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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS
SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

by Jaime Cerda Jacobo

One of the main tools used to clear the electrical power market across the world is
the DC optimal power flow. Nevertheless, the classical model designed for vertically
integrated power systems is now under pressure as new issues such as partial infor-

mation introduced by the deregulation process, scalability posed by the multiple small
renewable generation units as well as microgrids, and markets integration have to be
addressed. This dissertation presents a graph-based decentralised framework for the
electricity power market based on the DC optimal power flow where Newton’s method
is solved using graph techniques. Based on this ground, the main principles associated
to the solution of systems of linear equations using a proper graph representation are
presented. Then, the burden imposed by the handling of rows and columns in its matrix
representation when inequality constraints have to be enforced or not is addressed in
its graph based model. To this end the model is extended introducing the notion of
conditional links. Next, this model is enhanced to address the graph decentralisation by
introducing the weak link concept as a mean to disregard some links in the solution pro-
cess while allowing the exact gradient to be computed. Following, recognizing that the
DC optimal power flow is a quadratic separable program, this model is generalised to a
quadratic separable program model. Finally, an agent oriented approach is proposed in
order to implement the graph decentralisation. Here the agents will clear the market in-
terchanging some economic information as well as some non-strategic information. The
main contribution presented in this document is the application of graph methods to
solve quadratic separable optimisation problems using Newton’s method. This approach
leads to a graph model whose structure is well defined. Furthermore, when applied to
the DC optimal power flow this representation leads to a graph whose solution is totally
embedded within the graph as both the Hessian as well as the gradient information can
be accesed directly from the graph topology. In addition, the graph can be decentralised
by providing a mean to evaluate the exact gradient. As a result when applied to the
DC optimal power flow, the network interconnectivity is converted into local intercom-
munication tasks. This leads to a decentralised solution where the intercommunication
is based mainly on economic information.
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Chapter 1

Introduction

In the last two decades several factors have been driving the electrical power market
to an environment which resembles more a large scale decentralised system. First, the
deregulation of the electricity industry worldwide has introduced new agents into the
system. In turn this has lead to the problem of partial information. This problem
has been overcome today with the creation of central authorities such as independent
system operators. Second, distributed generation systems are now a reality and their
integration to the power market affect its operation. On one hand, the requirements
to reach the levels set by the Kyoto protocol (signed in 1997 in order to reduce the
greenhouse gas emissions produced by the signing parties) have increased the support for
new renewable energy sources, which in general are based on small generators distributed
across large areas. On the other hand, microgrids also set a new challenge as they
behave like intermittent loads in the system, switching on and off depending on the
energy price. Both technologies, microgrids and renewable power-based generators also
lead to a problem on energy quality as their controls are based on power electronics.
Third, electrical power markets integration. Electrical power systems interconnections
are a common feature nowadays. Furthermore, they have been there for a long time.
However, they were just used as points where energy was exchanged. Techniques to
integrate these markets have been proposed which make this challenge feasible.

In this chapter, a review of the deregulation process of the electricity industry is provided.
Then, as part of the tendency toward distributed generation systems, two of them are
briefly described. First, Microgrids are discussed and then, SUPERGEN, a project for
sustainable power energy in the UK is described. Next, the goals of this research work
are set. Finally, the structure of this document is given.

1
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1.1 Deregulation of the Electricity Industry

From a functional point of view, an electrical power system can be decomposed into
three main sectors: generation, transmission and distribution. The generation sector
is responsible to produce the energy used in the industries, business and homes. The
transmission sector is responsible to transmit the power produced by the generation sec-
tor to the distribution networks using the high voltage transmission system. Finally, the
distribution sector is responsible to transport the energy from the high voltage trans-
mission network to the final consumers. This decomposition is based in the electricity
flow from the production center to the consumer center as shown in figure 1.1.

ConsumersGeneration Transmission Distribution

Figure 1.1: Electricity flow from generation to consumption.

A natural monopoly results when a single firm is able to provide one or more products at
a lower cost than could be provided by more than one firm. The typical characteristics
of natural monopolies are (Gilbert and Kahn, 1996):

1. Capital-intensity and minimum economic scale.

2. Non-storability with fluctuating demand.

3. Locational specificity generating location rents.

4. Necessaries, or essential for the community.

5. Involving direct connections to customers.

All these characteristics are fulfilled by the electricity industry. Furthermore, electric-
ity utilities used to be natural regional vertically integrated monopolies. This means,
they were behind the complete production chain, from production to consumption. In
addition, electricity utilities were the only ones who could provide the energy in their
region.

Electricity industry regulation was an inevitable demand to protect consumers from
these utilities as they had all the conditions to exert market power. The main objective
to introduce regulation is to hedge the consumers from those monopolies in the short-
term as well as in the long term. This process is applied by periodically setting the
prices the suppliers charge the consumers for the electricity as well as setting the rules
which grant indiscriminate access to the electrical network.

Before the 80’s, all the electrical utilities across the world were characterised as such kind
of monopolies. Therefore, they had all the information about the state of the electrical
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power system, as well as the ability to modify every control within the system to keep
the system operating safely.

However, with the worldwide proliferation of competitive markets, the electricity indus-
try was considered as an ideal candidate to be transformed into one with a competitive
structure. In this transformation, the components in the production-consumption chain,
which should be left to the free markets forces, are privatized while the others remain
regulated. This process is called deregulation. In the extreme case this would be equiv-
alent to privatisation when all those components are left to the free market forces.

The deregulation of electrical utilities wave which has been taking place worldwide in the
last three decades was started by Chile in 1978. This was formalized in 1982 (Rudnick,
1994) aiming to implement a market-based mechanism using its marginal costs as signals
to achieve economic efficiency. The United Kingdom launched its deregulation proposal
in 1988 leading to the England&Wales Pool in 1992. This was a worldwide observed
event which spread deregulation all over the world.

Nevertheless, deregulation has been a controversial topic over the last two decades, with
people for and against its implementation. Some countries have taken this approach as a
means to reach economical efficiency while others to fulfill World Bank lending require-
ments (Yi-chong, 2006) and eventually to achieve the goal of the first ones. Almost all
the developed countries have taken this challenge (Green, 2006) and several developing
countries are entering or are already on this route (Williams and Ghanadan, 2006). This
process varies from country to country and even, as in the USA case, from state to state.
The correct application as well as the cautionary measures are mandatory in order to
achieve a successful electricity market (Haas and Auer, 2006).

This lead to the task on how these vertical structures could be broken in order to get
the best market-based structure. Because electricity is a public good, there are several
dimensions which have to be considered (i.e. economic, politic, geographic and so on),
which are particular to each zone. However, there are two general basic stages in the
deregulation process. First, each zone has to decide the unbundling degree (Joskow and
Schmalensee, 1983). In this stage an assessment about which functions in the vertical
structure are contestable and which ones can be regarded as natural monopolies is done.
Second, the market architecture which will drive the market has to be decided. Here,
the mechanics of competition will be set and will be based on the resulting electrical
power market unbundled structure.

1.1.1 Main Agents in Electrical Power Markets

In 1993, William Hogan proposed several ways to unbundle the vertical natural monopoly
for electricity (Hogan, 1993). The most accepted is shown in figure 1.2 which promotes
a competitive wholesale market structure.
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Figure 1.2: A Competitive Wholesale Market Structure. Source (Hogan, 1993).

Based on this structure, some countries have decided to add another agent who operates
between the discos and the consumers. These agents, called retailcos, were introduced
to promote competence in the retail level, and therefore lowering the prices to final
consumers. In the UK, this was the decided unbundling structure which is shown in
figure 1.3.
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Figure 1.3: The unbundled structure in th UK. Based on Hogan (1993).

Taking this structure, the task to identify the agents who will participate in the market
is straightforward. These agents as well as their functions are:

• Gencos (Generating Companies). A genco owns, operates and maintains the
generating plants. They produce electricity and sell it based on the particular
market rules where they are situated. PowerGen, British Energy are examples of
them in the UK.

• Gridcos (Grid Companies). The grid company is in charge to transmit the energy
from the production centers to the distribution networks using high voltages trans-
mission lines. Their main task is to keep the system main characteristics within
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its limits. This agent is represented by National Grid in England and Wales while
in Scotland is represented by Scottish Power and Scottish & Southern Energy.
Sometimes they are merged with the poolco as in the PJM pool in the USA.

• Discos (Distribution Companies). These own, operate, and maintain the distribu-
tion network. These take the energy from the High voltage network (Power grid)
to the low voltage network where the final consumers are connected. However,
they do not have any commercial relation with the final consumers. In the UK
these are know as Distribution Network operators (DNO). Figure 1.4 shows the
map for the Discos in th UK.

Figure 1.4: The UK distributors map (Source Energylinx - http://energylinx.co.uk).

• Retailcos (Retailers Companies). Also known as suppliers, these are the compa-
nies who bill the power each consumer takes from the distribution network (i.e.
Southern Electric and British Gas, among others).

• Custcos. These are the agents who will consume electricity in huge quantities
such as the melting industry. The retailers could be seen as a special kind of
custcos. These aggregate the demand each of its clients has into a total regional
demand and present it to the respective Disco who serves that region as a lumped
load.

• Poolcos (Pool Companies). Poolcos, also known as Independent System Opera-
tors (ISO), are introduced in order to coordinate the market. These the agents are
a common link among the market agents but also have to be independent from
all of them in order to have credibility in its decisions. Their functions span from
coordination tasks (e.g. maintenance scheduling), security tasks (e.g. congestion
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management) to administrative tasks (e.g. congestion rents administration). Its
existence is a consequence of the complexities posed by the electrical power markets
if they were left to work in a decentralised manner.

The resulting unbundled structure (Joskow and Schmalensee, 1983) led to a consensus
about what parts could be driven by the market forces. The others would need to
remain either as natural monopolies owned by the state or strongly regulated. As a
result of it, generation and retailing were suggested to be deregulated as their functions
were contestable. On the other hand, transmission and distribution were considered as
natural monopolies.

In the UK, the creation of a wholesale electricity market as well as a retail electricity
market was decided but applied at different times. Competition in generation was in-
troduced in April 1990, while retail competition was implemented nine years later, in
May 1999. As for transmission, it was regarded as a monopoly owned by the state. To
this end the National Grid Company was created. This, besides owning and maintain-
ing the Transmission Network, also balances the supply and demand in real time. The
last sector, distribution, was converted into private regional monopolies which are under
strict surveillance by the regulator. Finally, the Office of Gas and Electricity Markets
(Ofgem) was created in order to regulate this market as well as the natural gas markets.
The main task of Ofgem, as for the electricity industry refers, is to provide the proper
incentives in order to guarantee electrical network expansion as well as to ensure an
efficient system operation.

Figure 1.5, shows the restructured electrical power market for the England and Wales
pool. This scheme was active until 27 March, 2001, when it was replaced by the New
Electricity Trade Agreements (NETA).

Bids

Gencos

TranscosOfgem

Discos

Poolco

Demand
Bids

Demand
Bids

Availability & Capability
Transmission Lines

Reserve Allocation
Transactions &

Custcos

Regulations
Market

Figure 1.5: The restructured pool model for the electricity power market in England
& Wales. Based on (Shahidehpour et al., 2002) p.316.
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1.1.2 Power Markets Architectures

A relevant aspect with deregulation is the introduction of new agents within the system.
Now, there are sellers wishing to sell energy, as expensive as possible, who represent the
generation units. And, on the other hand, there are consumers willing to buy energy at
the lowest price. Centralised mechanisms assume these agents will be willing to disclose
their private data (i.e. production functions, benefit functions). Of course if this is
institutional then all the agents will have the right ’incentives’ to join these centralised
mechanisms, otherwise they will be excluded from the game. Deregulation in this context
means to unbundle this regulated vertical structure. Then, based on this unbundling it
is necessary to decide which parts are convenient to regulate and which can be driven
by the market forces to operate as a competitive market. Therefore, deregulation leads
to a new structure in the electricity industry. Based on this new structure, a market
architecture has to be defined as well as the rules which will govern its operation. The
way in which the new market architectures are designed vary.

Wilson (2002), defines three main architectures in the power market, based on the
agents introduced by the deregulation process. These market architectures are: Bilateral
Markets, Power Exchanges, and Pools. Following, each architecture is described.

• In Bilateral Markets, trading is done among suppliers and consumers. They clear
the quantity and price of each transaction through a bargaining process. However,
this energy has to be sent from the supplier side to the consumer side using the
transmission system. In order to accomplish this, they will use a transmission
contract (Hogan, 1992), issued by some centralized entity. This entity, will take
security measures in order to preserve the electrical system within its physical
constraints (i.e. transmission congestion, voltage stability, etc).

• In the Power Exchange (PX), trading is done among suppliers and consumers using
an auctioneer whose task is to conciliate suppliers bids with demand bids. He will
take into account system loses within the market clearing procedure. This kind
of market will have to coexist with another market agent called the Independent
System Operator who will take the PX clearing result and decide if this is feasible
(i.e. preserve the system within the physical constraints). If this is not the case it
gives some feedback to the market agents in order to reach a feasible solution.

• In the Pools (Bath, 2006), as in the power exchange, trading is done among sup-
pliers and consumers using an auctioneer. Here, besides conciliating suppliers and
consumers bids, taking into account network security and losses, he will also clear
the market considering the unit commitment problem, which basically means tak-
ing into account when it is worth starting a generation unit. Therefore, supply
bidders have to send additional information needed by the auctioneer to clear the
market.
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These architectures must be enforced with the right design rules. We must remember
that the agents in the system are looking for their own profit. Hence, they will try to
find every loophole in the market to increment their profit. The GB’s pool power model
was found susceptible to manipulation (Ofgem, 1999). As a consequence, it was decided
to create a new model based on a mixture of those architectures along with an energy
balancing mechanism.

1.2 Distributed generation projects

Distributed generation projects pose a great challenge to the way the electrical power
market is driven. These are envisioned as small generation units spread over a large
area. However, its connection to the network would differ as the traditional way bulk
generation units have been connected to the grid. It would be very difficult for a central
authority to coordinate such a market. There are several benefits as well as costs linked
to the use of distributed generation as assessed by Gumerman et al. (2003). Two main
approaches are the drivers for these distributed generation systems: Microgrids and
sustainable renewable power generation. These are briefly described in this section.

• Microgrids. This is a relatively new concept in power generation, where a cluster
of electrical and thermal loads are served by small generation units operating as
a single entity (Lasseter, 2002). These generators are located in the same place
where the loads are. These microgrids could be acting as intermittent loads who
would buy energy from the system if the price is low (i.e. the load is on). On
the other hand, they would serve the load if the energy price is high. This would
imply to serve the entire load or just part of it, by shedding the part of the load
which is not essential. A great concern about how they can be integrated into
the power grid is still a research area. As for this research, Microgrids could be
thought as intermittent loads. This characteristic poses a great challenge to the
way the Power Market is cleared. This market clearing mechanism is a centralised
process. Microgrids integration to the Power Grid is a great challenge for real time
operation.

• Sustainable Power Generation. In this approach, all kind of renewable energy is
used to produce electricity. To this end, it gathers energy from sea, earth and sun.
In the UK the project SUPERGEN, Sustainable Power Generation and Supply,
is an EPSRC initiative aiming to help the UK meet its environmental emissions
targets (SUPERGEN, EPSRC) by exploiting all kind of renewable energies. It
supports projects in power generation and supply. To this end, ten different con-
sortia have been created since November, 2003. These consortia try to find new
products to generate energy which go from Biomass and Bioenergy. Also, it gives
support for new projects related to alternative power generation from solar cell,
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fuel cells, and so on. The final effect as for the Power Grid will be the same as the
Microgrids as they will be low power generation plants distributed across the UK.
This initiative envisages a future where there will be thousands of small genera-
tors supported by different technologies (i.e. photo voltaic, microgrids, wind, and
hydro-systems). Therefore, the main challenge is how to incorporate these gener-
ators into the power grid and how the centralised market clearing mechanisms can
be adapted for such high scale systems.

1.3 Research Aim

The electrical power market of the future has to be decentralised if the challenges above
mentioned are to be addressed. Experience says centralised mechanisms are not suitable
for large scale systems. A typical large scale system is the electrical power system.
Centralised mechanisms lead to a bottleneck to both the clearing market mechanism and
its expansion. The main aim in this research is to provide a decentralised framework
to clear the Electrical Power Market. The main reasons why this market has to be
decentralised, as discussed above, are: deregulation, distributed generation, and power
systems markets integration. At the very heart of the electrical power market clearing
procedure is the DC optimal power flow. It has been around for almost 40 years, used as
a basic tool in order to clear the electrical power market. The solution to this problem is
a centralised clearing mechanism. The importance of this mechanism in its distributed
version is reflected in (Consentec, 2004) as an alternative to the centralised solution
which would allow each country in the EU to keep their data private.

To this end, two new tools have been developed. First, a bottom-up decomposition
which keeps the model as simple as the centralised model. This implies to decompose
the system in its main components. Then based on their interrelations, communication
strategies are derived. Second, a new decentralised graph-based algorithm is proposed.
In turn, this technique is susceptible to be generalised to problems whose structure is
similar to this one (i.e. quadratic separable programs).

1.4 Document Structure

This document is structured as follows:

First, the main topics which support this research are described in chapter 2. Concepts
from economics such as auctions, welfare economics, and consumer behavior are pro-
vided. Then the basic components of power systems are explained from both points
of view, electrical and economic. Next we move on providing the basic concepts on
optimisation which are related to this research.
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Chapter 3 presents a graphical representation for systems of linear equations. The
solution to a subset of this kind of systems in its graphical representation is introduced.
These graphs will be used and the strategies to deal with conditional evaluation as
well as decentralisation aspects will be based on their topology. Based on the model
developed in chapter 3 a graph-based model to solve the economical dispatch problem is
proposed in chapter 4. This is done in two stages. First a relaxed version of this problem
is addressed where all the bounding constraints for the variables are disregarded. This
leads to a model which is able to find the solution if this is within the unconstrained
space. In the second part the complete economical dispatch is solved by attaching a
conditional or non-conditional label to some links which are not always active in order
to deal with the solutions which are in the constrained space. Then, a decentralised
model of the system is proposed in chapter 5, based on the auxiliary problem principle.
This model is a decentralised mechanism to clear the electrical power market. To this
end, a bottom-up decomposition approach is used. The benefits from this decomposition
is twofold. First, it leads to identify the main agents in the system. Second, it uncovers
the information they need to interchange in order to solve the problem in a cooperative
manner.

Following, in chapter 6, a deeper analysis is done based on the model presented in chap-
ter 5, which in turn is based on the underlying graph-based model. Based on this analysis
a new characteristic for the links is proposed in order to address the decentralisation
process. The attached labels are either hard or soft. Based on these values, the reduction
process will be guided. This reduction process applies a graph-based formulation which
leads to an efficient algorithm to solve the DC optimal power flow problem. To this end,
the matrix-based formulation is converted into its corresponding graph. Algorithms to
traverse this graph are then proposed in order to solve the system.

In chapter 7, based on the knowledge acquaited in chapter 6, an exploration on how to
decentralise these graphs is done. Here three main kinds of decentralisation approaches
are described. The first one is a completely decentralised approach where all the links
are weakened leading to a gradient oriented approach. The second one is based on the
notion of primal and dual variables. This decentralisation leads to a horizontal split of
the graph, where all the links connecting the primal variable with the dual variables are
weakened. The links which connect primal variables with their corresponding bounding
dual variables are not weakened. In the third decentralisation approach, an agent ori-
ented approach is proposed, which leads to an enhanced performance of the system to
reach stable state. To this end an agent-based description is formulated based on agents
which are described with a set of states and the constraints these agents are subject to.

Based on the agent-based decentralisation approach from chapter 7, in chapter 8 a
methodology to generate this kind of graphs is presented. This will point out that no
matrix formulation has to be done in order to derive these graphs. Finally, chapter 9
concludes this document in two stages. First, it reviews the main aspects this research
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has presented. Then, it concludes this document by setting the road map with the
possible research lines which can be further derived based on the work presented in this
thesis.



Chapter 2

Background

Electrical power markets are the point where several streams of knowledge converge.
How much we know about these streams will represent how much we understand the
mechanics about how power markets work. Based on this knowledge, eventually new
concepts or techniques can be proposed which can improve their operation. In the
following paragraphs we delineate such knowledge streams.

• Economics. At the very end, markets are described as economic models. A central
topic in modeling markets is auction theory. The end of an auction is to allocate
commodities to those bidders who value them the most. The models used in the
research until now are related to social welfare. Therefore we rely in concepts
drawn from Welfare Economics in order to clear the market.

• Electrical power systems. These are essential in order to understand the underlying
problem to be solved. The main building blocks for the the Electrical Power System
need to be understood altogether with their models (i.e. nodes, lines, generators,
loads, etc.). These models are the basic building blocks for the power market.

• Optimisation. An efficient market will have as outcome the best allocations (i.e.
production levels and price). The best, depends on the context where it is used.
In order to decide what “best” is, optimisation techniques have to be used to solve
this problem. To this end, the mathematical concepts and tools which support
these methods have to be well understood.

• Computer Sciences. At the very end, optimisation techniques are numerical meth-
ods. Some of the techniques we apply to these methods are drawn from computer
science. In particular when we talk about decentralisation eventually we end up
with its formalisation and implementation. Intercommunication processes, multi-
agent systems, and so on, are some of the techniques used to that end.

12
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In this chapter, the concepts needed from those different areas in this research are
described. First, we describe auctions as the main support for competitive markets.
Then, electrical power systems are discussed in two stages. First, the description of
their models and then the techniques used in this area to solve them. After that we
move on to set a basic background on Non-Linear Programing (NLP). Here the basic
NLP problem is stated, and a description of convex programming is provided. Next, the
solution to NLP problems is delineated along a discussion of the main concepts involved
in this process such as Lagrange Multipliers and Karush-Khun-Tucker conditions. To
finish the discussion on Non-Linear Programing, Quadratic Programing and its special
case called Quadratic Separable Programing are described.

2.1 Auctions

Market-based solutions are being used in countless applications using auctions (Klem-
perer, 2004) as a mean to allocate scarce resources to those agents who value them the
most. If this condition is met, then this auction is said to be economic efficient. A
normal auction is formed by several agents: sellers, buyers and, if this is centralised,
an auctioneer. The seller owns the good and is willing to sell it at the highest possible
price. Buyers are willing to buy the good but spending as little as possible.

Three main stages can be identified in an auction:

1. Bidding. In this stage the participants will set their positions. Sellers will set their
asking price and buyers will set their offer price. If the auction is centralised, the
auctioneer will collect the buyers and sellers’ offers and asks bids, respectively.

2. Winner determination. Here, the clearing mechanism will decide the auction win-
ner. The commodity will be granted to him.

3. Price settlement. In this stage, the price for the commodity will be set and can
take several forms depending on the underlying auction type.

Therefore, an auction is a price discovery mechanism which sets the price of a commodity
conciliating both buyers and sellers interests and granting the commodity to those who
value them the most. In some auctions, that price is known as the Market Clearing

Price. There are many dimensions to classify auctions. Table 2.1, extracted from He
et al. (2003), shows the values each auction can take along seven different dimensions.

2.1.1 The main auction types

From table 2.1, we can observe the many ways an auction can be run based on those
dimensions. All of them have the same end: to discover the price of a commodity.
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Dimension Values Description
Auction O-One sided Only bids or asks are permitted
mode T-Two sided Both bids and asks are permitted
Time S-Single-round The auction last one round

duration M-Multi-round The auction lasts multiple rounds
Unit O-One Only one good is auctioned during the auction

of goods M-Many Multiple goods are auctioned
Ratio MO-Many to one Multiple buyers, one seller
of B-S OM-One to many Multiple sellers and only one buyer

MM-Many to many Multiple buyers, multiple sellers
Revealed Y-Yes Intermediate revealed information exists
preference N-No Information about others is not available
Settlement F-First price Highest price among all bidders

price S-Second price Second highest price among all bidders
D-Different prices Trades take place any time at different prices

Closing Rules T-Time when time is reached
I-Inactivity when there are no more bids for a time period
B-Budget when a reserve price is reached

Table 2.1: Auction Dimensions, extracted from He et al. (2003)

However the mechanisms they use in order to reach its goal are different and in some
cases the outcome is also different. There are five very well known types of auctions:
English, Dutch, First Price Sealed Bid, Second Price Sealed Bid, and Continuous Double
auction. In addition, in the electrical power market a Double MultiUnit Auction called
Day Ahead Auction is extensively used in order to clear the market. Following these
auctions are described and their properties for each dimension are depicted in table 2.2.

• English Auction. In this auction, also known as ascending auction, the auc-
tioneer rises the price successively and the bidders announce if they are willing to
pay this price. The bidders who are not willing to pay the price must quit the
auction. This process ends when just one bidder remains willing to pay the last
price announced. This last bidder will be the winner. It could also be run by
the bidders announcing incremental bids themselves until no one is willing to pay
more. The one who announced the highest price will be the winner.

• Dutch Auction. Also known as descending auction, works in the opposite way.
The auctioneer starts the auction by announcing a very high price. Then, this
price is lowered as the auction is evolving. The bidder who calls out first wins.

• First Price Sealed Bid auction (FPSB). In this auction, each bidder submits
his bid independently ignoring others’ bids. The auctioneer will announce the
auction winner who will be the one with the highest bid (i.e. government selling
mineral rights), or the one with the lowest bid (i.e. government procurement). The
main drawback for this auction is the winner’s curse. This says the winner must
have paid more than the right commodity value. Therefore, he must rethink his
bidding strategy as there is a (high) possibility he is paying above the commodity
value by taking into account this fact.
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• Second Price Sealed Bid Auction (SPSB). Also known as Vickrey Auction.
In this auction, like in the FPSB auction, every bidder submits his bid indepen-
dently from other bidders. The difference with the previous FPSB auction is that
the winner is the bidder with the highest bid, but he will pay the second highest
price. In this auction bidding the true value is the optimal choice.

• Double Auction. In this auction, the buyers submit their bids and the sellers
submit their offers to an auctioneer. The auctioneer will clear the auction by
constructing an agreggate demand curve with buyers’ bids as well as an aggregate
supply curve with sellers’ offers. The market clearing price (MCP) will be that
where both curves intersect each other.

• Continuous Double Auction (CDA) This is an iterative double auction which
doesn’t stop. As soon as each auction is concluded the next one is started. From
here, adaptive mechanisms can be designed in order to modify the bidding and
offering strategies based on the previous auctions’ results.

Auction Auction Duration Unit Ratio Revealed Settlement Closing
mode time goods of B-S information price rules

English O M O MO-OM Y F I
Dutch O M O MO-OM Y F B
FPSB O S O MO-OM N F T
SPSB O S O MO-OM N S T

Double Auction T S M MM N D B
CDA T M M MM Y D I

Table 2.2: Comparison of different types of auctions (Based on He et al. (2003)

2.1.2 The Day Ahead Auction

In electrical power markets a periodic version of the double multiunit uniform auction
called day ahead is used. Here, the auctioneer collects offer (request) bids, in a quantity-
price pairs form, from suppliers (customers) over a given period of time, and then clears
the market with a uniform price. Table 2.3, shows a typical situation, where suppliers
(customers) send their offers (requests).

