 

noisy electrode (IC1) and another to the AEP (IC5). 
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Figure 5.5 Separability matrix for four different normal hearing children using TDSEP-ICA 

(I: fc, II: bf, III: mar2 and IV: mp), the most stable estimates components were obtained with 

=0, 1,2,...,20; arrows indicate ICs related to the AEP and noise. 

 

In recordings from normal hearing children, the separability matrix values 

decrease in agreement with the increase of the time delay. For =0,…,1 TDSEP-ICA 

only identifies one-dimensional ICs always related to noise. Once the time delay is 

increased, the block structure of the separability matrix is clearer until =0, 1, 2, ..., 20 

where one-dimensional ICs can be related to the AEP and noise in most of the normal 

hearing children recordings. 

 

Figure 5.6 shows a comparison between the separability matrix using a time 

delay =0,…,1 and =0, 1, 2, ..., 20 for four different recordings (children with CIs). 

The comparison between TDSEP-ICA using a time delay from 0 to 1 and from 0 to 20 

for recording S1-St1 is shown in row I, the separability values for the noise estimates 

are similar between both conditions (=0,…1, IC1-IC2 and =0, 1, 2, …, 20, IC18-

IC19) whilst the AEP estimated separability values are smaller for =0, 1, 2, ..., 20 

(IC2) than =0,…,1 (IC12). The values of the separability matrix for recording S1-St2 
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are markedly lower using a time delay from 0 to 20 (row II). For =0,…,1 the 

estimate related to the AEP is IC8 and IC1 to =0, 1, 2, ..., 20; the estimates for the 

background noise are IC1-IC2 and IC18-IC19, respectively. For recording S3-St2 in 

row III, using a time delay from 0 to 1 only the CI artifact can be recovered clearly 

(IC 1, 2 and 3 one-dimensional ICs) whilst using a =0, 1, 2, ..., 20, more components 

are related to the CI artifact (IC16 to IC19) and some components can be associated 

with the AEP (IC7 and IC9). Row IV, recording S5-St3, TDSEP-ICA with =0,…,1, 

IC1 and IC18-IC19 are related to noise and IC2 to the CI artifact. In TDSEP-ICA =0, 

1, 2, ..., 20, IC5, IC8 and IC18 are related to the CI artifact, whilst IC15 is linked to 

the AEP; although the CI artifact still being mixed with IC15 (neither FastICA nor 

Ext-Infomax recovered the AEP in this recording). 
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Figure 5.6 Comparison between the separability matrixes with two different time delays 

using TDSEP-ICA, column 1 =0,…,1 and column 2 =0,1,2,...,20, for four different 

recordings I: S1-St1, II: S1-St2, III: S3-St2 and IV: S5-St3. In general the separability matrix 

values were the lowest with =0, 1, 2, ..., 20; in most of the recordings one-dimensional ICs 

can be associated with the AEP, CI artifact and noise using this time delay. 

 



Chapter 5. ICA parameter selection for robust AEP component estimates 

 
 

82 

Clearer block structures were identified using TDSEP-ICA with =0,1,2,...,20 

than with =0…1, in recordings from children with CIs. Resulting in a notable 

separation between the ICs related to the CI artifact and noise and the AEP estimates. 

The time delay with separability matrixes with one-dimensional ICs related to 

the AEP and the CI artifact was selected. For TDSEP-ICA, the lowest values for the 

separability matrix were obtained using  =0, 1, 2, ..., 20 in normal hearing children, 

also in children with CIs. At this time delay, it was possible to identify a one-

dimensional IC related to the AEP and another to the CI artifact [27]. In general, the 

separability matrix values are lower when the time delay is higher; some tests were 

performed varying the time delay with values higher than 20 (see Appendix E) but the 

ICs recovered do not have significant differences. 

5.2 Waveform and topographic maps of robust AEP component 

estimates 

 

This section includes the waveforms and topographic maps of the estimates 

components with physical and physiological meaning identified in the previous 

section, after the selection of the optimal parameters for robust AEP component 

estimates using FastICA, Ext-Infomax and TDSEP-ICA. 

5.2.1 FastICA 

 

Figure 5.7 shows the IC waveforms, in the centre of the estimate clusters, and 

the topographic maps of those components. Recordings from normal hearing children, 

using FastICA with test condition 4 (this condition achieves the most compact and 

robust estimate clusters); it was possible to recover the AEP in all these recordings. In 

recording I, subject fc, the background noise remains in the AEP, IC9. In recording II, 

subject bf, it was possible to indentify a clean AEP, IC4, although the corresponding 

topographic map is not well defined. Clear AEP components and topographic maps 

were recovered in recordings III and IV (subjects mar2 and mp, respectively). 
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Figure 5.7 Topographic maps and waveforms of selected estimates using FastICA symmetric 

orthogonalization and non-linear function G1(y), for four normal hearing children (I: fc, II: bf, 

III: mar2 and IV: mp). The waveforms correspond to the IC in the centre of the estimates 

clusters; Figure 5.1 complements this figure. 

 

Figure 5.8 shows the waveforms and topographic maps of selected estimate 

components, after determining the optimal parameters for FastICA for recordings 

from children with CIs (I: S1-St1, II: S1-St2, III: S3-St2 and IV: S5-St3). As for the 

case of normal hearing children, test condition 4 achieved the most compact and 

isolated estimated components (see Figure 5.2). However, it was not possible to 

recover the AEP in all the recordings (see recording III and IV, in this figure). The 

waveforms correspond to the estimates in the centre of the clusters; clear topographic 

maps were obtained for the CI artifact ICs (III: IC6 and IC17 and IV: IC1 and IC4) 

and noise ICs (I: IC11 and II: IC1). 
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Figure 5.8 Topographic maps and waveforms of selected ICs using FastICA with symmetric 

orthogonalization approach and the non-linear function G1(y) for four different recordings 

from children with CIs (I: S1-St1, II: S1-St2, III: S3-St2 and IV: S5-St3); Figure 5.1 

complements this figure. 

 

5.2.2 Ext-Infomax 

 

Figure 5.9 shows the topographic maps and waveforms of selected estimates 

using Ext-Infomax for four recordings from normal hearing children (see Figure 5.6 

for complementary information). The principal ICs recovered using this algorithm 

were the AEP and noise. Although Ext-Infomax is recommended to decompose noisy 

recordings, it was not possible to recover the AEP without background noise in 

recordings I, III and IV. 
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Figure 5.9 Topographic maps and waveforms of selected estimates using Ext-Infomax in four 

recordings from normal hearing (I: fc, II: bf, III: mar2 and IV: mp). The AEP (I: IC12, II: IC1 

and IC3, III: IC3 and IV: IC12) together with noisy electrodes (I: IC9 and II: IC17) were the 

principal ICs recovered for this algorithm. 

 

Figure 5.10 shows the waveforms and topographic maps of selected ICs using 

Ext-Infomax in recordings from children with CIs (I: S1-St1, II: S1-St2, III: S3-St2 

and IV: S5-St3). In recordings I and II, is possible to recognize the AEP in IC17 and 

IC10, respectively. Clear components linked to the CI artifact were recovered from 

recording III (IC7 and IC9) and from recording IV (IC7 and IC11). The component 

related to the AEP is not clear in recording III, some of the artifact still being mixed in 

the auditory response (IC6). In recording IV, none of the estimated components show 

clear auditory response morphology. 
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Figure 5.10 Waveforms and topographic maps of selected ICs recovered using Ext-Infomax 

in four different recordings from children with CIs (I: S1-St1, II: S1-St2, III: S3-St2 and IV: 

S5-St3). The AEP can be recognized in recordings I: C17, II: IC10 and III: IC6, although the 

CI artifact still being mixed in IC6. Ext-Infomax could not recover the AEP in recording IV. 

 

5.2.3 TDSEP-ICA 

 

Figure 5.11 shows the ICs indicated with arrows in Figure 5.5 using TDSEP-

ICA with =0,1,2,...,20. I: The two-dimensional structures IC2-IC3 of the separability 

matrix have a clear physiological meaning (it can be associated with the AEPs) whilst 

IC18 correspond to a one-dimensional IC related to a noisy electrode. II: The one-

dimensional estimate IC1 is associated with a noisy electrode and the two-

dimensional structure IC9-IC10 is linked to the AEP. III: The AEP was recovered in a 

one-dimensional component IC1 and in a high-dimensional independent subspace; 

IC9 and IC11 are part of that subspace. Finally, two one-dimensional ICs were 

recovered in recording IV, IC1 and IC5 are associated with noise and the AEP, 

respectively. Clear topographic maps of the ICs of interest were obtained. 
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Figure 5.11 Topographic maps and waveforms of the estimate components indicated with 

arrows in Figure 5.5, using TDSEP-ICA with =0, 1, 2, ..., 20 (recordings from normal 

hearing child, I: fc, II: bf, III: mar2 and IV: mp), this condition recovers the most stable ICs 

related to the AEP. 

 

Figure 5.12 shows selected ICs recovered using TDSEP-ICA with 

=0,1,2,...,20 (see Figure 5.6 for complementary information) for four different 

recordings from children with CIs (I: S1-St1, II: S1-St2, III: S3-St2 and IV: S5-St3). 

The block structure of the separability matrices show diverse one-dimensional ICs, for 

example in recording I, IC2 and IC18 are related to the AEP and a noisy electrode, 

respectively. In recording II, it was possible to identify two one-dimensional ICs 

related to contiguous noisy electrodes IC18-IC19, and IC1 related to the AEP. In 

recording III, IC7 is linked to the AEP (this component is part of a high dimensional 

subspace). The one-dimensional component IC9 is related to the AEP whilst IC18 and 
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IC19 (one-dimensional ICs) are related to the CI artifact. Finally, in recording IV, 

three one-dimensional ICs have physical or physiological meaning, IC5 and IC18 

related to the CI artifact, and IC15 related to the AEP (the CI artifact still being mixed 

in this IC); another component of the CI artifact was recovered in a high dimensional 

subspace (IC8 is part of this subspace). Clear topographic maps of the ICs selected 

were obtained.  

 
Figure 5.12 Topographic maps and waveforms of the ICs indicated with arrows in Figure 5.6 

(using TDSEP-ICA with =0,1,2,...,20, recordings from children with CIs, I: S1-St1, II: S1-

St2, III: S3-St2 and IV: S5-St3), the most stable estimate components correspond to the AEP, 

the CI artifact and noisy electrodes. 

 

Of all the ICA algorithms, the most widely used to remove artifacts from 

biomedical signal is FastICA [71]. However, in the case of EEG analysis, algorithms 

that include the temporal structure of this signal are better suited to extract meaningful 
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estimations; this is the case of the dataset of this research where TDSEP-ICA take 

advantage of time coherence of the CI artifact onset time. 

5.3 Summary 

 

The optimal parameters to recover both the AEP (in normal hearing and 

children with CI), as well as the CI artifact (in recordings from children with CIs) for 

the three ICA algorithms assessed in Section 5.1 are: a) FastICA with a symmetric 

orthogonal approach and the non-linear function G1(y)=y
3
 (Table 5.1, test condition 

4). b) Ext-Infomax instead of Infomax, and c) TDSEP-ICA with time delay 

=0,1,2,...,20. 

 

FastICA, test condition 4, achieved the highest number of clusters with Iq 

index values between 0.9 and 1 (in 9 of the total recordings analysed in children 

implanted); the robustness of clusters and reliability of the estimates were better than 

any other test condition. Most of the times, those clusters are related to the CI artifact 

components and noise, but are not necessarily related to the AEP. 

 

The principal differences between the estimated components using Infomax 

and Ext-Infomax were in the background noise; the kurtosis values of the estimates 

change from positive (close to zero) to negative; the pdf histograms have different 

shapes for the AEP, CI artifact and noise using Ext-Infomax. 

 

TDSEP-ICA, with =0,1,2,...,20 achieved the lowest separability matrix values 

and the structure of the matrix is the clearest over all the time delays evaluated. One-

dimensional ICs are related to the CI artifact and noise whilst one- or high-

dimensional ICs are associated with the AEP, depending on the symmetry of the 

auditory response. In most of the children implanted, the response is lateralized, 

opposite to the CI.  

 

The three algorithms recover at least two components for the CI artifact; one 

related to the transient at the beginning and/or the end of the artifact and another to 

the stimuli pulses. When the recording SNR is poor, only TDSEP-ICA with time 

delays from 0 to 20 recovered the AEP in recordings from children with CIs. 
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If the objective is to apply ICA to reduce the CI artifact both FastICA and Ext-

Infomax are more than enough to do that. However, to also recover the AEP in EEG 

recordings contaminated by the CI artifact, TDSEP-ICA is better positioned to carry 

this out, because the assumption of this algorithm (temporal structure of the signal and 

the spatial uncorrelation between the auditory response and the CI artifact) best place 

it to do so. TDSEP-ICA relies only on simple lagged second-order correlations, which 

is estimated robustly, compared with the HOS methods that are generally less robust 

because the difficulty of the calculations. Additionally some authors have 

demonstrated that may be hard to estimate robust ICs if some temporal overlap is 

present in the sources [128; 129; 135]; which could occur in the dataset used in this 

research.  

 

Once the optimal parameters for robust AEP component estimates for 

FastICA, Ext-Infomax and TDSEP-ICA have been selected, it is important to asses the 

performance and variability of the ICs recovered by the three ICA algorithms. The 

procedure proposed by Meinecke, summarized in section 5.1.3, was used to compare 

the algorithms (under the same condition). In the following chapter, the results of this 

comparison are shown. 
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Chapter 6. 

Assessment of the performance and 

variability of ICA algorithms applied to 

AEP estimation 

 

 

 

The performance and variability of three ICA algorithms (FastICA, Ext-

Infomax and TDSEP-ICA), whose optimal parameters for robust AEP component 

estimates were determined in the previous chapter, are now assessed in this chapter. 

In section 6.1, the procedure suggested by Meinecke et al. (see section 5.1.3) which 

utilizes the block structure of the separability matrix (S) to evaluate the stability of the 

estimate components, is used to evaluate the performance of the ICA algorithms. In 

section 6.2, the Signal to Interference Ratio index [55] is used to measure the quality 

of the estimates recovered for each algorithm. Finally, in Section 6.3, the variability 

of the algorithms is measured, after repeating the estimate several times. 

 

6.1 Reliability of AEP component estimates 

 

Meinecke et al. proposed to use the separability matrix, S, of the ICs (see 

Equation 5.3) not only to select the parameters of TDSEP-ICA but also as a means of 

choosing between different algorithms that rely on different assumptions about the 

dataset and their criteria to measure independence. This matrix was used here to 

evaluate the reliability of three ICA algorithms, after selection of the optimal 

parameters for each one as described in the previous chapter. 

 

To evaluate the reliability of the ICs recovered for the three algorithms (under 

the same conditions), the estimates were each repeated 10 times (N=10) using each of 



Chapter 6. Assessment of the performance and variability of the ICA algorithms 

applied to AEP estimation 

 
 

92 

the ICA algorithms; the number of ICs was set at equal to the dataset dimension, 19. 

The separability matrices, for the three algorithms were calculated for all the ICs and 

their block structures were compared. Three considerations were taken into account to 

compare the separability matrixes: 1) the values of the elements of S (low values 

correspond to a good separation). 2) The structure of S, the possibility to identify clear 

one-, two- or high-dimensional ICs. 3) The possibility of recognizing ICs with 

physical or physiological meaning (AEP, CI artifact and noise) in the one- and two-

dimensional ICs. Appendix D includes a comparison between the separability 

matrixes, for the ICA algorithms mentioned, for the complete dataset of this research. 

 

Figure 6.1 shows a comparison between the separability matrixes using 

FastICA, Ext-Infomax and TDSEP-ICA, in recordings from four normal hearing 

children. Row I: recording fc, only TDSEP-ICA recovers the recording noise 

(background noise and noisy electrodes) in one-dimensional ICs (IC10-1C19), 

resulting in clearer estimates of the AEP (one-dimensional estimate, IC9, and two-

dimensional estimates, IC2 and IC3) than FastICA and Ext-Infomax. In the second 

recording, row II: subject bf, the three algorithms recover the noise generated by a 

noisy electrode, but only FastICA and TDSEP-ICA identify a one-dimensional IC 

with this noise (IC17 and IC1 respectively); Ext-Infomax recovers this noise in 

different ICs (IC6, IC9 and IC17). Clear ICs can be related to the AEP using the three 

algorithms (FastICA: IC2, Ext-Infomax: IC18 and TDSEP-ICA: IC17). One two-

dimensional IC can be identified in each algorithm (FastICA: IC3-IC4, Ext-Infomax: 

IC5-IC6 and TDSEP-ICA: IC9-IC10), the two-dimensional ICs of FastICA and Ext-

Infomax correspond to noisy AEPs, whilst the two-dimensional IC of TDSEP-ICA is 

related to two clear components of the AEP. In recording III: subject mar2, both 

FastICA and TDSEP-ICA recovered the AEP in one-dimensional ICs (IC1s for both 

algorithms). The three algorithms indentified two-dimensional ICs (FastICA: IC8-

IC9, Ext-Infomax: IC4-IC5 and TDSEP-ICA: IC6-IC7), but only the two-dimensional 

ICs recovered by FastICA had a clear physiological meaning (components of the 

AEP). Finally, in recording IV, subject mp, it is possible to recognize the AEP using 

the three ICA algorithms, all with low separability matrix values (FastICA: IC14, Ext-

Infomax: IC14 and TDSEP-ICA: IC5), but only TDSEP-ICA recovered clear one-

dimensional ICs related to noise: IC1, IC18 and IC19. 
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Figure 6.1 A comparison between the separability matrices using FastICA, Infomax and Ext-

Infomax, for four different recordings (all normal hearing children, I: fc, II: bf, III: mar2 and 

IV: mp), TDSEP-ICA (column 3) is the algorithm with clearer block structure, in each case 

one and two-dimensional ICs are related to the AEP and background noise. 

 

Although in most of the recordings from normal hearing children the 

separability values of S in both FastICA and Ext-Infomax are lower than the values of 

TDSEP-ICA, the block structure of this matrix is the clearest (see section 5.1.3); one-

dimensional ICs related to the AEP and noise were identified in all the recordings. 

