A topological splitting theorem for Poincar\'e duality groups and high dimensional manifolds


Niblo, Graham and Kar, Aditi (2013) A topological splitting theorem for Poincar\'e duality groups and high dimensional manifolds. Geometry & Topology, 17, 2203-2221. (doi:10.2140/gt.2013.17.2203).

Download

[img] PDF
Download (462Kb)
[img]
Preview
PDF
Download (581Kb) | Preview
[img]
Preview
PDF - Post print
Download (568Kb) | Preview
Original Publication URL: http://arxiv.org/abs/1110.2041

Description/Abstract

Waldhausen's celebrated torus theorem plays a central role in the classification of topological 3-manifolds. It also led to a number of algebraic splitting theorems for discrete groups including Kropholler's algebraic torus theorem for Poincar\'e duality groups and to the algebraic annulus theorems of Dunwoody/Sageev and Scott/Swarup. Here, in the same spirit, we offer topological and algebraic decomposition theorems in the context of high dimensional aspherical manifolds, providing an algebraic splitting theorem for Poincar\'e duality groups and exploiting Cappell's splitting theory to extract the required topological splittings. As a result we show that for a wide class of manifold pairs $N,M$ with $\dim(M)=\dim(N)+1$, every, $\pi_1$-injective map f$N\rightarrow M$ factorises up to homotopy as a finite cover of an embedding. As an application of this we show that under certain circumstances the vanishing of the first Betti number for $M$ is an obstruction to the existence of such maps.

Item Type: Article
ISSNs: 1465-3060 (print)
1364-0380 (electronic)
Alternative titles: Topological superrigidty
Related URLs:
Keywords: Torus theorem, Poincaré duality group, Bass-Serre theory, Kazhdan's property (T), Borel conjecture, surgery, Cappell's splitting theorem, embeddings,, rigidity,, geometric group theory, quaternionic hyperbolic manifolds
Subjects: Q Science > QA Mathematics
Divisions: University Structure - Pre August 2011 > School of Mathematics > Pure Mathematics
Faculty of Social and Human Sciences > Mathematical Sciences > Pure Mathematics
ePrint ID: 161381
Date Deposited: 28 Jul 2010 18:59
Last Modified: 27 Mar 2014 19:16
Research Funder: EPSRC
Projects:
Analysis and geometry of metric spaces with applications in geometric group theory and topology.
Funded by: EPSRC (EP/F031947/1)
Led by: Jacek Brodzki
1 October 2008 to 31 January 2012
Publisher: Mathematical Sciences Publishers
URI: http://eprints.soton.ac.uk/id/eprint/161381

Actions (login required)

View Item View Item