The auctioneer sort the bids in ascending (descending) order. Based on this ordering,
their cumulative quantities and prices are plotted. The market clearing price (MCP)
is the intersection point of those curves, as shown in figure 2.1(a), where the system
would be cleared with MCP = 16, producing 185 MW in total. If more generation
units were installed in the system, this would cause the supply curve to shift to the
right. Therefore, the intersection point also will be displaced to the right. This could
in turn reduce the MCP. For instance let us suppose another plant is built with a very
efficient technology. This plant submit the offer bid (100 MW, 12). Figure 2.1(b), shows
the effect of this offer in the MCP determination process. Here MCP = 12 with a total
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OFFERS REQUESTS
Quantity Price Quantity Price

10 5.00 20 35.00
20 15.00 15 15.00
15 6.00 25 40.00
40 7.00 45 30.00
30 6.00 50 25.00
40 15.00 60 5.00
20 25.00 40 45.00
10 10.00
20 16.00
60 30.00
75 18.00

Table 2.3: Offer and Request bids table.

production of 190 MW. This price will be the one the gencos/custcos will receive/pay
for each unit of energy. Tesfatsion and Koesrindaroto (2004) presents a framework to
simulate this model.
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(a) MCP for transactions submitted in table 2.3.
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(b) Same bids as in (a), but the pair offer (100MW, 12)
has been aggregated.

Figure 2.1: Market clearing price determination.

The allocation method described above would be correct in case no transaction had
taken the system into a congestion state (i.e. the allocation can not be handled by the
transmission system). However, if this allocation takes the electrical power system into
a congestion state then the auctioneer will have to find another solution to this problem.
In general, this process can be solved, in the simplest case, by using the DC Power
Flow model, augmented with the transmission system constraints using optimization
techniques (Rau, 2003).

This is a simplification of the kind of auction which the old England and Wales pool used
to do every half hour of the next day, (i.e. 48 times/day (Bath, 2006)). This mechanism
was found to be flawed, uncompetitive, and susceptible to manipulation. There, the
main incumbents in the market were withholding their low-price units in order to raise
the price of power (Green, 2004). As a result, this mechanism was replaced by the
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New Electricity Trading Agreements (NETA) where trading is done mainly by means
of bilateral contracts, one or more power exchanges and a balancing mechanism market
which helps to deal with the imbalances presented in real time operation.

2.1.3 Competitive Markets

A competitive market is one where all the participants behave like price takers. This
means, none of them can change the market price by themselves. As opposed to im-
perfect markets subject to oligopoly practices which in the extreme case would be the
monopoly where the producers can set the market price or the monopsony where the
consumer can set the market price.

The classical competitive market structure is the one where the producer of commodities
are given direct access to the consumers of those commodities, generally under certain
contracts (i.e. bilateral contracts). This situation is represented in figure Figure 2.2.

Consumer Z

Producer B

Producer C

Producer D

Producer E

Producer A

Consumer X

Consumer Y

Figure 2.2: Classical Competitive Market Structure

Unfortunately, there are two main limitations to this model when applied to power
markets. Firstly, electric energy can not be efficiently stored, therefore, once produced
it has to be consumed. Perhaps this is the commodity which lasts the least time in the
market. Secondly, the path it follows from the production center to the consumption
center can not be controled.

Being unable to store electrical energy has a great impact on the energy price. This fact
affects consumers, disabling them to store the commodity to prevent peak prices, as in
any other market could have been done. As a result, the electricity price can rise very
high during peak demand periods.

Without control over the path of the electrical flow, every single transaction will affect
every path within the electrical network. This makes bilateral contracts very difficult



Chapter 2 Background 18

between suppliers and consumers, who will have to reinforce some security measures to
avoid or compensate side effects when applied. Nevertheless, these are used extensively
in the UK actual market NETA, along with a balancing mechanism.

2.2 Electrical Power Markets and their Economic Models

From a topological point of view, an electrical circuit can be seen as a graph formed by
nodes and edges. In particular edges represent an electrical component (i.e. lines, trans-
formers, and so on). The points where the interconnections of these components have
occured are represented by nodes, which in the electrical jargon are called buses. The
topological description of the circuit tells us about the circuit interconnection, which is
independent of any energy source we apply to it. At this stage, only the passive proper-
ties of the circuit (i.e. resistance, admittance, etc) can be described. When an excitation
(energy source) is applied to the circuit we can talk about active quantities distributed
along the circuit (i.e. voltage, current, power, frequency, impedance, susceptance, etc.).

In order to perform an economical assessment to an electrical power system, we need
to describe its basic components as well as their corresponding economical models. The
aim of this section is to describe such components within the electrical power system
from both points of view (i.e. electrical and economic).

2.2.1 Electrical Power Systems Notation

An EPS can be abstracted as a topological structure, which can be described by several
sets. The set N represents the set of electrical nodes in the system. The set E represents
the set of lines. These are represented as tuples (i, j), where i, j ∈ N. G represents the
set of generators which are connected across the EPS. L represents the set of variable
loads connected across the EPS. Q represents the set of fixed loads connected across the
EPS. Additionally, several subsets built out of the previous sets are defined. Subsets
Gi and Li represent the generators and variable loads connected to node i. Fixed loads
attached to node i, (i ∈ N), can be represented as a unique compounded fixed load
denoted by Qi. Finally, the set Γi ∈ ℘(N \ i) represents the set of nodes {j : (i, j) ∈ E},
(i.e. the set of nodes which are neighbours of node i).

2.2.2 Nodes

δi

The main element in an electrical power system is the node, also called bus.
Nodes define the points where several elements are connected (i.e. lines, load,
generators, etc.). Although a node is a “passive” component, it has several
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characteristics which are the core for the analysis of electrical power networks. The
generic bus model is depicted in figure 2.3.

..  ..

j

..  ..

p q

..  ..

l Qg

F

Figure 2.3: A generic node model.

A constraint which always has to be observed in all the nodes across the electrical power
system is the power flow balance. Basically, the node can not store energy. Therefore,
the energy which flows into a node must be equal to the energy which flows out of
the node. The generators are injecting the power

∑
g∈Gi

pg into the node whereas the

loads are extracting power
∑
l∈Li

ql + Q out of the node. On the other hand, the flows

which go through the lines connected to this node,
∑
j∈Γi

bj(δ − δj) to other nodes do not

have a determined direction. This depend on the current electrical power system state.
Therefore, in this document these flows will be assumed as extracting power out of the
node. A negative sign in its valuation will indicate that our assumption was wrong and
the flow direction has to be reversed. The energy balance for node i, is expressed in
equation 2.1 (see appendix A).

∑
j∈Γi

bij(δi − δj)−
∑
g∈Gi

pg +
∑
l∈Li

ql +Q = 0 (2.1)

2.2.3 Lines

jδ

δi

x

The long line’s transmission model is represented by a π-circuit model as the
one shown in figure 2.4. Here, r represents the line resistance, x its reactance.
The elements (g+ jb)/2 represents the shunt admitance with respect to ground
at each extreme of the line, where g is its conductance and b its susceptance. j

is the imaginary operator, representing
√
−1. If the transmission line is short then the

capacitive effect can be disregarded. Therefore, in this case, the model can be simplified
by taking away both elements which are connected to ground. A further simplification
can be made if this line is assumed to be lossless by disregarding its resistance r. The
DC Optimal Power Flow, which is the model used in this document requires only the
reactance value of the impedance.
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(g+jb)/2(g+jb)/2

r+jx

Figure 2.4: π-circuit model for a transmission line.

If a transmission line would transfer a power level beyond its designed capacity then this
would cause a line overheat. In turn, this overheating would cause the resistance to go
up and, therefore, losses would reduce the power transfer. Furthermore, this overheating
would cause this line to elapse. Hence, the capacitive effect would go up as its distance to
ground will be reduced. As a result from the above, the power transfer capability of the
system is changing over the time affecting the characteristics of the market. Therefore,
keeping the line power transfer within its limits is one of the main tasks in the everyday
operation of the electrical power system. The power limit constraint, for a line connected
between nodes i and j, for the DC-optimal power flow model, is defined as

|b(δi − δj)| ≤ dF e

where

b = 1/x

F is the line capacity in MW

2.2.3.1 Electric and Economic Implications as a result of Congestion.

The line’s power transfer constraint will limit the electric flow through that line. How-
ever, the power which has been constrained to flow through this line will be dispatched
from somewhere else within the electrical power system in order to fulfill the power flow
balance within the system. Therefore, from the electrical point of view, there will be just
a re-allocation of resources in the system. The system will be working with a different
parameter configuration but within the constraints it has to fulfill.

However, this fact will have severe consequences from the economical point of view. At
the very end, power transfer imply traded energy. Congestion will limit the possible
trades which could be done in an efficient market. Some of these trades are not possible
as they would cause congestion. The reallocated energy will be provided by a more
expensive unit located somewhere else in the electrical power system. This effect will
produce different energy prices across the electrical power system; in fact, each node will
have its own price. The difference in prices between two nodes gives a signal about the
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quantity of power flow which has been prevented by the flow constraint. These signal
in turn can be interpreted in several ways depending on the agent type as follows

• Gencos : This signal will give an incentive to build new generation plants in the
congested areas as they will be paid more for the energy they produce. This
situation continues until the congestion constraint is cleared. Further investment
has no more economical advantages for the gencos. Furthermore, if the genco does
it then he would drive the energy price down as was shown in figure 2.1.2.

• Custcos: This is a signal which prevents the customer to augment the load in
the congested zone. Furthermore, it gives an incentive to build future facilities in
zones where congestion is not a problem.

• Poolcos: They can interpret this signal as the need to reinforce the network by
building new lines. Also they can improve the network performance by using
Flexible AC Transmission Systems (FACTS) (Acha et al., 2004) to control the
power flow in the lines which are prone to congestion.

2.2.3.2 Locational Marginal Prices

The bus energy prices cleared by the market mechanism where congestion is taken into
account are called locational marginal prices (Schweppe, 1998) if losses are disregarded.
If there is no congestion in the system, then the they will be equal to the market
clearing price calculated by the day ahead auction. This is because none of the trans-
mission constraints are binding, and consequently they can be disregarded. However, if
congestion occurs, then each node will have its own locational marginal price. In the
DC-optimal power flow, locational marginal prices are the shadow prices associated with
constraint 2.1.

2.2.4 Generators

p

Synchronous generators are used to produce active power p as well as reactive
power q. Reactive power is mainly produced in order to keep a constant voltage
at its terminals. In this work we will not deal with this aspect. The power this
generator can produce depends on several physical limitations relating to itself

as well as the kind of technology the generator is attached to (i.e. hydro, nuclear, steam,
eolic, and so on). Therefore, the units will produce power in a valid range which goes
from a lower bound given by p to an upper bound defined by p, as shown in figure 2.5(a).
This curve which describes the production characteristic for a generator is often given as
a quadratic output-input function. This function maps the production cost to generate
a given power level. Nevertheless, this curve is also approximated as a piecewise curve
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which is a sequence of straight line segments. In this document, the cost supply curve
will be represented by a quadratic function defined as C(p) = α+βp+γp2, γ > 0. Based
on this curve, a fundamental curve is derived know as the marginal cost curve. This is
shown in figure 2.5(b). This curve is built deriving the cost curve with respect to p.

C(p)

p(MW)
pp

($/MW)

(a) Cost curve

p
p(MW)

P($)

p

(b) Marginal cost curve

Figure 2.5: The generator model

Generators, based on the priority to provide energy to the system in response to the
demand curve, are classified as

• Baseload. These units will be operating all the time, except for maintenance
purposes. They will supply the minimum demand, called base load, along the day
as shown in figure 2.6. They produce electricity at almost constant rates. Usually
these are the most efficient and largest units.

• Intermediate load. These are units which are used to supply the system to meet
the intermediate energy, which is the one between the base and the peak load.

• Peaking . These are usually the least efficient units, and are used to meet the peak
load periods. In these periods the price for the energy is high enough to recover
their high cost.

The characteristics for each type is given in table 2.4. Here, start-up costs are the costs
associated to commit the unit. Ramp rate, is the rate at which the generation level can
be incremented or decremented over a given period of time. This rate is usually set for
a period of one minute. Therefore its units are MW/min. Finally, the heat rate is the
capacity the unit has to convert the energy contained in the fuel into electrical energy.
The usual units are MBU/kWh.

2.2.5 Loads

Loads, represent the consumers in the electrical power system and are also know as
demand. The load is dispersed across all the electrical power system. Their aggregated
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Characteristic\ Type Baseload Cycling Peaking
Start-up costs High Moderate Moderate

Fuels Gas, coal, oil, nuclear Oil, gas Oil, gas
Ramp rates Low Low to moderate High

Heat rates at Low Moderate High
Maximum Capacity

Table 2.4: Generator Operating Characteristics (Eydeland and Wolyniec (2003)).

demand is being monitored at every instant by the gridco. A curve called the Total

Demand Curve is built from these observations . Its shape is variable along the time
as shown in figure 2.6(a) which represents the demand curve from 3:00 pm, March 27,
2006 to 3:00 pm, March 28, 2006.
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Figure 2.6: Electricity demand in the UK.

However, if we analyse the load curve pattern with a different time scale, as shown
in 2.6(b), which represents the demand in the week from March 21 2007 to March 27
2007, a periodic pattern is observed. The total demand regular pattern is well known
but the exact quantities are not. Therefore, there is a need to balance in real time
generation and load. They have to be matched at every instant by the gridco.

In England and Wales, the New Electricity Trading Agreements (NETA), is based on a
Balancing Mechanism which is used by National Grid, the Independent System Operator
in England and Wales, to balance the power flows on the Grid as well as those which
flow into and out of it (i.e. imports and exports).

Nevertheless, this curve also gives information about the base load which has to be
served. This information gives the right information about the base generation level
which has to be produced. The generators used for this end are known as baseload

generators and they are operated around the clock. Together they are know as the
baseload generation capacity.

Depending on its capacity to react to the energy price change are classified as elastic or
variable loads and perfectly inelastic or fixed loads. The total demand in the system
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is the fixed demand plus the elastic demand. An elastic load is one which reacts to
changes in prices. For example, let us assume the actual load level is q and the price
is P . Now, let us suppose the price for energy changes ∆P and this change causes a
change in demand of ∆q. The elasticity of this load, ε, is given by equation 2.2.

ε = − %∆q
%∆P

= − ∆q/q
∆P/P

= − ∆q
∆P

P

q
(2.2)

Elasticity can be classified as



perfectly elastic if |ε| ≈ ∞

elastic if |ε| > 1

unitary elastic if |ε| = 1

inelastic if |ε| < 1

perfectly inelastic if |ε| ≈ 0

(2.3)

Load elasticity plays a great role if the strategic behavior of the system is to be analysed.
In the the following sections the loads and their models are described based on their
ability to respond to price changes (i.e. elastic and fixed loads).

2.2.5.1 Elastic Load Model

q

Elastic loads are those which can react to changes in energy prices by adjusting
its consumption level. As an example, let us consider the melting industry. Its
energy consumption level varies directly with its production. Hence, if they

were able to produce their output at times where energy price is cheap, they would
increment their profit. Of course, this could introduce some extra costs (i.e. more
expensive labor). Nevertheless, the final decision is up to them.

In order to obtain the benefit function for this load we need to rely on a basic assumption
which will ensure its concavity. In particular, a concave quadratic model will be derived.
We will assume the consumers are rational agents. Therefore, the most valuable energy
block for them will be the first block. This is because they will use this energy for those
processes which benefit them the most. The same argument can be set for the next
energy blocks (i.e. next block will be less valuable than the previous one, but more
valuable than the next ones). This process is repeated until they have already fulfilled
their consumption needs.

Based on the above assumption the benefit curve is built on four parameters derived from
the consumer behavior. First, the minimum power consumption q he wants to consume
and the price p he is willing to pay for it. Second, the maximum power consumption q

he wants to consume and the price p he is willing to pay for it. This has to fulfill the
constraint p ≥ p to meet the previous assumption. This curve is represented as a line
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monotonically decreasing with negative slope m =
p−p
q−q and intercept β = p−mq. This

represents the marginal benefit curve for the consumer MB(q) = β + mq, as shown in
figure 2.7(a).

P

P($)

q(MW)qq

P

(a) Marginal benefit curve

q(MW)

($/MW)
B(q)

(b) Benefit curve

Figure 2.7: The elastic load model.

Based on this model, the benefit curve, B(q), is straightforward. This is built integrating
the marginal benefit curve MB(q) over q. Therefore the benefit curve can be represented
as a concave quadratic function, shown in 2.7(b). This model is described as B(q) =
βq + γq2 where γ = m/2 and m ≤ 0.

2.2.5.2 Fixed Load Model

Q

A fixed load, whose model is shown in Figure 2.8(a), is one which does not
react to changes in price, (i.e. its perfectly inelastic). This kind of load could
represent the electricity suppliers. They buy energy in the wholesale market,

whose price vary at every minute. This energy, is then sold in the retail market to the
final consumers. Suppliers are not able to react to changes in wholesale prices. The
reason is that their demand depends on the final consumer. Consumers are not subject
to any restriction about how and when to use the energy. If the price the consumer faces
were variable, depending on the real time wholesale market price, they would react to
these changes. They would adapt their consumer behavior to the time where the energy
price is cheap. Of course this would be done just if this is more suitable for them. This
kind of captive demand can lead to monopolistic practices. For instance, a genco who
owns several units can withhold any of them. As a result, the market clearing price will
shift upward. This is because more expensive generators will provide the energy which
was being produced by the cheaper generator withheld from the system. Figure 2.8(b)
shows this situation where the market clearing price went up from 12 to 18.
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Figure 2.8: The fixed load model.

2.2.6 Market Clearing Price Revisited

The price settlement is the last stage in an auction. There are many ways to set the price
for the commodity once the winner has been determined. In electrical power markets,
the price settlement is a uniform price known as market clearing price. All the producers
who are granted a production level will receive this price for each energy unit even if
their bid was lower than that price. On the other hand, all the consumers who were
granted a consumption level will pay this price for each energy unit they consume even
though their request offer was greater than this price.

In this section, we will have a closer look at the market clearing price from the welfare
economics point of view. Let us denote q∗ as the optimal energy consumption level
which has to be reached by both producers and consumers. As before, let us define B(q)
and C(q) as the benefit function and cost function respectively. Solving this problem
as the maximum social welfare, implies to maximise the total benefit gained from the
consumption of q∗ energy minus the cost to produce it. From figure 2.9(a), the solution
to this problem is the production level q∗ where the difference B(q∗)−C(q∗) is the largest
(i.e. we are looking for the production level q∗ where the maximum separation between
B(q) and C(q) takes place). On the other hand, when this problem is translated into
its marginal representations for B(q) and C(q) (i.e. dB(q)

dq and dC(q)
dq ) the interpretation

changes. Now, the production level q is that where the price p for both functions is the
same (i.e. the intersection point), as shown in figure 2.9(b).

2.3 Electrical Power Systems

In general, an electrical power system, can be thought of as a huge electrical circuit
where there are suppliers and consumers. Suppliers are represented by those generating
companies, known as the Supply Side and consumers are represented by loads, known
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Figure 2.9: The optimal production q∗ and its relation to B(q), C(q), MB(q), and
MC(q)

as the Demand Side. Among these two set of players there must exist an appropriate in-
frastructure in order to transport the energy from the generation points to the consumer
points. Essentially, this infrastructure is the transmission system itself along with its
control system. The main difference between electrical power systems and normal cir-
cuits, besides the huge management of energy, is that it has to be under certain physical
constraints mainly frequency, voltage, and transmission lines capacity.

This kind of electrical power systems evolved along the time in different locations world-
wide as shown in figure 2.10(a). As a result of economical opportunities or political
reasons, interconnections between the neighbouring areas started to appear as shown in
figure 2.10(b).

(a) Isolated EPS developed worldwide (b) Then they were interconnected

Figure 2.10: The transition from isolated to interconnected power systems

Each country has its own electrical power system, which in general is the interconnection
of several regional systems. Nevertheless, interconnections between countries are very
common, as in the European Union. In this section, we will describe two main concepts



Chapter 2 Background 28

used in the analysis of these systems. First, the DC power flow method, a tool used to
know the state of the system, is described. Then, the optimal power flow whose output
allow us to know also the state of the system with economical efficiency. In addition,
it computes the values which the controls must be set to in order to operate within
the constraints of the system. Furthermore, it provides us with economical information
about the price the energy must have.

2.3.1 DC Power Flow Model

An AC power flow model, is the main tool used to determine the values for the electric
power system variables. It will tell us the voltage and the phase angle at each node
of the system. Out of these quantities and the topological data of the system, a great
variety of information can be obtained (i.e. the active power flowing in each line). This
information can be used by the system operator in order to determine several aspects in
the short term (i.e. line overflow), as well as in the long term (i.e. expansion planning).

A DC power flow model is a simplification of the AC power flow model (Wollenberg
and Wood, 1996). In this approach, a linear model is derived which gives an easy way
to calculate power flows when the power injected into the system is changed. Also by
applying superposition, it is possible to know the effect of every power transaction in
each line of the system. These simplifications will cost some precision. Nevertheless,
as a means to explain the different situations posed by the different electrical markets
decisions, is a good tool while the AC model tends to obscure such aspects. Finally, the
results are fairly close with those of the AC power flow solution (Overbye et al., 2004;
Purchala et al., 2005, 2006).

Let us define N as the set of nodes in the EPS. The DC Power Flow model is represented
by equation 2.4 which has to be applied to every node i ∈ N.

∑
j∈Γi

bij(δi − δj)−
∑
g∈Gi

pig +
∑
l∈Li

qil +Qi = 0, ∀i ∈ N (2.4)

where

bij , is the susceptance of the line connecting nodes i and j.

δi, δj , are the phase angles at nodes i and j respectively,

pig, is the power produced by generation unit g connected to node i,

qil, is the power consumed by the variable load l connected to node i

Qi, is the fixed load connected to node i,

Appendix A presents a complete derivation for the DC power flow formulation.
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2.3.2 The DC Optimal Power Flow

The DC power flow, solves the system from the electrical point of view. This means, it
finds a solution for the system but it does not take into account the economic implications
(i.e. if this solution will lead to an optimal use of the resources). The first techniques
used in power markets to analyse the system taking into account economic efficiency
was the economical dispatch. There the objective was to get the optimal generation
costs (i.e. minimise generation costs). It did not include the transmission model. Why
is the transmission model so important? When the power which flows through the line
reaches its maximum power transfer limit, this line is said to be congested.

Therefore, in order to find a feasible solution for the electric power market, the economi-
cal dispatch was solved. Its solution was fed into the DC power flow. If the solution was
feasible, then the problem had been solved. If not, another solution had to be found.

The DC optimal power flow is a quadratic separable program used to clear the power
market (Rau, 2003). The optimal power flow extends the economical dispatch problem
by introducing the network constraints. Congestion handling gives the difference be-
tween the economical dispatch and the optimal power flow. In systems where there is no
congestion, they are equivalent. When congestion appears in the system this equivalence
does not hold anymore. This model is described by equations 2.5 to 2.9.

min
pg ,ql,δ

∑
g∈G

Cg(pg)−
∑
l∈L

Bl(ql) (2.5)

s.t. ∑
j∈Γi

bij(δi − δj)−
∑
g∈Gi

pig +
∑
l∈Li

qil +Qi = 0 (2.6)

bPigc ≤ pig ≤ dPige ∀g ∈ Gi (2.7)

bQilc ≤ qil ≤ dQile ∀l ∈ Li (2.8)

|bij(δi − δj)| ≤ dFije ∀j ∈ Ti (2.9)

The objective is to maximize the social welfare which is he difference between the benefit
of consuming the commodity and the cost to produce it. This is done by maximizing
the difference between the total benefit the consumers obtain from the use of the energy
they consume and the cost to produce it, denoted by equation 2.5. This is constrained
by the generation units’ physical limitations expressed by inequality 2.7 and the energy
balance which has to be observed at each node and the power flow limits the lines can
carry, described by equation 2.6. But it is also constrained economically by the consumer
behavior. They have a minimum and maximum price they are willing to pay for the
energy. This is implicit in inequality 2.8, as explained in section 2.2.5.1. Furthermore, it



Chapter 2 Background 30

is also constrained by the environment as it has to keep the power which flows through
the lines within its limits, as expressed in inequality 2.9.

2.4 Optimisation

In this section a basic background on optimisation is provided as well as the mathematics
which support it. First, Non Linear Programming is introduced. After this, the basics
for convex programming are given. Then, Karush-Kuhn-Tucker conditions as a tool to
asses optimality in convex problems are presented. Following, quadratic programming is
introduced as the problem faced in this research is quadratic. Furthermore, this problem
is separable. Hence, quadratic separable programming is described next. Finally, a
Newton’s Method revision is done.

2.4.1 Non Linear Programming

Figure 2.11 shows a non-linear function. In optimisation we are interested in the extreme
points (i.e. maxima and minima). In this example those points are A,B,C,D. In
general, if there exists an inflexion at point (z, f(z)), then this is called relative maximum
or minimum. Therefore, points A,C are local maxima, while B,D are local minima.
There are two special elements in this set. The global maximum is the largest element of
the local maxima (i.e. point A in our example), and the global minimum is the smallest
element of the local minima (i.e. point B in our example).

A

z

f(z)

C

D

B

Figure 2.11: A nonlinear function
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The technique used in order to find those points is called non linear optimisation. Nev-
ertheless, when applied to real problems, these problems have some constraints which
have to be fulfilled. Non-Linear Programming (NLP), is the general name of a set of
techniques used to solve such constrained optimisation problems. If the points which
are found by the unconstrained solver fulfill the constraints then, the NLP will find the
same solutions. Otherwise, the NLP will find the point closest to the solution within
the constraint set.

In equation 2.10, the structure of a non-linear mathematical problem is shown. Here,
all functions can be non-linear.

min
z

f(z)

st. gj(z) = 0, j = 1, 2, ...,m (2.10)

This problem alternatively can be expressed as equation 2.11

max
z
−f(z)

st. gj(z) = 0, j = 1, 2, ...,m (2.11)

In the following sections we will assume the objective function needs to be minimised.
Therefore the extreme points we are looking for are the minima.

2.4.2 Convex Programing

NLP methods where the objective function has multiple local minima are very difficult
to deal with, as these must distinguish between local and global minima. Nevertheless,
there are many problems which have only one minimum. Furthermore, there are func-
tions with multiple minima which can be thought of as if it had just one extreme point.
This is because in the constrained region there is just one such minimum. In order to
understand the techniques used for this kind of NLP problems, the concept of convex
function has to be defined.