 

Figure 6.2 show the separability matrices, S, for four different recordings from 

children with CIs, using FastICA, Ext-Infomax and TDSEP-ICA. In recording I: 
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subject S1-St1, all the algorithms recover the background noise (FastICA: IC3 and 

IC7, Ext-Infomax: IC18 and TDSEP-ICA: IC18 and IC19) but only TDSEP-ICA 

identified a clear one-dimensional IC for this noise (IC19); with respect to the AEP, 

TDSEP-ICA is the only algorithm which identified a one-dimensional ICs related to 

the auditory response (IC2). In recording II: subject S1-St2, two nearby electrodes had 

high impedance, although the three algorithms recover this noise, only FastICA and 

TDSEP-ICA estimated it into one-dimensional ICs (FastICA: IC14 and IC16 and 

TDSEP-ICA: IC18 and IC19), the ICs for the noisy electrodes for Ext-Infomax were 

IC1 and IC14 (only IC1 shows a clear one-dimensional structure). FastICA 

indentified a one-dimensional IC for the AEP (IC11); TDSEP-ICA recovered the 

auditory response in a two-dimensional space (IC11-IC12), additional to the IC1. The 

AEP is not clear in any of the ICs estimated by Ext-Infomax. In recording III, subject 

S3-St2, all the one-dimensional ICs recovered by FastICA correspond to components 

of the CI artifact (it was not possible to identify the AEP in the rest of the ICs). 

Although it is possible to identify some elements of the CI artifact in the ICs 

recovered by Ext-Infomax, the lack of a clear block structure in S, implies low reliable 

estimates. TDSEP-ICA shows the clearest S structure with a two-dimensional 

subspace (IC6-IC7) related to the AEP and three one-dimensional ICs (IC9: AEP and 

IC18 & IC19: CI artifact). Finally, in recording IV, subject S5-St3, all the algorithms 

recover a noisy signal (FastICA: IC16, Ext-Infomax: IC19 and TDSEP-ICA: IC19). 

The reliability of the estimates related to the CI artifact is similar for the three 

algorithms (FastICA: IC16, IC17 and IC8, Ext-Infomax: IC16, IC17 and IC18 and 

TDSEP-ICA: IC5, IC8 and IC18). Only TDSEP-ICA indentified a one-dimensional IC 

for the auditory response (IC15). 
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Figure 6.2 A comparison between the separability matrices using three ICA algorithms from 

four different recordings (children with CIs, I: S1-St1, II: S1-St2, III: S3-St2 and IV: S5-St3), 

FastICA (1
st
 column) indentifies the AEP in high-dimensional ICs in all the recordings, Ext-

Infomax (middle column) does not show a clear block structure; clear one- and two-

dimensional ICs were recovered by TDSEP-ICA for the AEP, CI artifact and noise (3
rd

 

column). 

 

Figure 6.3 shows a comparison between the separability matrix for the three 

ICA algorithms for both normal children and children with CIs (using the optimal 

parameters determined in the previous chapter for each algorithm). Although Ext-

Infomax has the lowest separability values, it is not possible to identify a clear block 

structure in S. Neither FastICA nor Ext-Infomax recovers a clear estimate of the AEP 
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in these recordings from children with CIs. From the block structure of the 

separability matrix, it appears that Ext-Infomax recovered the less stable ICs in both 

normal hearing children and children with CIs. 

 

 
 
Figure 6.3 A comparison between the separability matrices for all the ICs estimated by three 

ICA algorithms (recordings from a normal hearing child, fc, and child with CI, S3-St2), the 

arrows indicate the ICs with physical or physiological meaning. In normal hearing children, it 

is possible to recognize the AEP and background noise with all the algorithms (although those 

estimates are not one-dimensional ICs using FastICA and Ext-Infomax); whilst in children 

with CIs only TDSEP-ICA recovers the auditory response in one-dimensional IC. 

 

Ext-Infomax does not show a clear block structure in recordings from normal 

hearing children, this algorithm cannot recover the background noise as well as 

FastICA and TDSEP-ICA. In general, FastICA recovers more stable ICs than Ext-

Infomax, in both recordings from normal hearing children and children with CIs, but it 

was not always possible to identify clear one- or two-dimensional ICs associated with 

the AEP in some of the separability matrixes achieved using this algorithm. TDSEP-

ICA is able to find more one-dimensional ICs than any other of the ICA algorithm 
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compared in this research. Most of the time, these one-dimensional ICs have a clear 

physiological (AEP) or physical meaning (CI artifact and noise). 

 

The resampling approach used in this section to compare FastICA, Ext-

Infomax and TDSEP-ICA showed that TDSEP-ICA is the most suitable algorithm for 

recovering stable ICs related to the AEP as well as the CI artifact in the dataset 

recordings used in this research. 

 

Up to this point, the comparison between the three ICA algorithms has been 

using principally qualitative parameters, mainly the waveforms and topographic maps 

to relate ICs with physiological events, and the block structure of the separability 

matrix to establish the quality of the separation. In the following section, a 

quantitative parameter is used to assess the performance and the variability of the ICs 

recovered by FastICA, Ext-Infomax and TDSEP-ICA on real, physiological data. 

6.2 The performance of the ICA algorithms 

 

The performance of the ICA algorithms can be evaluated by different 

procedures  

1) An inspection of the plots of the estimate, 

2) Using an index such as SNR, or 

3) Calculating the interference between the estimated sources. 

 

The different methods to evaluate the performance of the algorithms depend 

on the data that are available, in other words, if the true mixing matrix (W) is known 

or not. In the case of synthetic data, the performance of an ICA algorithm can be 

measured using for example the Amari Index, Am, (see Equation 6.1) which is an 

assessment of the interference of source n on measurement m [9]; a perfect separation 

E1 results in an index of zero; this method has been used by different authors [97;135] 

to compare diverse ICA algorithms for EEG components estimates and to analyze the 

quality of the separation in a hybrid mixture of acoustic signals (for example, speech 

and music) and synthetic sources. 
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where P=(pij)=(WA); P is a permutation matrix. 

In the case of real data and when the mixing matrix is unknown, there are 

different indexes to measure the performance of the estimate of ICA, the Signal to 

Interference Ratio (SIR) [55] is the index most frequently used, and is defined as 

follows 
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where îs represents the estimated sources, and is  the real sources (reference signal); 

here the inner product is a measurement of the distance between two signals. When 

the estimated source is orthogonal to the true source, SIR is equal to zero; but if the 

estimated source is equal to a gain factor g of the true source, î is = gs , SIR is infinite. 

Higher values of SIR indicate a better estimate quality. 

 

The reference signals: to assess the quality of the estimates of both the AEP and CI 

artifact, it was necessary to generate an accurate reference signal for both cases. AEP 

reference signals, for four age ranges, were obtained by averaging the auditory 

response of the normal hearing children in each control dataset group (see Table 3.1). 

The AEP references signals (target 1 to target 4 in Figure 6.4) correspond to the 

response at electrode site Cz, that are known to display the maximum amplitude for P1 

peak. The reference signal for the CI artifact was achieved by averaging the electrodes 

closest to the CI (around the temporal area) from five children with CI. 

 

 
Figure 6.4 Average AEP waveforms for four groups of normal hearing children for different 

age range (see Table 3.1), target 1 to 4, and CI artifact signal used as reference signals in 

Equation 6.2. 
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Using Equation 6.2, the SIR index values for the 19 estimates recovered by 

each of the ICA algorithms, were calculated. The reference signal was changed from 

target 1 to target 4 in both recordings from normal hearing children and children with 

CIs; additionally the SIR values with the CI artifact as reference was calculated in 

children with CIs. The purpose of this test was to determine which algorithm achieved 

the highest values of SIR, to determine better quality estimates. 

 

In order to establish the minimal SIR index values permitted for the AEP a 

first test was carried out, the SIR values for all the ICs recovered for the three 

algorithms were calculated using the four AEP reference signals (see Figure 6.4), but 

in the recordings from children without stimulation (where no one IC estimated is 

related with the AEP). The average SIR index values for the AEP in recordings from 

20 normal hearing children without stimulation were SIRFastICA=0.61, SIRExt-

Infomax=0.61 and SIRTDSEP-ICA=0.76; the average for the three algorithms was 

SIRaverage=0.660.08. 

 

In a similar fashion, the reference signal of the CI artifact was used to 

calculate the SIR index of the ICs recovered by the three algorithms in normal hearing 

children (where of course no one IC estimated is related with this artifact). The SIR 

index values for the CI artifact in 22 recordings from normal hearing children were 

SIRFastICA=0.55, SIRExt-Infomax=0.53 and SIRTDSEP-ICA=0.46; the average for the three 

algorithms was SIRaverage=0.510.05. 

 

With these results, it was established that recordings from both normal hearing 

children and children with CIs with the AEP SIR index values close to or less than 

0.66 were discarded. In the same manner, if the SIR values of the CI artifact were 

close to or less than 0.51 in recordings from children with CIs the recordings were not 

taken into account for further analysis. Appendix F includes tables with the entire SIR 

index values for both normal hearing children and children with CIs, using the AEP 

and the CI artifact as reference signals. 

 

Figure 6.5 shows the highest SIR index values calculated (using FastICA, Ext-

Infomax and TDSEP-ICA) for two normal hearing children. (a) In recording xal, 4 y.o 
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the highest values, for the three algorithms, were obtained using target 2 as reference 

signal. (b) For the normal hearing child mp, 11 y.o., the highest values were obtained 

with target 4; the results of both subjects are in accordance with the age group of each 

child. The waveforms of the ICs with the maximal SIR values for each algorithm are 

shown at the right hand side of each one of the SIR histograms. 

(a)                                                                                    (b) 

 

 
 
Figure 6.5 SIR index values for 19 estimates using FastICA, Ext-Infomax and TDSEP-ICA for 

two different normal hearing children (a) xal, 4 y.o and (b) mp, 11 y.o. The waveforms of the 

ICs with the maximum SIR value are shown at the right hand side of each of the histograms. 

 

In general, in recordings from normal hearing children the three ICA 

algorithms, achieved the highest SIR values when the AEP target was in accordance 

with their age range; the waveform of the ICs with maximal SIR values corresponded 

to the auditory response in all the recordings. 

 

Figure 6.6 shows the SIR index value histograms for the 19 estimates of the 

three ICA algorithms (FastICA, Ext-Infomax and TDSEP-ICA) for the recording from 
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one child with CI (S6-St1, 2.5 years using her CI); in this recording the highest SIR 

values for the three algorithms were calculated using the AEP target 2 as reference 

signal (see Figure 6.6(a)). In 6.6(b) the SIR values for the three algorithms, with the 

CI artifact signal as reference, are plotted. At the right hand side of each SIR index 

histogram the waveform of the estimates with the maximum SIR values are shown. 

Resulting estimates were compared by visualizing, TDSEP-ICA recovers the clearest 

ICs related to the AEP; almost with no CI artifact present; the SIR index values for 

these estimates were the highest compared with the other algorithms. Ext-Infomax 

achieved the highest CI artifact SIR values in this recording. 

(a)                                                                                    (b) 

 
 
Figure 6.6 SIR index value histograms (19 estimates) of the three ICA algorithms and the 

waveforms of the estimates with the maximal SIR values for a child with CI, recording S6-St1 

(2.5 years after implantation). (a) Target 2 and (b) CI artifact as reference signals. 

 

Figure 6.7 shows the SIR index histograms for the 19 estimates of three ICA 

algorithms (FastICA, Ext-Infomax and TDSEP-ICA) for the recording from one child 

with CI (S5-St2, approximately 2.5 years after implantation); (a) the highest SIR 

values were obtained using the AEP target 2 as reference signal. In (b) the SIR values 
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for the three algorithms, with the CI artifact signal as reference, are plotted. At the 

right hand side of each SIR index histogram the waveforms of the estimates with the 

maximum SIR values are shown. Both FastICA and Ext-Infomax recover the AEP but 

the CI artifact still being mixed in the components. Visual inspection suggests that 

TDSEP-ICA recovers the clearest IC related to the auditory response and its SIR index 

value is the highest compared with the other algorithms. In this recording, the CI 

artifact SIR index value for Ext-Infomax and TDSEP-ICA are similar and higher than 

the values for FastICA. 

 

(a)                                                                                    (b) 

 
 
Figure 6.7 SIR index value histograms (19 estimates) of three ICA algorithms and the 

waveforms of the estimates with the maximum SIR value (child with CI, recording S5-St2). 

(a) Using the AEP target 2 as reference signal and (b) the CI artifact signal as reference. 

 

Table 6.1 includes the average of the SIR index values for each of the three 

ICA algorithms for the AEP in recordings from normal hearing children (SIRAEP_NH). 

The AEP SIR index values for children with CIs (SIRAEP_CI) and the SIR index value 

for the CI artifact (SIRCI) are included in this table also. 
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Table 6.1 The average of the SIR index values for the AEP in recordings from normal hearing 

children for each of the ICA algorithms. 

 

 FastICA Ext-Infomax TDSEP-ICA 

SIRAEP_NH 2.871.30 2.041.02 2.431.35 

SIRAEP_CI 1.950.76 1.860.51 2.401.20 

SIRCI 3.492.13 3.211.88 3.271.79 

 

In recordings from normal hearing children, the AEP SIR index values are 

somewhat higher using FastICA; Ext-Infomax achieved the lowest values. The three 

algorithms achieved the highest index values using the reference signal in accordance 

with the age range for each child. 

 

In recordings from children with CIs, the maximal values of AEP SIR index 

(for the three algorithms) were achieved using target 1 (in children with less than 2.5 

year using their CIs) and with target 2 (in children with more than 2.5 year using their 

CIs). Although the dataset includes children with more than 5 years post-implantation, 

it was not expected to have maximal SIR index values using target 3 and 4. This is 

because the maturation of the auditory system in those children is different to normal 

hearing children, the waveform of the AEP remains dominated by the peak P1 as in 

the first years in normal hearing children (see section 2.5). In these recordings, 

FastICA achieved the highest SIR index values for the CI artifact and TDSEP-ICA 

achieved the next best index values for the AEP. 

6.3 Variability of the AEP estimates 

 

It is important to know the variability of the AEP component estimates 

because one of the objectives of this research is to objectively select the AEP 

estimated components in children with CIs. To evaluate the variability of the 

estimates, 20 repetitions were realized in the calculation of the ICs for the three ICA 

algorithms already mentioned. The SIR index was calculated, using a convenient 

signal reference, for each of the 20 repetition for all the estimates; the histograms of 

the maximal SIR indexes for the three algorithms are shown in this section. 
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Figure 6.8 shows the histograms of the maximal SIR indices for four different 

recordings from children with CIs (I: S3-St1, II: S5-St1, III: S4-St1 and IV: S4-St2), 

calculated for the estimates of both (a) the CI artifact and (b) the AEP. In all the cases, 

FastICA shows a larger spread of the SIR values than Ext-Infomax and TDSEP-ICA. 

In most of the recordings, TDSEP-ICA shows the higher values of the AEP SIR index. 

The range of values of the SIR index for the estimation of the CI artifact, using 

FastICA and Ext-Infomax, are similar in all the recordings shown in this figure. The 

ranges of values of the SIR index for the estimation of the AEP for the three 

algorithms are similar in recordings I and IV; in recordings II and III TDSEP-ICA 

shows the higher values of the AEP SIR index. 
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 (a)                                                                     (b) 

Figure 6.8 Comparison between, Ext-Infomax, FastICA, and TDSEP-ICA for (a) CI artifact 

separation and (b) AEP separation in 20 IC estimates (recordings I: S3-St1, II: S5-St1, III: S4-

St1 and IV: S4-St2). Both Ext-Infomax and FastICA show a larger spread of values of the SIR 

than TDSEP-ICA. 
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With these results, it is possible to conclude that TDSEP-ICA is the algorithm 

with the smallest variability in the estimate of the ICs; this algorithm is the one that 

best estimates the AEPs as well as the artifact. Both FastICA and Ext-Infomax recover 

efficiently the components related to the CI artifact; however, only TDSEP-ICA 

successfully recovers the AEPs in all the subjects with CIs. In conclusion, the 

performance of the TDSEP-ICA algorithm is better and more optimal for the dataset 

analyzed in this research. 

 

6.4 Summary 

 

Although FastICA and Infomax are maybe the most popular ICA algorithms 

used to estimate the components of the AEP in normal hearing subjects, here it was 

found that the algorithm with the more stable IC estimates is TDSEP-ICA with =0, 1, 

2, ..., 20. In normal hearing children, although TDSEP-ICA does not have the lowest 

separability matrix values, the block structure of this matrix is always clearer than 

FastICA and Ext-Infomax. One-dimensional ICs can be related with both the AEP and 

noise. 

 

In children with CIs, FastICA and Ext-Infomax have problems in recovering a 

clear AEP (without the CI artifact), especially when the recordings have low SNR. 

TDSEP-ICA recovers the AEP in one- or two-dimensional ICs. All the algorithms 

estimate the CI artifact reasonable well, although only TDSEP-ICA recovers it in one-

dimensional ICs. TDSEP-ICA is the algorithm with the best separation of noise in 

these recordings. 

 

 The average value of the AEP SIR index is higher with FastICA than with Ext-

Infomax and TDSEP-ICA than in recordings from normal hearing children. In 

children with CIs, TDSEP-ICA is the algorithm with the highest AEP SIR index 

values whilst FastICA is the algorithm with the highest CI SIR index. 

 

It can be seen that using the SIR index, the variability of the estimation of 

three ICA algorithms, Infomax, FastICA and TDSEP-ICA, can be estimated. In both 

recordings, from normal hearing children and children with CIs; TDSEP-ICA is the 
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algorithm with the smallest variability in the AEP component estimates. This permits 

to conclude that TDSEP-ICA has the most robust and efficient estimate of the AEPs 

and this is to be expected over shorter window sizes and for a technique that makes 

use of the inherent information available in the time-series itself. 

 

On the other hand, standard implementation of the ICA algorithm results in 

the number of ICs being equal to or less than the number of measurements, although it 

is generally the case that some of the components do not have a physiological 

significance; for this reason it is fundamental to know the number of sources to be 

estimated. It is convenient to have an objective method to select the ICs with 

physiological meaning. 