A function f(z) is called convex if for any two points z′, z′′ ∈ Rn and 0 ≤ α ≤ 1,
constraint 2.12 holds.

f(αz′ + (1− α)z′′) ≤ αf(z′) + (1− α)f(z′′) (2.12)

Figure 2.12 shows a convex curve for n = 1

Based on model 2.10, the NLP problem is called a non-linear convex problem, if func-
tions f(z), gj(z) and hk(z) are convex. Convex programming sets the basis to solve
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Figure 2.12: A convex function

optimisation problems for convex functions in Rn. The existence of just one local mini-
mum, and therefore a global minimum, is the main characteristic for convex functions.
As a result, very efficient techniques can be applied in order to solve the system.

2.4.2.1 Lagrange Multipliers and its graphical interpretation

The solution to non-linear problems with equality constraints was developed by Joseph
Louis Lagrange. A basic setting for this problem is shown in figure 2.13. Here f(z) is
the objective function and g(z) is a linear constraint which has to be fulfilled at the
solution.

a < b

g(z’)

f(z’)

f(z*)

f(z’’)

g(z’’)

g(z*)

z’’

z’

z*

f(z)=b

f(z)=a

g(z)

Figure 2.13: Graphic interpretation for Lagrange Multipliers

Let us denote the gradient for each function as ∇f(z) and ∇g(z) respectively. In this
case two isocurves for f(z) are presented. The first one represents the points where
f(z) = a, and the other one the points where f(z) = b, where a < b. Clearly, if we
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are trying to maximise f(z), constrained by g(z) ,then the solution point is where g(z)
touches f(z) (i.e. g(z) is tangent to f(z)). At that point both vectors ∇f(z) and ∇g(z)
are parallel. Therefore the solution point has to be at point z∗ where equation 2.13
holds.

∇f(z∗) + λ∇g(z∗) = 0 (2.13)

In this equation, the variables represented by vector λ are know as Lagrange Multipliers
or Dual Variables. These can be regarded as scaling factors for each constraint gradient
vector to fulfill equation 2.13. Therefore if a NLP problem is to be solved, a mechanism
is needed to build this expression. This process is achieved by defining expression 2.14
which is called the Lagrangian. The Lagrangian is a high dimension expression as
besides solving for the original problem variables, the Lagrange Multipliers as well as
the slack variables used in order to convert inequalities into equalities need to be solved.

L(z, λ) = f(z∗) + λg(z∗) (2.14)

Therefore in order to solve expression 2.13, the first order conditions for equation 2.14
as denoted by equation 2.15 have to be found.

∇L(z, λ) = ∇f(z∗) +∇λg(z∗) = 0 (2.15)

Equation 2.15 yields to equation 2.13 whose solution leads to the optimal point for
the non-linear problem. Therefore, once the non-linear program has been specified, the
Lagrangian can be built and solved based on that information.

2.4.2.2 Karush-Kuhn Tucker Conditions

A discussion has been given about NLP problems with equality constraints. The La-
grange multipliers method allows us to address optimality conditions for this kind of
problems. However, many problems are expressed in terms of inequality constraints as
defined by 2.16.

min
z

f(z)

st. gj(z) = 0, j = 1, 2, ...,m (2.16)

hk(z) ≤ 0, k = 1, 2, ..., p

To address this problem, the Karush-Khun-Tucker (KKT) conditions generalize the
Lagrange Multipliers method by defining a minimum of conditions which, when fulfilled,
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guarantee necessary conditions for the application of NLP. Furthermore, KKT conditions
provide sufficient optimality conditions for convex programming problems. If we assume
z∗ as the optimal solution for a non linear problem with n = |z| variables, m equality
constraints and p inequality constraints these conditions (Nocedal and Wright, 2006) are

∇f(z∗) +
m∑
j=1

λj∇gj(z∗) +
p∑

k=1

µk∇hk(x∗) = 0 (2.17)

gj(z∗) = 0, j = 1, 2, ..,m (2.18)

hk(z∗) ≤ 0, k = 1, 2, .., p (2.19)

µkhk(z∗) = 0, k = 1, 2, .., p (2.20)

µk ≥ 0, k = 1, 2, .., p (2.21)

where equation 2.17 represents the equilibrium equation between the gradients of the
objective and constraint functions. Equations 2.18 and 2.19 represent the feasibility
of the solution at the optimal point. Equation 2.20 represents the complementarity
condition (i.e. either µk = 0 or hk = 0). Finally, equation 2.21 represents the dual
feasibility (i.e dual variables positiveness).

2.4.3 Quadratic Programing

Quadratic programs are non-linear programs whose objective function f(z) can be ex-
pressed as a quadratic function where the constraints are linear. As before, there are
n variables, m equality constraints and p inequality constraints. Let us define a ∈ Rn,
b ∈ Rn, C ∈ Rn × Rn, A ∈ Rm × Rn, B ∈ Rp × Rn, d ∈ Rm and e ∈ Rp. Therefore the
quadratic programs can be expressed as

min
z

a + b′z +
1
2
z′Cz

Az = d (2.22)

Bz ≤ e

If C is positive semidefinite then f(z) is convex. In this case the problem is called
Convex Quadratic Programming. To asses if C is positive semidefinite is a hard task.
However, in our case this is guaranteed as C will be a diagonal matrix whose elements
are all positive. In this case we are talking about Quadratic Separable Programming.
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2.4.3.1 Quadratic Separable Programing

When in a quadratic program, the objective function can be separated into functions
which involve just one variable, then this is called a quadratic separable program. This
kind of programs are very common in real engineering systems. If the constraints are
also separable, (i.e. each constraint involves just one variable), then the problem can be
decomposed into subproblems, one for each variable. Of course, these are very simple
systems where interactions between components do not exist. In general these con-
straints will involve several variables. Furthermore, these variables do not necessarily
belong to the objective function. As for this research, these are the models we will be
dealing with. For these problem the format is the same as for the quadratic programs.
The only constraint here is that C is a diagonal matrix. Furthermore, this work will
be dealing with diagonal positive semidefinite matrices which ensures convexity for the
objective function.

2.4.4 Newton’s Method

Let us consider function f : Rn → R and the point z∗ ∈ Rn which represents the optimal
solution. Newton’s method is a mathematical tool which allow us to move in Rn based
on the information we have about point zi from zi to zi+1. It aims to reach z∗ which is
that one where f(z) attains its extreme points (i.e. maximum or minimum). Therefore,
at every step we have to end up closer to z∗. Newton’s Method is based on Taylor
expansion of f(z) at zi as an approximation for f(zi+1). It is based on the values of its
gradients ∇(m)f(zi) evaluated at zi, where m stands for the gradient order. Taking this
into consideration, Taylor expansion is defined as

f(zi+1) =
∞∑
m=0

∇(m)f(zi)
m!

(∆z)m (2.23)

where ∆z = zi+1 − zi and ∇f(zi) is the gradient of f(zi), evaluated at point zi.

For a grade n polynomial, a n order Taylor expansion will yield an exact result. To this
end, information about its order n derivative is necessary. The functions used in this
research are quadratic. Therefore, we just need a second order Taylor series polynomial
to obtain the exact solution as defined in equation 2.24.

f(zi+1) = f(zi) +∇f(zi)T∆z +
1
2

∆zTH(f(zi))∆z (2.24)

where H(f(zi)) = ∇2f(zi) known as the Hessian matrix of f(zi). Both, ∇ and H, are
evaluated at zi.
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Newton’s Method finds successive approximations leading to the roots of a function in
Rn. Applied to the Tailor expansion, we can see it is a function of ∆z. At the optimal
point ∆z must be zero. Therefore, applying the first order conditions to equation 2.24
and solving for ∆z leads to equation 2.25.

∇f(zi) +H(f(zi))∆z = 0 (2.25)

this in turn yields to equation 2.26

H(f(zi))∆z = −∇f(zi) (2.26)

which in turn can be solved by using matrix computations as shown in equation 2.27

∆z = −H(f(zi))−1∇f(zi) (2.27)

The approach taken to solve this system using equation 2.26 or equation 2.27 will have
a great impact on the efficient solution of the system.

2.5 Concluding remarks

In this chapter the general mathematical tools which will be used in this document have
been described. Firstly, a general review of the concepts underlying auctions has been
presented, where the main type of auction analysed was the day ahead auction which
is a periodic double multiunit auction. Then the different concepts underlying the
electrical power markets and their economic models were presented. There a description
for the different agents involved in such a market was given as well as the economical
implications for each one of them. In the next part, the concepts needed from electrical
power systems have been given along with a description of the different elements which
they are built from. The principal constraints which the electrical power system has to
fulfill have also been described. Finally the main topics on optimisation needed for this
document have been depicted. In the next chapter a discussion will be given on how to
address these optimisation problems by using graph-based methods.
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Systems of Linear Equations and

their Graphical Solution

The solution to a large kind of problems can be addressed by solving a system of lin-
ear equations (SLE). In particular, the main tool used to solve non-linear optmisation
problems are based on Newton’s method. This method solves iteratively an SLE until
convergence is reached (if the solution exists). Therefore if the goal is to derive effi-
cient algorithms to solve non-linear optimisation problems then a deeper insight into
how an SLE is solved has to be done. In this chapter the graphical solution to an SLE
is described and various special cases are analysed. Section 3.1 presents a graphical
representation for an SLE. Then, based on the observation that Newton’s method is
based on the Hessian matrix H(L(z)) (see section 2.4.4) whose structure is symmet-
rical, section 3.2 moves on the focus to symmetrical SLEs (SSLE) and their graphical
representation. Next section 3.3 presents a closer look to special SSLEs whose structure
are represented by a tree (TSSSLE), including the algebraic solution for such a system.
After becoming familiar with the different classes of SLE and their graph representation,
the solution to those graphs is addressed. Section 3.4 presents the graphical interpreta-
tion for the Gaussian elimination. Next, section 3.5 compares the different strategies to
solve the TSSSLE graph using the transformations introduced in section 3.4. Following,
a graph-based solution for tree structured symmetric systems of linear equations is given
in section 3.6. Then section 3.7 presents a graph-based representation for the Newton’s
method. Finally section 3.8 provides some concluding remarks.

37



Chapter 3 Systems of Linear Equations and their Graphical Solution 38

3.1 Graphical Representation for Systems of Linear Equa-

tions

Systems of linear equations represent systems of the form of equation 3.1.

a11x1 . . . a1jxi . . . a1nxn = b1
...

...
...

ai1x1 . . . aijxi . . . ainxn = bi
...

ainx1 . . . anjxi . . . annxn = bn

(3.1)

Defining the following variables

A =



a11 . . . a1j . . . a1n

...
...

...
ai1 . . . aij . . . ain
...

...
...

ain . . . anj . . . ann


x =



x1

...
xi
...
xn


b =


b1
...

bi
...

bn



where A ∈ Rn × Rn, x ∈ Rn and b ∈ Rn. Therefore, expression 3.1 can be described in
matrix notation by equation 3.2.

Ax = b (3.2)

The non-zero elements in A, excluding those in the diagonal, define the topology of the
graph which represents the SLE. If A is very sparse then the graph will have very few
interconnections. Sparse systems can be solved using special algorithms which may need
special data structures. Therefore a measure of sparsity is needed in order to evaluate
how sparse a matrix is. Let us define nz as the number of zeroed off-diagonal elements
in A, where 0 ≤ nz ≤ n(n− 1). Equation 3.3 defines the sparsity degree for matrix A.

s =
nz

n(n− 1)
(3.3)

The possible values for s lie in the interval [0,1]. As the ratio between the number of
zeroed elements and the number of elements if it were full grows, the sparsity degree
will grow. In particular, when s = 1, its corresponding graph would represent a totally
decoupled system. Figure 3.1 shows a decoupled system with five nodes representing a
SLE with five equations and five unknowns.
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(a) Decoupled matrix
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(b) Decoupled graph

Figure 3.1: A totally decoupled SLE.

On the other hand, s = 0 represents a fully connected system (i.e. every node is
connected to every other node), as shown in figure 3.2 representing a fully coupled SLE
with five equations and five unknowns.

(a) Fully coupled matrix

x

x

x

x

5

1

2

x

3

4

(b) Fully coupled graph

Figure 3.2: A fully coupled SLE.

Between these two extremes (i.e. 0 < s < 1), A is neither full nor decoupled and its
corresponding graph will not be fully connected (i.e. not all the nodes are connected
among them). Figure 3.3 representing a SLE with five equations and five unknowns.

(a) Its matrix

x

x

x

x

x

5

1

2

3

4

(b) Its graph representation

Figure 3.3: A sparse connected system.

It turns out that many physical systems solved using linear systems are very sparse i.e
s→ 1. In particular, in electrical power systems, the matrices which represent transmis-
sion networks are very sparse. This is the main reason why sparsity techniques have been
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improved by research whose goal is to solve efficiently the actual state of the power sys-
tem; such as the best elimination ordering (Markowitz, 1957; Tinney and Walker, 1967).
Sparsity techniques have been around since at least 1970 using a technique known as bi-
factorization (Zollenkopf, 1970). The main principles used in bifactorization are strongly
directed toward exploiting the underlying matrix graph.

Therefore in order to approach the solution using its graph representation, first an
appropriate model has to be derived. This model has to be able to represent the complete
SLE elements (i.e. A,x, and b). The model proposed in this document is based on a
per equation basis. This representation is given in figure 3.4.

a ix..+ ija jx +.. bi=+..+

xi

aii

ib
aji

aij

ii

Figure 3.4: Conversion from a linear system of equations to its graph model

In this model an equation is represented by two components: a node and a set of links.
The node is a well defined component which consists of two subcomponents: a circle
consisting of two half parts and an arc. The upper part of the circle represents the
variable related to this equation which has to be solved by the system (i.e. xi) and the
lower part represents the coefficient related to this variable in equation i (i.e. aii). The
arc represents the i − th component in b (i.e. bi). The second part depends on the
SLE topology and is represented by links which connect the nodes. These links will be
denoted as (i, j) where i and j represent the row and the column number respectively.
There can be zero or more links which connect the node with some other nodes in the
graph. Each link has an associated value for the coefficient located in the row i column
j (i.e. aij). Perhaps it is a little absurd to consider the case where there are no external
links. However, as will be shown later, this is the basic configuration which will always
be pursued in order to solve the SLE.

In order to illustrate these concepts let us define an example of a SLE to illustrate this
process. Consider the SLE represented by equations 3.4 to 3.7

0.5x1 − x2 − x3 = 0 (3.4)

−x1 + 2x2 − x3 = 0 (3.5)

−x1 − x2 + x3 − x4 = −5 (3.6)

−2x3 + 4x4 = 0 (3.7)

Instantiating equation 3.1 with equations from from 3.4 to 3.7 leads to equation 3.8
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
0.5 −1 −1 0
−1 2 −1 0
−1 −1 1 −1
0 0 −2 4



x1

x2

x3

x4

 =


0
0
−5
0

 (3.8)

Applying the model defined in figure 3.4 to each equation, the graph shown in figure 3.5
is obtained.
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0

Figure 3.5: Graph corresponding to the system defined by equation 3.8

Unidirectional links (→ and ←) have to be used as in general aij 6= aji, as shown by
links (3, 4) and (4, 3), representing elements a34 and a43. If aij = aji then these elements
are represented with a bidirectional link (↔) as shown by the link (1, 3), representing
elements a1,3 and a3,1. This graph represents an asymmetric SLE (ASLE). An ASLE
is a SLE where there exists at least one pair of links (i, j), (j, i) where i 6= j, such that
aij 6= aji holds.

In this document the main aim is to express Newton’s method to solve non-linear op-
timisation problems using a graph approach. The kind of matrices involved in such
problems are symmetric, therefore the main focus will be on this subset of SLE.

3.2 Symmetric Systems of Linear Equations and Its Graph-

ical Representation.

Symmetric systems of linear equations (SSLE) are SLEs where aij = aji holds for all i, j.
This document will not deal with the analysis of the properties these systems hold. The
main interest here is how to represent such systems using graphs and how to exploit them
in order to solve the SLE. SSLEs are very common in physical systems, in particular, a
great range of problems in electrical power systems can be addressed with SSLEs. To
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represent SSLEs into its graphical form, the graph representation proposed in figure 3.4
is modified as shown in figure 3.6.

a ix..+ ija jx +.. bi=+..+

aijxi

aii

ib
ii

Figure 3.6: Conversion from a symmetric linear system of equations to its graph
model

The only modification in this variant is with regard to the unidirectional links. The
graphs representing SSLEs must contain only bidirectional links. The link representation
has been modified and the arrows are no longer used as they do not give any extra
information. In order to illustrate these concepts let us instantiate equation 3.1 with
equation 3.9 which is basically equation 3.8 where the element a43 has been set to −1
in order to be equal with element a34.


0.5 −1 −1 0
−1 2 −1 0
−1 −1 1 −1
0 0 −1 4



x1

x2

x3

x4

 =


0
0
−5
0

 (3.9)

Applying the model defined in figure 3.6, yields the graph shown in figure 3.7
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Figure 3.7: Graph corresponding to the system defined by equaion 3.9

SSLEs can be described as perfect SLEs; they are well behaved and their properties
have been known for a long time. However, there exists a subset of SSLE which besides
all those properties possessed by them, have another property. They can be represented
with a graph known as a tree and as a consequence all the well known algorithms
regarding trees can be applied to them. For reasons which will be explained in the
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following chapters these will be the SLEs this document will be dealing with. Therefore,
the attention will be focused on this kind of systems.

3.3 Tree Structured Symmetric Systems of Linear Equa-

tions and Its Graphical Representation.

Tree structured symmetrical systems of linear equations (TSSSLE) are SSLE where the
graph representing the SSLE is a tree. Based on this structure, efficient algorithms can
be derived in order to solve this kind of systems. These algorithms emerge naturally,
just by exploiting the properties of trees. This kind of graphs have been applied to
solve electrical distribution networks whose main characteristic is its radial shape (i.e.
no loops exists in the network). Therefore a tree structure can be derived for the SLE
representing these systems. Algorithms to solve different problems with different degree
of complexity have been proposed for distribution networks based on this structure in
Goswami and Basu (1991); Das et al. (1994); Chen et al. (2000); Mekhamer et al. (2002).

A tree-shaped graph has to be free of loops. This work does not deal with how to
identify and remove loops from graphs. Decentralisation techniques proposed in later
chapters will remove the possible loops resulting from the transmission network. There-
fore, graph 3.7 will be converted into a graph representing a TSSLE by removing the link
(1, 2). This implies removing elements a12 and a21 from matrix A. Let us instantiate
equation 3.1 with equation 3.10 which is basically equation 3.9 where elements a12 and
a21 have been set to 0


0.5 0 −1 0
0 2 −1 0
−1 −1 1 −1
0 0 −1 4



x1

x2

x3

x4

 =


0
0
−5
0

 (3.10)

Applying the model defined in figure 3.6, leads to the graph shown in figure 3.8 which
is graph 3.7 where link (1, 2) has been removed.

The TSSSLE graph model will be used along this document to address different prob-
lems which must be solved in the electricity power market. This model will be enhanced
in the following chapters to address different aspects which emerge during non-linear
optimisation problem solving tasks, such as conditional evaluation and graph decentral-
isation. Before that, in the following sections different solution strategies are described
for such systems.
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Figure 3.8: Graph corresponding to the system defined by equation 3.10

3.3.1 Algebraic Solution

In this section the system shown in equation 3.10 will be solved algebraically, adding
rows, subtracting rows and substituting variables. To this end let us expand this system
as the one given from equation 3.11 to equation 3.14

.5x1 − x3 = 0 (3.11)

2x2 − x3 = 0 (3.12)

−x1 − x2 + x3 − x4 = −5 (3.13)

−x3 + 4x4 = 0 (3.14)

Subtracting equation 3.12 from equation 3.11 yields equation 3.15

.5x1 − 2x2 = 0 (3.15)

Then adding equations 3.13 and 3.14 leads to equation 3.16

− x1 − x2 + 3x4 = −5 (3.16)

Now adding equations 3.12 and 3.13 equation 3.17 is obtained

− x1 + x2 − x4 = −5 (3.17)

Equation 3.15 yields to equation 3.18

x1 = 4x2 (3.18)

Substituting 3.18 in 3.16 and 3.17, equations 3.19 and 3.20 are derived, respectively.

−5x2 + 3x4 = −5 (3.19)
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−3x2 − x4 = −5 (3.20)

From equation 3.20, equation 3.21 is obtained

x4 = 5− 3x2 (3.21)

Substituting 3.21 in 3.19 x2 is calculated

−5x2 + 3(5− 3x2) = −5 =⇒ x2 =
10
7

Using x2 = 10/7 in 3.20, x4 is solved

x4 = 5− 3(
10
7

) =
5
7

Now x1 is computed using x2 in equation 3.18

x1 = 4(
10
7

) =
40
7

Finally using x1 = 40/7 in equation 3.11, x3 is solved.

x3 = .5(
40
7

) =
20
7

Therefore, the solution for the TSSSLE denoted by equation 3.10 is the vector 3.22
x1

x2

x3

x4

 =


40/7
10/7
20/7
5/7

 (3.22)

This example will be used throughout this chapter. The system will be solved using
different strategies which have to lead to the same solution. To this end Gaussian
elimination will be used as the main tool to solve the system.

3.4 Gaussian Elimination and Its graphical Interpretation

Gaussian elimination is a general method to solve a SLE. It consists of the iterative
application of elementary row operations which lead the system to an echelon form. This
is achieved by modifying each of the elements which do not belong to the column and
row to the equation under reduction. These elements are modified using expression 3.23.

a
′
ij = aij −

aikakj
akk

(3.23)
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Gaussian elimination can be regarded as a matrix transformation from Rn × Rn →
Rn−1×Rn−1. The resulting system has all the information needed to solve the subsystem
resulting from the transformation. Let us assume A is a full matrix. Therefore Gaussian
elimination, as shown in figure 3.9, can be thought as a transformation where the row
and column (shown in light gray) where it was applied have been deactivated and the
resulting SLE consists only of the remaining rows and columns which have already been
modified by equation 3.23 (shown in dark gray).

(a) Before the elimination (b) After the elimination

Figure 3.9: Gaussian elimination and its matrix interpretation

A graph interpretation for this transformation when applied to node k is shown in
figure 3.10 where it can be seen all the links and nodes of the graph are modified in
order to reflect such an equivalence.
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(b) After the elimination

Figure 3.10: Gaussian elimination and its graph interpretation.

When dealing with sparse systems several observations have to be done. Figure 3.11(a)
reproduces the sparse matrix defined in figure 3.3(a) and figure 3.11(b) shows the trans-
formation it undertakes when Gaussian elimination is applied to x1. The entries in red
denote elements whose values were zero before the transformation. Nevertheless, it just
denotes a change in value.
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(a) Before the elimination (b) After the elimination

Figure 3.11: Gaussian elimination and its matrix interpretation for a sparse matrix

Now, let us analyse the transformation in its graphical representation. To this end, let
us define Γk as the set of nodes connected to node k. In this case let us instantiate k = 1
as the node to be eliminated; consequently, Γ1 = {2, 3, 4}. A graph interpretation for
this transformation is shown in figure 3.12. Here figure 3.12(a) represents the state of
the graph before the transformation is applied and figure 3.12(b) represents the state of
the graph after the transformation has been applied.
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(b) After the elimination

Figure 3.12: Gaussian elimination and its graph interpretation for a sparse matrix

This shows that when node k is eliminated then the nodes which are connected to it,
Γk, will form a complete graph among them as a result of this transformation. This is
reflected by equation 3.24

Γ′j ← (Γj ∪ Γk) \ {j, k} ∀j ∈ Γk (3.24)

Where Γj and Γ′j denote the neighbour nodes of node j before and after the transforma-
tion, respectively. If nodes i and j were connected before the transformation then the
value for the link (i, j) which was connecting them (shown in dark gray) will be updated
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by equation 3.23. On the other hand, if they were not connected (i.e. aij = 0) then
these interconnections would have to be created (shown in red). If no pair of nodes i, j,
where i, j ∈ Γk, were connected before the transformation then a complete subgraph
would be created among them. The number of links needed to build this subgraph, Nk,
is given by equation 3.25.

Nk =
|Γk| (|Γk| − 1)

2
(3.25)

Therefore, Gaussian elimination has two costs: one which has to be applied every time
is updating, and the second one is the creation of new links, known in the literature as
fill-ins. Furthermore, from figure 3.12(b) link (3, 5) and node 5 were not used at all in the
transformation. Here is where the power of sparse methods appears in systems whose
components are lossely coupled as they do not deal with elements not involved in the
transformation. Obviously, the burden set by sparse methods have to be avoided if the
systems under study are known to be very full matrices which derive almost complete
graphs tranformations. Berry and Heggernes (2003) gives a deeper description about
the modifications of the graph as the reduction process is applied.

3.4.1 Special Cases for Gaussian Elimination

As mentioned previously, Gaussian elimination has two main costs: updating and link
creation. The first one is unavoidable but the second one can be optimised if an elimina-
tion order is achieved such that the number of links created are minimal, or in the ideal
case no links are created. There are three special cases which deserve special attention.
The first one is shown in figure 3.13. This is the well known as star-delta transformation
in electrical engineering. Here |Γk| = 3 and by equation 3.25 at most three new links
will be generated.

(a) Schematic representation
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(b) Complete transformation

Figure 3.13: Gaussian elimination for |Γk| = 3.

The second one is shown in figure 3.14. This is the well known series reduction in
electrical engineering. Here |Γk| = 2 and by equation 3.25 at most one new link will be
generated.
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(a) Schematic representation
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(b) Complete transformation

Figure 3.14: Gaussian elimination for |Γk| = 2.

The third and most important case regarding this document , as it will be shown along
this chapter, is shown in figure 3.15. This configuration can be regarded as a dangling
node which can be reduced into the node where it is dangling from. Here |Γk| = 1 and
by equation 3.25 there will be no new links generated. This basic fact will be used in
order to reduce the TSSSLE as the leafs can be regarded as dangling nodes. Once they
are reduced, then the nodes where they were dangling from can be reduced, and so on.

(a) Schematic representation
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2

(b) Complete transformation

Figure 3.15: Gaussian elimination for |Γk| = 1.

3.5 Graph-based Solution for Symmetric Systems of Lin-

ear Equations

Solving a SLE, when translated to its graph counterpart, means to go from the configu-
ration shown in figure 3.16(a) to the configuration show in figure 3.16(b), where all the
variables have been solved as it was done in detail in section 3.3.1 using an algebraic
approach. It is desirable to end up with the same values as the initial configuration
but as it will be seen this is not possible as the successive application of the Gaussian
elimination will modify these values. Furthermore, the final configuration will depend
on the order in which the Gaussian elimination was applied.

How were these values obtained? There are several methods to solve SLE which are based
on Gaussian Elimination. Here the graph is reduced by applying Gaussian elimination
using the reduction shown in figure 3.15(b), one node at a time iteratively, until the
graph is reduced to just one node. This method is known as forward elimination. At
this point the system can be solved as its configuration is
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(a) Its original configuration
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(b) Its final configuration

Figure 3.16: A graph system.

a′iixi = b′i

from this xi is solved with a value of

xi =
b′i
a′ii

Then a process called backward substitution can be applied by solving the previous node
and so on. It is important to keep the tree structure in the elimination process as it
will perform the fastest and cheapest solution for the SLE. Let us apply the Gaussian
elimination to the example graph which in figure 3.16 is reproduced.

The first question is which node has to be applied the elimination on? A more advanced
question is which elimination order has to be applied?. This is an open question and has
been addressed in different scenarios. There are several elimination orders which can be
taken in order to go from configuration 3.16(a) to configuration 3.16(b). In fact, the total
number of elimination orders, Ne, for a system with n variables and n equations is nn.
However, some of them can not be applied as they would lead to an inconsistent system.
An inconsistent configuration appears when the node where Gaussian elimination is to
be applied is zero. This would lead equation 3.23 to an undefined value and would
stop the reduction process. If we derive a configuration where all the nodes are zero
then the system is said to be singular. Therefore, in its matrix version, this situation
is avoided by interchanging (or renumbering) rows and columns, provided the system
is not singular. In the graph representation just an inspection have to be done at the
actual node where the Gaussian elimination is to be applied. If its value is zero then its
reduction is delayed to a later moment.

In this section, three different orders will be applied to the graph system shown in
figure 3.16(a) in order to obtain some insight about the Gaussian elimination process
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(applying all the possible orders implies 4! = 24 elimination orders). The first elimination
order shown in 3.17 is 1 → 2 → 4 → 3. First, node one, using the reduction shown in
figure 3.15(b), is reduced into node 3 as shown in figure 3.17(a). In the same way, node
2 is reduced into node 3 as shown in figure 3.17(b). Finally, as for the reduction process,
node 4 is reduced into node 3 as shown in the upper part of figure 3.17(c). Now x3 can
be solved, as shown in bottom part of figure 3.17(c). Once x3 is solved, the substitution
process can be applied as node 1, 2, and 4 were connected to node 3 only. This process
leads to the configuration shown in figure 3.17(d). As it can be appreciated, no new
links are created. Furthermore, node 3 is the only node whose initial configuration is
modified.
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Figure 3.17: The graph solution with elimination order 1→ 2→ 4→ 3

The second elimination order shown in 3.18 is 1 → 2 → 3 → 4. Here, no new links
are created. However, the initial configuration for nodes 3 and 4 has been modified.
Furthermore, once x4 is solved just x3 can be solved and the rest of the variables after
this using backward substitution.
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Figure 3.18: The graph solution with elimination order 1→ 2→ 3→ 4

The third elimination order shown in 3.19 is 3→ 4→ 2→ 1. Here, three new links are
created when node 3 is eliminated as |Γ3| = 3. The initial configuration for all nodes
has been modified. Furthermore, in order to solve x3 the rest of the variables have to
be solved. To solve x4, first x1 and x2 have to be solved. Finally, to solve x2, first x1

must be solved.
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Figure 3.19: The graph solution with elimination order 3→ 4→ 2→ 1

3.5.1 About the Importance of the Initial Configuration

In the previous examples, the modification to the initial configuration was mentioned.
This is important to preserve or at least try to preserve it as much as possible as there are
iterative algorithms which will be using this configuration in order to reach the solution.
If the algorithm which solves the graph modifies this configuration at every iteration,
then this will have to be reinstantiated in each of them.

3.6 Graph-based Solution for Tree Structured Symmetric

Systems of Linear Equations

A tree is a special kind of graph whose main characteristic is the absence of loops. A
standard representation for a tree is presented in figure 3.20. A tree has n layers, n ≥ 1,
numbered from 0 to n−1. The number of layers represents its depth. A function layer(x)
can be defined to express the layer where node x is located, for instance layer(E) = 2.
Another useful function is parent(x) which returns the node where node x is hanging
from or nil if it has no parent, for instance parent(E) = B and parent(A) = nil.

Let us denote Υi as the set of indices j which corresponds to variables xj which are
hanging from xi as denoted by equation 3.26 (i.e. the children of xi).
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Figure 3.20: An example of a tree.

Υi = {j : ∃(i, j), parent(i) 6= j} (3.26)

For instance ΥA = {B,C}, and ΥG = {N,O} in figure 3.20. Based on these definitions,
the nodes in a tree can be classified in three types

• root node: There is just one of them in the graph such that layer(root) = 0 and
parent(root) = nil. For instance the root node in figure 3.20 is A (in black),

• internal node: are those nodes x such that Υx 6= ∅ and x 6= root. The set of
internal nodes, I, in figure 3.20 is {B,C,D,E, F,G} (in gray),

• terminal node: also called leaf node, are those nodes x where Υx = ∅. Therefore
the set L representing the leaf nodes in figure 3.20 is {H, I, J,K,L,M,N,N,O}
(in white).

This kind of graphs are one of the most useful structures in computer science. Their
application spans from context-free grammar analysers in compiler theory, XML rep-
resentation in internet technologies, and so on. A common characteristic about those
applications is that only the leaf nodes have real information. However, when applied
to TSSSLEs, the internal nodes will have some information which need to be processed
in order to solve the SLE.

It is very important to preserve the tree structure of the system in the reduction process.
The best way to reduce these graphs is by finding an order which does not generate new
elements at all. From figures 3.13, 3.14 and 3.15 a basic fact can be asserted. The only
reductions which do not generate new elements are those which are applied to nodes
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k where |Γk| = 1. Therefore those are the ideal candidates to apply the elimination
process.

Gaussian elimination when applied to all nodes j where j ∈ Υi, is expressed in equa-
tions 3.27 and 3.28 for the coefficient corresponding to variable xi and the independent
term respectively.

a′ii = aii −
∑
j∈Υi

a2
ij

ajj
(3.27)

b′i = bi −
∑
j∈Υi

bjaij
ajj

(3.28)

The solution for the SLE once the reduction process has been applied is straightforward.
To this end, advantage is taken from the modifications the reduction process in its way
up has made to the tree. It has updated the value of bi and aii when their dependencies
with the lower layer were eliminated. Let us suppose parent(i) = k. Then, the equation
to be solved for xi is

aiixi + aikxk = bi (3.29)

which is solved as
xi =

bi − aikxk
aii

(3.30)

clearly for this equation if node i is the tree root, then there will be no more layers up
so this equation becomes

xi =
bi
aii

(3.31)

Therefore, a top down propagation approach can be applied in order to solve the nodes
in the lower layers. This can be based on a Breadth-first (BF) or a Depth-first (DF)
algorithm (Cormen et al., 2001). Nevertheless, if the shape of the graph is known apriori,
then more efficient algorithms can be proposed in order to speed up the computations
avoiding recursivity or the handling of other auxiliary data structures.

3.7 Converting the Newton’s Method into a Graph-based

System

As denoted in section 2.4.4, Newton’s method is a linearization for L(z) defined by the
SSLE denoted in 3.32 when applied to the Lagrangian (i.e. f(z) ≡ L(z)).

H(L(z))∆z = −∇L(z) (3.32)
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Expanding this expression leads to

∂2L(z)
∂z1∂z1

· · · ∂2L(z)
∂z1∂zj

· · · ∂2L(z)
∂z1∂zn

...
...

...
∂2L(z)
∂zi∂z1

· · · ∂2L(z)
∂zi∂zj

· · · ∂2L(z)
∂zi∂zn

...
...

...
∂2L(z)
∂zn∂z1

· · · ∂2L(z)
∂zn∂zj

· · · ∂2L(z)
∂zn∂zn





∆z1

...
∆zi

...
∆zn


= −



∂L(z)
∂z1
...

∂L(z)
∂zi
...

∂L(z)
∂zn


(3.33)

A fundamental fact here is that H(L(z)) is symmetric as ∂2L(z)
∂zi∂zj

= ∂2L(z)
∂zj∂zi

.

The graph-based model for a general equation in the SLE described by equation 3.33 is
shown in figure 3.21. To convert this matrix system into its corresponding graph model,
the following steps are required. A node is defined for each variable in ∆z. In that node
the upper half circle refers to the variable whose value has to be solved, in this case ∆zi.
The lower half circle refers to the coefficient for variable ∆zi, actually ∂2L(z)

∂2zi
, which in

this document will be denoted as azi . Then the independent term, represented as the
small arc incident to the node, initialized with −∇ziL(z), which will be denoted as bzi .
Out of this node there will possibly be interconnections with other variables represented
by edges. The expression attached to these edges are the values for H(L(z)) in the
positions relating the variables connected at each end (i.e. ∂2L(z)

∂zi∂zj
). Finally, the actual

value for each variable, zi, will also be stored in the node (not shown).

Figure 3.21: Graph model for the Newton’s method

3.8 Concluding Remarks

In this chapter the graph representations for SLEs, SSLE and TSSSLE have been pre-
sented. Here we have learnt the differences among them and the fact that TSSSLE ⊂
SSLE ⊂ SLE. Then Gaussian elimination and its graphical interpretation has been
presented. Even that different elimination orders have the same solution when Gaus-
sian elimination is applied, some will require less operations to reach the solution. Also
depending on this elimination order a variable number of new links will be created or
not. Furthermore, some elimination orderings are not allowed as they will derive graphs
whose pivot where gaussian elimination is to be applied is zero.
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When solving a SLE, the objective is to find the values for variables represented by vector
x. The basic tool to find those values will be based on the Gaussian elimination. The
processing task for this graph will address the previous features so no links are created at
all. A TSSSLE is a SLE which can be represented with a tree. The solution to TSSSLE
does not require the creation of links, therefore is a very efficient structure which this
work will try to derive. Finally, a graph-based representation has been derived for the
Newton’s method which will be the basis for the models to be developed in the next
chapters.



Chapter 4

The Economical Dispatch and its

graph-based solution

The economical dispatch is a convex quadratic separable problem (QSP). The solution
to a convex QSP with z representing all the variables used in the solution process (i.e.
problem variables, slack variables and dual variables), is based on the Lagrangian L(z),
its gradient (∇(L(z))) and its Hessian Matrix H(L(z)). The solution to the system is
given as an iterative process where the initial assumption zo is improved by solving a
Newton step (i.e. ∆z = −H(L(z))−1∇(L(z))). In the case of QSP, and if no constraint
is violated, then just one step is needed in order to reach the optimal solution. If some
constraints are violated, then these are activated and the process is applied again until
all constraints are fulfilled. In this case the solution will be the closest valid point to the
optimal solution, as some of the constraints will be binding. For large scale systems this
approach is inconvenient as the size of H(L(z)) will grow accordingly with the number
of variables in the system, |z|. To complicate this procedure, the active constraint set
is not static along the solution process. H(L(z)) has to be modified in every solution
step in two ways. First, the new constraints which became active in the last step have
to be added. Second, the constraints which became inactive as a result of the last
step application have to be removed. From this, it can be concluded that the size and
structure of H(L(z)) will be varying along the process.

In this chapter the Hessian Matrix structure is exploited. First a relaxed version for the
economical dispatch problem is proposed where the physical limits of the generators are
relaxed. The matrix formulation is transformed into a graph system as delineated in
section 3.7. The topology of the resulting graph is a tree. This model is solved with the
model developed in section 3.6. Then noting the results this structure provides for the
problem under certain conditions are infeasible this model is enhanced. This is done to
deal with the original economical dispatch problem where the limits on the generators
are included. The former matrix formulation is extended to include such constraints

57
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and its graph system is obtained according to section 3.7. The complex procedure of
removing and adding constraints into H(L(z)) is translated into decisions whether to
visit part of the graph or not based on Karush-Kuhn-Tucker (KKT) conditions.

4.1 The Economical Dispatch Problem

The economical dispatch is a problem where a set of producers are connected to a single
node trying to met demand Q which is connected also to that node. Its goal is to find
the production levels for each generator (i.e. pg where g ∈ G), as well as the price for
the energy λ with economic efficiency. The production level for each generation unit has
lower and upper limits bpgc and dpge respectively. The production function is assumed
to be quadratic (i.e. Cg(pg) = αg+βgpg+γgp

2
g). In the same way, the benefit function is

assumed to be quadratic concave (i.e. Bl(ql) = βlql−γlq2
l ) as obtained in section 2.2.5.1.

Figure 4.1 shows the graphical representation for this problem.

λ
..  ..

p q

..  ..

Qg l

Figure 4.1: A general representation for the economical dispatch problem

An instance of this problem to test the graph model which will be used along this work
is shown in figure 4.2 (extracted from Wollenberg and Wood (1996)).

λ

Gen. 2

[100..400][150..600]

Gen. 1

[50..200]

Gen. 3 850 MW

Figure 4.2: A system with one node and three generators

The data for this system is given in table 4.1. Two cases are analysed. The second case
(1a) is the same as case one, the only difference being the coal price which is cheaper
than in case 1 represented by smaller coefficients for generator 1 whose generation is
coal-based. These values are in the second row as compared with those in the first row.
The production functions with their associated limits for each generator in table 4.1 are
shown in figure 4.3
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gen α β γ bpc dpe
1 510 7.92 0.001562 150 600

1(a) 459 6.48 0.00128 150 600
2 310 7.85 0.00194 100 400
3 78 7.97 0.00482 50 250

Table 4.1: Data for the system components
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Figure 4.3: Production functions for the generators.

4.2 The Economical Dispatch with Ideal Generators and

Its Graph-based Solution

The economical dispatch with ideal generators problem is defined within this work as the
relaxed version of the previous problem where the capacity constraints associated to the
active elements (i.e. generators and elastic loads) are dismissed as shown in the problem
described by equations 4.1 and 4.2. Therefore the limits imposed in the generation level
for the generators shown in the last two columns of table 4.1 will be disregarded in the
solution process.

min
pg ,ql

∑
g∈G

Cg(pg)−
∑
l∈L

Bl(ql) (4.1)

s.t. ∑
g∈Gi

pg −
∑
l∈Li

ql = Q (4.2)

Solving this NLP implies building the Hessian and the applying the Newton method to
solve the system. In order to build H(L(z)), the Lagrangian L(z) has to be built. The
expression for the Lagrangian for the relaxed economical dispatch problem is given by
equation 4.3
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L(z) =
∑
g∈G

Cg(pg)−
∑
l∈L

Bl(ql) + λ

∑
g∈Gi

pg −
∑
l∈Li

ql −Q

 (4.3)

where z = [pg, ql, λ]T

The equation can be solved by using a Newton approach. To this end the system
represented by equation 4.4 has to be solved.

H(L(z))∆z = −∇(L(z)) (4.4)

Therefore, in order to solve ∆z first ∇(L(z)) and H(L(z)) have to be known. Notice
the solution has not been expressed as a function of H(L(z))−1. Table 4.2, describes
the relation among z, L(z), ∇(L(z)) and H(L(z)).

L(z)=
∑
g∈G

Cg(pg)−
∑
l∈L

Bl(ql) + λ

( ∑
g∈Gi

pg −
∑
l∈Li

ql −Q

)
∇(L(z)) H(L(z))

z pg ql λ

pg βg + 2γgpg − λ 2γg −1
ql −βl + 2γlql + λ 2γl 1
λ Q+

∑
l∈L

ql −
∑
g∈G

pg −1 1

Table 4.2: Relation among z, L(z), ∇(L(z)) and H(L(z)).

The structure for this graph, shown in figure 4.4, complies with the TSSSLE described in
section 3.3. Therefore the solution to this system can be approached using the methodol-
ogy described in section 3.6. In this case the tree has two layers. Another characteristic
is that the coefficient related to the dual variable λ is zero. In general this will be the
case for every dual variable as there is not second order information about the dual
variables.

λ
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∆

λ

g
p

−
γg2

∆ q
l

q
l

∆

∆

∆

∆

l2

0

−

−1 1

−
γ

Figure 4.4: Graph corresponding to the LSE described by table 4.2
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4.2.1 Algorithms

The graph structure described by figure 4.4 represents a tree. A system of linear equa-
tions whose graph representation is a tree can be solved straightforward; the only re-
quirement is to define an algorithm which exploits its particular shape and content in
an ordered way. Let us denote layer 0 as that where the root node is. Therefore, the
depth of this graph is 2, and the breadth will be in function of the number of elements
connected to this node (i.e. generators and loads).

The next two sections will propose algorithms to exploit this graph. These will only
perform the operations needed in the evaluation of the graph (i.e. exploiting completely
the sparsity of H(L(z))). The first section proposes an algorithm to travel up the graph
applying a sparse forward elimination. The second section proposes an algorithm to solve
the system based on the propagation the first algorithm performed. This is accomplished
by traveling down the graph.

4.2.1.1 The Graph Forward EDIG Algorithm (gFEDIG)

Let us denote Γi as the set of nodes j such that there exists a link between i and j.
Now, let us assume nodes i and j are connected by aij . Also, let us assume i is in layer
n and j is in layer n+ 1 and |Γj | = 1. Hence, if Gaussian elimination is applied to node
j then the only node which has to be affected by this process is node i which is one layer
above node j. The graph transformation process when Gaussian elimination is applied
to node j is outlined in figure 4.5.

xj

jja
bj

xi

aii

ib

aij

bajj

aij
jbi

aij

ajj
aij

xi

iia
−

−

Figure 4.5: Graph reduction when applying Gaussian elimination

The gFED algorithm will apply this basic process to all the nodes in the tree in a
bottom-up way until no more reductions can be done. This bottom-up approach has to
be guided by the graph structure, and can be done in a modular way depending only
on the constraint type. Two types of components can be distinguished: Generators and
variable loads. As can be seen from the graph, ∆λ depends on the characteristics of the
other two components. Therefore, in order to reduce the λ-related values, it is needed
to deduce the other object-related values (i.e. generators and variable loads before).
Algorithm 1 will apply the principles above mentioned by processing first the generators
related values and then the variable loads related values.
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Algorithm 1 gFEDIG(G,L)
1: ∇λ ← Q
2: for all g ∈ Gi do
3: apg ← 2γg
4: bpg ← βg + 2γgpg − λ
5: ∇λ ← bλ − pg
6: end for
7: for all l ∈ Li do
8: aql ← 2γl
9: bpg ← −βl + 2γlql + λ

10: ∇λ ← bλ + ql
11: end for
12: aλ ← −

∑
g∈G

(1/apg)−
∑
l∈L

(1/aql)

13: bλ ← −∇λ −
∑
g∈G

(bpg/apg) +
∑
l∈L

(bql/aql)

4.2.1.2 The Graph Backwards EDIG Algorithm (gBEDIG)

The gBEDIG algorithm shown in listing 2 will perform the backward substitution.
This will be guided by the graphic structure in a top-down approach. Basically it takes
advantage from the propagation that in its way up the tree the gFEDIG algorithm
performed. It has updated the value of bi and aii when their dependencies with the
lower layer were eliminated. Let us suppose node i is in layer n and node k is in layer
n+ 1. Then, the next equation has to be solved for xi,

aiixi + aikxk = bi (4.5)

which is solved as
xi =

bi − aikxk
aii

(4.6)

clearly for this equation if node i is the tree root, then there will be no more layers up
so this equation becomes

xi =
bi
aii

(4.7)

Therefore this algorithm will apply this simple principle following the inverse process
gFEDIG took when it was applied.

Algorithm 2 gBEDIG(G,L)
1: ∆λ ← bλ/aλ
2: for all g ∈ G do
3: ∆pg ← (bpg −∆λ)/apg
4: end for
5: for all l ∈ L do
6: ∆ql ← (bql −∆λ)/aql
7: end for
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4.2.1.3 The Graph EDIG Algorithm (gEDIG)

This section presents a simple iterative algorithm which will apply the algorithms gFEDIG
and gBEDIG until the convergence criterion is reached.

Algorithm 3 gEDIG
1: Initialise z
2: repeat
3: Evaluate ∇(L(z))i
4: Apply gFEDIG(G,L)
5: Apply gBEDIG(G,L)
6: z ← z + ∆z
7: until Convergence reached

4.2.2 Study Cases

Figure 4.2.2 shows the results for the system described in figure 4.2. As can be noticed,
the tree has to be tranversed up and down once in order to reach the solution. No more
iterations are required as Newton’s method is a second order approximation and the
EDIG model used is quadratic.
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(a) Results for case 1 (Coal price=1)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0  1  2

P
g

Iteration

p1
p2
p3

(b) Results for case 1a (Coal price=0.9)

Figure 4.6: Results for the relaxed ED study under different coal prices.

Table 4.3 shows the results. Both results are correct 1 as they fullfill the equilibrium
constraint. Nevertheless the results shown in case 1(a) for generator 1 and unit 3 (in red)
are not within the limits where these units are supposed to work in. Furthermore, there
could possibly be some allocations which would allow negative values. This imply to
motorise those generation units, not a very desirable outcome. Therefore the mechanism
used to solve this graph has to be modified in order to cope with these situations. This
aspect will be addressed in the next section.

1Actually the original values there for case 1(a) are slightly different from these, as p1 + p2 + p3 =
849MW as compared with p1 + p2 + p3 = 850MW here as it should be.
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pg
g 1 1(a)

λ=9.148 λ=8.285
1 393.170 705.147
2 334.604 112.159
3 122.226 32.695

Table 4.3: Results for system shown in figure 4.2

4.3 The Economical Dispatch Problem and its solution

In this section the economical dispatch mathematical model is developed in order to
obtain a graph-based model. The development will be based on the model presented
in figure 4.1. To this end, the previous model is augmented with the active elements
capacity constraints. Equations from 4.8 to 4.11 describe the model for figure 4.1.

max
pg ,ql

∑
l∈L

Bl(ql)−
∑
g∈G

Cg(pg) (4.8)

s.t. ∑
g∈Gi

pg −
∑
l∈Li

ql −Q = 0 (4.9)

bPgc ≤ pg ≤ dPge ∀g ∈ G (4.10)

bQlc ≤ ql ≤ dQle ∀l ∈ L (4.11)

(4.12)

4.3.1 Normalizing the Mathematical ED Model

The method proposed needs to “dissect” the way the previous model is solved. To this
end, the problem above has to be normalised as there are some inequality constraints.
First the problem is converted into a minimisation problem by multiplying by −1 the ob-
jective function. Then, the inequality constraints are converted into equality constraints
by introducing slack convex quadratic terms into the inequality constraints. The above
QSP is transformed into the normalised QSP described by the model from 4.13 to 4.18.

min
pg ,ql

∑
g∈G

Cg(pg)−
∑
l∈L

Bl(ql) (4.13)

s.t.
∑
g∈G

pg −
∑
l∈L

ql −Q = 0 (4.14)

bpgc − pg + pg
2/2 = 0, ∀g ∈ G (4.15)
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pg − dpge+ pg
2/2 = 0, ∀g ∈ G (4.16)

bqlc − ql + ql
2/2 = 0, ∀l ∈ L (4.17)

ql − dqle+ ql
2/2 = 0, ∀l ∈ L (4.18)

Let us denote constraint 4.14 as g̃(pg, ql), 4.15 as h̃pg(pg, pg), 4.16 as h̃pg(pg, pg), 4.17 as
h̃ql(ql, ql), and 4.18 as h̃ql(ql, ql). To obtain the Lagrangian L(z) based on this model
a Lagrange Multiplier needs to be introduced for each constraint. There is just one
equality constraint, g̃(pg, ql) which has to be enforced at every time. The rest of them
are inequality constraints which have to be taken into account only if they are binding.
Let us allocate the following Lagrange Multipliers: λ to g̃(pg, ql), ρg to h̃pg(pg, pg), ρg
to h̃pg(pg, pg), µl to h̃ql(ql, ql), and µl to h̃ql(ql, ql). Therefore L(z) can be expressed in
expression 4.19.

L(z) =
∑
g∈G

[
Cg(pg) + ρ

g
h̃pg(pg, pg) + ρgh̃pg(pg, pg)

]
−
∑
l∈L

[
Bl(ql)− µlh̃ql(ql, ql)− µlh̃ql(ql, ql))

]
+λg̃(pg, ql) (4.19)

where z = [pg, ql, pg, pg, ql, ql, λ, ρg, ρg, µl, µl]
T

4.3.2 Solution of the Mathematical ED Model

Expression 4.19 represents a high dimensional function whose optimal point can be found
by using the Newton approach, as mentioned in section 2.4.4. To this end, the system
represented by equation 4.20 has to be solved

H(L(z))∆z = −∇(L(z)) (4.20)

Therefore, in order to solve ∆z, the values for ∇(L(z)) and H(L(z)) are needed. Notice
the solution has not been expressed as a function of H(L(z))−1. Table 4.4 describes
the relation among z, L(z), ∇(L(z)) and H(L(z)). Compared to table 4.2, this table
has augmented the previous set of variables. Especifically, there are four more variables
for each generator or variable load, which will be used to keep each generator within
the limit constraints. This system of linear equations has a graph representation. In
turn, this graph can be used to solve the system. Hence, some knowledge about how
to transform this system into its graphical representation is needed, as well as how to
exploit it.
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L(z)=λg̃(pg, ql) +
∑
g∈G

(Cg(pg) + ρ
g
h̃pg(pg, pg) + ρgh̃pg(pg, pg))

−
∑
l∈L

(Bl(ql)− µlh̃ql(ql, ql)− µlh̃ql(ql, ql))

∇(L(z)) H(L(z))
z pg ql pg pg ql ql λ ρ

g
ρg µ

l
µl

pg βg + 2γgpg − λ− ρg + ρg 2γg −1 −1 1
ql −βl + 2γlql + λ− µ

l
+ µl 2γl 1 −1 1

pg ρ
g
pg ρ

g
pg

pg ρgpg ρg pg
ql µ

l
ql µ

l
ql

ql µlql µl ql
λ

∑
g∈G

pg −
∑
l∈L

ql −Q −1 1

ρ
g

bpgc − pg + pg
2/2 −1 pg

ρg pg − dpge+ pg
2/2 1 pg

µ
l

bqlc − ql + ql
2/2 −1 ql

µl ql − dqle+ ql
2/2 1 ql

Table 4.4: Relation among z, L(z), ∇(L(z)) and H(L(z)).

4.3.3 Equivalent Graph Model

Table 4.4 shows the sparse structure for H(L(z)). This sparsity can be exploited in order
to apply the minimal number of operations in the solution process. Several approaches
have been proposed in the literature (Tinney et al. (1985); Gilbert et al. (1992)). How-
ever, they are very general and even though they reduce the number of operations this
is not optimal as they do not take advantage of the explicit structure H(L(z)) has for
this problem.

In this chapter, a graph-based approach is applied to the solution of equation 4.20. It
is important to notice that equation 4.20 was not written as a function of H(L(z))−1.
The solution process will be based on the equivalent graph when the system represented
in table 4.4 is translated to its graph representation applying the procedure given in
section 3.7. Figure 4.7 is the graph representation obtained when this procedure is
applied. Its structure fulfills the one defined for the TSSSLE described in section 3.3.

4.4 Inequality Constraints and Its Handling

From the problem description there is a basic fact which has to be taken into account.
Not all the constraints need to be enforced along the solution process. Furthermore,
there are mutually excluding constraints (i.e. at most one of them can be enforced).
The standard mathematical tools used to assess this is by using KKT complementarity
conditions. These will indicate if it is needed to enforce the constraints which are
violated in the solution process. Additionally, they will signal which constraints have to
be released along the solution process. Hence, they will define the graph traversal order.