 

In the next chapter, a procedure to select objectively ICs with physiological 

and physical meaning, using the concepts of Mutual Information and clustering is 

described. 
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Chapter 7. 

Selection of Independent Components 

using Mutual Information and 

Clustering  

 

 

 

A crucial part of applying ICA to any neurophysiological data is the selection 

of relevant ICs; in other words, to decide which ICs have neurophysiological meaning 

(in our case the auditory response). Standard ICA implementation supposes a square 

mixing matrix; this results in as many ICs as EEG channels (19 in our case). 

Responses to repetitive stimuli are the most important signals here; so the ICs of 

interest should be repetitive and time-locked with the stimuli. In this chapter a novel 

procedure for the selection of ICs using MI and cluster analysis is presented (an 

introduction of MI is included in Section 4.1). 

 

Section 7.1 explains the basic theory of Cluster Analysis including the basic 

terminology used in hierarchical clustering, used in the procedure proposed in this 

chapter. Section 7.2 includes the description of this procedure to identify robust ICs 

associated with the AEP and the CI artifact, using MI combined with cluster analysis 

theory. This procedure is a modification of the method implemented by Kraskov et al 

[86]. The authors utilize MI between the ICs as a similarity measure and recursively 

using the grouping property of the MI, they cluster the output of ICA of biomedical 

signals. Section 7.3 shows the results of hierarchical agglomerative clustering of the 

ICs recovered by TDSEP-ICA from children with CIs. The dendrograms produced by 

the agglomeration of the ICs are showed together with the most robust clusters in four 

different recordings. 
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7.1 Cluster Analysis 

 

Cluster Analysis divides a collection of inputs or objects into a smaller number 

of clusters; a cluster is a collection of objects which are similar or related between 

themselves and are dissimilar or unrelated to the objects belonging to other clusters; 

the aim of cluster analysis is to determine the intrinsic grouping in a set of unlabeled 

objects (data). The concept of clustering is referred to an entire group of clusters; 

ideally all the clusters are well separated from each other, in other words the distance 

between two different clusters is larger than the distance between any two objects 

within a cluster. 

 

One of the most important applications of clustering is in biology, specifically 

in taxonomy and hierarchical classification, where objects are classified according to 

their characteristics in species, classes or families; the concept of hierarchical refers to 

organising the objects into a “tree”. Clustering has been used in biology for example 

to group genes which have similar functions [46;86]. 

 

There are different similarity criteria to merge the collection of objects, a 

criterion of similarity could be the distance between the objects [46]. Data to be 

clustered can be presented by a data matrix or by a dissimilarity matrix D with dij 

elements, dij is the dissimilarity between the i-th and j-th objects. The set of objects 

belonging to a cluster satisfy a minimum of three conditions: 

  

1. The dissimilarity between objects i and j is positive dij≥0. 

2. The dissimilarity is equal to zero if the object is the same dii=0. 

3. The dissimilarity is symmetric dij=dji. 

 

In some applications it is more convenient to consider the similarity ij, 

between the i-th and j-th objects instead of the dissimilarity; the dissimilarity must 

satisfy the conditions listed before. 

 

In general there are different types of clustering, the three principal types are: 

hierarchical, partitional, and constructive clustering [46]. Hierarchical clustering 

methods are more commonly used, and this is the method used in this research. In 
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hierarchical clustering, the data are fused or partitioned in a series of steps. 

Hierarchical clustering using agglomerative methods consists in fusing n objects into 

groups where the last group contains all the objects at each step; in the agglomerative 

method, the most similar pair of objects is clustered. A divisive method consists in 

separating a number of objects into groups where every group contains only one 

individual; at the beginning of the divisive clustering there is one cluster containing 

all the data, at each step of the clustering an existing cluster is divided into two [83]. 

 

The two-dimensional diagram that illustrates the fusion or division made 

during the hierarchical clustering is called a dendrogram (see Figure 7.1). The 

dendrogram or rooted tree diagram is a mathematical and pictorial representation of 

the complete clustering procedure. The height, h, in this tree represents the distance at 

which each fusion is made and the nodes (labelled from A to E) in the diagram 

represent clusters; for each pair of objects (i, j), the smaller the value of hij the more 

similar objects i and j are. This diagram displays the order in which the clusters were 

fusioned. Each of the terminal nodes represents one of the objects clustered 

(numbered from 1 to 6); the arrangement of nodes and heights is the topology of the 

tree. The node E is called the root of the tree and is the cluster which includes all the 

objects.  

 

The dendrogram in Figure 7.1 is a binary dendrogram, it has n-1 internal nodes 

and each internal node has two nodes lying below it in the tree; all the dendrograms 

included in this chapter are binary. Since there are 2
n-1

 different ways of representing 

each binary dendrogram, the left-right ordering of the edges leading down from each 

internal node can be interchanged. 



Chapter 7. Selection of Independent Components using Mutual Information and 

Clustering 

 

 

111 

 
 

Figure 7.1 A dendrogram or rooted tree diagram, objects clustered are numbered from 1 to 6 

and nodes are labelled from A to E, height is the distance at which cluster is made. 

 

Different measures have been proposed to calculate the proximities between the 

data, typically measured by dissimilarities or the inter-objects distances [46]. Given a 

m  n data matrix X, the m entries of X are 1  n row vectors x1, x2,..., xm, the 

commonly used distances measures between the vector xi and xj are defined as 

follows: 

 Euclidean distance,
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For the special case of p = 1, the Minkowski metric gives the City Block metric, 

and for the special case of p= 2, the Minkowski metric gives the Euclidean 

distance. 

 

The most commonly used distance measure is the Euclidean distance; this can be 

interpreted as physical distance between two points in the Euclidean space. 
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There are three basic agglomerative methods used in hierarchical clustering to 

measure the inter-cluster similarity [65], all methods use generally a proximity matrix 

as input: 

 

1) Single linkage clustering, also known as the nearest neighbour technique, 

defines the distance between groups as that of the closet pair of individuals. 

 

2) Complete linking clustering or furthest neighbour is the opposite of single 

linkage and defines distance between groups as that of the most distant pair of 

individuals. 

 

3) Group average clustering defines distance between groups as the average of 

the distances between all pairs of individuals. 

 

Once the clustering procedure has been completed, the number of clusters 

must be decided by properly dividing of the dendrogram. There are two principal 

criteria to divide this hierarchical tree, by finding the natural divisions in the original 

data or by specifying an arbitrary number of clusters. In agglomerative clustering the 

number of cluster is performed by cutting the dendrogram at a particular height. The 

inconsistency coefficient can be use to identify the cutoff or height of comparison in 

the dendrogram [120]; each link between nodes in the hierarchical clustering is 

compared with adjacent links two levels below it. Another criterion is to determine 

the number the elements in each cluster according with the number the objects 

grouped [83]. 

 

The criterion used in this research, to cut off the dendrogram, in order to find 

the number of clusters in each “tree” was the 70% of the maximum height between 

clusters [83]. This criterion was considered more convenient than any other of the 

criteria mentioned since those involve make a subjective decision about the number of 

clusters or the number of elements in each cluster. 

 

The objective of applying clustering to ICA is, for example, when the 

reliability of an ICA algorithm is assessed, that repeating the estimates several times 

in order to identify robust ICs. Himberg and Hyvarinen [64;65] propose to use 
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clustering to identify common components between estimates calculated by running 

FastICA many times. After performing ICA, it could be important to identify 

equivalent components across subjects, this is another application of clustering of ICs 

[40]. Stögbauer proposes to use clustering of mutually independent components to 

identify one- or multi-dimensional components [121]. 

 

The agglomerative method used in this research was single linkage clustering 

and the criterion of similarity measure was the Euclidean distance of the MI between 

the ICs calculated by TDSEP-ICA; when the Euclidean distance is used to measure 

similarities between values with different scales is convenient to normalize them 

(mean zero and standard deviation one). Authors in the literature who have used 

hierarchical clustering to group the ICs calculated by ICA include Himberg et al 2003 

[65] and Krashov et al 2005 [86]. 

7.2 Objective estimation selection in ICA of AEPs 

 

Standard implementation of the ICA algorithm results in the number of ICs 

being equal to or less than the number of measurements, although it is generally the 

case that some of the components do not have a physiological significance; for this 

reason it is fundamental to know the number of sources to be estimated. There are 

different methods that could be used to select the ICs with physiological meaning, 

such as by visual inspection of the topographies of the estimated sources or, say, 

based on a threshold imposed on the variance of the ICs. 

 

Krashov et al [86] propose to use MI as a similarity measure for hierarchical 

clustering of the ICs computed by ICA from the ECG of pregnant women; MI values 

between variables satisfies the conditions to cluster objects (positive, symmetric and 

equal to zero only if the variable are the same or the variables are independent). The 

procedure proposed by the authors can be summarized as: 

 

1. Calculate the MI matrix between the ICs. 
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2. Merge the closest two clusters i and j; the distance between clusters is 

computed by 
( , )

1
( , )

ij

I i j
d

H i j
  , where I is the MI and H is the entropy 

between the clusters. 

3. Create a new cluster by combining i and j, using the joint MI.  

4. Update the MI matrix between the new clusters using the grouping 

property of MI, where the mutual information of two clusters is 

conditioned on a third,     , , ( , ) , ,I i j k I i j I i j k  . 

5. Repeat steps 1-4 until only one cluster remains. 

 

At the end of the procedure the authors indentify two big clusters related to different 

sources. Additionally, the authors use the MI to identify the one- and 

multidimensional independent components (see section 5.1.3) and to measure the 

reliability of ICA estimates [121]. 

 

This method was slightly modified in this research, in order to objectively 

select the ICs associated with the AEPs, from ongoing EEG recorded from children 

with CIs, as well as to identify the ICs related to the CI artifact. The procedure 

introduced here to objectively select ICs has two steps (see Figure 7.2 and Figure 7.3), 

the first to reduce the number of estimates to compute and the second to cluster the 

most robust estimates [28]. The procedure can be summarized as follows: 

 

Step 1) Reduction of number of electrodes: Most of the ICA algorithms use PCA to 

estimate the number of ICs to be found; however, when PCA was applied in a pre-

processing step in the dataset, the first principal components are related only to the CI 

artifact in most of the recordings. This reduction in dimension may eliminate the 

principal components associated with the auditory response (especially in recordings 

with large CI artifact). 

 

If we consider that more channels of measurements generally imply more 

complex calculations, reducing the number of channels included in the estimation 

might help reduce the complexity. An alternative could be to randomly select a subset 

of m channels, from all the channels. In this way, the number of channels to be 
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analyzed would be gradually (and pseudo-randomly) reduced e. g. to 3, whilst making 

sure that in each selection, channels representative of all the areas of the brain are 

included.  

 

The pseudo-random reduction of electrodes used in this procedure is 

graphically explained in Figure 7.2. The electrode labels were arranged in a 5  5 

matrix (elemat, shown in matrix 7.1), in accordance with their position on the scalp 

(see Figure 3.1, the electrode distribution according to the standard international 10-

20 system). For example, the first two rows correspond to the frontal electrodes (row 

1: FP1 and FP2 and row 2: F7, F3, FZ, F4, F8), and so on until the fifth row where the 

occipital electrodes where located. The elements of this matrix without electrodes 

were filled in with zeros (elemat11, elemat13, elemat15, elemat51, elemat53, and 

elemat55). From elemat11 until the last element of this matrix, elemat55, arrays with 

alternate nonzero electrodes and size equal to number of channel to process (6 in this 

example) were selected from this matrix (see Figure 7.2(a)). In order to have more 

combinations of electrodes arrays, the rows and columns of elemat where circularly 

shifted several times and the selection of electrodes repeated. 

 

0 0 0

0 0 0

 
 
 
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 
 
 
 

FP1 FP2

F7 F3 FZ F4 F8

elemat T3 C3 CZ C4 T4

T5 P3 PZ P4 T6

O1 O2

   7-1 

 

Using TDSEP-ICA with a time delay =0,1,2,...,20, the ICs for each subset of 

electrodes obtained pseudo-randomly in the reduction of electrodes, were calculated 

(see Figure 7.2(b)). In the recording S6-St1 is possible to recognize clear ICs related 

to the AEP and the CI artifact in the subset shown. 

 

The MI between the ICs in each subset is calculated and used as a similarity 

measure to the cluster analysis. Using the residual MI between the ICs, the estimate 

with the minimal dependency with the rest of the estimations is selected in each 

subset, to do that, instead of the clustering procedure proposed by Krashov et al and 

listed in above paragraphs, the dendrogram construction was reformulated by finding 
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the Euclidean distance between the elements of the MI matrix [56]; the proximity of 

the ICs is defined as the minimum distance (maximum of the MI). Figure 7.2(c) 

shows the dendrograms obtained with this procedure and the ICs selected in specific 

subsets. The minimally dependent IC in subset 1 corresponds to the AEP, whilst it 

corresponds to artifacts in subsets 4 and n. 

 

Step 2) Clustering estimates: The ICs selected in the preceding step are grouped using 

the Euclidean distance as measure of similarity; the hierarchical agglomerative 

dendrogram for these ICs is shown in figure 7.3(a). The final number of clusters is 

determined selecting an appropriate level in the dendrogram; the 70% of the 

maximum distance (height) between clusters. Only the clusters with more than one 

estimate were considered as robust clusters (clusters 2, 5 and 6 in this example, figure 

7.3(b)). The trace in red is the average of the estimation in each cluster. 
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(a)

(b)

 (c)  

Figure 7.2 Outline of the electrodes reduction in the procedure to objectively identification of 

consistent ICs through MI and clustering (recording S6-St1). (a) For each electrode subsets, 6 

electrodes selected pseudo-randomly, (b) the ICs were calculated using TDSEP-ICA. (c) 

These ICs were grouped using the residual MI between them; the IC last merged was selected 

in each subset (IC4 for subset 1, IC6 for subsets 4 and n). 
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Figure 7.3 All of the ICs selected in the previous step (see figure 7.2) were clustered using 

the Euclidean distance as a similarity measure. The hierarchical agglomerative dendrogram 

(top) was cutoff at 70% of the maximum distance between ICs. Three robust clusters can be 

seen in this example (botton), CL2 and CL5 related to the AEP (with a frontal distribution) 

and CL6 associated with the CI artifact (recording S6-St1, CI in the right side). 
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7.3 Hierarchical agglomerative clustering results  

 

The procedure described before was carried out in 7 recordings from children 

with CIs. Recordings S1-St2 and S4-St2 were excluded from the analysis because the 

electrodes around the CI were not connected during the AEP recording. Since the 

objective is to recognise the most robust ICs related to both the AEP and the CI 

artifact, the identification of the CI artifact was expected to be more difficult in those 

recordings; additionally the comparison between results could not be viable. 

 

Figure 7.4 shows the dendrogram and the most robust estimates for recording 

S5-St1 (CI user at 8 m after implantation); in this case each subset of channels 

analysed includes 6 electrodes. The final number of clusters, using the criteria of 70% 

of the maximum dendrogram height is 5. Three robust clusters (with more than one 

IC) were observed in this recording. Using the spatial projection of the average IC 

(trace in red) for each robust cluster the estimates were identified; two clusters are 

related to the AEP: CL3 and CL5 and one cluster with the CI artifact CL4. The 

topographic maps associated with the AEP have a distribution predominantly central 

whilst the distribution of the estimate related to the CI artifact is principally between 

electrodes T6 and O2 where the antenna of the CI is positioned.  

 

Figure 7.5 shows the dendrogram and the most robust estimations for subject 

S3-St2, this child has been using his CI for 1 year; these results were obtained using 4 

electrodes in each subset analysed; the maximum number of cluster using the criteria 

of 70% of the maxima height is 11, but only two clusters have more than one estimate 

each (robust clusters). The spatial projections of the average IC in CL10 show a 

central distribution which could be associated with the AEP whilst the principal 

activity in the topographic map of CL 9 is in the right hemisphere where the CI is 

located. 
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(a)                                          (b) 

Figure 7.4 Dendrogram (top) and robust ICs and average spatial projections for child S5-St1 

CI user (bottom), 8m after implantation; two clusters are related to the AEP CL3 and CL5 and 

one cluster is associated with the CI artifact (CL4). 
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Figure 7.5 Dendrogram (top) and estimations clustering and topographic maps (bottom) for 

subject S3-St2 (subsets of 4 electrodes were analysed). The number of cluster using the 70% 

of the maximum distance between clusters is 2; one cluster is related to the AEP (CL10) and 

one with the CI artifact (CL9). 
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Figure 7.6 shows the hierarchical dendrogram robust cluster and spatial 

projections of the ICs for the same subject of figure 7.4 but 5 years and 5 months after 

implantation; the ICs in clusters CL1 and CL3 are two components of the AEP and 

cluster CL2 is noise electrodes around the CI; the trace in red is the average of the 

estimation. In this recording 5 electrodes for each subset were selected and the final 

the number of clusters was 3. The spatial projections of the average ICs related to the 

AEPs shown lateralised distribution opposite to the CI. 

 

Figure 7.7 shows the hierarchical dendrogram and the most robust ICs 

recovered from recording S5-St2; subsets of 4 electrodes were analysed. The final 

number of clusters obtained using the 70% of the maximum distance between clusters 

was 3. The spatial projections of the average ICs in each cluster indicate that CL4 is 

related to the AEP with a frontal distribution lateralised opposite to the CI. CL5 could 

be another element of the AEP with a frontal distribution. Finally, the spatial 

projection of the average IC in CL6 shows activity around the electrodes where the CI 

is located; the noise could be generated by the CI itself. 

 

Three robust clusters were recovered by the procedure proposed in this chapter 

in recording S4-St1 (see Figure 7.8); subsets of 9 electrodes were analysed. According 

with the spatial projections of the average ICs in each cluster it is possible to say that 

clusters CL2 and CL3 are related to the CI artifact whilst cluster CL4 is associated 

with the AEP with a posterior distribution. 

 

Robust ICs related to the AEP and CI artifact were identified in recording S5-

St3 (Figure 7.9); subset of 7 electrodes were analysed in this recording. Using the 

criteria of the 70% of the maximum distance between cluster, 4 clusters were 

recovered. Two clusters are related to artifacts; CL2 corresponds to the CI artifact and 

Cl6 with noisy electrodes (F4, F8 and C4). The spatial projections of the average ICs 

in CL3 shows activity opposite to the CI location but predominant parietal and frontal 

in CL7.  