Chapter 4 The Economical Dispatch and its graph-based solution 67

γg

p
g

∆

ρ
g

p
g

∆

ρg

∆

ρ
g

∆

p
g

∆
ρg ρ

g

ρg
∆

p
g

g
p

∆

q
l q

l

l
µ∆

q
l

∆

∆ q
l

q
l

∆

l
µ∆

q
l

∆

q
l

∆

l
µ

∆

l
µ l

µ

l
µ

∆

q
l

∆

iia ix..+ ija jx +.. bi=+..+

aijxi

aii

ib

Symbology

1

λ
λ

∆

−

p
g

p
g

2

−−

− 00

1−1

−

−

−

−

−

γl−2

−1

∆
0

−

0 0

∆

−1 1

∆
g

p

∆

−

−

Figure 4.7: Graph corresponding to the economic dispatch model

Notice the difference between this approach and that from the matrix solution approach.
There, KKT complementarity conditions are used in order to modify H(L(z)), by adding
or eliminating the rows and columns corresponding to the Lagrange multiplier and slack
variable related to the constraint being tested.

KKT conditions set the minimum requirements, which, when fulfilled, guarantee opti-
mality conditions for convex non-linear programming problems. If z∗ is assumed to be
the optimal solution for a problem with n = |z| variables, m equality constraints and p

inequality constraints, then KKT conditions are

∇f(z∗) +
m∑
j=1

λj∇gj(z∗) +
p∑

k=1

µk∇hk(z∗) = 0 (4.21)

gj(z∗) = 0, j = 1, 2, ..,m (4.22)

hk(z∗) ≤ 0, k = 1, 2, .., p (4.23)

µkhk(z∗) = 0, k = 1, 2, .., p (4.24)

µk ≥ 0, k = 1, 2, .., p (4.25)

where equation 4.21 represents the equilibrium equation between the objective and the
gradient of the constraint. Equations 4.22 and 4.23 represent the feasibility of the
solution at the optimal point. Equation 4.24 represents the complementarity condition
(i.e. either µk = 0 or hk = 0). Finally, equation 4.25 enforces the inequalities to act in
just one direction.

KKT complementarity condition µkhk(z∗) = 0 in equation 4.24 becomes µkxk = 0 as
the inequality has been converted into an equality introducing the slack term x2/2 to the
constraint. KKT positiveness condition in equation 4.25 allows to assert that if µ > 0



Chapter 4 The Economical Dispatch and its graph-based solution 68

then the constraint is tight or binding since x must be zero. In the matrix approach this
criterion is used to decide if the row and columnn belonging to the dual variable as well
as the row and column related to the slack variable attached to such constraint have to
be included in the computation (shown in figure 4.8 with the grey rows and columns).
Obviously this implies modifying the matrix at every iteration by removing or adding
rows and columns until convergence is reached. This is a complex task which impacts
directly both the implementation and the computation time.

Slack variable information

Dual variable information

Figure 4.8: Conditioned row and columns in the matrix approach.

In comparison, in the graph approach, this criterion is used to decide if the part of
the graph belonging to such constraint has to be evaluated. Therefore, based on this
principle, the graph-based representation for the system described in table 4.4 is shown
in figure 4.9. In this figure, the grey lines denote conditional evaluation which will be
performed whenever its associated constraint is active.

4.4.1 Algorithms

The graph structure described by figure 4.9 represents a tree. As described in section
3.3, a system of linear equations whose graph representation is a tree can be solved
straightforwardly by exploiting its particular shape and content in an ordered way. Let
us denote layer zero as that where the root node is. Therefore, the depth of this graph
is three, and the breadth will be a function of the number of elements connected to this
node (i.e. generators and loads). KKT complementarity conditions, will guide the graph
traversal.

The next two sections propose algorithms to exploit this graph. These algorithms will
only perform the operations needed in the evaluation of the graph (i.e. exploiting com-
pletely the sparsity of H(L(z))). Section 4.4.1.1, proposes an algorithm to travel up the
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Figure 4.9: Conditional sub-graphs in the graph approach.

graph applying a sparse forward elimination. Then, section 4.4.1.2 proposes an algo-
rithm to solve the system based on the propagation the previous algorithm performed.
This is accomplished by traveling down the graph.

4.4.1.1 The Graph Forward ED Algorithm (gFED)

Let us denote Γi as the set of nodes j such that there exists a link between nodes i and
j. Now, let us assume nodes i and j are connected by aij . Also, let us assume i is in
layer n and j is in layer n + 1, and |Γj | = 1. Hence, if Gaussian elimination is applied
to node j then the only node which has to be affected by this process is node i which is
one layer above node j. The graph transformation process when Gaussian elimination
is applied to node j is outlined in figure 4.10.

xj

jja
bj

xi

aii

ib

aij

bajj

aij
jbi

aij

ajj
aij

xi

iia
−

−

Figure 4.10: Graph reduction when applying Gaussian elimination

The gFED algorithm will apply this reduction to all the nodes in the tree in a bottom-
up way until no more reductions can be done. This bottom-up approach has to be
guided by the graph structure, and can be done in a modular way depending only on
the constraint type. Two types of components can be distinguished: Generators and
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variable loads. As can be seen from the graph, ∆λ depends on the other two components’
characteristics. Therefore, in order to reduce the λ-related values, first the other object-
related values (i.e. generators and variable loads) have to be deduced. Algorithm 4
applies the principles above mentioned by processing first the generators related values
and then the variable loads related values. First, lines from 1 to 15 apply the reduction
process for all the variables used in the model of each generator. Next the same process
is applied to all the loads in lines from 16 to 30. Finally, lines 31 and 32 do the reduction
process related to the energy price given by λ.

Algorithm 4 gFED(G,L)
1: for all g ∈ G do
2: apg ← 2γg
3: bpg ← −∇pg
4: if pg is lower binding then
5: aρ

g
← −pg2/ρ

g

6: bρ
g
← −∇ρ

g
+∇pgpg/ρg

7: apg ← apg − 1/aρ
g

8: bpg ← bpg + bρ
g
/aρ

g

9: else if pg is upper binding then
10: aρg ← −pg

2/ρg
11: bρg ← −∇ρg +∇pgpg/ρg
12: apg ← apg − 1/aρg
13: bpg ← bpg + bρg/aρg
14: end if
15: end for
16: for all l ∈ L do
17: aql ← 2γl
18: bql ← −∇ql
19: if ql is lower binding then
20: aµ

l
← −ql2/µl

21: bµ
l
← −∇µ

l
+∇qlql/µl

22: aql ← aql − 1/aµ
l

23: bql ← bql + bµ
l
/aµ

l

24: else if ql is upper binding then
25: aµl ← −ql

2/µl
26: bµl ← −∇µl +∇qlql/µl
27: aql ← aql − 1/aµl
28: bql ← bql + bµl/aµl
29: end if
30: end for
31: aλ ← −

∑
g∈G

(1/apg)−
∑
l∈L

(1/aql)

32: bλ ← −∇λ −
∑
g∈G

(bpg/apg) +
∑
l∈L

(bql/aql)
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4.4.1.2 The Graph Backwards ED Algorithm (gBED)

The gBED algorithm shown in listing 5 performs the backward substitution. This al-
gorithm is guided by the graphic structure in a top-down approach. Basically, it takes
advantage from the propagation that in its way up the tree, the gFED algorithm per-
formed. It has updated the value of bi and aii when their dependencies with the lower
layer were eliminated. Let us suppose node i is in layer n and node k is in layer n+ 1.
Then, the next equation has to be solved for xi,

aiixi + aikxk = bi (4.26)

which is solved as
xi =

bi − aikxk
aii

(4.27)

clearly, for this equation, if node i is the tree root, then there will be no more layers up
so this equation becomes

xi =
bi
aii

(4.28)

Therefore this algorithm applies this simple principle following the inverse process algo-
rithm gFED took when it was applied. First, line 1 applies the solution process related
to the energy price given by λ using equation 4.28. Then lines from 2 to 11 apply the
solution process for all the variables used in the model of each generator, respecting
the position they have within the tree using equation 4.27. Finally the same process is
applied to all the loads in lines from 12 to 21.

4.4.1.3 The Graph ED Algorithm (gED)

This section presents an iterative algorithm which applies algorithms gFED and gBED
until a convergence criterion is reached. First in line 1 vector z is initialized, then in
line 3 the gradient for L(z) with respect to each variable is evaluated. After this in line
4 algorithm gFED is invoked. This will traverse the tree up. Then the inverse process
is applied in line 5 with algorithm gBED as this traverses down the tree. In line 6 z is
updated. Finally, in line 7 the convergence will be tested. If this is not reached, then
the sequence before described will be repeated until the convergence criterion is fulfilled.

4.4.2 Study Cases

In this section two study cases are analysed. The first one is a three generator case
based on data extracted from Wollenberg and Wood (1996). The second case is a ten
generators case based on data extracted from Han et al. (2001). Both cases are analysed
under different conditions.
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Algorithm 5 gBED(G,L)
1: ∆λ ← bλ/aλ
2: for all g ∈ G do
3: ∆pg ← (bpg −∆λ)/apg
4: if pg is lower binding then
5: ∆ρ

g
← (bρ

g
−∆pg)/aρg

6: ∆pg ← (∇pg + pg∆ρ
g
)/ρ

g

7: else if pg is upper binding then
8: ∆ρg ← (bρg + ∆pg)/aρg
9: ∆pg ← (∇pg + pg∆ρg)/ρg

10: end if
11: end for
12: for all l ∈ L do
13: ∆ql ← (bql −∆λ)/aql
14: if ql is lower binding then
15: ∆µ

l
← (bµ

l
−∆ql)/aµl

16: ∆ql ← (∇ql + ql∆µ
l
)/µ

l
17: else if ql is upper binding then
18: ∆µl ← (bµl + ∆ql)/aµl
19: ∆ql ← (∇ql + ql∆µl)/µl
20: end if
21: end for

Algorithm 6 gED(G,L)
1: Initialise z
2: repeat
3: Evaluate ∇(L(z))i
4: Apply gFED(G,L )
5: Apply gBED(G,L )
6: z ← z + ∆z
7: until Convergence reached

4.4.2.1 Three-Generator Case

The system shown in figure 4.11 shows the structure for this system.

λ

Gen. 2

[100..400][150..600]

Gen. 1

[50..200]

Gen. 3

850 MW

Figure 4.11: Three generators system
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These cases are built based on the same model with some slight changes on their char-
acteristics. In the first case, three generators whose production functions are shown in
figure 4.12 are considered.
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Figure 4.12: Production functions for the generators.

Table 4.5, shows the data used for the different cases. Gen 1a data are the data where
the coal is more expensive than the case in generator 1b.

generator α β γ bpc dpe
1 510 7.92 0.001562 150 600

1(a) 459 6.48 0.00128 150 600
2 310 7.85 0.00194 100 400
3 78 7.97 0.00482 50 250

Table 4.5: System components’ data
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Figure 4.13: Three generators case results

Figure 4.13 shows the convergence behavior for λ. In the first case as shown by fig-
ure 4.13(a) it reaches its value in just one iteration, as expected from the second order
approximation. Also a reason behind this, is that the solution is within the constrained
solution space, as none of the generators are overloaded. As a consequence, this is the
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optimal operation point. Furthermore, the marginal cost for each generator will be the
same. Therefore, ∂C1(393.17)

∂p1
= ∂C2(334.6)

∂p2
= ∂C3(122.23)

∂p3
= λ must hold.

However in the second case things change as shown in figure 4.13(b) where the con-
vergence curve changes its shape and the algorithm takes more iterations to solve the
system. Table 4.6 shows the energy allocation each generator will be producing in each
configuration. Notice the value for λ has gone down compared to case 1.

generator p
(a) (b)

λ = 9.1482 λ = 8.576
1 393.17 600
2 334.6 187.13
3 122.23 62.87

Table 4.6: Results for three generators system case, gen 1(a) non binding λ = 9.1482
(b) binding λ = 8.576

The reason behind this changes is that the energy produced by generator 1 now is
cheaper. Therefore, it will be able to sell all the energy it can produce up to its upper
limit. The method will be aware of this fact and will introduce the upper binding
constraint into the system. This is done by setting the power produced by gen 1 to
its maximum (i.e. 600 MW). The power produced by generator 3 is below its limits in
the first iteration (not shown). As a result, the binding constraint for the lower limit
for generator 3 is introduced. KKT conditions will be deciding when the constraint
have to be enforced. Another iteration is needed, but with new equations added to the
system in order to meet the constraints. Given that gen 1 is binding the maximum
price he would ask for at its binding generation level is λ1 = ∂C1(600)

∂p1
= 8.016. λ

will be set by gen 2 and 3, and has to be greater or equal than the one for generator
1 when is binding. Therefore, the relation λ2 = λ3 ≥ λ1 must hold. From table 4.1,
∂C2(187.13)

∂p2
= ∂C3(62.87)

∂p3
= 8.576. This result fulfills the previous requirement. Figure 4.14

shows the convergence behaviour for λ in both cases.
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Figure 4.14: Three generators system’s λ convergence
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4.4.2.2 Ten-Generator Case

Here a system involving ten generators is analysed. The data corresponding to this case
is shown in table 4.7. This analysis is done in order to test the model under different
load conditions. First the model is tested with a 1223MW load. Then it is tested with
a 478MW load in order to test the convergence to the lower limit in all the generators.
Finally, a 1563 MW load is defined so the upper limits constraints in all the generators
are binding.

gen α β γ bpc dpe
1 15 2.2034 0.0051 12 73
2 25 1.9101 0.0040 26 93
3 40 1.8518 0.0039 42 143
4 32 1.6966 0.0038 18 70
5 29 1.8015 0.0021 30 93
6 72 1.5334 0.0026 100 350
7 49 1.2643 0.0029 100 248
8 82 1.2130 0.0015 40 190
9 105 1.1954 0.0013 70 190
10 100 1.1285 0.0014 40 113

Table 4.7: Ten generators case data

The results for this case are shown in table 4.8. The second column shows all the units
are lower binding and the fourth column all of them are upper binding. This means, the
solution to this problem is located in the lower and upper hypercorner of the polytope
represented by the set of limit constraints.

Case Q=478MW Q=1223MW Q=1563MW
λ = 1.2405 λ = 2.4756 λ = 3.3554

p1 12 26.6861 73
p2 26 70.6874 93
p3 42 79.9742 143
p4 18 70.0000 70
p5 30 93.0000 93
p6 100 180.8075 350
p7 100 208.8447 248
p8 40 190.0000 190
p9 70 190.0000 190
p10 40 113.0000 113

Table 4.8: Ten generators case results

Figure 4.15 shows the convergence behaviour for the different cases defined by their
load profile. Several remarks can be made from it. Firstly, it would be expected the
behaviour in the system minimal load and system maximal load would lead to a similar
convergence pattern. This is not the case as shown by figure 4.15(a) and 4.15(c). It
took ten iterations to reach convergence for the minimal generation boundary which;
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compared to six iterations it took to reach convergence for the maximal generation
limit; is significant. On the other hand the results obtained for the case where not all
the generators are binding, shown in figure 4.15(b), converge in just one more iteration
compared to the three generators case. Finally, figure 4.15(d) shows the convergence
behavior for λ, which in general follow the same behavior as the primal variables in each
case.
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Figure 4.15: Ten generation system results under different load conditions

4.5 Concluding Remarks

By taking a graph-based approach, it has been possible to propose a new set of algorithms
for the economical dispatch based on the basic graph model. Based on table 4.4, a new
graph-based solution has been proposed. This approach allows us to scale up the system
in a very efficient way (i.e. linear in the number of generators and loads attached to
the electrical power system). To this end; an economical dispatch algorithm based on
graphs has been presented which uses two basic algorithms the Forward ED (gFED)
and the Back Forward ED (gBED) . These algorithms perform the minimal number of
operations as a result of the topological structure of the model. Comparing this approach
with the H(L(z))−1 based solution, where it would be necessary to invert H(L(z))
and then multiply it by ∇(L(z)), is much more efficient. Basically, this algorithm
performs the Gaussian elimination in the gFED and gBED implements the backward
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substitution. This chapter presents two main contributions. First, the explicit graph
model derived from the mathematical model allows us to think about the model in a
modular fashion. This in turn prevents us from using general sparse matrix methods
such as those in Tinney et al. (1985). Second, the order in which this reduction has
to be accomplished. This order is a consequence of the matrix graph analysis and is
inspired in its topological structure.



Chapter 5

A Bottom Up Distributed

Optimal Power Flow Model

5.1 Introduction

Figure 5.1 represents the structure of a typical electrical power system. Their main com-
ponents are nodes representing electrical buses and lines representing transmission lines.
The solid lines represent internal transmission lines. The dotted lines represent inter-
connections between different electrical power systems belonging to different countries
or different zones within a country for power exchange purposes among them. These
are called interconnectors. These are modeled as generators or loads depending if they
are importing or exporting power respectively. Attached to each node there can be a
number of generators willing to sell energy as well as a number of consumers willing to
buy that energy as described in section 2.2.5.

Figure 5.1: Generic electrical power market representation

The Optimal Power Flow (OPF) is a centralised market clearing mechanism to conciliate
both suppliers, trying to sell energy as expensive as possible, and buyers, trying to buy
energy as cheap as possible. The clearing prices must give some signals to the market
participants in order to keep the market efficient. The OPF considers limits on the

78
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devices attached to the electrical power system (i.e. upper and lower capacity of the
generation units) as well as constraints posed by the environment such as transmission
constraints. If there are no transmission constraints, then the OPF will result in the
MCP, where accumulated market demand and supply curves intersect. This price will
be the marginal cost of the most expensive unit committed. This price will be uniform
for all the nodes in the system.

On the other hand, if transmission constraints appear then the clearing mechanism sets
a different price for each node in the electrical power system. The energy price will be
higher in those places where congestion exists. This is a signal which can be interpreted
as an incentive for the suppliers to build more plants in those areas and also gives a
signal for the gridco to build more lines in order to alleviate congestion in the congested
zones.

The centralised OPF is a Non Linear Mathematical Program whose generalised descrip-
tion for z ∈ <n, is given by equations 5.1 to 5.3.

max
z

f(z) (5.1)

st. gj(z) = 0, j = 1, 2, ...,m (5.2)

hk(z) ≤ 0, k = 1, 2, ..., p (5.3)

The task is to maximize f(z), representing the social welfare defined by the total benefit
for the consumers minus the total cost to produce the energy they consume. Alter-
natively, this problem can also be formulated as the minimisation of the total cost to
produce the energy minus the total benefit for the consumers. The equality constraints,
gj(z) = 0, represent the energy equilibrium constraints at each node. This is done by in-
corporating the DC Power Flow into this model. The inequality constraints, hk(z) ≤ 0,
are those related to the maximum and minimum generation limits for each generation
unit and the flow limit each line is subject to. This model will be described in detail in
section 5.3, . The objective function is convex as this is formed with the cost functions
and the benefit functions which are quadratic. The constraints are linear. Therefore
this guarantees the uniqueness of the solution, if it exists.

In the last decade there have been several proposals to decentralise this problem. The
motivations behind all these proposals are:

• Deregulation. This process, introduces new agents into the market. The informa-
tion about the system is dispersed across the market and therefore nobody has
the whole picture. Furthermore, this information now is an strategic element for
every agent. It is not likely they will be willing to disclose it. Therefore, nobody
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has a complete view of the system. Methods to solve this problem with partial
information are needed.

• Market complexity. Here, as the market grows, the resources to solve the problem
increases in a nonlinear manner. The market complexity is not due to the com-
plexity of its components; it is complex because of the interconnections of those
components. Large scale approaches have to be taken in order to derive simpler
models interacting in order to solve the otherwise complex problem.

• Market integration. As the time evolves, more and more markets are merging.
Tools are needed to face the integration problem so that the final market can
be solved as a communication problem, without having to rely on an centralised
authority.

Perhaps the biggest challenge in a decentralised power market is how all the agents
involved in it will reach agreements sharing just the minimal information to reach the
equilibrium. Even more, the first question would be what is understood by minimal

information and its nature? Is this information of electrical nature? If so, how then
will they be aware of the global economical behavior? Is this information of economical
nature? If so, how will they be sure the system is working within its physical limits?
Perhaps the information shared among the agents should be of both types electrical and
economical.

Until now this problem has been overcome by taking a centralised approach. An In-
dependent System Operator (ISO) is introduced in order to solve the global problem
preserving the system within its physical constraints. This global problem is formulated
by the ISO who will gather all the information to clear the market. It assumes all the
agents in the system will be willing to share their internal information with him. Given
that this is an institutional agent, there is no doubt all the agents will be “willing” to
share it. If they do not provide it, then they would be left out of the game.

By taking such an assumption, this centralised model is limiting the main deregulation
goal: to transform the electricity industry into a competitive market. There, all the
agents (i.e. Gencos and Custcos), should be able to reach agreements based on their bids.
However, this is not the case as they are constrained to just a static set of coefficients
representing both the quadratic cost from the suppliers and benefit function from the
customers. These coefficients have to be submitted to the ISO in order to clear the
market. Hence they are revealing the information which in a competitive scenario could
be used to reach more profitable trades.

In a competitive market, all the agents will try to reach the equilibrium by varying
those coefficients, until no more gain can be obtained without disadvantaging the other
agents (i.e. Pareto efficient). Therefore, an ideal competitive deregulated power market
would be one where the interaction among the agents (i.e. Custcos and GenCos), would
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determine the Electricity price, without the need for the ISO. But this is not free. As
the ISO has been removed from the market, then each agent would have to take into
account the system security. Their local behavior towards security must guarantee that
the overall global physically constrained system behavior will be within its limits.

Several distributed algorithms have been proposed to overcome this bottleneck. These
approaches decompose the electrical power system into subareas which are linked by
lines called interconnectors. Each subarea solves a NLP which needs some external
information in order to fulfill its task. Figure 5.2 illustrates this approach. The circles
represent the NLP domains which have to be solved. Therefore, the variables inside these
circles are local variables and the variables outside this circle are external variables. If a
variable is external, then it has to be treated as a constant by the local NLP. The dotted
links represent interconnections between the different areas. From a functional point of
view they represent coordination and intercommunication tasks. The timing, kind, and
amount of information varies depending on the approach used to solve the decentralised
system.

C

A B

Figure 5.2: Multiarea based system approach

Those methodologies share a common characteristic: based on the centralized model,
they split the model focusing in the sub area concept. Then, they try to find how these
subarea problems can be defined so that their local behaviors and the intercommuni-
cation with their neighbouring areas guarantee the global behavior. Nevertheless, the
private information problem remains unsolved.

A different approach has to be taken in order to solve this problem. After all, the global
power system behavior is the result of the behavior of its individual components and the
environment where they are situated. In this case, the generation units and loads are
the individual components. This environment would be represented by the node models
as well as the interconnections among them.

In general, a large scale system is complex not because of the number of basic compo-
nents, which in general have simple models. They are complex because of the inter-
connection or dependencies among these basic components. A basic consideration when
designing solutions in decentralised systems would be to replace these dependencies by
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intercommunication and coordination strategies. However, the intercommunication task
as a whole has to be moderate so it does not turn into an intercommunication bottleneck.

The methodology proposed in this work is based on a bottom-up approach. A basic
decentralised model will be derived using decomposition techniques. Figure 5.3 illus-
trates this approach. The circles represent the problem to solve for each node. The lines
represent information interchange between individual nodes. Here every node represents
a subproblem and there is some intercommunication with its neighbouring nodes. Each
local problem is solved taking into account the information gathered from the other
nodes. Each node also provides its own information to each of their neighbours.

A central point here is that the information they interchange must not reveal any strate-
gic information. In particular, they interchange market information (i.e. prices), as well
as information describing temporary states (i.e. voltage angles). The main endeavor
is to derive a model based on local information as well as market intercommunication
which leads to a market equilibrium. By equilibrium, we mean to reach a configuration
where nobody can get better off without making someone else worse off (i.e. Pareto
Efficient).

Figure 5.3: Multinode based system approach

This chapter is organised as follows. In section 5.2, a review about the work on decen-
tralisation applied to the optimal power flow is provided. In section 5.3 the centralised
model is defined based on a basic node model. Then, in section 5.4 a distributed model
is derived. Having done that, section 5.5 proposes two algorithms to exploit the model.
Section 5.6 presents several study cases. Finally, section 5.7 concludes highlighting the
main contributions of this chapter.

5.2 Related Work

The Optimal Power Flow is at the heart of every power market clearing tool. There is a
vast literature which goes from the early 1960s (Huneault and Galiana, 1991). The main
aim of this research is to provide a decentralised framework based on simple models and
their interaction. This section presents a literature review of decentralisation applied
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to the optimal power flow. As a result from this review, a general knowledge of the
methodologies applied in this area has been learnt.

Kim and Baldwick (1997), present a coarse-grained distributed methodology to solve
the optimal power flow. In order to apply this methodology, they need to create dummy
nodes so that coordination can be achieved. The solution is based on the Auxiliary Prob-
lem Principle (Cohen, 1978). In order to achieve this, they add some constraints to the
model based on those dummy nodes introduced artificially. This model is implemented
on the GAMS environment (Rosenthal, 2007).

Conejo and Aguado (1998), propose a multiarea DC optimal power flow. This model is
solved using the decomposition and coordination principle using a Lagrangian relaxation
procedure. They also introduce the losses effect within the mathematical model. They
achieve the coordination phase by introducing one or two fictitious buses. This aspect
increments the system size with its consequences as constraints related to these nodes
are introduced. The solution is accomplished using a dual programming approach . This
involves two steps. First, it maximizes the dual variables by fixing the original problem
variables. Second, it minimizes the primal problem taking the dual variables as given
(i.e. constants).

Aguado, Quintana, and Conejo (1999), extend the previous work to deal with reactive
power as well as using a cutting-plane solution approach. Here the interconnecting
lines called tie lines, are modeled as generators or loads depending on whether they are
importing or exporting energy. The Lagrange multipliers associated with the constraints
at the fictitious buses are the spot prices for power exchange.

The work presented by Aguado and Quintana (2001), presents a market-oriented ap-
proach to coordinate inter-utilities power exchange. In their formulation, they introduce
some constraints in the border nodes to force the variables involved in it to be the same.
The dual variables they calculate are used as the import or export spot prices.

Bakirtzis and Biskas (2003), implement the DC Optimal Power Flow solution by decom-
posing the entire system into subareas. The solution process is accomplished using a
coordination mechanism based on the Lagrange multipliers which can be interpreted as
the spot prices for the imported/exported energy between the zones this line is connect-
ing. In order to achieve this, they introduce two more constraints into each area. This
work differs from the other as it does not introduce any virtual node into the model.

Finally, based on the previous work, Bakirtzis, Biskas, Macheras, and Pasialis (2000)
implement the previous system on a network of computers and also extends it by elimi-
nating the need of a reference node. In order to achieve this, a new set of constraints are
introduced into the model. They also rely on the concept of ε-effective branch power flow
constraints to reduce the optimisation search space. Finally Bakirtzis, Biskas, Macheras,
and Pasialis (2000) extend this work to solve the AC-OPF.



Chapter 5 A Bottom Up Distributed Optimal Power Flow Model 84

5.3 Centralised Optimal Power Flow Model

The basic node model shown in figure 5.4 can be modeled by the centralised NLP given
by equations from 5.4 to 5.8.
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Figure 5.4: Basic node system

The mathematical program objective, as described by equation 5.4 is to maximise the
social welfare in the system. This is given by the difference between the Social Benefit
B(q) and the cost to produce the energy C(p) in the entire electrical power system.

min
pig ,qil,δi

∑
g∈G

Cg(pg)−
∑
l∈L

Bl(ql) (5.4)

s.t. ∑
j∈Γi

bij(δi − δj)−
∑
g∈Gi

pig +
∑
l∈Li

qil +Qi = 0 (5.5)

bPigc ≤ pig ≤ dPige ∀g ∈ Gi (5.6)

bQilc ≤ qil ≤ dQile ∀l ∈ Li (5.7)

|bij(δi − δj)| ≤ dFije ∀j ∈ Ti (5.8)

There are some constraints since some solutions to this problem are infeasible due to
physical considerations. Constraint 5.5 is used to ensure energy balance at every node.
In practice all the physical devices have lower and upper limits which have to be satisfied.
In order to reinforce those limits, constraint 5.6 is defined to bound the solution to a
zone where the generator operation is safe, the same criterion is defined for the loads in
constraint 5.7. Finally, constraint 5.8 is used to ensure the power flowing along the lines
will not exceed their capacity. This last constraint is referred to the absolute value, as
there is no certainty about the flow direction.
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5.3.1 Full Centralised Model for the 2-node system

In this section a basic two node model is presented. Then the centralised mathematical
model for this system is analysed. Finally, by analyzing this basic system a “hidden
cooperative behavior” is discovered which will allow us to reduce the set of constraints.

5.3.1.1 The Two-node OPF Formulation

In this section a two-node complete system model is explicitly analysed based on the
system shown in figure 5.5.
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Figure 5.5: Two node system

Equations from 5.9 to 5.15 represent the OPF problem for this system.

min
pig ,qil,δi,δj

∑
g∈Gi∪Gj

Cg(pg)−
∑

l∈Li∪Lj

Bl(ql) (5.9)

s.t.

bij(δi − δj)−
∑
g∈Gi

pg +
∑
l∈Li

ql +Qi = 0 (5.10)

bji(δj − δi)−
∑
g∈Gj

pg +
∑
l∈Lj

ql +Qj = 0 (5.11)

bPgc ≤ pg ≤ dPge ∀g ∈ Gi ∪Gj (5.12)

bQlc ≤ ql ≤ dQle ∀l ∈ Li ∪ Lj (5.13)

|bij(δi − δj)| ≤ dFije (5.14)

|bji(δj − δi)| ≤ dFjie (5.15)

5.3.1.2 Hidden Cooperation

The cooperative behavior to keep the transmission system within its limits is explored
in this section. This behavior is concerned with constraints 5.14 and 5.15. These con-
straints basically are provided to keep the line power flow within the line capability.
Because the sign of the difference between (δi − δj) is not known beforehand then the
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absolute value of this difference is checked at each node, in this case just i and j.
When the complete constrained system is expanded and analysed, a cooperative behav-
ior emerges which allows to simplify this model. Therefore, by a further analysis of
inequalities 5.14 and 5.15, the following proposition can be established.

Proposition 1. The constraint set

|bij(δi − δj)| ≤ dFije

|bji(δj − δi)| ≤ dFjie

is equivalent to the following constraints set

bij(δi − δj) ≤ dFije

bji(δj − δi) ≤ dFjie

Proof. constraints 5.14 and 5.15 can be rewritten as:

− dFije ≤ bij(δi − δj) ≤ dFije (5.16)

−dFjie ≤ bji(δj − δi) ≤ dFjie (5.17)

on the other hand, it is known that bij = bji and dFije = dFjie. Let Φ = dFije/bij =
dFjie/bji then the above system can be rewritten as:

− Φ ≤ δi − δj ≤ Φ (5.18)

−Φ ≤ δj − δi ≤ Φ (5.19)

multiplying constraint 5.19 by −1, these two constraint systems become

− Φ ≤ δi − δj ≤ Φ (5.20)

Φ ≥ δi − δj ≥ −Φ (5.21)

inequalities 5.20 and 5.21 essentially tell there is a replicated constraint. By taking just
one of them, this can be split into two parts. Let us take equation 5.20, which can be
rewritten as

δi − δj ≤ Φ (5.22)

−Φ ≤ δi − δj (5.23)

multiplying equation 5.23 by −1, these two inequalities system thus become
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δi − δj ≤ Φ (5.24)

δj − δi ≤ Φ (5.25)

finally, substituting Φ in inequalities 5.24 and 5.25

bij(δi − δj) ≤ dFije (5.26)

bji(δj − δi) ≤ dFjie (5.27)

This proposition shows formally the equivalence between inequalities 5.26 and 5.27 with
respect to inequalities 5.14 and 5.15.

In the original approach there are two ways to deal with this by the optimisation routine.
One is to square each side of the inequality which in turn leads to fill some places in the
Hessian matrix. The second way is to explicitly split the inequality as a two-inequality
system as given by equation 5.16 which in turn leads to the introduction of another slack
variable and its associated Lagrange multiplier impacting the Hessian matrix size and
therefore the optimisation routine performance.

The central difference is with respect to the behavior. Here, the subsystems would be
cooperating to deal with the transmission constraints as show in figure 5.3.1.2. Node i
will take care of the transmission limit from i to j, as show in figure 5.6(a), and node j
will overlook the one from j to i, as show in figure 5.6(b).
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(a) Constraint bij(δi − δj) ≤ dFije
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(b) Constraint bji(δj − δi) ≤ dFjie

Figure 5.6: The constraint enforcing policy is shared between nodes i and j.

As for the performance, if we analyze the European Interconnected System presented
by Bialek and Zhou (2005), where the system contained 1254 nodes, 378 generators and
1944 lines, an important improvement is highlighted when applied to the node model.
By applying the second approach these 1944 lines would generate 4 constraints each.
Each constraint will generate 2 equations in the non-linear optimisation solver when
using the Lagrange Multipliers method. These sum up to 15552 equations. With the
cooperative model this number goes down to 2 constraints per line, summing up to 7776
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equations. This is a really great improvement which surely would be reflected in the
optimisation routine.

5.4 The Decentralised Model

The decentralised mathematical model will be derived based on the Auxiliary Principle
Problem with explicit coupling constraints (Cohen, 1978). These are constraints which
involve variables from both subproblems. Let us denote zi and zj , as the related local
variables of nodes i and j respectively. In order to derive the decomposed model, three
steps are required.

1. Problem split. The system has to be split into two or more subproblems. Each
one of them must preserve the structure of the global problem.

2. Coupling constraint identification. The most suitable coupling constraint, a con-
straint which involves variables from both subproblems CC(zi, zj), has to be iden-
tified in the system once it has been split.

3. Objective function modification. The constraint multiplied by its associated La-
grange multiplier must be added to the objective function corresponding to each
subproblem.

5.4.1 Splitting the Centralized Model

To this end, the global objective function will be split into two parts. Each of them will
deal with the local variables at each node. The set of constraints will be split also using
the same criterion.

The optimisation subproblem for node i is given by the model described from 5.28
to 5.32:

min
pg ,ql,δi

∑
g∈Gi

Cg(pg)−
∑
l∈Li

Bl(ql) + µjCC(zi, zj) (5.28)

s.t.

bij(δi − δj)−
∑
g∈Gi

pg +
∑
l∈Li

ql +Qi = 0 (5.29)

bPgc ≤ pg ≤ dPge ∀g ∈ Gi (5.30)

bQlc ≤ ql ≤ dQle ∀l ∈ Li (5.31)

bij(δi − δj) ≤ dFije (5.32)



Chapter 5 A Bottom Up Distributed Optimal Power Flow Model 89

and the model represented from 5.33 to 5.37 describe the optimisation subproblem for
node j. This model essentially mirrors the problem for problem i, by interchanging
subscript i by j and viceversa.

min
pjg ,qjl,δj

∑
g∈Gj

Cg(pg)−
∑
l∈Lj

Bl(ql) + µiCC(zj , zi) (5.33)

s.t.

bji(δj − δi)−
∑
g∈Gj

pg +
∑
l∈Lj

ql +Qj = 0 (5.34)

bPgc ≤ pg ≤ dPge ∀g ∈ Gj (5.35)

bQlc ≤ ql ≤ dQle ∀l ∈ Lj (5.36)

bji(δj − δi) ≤ dFjie (5.37)

The models derived above show the same structure as the global problem. Notice the
inclusion of the term µiCC(zi, zj). This term represent the coupling constraint and its
associated Lagrange Multiplier each subproblem has to add in its objective function.

5.4.2 The Coupling Constraint

A coupling constraint is a constraint which is defined in terms of local and external
variables with respect to the subproblem, (i.e. they couple these subproblems). Taking
any of the two subproblems, we can identify two possible coupling constraints. One
would be the power flow equation (eq. 5.29). The other one would be the constraint
related to the line capability (eq. 5.32). Given that in this scenario we want to know
what the economical behavior of the system is, it makes sense to chose that constraint
which provides us with that information.

The Lagrange Multiplier associated with the power flow equation λ, is also the nodal spot
price (Schweppe, 1998) when no losses are considered. λ represents how much it costs to
produce the next unit at each node. On the other hand, we are also interested in knowing
about the electrical behavior of the system. This information is also provided by this
equation as it will give us the angle δ at that node. Therefore, the power flow equation
is chosen as the coupling constraint. At first glance it seems the objective function is
not anymore the original one. However, CC(zi, zj) will be 0; if not it would mean the
power flow balance at that node would be violated. Hence, taking constraint 5.37 and
its associated Lagrange multiplier from the model for node j to the model for node i,
the objective function for node i can be expressed with equation 5.38
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µjCC(zj , zi) = λ̂j [bji(δ̂j − δi)−
∑
g∈Gj

p̂g +
∑
l∈Lj

q̂l + Q̂j ] (5.38)

where the hatted symbol is used to denote an external variable. These variables must
be treated as constants as the local problem can not modify its value. This value will
be changed by the second problem and communicated to the first one. These will be
interchanged among the subproblems in the solution process. Furthermore, as for the
optimisation process, just the variable part of this expression with respect to the actual
node is needed. Therefore, the constant part of this expression can be taken off. This
leads to equation 5.39 as

− λ̂jbjiδi (5.39)

finally, as for the node i, the coupling constraint from node j has to be added to its
objective function. Equation 5.40 is the original objective function with the coupling
expression added.

∑
g∈Gi

Cg(pg)−
∑
l∈Li

Bl(ql)− δiλ̂jbij (5.40)

5.4.3 The Final Distributed Model

Finally, to extend this to the general case where each node is connected to one or more
nodes is a straightforward procedure applying the same principle. The distributed opti-
misation problem is defined by the optimisation problem represented by equations 5.41
to 5.45.

min
pig ,qil,δi

∑
g∈Gi

Cg(pg)−
∑
l∈Li

Bl(ql)− δi
∑
j∈Γi

bij λ̂j (5.41)

s.t. ∑
j∈Γi

bij(δi − δ̂j)−
∑
g∈Gi

pg +
∑
l∈Li

ql +Qi = 0 (5.42)

bPigc ≤ pg ≤ dPige ∀g ∈ Gi (5.43)

bQilc ≤ ql ≤ dQile ∀l ∈ Li (5.44)

bij(δi − δ̂j) ≤ dFije ∀j ∈ Ti (5.45)
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Based on this model, a graph model approach will be derived in chapter 6.

5.5 Algorithms

In this section a sequential algorithm to solve each subproblem at every iteration is
proposed. On each iteration, each subproblem gets the external information needed to
perform its task. An “intercommunication” task will be performed in order to obtain
the information each individual subproblem needs in the iterative solution process.

Algorithm 7 will be solving the model for each node. In line 1, it assigns the set NodeS
converted into a Double Linked List by function DoubleLinkedList(N) to dList. Then,
solves the problem for each node in a back and forth manner. From the first node in the
list to the last node, represented by lines 6 to 9. After this, from the last node to the
first node, represented by lines 10 to 13. This process will continue until convergence is
reached, as indicated by line 14.

Algorithm 7 dOPF
1: dList← DoubleLinkedList(N)
2: nodeDoubleLinkedList i← dList.F irst()
3:

4: repeat
5: Intercommunicate values
6: while (i.next() 6= nil) do
7: Compute ∆z for i.node
8: i← i.next()
9: end while

10: while (i.previous() 6= nil) do
11: Compute ∆z for i.node
12: i← i.previous()
13: end while
14: until converge(∆z)

5.6 Study Cases

In this section a number of cases are analysed based on data extracted from Wollen-
berg and Wood (1996). These cases are built based on the same model with some
slight changes in their characteristics. In the first case, we have three generators whose
production cost functions are shown in figure 5.7.

The second case, depicted in figure 5.8, the same three generators are analysed but in
this case the coal price has been lowered hence modifying the production function curve
for generator 1.
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Figure 5.7: Production functions for the generators (Coal cost=1.1 £/MBtu)
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Figure 5.8: Production functions for the generators (Coal cost =0.9 £/MBtu)

Table 5.1, shows the data used for the different cases. Gen 1a data are the data where
the coal is more expensive than the case in generator 1b.

gen α β γ bpc dpe
1(a) 510 7.92 0.001562 150 600
1(b) 459 6.48 0.00128 150 600

2 310 7.85 0.00194 100 400
3 78 7.97 0.00482 50 250

Table 5.1: Data for the system components

The analysis will be done firstly assuming there exists just one node in section 5.6.1 and
then in section 5.6.2 the analysis is extended introducing another node and the resources
are split among both nodes.

5.6.1 Isolated Bus with Three generators and a Fixed Load

This is the simplest model, and in fact it can be shown that this model represents the
classical economical dispatch problem, where all the transmission system constraints are
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ignored. Figure 5.9 shows the structure for this system.

λ

Gen. 2

[100..400][150..600]

Gen. 1

[50..200]

Gen. 3 850 MW

Figure 5.9: Isolated bus case

Figure 5.10a shows the convergence behavior for λ. As can be seen it reaches its value
in just one iteration. As expected from the second order approximation. Also a reason
behind this is because the solution is within the constrained solution space, as none of
the generators are overloaded. As a consequence this is the optimal operation point.
Furthermore, the marginal cost for each node will be the same. Therefore, ∂C1(393.17)

∂p1
=

∂C2(334.6)
∂p2

= ∂C3(122.23)
∂p3

= λ must hold.

However, in figure 5.10b, convergence changes and it takes more iterations to solve the
system. The reason behind this fact is that the energy produced in generator 1 now is
cheaper. Therefore, it will be able to sell all the energy it can produce up to its upper
limit. The method recognizes of this fact and introduces the upper binding constraint
into the system. This is done by setting the power produced by gen 1 to its maximum
(i.e. 600 MW). The power produced by generator 3 is below its limits in the first iteration
(not shown). As a result, the binding constraint for the lower limit for generator 3 is
introduced. KKT conditions will be deciding when the constraint has to be enforced.
Another iteration is needed, but with new equations added to the system in order to
meet the constraints. Given that gen 1 is binding, then λ will be set by gen 2 and 3.
The relation ∂C2(187.13)

∂p2
= ∂C3(62.87)

∂p3
= λ must hold.
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Figure 5.10: Isolated bus case results
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Table 5.2 shows the energy allocation each generator will be producing in each configu-
ration. Also by taking a look into λ, we notice its value is lower. It means the energy
price went down as price in the coal for generator 1 is cheaper.

gen p
(a) (b)

λ = 9.1482 λ = 8.576
1 393.17 600
2 334.6 187.13
3 122.23 62.87

Table 5.2: Results for one node system case, gen 1 (a) non binding λ = 9.1482 (b)
binding λ = 8.576

5.6.2 Two-node System with Three Generators and Two Fixed Loads

This system will allow us to test the algorithm with the most basic transmission system,
two nodes connected by one line. Figure 5.11 shows the structure for this system.
Furthermore, it allow us to test the model capabilities with a decentralised case.

δ=0

400MW
450 MW

1(1000 MW)

Gen. 2

[100..400][150..600]

Gen. 1

[50..200]

Gen. 3

Figure 5.11: Two node transmission system

Figure 5.12 shows how the system price converges almost in three iterations as now it
has to adjust its results based on the information provided by the other bus.

0 1 2 3 4 5 6 7
2

3

4

5

6

7

8

9

10

λ

λ price convergence

(a) λ Convergence

0 1 2 3 4 5 6 7
−350

−300

−250

−200

−150

−100

−50

0

50

δ

δ angle convergence

(b) δ Convergence

Figure 5.12: Two-node system, gen 1 non-binding
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gen p node λ δ line Flow
1(a) 393.17 0 9.1482 0 0-1 277.77

2 334.6 1 9.1482 -277.77 - -
3 122.23 - - - - -

Table 5.3: Results for the two-node system case, gen 1 non binding

In this case the sum of the power produced by gen1 and gen2 goes beyond the needed
to feed the load attacehed to node 1. The exceding energy is exported to node 2. This is
393.17 + 334.6− 277.77 = 450. On the other hand the power produced in node 2 is that
of gen3, but is not enough to feed the load attached to node 2, so the missing power is
imported from node 1. This is 122.23 + 277.77 = 400.

Now, figure 5.13 shows the results when gen 1 is binding. In this case λ converges in five
iterations. The reasons behind this are the same as above, but also have to be added
the constraints which have to be observed in this case.
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Figure 5.13: Two-node system, gen 1 binding

gen p node λ δ line Flow
1(b) 600.0 0 8.576 0 0-1 337.14

2 187.11 1 8.576 -337.14 - -
3 62.87 - - - - -

Table 5.4: Results for the two-node system case, gen 1 binding

In this case the sum of the power produced by gen1 and gen2 goes again beyond the
needed to feed the load attacehed to node 1. The exceding energy is exported to node
2. This is 600 + 187.11 − 337.14 = 449.97. On the other hand the power produced in
node 2 is that of gen3, but is not enough to feed the load attached to node 2, so the
missing power is imported from node 1. This is 62.87 + 337.14 = 400.01.

Finally, comparing table 5.2 column (a) with table 5.3 and table 5.2 column (b) with
table 5.4, we conclude the results are essentially the same. This has to be remarked given
that each node is an independent entity from each other, whom by interchanging some
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minimal information have been able to reach agreements which allocate the resources at
optimality. Also, we can see the convergence behavior in the two-node system was almost
identical, with different values but the constrained case was as fast as the unconstrained
case.

5.7 Concluding Remarks

By taking a decentralised approach a simpler model for the Optimal Power Flow prob-
lem has been proposed. Based on a basic centralised model, the analysis lead us to
discover certain cooperative behavior which when exploited simplifies the constraint set.
This simplification reduce the constraint set described by the transmission system and
therefore really improves the algorithm performance when applied to large scale systems.

Next, by using the auxiliary problem principle a distributed solution to the OPF has
been proposed. As a positive side effect of the application of this decomposition, the
complexity of the system, as a result of the network interconnectivity, has been over-
ridden and converted into an intercommunication task. In turn, as shown in chapter 6,
this will allow us to propose algorithms which are extremely efficient to solve the OPF
problem. The model flexibility must be emphasized, as a parallel implementation is
straightforward. Even more if advantage is taken of both algorithms by applying the
sequential solution in parallel the interarea problem can be solved with no major modi-
fications to the model.

This is an alternative approach between bilateral trades pricing and centralised pric-
ing (Stoft, 2002). Both of them have bottlenecks. On the centralised price approach as
the market grows up the centralised model grows also up in a non-linear way. As for
the bilateral trades pricing approach, the possible set of bilateral trades among all the
generators grows up in a non linear manner also. In this approach, the decentralisation
is achieved by interchanging δ and λ between each node and its neighbours. This means
the size of the problem will grow up linearly with the number of nodes. Just as the right
set of bilateral trades, this decentralised approach will yield to the same outcome as the
centralised market clearing mechanism.

Finally, the main contribution in this chapter is the decentralisation which allows the
different parties to keep their data private and just sharing the information resulting
from this data (i.e. δ and λ). This suggests that a centralised market can be decomposed
into submarkets which in turn can be cleared based on local information and economic
communication among the submarkets. In the next chapter this model will be formulated
with the graph approach presented in the previous chapters. In order to cope with the
decentralisation, some new features will be incorporated to the model in order to achieve
it.



Chapter 6

A Decentralised Graph-based

Algorithm to Solve the DC-OPF

Problem

6.1 Introduction

The model presented in chapter 5 is based on a bottom-up approach model to solve
the Optimal Power Flow problem. In a system with many agents interacting among
them, scalability is the most appealing characteristic. In that model the solution to
the decentralised model was achieved by solving each subproblem model on its own.
There was some intercommunication between the subproblems in order to reach the
solution. As previously stated, the solution to a convex NLP is usually implemented
using a Newton-based approach (see section 2.4.4) which heavily relies on the Hessian
Matrix H(L(z)). The size of H(L(z)) varies with the number of variables in the system
as well as with the number of constraints which have to be considered. Let us assume n
is the size of H(L(z)). Therefore the solution to the system is at least as complex as to
invert this matrix (i.e. O(n3)), following by a multiplication by the gradient vector (i.e.
O(n2)). Hence, we are dealing with a large scale problem whose complexity grows in a
non linear way when the size of the system grows. Inversion becomes impractical very
fast. In practice, other approaches are used which rule out the inverse; the Cholesky
factorisation. However, to complicate this procedure, the constraint set is not static
along the solution process as shown in chapter 4. H(L(z)) has to be modified in every
solution step in two ways. First, the new constraints which became active in the last
step have to be added. Second, the constraints which became inactive from the last
step have to be removed. This leads to the conclussion that the size and structure of
H(L(z)) will be varying along the process.

97
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In this chapter we will exploit the Hessian Matrix structure derived from the Lagrangian,
just as it was done in chapter 4, but now there are several constraints which have to be
observed at the solution point. This matrix system is transformed into a graph system
using simple rules. The topology of the resulting graph is very close to the network
topology under study. However in this case we can derive a layered topology where
the dual variables will be apart from the primal variables. Based on this graph, the
decentralisation of the graph is achieved by declaring the variables which are not under
the control of the subproblem as external variables (i.e. they are regarded as constants).
By inspecting the Hessian for each subproblem, the terms related to such variables vanish
and then, for this problem, every subproblem can be represented by a tree. Based on
this tree, algorithms to reduce it are proposed. After the reduction process, an algorithm
to propagate the results is proposed. However, intercommunication has to be allowed in
order to interchange the values of the variables involved in the complicating constraint
as well as the values for the dual variables (i.e. Lagrange multipliers).

Again, the complex procedure of removing and adding constraints into H(L(z)) is trans-
lated into decisions whether to visit part of the graph or not.

6.2 From the Mathematical Model to the Graph-based

Model

In this section the single-node mathematical model is developed in order to obtain the
graph based model. This model is flexible enough to allow the inclusion of all the market
agents (i.e. Gencos and Custcos). Equations from 6.1 to 6.5 describe the model for node
i ∈ N.

min
pig ,qil,δi

∑
g∈Gi

Cig(pig)−
∑
l∈Li

Bil(qil)− δi
∑
j∈Γi

λ̂jbij (6.1)

s.t. ∑
j∈Γi

bij(δi − δ̂j)−
∑
g∈Gi

pig +
∑
l∈Li

qil +Qi = 0 (6.2)

bPigc ≤ pig ≤ dPige ∀g ∈ Gi (6.3)

bQilc ≤ qil ≤ dQile ∀l ∈ Li (6.4)

bij(δi − δ̂j) ≤ dFije ∀j ∈ Γi (6.5)

The economical cost model for each generator is given as a quadratic function, generally
Cg(pg) = αg+βgpg+γgp

2
g, as described in section 2.2.4. In the same way the economical
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benefit model for each variable load is represented by the quadratic function Bl(ql) =
βlql − γlq2

l as described in section 2.2.5.1. Note the model just checks for the power
flow from i to j. This model differs from other models where the formulation takes
care of the flow limit in both ways. The basic reason for this is that we assume every
agent in the system formulates this in the same way. Hence, agent i will take care of
flow from i to j and agent j will be aware of the flow from j to i. Therefore, they will
complement each other and their cooperation will preserve the condition that the flow
in line ij must be in the interval [−Fij . . . Fij ]. A formal demonstration of this fact was
given in section 5.3.1.2.

6.2.1 The Mathematical Node Model

The node model proposed in section 5.4.3, shown again in figure 6.1, will be used as
the starting point for the analysis. In this model, a variable number of elements can be
attached to it (e.g. generators, variable loads and lines as well as a constant load). In
case there are more than one constant load attached to the node; these can be summed
up and treated as a compound fixed load.

..  ..

p
ig

q

..  ..

il iQ

b
ij δ i δ j−( )

..  ..

Figure 6.1: The Basic Node Model

In the rest of this document node i will be always considered. Taking into account
this fact, index i will be stripped off in all the equations. Therefore, the next sets are
equivalents N ≡ Ni,G ≡ Gi,L ≡ Li and T ≡ Ti . Now, introducing slack variables into
the inequality constraints, the above NLP is transformed into the NLP described by the
model from 6.6 to 6.12.

min
pg ,ql,δ

∑
g∈G

Cg(pg)−
∑
l∈L

Bl(ql)− δ
∑
j∈Γ

λ̂jbj (6.6)

s.t.
∑
j∈Γ

bj(δ − δ̂j)−
∑
g∈G

pg +
∑
l∈L

ql +Q = 0 (6.7)

bpgc − pg + pg
2/2 = 0, ∀g ∈ G (6.8)

pg − dpge+ pg
2/2 = 0, ∀g ∈ G (6.9)
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bqlc − ql + ql
2/2 = 0, ∀l ∈ L (6.10)

ql − dqle+ ql
2/2 = 0, ∀l ∈ L (6.11)

δ − δ̂j − dFje/bj + fj
2
/2 = 0, ∀j ∈ Γ (6.12)

Let us denote each constraint as

g̃(pg, ql, δ) ≡
∑
j∈Γ

bj(δ − δ̂j)−
∑
g∈G

pg +
∑
l∈L

ql +Q

h̃pg(pg, pg) ≡ bpgc − pg + pg
2/2, ∀g ∈ G

h̃pg(pg, pg) ≡ pg − dpge+ pg
2/2, ∀g ∈ G

h̃ql(ql, ql) ≡ bqlc − ql + ql
2/2, ∀l ∈ L

h̃ql(ql, ql) ≡ ql − dqle+ ql
2/2, ∀l ∈ L

h̃fj (fj , δ) ≡ δ − δ̂j − dFje/bj + fj
2
/2, ∀j ∈ Γ

From this system we obtain its Lagrangian, L(z). To obtain the Lagrangian L(z) out of
this model we need to introduce a Lagrange Multiplier for each constraint. We just had
one equality constraint, g̃(pg, ql, δ), and all the others are inequality constraints. Let
us allocate the following Lagrange Multipliers λ to g̃(pg, ql, δ), ρg to h̃pg(pg, pg), ρg to

h̃pg(pg, pg), µl to h̃ql(ql, ql), µl to h̃ql(ql, ql) and ηj to h̃fj (fj , δ). Therefore L(z) can be
expressed as:

L(z) =
∑
g∈G

[
Cg(pg) + ρ

g
h̃pg(pg, pg) + ρgh̃pg(pg, pg)

]
−
∑
l∈L

[
Bl(ql)− µlh̃ql(ql, ql)− µlh̃ql(ql, ql))

]
+
∑
j∈Γi

[
ηj h̃fj (fj , δ)− δλ̂jbj

]
+ λg̃(pg, ql, δ)

where z = [pg, ql, pg, pg, ql, ql, fj , δ, λ, ρg, ρg, µl, µl, ηj ]
T

This equation can be solved by using the Newton approach, as defined in section 2.4.4.
To this end, the system represented by equation 6.13 has to be solved.