 

 



Chapter 7. Selection of Independent Components using Mutual Information and 

Clustering 

 

 

123 

 
Figure 7.6 Dendrogram (top) and estimations clustering and topographic maps (bottom) for 

subject S3-St3 (child with CI, 5y 5m after implantation). The number of clusters using the 

70% of the maximum distance between clusters is 3; two clusters are related to the AEP (CL1 

and CL3) and one to noisy electrodes around the CI (CL2). 
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Figure 7.7 Dendrogram (top) and estimations clustering and topographic maps (bottom) for 

subject S5-St2 (subsets of 6 electrodes were analysed). The number of cluster using the 70% 

of the maximum distance between clusters is 3; two clusters are related to the AEP (CL4 and 

CL 5) and one with noise generated by the CI (CL6). 
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Figure 7.8 Dendrogram (top) and estimations clustering and topographic maps (bottom) for 

subject S4-St1 (subsets of 9 electrodes were analysed). The number of cluster using the 70% 

of the maximum distance between clusters is 3; two clusters are related to the CI artifact (CL2 

and CL 3) and one with the AEP (CL4). 



Chapter 7. Selection of Independent Components using Mutual Information and 

Clustering 

 

 

126 

 

Figure 7.9 Dendrogram (top) and estimations clustering and topographic maps (bottom) for 

subject S5-St3 (subsets of 7 electrodes were analysed). The number of cluster using the 70% 

of the maximum distance between clusters is 4; two clusters are related to artifacts (CL2 and 

CL 6) and one or two possibly related to the AEP (CL3 and CL7). 
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The number of robust clusters indentified across subjects was diverse; in 

general one or two for the AEP (it could be related to the symmetry of the auditory 

response and the time after implantation). One or two related to the CI artifact and one 

related to another type of component (blinking, line noise or spontaneous EEG 

activity). In general, the AEP is more robust and is in accordance with the time of 

implantation (compare Figures 7.4 and 7.5). The advantage of the procedure proposed 

in this chapter over the methodology proposed by Krashov et al is that it is the less 

time consuming to run; approximately one octave of time to run the procedure 

proposed by those authors. 

 

Since the CI artifact is located in a very specific area of the brain (right or left 

temporal lobe), the performance of TDSEP-ICA is better in recovering the AEP when 

distant electrodes to the CI were selected. The AEP and the CI artifact are spatially 

uncorrelated, this procedure emphasises this between both signals and better positions 

TDSEP-ICA to carry out the estimates. 

 

Although the clustering of the estimations is correct visually, and the 

topographic maps of the average ICs in each robust cluster are close to the expected, it 

is necessary to compare different agglomerative methods as well as to determine the 

optimal number of clusters in each dendrogram. Furthermore, it is necessary to 

include criteria to determinate the number of clusters in accordance with the reduction 

of electrodes. For that, the consistency between links of the clusters could be used, for 

example. If the length of a link does not vary significantly from the length of 

neighbouring links, it means that the objects merged at that level of dendrogram have 

similar characteristics (there is consistency between the objects). Another option is 

use a silhouette plot which reflects the strength of a clustering to the nearest stable 

cluster, compared to the next best cluster [46]. 

 

Moreover, it is important to analyse the convenience of using a partitional 

clustering instead of hierarchical agglomerative clustering used in this chapter. Since 

the objective of this thesis was to propose a method to evaluate objectively the 

maturation of the auditory system of children with CI and not necessarily to develop a 

procedure to select the ICs with physical and physiological meaning after using ICA, 

it was decided do not use the procedure proposed in this chapter, as mentioned before 
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more work is needed to obtain reliable results that can be used in the analysis of 

sources of the AEPs. 

 

Finally, it is possible to mention that this part of the research opens an 

alternative line of study to extend the use of cluster analysis applied to this type of 

dataset (AEP recordings with CI artifact). 

 

7.4 Summary 

 

A fundamental stage when applying ICA to neurophysiological data is the 

selection of relevant ICs. The standard implementation of ICA supposes a square 

mixing matrix; this results in as many ICs as EEG channels (19 in this case). Because 

of that it is important to have an objective procedure to select the relevant ICs 

consistently. The procedure for robust selection of ICs proposed in this chapter can be 

summarized in two steps: 

 

1. The number of channels to be analysed using ICA was gradually and pseudo-

randomly reduced from the original 19 to 3 (ensuring the inclusion of electrodes 

representative of all the areas of the brain), the best results were obtained using from 9 

to 4 electrodes. The ICs with least dependence on the rest of the ICs was selected in 

each data subset; the parameter used to measure the dependence between the ICs is 

the MI. 

 

2. The ICs selected in the preceding step are grouped using the Euclidian distance as a 

measure of similarity. Clusters with the most robust (stable across the different data 

subsets) ICs for each subject were then obtained. 

 

The number of robust clusters obtained with the procedure proposed was from 

2 to 4 depending on the number of electrodes selected at the beginning of the 

procedure. In general, the most robust ICs correspond to the AEP and the CI artifact. 

The principal advantage of the procedure proposed in this chapter over the Krashov et 

al procedure is the favourable computational cost. On the other hand, it is necessary to 
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include a systematic study about the optimal number of electrodes to select in order to 

obtain the most number of robust clusters with physical and physiological meaning. 

 

The number of robust clusters and ICs in each cluster is different for each 

subject, which introduce more variables in the source analysis procedure; making the 

interpretation of the results for the assessment of children with CIs very difficult. 

Because of this, it was decided to not use the procedure proposed in this chapter in the 

source analysis of the AEPs. 

 

At this point, the most optimal ICA algorithm (TDSEP-ICA) and its best 

parameters to remove the CI artifact of the dataset used in this research have been 

selected. In addition, a procedure to recover the most robust components in each 

recording has been explained. The AEPs recovered after removing the ICs associated 

with the CI artifact are now shown and discussed in Chapter 8; moreover the changes 

in the topographic maps of the ICs related to the auditory response are analyzed in 

order to establish their relative changes with respect to the time of use of the CI. 
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Chapter 8. 

Assessment of the neurological 

maturation of children with CIs 

 

 

 

The objective of this chapter is to show that TDSEP-ICA can be used not only 

to reduce the CI artifact of contaminated AEP recordings, which is fundamental to the 

next part of this research (to facilitate and increase the accuracy of the source analysis 

of the AEPs), but also demonstrates that it is possible to use the topographic maps 

(spatial projections) of the ICs associated with the auditory response to follow the 

auditory maturation of children with CIs. 

 

In section 8.1, the ICs recovered by TDSEP-ICA related to the AEP in normal 

hearing and implanted children are shown, together with an analysis of changes in the 

P1 peak latency in accordance with the age of normal subjects and with the time of 

implantation in child CI users. After that, the topographic maps of relevant ICs in 

children with CIs are shown. Section 8.2 includes an explanation of how the changes 

of the spatial projections of the ICs related to the AEP can be used to evaluate the 

maturation of the auditory system in children with CIs. Finally, section 8.3 includes 

some examples of de-noised AEP recordings which were used in the last part of this 

research. 

 

All the results shown in this chapter correspond to 1000 Hz and 70 dBHL 

sound stimuli and using TDSEP-ICA (=0,1,2,...,20) applied to the 19 EEG recordings 

with only 50 epochs; plots have arbitrary units for the amplitude of the ICs. Each one 

of the plots was labelled with the implanted subject number and the number of the 

study (see Table 3.2), whilst the plots for the normal children were labelled with a 

sequence of letters. 
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8.1 Identification of the AEP in normal hearing and implanted children 

using TDSEP-ICA 

 

First, TDSEP-ICA was applied to ongoing EEG recordings from normal 

hearing children with number of ICs equal to number of channels (19). Figure 8.1 

shows the ICs associated with the AEP in three different children for the groups listed 

in Table 3.1. In group 1, children from 3 to 4 years old, it is possible to identify a P1 

peak with latencies between 175 and 225 ms; in group 2 the latency of P1 is between 

140 and 170 ms. In group 3 the latency of this positive peak is around 100 ms. 

Finally, in group 4 instead of P1, a negative peak around 100 ms is present in the 

response (similar to the adult auditory response morphology). The changes in the P1 

peak latency in children younger than 10 y.o. are as expected, the latency of the peak 

decrease as a function of age [109;132;133]. 

 

 
Figure 8.1 ICs related to the AEP in normal hearing children. For children less than 10 years 

old the components have a positive peak with difference latencies at different ages, whilst 

between 10 and 14 years old, it is possible to recognize a negative peak around 100 ms, 

instead of the positive peak. 
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Figure 8.2 shows the ICs related to the AEP in six implanted children at 

different times after implantation. Although the reduction of the CI artifact is not 

total, it is possible to recognize the P1 peak in all of the recordings, the latency of this 

peak is variable from 130 to 200 ms across the recordings. A transversal comparison 

between the latencies of the P1 is not possible since the number of recordings in each 

group is reduced. In a longitudinal comparison, the latency of P1 peak is shorter in 

accordance with the time of use of the CI (length of time since implantation). Even 

though the latency of P1 decreased, it remains prolonged compared with age-matched 

normal hearing children. 
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Figure 8.2 ICs related to the AEPs in six different child CI users, at different times after implantation. A positive peak between 130 and 200 ms can be 

identified in all the recordings. 
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The waveforms of the ICs related to the AEP in three different subjects, one 

normal hearing and two implanted children, are compared more closely in Figure 8.3; 

the latencies of P1 and N1 in kc, normal hearing 7 y.o. child, are 109 and 210ms 

respectively. Subject S3-St3 has used his implant for 5 years and 5 months, P1 

(168.3ms) and N1 (273ms) can be recognized in this subject. Both P1 and N1 were 

recognized in subject S6-St1 with latencies at 174 and 279ms respectively; this 

subject has used her implant for 2 year and 6 months. Although the IC waveforms of 

the implanted children are similar to the IC of the normal hearing child, the P1-N1 

complex is presented in the three subjects, the latencies of this complex are prolonged 

in S3 and S6. 

 
(a)    (b)    (c) 

Figure 8.3 ICs associated with the AEP in three different subjects; (a) kc is a normal hearing 

child, 7 y.o. and (b) S3-St3 and (c) S6-St1 are two children with different times of 

implantation; subject S3 was implanted at 7 y.o. whilst subject S6 was implanted at 4 y.o. 

 

In addition to the AEP ICs, several artifacts were identified during the analysis 

of the dataset; Figure 8.4 shows the waveform and spatial projections (views were 

selected for easier visualization of the ICs) of three of the most common ICs 

associated with artifacts in the subjects. The artifacts shown in this figure were 

observed in three different recordings; the ICs associated with the CI artifact (Figure 

8.4(a)) have two distinguishing characteristics: 

 

1. Waveform and duration, pulses with width  100 ms 

 

2. Spatial projection centred over the CI site (temporal area). Others artifact 

identified were blinking (Figure 8.4(b)) and noisy electrodes (Figure 8.4(c)). 
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(a)    (b)     (c) 

Figure 8.4 Waveforms (top) and spatial projections (bottom) of the most consistent ICs 

related to artifacts in all the subjects. (a) The IC of the CI artifact is a pulse with a width of 67 

ms and spatial projection around T4 and T6 which corresponds to the localization of the CI in 

S1-St3, (b) the topography of this IC should be associated with blinking, (c) this IC is related 

to a noisy electrode (C4). 

 

8.2 Assessment of the neurological maturation of children with CIs 

using TDSEP-ICA 

 

Neurological maturation of the auditory cortex or cortical plasticity refers to 

structural and functional changes of neural properties which occur on different 

temporal and spatial scales; the temporal scale extends from seconds to a whole life 

and the spatial scale extends from the molecular level to changes on topographic 

(scalp) maps [85]. The changes in the morphology of the ICs offer us a way to 

evaluate the temporal aspect of the plasticity whilst the changes seen in the 

topographic maps give us the opportunity to follow the spatial aspect of maturation in 

children with CIs. 

 

Figure 8.5 shows both the ICs and spatial projections related to the AEP in all 

the children implanted. Each row corresponds to different subjects whilst columns 

correspond to time after implantation. A closer analysis of the modification of the 

spatial projections in accordance with the time of implantation is shown in the rest of 

the figures in this chapter. 
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Group : 1 <1y post-CI Group 2:  ~1y post-CI Group 3:  1-2y post-CI Group 4:  ~2.5y post-CI Group 5:  >5 post-CI

S1

S2

S3

S4

S5

S6

 

Figure 8.5 Waveforms and spatial projections of the ICs related to AEPs in all the subjects with CIs. 
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The changes in the IC waveforms associated with the AEP, as well as their 

spatial projection in the first year of implantation of three different subjects (S1, S2 

and S4), are shown in Figure 8.6. In (a) the subjects have used their CIs for less than 

one year (5 months on average); (b) shows the recordings of the same subjects at one 

year after implantation. The changes in the latency of P1 peak of the ICs associated 

with the AEP between both recordings varied among subjects, 16 ms in S1 and only 3 

and 4 ms in S2 and S4, respectively. However, changes of the spatial projections are 

similar in the three subjects, from parietal to front-central at one year of using their 

implants. 

 
(a)                                                                  (b) 

Figure 8.6 Changes in the IC waveforms and spatial projections of three different subjects 

(S1, S2 and S4) during the first year of use of their CIs; (a) St1: less than one year post-

implantation and (b) St2: approximately one year post-implantation. 

 

Figure 8.7 shows the changes in the topographic maps and waveforms of the 

ICs related to the AEP in two subjects at different times after implantation. In subject 

S3 the latency of P1 changed from 165 ms to 160 ms whilst in subject S5 the latency 

changed from 156.3 to 143 ms; the spatial projections of these components changed 

from central (1-2 years post-CI) to fronto-central contra-lateral to the CI (>5 years 

post-CI). Both subjects have their CIs on the right side. 
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(a)                                                                  (b) 

Figure 8.7 Changes in the IC waveforms and spatial projections of two different subjects (S3 

and S5); (a) between one and two years post-implantation and (b) more than five years post-

implantation. 

 

Figure 8.8 shows the ICs related to the AEPs and their spatial projections of 

one subject (S5, implanted at 4 y.o. in the right side) at two different times of use of 

his CI (Study 1: 1 year and 9 months and Study 2: 2 years and 8 months post 

implantation), compared to a normal hearing child (xal, 4 y.o.). The latencies of P1 

and N1 remain similar between study 1 and study 2, there is a difference of one year 

between these two recordings; however, the spatial projection of the ICs related to the 

auditory response changes from fronto-central almost symmetric to frontal lateralized 

in the left side. The topographic map in study 2 is very similar to that of a normal 

hearing child. 

 
Figure 8.8 Changes in the ICs related to the AEP and their spatial projections of one subject 

(S5, implanted at 4 y.o. in the right side), at two different time of use of his implant, 

compared with a normal hearing child (xal, 4 y.o.). 
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Figure 8.9 shows the ICs associated with the AEPs and their spatial 

projections of one subject (S3, implant at 7 y.o. in the right side) at two different 

times of use of his CI (Study 1: 1 year and Study 2: 1 year 8 months post 

implantation), compared with a normal hearing child (kc, 7 y. o.). In study 1, only a P1 

peak is observed; the latency of P1 shifted from 200ms in study 1 to 163 ms in study 

2; moreover the spatial projection is more central and localized and is more similar to 

the topographic map of a normal child. 

 
Figure 8.9 Changes in the IC of the AEP and its spatial projection of one subject at 

two different times of use of his CI (S3, implanted at 7 y.o. in the right side), 

compared with a normal hearing child (kc, 7 y. o.). 

 

Figure 8.10 shows the ICs associated with the AEP and their spatial projection of 

three different subjects (S3, S5 and S6, implanted in the right side) with more than 

two years using their CIs (2 year 5 months on average); it is possible to identify both 

P1 and N1 peaks in all subjects. The latency of P1 is 160.3, 148.3 and 174 ms 

respectively. The spatial projections have a fronto- to fronto-central distribution 

lateralized opposite to the CI. 
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Figure 8.10 ICs associated with the AEPs and their spatial projection of three different 

subjects (S3 implanted at 7 y.o., S5 and S6 implanted at 4 y.o.) with more than two years 

using their CI (implanted in the right side); it is possible to identify both P1 and N1 peaks in 

all subjects. The spatial projections have a front to front-central distribution lateralized 

opposite to the CI. 

 

The latencies of the P1 peak in the ICs related to the AEP among subjects are 

diverse and it is not possible to identify the complex P1-N1 in all the subjects (S1-St1, 

S2-St1 and S3-St1). In general the latency of this positive peak is shorter as a function 

of the use of the CI. It is difficult to draw any conclusion about the auditory system 

maturation of these children using just this parameter. Nevertheless, the spatial 

projection of these ICs shows more consistent changes in accordance with the use of 

the CI, across all the subjects. Although it is necessary to increase the number of 

subjects and recordings, in order to have more reliable results, it is possible to say that 

subjects implanted younger present topographic maps more focussed in a specific area 

contra-lateral to the CI than children implanted at an older age (compare for example 

Figures 8.8 and 8.9). 

 

In general, the spatial projections of the AEPs‟ ICs are spread out around the 

head with no focus in any specific area, although predominantly parietal when the 

children have used their CIs for less than one year. At one year after implantation the 

spatial projections are characterized by a central to fronto-central distribution. Finally, 

the spatial projections of the ICs have a distribution fronto- to fronto-central, contra-

lateral to the CI implantation at more than two years post-implantation. The spatial 

projections of the ICs related to the AEP show similarities with normal hearing 
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children‟s spatial projections, which could be used for an objective assessment of the 

maturation of the auditory system in children with CIs. 

8.3 De-noising the AEP 

 

In this section the original signals and the de-noised signals after removing 

artifactual ICs, using TDSEP-ICA (=0,1,2,…,20), are shown. The columns of the 

mixing matrix corresponding to those components were made zero to generate the de-

noised signal. Appendix G includes all the artifactual ICs identified in the recordings 

from children with CIs. The principal artifact recovered were those related to the CI 

artifact and noisy electrodes; additionally, both the original and the de-noised signal 

after removing those artifacts are shown in this appendix too. Some examples of those 

signals are shown in the following figures. 

 

The original and de-noised signals (plots on red and black, respectively) for 

recording S2-St1 (female implanted in the left side) are shown in Figure 8.11. The ICs 

related to the CI artifact and noisy electrodes were removed from this recording. After 

removing those artifacts, it is possible to identify P1 peak in the electrodes around the 

CI (T3 and T5). 
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Figure 8.11 Comparison between the original (red) and de-noised signal (black) in recording 

S2-St1, the ICs related to the CI artifact and noisy electrodes were removed in this recording. 

 

Figure 8.12 shows the original signals and their de-noised version (after 

removing the ICs associated with the CI artifact using TDSEP-ICA) for three different 

recordings. The reduction of the CI artifact is not total but it is now possible to 

identify the AEP in the electrodes that were contaminated by this artifact (T4 and T6 

for these subjects). Subject S3-St1 is a child one year post implantation; it is possible 

to identify a positive peak at 166 ms. The complex P1-N1 was identified after de-

noising in subject S3-St2 and S6-St1. For the case of subject S3-St2 who had used his 

CI for 1 year and 8 months at the time of this recording, the latency of P1 is 171 ms 

and 276 ms for N1. Subject S6-St1 had used her CI for 2 years and 5 months; the 

latency of P1 is 174 ms and 279 ms for the negative peak. 
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Figure 8.12 Butterfly plots of both the original signal (left column) and the signal after 

removing the ICs associated with the CI artifact (right column); both P1 and N1 were 

identified in subject S3-St2 and S6-St1 whilst only P1 was detected in subject S3-St1. 

 

8.4 Summary 

 

This part of the research consisted of applying the ICA technique not only to 

reduce the CI artifact [39;52] but also to detect AEPs in ongoing multi-channel 

recordings. After that, using the spatial projection of the ICs associated with the 

AEPs, which provides a global representation of the response to the auditory stimulus, 

it was possible to follow the auditory system maturation of children with CIs in 

accordance with the time of use of their implants. 

 

The topographic maps related to the AEP change from being spread out 

around the head with parietal predominance, to fronto-central localization contra-

lateral to CI implantation. The spatial projections of the ICs related to the AEP show 

similarities with normal hearing children‟s spatial projections in accordance with the 

time of implantation, which could be used for a robust and objective assessment of the 

maturation of the auditory system in children with CIs. Furthermore, this method 

should be suitable to be implemented in practice in a clinic. 
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One advantage of ICA is that it can be applied directly to un-averaged EEG data 

with the possibility of reducing the number of epochs and hence the testing time. The 

results obtained using TDSEP-ICA with only 50 epochs show that it is feasible to 

reduce the time of the recording to one third of the original EEG recording time; this 

is particularly useful, since it is hard to obtain good results from children without 

sedation, over long experimental sessions. 

 

Once all the artifacts have been removed, the source analysis for the P1 peak of 

the AEPs of both normal hearing and children with CIs is carried out. In the following 

chapter a review of the most important concepts involved in source analysis theory 

are included; moreover the assumptions of the head model, type of dipoles and the 

mode to validate the source analysis results are mentioned in this chapter. Finally, the 

results of the source analysis of the AEPs to assess the performance of CI users are 

shown at the end of that chapter. 
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Chapter 9. 

Source analysis of the AEP in children 

with CIs 

 

 

 

The results shown so far exposed the changes in the topographic maps of the ICs 

associated with the AEPs in accordance with the use of CIs over time. It is interesting 

however, to follow the changes in neural sources in the form of Equivalent Current 

Dipoles (ECDs) of these potentials, at different times post implantation. This gives a 

basis for an objective technique to evaluate the maturation of child CI users. The aim 

is for this to be an objective procedure to assess the maturation of the auditory system 

of an implanted Child-CI as a complete system, viable for implementation in a 

practical clinic. 

 

This chapter is organized as follows: Section 9.1 includes an introduction of 

source analysis theory, the assumptions behind the use of the ECDs considered in this 

theory, as well as an overview of some electromagnetic equations relevant to model 

the EEG in this way. Source analysis consists of solving the forward and the inverse 

problem, both these topics are described in Section 9.2. In Section 9.3 the parameters 

used in commercial software used here for the source analysis of AEPs are described. 

In Section 9.4, the description of an alternative procedure, which uses TDSEP-ICA in 

the pre-processing step of the source analysis of the AEPs, is detailed. In Section 9.5 

results of the source analysis of the AEP P1 peak, in both normal hearing children and 

children with CIs, are shown. Finally, in Section 9.6 source analysis of the P1 peak for 

the assessment of CI users is explained. 
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9.1 Brain Source analysis 

 

Using functional data (multi-channel EEG or MEG) and anatomical data, such 

as Magnetic Resonance Image (MRI) and Computer Tomography (CT), it is possible 

to obtain an estimate of the localization of the current sources generated by specific 

neurological events within the brain. Useful for example, for determining the location 

of epileptic focii and EPs which are generated within the cerebral cortex. This activity 

is the consequence of depolarisations or hyperpolarisations in concert, giving in result 

a dipolar current source generally orthogonally oriented to the cortical surface; the 

active regions in the cortex could be focal or distributed [37]. Focal source models 

are suitable for electrical activity within small areas of the brain whilst distributed 

sources models represent the activity with a grid containing hundreds of dipolar 

sources with fixed position and orientations. The first model is solved using single 

dipole fits, whilst the second model is computed by current density methods; these 

models are able to describe extended sources, estimating the time course for each one 

of the dipoles. The problem of recovering the current sources from superficial EEG 

recordings is that it is intrinsically ill-posed; it is impossible to uniquely determine the 

spatial configuration of neural activity based on EEG recording alone [115], no matter 

how many recording channels are used. 

 

Source analysis consists of calculating the current sources and potential fields 

within the brain; for this, a model of the source and the head is assumed in order to 

calculate a solution of the inverse problem (nonlinear and intrinsically ill-posed) 

which is obtained (usually) by an iterative process. This iterative process consists of 

moving a ECD, whilst its amplitude and orientation are changing within the head 

model, to obtain the best fit between the EEG data (as measured at the scalp) and 

those produced by the source in the model. As already mentioned, there is no unique 

solution to this inverse problem since different internal source configurations can 

produce equal external electromagnetic fields; the quality of the solutions depends on 

the source and head models used. The most simplistic source model is a single dipole 

which is convenient if the distance between disparate dipoles is large or the dipoles 

are thought to have different temporal activities. There are different volume conductor 

head models used to solve the inverse problem; spherical models with 3, 4 or 5 shells 

and realistic head models calculated from MRI data. A spherical model is the most 
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simplistic volume conductor; this model contains concentric layers that represent the 

scalp, cerebrospinal fluid (CSF), skull, and brain, each one with different electrical 

conductivity [127]. The Boundary Element Method (BEM) is a realistic head model 

which approximates compartments of the head by triangular meshes with a limited 

(but large) number of nodes [47;48]. The solution of the inverse problem depends on 

the geometry and conductivities of the volume conductor selected. 

 

Three principal prior assumptions in source analysis should be considered: 

 

1) A small number of focal sources that can be modelled by ECDs to generate 

EP. 

2) The localization, orientation and activity over time of each ECD are 

interactively determined by minimizing the difference between the predicted 

and the actual EP. 

3) The electrical activity is generated by the pyramidal cells of the brain i.e. 

the sources of the recorded potentials are located in the cerebral cortex. 

 

Maxwell‟s equations (Equations 9.1-9.4), which state the fundaments of 

electricity and magnetism, are used to compute the electrical field E and the magnetic 

field B generated by neural currents density J;  is the permittivity of the medium. 

 


.
E=/,     9-1 

t


  



B
E  ,    9-2 

              
.
B=0,         9-3 

and                                                                   
t


  



D
H J .                9-4 

 

Equation 9.1 (Gauss‟ law for electricity) states that the electrical potential E is 

proportional to the charge density , at the same time E is proportional to the time 

rate of change of magnetic field B (Equation 9.2, Faraday‟s law of induction). 

Equation 9.3 (Gauss‟ law for magnetism) state that the magnetic field, B, has 

divergence equal to zero.  
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Equation 9.4 tell us that the magnetic fields (H, due only to macroscopic 

currents) may be generated in two distinct way, by currents J or by a time varying 

electric field (the electric displacement D); these relations are linear in conductive, 

dielectric and magnetic senses, that is 

                                                                          J E ,      9-5 

ED  ,     9-6 

and                                                                   B H .      9-7 

 is the electrical conductivity of the medium,  is the permittivity of the medium, and 

 is the permeability of the magnetic material. 

 

At the low frequencies of brain dynamics, the electric and magnetic fields are 

separate then the magnetic field may be calculated from the Biot-Savart law which 

describe the magnetic field generated by an electric current. This equation is a special 

case of Equation 9.4 

34 r




rP
H ,     9-8 

 

where H is the magnetic field, P is the current dipole moment, and r is the vector 

from the dipole to the field point; the direction of H is circular, enfolded around the 

dipole axis. 

 

The conservation of free charges, the charge is neither created nor destroyed, 

follows from Equations 9.1 and 9.4 that is 

0





t
J


.    9-9 

 

The equations listed in this section constitute the basis to model the electrical 

activity into the brain. The current flow causes an electrical field and also a potential 

inside the human head which can be calculated using these equations. 
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9.2 Inverse and Forward problem  

 

The inverse problem consists of calculating the localization and magnitudes of 

the ECD(s) within the brain using: a set of electric potentials from discrete sites on the 

scalp, the associated electrode position of those measurements, and both the geometry 

and conductivity of the different regions in the head. Each ECD source has six 

parameters, three which correspond to localization coordinates (x, y, z), two with the 

orientation (θ, ) and one with the time-dependent source strength, (see Figure 9.1 

[127]). In order to solve the inverse problem is necessary to solve the forward 

problem first where the strength, location and orientation of a source inside the head 

are known whilst the measurements on the outside of the head are unknown; in this 

case the problem has a unique solution. 

 

Figure 9.1 Each one of the ECDs, S, has six parameters, three which correspond to 

localization coordinates (x, y, z), two with the orientation (θ, ) and one with the time-

dependent source strength. 

 

Constraints are needed to single out one solution to the inverse problem; once 

the source model (focal or distributed), the number of sources (symmetric in both 

hemispheres or not), as well as an anatomical constraint (specific area in the brain) 

must be included then the inverse problem can be solved. Information on sensor 

location is required to compute the solution too. Using landmarks positions (often the 

nasion, inion and pre-auricular points), the centre-of-gravity of these landmarks is 

then the most well defined location. 
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Basic equations for the forward problem 

 

The EEG is the result of the intracellular currents generated by specific 

neurons in the grey matter (pyramidal neuron cells). Mathematical models in EEG 

include the so-called volume conductor models. The basic equations of these models 

relate current and potentials produced in the volume conductor. These currents can be 

modelled by the Poisson‟ equation, this equation is derived via Maxwell‟s equations 

(Equations 9.1-9.4). Poisson‟s equation follows directly from Ohm‟s law for an 

isotropic conductor (see Equation 9.5). 

 

Equation 9.1 gives the relation between the electrical field and the charge 

density; additionally, the electrical field is related to the electrical potential, V, by 

 

 E V .     9-10 

 

The Poisson equation relates the electrical potential with the charge density 

2 


  V ,     9-11 

 

in a charge free region of the space, this becomes Laplace‟s equation, which is 

appropriated for calculation of potentials at the membrane scale. Once the electric 

potential has been calculated, the electrical field is computed by the gradient of the 

potential, when the charge distribution has spherical symmetry, the Laplacian is used 

in polar coordinates. 

 

The potential at any location in the head volume conductor due to brain 

sources can be expressed as 

       ' ', , , Vt t d 
'

r r r r rV G P ,   9-12 

 

where P (r, t) is the current dipole moment per unit volume at location r and time t. 

The Green‟s function G (r, r‟), which includes all the volume conductor properties, 

weight the integral; when the electrical distance between the recording localization r 

and the source location r‟ is small, the G (r, r‟) is large. 
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The forward problem, which involves calculation of scalp potentials from 

known current sources, may be solved by Equation 9.12 for potentials V due to known 

source magnitudes and locations. The inverse problem consists of finding the 

locations and strengths of the current sources of Equation 9.12, from EEG recordings, 

with respect to some reference, in the scalp [100]. 

 

In order to solve the inverse problem, the brain volume is divided into N 

voxels of volume V with a dipole moment pn(rn,ti)=P(rn,ti) V. 

Then Equation 9.12 may be replaced by 

 

     
1

, , ,
N

S k i n k n n n i

n

t p t


r r r rV G .   9-13 

 

Equation 9.13 can be interpreted as: the surface potentials VS are generated by dipole 

moments pn(rn,ti) in voxels V located at rn. 

 

Then, the basic inverse problem in EEG is to experimentally estimate the 

potential distribution at the scalp surface VS (rk, ti) to invert Equation 9.12, that is, to 

solve this integral, for the function P(r, t) using a head volume conductor model to 

specify the function G(r, r‟). As mentioned, the inverse problem is intrinsically ill-

posed, there are a very large number of functions P(r, t) that will give up the same 

surface distribution VS (rk, ti); then, the inverse solution requires constraint given the 

non-uniqueness of the inverse problem. 

9.3 Curry for source analysis 

 

Curry [3], from NeuroScan Lab, is a software package which combines 

functional data and anatomical images, for determining electrical activity within the 

brain. Curry provides powerful techniques for accurately localizing the source of such 

activity; all of this in a research context. The following paragraphs summarize the 

procedure implemented in Curry, as well as the criteria to select the parameters used 

in the source analysis of the AEP, P1 peak, in children with CIs as used in this 

research. 
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Data Pre-processing 

 

Noise estimation: One of the most important parts in the pre-processing step of source 

analysis is determining the SNR of the data. SNR is fundamental in the regularization 

of the parameters (sensor weighting); correct noise estimation leads to correct 

regularization parameters. The weight of any sensor is inversely proportional to its 

noise. The SNR of each recording was calculated using the standard deviation of the 

pre-stimulus interval (150 ms). According to the Curry‟s user Manual [38] this is 

appropriate for epoched files containing EP data. 

 

Reference selection: A reference has to be selected before performing the source 

analysis. For EEG, the common average reference (CAR) is usually used; this 

reference is more appropriate for source analysis comparison than a single reference 

site [105]. 

 

Included in the pre-processing step is the baseline correction to remove the DC 

offset from the data and the selection of the number of epochs to be averaged. In both 

normal hearing children and children with CIs the number of epochs averaged was 

chosen to be 50. 

Parameters 

 

PCA and ICA Decomposition: Using PCA Curry reduces the number of variables in 

the dataset; PCA is used to pre-white the data and to find the number of valid 

components in the ICA step. ICA is applied to filter artifactual components before the 

source analysis. 

 

The Mean Global Field Power (MGFP): is a measure that indicates the strength of the 

signal against the noise background. MGFP is commonly used to obtain a quick 

overview of the measured EEG time courses, since it collapses the information of all 

electrodes into a single trace. One can easily distinguish latency ranges with 

meaningful signal from noise or background activity periods, which is useful to 

identify the components of the EPs. 
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The MGFP is an average of the common average re-referenced data and is 

computed as follows: xi is the measured data, i=1,2,...,m; where m is the number of 

electrodes for a given time point. The steps to calculate to MGFP are: 

1. The common average Cavg is: 
1

avg i
m

C x  . 

2. The re-referenced measured data Ri = xi - Cavg. 

3. Finally,  
2

1

1








 



m

i

ii RR
m

MGFP  

In other words, MGFP is an averaged measure for the signal power [116;117]; 

estimating the SNR from the MGFP together with the residual standard deviations 

percentage can tell us if the chosen source model is at least able to explain in part the 

data. 

Source Analysis 

 

Volume conductor head model: The head is a volume conductor which distorts the 

potential of the sources in the brain. The very complex shape of a human head with all 

its anatomical details is represented by a simplified model; in order to solve the 

inverse problem it is necessary to know its shape and electrical conductivities of the 

head model [95]. The human head parts such as the brain or the skull are represented 

by different compartments with each compartment being assigned an electrical 

conductivity; the shape of these compartments could be spherical, or could derive 

from anatomical data; the latter improves the accuracy of the solution of the forward 

problem. 

 

Curry uses a concentric spherical volume conductor head models with one to 

four shells, values of their conductivities and relative radii are listed in Table 9.1; the 

spherical model assumes constant cranial curvature and constant scalp and skull 

thickness [35]. In a three shells spherical head model the inner sphere represents the 

brain, the middle shell represent the skull and the outer layer represent the scalp. 
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Table 9.1 Conductivities and relative radii for four concentric structures for a spherical head 

model (CSF: Cerebrospinal fluid) [100]. 

 

Structure Conductivities [
-1

/m] Relative Radii [%] 

Brain 0.33 83.0 

CSF 1.00 85.0 

Skull 0.0042 93.0 

Scalp 0.33 100.0 

 

The real varying thickness and curvatures of the skull assumed by the spherical head 

model could vary the source analysis solution; the so-called realistic head models 

would be more accurate than spherical head models. 

 

In each compartment of the standardized Boundary Element Method (BEM) 

model (realistic model), the electrical conductivity is modelled to be homogeneous, 

isotropic and ohmic [36;104]. This volume conductor head model is derived using an 

automated routine, from an average T1-weighted MRI dataset included in the 

software from Montreal Neurological Institute and Hospital [5]; 91 axial slices with 

91109 pixels and a voxel size of 222 mm
3
. It is possible to choose between a low 

discretization with approximately 3000 nodes, medium with 4000 nodes, and high 

with approximately 5000 nodes. 

 

The spherical shells head model is fast and numerically stable but BEM is 

superior in non-spherical parts of the head like temporal and frontal lobes and basal 

part of the head. Most of the volume conductor models for solving the inverse 

problem have less accuracy with deep dipoles [95]; in our case the dipoles for the 

AEP are cortical dipoles so the models mentioned before should be sufficient to 

recover these type of dipoles. 