H(L(z))∆z = −∇(L(z)) (6.13)

Therefore, in order to solve ∆z, first we need to obtain ∇(L(z)) and H(L(z)). Table 6.1,
describes the relation among z, L(z), ∇(L(z)) and H(L(z)), where Ψ =

∑
j∈Γ

bj .
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L(z)=
∑
g∈G

(Cg(pg) + ρ
g
h̃pg(pg, pg) + ρgh̃pg(pg, pg))−

∑
l∈L

(Bl(ql)− µlh̃ql(ql, ql)− µlh̃ql(ql, ql))

+
∑
j∈Γi

(ηj h̃fj (fj , δ)− δλ̂jbj) + λg̃(pg, ql, δ)

∇(L(z)) H(L(z))
z pg ql pg pg ql ql fj δ λ ρ

g
ρg µ

l
µl ηj

pg βg + 2γgpg − λ− ρg + ρg 2γg −1 −1 1
ql −βl − 2γlql + λ− µ

l
+ µl −2γl 1 −1 1

pg ρ
g
pg ρ

g
pg

pg ρgpg ρg pg
ql µ

l
ql µ

l
ql

ql µlql µl ql
fj ηjfj ηj fj
δ

∑
j∈Γi

[(λ− λ̂j)bj + ηj ] Ψ 1

λ
∑
j∈Γi

bj(δ − δ̂j)−
∑
g∈G

pg +
∑
l∈L

ql +Q −1 1 Ψ

ρ
g

bpgc − pg + pg
2/2 −1 pg

ρg pg − dpge+ pg
2/2 1 pg

µ
l

bqlc − ql + ql
2/2 −1 ql

µl ql − dqle+ ql
2/2 1 ql

ηj (δ − δ̂j)− dFje/bj + fj
2
/2 fj 1

Table 6.1: Relation among z, L(z), ∇(L(z)) and H(L(z)) (Ψ =
∑
j∈Γ

bj).

If this system in table 6.1 is expanded, the following linear equations system is obtained:

2γg∆pg −∆λ −∆ρ
g

+ ∆ρg = −∇pg , ∀g ∈ G (6.14)

−2γl∆ql + ∆λ −∆µ
l
+ ∆µl = −∇ql , ∀l ∈ L (6.15)

ρ
g
∆pg + pg∆ρ

g
= −∇pg , ∀g ∈ G (6.16)

ρg∆pg + pg∆ρg = −∇pg , ∀g ∈ G (6.17)

µ
l
∆ql + ql∆µ

l
= −∇ql , ∀l ∈ L (6.18)

µl∆ql + ql∆µl = −∇ql , ∀l ∈ L (6.19)

ηj∆fj
+ fj∆ηj = −∇fj , ∀j ∈ Γi (6.20)

Ψ∆λ +
∑
j∈Γi

∆ηj = −∇δj (6.21)

−
∑
g∈L

∆pg +
∑
l∈G

∆ql + Ψ∆δj = −∇λ (6.22)

−∆pg + pg∆pg = −∇ρ
g
, ∀g ∈ G (6.23)

∆pg + pg∆pg = −∇ρg , ∀g ∈ G (6.24)

−∆ql + ql∆ql = −∇µ
l
, ∀l ∈ L (6.25)

∆ql + ql∆ql = −∇µl , ∀l ∈ L (6.26)

fj∆fj
+ ∆δj = −∇ηj , ∀j ∈ Γi (6.27)
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6.3 Equivalent Graph Model

From 6.1, we notice how disperse the structure of H(L(z)) is. Several approaches have
been proposed (Tinney et al., 1985; Gilbert et al., 1992) in order to exploit this structure.
However, they are very general and even though they reduce the number of operations
this is not optimal as they do not take advantage of the explicit structure H(L(z)) has
for this problem. Furthermore, the decomposition approach proposed here leads to a
natural multiagent scenario. Here, the interconnections which can be transformed into
intercommunications task are directly identifiable.

In this section, a graph-based approach is applied to the solution of equation 6.13. It
is important to notice equation 6.13 was not written as a function of H(L(z))−1. The
solution process will be based on the equivalent graph when the system represented in
table 6.1 is translated to its graph representation.
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Figure 6.2: Graph corresponding to the basic node model

Figure 6.2, based on table 6.1, represents this system in a graphical way. This repre-
sentation was introduced in section 3.3 for a general system of linear equations. Let us
describe again the process to convert this matrix into its corresponding graph model.
The graph-based model for a general equation is shown in figure 6.3. A node is defined
for each variable in ∆z. In that node the upper half circle refers to the variable whose
value has to be solved, in this case ∆zi. The lower half circle refers to the coefficient
for variable ∆zi, actually ∂2L(z)

∂2zi
, which in this document will be denoted as azi . Then

the independent term, represented as the small arc incident to the node, initialized with
−∇ziL(z), which will be denoted as bzi . Out of this node there will possibly be inter-
connections with other variables represented by edges. The expression attached to these
edges are the values for H(L(z)) in the positions relating the variables connected at
each end (i.e. ∂2L(z)

∂zi∂zj
). Finally, the actual value for each variable, zi, will also be stored

in the node (not shown). The gray lines denote conditional evaluation which will be
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performed whenever its corresponding constraint is active. This is achieved by looking
at KKT conditions.

Figure 6.3: Graph model for the Newton’s method

6.4 Algorithms

6.4.1 Fundaments

The graph structure described by figure 6.2 is amazingly regular. When the nodes are
viewed in a bottom-up fashion, an evident characteristic is shared by all these nodes. If
there is an upper layer, then each node of this layer is connected to that upper layer with
just one node. Of course this is a well known characteristic of a special kind of graphs
called trees, but what is special about this one? Basically, when a tree represents a
system of linear equations, the solution to this system is straightforward. An algorithm
has to be defined which exploits its particular shape in an ordered way. Let us denote
layer 0 as that where the root node is. Therefore, the depth of this graph is 3, and
the breadth will be a function of the number of elements connected to this node (i.e.
generators, loads, and lines).

KKT conditions, described in section 2.4.2.2, will guide the travel into the graph. They
indicates if is needed to enforce the constraints in the solution process. They also signal
which constraints have to be released along the solution process. Hence, they define the
way the graph is visited. Notice the difference between this approach and that from
the matrix solution approach. There, KKT conditions are used to modify H(L(z)); this
is done by adding or eliminating the rows and columns corresponding to the Lagrange
Multiplier and slack variable related to the constraint being tested.

The next two sections propose algorithms to exploit this graph. These only perform the
operations needed in the evaluation of the graph (i.e. exploiting completely H(L(z))
sparsity). The first section proposes an algorithm to travel up the graph applying a
sparse forward elimination. The second section proposes an algorithm to solve the
system based on the propagation the first algorithm performed. This is accomplished
by traveling down the graph.
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6.4.2 Notation

N,G,L, and T represent the set of nodes, generators, variable loads, and lines in an
electrical power system, respectively. Γi is the set of neighbouring nodes of node i

(i.e. the nodes j ∈ N \ i such that there exists a line between nodes i and j). Gi ∈
℘(G),Li ∈ ℘(L),Ti ∈ ℘(T) are the generators, variable loads, and lines connected to
node i, respectively.

6.4.3 The Graph Forward OPF Algorithm (gFOPF )

Let us assume nodes i and j are connected by aij . Also, let us assume i is in layer n
and j is in layer n+ 1 and |Γj | = 1. Hence, if Gaussian elimination is applied to node j
then the only node which has to be affected by this process is node i which is one layer
above node j. The graph transformation process when Gaussian elimination is applied
to node j is outlined in figure 6.4.
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Figure 6.4: Graph reduction when applying Gaussian elimination

The gFOPF algorithm applies this basic process to all the nodes in the tree in a bottom-
up way until no more reductions can be done. This bottom-up approach has to be guided
by the graph structure, and can be done in a modular way depending only on the con-
straint type. Having said that, we can distinguish four types of components: generators,
variable loads, lines, and nodes. As can be seen from the graph, the node character-
istics (∆λ and ∆δj ) are based on the other three characteristics of the components.
Therefore, in order to reduce the node-related values first, we have to deduce the other
object-related values (i.e. generators, variable loads, and lines). Algorithm 8 applies
the principles mentioned above by processing first the generators related values, then
the variable loads related values, following the lines related values, and finally the bus
related values.

6.4.4 The Graph Backward OPF Algorithm (gBOPF )

The FBOPF algorithm shown in listing 9 performs the backward substitution, which is
guided by the graph structure in a top-down approach. Basically, it takes advantage
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Algorithm 8 gFOPF(i ∈ N)
1: for all g ∈ Gi do
2: aρ

g
← −pg2/ρ

g

3: bρ
g
← −∇ρ

g
+∇pgpg/ρg

4: aρg ← −pg
2/ρg

5: bρg ← −∇ρg +∇pgpg/ρg
6: apg ← 2γg − 1/aρ

g
− 1/aρg

7: bpg ← −∇pg + bρ
g
/aρ

g
− bρg/aρg

8: end for
9: for all l ∈ Li do

10: aµ
l
← −ql2/µl

11: bµ
l
← −∇µ

l
+∇qlql/µl

12: aµl ← −ql
2/µl

13: bµl ← −∇µl +∇qlql/µl
14: aql ← −2γl − 1/aµ

l
− 1/aµl

15: bql ← −∇ql − bµl/aµl + bµl/aµl
16: end for
17: for all j ∈ Ti do
18: aηj ← −fj

2
/ηj

19: bηj ← −∇ηj +∇fjfj/ηj
20: end for
21: aδ ← −

∑
j∈Γ

(1/aηj )

22: bδj ← −∇δj −
∑
j∈Γ

(bηj/aηj )

23: aλ ← −
∑
g∈Gi

(1/apg)−
∑
l∈Li

(1/aql)−Ψ2/aδ

24: bλ ← −∇λ +
∑
g∈Gi

(bpg/apg)−
∑
l∈Li

(bql/aql)−Ψbδ/aδ

from the propagation that in its way up the tree the gFOPF algorithm performed.
FFOPF has updated the value of bi and aii when their dependencies with the lower
layer were eliminated. Let us suppose node i is in layer n and node k is in layer n+ 1.
Equation 6.28 has to be solved for xi,

aiixi + aikxk = bi (6.28)

solving for xi
xi =

bi − aikxk
aii

(6.29)

clearly from this equation, if node i is the tree root, then there are no more layers up so
equation 6.29 becomes

xi =
bi
aii

(6.30)

In summary, this algorithm applies this simple principle following the inverse process
gFOPF took when was applied.
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Algorithm 9 gBOPF(i ∈ N)
1: ∆λ ← bλ/aλ
2: for all g ∈ Gi do
3: ∆pg ← (bpg −∆λ)/apg
4: ∆ρ

g
← (bρ

g
−∆pg)/aρg

5: ∆pg ← (∇pg + pg∆ρ
g
)/ρ

g

6: ∆ρg ← (bρg + ∆pg)/aρg
7: ∆pg ← (∇pg + pg∆ρg)/ρg
8: end for
9: for all l ∈ Li do

10: ∆ql ← (bql −∆λ)/aql
11: ∆µ

l
← (bµ

l
−∆ql)/aµl

12: ∆ql ← (∇ql + ql∆µ
l
)/µ

l
13: ∆µl ← (bµl + ∆ql)/aµl
14: ∆ql ← (∇ql + ql∆µl)/µl
15: end for
16: ∆δ ← (bδ −Ψ∆λ)/aδ
17: for all j ∈ Ti do
18: ∆ηj ← (bηj − aδ)/aηj
19: ∆fj

← (bfj − fj∆ηj )/ηj
20: end for

6.4.5 The Graph OPF Algorithm (gOPF )

This section presents a simple iterative algorithm, called gOPF , which applies the al-
gorithms gFOPF and gBOPF until some convergence criterion is reached. A more
elaborated algorithm to propagate the most truthful values across the graph is proposed
in section 5.5.

Algorithm 10 gOPF
1: Initialize z
2: repeat
3: Intercommunicate values
4: for all i ∈ N do
5: Evaluate ∇(L(z))i
6: Apply gFOPF(i)
7: Apply gBOPF(i)
8: z ← z + ∆z
9: end for

10: until Convergence reached

6.5 Concluding Remarks

By taking a graph-based approach, it has been possible to propose a new set of algorithms
based on the basic node model. Based on table 6.1, a new graph-based solution has been
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proposed. This approach allow us to scale up the system in a very efficient way (i.e.
linear in the number of generators, loads and lines attached to the electrical power
system). To this end, an OPF algorithm has been presented which is based on two
basic algorithms. the graph forward OPF (gFOPF ), and the graph backward OPF
(gBOPF ). These algorithms perform the minimal number of operations as a result of
the topological structure of the model. Comparing this approach with the H(L(z))−1

based solution, where it would be necessary to invert H(L(z)) and then multiply it
by ∇(L(z)), this method is much more efficient. Basically, this algorithm performs
the Gaussian elimination in its gFOPF phase and gBOPF implements the backward
substitution. This chapter has two main contributions. First, the explicit graph model
derived from the mathematical model allows us to think about the model in a modular
fashion. This in turn prevents us from using sparse matrix methods such as those in
Tinney et al. (1985). Second, the order in which this reduction has to be realized is a
consequence of a matrix graph analysis and is inspired in its topological structure.



Chapter 7

Graph Decentralisation

Chapter 6 presented a decentralised approach which relies on the auxiliary principle
problem. The choice of weakening links was guided using such approach. That implied
to weak the links which were coupling the problem in order to achieve such decentralisa-
tion. In this chapter a deeper analysis of these links is done which leads to its complete
understanding. It will be seen that the main effect of the link weakening operation is to
allow the computation of the exact gradient. However, the solution will be reinforced
by taking into account second order information provided by the linking structure. This
chapter is structured as follows. First, the self contained characteristic of the graph is
presented. Then a QSP topological model is presented, which gives a standard graph-
based representation for QSP. Also, a simpler representation is derived. Following, a
graph analysis is undertaken based on the linear equation each node and its links rep-
resents. Finally, different decentralisation schemes are presented based on the previous
analysis.

7.1 Self Contained Graphs

An interesting fact when this kind of graphs is used is that the information to rebuild
the gradient is contained in the graph topology. First, the case where the gradient
for a primal variable, pg, is analysed. The discussion will be focused on the subgraph
delineated in figure 7.1. From table 6.1, it is known that ∇pg = βg +2γgpg−λ−ρg +ρg.

Figure 7.2 shows the gradient evaluation process for a primal variable. From section 3.7,
it is known that every node has the value related to the variable itself represents. There-
fore, the node gradient evaluaton starts by taking into account the gradient information
within the node which in this case would be βg + 2γgpg, as shown in figure 7.2(a).

108
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Figure 7.1: Subgraph for a primal variable (i.e. pg).

Then it starts to evaluate the portion of the gradient which is a function of the variables
contained by the neighbours of pg, as shown in figures 7.2(b), 7.2(c) and 7.2(d).
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Figure 7.2: Graph-based gradient evaluation for a primal variable (i.e. pg).

Now, let us turn the attention to the case where the gradient for a dual variable is to
be found, λ in this case. The discussion will be focused on the subgraph delineated in
figure 7.3.



Chapter 7 Graph Decentralisation 110

l

l
µ∆

q
l

∆

∆ q
l

q
l

∆

η j
∆

p
g

∆

l
µ∆ρ

g

η j

∆

q
l

∆

p
g

∆

ρg

∆

λ

∆

q
l

∆

l
µ

∆ρ
g

∆

∆ f
j

p
g

∆

l
µ l

µ η j
ρg ρ

g

ρg
∆

∆λ

∆δ

f
j

p
g

g
p

∆

l
µ

∆

q
l

∆

−2

p
g

p
g

2γg

q
l q

δ

∆

−−

−

−

−

−

−

−

−−

−

−

−

1

−

γl

−1

1

ψ

0 0 00

f
j

0

∆

0

1−1−1 1

0

∆
g

p

∆

∆

Figure 7.3: Subgraph for a dual variable (i.e. λ).

Figure 7.2 shows the gradient evaluation process for a dual variable. From table 6.1 it
is known that ∇λ = RHS − pg + ql + ψδ. As before, the gradient evaluation starts by
taking into account the information contained within the node itself, in this case RHS,
as shown in figure 7.4(a). Then the evaluation of the links attached to this node and
the variables at the other extreme of the link is performed as shown in figures 7.4(b),
7.4(c) and 7.4(d)
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Figure 7.4: Graph-based gradient evaluation for a dual variable (i.e. λ).

From the previous discussion, as there exist only dual variables and primal variables, the
gradient for every variable can be derived straightforwardly from the graph topology.
Therefore, the graph can be said to be self-contained as no external information is
needed.
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7.2 A QSP Topological Model Proposal

The graph-based model in chapter 4 was derived to solve the economical dispatch prob-
lem. This problem involves just one constraint and the generators bounds. However,
this model can be generalised to represent a more general system. In this section a
graph topology for the Newton step method is proposed. For this purpose, let us base
the discussion with the QSP described by the objective function given by expression 7.1
and the constraints described by expressions from 7.2 to 7.4. This QSP consists of N
variables, L equality constraints, and M inequality constraints.

min
zi

N∑
i=1

Ci(zi) (7.1)

s.t.

N∑
i=1

alizi = bl 1 ≤ l ≤ L (7.2)

N∑
i=1

cmizi ≤ dm 1 ≤ m ≤M (7.3)

bz1c ≤ zn ≤ dzNe 1 ≤ n ≤ N (7.4)

The graph represented in this QSP is presented in figure 7.5. Each constraint is repre-
sented by a dual variable and a set of links which represent the linear terms within the
constraint. The terms in the constraints are represented by links which join the primal
variables with the dual variables. The only difference between equality contraints and
inequality constraints is the kind of links used to build the linking structure. In the
case of equality constraints, the linking structure will be active along the whole solution
process. On the other hand, the linking structure for the inequality contraints will be
active only when the constraint is binding.

7.3 An Equivalent Graph Representation

In this section, once the characteristics of this graph have been analysed, a simpler graph
model representation is derived in order to make its handling easier. This simplification
is based on two main observations: first, the bounding structures are fixed, and second
the different kind of variables can be represented in such a way that the content of that
node will be inferred by its representation.
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Figure 7.5: Proposed topology for the Newton step method

7.3.1 An Equivalent Graph Bounding Structure Representation

The subgraphs which represent the bound on the variables are well defined. Therefore
a special graph notation will be derived in order to handle them, as shown in figure 7.6.
Here all the links and nodes contained in such subgraph are embedded within the trian-
gle. The link value will can be as follows:

link.value =


1 if the constraint is lower binding,

−1 if the constraint is upper binding,

−− if is not binding.
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Figure 7.6: Bound subgraph representation

This leads to the representation shown in figure 7.7.
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7.3.2 An Equivalent Node Type Representation

From the previous section, it has been learnt that the gradient is embedded within the
graph topology and the information attached to each node. Therefore, a simplification
for the graph representation will be derived. The last section has presented a repre-
sentation for the bounding structures which control the limits on the primal variables.
Therefore, now the only nodes in the remaining graph are those representing the primal
variables and the dual variables. As mentioned above, the primal variables set can be
further divided into two sets. The first one represents those variables which are part
of the objective function. The second one contains those primal variables which appear
only within the constraints. An instance of these would be the variable representing the
electrical angle in the electric power market example (i.e. δ). These two subsets will
be called objective and non-objective variables respectively. Therefore, there are three
kinds of variables which have to be represented within the graph. These representations
are shown in figure 7.8. Based on the type of variable this node is representing, the
information attached to it will be known. This information is as follows

• Objective variables: Attached to this node will be the linear coefficient as well as
the quadratic coefficient in order to be able to compute its gradient,

• Non objective variables: To this node there will be no additional information since
its coefficients in the constraints are given by the values of the links which are
attached to it,

• Dual variables: The information attached to this kind of node will be the right
hand side of the constraints which will allow its gradient computation.
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This leads to the representation shown in figure 7.9, where z2 is assumed as a nonobjec-
tive variable. Based on this graph the appropriate classes for each type of variable can
be defined. Once these definitions have been implemented, the operations to solve the
graph can be implemented straightforward.
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Figure 7.9: Hessian topology - final equivalent representation

7.4 Graph Analysis

A node and the links which are attached to it represent an equation as previously de-
scribed in section 3.7. In this section the analysis for a node and the equation it repre-
sents is done. To this end let us extract the equation corresponding to zi from the system
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of linear equations which describes the Newton step. This is given by equation 7.5.

∂2L(z)
∂2zi

∆zi +
∑
∀j∈Γi

∂2L(z)
∂zi∂zj

∆zj = −∇ziL(z) (7.5)

solving for ∆zi leads to

∆zi =

−∇ziL(z)−
∑
∀j∈Γi

∂2L(z)
∂zi∂zj

∆zj

∂2L(z)
∂2zi

(7.6)

This can be rewritten as

∆zi =
−∇ziL(z)
∂2L(z)
∂2zi

−
∑
∀j∈Γi

∂2L(z)
∂zi∂zj

∂2L(z)
∂2zi

∆zj (7.7)

This expression can be thought as the improvement in the solution for the component
in the orthogonal axis zi. It can be split into two parts. The first part, described by
expression 7.8, is a component which always appear in any decentralisation approach
for the graph.

−∇ziL(z)
∂2L(z)
∂2zi

(7.8)

This is the contribution based on −∇ziL(z) just like in the steepest descent methods.
However the length of the step will be reinforced with the second order information
provided by 1/∂

2L(z)
∂2zi

. This will be the case for the primal variables, however for the
dual variables there will not be second order information, and therefore the gradient
step size will have to be controlled by other means.

The second part, described by expression 7.9, is composed by all the second order con-
tributions which will be collected by zi from its neighbours (i.e. Γi).

−
∑
∀j∈Γi

∂2L(z)
∂zi∂zj

∂2L(z)
∂2zi

∆zj (7.9)

This part will have a variable number of components which will depend on the applied
decentralisation approach. These can go from taking into account the second order infor-
mation from all the neighbours to the other extreme where no second order information
from them will be collected at all. The first approach would be the full centralised
Newton step and the second one would result in the steepest descent reinforced with
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the second order information for the same orthogonal axis. Nevertheless, between these
two approaches there is a plethora of options about which of the components of second
order information can be taken into account. In fact there are |℘(Γi)| choices and the
choice at any point will be based on the particular decentralisation approach. Let us
define Lh as the set of links which are taken into account for this process. With this in
mind expression 7.9 can be rewritten as expression 7.10

−
∑
∀j∈Γi

(i,j)∈Lh

∂2L(z)
∂zi∂zj

∂2L(z)
∂2zi

∆zj (7.10)

7.5 The Graph and Its Decentralisation

In this section the graph and its decentralisation is addressed. To this end an operation
over the links of the graph, called link weakenning, is defined. Then, three different
approaches to decentralise the graph are proposed. The first one is a complete decen-
tralised, the second approach is based on the notion of the kind of variables within the
graph (i.e. primal and dual variables); and the third approach will be based on agency
definitions. The last approach will be described in the next chapter. To this end let us
take the system which has been used along the document as shown in figure7.10(a). The
graph representation corresponding to this example is shown in figure 7.10(b), where the
minus sign represents a -1 value for the link.
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Figure 7.10: Two nodes system and its graph representation

7.5.1 Link Weakening

Before going into the decentralisation approaches, let us define the link weakening oper-
ation which allows the decentralisaton process. This operation labels the links with one
of the following two labels.
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• HARD - This labeling will be granted to those links which are not part of the
decentralisation process. The graph reduction process will take into account these
links,

• SOFT - These links provide the means to decentralise the graph. If the link
posseses this property, then the reduction process will not pass through them.
Nevertheless, by using its connectivity, they will provide a means to retrieve the
actual value of the variable at the other end of the link which will allow the gradient
to be computed, as described in section 7.1.

7.5.2 A Gradient-oriented Approach

The first approach is to decentralise the graph in an extreme way by weakening all the
links as shown in figure 7.11. This method leads to a model where the gradient method
has to be applied at each node in the graph.
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−−− −

Figure 7.11: An gradient-based decentralisation approach

From this figure and based on equation 7.7 we can assert it will become equation 7.11,
where the second order information of all of its neighbours is disregarded. In this case
Lh = ∅. Therefore equation 7.7 becomes equation 7.11.

∆zi =
−∇ziL(z)
∂2L(z)
∂2zi

(7.11)

Nevertheless, those nodes which have proper second order information will be able to
use it in order to speed up the convergence process. In particular, all the nodes related
to primal variables have this information. Dual variables do not have second order
information at all and therefore they will have to use equation 7.12

∆zi = −κ∇ziL(z) (7.12)
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The main drawback of gradient methods known also as steepest descent methods is the
hardness to estimate κ. Therefore in the primal nodes equation 7.13 holds.

κ =
1

∂2L(z)
∂2zi

(7.13)

7.5.3 A Dual-oriented Approach

The second natural approach to decentralise the graph is the dual-oriented approach.
From the model proposed in section 7.2 it is known the dual variables are in only one layer
so if a line across both layers is drawn dissecting the graph, the links which connected
the dual variables with the primal variables will be weakened as shown in figure 7.12.
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Figure 7.12: An dual-oriented decentralisation approach

The only dual variables considered in this case are those related with constraints involv-
ing two or more primal variables (i.e. bound dual variables are not split from the primal
variables set). Let us denote D as the set of those dual variables. Therefore equation 7.7
becomes equation 7.14, where all the second order information about the dual variables
are disregarded by the primal variables. On the other hand, as the dual variables only
have links with primal variables, they are now isolated just as in the gradient approach.

∆zi =
−∇ziL(z)
∂2L(z)
∂2zi

−
∑
∀j∈Γi
zj /∈D

∂2L(z)
∂zi∂zj

∂2L(z)
∂2zi

∆zj (7.14)

7.5.4 An Agent-oriented Approach

In this approach the decentralisation process is made based on concepts drawn from the
multiagent community. A classical definition for an agent is
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“An agent is a computer system situated in an environment, and capable of flexible
autonomous action in this environment in order to meet its design objectives” (adapted
from Jennings and Wooldridge (1995)).