 

Dipole type: the dipoles types calculated by Curry are: Moving, Rotating, Regional 

and Fixed Coherent models. The moving dipole solution consists in dipole analysis in 

a serie of time points, the six ECD‟s parameters are determinated to minimize the 

deviation between measured and forward calculated data.  The rotating dipole solution 

is an approach where the position of the dipole is fixed for all time points and its 

components (orientation and strength) can freely vary with time [131]. The regional 
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dipole is computed when three orthogonal main dipoles orientations are extracted 

from a rotating dipole, using PCA; their dipole strengths are calculated as a function 

of time. Finally, in the fixed coherent dipole solution both the location and the 

orientation are kept fixed for all time points and the dipole strength can vary with 

time; when more than one dipole is fitted, they have coherent loadings. For both 

moving and rotating dipole solutions, the optimum dipole is determined by an 

optimisation of the three location parameters. In the case of fixed dipole the optimum 

requires the simultaneous optimisation of the three location parameters as well as the 

two orientation parameters, for all time points [126;127]. 

 

Number of sources: the number of generators for the AEP N1 peak in adults, which is 

equivalent to peak P1 in children, can be as many as six [96], see Section 2.4. The 

number of dipoles that may fit the data is limited by the number of surface 

measurements (electrodes, m), in general m=6d where d is the number of dipoles [40]; 

in our case m=19 then d=3. Additionally, the number of ECDs used in the literature 

for AEP source analysis is two -symmetric in both hemispheres [22;81;106;109;123]; 

source analysis using one and two symmetric ECDs has thus been compared in this 

research.  

 

Electrode positions and landmarks: three landmarks (nasion, left and right 

preauricular points, determined using a 3-Dimensional digitizer [2]) were used; their 

centre-of-mass is near the centre of the head. When a spherical shell volume 

conductor is used the electrode position are fitted to the outermost shell and when a 

BEM model is used, the electrode are fitted to the outermost surface, which both cases 

represent the skin. 

 

The PAN co-ordinate system (Pre-Auricular point and nasion) and landmarks 

are used to match the BEM with the electrode system. In the PAN system with 

direction of the axes R: right, A: anterior, S: superior, the x axis goes through 

auricular left and auricular right and point right, the y axis goes through the nasion 

and the z axis points up (see Figure 9.2). Curry introduces a global scaling factor in 

order to improve the match between the BEM model dimension and the electrodes. It 

is calculated from the average of the ratios of the nasion-origin distances and the left-

right pre-auricular point distance [38]. 
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Figure 9.2 The PAN coordinates system with direction of axes x, y, z, as right, anterior, 

superior [32]. The positions of electrodes used in the source analysis were obtained by 

projecting the locations of the electrodes (relative to three points –nasion and two preauricular 

points) onto the external surface (skin). 

Visualization of results 

 

Anatomy of the human auditory cortex: a brain atlas with all the structures listed in 

the Talairach system is included in Curry; the Talairach coordinate system, developed 

by Talairach and Tournoux (1988) [66], identifies brain structures in the MRI data in 

terms of their anatomy or function. The Curry user can segment automatically any of 

the structures listed in the Talairach system or may click on a point in the MRI data to 

see in which structure of the brain the ECDs are localized. Using this Curry option 

both the location and Brodmann areas where the ECDs are situated were identified. 

ECDs were superimposed onto cortex segmentation from averaged MRI.  

 

The Brodmann area is a map, proposed by Korbinian Brodmaan in 1909, of 

the organization of the cortical areas in humans (and any other species) [85]. Figure 

9.3 shows the Broadmann areas of the temporal lobe: a) the primary auditory cortex 

includes areas 41 and 42; superior, middle and inferior temporal lobe are areas 22, 21 

and 20, respectively. Brodmann area 38 is part of the middle temporal lobe whilst area 

37 identifies the Fusiform gyrus. b) The medial temporal lobe includes the Amydala, 

Hippocampus, Parahipocampal gyrus (areas 27, 28, 34, 35 and 36). 

 



Chapter 9. Source analysis of the AEP in children with CIs 

 
 

157 

 
(a)       (b) 

Figure 9.3 Brodmann areas of the human temporal lobe (a) lateral surface of the brain and (b) 

medial temporal lobe. 

Validation of the results  

Two parameters were used to validate the source analysis results: 

a) The Residual standard deviation (Res. Dev.). Res. Dev. is a parameter to 

validate the ECD location; it is a measure of how well the source model 

explains the measured data. The percentage of the Res. Dev suggest by Curry 

as a good fit parameter is less than 10%, dipole fit and is calculated as 
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Where Fi are the calculated signal in the source analysis procedure 

 

b) The confidence ellipsoid (CE). CE is computed by slightly moving the 

coordinates (x, y, z) of the best-fit dipole by small increments, in the order of 1 

mm, for each dipole independently. The confidence range of the individual 

ECDs can be estimated comparing the field variation and the noise level; 

confidence ellipsoids and the SNR of the measured data are inversely 

proportional [20;49]. Curry computes the confidence ellipsoids to visualize the 

localization accuracy; a SVD is used to determine the orientation and length of 

the confidence ellipsoids. The confidence ellipsoids are characterized by their 

axes and volumes, the size of the axes is inversely proportional to the SNR of 

the data whilst the confidence volume is inversely proportional to the third 

power of the data. The confidence ellipsoids can be used to determine the 

number of ECDs; superfluous dipoles have large confidence volumes. 

 



Chapter 9. Source analysis of the AEP in children with CIs 

 
 

158 

9.4 Alternative source analysis procedure 

 

In Chapter 6 the reliability of three popular ICA algorithms was assessed; this 

included the ICA algorithm used in Curry to remove the signal artifacts in the pre-

processing step -FastICA. The principal conclusion in that chapter was TDSEP-ICA is 

better to recover the AEP and to remove the CI artifact than FastICA and Ext-

Infomax. In this section, the source analysis of the AEPs of children with CIs using 

TDSEP-ICA and the algorithm implemented in Curry to remove artifact was 

compared. 

 

Figure 9.4 shows a block diagram of the principal steps of the Curry procedure 

for source analysis of EPs. In order to assess the effect of using TDSEP-ICA instead 

of FastICA in the source analysis of AEP generators, the next procedure was followed 

in order to generate two sets of signals (de-noised and original signals). Using 

TDSEP-ICA the ICs associated with artifacts were identified, the columns of the 

mixing matrix corresponding to those components were made zero to generate the so-

called de-noised signal; for this signal the artifact removal step of Curry was omitted. 

In the so-called original signal, each one of the steps of Curry was followed (see 

Figure 9.4). In the pre-processing step of Curry the ICs related to artifact were 

removed from the original signals, whilst all the ICs with SNR>1 were left in the de-

noised signal. With both original and de-noised signals the generators of AEPs, 

normal hearing children and children with CIs, were calculated using the rest of the 

steps of the Curry procedure. 
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Figure 9.4 Outline of the Curry procedure for source analysis of EPs. The alternative method 

proposed in this research adds a step in the data pre-processing step where TDSEP-ICA was 

used to remove the CI artifact, instead of the ICA algorithm implemented by default in this 

software. 

 

Two volume conductor models were used and compared in this research; the 

characteristics for each one are as follow: 

a) Three concentric spherical head model. The conductivities of the three shells 

volume conductor head models were 0.33, 0.0042 and 0.33 [
-1

/m] brain, 

skull and scalp respectively [100]. 

b) BEM head model (average head model). It consists of three surfaces (skin 10 

mm, outer skull 9 mm, and inner skull 7 mm) with 2710, 2578, and 3196 

overall. The skin, skull, and brain comportments are triangulated using a mean 

triangle side length of 9 mm, 6.8 mm, and 5.1 mm; resulting in 1357, 1291 and 

1600 nodes respectively [47;48]. 

 

Fixed coherent (i.e., only the strength of the dipole varies) sources were fitted 

in a window of approximately 10 ms before and after the AEP P1 peak, which was 

identified using the MGFP. Three land-marks digitized at the moment of the test for 

each one of the subject were included in the source analysis procedure. The source 

analysis was carried out for four conditions: 

 

C1: One ECD with a three shell spherical head model  
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C2: One ECD with a BEM head model  

C3: Two symmetric ECDs with a three shells spherical head model  

C4: Two symmetric ECDs with a BEM head model 

 

In additional to the MGFP, the ICs related to the AEP in both normal children 

and children with CIs (see Figures 8.1 and 8.2) were used to identify the P1 peak in 

the source analysis procedure. 

9.5 Source analysis in normal hearing children and children with CI. 

 

Figure 9.5 shows the ECDs (including their confidence ellipsoids), using the 

four conditions mentioned in the previous section, of four normal hearing children. kc 

is a female 7 y.o. child; condition C4 has the smallest confidence ellipsoid whilst 

condition C1 has the largest ellipsoids. The location of the ECDs is better using two 

dipoles and a BEM head model (less Res. Dev). In subject cc, female 9 y.o., the 

location of the ECDs is in the expected brain area when the number of dipoles was 

increased from one to two and using a BEM head model. However, the confidence 

ellipsoids are largest in conditions C3 and C4. In subject ug, male 10 y.o., all the 

conditions have a good dipole location but the increase of the number of dipoles 

produces larger confidence volumes; something similar happens in subject mp, female 

11 y.o. 
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Figure 9.5 Source analyses for the P1 peak of the AEP from four normal hearing subjects (kc, 

cc, ug and mp). ECDs were fitted using a fixed coherence model and superimposed onto 

cortex segmentation from averaged MRI. Every one of the rows corresponds to each one of 

the conditions used in the source analysis process. 

 

Table 9.2 shows the Res. Dev. percentages, location and time of best fit for the 

ECDs in condition C4 for the four normal hearing children shown in Figure 9.5. The 

times of best fit of the ECDs for all the normal children were slightly different but 

close to the expected latency, 100 ms; the location of the dipoles was always in the 

temporal lobe; middle and superior temporal gyrus, and Brodmann areas 21 and 22. 
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Table 9.2 Residual standard deviation, localization and time of best fit for the ECDs in test 

condition C4 for four normal hearing children. 

 

Subject Res. Dev. [%] Location Brodmann Time [ms] 

kc 13.9 Superior Temp. Gyrus 22 100.5 

cc 18.7 Superior Temp. Gyrus 22 97 

ug 20.6 Superior Temp. Gyrus 22 104.5 

mp 22.7 Middle Temp. Gyrus 21 100.5 

 

Figure 9.6 shows the ECDs of the P1 peak including their confidence 

ellipsoids of one subject at different times after implantation. Every one of the rows 

corresponds to each one of the conditions described in section 9.4. In all the original 

signals (pre-processed using FastICA) the confidence ellipsoids were larger than in 

the de-noised signal (pre-processed using TDSEPICA) except in conditions C3 and 

C4 in recording S5-St2, although the fitted dipoles are not in the expected area 

(temporal lobe). In the original signals the anatomical locations of the dipoles were 

diverse and were not in the expected zone, only in condition C2 in both recordings 

S5-St1 and S5-St2, the locations were acceptable (inferior and superior temporal 

gyrus, respectively). The anatomical localizations using the de-noised signal were 

next to or in the temporal lobe and the confidence ellipsoids were the smallest for 

condition test condition C2. 
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Figure 9.6 Source analyses for the P1 peak of the AEP from two different recordings (S5-St1, 

1y 9m after implantation and S5-St2, 2y 8m post-implant). ECDs were fitted using a fixed 

coherence model and superimposed onto cortex segmentation from averaged MRI. Every one 

of the rows corresponds to each one of the conditions used in the source analysis processes; 

the dipoles obtained with the original and de-noised signals are shown for comparison. 

 

Res. Dev. dipole fit, of four different recording in the four conditions 

previously described, between the original and de-noised signals are shown in Table 

9.3. Lowest Res. Dev. was obtained in condition C4 for all the subjects except in one, 

S5-St3; the SNR in this recording is lower than in the rest of the recordings. 

 
Table 9.3 Res. Dev. [%] of ECD fit of four different recordings in four conditions of source 

analysis; C: conditions, O: original signal and D: De-noised signal. 

 

 S3-St1 S5-St1 S5-St2 S5-St3 

C O D O D O D O D 

1 44.1 21.4 59.9 36.7 40.3 22.3 61 50.9 

2 42 22.5 56.6 40.1 41.3 21.1 54.6 53.5 

3 23 15.1 33.6 18.3 38.2 12.9 58.8 46.4 

4 25.1 14.9 32.9 16.1 36.0 13.5 40.6 48 
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In general the confidence ellipsoids, in both normal hearing children and 

children with CIs, were smaller in the de-noised than in the original signals. The 

spatial filtering using TDSEP-ICA facilitated both the identification of the AEP P1 

peak in the MGFP as well as the source analysis process. The lowest Res. Dev. was 

obtained in the de-noised signals (using 2 symmetric ECDs with a BEM head model). 

Even though the Res. Dev. are not lower than 10% (the percentage recommended by 

Curry), the anatomical location of the dipoles from these signals were in the temporal 

lobe (superior, transverse, middle and inferior temporal gyrus). 

 

In children with CIs the MGFPs of the original signals were dominated by the 

CI artifact with a maximum peak in the first 50 ms post-stimulus; after removing the 

ICs related to the CI using TDSEP-ICA, the maxima of MGFPs produced by the CI 

artifact decreased on average by 50%. The reduction of the CI artifact in the de-noised 

signals facilitated the source analysis procedure. 

 

After comparing the four conditions mentioned before, in both normal hearing 

children and children with cochlear implants, the final parameters for the source 

analysis of the AEP were: two symmetric fixed coherent dipoles and BEM head 

models. Sources were fitted in a window of approximately 10 ms before and after the 

P1 peak, this peak was identified using both the MGFP and ICs related to the auditory 

response recovered using TDSEP-ICA and shown in Chapter 8, Figure 8.1 and 8.2.  

 

The locations of the fitted dipoles were determined using the Talairach 

coordinate system and the Brodmann areas included in Curry. The position of the 

electrodes was obtained from three landmarks digitised at the moment of the test and 

projecting it onto the external surface of the head model (skin). Finally, the ECDs 

were superimposed onto cortex segmentation (3mm thickness) from average MRI. 

 

Figure 9.7 shows the ECDs locations for the AEP, P1 peak, from normal 

hearing children grouped according to age (see Table 3.1). The locations of the 

dipoles are the superior temporal lobe in all the subjects except in Group 1. In this 

group, the ECDs are in the inferior temporal gyrus (Brodman area 20), contiguous to 

Brodmann area 38 (middle temporal gyrus). 
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Figure 9.7 ECDs for the P1 peak of the AEP from normal hearing children grouped in 

accordance with age. The locations of the dipoles in group 1 are the inferior temporal gyrus 

and the superior temporal gyrus to Group 2-4. Two symmetric fixed coherent dipoles and 

BEM head models were used in the source analysis process. 

 

9.6 Source analysis of AEPs for the assessment of CI users  

 

Figure 9.8 shows two symmetric fixed coherent ECDs (the position of the 

dipoles is fixed and only the strength of the dipole vary) for different subjects at 

different time after implantation. Sources were fitted in a window of approximately 

10 ms before and after the AEP P1 peak with a BEM head model, a standard 10-20 

system was used to project the 19 electrodes position on the scalp surface of the head 

model. Subject are organized into four group (based on time after implantation); the 

confidence ellipsoids were not included for a better visualization of the ECDs. The 

location of the ECDs in the group at one year after implantation was the inferior lobe 

(Brodmann area 20). In the group between one and two years after implantation the 

ECDs are located at middle temporal lobe (Brodmann area 38). At 3 year and more 
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than 5 years post-implantation the locations of the ECDs were the superior temporal 

lobe (including the Brodmann areas 22, 41 and 42); contra-lateral to the CIs. 

 

 
Figure 9.8 Changes in the ECDs locations for the P1 peak of the AEP from different subjects 

at different time post-implantation. ECDs were fitted using a fixed coherence model and 

superimposed onto cortex segmentation from averaged MRI. 

 

Although the AEPs for each child at less than one year after implantation 

(between 3 and 9 months after implantation) was recorded, it was not possible the find 

the ECDs of P1 peak with low residual values and small confidence ellipsoids, in most 

of the cases; additionally, the anatomical locations of the dipoles were not necessarily 

in the temporal area. 

 

Figure 9.9 shows the changes in the localization of the P1 peak of the AEP in 

accordance with the time of implantation for three different subjects. ECDs were 

fitted using two symmetric fixed coherence dipoles and superimposed onto cortex 

segmentation from averaged MRI. The ECDs location changed from inferior or 
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middle temporal gyrus (Brodmann area 20 and 21) to superior temporal gyrus 

(Brodmann area 42). 

1-2 y using a CI >3 y using a CI

S1

S3

S5

 
 

Figure 9.9 Changes in the location of the P1 peak of the AEP from three subjects in 

accordance with the time of use of their CIs (between 1 and 2 year and more than 5 year after 

implantation). ECDs were fitted using two symmetric fixed coherence dipoles and BEM head 

model. 

 

Figures 9.10 shows the global changes in the localization of the P1 peak of the 

AEP in accordance with the time of implantation in subject S3; the ECD location 

changes from inferior temporal gyrus (Brodmann area 20) to middle temporal gyrus 

(Brodmann 38) and finally to the superior temporal gyrus (Brodmann area 22). 

 

S3-St1 1y using a CI S3-St2 1y 8m using a CI S3-St3 5y 5m using a CI

 
 
Figure 9.10 Changes in the location of the P1 peak of the AEP from one subject in accordance 

with the time of use of his CI. ECDs were fitted using two symmetric fixed coherence dipoles 

and BEM head model; the ECDs were superimposed onto cortex segmentation from averaged 

MRI. 
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Figure 9.11 shows another example of the changes in the location of ECDs in 

a child after using his implant for more than 5 years. In this case, the position of the 

dipoles changed from the middle temporal to the superior temporal gyrus at 2 y and 8 

m after implantation. At 5 years 1 month after implantation the position of the dipoles 

remains in the superior temporal gyrus (Brodmann area 41), but closer to the location 

of normal hearing children (see Figure 9.7) 

 

S5-St1 1y 9m using a CI S5-St2 2y 8m using a CI S5-St3 5y 1m using a CI

 
 

Figure 9.11 Changes in the ECDs location in accordance with the time of implantation, for 

subject S5. After 2y 8m after implantation, the positions of the fixed coherent dipoles are in 

the superior temporal gyrus. 

 

In both normal hearing children and children with CIs, the BEM head model 

gets better localization (as expected because this head model best fit the temporal 

lobes and the base of the head), but not necessarily smaller ellipsoids according to the 

number of ECDs, this could be because of the low number of electrodes used in this 

dataset. 

 

The lowest Res. Dev. value obtained in the de-noised signals is 13.4% for 

condition C4; even though the Res. Dev. is no lower than 10%, the anatomical 

location of these dipoles for the de-noised signal were in the temporal lobe (superior, 

middle and inferior temporal gyrus). One way to increase the accuracy of the source 

analysis is by increasing the number of electrodes, however increasing the number of 

electrodes increases the test time and the complexity of the analysis.  

9.7 Summary 

 

In this chapter the basic theory of source analysis and the parameters used in a 

commercial software package to determine the electrical activity in the brain, were 

included. The differences in the source analysis accuracy of the P1 peak between a 
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temporal ICA (TDSEP-ICA) algorithm and a statistically based algorithm (FastICA – 

default ICA algorithm implemented in Curry) used for spatial filtering of EEG from 

children with CIs and normal hearing children are shown. The results of the ECDs of 

the P1 peak for both normal hearing children and children with CIs were shown; in 

general source analysis was simplest after removing the CI artifact using TDSEP-ICA 

–as expected. 

 

Moreover, the changes of the location of the dipoles in children with CIs, in 

accordance to the time of use of their implants, are shown at the end of this chapter. In 

the first period after implantation, the locations of the ECDs are principally in the 

inferior temporal lobe (Brodmann area 20); between 1 and 2 years after implantation 

the sources are located at the middle temporal gyrus (Brodmann area 21 and 38). 

From 3 year and more than 5 year after implantation the position is the superior 

temporal lobe (Brodmann areas 22, 41 and 42). 

 

The number of electrodes used in these recordings is limited (19 electrodes 

plus 2 reference electrodes and 1 ground); the electrodes resolution does not permit us 

to determine in detail the changes in the tonotopy of the auditory cortex at different 

stimuli frequencies, but this was not the fundamental aim of this research [88]. The 

purpose is to determine the global changes in the ECD localization, in accordance 

with the time of implantation in order to implement an objective procedure to follow 

the maturation of the auditory system in those children that can be put into clinical 

practice. 
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Chapter 10. 
 

Conclusions and future work 

 

 

 

Since CI began to be used as an alternative procedure in rehabilitation of deaf 

people, it has been a challenge to understand how the brain processes the new 

information supplied by the CI. One question that needs to be answered is how the 

auditory system of CI subject matures in accordance with the time of use of the CI. 

Some authors have proposed to explain the central auditory system maturation, using 

multi-electrodes recordings of AEPs. Deaf children who have been deprived of sound 

for a period of time and then have been implanted make it possible to determine the 

effects of that deprivation on the maturation of the central auditory system, and, in 

general, children with CI present delayed auditory responses compared to normal 

hearing children of the same age. 

 

Authors, who have researched the auditory system maturation in adult subjects 

with CIs following the development of AEP, reported the presence of a negative wave 

around 100 ms, N1, after cochlear implantation. Instead of this peak observed since 

adolescence, the AEP for both normal hearing children and children with CI is 

dominated by a positive peak, P1, around 100 ms; this peak could be delayed in 

children with CI, depending of diverse factors, for example the age of implantation. 

The latency of the P1 wave of AEPs has been used as a biomarker of the development 

and plasticity of the central auditory system in children with a HA and/or CI receiver.  

 

Some authors have used multi-channel AEP recordings to study the maturation 

of the auditory system; however, the amplitude and latency of the peaks of the 

potential change electrode-by-electrode, i.e change according to location. The analysis 

of brain (spatial) maps may be suitable in a longitudinal study; however in a 

transversal study it could be inappropriate because brain map patterns might be 

variables from subject to subject. Because of this some authors have chosen source 
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analysis, which includes the AEP information of all electrode localization, to describe 

the central auditory system maturation. 

 

With all these arguments in mind, the objective of this research was to 

describe the auditory system maturation of children with CI, tracing the development 

of the components of the AEP by ICA and source analysis. However, there is an 

inconvenience when the AEP has been recording from CI patients, in the presence of 

the artifact associated with the stimulus; this artifact usually covers the AEP partially 

or totally. Because of this the first part of this research was to review the state-of-the-

art in ICA and to evaluate the applicability of this technique to detect and to isolate 

the AEP and the CI artifact from ongoing multi-channel EEG in children with CI 

receivers. Three algorithms were tested and compared (FastICA, Infomax and 

TDSEP-ICA). The most adequate ICA algorithm, as well as its parameters, for this 

type of biomedical signal analysis in this research was identified. IC selection is a 

problem when ICA is applied to real data, so a new procedure to differentiate ICs with 

physiological and physical meaning, through MI and cluster analysis was 

implemented here. Although promising results were obtained with this procedure, it is 

necessary to include an assessment of the cluster formation as well as the criteria to 

determine the number of clusters in each subject before it can be used formally. 

 

The maturation of the auditory system in children with CIs was evaluated 

using the modification of the topographic maps of the ICs related to the AEP, since 

the latencies of these ICs were variable; the data of implanted children were analysed 

in sub-groups based on time of implantation. After removing the CI artifact, it was 

possible to begin the localisation of the generators of the P1 peak of the AEP. This 

was done using and average MRIs provided in commercial software for 3-D source 

localization and standard coordinates of the electrode position. It was necessary to 

decide both source type and spherical head model; also the expediency of using a 

realistic model. This research provides a basis for a practical, clinical procedure to 

assess the benefits of a CI following the changes of the modelled ECDs of the AEPs 

attributed to the length of time of use/implantation of the CI on the child. 
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Conclusions 

 

In this research an important innovation in the analysis of brain signals 

through ICA of CI users was presented. ICA shows promise as a means of isolating 

AEPs in ongoing multi-channel EEG recordings contaminated by a CI artifact.  

 

Although ICA is a statistical technique which requires sufficient data points to 

reliably calculate estimations, satisfactory results were obtained reducing the number 

of epochs from 150 to just 50 EEG epochs; the results obtained using only 50 epochs 

show that it is possible to reduce the time of the recording to one third of the original 

EEG recording time and still get superior results. This is particularly useful since it is 

hard to obtain good results from children over long experimental sessions without 

sedation. A short-time test, without participation of the subjects and low complexity 

off-line analysis is feasible to implement in routine audiological practice; the test 

would be particularly useful in young implanted children. 

 

The SIR index was used to asses the variability of the estimations of three ICA 

algorithms, FastICA, Infomax, and TDSEP-ICA. Although FastICA and Infomax are 

maybe the most popular ICA algorithms used to reduce the artifact of the AEPs, the 

algorithm that is the least variable and that best estimates both the AEP and the CI 

artifact is TDSEP-ICA; FastICA and Infomax correctly identify the AEPs in normal 

hearing children recordings, but has problems when estimating the auditory response 

from children with CIs, especially when the artifact is extended onto most of the 

recording electrodes; this is especially useful to detect the presence of the auditory 

response in the electrodes around the CI (temporal area). All the algorithms estimate 

the CI artifact, although only TDSEP-ICA recovers it in a one-dimensional subspace; 

making identification easier. This demonstrates that this algorithm in recovers the 

most robust and efficient estimations of the AEPs; this is to be expected over shorter 

window sizes and for a technique that makes use of the inherent information available 

in the time-series itself. This condition better situates TDSEP-ICA as an algorithm for 

the implementation of an objective method for selection of ICs.  

 

A procedure for the objective selection of the ICs associated with the AEPs 

and with the CI artifact was also introduced and implemented in this work; this 
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procedure uses the concept of MI, cluster analysis and the pseudo-random reduction 

of the number of recording electrode. The procedure proposed in this research 

identifies principally 3 robust clusters related to the AEPs, the CI artifact and noise. 

However, although the hierarchical clustering of the estimations is correct visually, it 

is still necessary to include an assessment of the cluster formation as well as the 

criteria to determine the correct number of clusters in accordance with the reduction 

of electrodes proposed in the procedure. 

 

Due to the fact this method needs to be subjectively calibrated for each 

recording, it was decided not to use this for the source analysis of AEPs for the 

assessment of CI users; the main reason being that the possible differences in the 

method due to the subjectivity could modify the real expected variability in the source 

analysis for CI maturation and lead to erroneous conclusions being made. However, 

this part of the research was useful in order to obtain experience to identify first the 

ICs related to the auditory responses which were used to evaluate the maturation of 

children with CIs and the ICs associated with different artifacts which were 

subsequently removed from the recordings before the source analysis based on the P1 

peak in the AEPs. 

 

Using the optimal parameters selected to TDSEP-ICA and applying this 

algorithm on the original number of electrodes, the relevant ICs in each recording 

from children with CIs were identify using the morphology and topographic maps 

(spatial projection) of the ICs. The latencies of the P1 peak of the ICs recovered by 

TDSEP-ICA and related to the AEPs among subjects are diverse and it was not 

possible to identify the complex P1-N1 in all the subjects; in general the latency of this 

peak is shorter as a function of the use of the CI –although it is difficult to draw any 

conclusion on the auditory system maturation of these children using just this 

parameter. However, using the spatial projection of the ICs associated with the AEP 

(which provides a global representation of the response to the auditory stimulus at the 

scalp), it is possible to conclude the following about the auditory system maturation of 

children with CIs:  

 



Chapter 10. Conclusions and future work 

 
 

174 

 The spatial projections of the AEPs‟ ICs come into being spread out around 

the head with no focus in any specific area, although predominantly parietal 

when the children have used their CIs for less than one year.  

 At a year after implantation the spatial projections are characterized by a 

central to fronto-central distribution.  

 Finally, the spatial projections of the ICs have a distribution front to fronto-

central, contra-lateral to the CI implantation, after more than two years post-

implantation; the spatial projections of the ICs related to the AEPs show 

similarities with normal hearing children‟s spatial projections, which could be 

used for an objective assessment of the maturation of the auditory system in 

children with CIs. This procedure could be performed routinely every few 

months, for instance after fitting the current levels of CI, to assess the benefits 

of this adjustment. Changes in the spatial projections could be correlated with 

the results obtained in other audiological tests such as the level of 

comprehension and production of speech in determining the overall 

performance of children implanted. 

 

After removing the CI artifact, it was possible to begin the localisation of the 

generators of the P1 peak in the AEPs; using fixed coherent ECDs and BEM head 

models implemented in commercial software (Curry, by NeuroScan). Spatial filtering, 

using TDSEP-ICA in the pre-processing step of source analysis, results in better ECD 

fits than when using FastICA, implemented in this software package. The alternative 

method for source analysis proposed in this research, facilitates the identification of 

the P1 peak and the source analysis procedure. 

 

At the moment, only 19 electrodes have been used (as the data was collected 

using a standard clinical paradigm) which does not have the highest accuracy in the 

source analysis, but it is enough for the proposes of this research as a proof-of-

principle; one way to increase the accuracy of the source analysis is by increasing the 

number of electrodes, however increasing the number of electrodes increases the test 

time and the complexity of the analysis. It is important highlight that although the 

number of electrodes is higher the source analysis problem will still be ill-posed and 

will not give 100% accuracy.  An alternative solution to increase the accuracy could 
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be to constrain the localization to a specific area (e.g. the temporal lobe) and to use 

the real position of the electrodes that were digitally acquired at test time.  

 

The effect of using the position of the electrodes and the MRI for each patient 

in the source analysis of the AEP P1 peak should be assessed in a further research. 

The coordinate axis used in the source analysis procedure is calculated in the MRI, 

using three or four anatomical landmarks and the electrode position information; the 

head coordinates have to be scaled to fit into the MRI coordinate system [90]. 

Realistic head model from the MRI of each subject as well as the location of every 

electrode on the scalp at the moment of the EEG recording could increase the 

precision of the coordinate axis calculation as well as the accuracy of the source 

analysis solution. 

 

It is shown that it is plausible to follow the maturation of the auditory system 

in children with CIs using the location of the dipoles and the time of best ECD fit (this 

parameter is less variable inter-subject than the strength of the ECD); in general the 

position of the dipoles changed from the inferior temporal gyrus (Broadmann area 

20), to the superior temporal gyrus (Brodmann area 41 and 42), in accordance with 

the time of use of the CIs; close to the normal hearing children location. The results of 

this research could be used as an objective technique for a general assessment of the 

performance of children with CIs. The maturation of the auditory system of these 

children could be evaluated using both the changes in the topographic maps of the ICs 

related with the AEP and the changes in the location of the ECD of the P1 peak. A 

procedure to evaluate the fitting of CIs in young children could be derived from this 

research by observing the changes of the topographic maps in accordance with 

changes in the CI levels of current. Since the analysis of the database used in this 

research through TDSEP-ICA allowed the identification of ICs associated not only 

with the AEP and the CI artifact but also with noise generated by the implant, this 

procedure could be also extended to detect technical problems of the implants. 

Future work 

 

Currently, both ICA and source analysis have been completed in data for a 

stimulus of 1000 Hz and 70 dBHL; future work would compare the results of these 
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techniques over different frequency tones and intensity levels. Some modifications of 

the current protocol could be pertinent, for example to reduce the sample rate of the 

EEG, to increase the number of electrodes to 32 or 64 but reducing the number of 

epochs recorded, since it was possible to obtain robust ICs related to the AEPs and the 

CI artifact with only 50 trials.  

 

As mentioned before, in order to increase the accuracy of the source analysis, 

it is important to include the digitization position of the electrodes at the moment of 

the recording as well as the MRI for each one of the subjects. Source analysis solution 

requires the co-registration of functional with anatomical data; this co-registration is 

perform by the rotation, translation and scaling of three or four landmarks digitised in 

the EEG and/or MEG coordinate system [38]. The typical landmarks used are the 

nasion and the two pre-auricular notches; using those points a coordinate system 

whose origin is the centre of the head is defined [32].  

 

Using stimuli centred at the frequency bands of the CIs, it could be feasible to 

establish the changes of the ECD locations in accordance with these stimuli 

frequencies, in order to develop a procedure to objectively fit the CIs to children. 

Additionally, this way of stimulation together with high-resolution EEG recordings 

could allow tracing the development of the tonotopic organization of the auditory 

cortex in children with CIs; in adults with CIs this tonotopic organization is similar to 

the tonotopy of normal hearing subjects [54]. Extending the type and complexity of 

stimuli (syllables, words and even sentences) to evaluate cognitive processes in 

children with CIs could be plausible. More over, a procedure to investigate how the 

brain of CI users proceses speech characteristics as pitch and intonation could be 

feasible. At this point a comparison between the ECD locations of the P1 peak and 

even the N1 peak and the improvement of language perception and development in 

children with CIs is necessary to globally evaluate the rehabilitation of these children 

[53]. 

 

Furthermore, it would be useful to establish if it is plausible to follow the 

maturation of the auditory system in children with CIs using simultaneous EEG and 

functional MRI (fMRI) and/or MEG-fMRI recordings, by means of the changes of the 

blood oxygenation level-depend (BOLD) contrast mechanism and the ECDs in 
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accordance with the time of use of this electronic device. Giraud et al [53] review 

different brain imaging techniques and discuss the viability of these techniques for 

studies in implant subjects; finally the authors suggest that fMRI is a promising 

system for examining CI users. Some authors have obtained functional images from 

CI users (their devices did not have electronics in the internal part of the implants) to 

study the electrically-evoked brain activity [90].  

 

It is important to identify neuroimaging approaches which can be applied to 

ultimately improve diagnosis and rehabilitation of deaf people using Cortical 

Auditory Evoked Potentials; regarding maturation and plasticity of the auditory 

system and auditory cortex after cochlear implantation. 
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Appendix A. AEP recordings: Normal hearing children and 

children with CIs  

 

 

In this appendix the AEP recordings from normal hearing children and 

children with CIs are shown. Details about the recording parameters are included in 

Chapter 3. Information about the latency and amplitude of the most prominent peak in 

the AEPs in each normal hearing subject are included. In the case of children with 

CIs, information about the latency and amplitude of P1 peak were included when it 

was possible to measure it. 

 

Normal hearing children AEP recordings 

 
Figure A.1 Subject ad (female, 8 y.o) P1 peak latency and amplitude at Cz electrode, 127.8 

ms and 3.221 V.  
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Figure A.2 Subject al (male, 3 y.o) P1 peak latency and amplitude at Cz electrode, 102.8 ms 

and 9.264 V.  

 
Figure A.3 Subject an (female, 5 y.o) P1 peak latency and amplitude at Cz electrode, 95.27 

ms and 3.394 V.  
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Figure A.4 Subject ax (male, 4 y.o) P1 peak latency and amplitude at Cz electrode, 216 ms 

and 1.708 V.  

 

 
Figure A.5 Subject bf (female, 6 y.o) P1 peak latency and amplitude at Cz electrode, 90 ms 

and 8.26 V.  
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Figure A.6 Subject cc (female, 11 y.o) N1 peak latency and amplitude at Cz electrode, 99.28 

ms and -7.40 V.  

 

 
Figure A.7 Subject dt (female, 3 y.o) P1 peak latency and amplitude at Cz electrode, 183.4 ms 

and 7.431 V.  
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Figure A.8 Subject ed (male, 6 y.o) P1 peak latency and amplitude at Cz electrode, 93.27ms 

and 3.03 V.  

 

 

 
Figure A.9 Subject fc (female, 14 y.o) N1 peak latency and latency at Cz electrode, 84.76 ms 

and -6.36 V. 
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Figure A.10 Subject iv (male, 8 y.o) N1 peak latency and latency at Cz electrode, 100.3 ms 

and 6.295 V. 

 
Figure A.11 Subject jg (male, 5 y.o) P1 peak latency and amplitude at Cz electrode, 139.3 ms 

and 1.424 V. 
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Figure A.12 Subject kc (female, 7 y.o) P1 peak latency and amplitude at Cz electrode, 103.3 

ms and 6.69 V.  

 

 

 
Figure A.13 Subject mar2 (female, 10 y.o) P1 peak latency and amplitude at Cz electrode, 

121.3 ms and 10.46 V.  
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Figure A.14 Subject mp (female, 11 y.o) P1 peak latency and amplitude at Cz electrode, 

91.27 ms and -7.71 V.  

 
Figure A.15 Subject nan (female, 6 y.o) P1 peak latency and amplitude at Cz electrode, 157.8 

ms and 11.92 V.  
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Figure A.16 Subject of (female, 7 y.o) P1 peak latency and amplitude at Cz electrode, 178.9 

ms and 16.61 V. 

 
Figure A.17 Subject pf (female, 4 y.o) P1 peak latency and amplitude at Cz electrode, 195.4 

ms and 10.64 V. 
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Figure A.18 Subject st (female, 7 y.o) P1 peak latency and amplitude at Cz electrode, 111.3 

ms and 3.427 V 

 

 
Figure A.19 Subject ug (male, 10 y.o) P1 peak latency and amplitude at Cz electrode, 161.3 

ms and 2.30 V. 
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Figure A.20 Subject xal (female, 4 y.o) P1 peak latency and amplitude at Cz electrode, 99.78 

ms and 10.86 V. 

 

Children with CIs AEP recordings 

 
Figure A.21 Recording S1-St1, male 5 months after implantation. P1 peak latency and 

amplitude at Cz electrode, 110 ms and 2.1 V. (CI in the right side). 
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Figure A.22 Recording S1-St2, male 1 year after implantation. P1 peak latency and amplitude 

at Cz electrode, 159.3 ms and 3.32 V (neither T4 nor T6 was connected, CI in the right 

side). 

 

 
Figure A.23 Recording S1-St3, male 2 years 6 months after implantation. P1 peak latency and 

amplitude at Cz electrode, 208.4 ms and 4.63 V (CI in the right side). 
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Figure A.24 Recording S2-St1, female 3 months after implantation. P1 peak latency and 

amplitude at Cz electrode, 183.9 ms and 3.20 V (CI in the left side). 

 

 
Figure A.25 Recording S2-St2, female 9 months after implantation. P1 peak latency and 

amplitude at Cz electrode, 196.4 ms and 1.81 V (CI in the left side). 
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Figure A.26 Recording S3-St1, male 1 year after implantation. P1 peak latency and amplitude 

at Cz electrode, 172.9 ms and 6.31 V (CI in the right side). 

 

 
Figure A.27 Recording S3-St2, male 1 year and 8 months after implantation. P1 peak latency 

and amplitude at Cz electrode, 173.9 ms and 9.649 V (CI in the right side).  
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Figure A.28 Recording S3-St3, male 5 year and 5 months after implantation. P1 peak latency 

and amplitude at Cz electrode, 146.8 ms and 16.49 V (CI in the right side). 

 

 
Figure A.29 Recording S4-St1, female 8 months after implantation. P1 peak latency and 

amplitude at Cz electrode, 134.3 ms and 4.1 V (the CI artifact is spread out around all the 

electrodes), CI in the right side. 
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Figure A.30 Recording S4-St2, female 1 year and 1 month after implantation. P1 peak latency 

and amplitude at Cz electrode, 185 ms and 4.3 V (CI in the right side). 

 

 
Figure A.31 Recording S4-St3, female 1 year and 6 months after implantation. P1 peak 

latency and amplitude at Cz electrode, 135.8 ms and 9.92 V. In this recording instead of 

electrode T6, the electrode AFz was used (CI in the right side). 
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Figure A.32 Recording S5-St1, male 1 year and 9 months after implantation. P1 peak latency 

and amplitude at Cz electrode, 124.3 ms and 13.44 V (CI in the right side). 

 

 
Figure A.33 Recording S5-St2, male 2 year and 8 months after implantation. P1 peak latency 

and amplitude at Cz electrode, 150.8 ms and 21.79 V (CI in the right side). 
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Figure A.34 Recording S5-St3, male 5 year and 1 month after implantation. P1 peak latency 

and amplitude at Cz electrode, 131.3 ms and 7.28 V (CI in the right side). 

 

 
Figure A.35 Recording S6-St1, female 2 year and 5 months after implantation. P1 peak 

latency and amplitude at Cz electrode, 173.9 ms and 16.54 V (CI in the right side). 
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Figure A.36 Recording S7-St1, female 1 year and 8 months after implantation. P1 peak 

latency and amplitude at Cz electrode, 164.3 ms and 10.78 V (CI in the right side). 

 

 
Figure A.37 Recording S9-St1, female 5 months after implantation. It is not possible to 

recognise the P1 peak (CI in the left side). 
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Figure A.38 Recording S10-St1, male 5 months after implantation. P1 peak is not recognised 

(CI in the right side). 
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Normal hearing children 
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Children with CIs 

 

 
(a)     (b) 

Figure B.1 Comparison between the estimates related to the AEP (row 1-2) and the 

background noise (rows 3-4) using (a) Infomax and (b) Ext-Infomax for S1-St1; this subject 

has been using his CI for less than 1 year.  The estimates associated with the AEP are 

essentially the same for both algorithms whilst some differences can be observed in both the 

histogram and kurtosis values of the back noise estimates. 



Appendix B. Comparison between the kurtosis values and pdf histograms using 

Infomax and Ext-Infomax. 

 
 

205 

 
(a)     (b) 

Figure B.2 Comparison between the estimates using (a) Infomax and (b) Ext-Infomax for S1-

St2; this subject has been using his CI for more than 1 year. The principal difference between 

the algorithms is in the background noise; Infomax recovers only one background noise 

estimate (IC19) while that Ext-Infomax recovers components with negative kurtosis and 

almost cero kurtosis IC1 and IC 18, respectively.  

 

 
Figure B.3 Comparison between the estimates using (a) Infomax and (b) Ext-Infomax for S1-

St3. The principal difference between the algorithms is in the background noise. 
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(a)     (b) 

Figure B.4 Comparison between the estimate of the CI artifact (rows 1 and 2) and the 

background noise (bottom row) using (a) Infomax and (b) Ext-Infomax for S2-St1; this subject 

has been using his CI for less than 1 years.  There are not significant differences between the 

estimate between (a) and (b); neither Infomax nor Ext-Infomax recovered a clear AEP. 

 

 
(a)     (b) 

Figure B.5 Comparison between the estimates recovered using (a) Infomax and (b) Ext-

Infomax for S2-St2. There is not significant difference between both algorithms; it was no 

possible to identify a clear AEP.  
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(a)     (b) 

Figure B.6 Comparison between the estimates recovered using (a) Infomax and (b) Ext-

Infomax for S3-St1; this subject has been using his CI for one year. There is not significant 

difference between both algorithms; it was no possible to identify a clear AEP.  

 

 
(a)    (b) 

Figure B.7 Comparison between the estimates using (a) Infomax and (b) Ext-Infomax for a 

subject (S3-St2) who has been using his CI for more than 1 year. The estimate of the AEP is 

not clear neither in (a) nor (b). In both cases the CI artifact still being in the auditory response 

(row 1-2). The estimates of the CI artifact are similar in both cases with a small difference in 

the histograms and kurtosis values. 
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(a)       (b) 

Figure B.8 Comparison between the estimate of the background noise and the CI artifact 

(row 3) using (a) Infomax and (b) Ext-Infomax for S3-St3; this subject has been using his CI 

for more than 5 years. The principal difference between both algorithms is the estimate of the 

background noise; it was no possible to identify the AEP clearly, the CI artifact effect is 

significant in both Infomax and Ext-Infomax. 

 

 
(a)     (b) 

Figure B.9 Comparison between (a) Infomax and (b) Ext-Infomax for subject S4-St1 (this 

child has been using her CI for less than one year). There are not significant differences 

between the estimates using those algorithms of the CI artifact and the background noise 

(rows 3 and 4, respectively). The AEPs estimates (rows 1 and 2) have components of the CI 

artifact. 

 



Appendix B. Comparison between the kurtosis values and pdf histograms using 

Infomax and Ext-Infomax. 

 
 

209 

 
(a)     (b) 

Figure B.10 Comparison between the estimates using (a) Infomax and (b) Ext-Infomax for 

subject S4-St2 (this child has been using her CI for one year approximately). In this case the 

AEPs can be recognized in rows 1 and 2 although contaminated by the background noise. 

 

 
(a)     (b) 

Figure B.11 Comparison between the estimate of the background noise (top row) and the CI 

artifact using (a) Infomax and (b) Ext-Infomax for S5-St1; this subject has been using his CI 

for more than 1 years. There are not important differences between the estimates associated 

with the CI artifact between (a) and (b); neither Infomax nor Ext-Infomax separated a clear 

AEP. 
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(a)    (b) 

Figure B.12 Estimates for S5-St2 (2.5 year after implantation); there are no difference neither 

in the histogram nor the kurtosis values between (a) Infomax and (b) Ext-Infomax. The AEPs 

can be recognised in the ICs of the rows 3 and 4 however the estimates are contaminated by 

the background noise or the CI artifact. 

 

 
(a)    (b) 

Figure B.13 Comparison between the estimates of the background noise (rows 1, 2 and 3) 

and the CI artifact (rows 4 and 5) using (a) Infomax and (b) Ext-Infomax for S5-St3; this 

subject has been using his CI for more than 5 years. The principal difference between both 

algorithms is the estimate of the background noise; it was no possible to identify a clear AEP 

neither with Infomax nor Ext-Infomax. 
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(a)       (b) 

Figure B.14 Comparison between the estimate of the CI artifact (row 1) and the AEP (row 2) 

using (a) Infomax and (b) Ext-Infomax for S6-St1; this subject has been using her CI for 2.5 

years. Some differences can notice between the estimates of the CI artifact components; the 

estimate associated with the AEP is essentially the same for both algorithms. 
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Appendix C. Separability matrix values  
 

 

This appendix shows the changes of the separabilty matrix in accordance with 

the increasing of . Significant changes in the structure of the matrix can be observed  

between =0...1 and =0...5 in most of the recordings. After those values the structure 

of the separability matrix remains almost without changes but the separability values 

are lower, with the lowest value at =0...20. In normal hearing children, the one 

dimensional subspaces correspond to noise whilst the high dimensional subspaces are 

related to components of the AEPs. In children with CIs one dimensional subspace is 

related to the CI artifact and noise whilst high dimensional subspace can be associated 

with the AEP. Chapter 5 includes the waveform and topographic maps of relevant ICs 

from both normal hearing children and children with CIs. 
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Normal hearing children 
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Children with CIs 
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Appendix E. ICs recovered using TDSEP-ICA with time 

delays up to 90. 

 

 

This appendix includes the ICs recovered using TDSEP-ICA with a time delay higher 

than 20, up to 90. Recordings from two children with CIs are included; the ICs 

recovered do not have significant differences. 
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Figure E.1 Recording S5-St1, (female CI user), ICs recovered by TDSEP-ICA with time 

delays higher than 20. 
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Figure E.2 Recording S3-St3, (male CI user), ICs recovered by TDSEP-ICA with time delays 

higher than 20. 
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Appendix F. SIR index values 
 

 
Table F.1. SIR index values for basal recordings (without acoustic stimulation) using the AEP 

as reference signal. The SIR average for the three algorithms is SIRaverage=0.659460.084521 

 

Basal 

recordings 

FastICA Ext-Infomax TDSEP-ICA 

1 0.73 0.42 0.69 

2 0.55 0.78 0.98 

3 0.42 0.48 0.30 

4 0.49 0.65 0.51 

5 0.47 0.58 0.45 

6 0.49 0.34 0.51 

7 0.62 1.21 1.47 

8 0.39 0.71 0.68 

9 0.78 0.35 0.46 

10 0.85 0.84 0.33 

11 1.28 0.54 2.80 

12 0.38 0.53 1.09 

13 0.30 0.40 0.53 

14 0.28 0.31 0.27 

15 0.53 0.37 0.56 

16 0.75 0.38 0.63 

17 0.59 0.96 0.92 

18 0.88 0.57 0.55 

19 0.48 0.28 0.63 

20 0.92 1.56 0.79 

SIR 0.610.14 0.610.23 0.760.35 
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Table F.2. SIR index values for recordings from normal hearing children recordings using the 

CI artifact as reference signal. The SIR average for the three algorithms is 

SIRaverage=0.5155830.045662 

 

NH 

recordings 

FastICA Ext-Infomax TDSEP-ICA 

1 0.46 0.46 0.49 

2 0.56 0.34 0.30 

3 1.02 0.56 0.69 

4 0.22 0.18 0.33 

5 0.14 0.14 0.15 

6 0.59 0.59 0.57 

7 0.76 0.75 0.35 

8 0.17 0.18 0.16 

9 0.72 0.73 0.31 

10 0.26 0.38 0.72 

11 0.98 0.38 0.37 

12 0.94 1.31 0.55 

13 0.29 0.48 0.41 

14 0.21 0.36 0.32 

15 0.54 0.57 0.38 

16 0.57 0.60 0.29 

17 0.37 0.51 0.68 

18 0.75 1.12 0.93 

19 0.57 0.40 0.26 

20 0.56 0.41 0.26 

21 0.56 0.62 0.84 

22 0.87 0.63 0.84 

SIR 0.550.27 0.530.28 0.460.23 
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Appendix G. Artifactual ICs and De-noised signals 
 

 

The first part of this appendix includes the artifactual ICs identified in the 

recordings from children with CIs, using TDSEP-ICA (=0,1,2,…,20). The principal 

artifact recovered were those related to the CI artifact and noisy electrodes. The 

columns of the mixing matrix corresponding to those components were made zero to 

generate the de-noised signal. Additionally, both the original and the de-noised signal 

after removing those artifacts are shown. In most of the de-noised signal P1 peak can 

be observed; those signals were used in source analysis of P1. 

Artifactual ICs 

 
Figure G.1 Subject 1 (male, age of implantation: 8y 3m), in both recordings S1-St1 and S1-

St2 the electrodes around the CI were not connected. The ICs removed correspond to noisy 

electrodes and with the CI artifact (S1-St3). 
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Figure G.2 In both recordings of subject S2 (female, age of implantation: 10y 5m), two 

components of the CI artifact and noisy electrodes were removed. 

 

 
Figure G.3 Two or three components related to the CI artifact and noise were removed from 

the subject S3 recordings (male, age of implantation: 7y 1m). 
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Figure G.4 In subject 4 (female, age of implantation: 3y 8m) the ICs related to the CI artifact 

and noise were removed from the original AEP signal. 

 

 
Figure G.5 From two to three components related to the CI artifact and noisy electrodes were 

eliminated from the AEP recording in subject S5 (male, age of implantation: 4y 5m). 
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Figure G.6 Three ICs related to the CI artifact were removed from the AEP recordings in 

subject S6 (female, 4y 2m). 

 

 
Figure G.7 ICs related to the CI and noisy electrodes were eliminated from the AEP 

recordings in subject S7 (female). 
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De-noised Signals 

 

Figure G.8 Butterfly plots of both the original signal (left column) and the signal after 

removing the ICs associated with the CI artifact and noisy electrodes (right column). S1, 

male, recordings at 5 months , 1 year and 2 years and 6 months after implantation (St1, St2 

and St3, respectively). 

 
Figure G.9 Butterfly plots of both the original signal (left column) and the signal after 

removing the ICs related to two components of the CI artifact and noisy electrodes (right 

column). S2, female, recordings at 3 months and 9 months after implantation (St1 and St2, 

respectively). 
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Figure G.10 Butterfly plots of both the original signal (left column) and the signal after 

removing the ICs related to two components of the CI artifact and noisy electrodes (right 

column). S3, male, recordings at 1 year, 1 year and 8 months and 5 year and 5 months  after 

implantation (St1, St2 and St3, respectively). 

 

 
Figure G.11 Butterfly plots of both the original signal (left column) and the signal after 

removing the ICs related to two components of the CI artifact and noisy electrodes (right 

column). S4, female, recordings at 8 months, 1 year and 1 month and 1 year and 6 months 

after implantation (St1, St2 and St3, respectively). 
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Figure G.12 Butterfly plots of both the original signal (left column) and the signal after 

removing the ICs related to two components of the CI artifact and noisy electrodes (de-noised 

signal, right column). S5, male, recordings at 1 year and 9 months, 2 year and 8 months and 5 

years and 1 month after implantation (St1, St2 and St3, respectively). 

 

 
Figure G.13 Butterfly plots of both the original signal (left column) and the signal after 

removing the ICs related to two components of the CI artifact (right column). S6, female, 

recording St1 at 2 year and 5 months after implantation. 

 

 

 
Figure G.14 Butterfly plots of both the original signal (left column) and the signal after 

removing the ICs related to one components of the CI artifact (right column). S7, female, 

recordings at 1 year and 4 months after implantation. 
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Appendix H. Publications arising from this research 
 

Journal Paper 

N. Castaneda-Villa, J.M. Cornejo, and C. J. James. “Independent Component Analysis 

for robust assessment of auditory system maturation in children with cochlear 

implants” Cochlear Implant International Journal. Published Online: Feb 2009. 

 

N. Castañeda-Villa and C. J. James “Independent component analysis for Auditory 

evoked potentials and cochlear implant artifact estimation: a comparison between 

High and Second order statistic algorithms”. (In preparation) 

 

Conference papers 

C.J. James
 
and N. Castañeda-Villa. “ICA of auditory evoked potentials of children 

with cochlear implants: component selection”. 3
rd

 International Conference MEDSIP 

2006 Advances in Medical, Signal and Information Processing, 17-19 July, Glasgow, 

Scotland. 

 

N. Castañeda-Villa and C. J. James. “Objective source selection in Blind Source 

Separation of AEPs in children with Cochlear Implants” 29
th

 Annual International 

Conference of the IEEE Engineering in Medicine and Biology Society, 23-26 August 

2007, Lyon France. 

  

N. Castañeda-Villa and C. J. James. “Differences in source analysis accuracy of AEP 

generators following FastICA and TDSEP-ICA de-noising” 4
th

 International 

Conference MEDSIP 2008 Advances in Medical, Signal and Information Processing, 

14-16 July 2008 Santa Margherita Ligure, Italia. 

 

N. Castañeda-Villa and C. J. James “The selection of optimal ICA algorithm 

parameters for robust AEP component estimates using 3 popular ICA algorithms” 

30
th

 Annual International Conference of the IEEE Engineering in Medicine and 

Biology Society “Personalized Healthcare through Technology” 20-24 August 2008 

Vancouver, British Columbia.  
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 International Conference 
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