The interpretation in this work for an agent is an entity which posseses some states
or variables and presents an independent and proactive behaviour, represented by their
objective function. Furthermore, it is situated in an environment which he can sense
and act accordingly. However, he is also constrained by its own limitations as well as the
constrains presented by the environment. Going back to the problem we are addressing
in this thesis, the DC OPF. There the agents would be acting on behalf of each node.
Therefore, their own limitations would be the generation levels for the generators and
the power balance at each node. On the other hand the constraints represented by the
environment would be represented by the transmission constraints. To cope with this
paradigm, the graph is split into subsets of primal variables, links, and dual variables.
Based on the membership of these components, the graph is decentralised as shown in
figure 7.13. This decentralisation approach is described in chapter 8.
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Figure 7.13: An agend-based decentralisation approach

7.6 Concluding Remarks

In this section the main concepts on how to decentralise the graph have been presented.
First the self-containing characteristic has been uncovered. Then a standard topological
model proposal for the Newton step, when applied to QSP, has been presented. This
topological model lends itself to a simpler representation which allows its direct imple-
mentation. Then the underlying decentralisation principles have been presented based
on the analysis of the equation represented by the node and its links. This allow us
to compute the gradient directly from the graph, provided the correct information is
attached to each node. Finally, three decentralisation approaches have been described.
The first one is a totally decentralised approach which will lead us to a gradient oriented
model reinforced with its proper second order information. The second one is based on
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the type of variables (i.e. primal or dual), and leads us to a horizontal graph split. The
last approach is based on the agency concepts and will be further described in chapter 8.



Chapter 8

An Agent-based Decentralisation

Approach for QSP

In the previous chapter several approaches to decentralise the graph have been described.
The last one addressed the decentralisation task based concepts drawn from the multi-
agents community. A classical definition for an agent is

“An agent is a computer system situated in an environment, and capable of flexible
autonomous action in this environment in order to meet its design objectives” (adapted
from Jennings and Wooldridge (1995)).

Jennings and Wooldridge follow by asserting a weak notion of agency as a computer
system which posesses the following properties:

• autonomy- agents operate without the direct intervention of humans or others, and
have some kind of control over their actions and internal state;

• social ability- agents interact with other agents (and possibly humans) via some
kind of agent-communication language;

• reactivity- agents perceive their environment, (which may be the physical world, a
user via a graphical user interface, a collection of other agents, the INTERNET,
or perhaps all of these combined), and respond in a timely fashion to changes that
occur in it;

• pro-activeness- agents do not simply act in response to their environment, they
are able to exhibit goal-directed behaviour by taking the initiative.

These properties can be asserted in the decentralisation approach as the decentralised
components

121
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• Are autonomous, as their decisions are taken on their own. These decisions are
based on their own information as well as the information they gather from their
local environment,

• Have social ability, as they intercommunicate their corresponding states with their
neighbours in order to exchange their actual state so everybody can take better
decisions about their future states,

• Are reactive, as they perceive their environment represented by a set of constraints
and respond in a timely fashion to changes that could activate such constraints;
and

• Act Proactively, given that they are adapting their state accordingly with the
changes in the environment, always acting as selfish agents trying to minimize their
own costs and by doing so a global optimum allocation of resources is reached.

Therefore, the agents are solving their own problem and interchanging some information
which is required from the other agents and, by doing so, the global problem is solved.
To this end, in this chapter a representation for the agents is presented based on these
characteristics. Before that, a literature review about multiagent concepts applied to
electrical power markets is presented in section 8.1. Then in section 8.2 the agent-based
decentralisation approach is developed in order to obtain the agent-based decentralised
graph. Finally, section 8.4 presents some concluding remarks.

8.1 Previous Work

In the last fifteen years research on Multi-Agent Systems (MAS) applied to electrical
power markets has consistently been published. A review was done with the main goal
to identify what kinds of agents are being under research as well as the way they are
used in order to support the electrical power market. This review is presented in a
chronological order. Talukdar and Ramesh (1994) present a MAS that solves a con-
tingency constrained optimal power flow by decomposing the OPF in smaller problems,
which in turn can be solved in parallel by the agents using asynchronous communication.
It focuses on continuous control actions to correct the effects of non-planned changes
on the system. A MAS solution is proposed consisting of the following agents Data
Importers, Probes, Voyagers, Inhibitors and Destroyers. Ygge and Akkermans (1996)
performed a study for power load management as a computational market based on load
agents called homebots. They assume concave preferences for the customers and their
task is to find the consumption level each customer has. The system is solved using
Newton’s method and as a result they report superlinear rate of convergence, a natural
characteristic of the method. Newton’s method is a centralised approach to solve non
linear optimisation problems. This problem is avoided by interchanging first and second
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order information among the agents which leads to an intercommunication bottleneck
as the system grows up. As a result, the desirable characteristic of autonomy is lost as
they have to share their private data in order to solve the problem collectively. Fur-
thermore, there is a centralised aspect as they rely on a centralised algorithm to cope
with the bounds which constrain the loads. Besides this, as a demand-side manage-
ment system, it does not take into account the generation side leading to a non realistic
problem solution. A MAS framework is presented by Lam and Wu (1999), as a mean
to simulate electricity markets in order to discover possible flaws in the general market
models when applied to a particular context. This simulator is built on top of JATLite
(Java Agent Template Lite), using mSQL accessed with JDBC. The systems participant
agents are Independent System Operators, Power Exchanges, Schedule Coordinators,
Utility Distribution Companies, Generators, Customers, Retailers, Brokers and Aggre-
gators. This work delineates the composition of the electrical power market as well as
the interaction among them. It also points out the technologies available at that time
in order to implement the system. Krish and Ramesh (1998a) present a negotiation
protocol based on cooperative game theory. Here, no knowledge about the strategies of
the other players is assumed. Coalitions are permitted as long as they do not become an
oligopoly and the grand coalition is not allowed. The negotiation model is based on two
actions: To prioritise possible coalition partners and bargain with the selected partners,
if coalition is appropriate. After that, the solution is fed into the market game, whose
output is used as a feedback for future transactions. This algorithm is applied in Krish
and Ramesh (1998b), to the Power Markets area. The production cost curve, which in
general is represented by a quadratic curve, is discretized to two values, low-cost and
high cost, and a third value is deduced as the average of these two. A decentralised
coalition scheme is applied by Contreras and Wu (1999) to the transmission expansion
planning problem. Here, the goal is to determinate the optimal number, as well as lo-
cation, of lines to an existing transmission system. This is done in order to meet the
forecasted load in a given year as economically as possible. It addresses three issues,
determining how coalitions are formed, the implementation of a bargaining algorithm
and the distribution of the costs for every single agent. A DC optimal power flow is used
whose model has two main constraints: the first one preserves the power balance at each
bus, the second one keeps the lines below their load limits. In this game, the goal is to
allocate the total cost among the agents in a fair way. The minimal coalition of agents
is constituted by one generator, one load, and one transmission line. A set of axioms is
enumerated which in turn are used to generate all the possible coalitions for the partic-
ular example. The Bilateral Shapley Value (BSV) is used to create a fair distribution of
resources among two agents only. BSV is a method to calculate the share an agent has
to contribute to all the possible coalitions where it can be enrolled. They follow Klush
and Shehory’s coalition formation method (Klush and Shehory, 1996). This method
consists essentially of four phases: Self Calculation, Communication, BSV Calculation,
and Bilateral Negotiation. Finally a backward induction method is developed to allocate
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the costs. Yeung, Poon, and Wu (1999), proposed a MAS approach in order to solve the
coalition formation for multilateral trades. As in (Contreras and Wu, 1999), Klush and
Shehory’s coalition formation method is used. Each agent represents all the functions
provided in each bus (generator, consumer). Two agent models are presented, the first
one without network transmission costs. The second one introduces linear transmission
costs into the first model. In this model, transmission costs vary proportionally with the
line load. All the trade is done using a bilateral trade strategy. This implies a commu-
nication bottleneck as the system grows. Furthermore, for large scale systems, coalition
formation algorithms still are hard even though there have recently been advances in
this area (Rahwan and Jennings, 2007). Harp, Bruce, Wollemberg, and Samad (2000),
present a simulator for the electric power industry. A decomposition of the system is
undertaken based on a general MAS framework. They propose some design guidelines
for the system as well as the intercommunication mechanism. However, they rely in a
centralised mechanism to clear the market. This fact sets a bottleneck if this system is
to be scaled. The use of a MAS-based system is presented by Wei, Yang, Yen, and Wu
(2001) to perform a decentralised approach for wholesale cross-border trade planning.
First, it presents the centralised solution to the problem. Then, it introduces the decen-
tralised approach based on a first come, first served. A lemma showing the equivalence
between the decentralised and the centralised approach is given. A centralised security
agent is provided to approve the transaction among the agents. This proposal is based
on a shortest path search algorithm. Zhou, Tu, Talukdar, and Marshall (2004) present
a Genetic Algorithm-based MAS to perform the simulation of the wholesale electricity
market. This leads to a new market design, contrasting it with the year 2000 California
failure which became a crisis. The model implemented is the Poolco used in California,
using the Last Accepted Offer (LAO) pricing rule. In this model, the auctioneer imposes
a price cap. Each agent is based on a GA, which has 20 genes each one of them with 20
boolean values, representing their bids in each stage. An infinitely repeated multi-unit
auctions is proposed as a learning method. Their results report the GA is run for 100
times with 10,000 periods each. It reaches equilibrium whose results suggest to offer
the cheapest generation units, withhold the upper ones but offer the one on the top.
It is claimed these are the results which best fit the California crisis situation. Then
in Tolbert, Qi, and Pendg (2001) a scalable multi-agent paradigm is presented. It is a
proposal which brings scalability as a desired characteristic of a MAS if this is to be
used in the Electrical Power Area. Also, it proposes a dynamic hybrid MAS to fulfill
this requirement. They also consider ancillary agents (FACTS, transformers, and so on)
besides the traditional agents (Generators, loads, transmission lines, etc.).

As it can be seen, the kind of interpretations as for the agency concepts vary widely.
Furthermore, some of them rely on centralised mechanisms in order to solve the system
and some others reach equilibrium in a decentralised way. As previously stated a multi-
agent system is one composed by agents who act independently, are able to act on the
environment, and can cooperate. All this in a proactive manner. However they are
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constrained by their own capabilities and also by the environment. In the next section a
methodology is proposed in order to derive the decentralised graph based on the notions
of states and constraints.

8.2 An Agent-based Decentralisation Approach

The agent paradigm defines the multiagent system as a set of agents who are acting
independently, constrained by the environment, and always proactively. To fulfill these
concepts, the system is represented by three sets. The set of agents A, the set of variables
V, and the set of constraints C. The last two sets are split among the agents. Therefore
every agent ai is characterised by two sets:

• The set of states or variables, Vai ⊆ V,

• The set of constraints the agent is subject to, Cai ⊆ C,

These sets have the following characteristics

• The variable subsets are disjoint (i.e. ∀ai, aj ∈ A, i 6= j,Vaj ∩ Vai = ∅),

• The constraint subsets are disjoint (i.e. ∀ai, aj ∈ A, i 6= j, Caj ∩ Cai = ∅),

• All the variables in the system belong to some agent (i.e. V = ∪ai∈AVai),

• All the constraints in the system belong to some agent (i.e. C = ∪ai∈ACai).

8.2.1 Algorithm

Algorithm 11 takes as input the sets A,V, and C representing the set of agents, the set
of program variables, and the set of constraints, respectively. It derives the agent-based
graph model. The algorithm consists of five stages

• Primal variables creation and bounding,

• Dual variables creation,

• Linking structure creation,

• Agents creation, and

• Non proper links weakening.

All these stages are explained with an example in section 8.2.2.
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Algorithm 11 SQPAgentification ( V: The set of program variables, C: The set of
constraints, A: The set of agents)

1: for all v ∈ V do
2: if v.type ==OBJECTIVEVARIABLE then
3: Create objective variable node for variable v
4: else
5: Create nonObjective variable node for variable v
6: end if
7: if v.bounded==TRUE then
8: Create the node bounding structure for variable v
9: end if

10: end for
11: for all c ∈ C do
12: if c.type==EQUALITY then
13: Create equality dual variable node λc for constraint c
14: else
15: Create inequality dual variable node λc for constraint c
16: end if
17: L ← ∅
18: for all term ∈ c do
19: {Create link l connecting the dual variable}
20: { from λc to term.ProgramV ariable}
21: L ← L ∪ l
22: l.value ← term.Coefficient
23: l.dualVariable ← λc
24: l.programVariable ← term.ProgramV ariable
25: if c.type==INEQUALITY then
26: l.conditionalType ← CONDITIONAL
27: else
28: l.conditionalType ← PERMANENT
29: end if
30: end for
31: end for
32: for all a ∈ A do
33: for all v ∈ Va do
34: v.owner ← a
35: end for
36: for all c ∈ Ca do
37: c.owner ← a
38: end for
39: end for
40: for all l ∈ L do
41: if l.programVariable.owner 6= l.dualVariable.owner then
42: l.connectivityType ← SOFT
43: else
44: l.connectivityType ← HARD
45: end if
46: end for
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8.2.2 Building the Agent-based Model: An Example

In this section algorithm 11 is applied to the example which has been used along this
document. Therefore, our aim is to transform the EPM model described in figure 8.1(a)
to its graph-based representation shown in figure 8.1(b). To this end, an ontology has
been defined in order to describe the electrical power market (see appendix B), as well
as an ontology to describe separable quadratic programs (see appendix E). A translator
between the EPM and QSP ontologies is used. In this case the listing provided in
appendix D is the description for the system in figure 8.1(a) and the listing in appendix G
is its corresponding QSP description. This is the one used by algorithm 11.
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(b) Graph based model

Figure 8.1: An Electrical Power Market ant its corresponding graph model

In the EPM there are two participating agents, represented by the set A = {a1, a2}. The
variables which represent the state of the system as well as the controls are represented
by the set of variables V = {p1, p2, p3, δ2}. On the other hand this system is subject
to a set of constraints imposed by the own agents limitations as well as the limitations
imposed by the environment where the agents are working in. Specifically, the set of
constraints is C = {(450 − p1 − p2 − δ2 = 0), (400 − p3 + δ2 = 0)}. The subsets of
variables each agent has to deal with are Va1 = {p1, p2}, Va2 = {p3, δ2}. Finally, the
set of constraints each agent is subject to are Ca1 = {(450 − p1 − p2 − δ2 = 0)} and
Ca2 = {(400− p3 + δ2 = 0)}

8.2.2.1 Program Variables Creation

The code between line 2 and 6 refers to the variable creation process. In this stage all
the variables or states V are created. The elements in this set can be of two kinds:
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• Objective variables. These are variables which appear in the objective function.
They must have a quadratic coefficient in one of the terms where they appear. At-
tached to this variable the values for the constant, linear and quadratic coefficients
(i.e. α, β, γ), are stored in order to evaluate the gradient completely.

• Non-objective variables. These are variables which appear within the constraints
set only. No special information is stored as the information attached to the links
contains the actual coefficients for these variables.

Therefore, in this case p1, p2, and p3 are objective variables whereas δ2 is a non-objective
variable. Notice the difference between the graph representation for each node. A thick
circle represents an objective variable and the non-objective variable is represented by
a normal thin circle. This process is depicted in figure 8.2, and its final result is shown
in figure 8.3 where the variable δ2 is a non-objective variable.
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Figure 8.2: Program variables creation.

8.2.2.2 Program Variables Bounding

The code between line 7 and 9 refers to the variable creation process. In this step, the
slack variables and dual variables needed to handle the bounds for the program variables
are created and their interconnections are built. This process is described in figure 8.3.
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Figure 8.3: Program variables bounding.

8.2.2.3 Dual Variables Creation

The code between line 11 and 31 refers to the dual variables creation process. Now, based
on the systems declared constraints, one dual variable is created for each constraint. The
right hand side (RHS) constant of the constraint is attached to the information within
the node representing this variable. This is needed in order to evaluate the gradient of
the dual variable. Figure 8.4 illustrates this step.
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Figure 8.4: Dual variables creation.

8.2.2.4 Links Creation

The code between line 17 and 30 refers to the link creation process, based on the infor-
mation contained within the constraints, a set of links are created. Specifically a link
is created for every term in the constraint. This link connects the dual variable related
to the constraint under process and the program variable within the term. The link
is assigned as value the coefficient of such term. Also the link has information about
which variables are connected to each of its ends. Furthermore, for the case of QSP,
we know the links can only connect dual variables with program variables. The link
creation process is represented by figure 8.5.
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Figure 8.5: Links creation.

8.2.2.5 Agents Creation

The code between line 32 and 39 refers to the agent creation process. Now the agents
are created. Based on the information they possess a partition of the variable space is
done. Each agent has ownership of a subset of program variables and a subset of dual
variables which are related to the constraints they are subject to. This information is
stored within the node representing each variable, (i.e. who this variable belongs to).
This process is depicted in figure 8.6.
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Figure 8.6: Agents creation.

8.2.2.6 Non-proper Links Identification

The code between line 40 and 46 refers to the non proper links identification process.
Once the agents have been defined, the next step is to identify the links which do not
belong to just one agent, these are called non-proper links. This is done by looking at
the variables at each end of the link. If they belong to different agents then they are of
such a type. In this case the link between variables λ1 and δ2 is the only one which is
shared between different agents as shown in figure 8.7.
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Figure 8.7: Non proper links identitification.

8.2.2.7 Final Agentified Graph System by Non-Proper Links Weakening

In the final stage the non-proper links are labelled as soft links. This is done in line 42.
Therefore the graph shown in figure 8.8 is the final model which is taken as input by
the QSP solver. The labeling of these links has the effect, when running the solver, to
disregard them when the tree is being traversed up and down. Nevertheless, it serves
as a mean to get the value related to the variable at the other end of the link. This is
used to compute the gradient of the variable at this end. This process is illustrated in
figure 8.8.
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Figure 8.8: Final agentified graph system by non proper links weakening.

8.2.3 Building a larger Agent-based Model: A three node example

In this section algorithm 11 is applied to the three node example shown in figure 8.9.
This will give us an insight about how an EPM with arbitrary topology is converted
into a set of trees. In this system, there are three agents A = {a1, a2, a3}, the set of
variables is V = {p1, p2, p3, δ2, δ3}, and the set of constraints is C = {(250−p1−δ2−δ3 =
0), (200 − p2 + 2δ2 − δ3 = 0), (400 − p3 + 2δ3 − δ2 = 0), (150 ≤ p1 ≤ 600)), (100 ≤ p2 ≤
400), (50 ≤ p3 ≤ 200)}. Therefore, the subsets of variables each agent has to deal
with are Va1 = {p1}, Va2 = {p2, δ2}, y Va3 = {p3, δ3}. Finally, the set of constraints
each agent is subject to are Ca1 = {(250 − p1 − δ2 − δ3 = 0), (150 ≤ p1 ≤ 600)},
Ca2 = {(200 − p2 + 2δ2 − δ3 = 0), (100 ≤ p2 ≤ 400)}, Ca3 = {(400 − p3 + 2δ3 − δ2 =
0), (50 ≤ p3 ≤ 200)}.
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Figure 8.9: Three node EPM diagram
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8.2.3.1 Program Variables Creation

In this case p1, p2, and p3 are objective variables whereas δ2 and δ3 are non-objective
variable. This process is depicted in figure 8.10.
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Figure 8.10: Program variables creation.

8.2.3.2 Program Variables Bounding

In this step, the slack variables and dual variables needed to handle the bounds for the
program variables are created and their interconnections are built. In this case there are
three program variables p1, p2, and p3 so a bounding structure has to be built for each
of them. This process is described in figure 8.11.
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Figure 8.11: Program variables bounding.

8.2.3.3 Dual Variables Creation

Now, based on the systems declared constraints, one dual variable is created for each of
the three constraints. Figure 8.12 illustrates this step.
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Figure 8.12: Dual variables creation.
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8.2.3.4 Links Creation

In this case there will be nine links connecting dual variable to program variables. These
links are given by the terms the constraints posses. Specifically a link is created for every
term in each constraint. The link creation process is represented by figure 8.13.
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Figure 8.13: Links creation.

8.2.3.5 Agents Creation

Now the agents are created. Based on the information they possess a partition of the
variable space is done. Each agent has ownership of a subset of program variables and
a subset of dual variables which are related to the constraints they are subject to. This
information is stored within the node representing each variable, (i.e. who this variable
belongs to). This process is depicted in figure 8.14.
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Figure 8.14: Agents creation.

8.2.3.6 Non-proper Links Identification

Once the agents have been defined, the next step is to identify the links which do not
belong to just one agent, these are called non-proper links. This is done by looking at
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the variables at each end of the link. If they belong to different agents then they are
of such a type. In this case, as opposed to the two-nodes example, there are four links:
λ1 → δ2, λ1 → δ3, λ2 → δ3, and λ3 → δ2. These links are shared between different
agents, as shown in figure 8.15.
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Figure 8.15: Non proper links identitification.

8.2.3.7 Final Agentified Graph System by Non-Proper Links Weakening

In the final stage the non-proper links are labelled as soft links. Do notice the graph for
every agent is a tree, i.e. the graph denoted with solid lines. Therefore the graph shown
in figure 8.16 is the final model which is taken as input by the QSP solver. As in the
two-nodes example, the labeling of these links has the effect, when running the solver, to
disregard them when each tree is being traversed up and down. Nevertheless, it serves
as a mean to get the value related to the variable at the other end of the link. This is
used to compute the gradient of the variable at this end. This process is illustrated in
figure 8.16.
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Figure 8.16: Final agentified graph system by non proper links weakening.
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8.3 Cooperative Intercommunication

This section analyses the intercommunication process is analysed for the case when the
decentralised model is implemented using a decentralised approach where agents are
represented by different processes in order to solve the model. This analysis is based
on the properties of the soft links. The links have a twofold objective. First they allow
a decentralised gradient computation. Second they provide the paths to perform the
graph reduction. When a link is declared soft, then the second objective is cancelled
but the first one remains as was shown in chapter 7.

It is important to underline that there are only links between primal variables and
dual variables. This would not be the case if the constraints were not linear or the
objective function was not separable. The intercommunication task is done by using the
information provided by the soft links. Therefore, this gives us some insight as how it
has to be enforced.

Let us suppose we have the soft link l (i.e. l.connectivityType = SOFT ), whose other
characteristics are l.dualV ariable = d, l.primalV ariable = p, and l.value = a, where d
is the dual variable related to constraint c. From algorithm 11, line 37, we derive that d
is related to the agent who actually has to fulfill constraint c (i.e. that is the effect of the
constraint ownership). Let us refer to this agent as ai. Therefore, this agent knows he
has to fulfill constraint c. However, in order to meet this requirement, it knows it needs
the information about the primal variables which are contained within the terms of the
constraint. Because l is a soft link, the primal variable p related to this link belongs
to some other agent. Let us call this agent aj . Therefore, at the other side of the link
resides agent aj who owns p.

This agent has a very different perspective about the world. Specifically, it is not aware
of constraint c, which is only known by agent ai, even more it may not be aware agent
ai exists. Because of this it is not able to initiate the intercommunication process with
agent ai. As a result, agent ai is the only one who can initiate the intercommunication
process with agent aj . However, how can it guarantee agent aj is willing to share its
information (i.e. p)?. The only way this can be done is by setting up a mutual agreement
to interchange this information. The only reason why this kind of behavior is preserved
is because every agent has a set of constraints to be fulfilled and a set of primal variables.
Therefore, it is in their best interest to share their information. Specifically, if agent aj
rejects to share the information with agent ai then agent ai would deny its information to
agent aj . As a result they would not be able to compute their gradients and therefore the
direction which they take would not be toward the optimum. This would lead to a non
global optimal solution. Therefore, we can think of the soft links as intercommunication
channels of agreements between the parties which are connected by the soft links which
have to be honored.
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8.4 Concluding Remarks

In this chapter a methodology to decentralise the graph based on the core agent concepts
has been presented. This takes the quadratic separable program specification and creates
the graph on which the solution process is applied. This process involves the creation
of primal variables and its appropriate bounding subgraph when the variable has limits
on its value. Then, the creation of dual variables which are attached to each constraint
and, depending on its type, they are labelled as INEQUALITY or EQUALITY. Once
the primal and dual variables have been created, the link creation process follows. To
this end, a link is created for each term in each constraint. This link connects the dual
variable attached to the constraint to the primal variable which is contained within the
term. The value for the link is the coefficient which was multiplying the primal variable.
At the same time, if the constraint which is actually being processed is an inequality
then the link is labelled as CONDITIONAL and PERMANENT otherwise. Then, an
ownership property is attached to each one of the variables (i.e. primal and dual), where
the owner belongs to the set of agents participating in the system. Finally, the labeling
of the links is undertaken based on the ownership property, that the dual and the primal
variables attached to this link have. If they belong to the same agent then the link is
labeled as HARD, otherwise it is labeled SOFT.



Chapter 9

Conclusions and Future Work

This final chapter concludes the thesis by reviewing its contributions to the field of
power markets and by identifying some opportunities for future work. To this end, in
Section 9.1, we provide a high-level overview of the techniques we have proposed to
address it. Then, in Section 9.2, we discuss in more detail our research contributions.
Finally, in Section 9.3, we propose several ways in which this work can be extended in
the future.

9.1 Research Summary

This document has introduced the main characteristics for electrical power markets in
chapter 2. It has been argued that the electrical power markets must be operated in
a decentralised manner. The are two main reasons for this decentralisation: first, the
partial information problem derived from the deregulation, as well as the integration of
electrical power markets; second, the tendency to highly distributed power generation
systems represented by technologies such as microgrids and renewable power generation
plants. This effect is also reinforced by the integration of electrical power systems.

To address such a challenge, this thesis has developed a methodology based on a decen-
tralised graph-based solution for systems of linear equations representing the Newton
method. The main contribution derived from this thesis is to address QSP optimisation
problems with graph techniques. It has been argued that no fill-ins are created in the
solution process. This assertion is justified by using just tree-like graphs which have this
particular property as shown in section 3.3. Whenever the graph cannot be represented
by a tree, a decentralisation process is applied which derives such structures. This is
not for free as, by applying the decentralisation process, the system will take more time
to find the stationary point. Nevertheless, the need for a central agent in order to clear
the market has been eliminated. With this, the value of the strategic information grows
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as no agent will want to disclose it to the other agents. This was not the case in the
centralised version where everybody has to report this data to the central agent in order
to solve the system.

It is important to highlight that this methodology works with QSP problems whose
underlying topology have the same characteristics as the one which resulted for the
DC-OPF. In this case there was just one equality constraint for each sub-system and
therefore the dual variable associated to such constraint could be set as the root of the
tree corresponding to that subgraph. As for the inequality constraints corresponding to
the transmission system and the limits on the generation units, they can be treated as
bounding constraints.

In the following section, we provide a more detailed summary of the approach presented
in this document, highlighting the novel contributions we have made to the state of the
art.

9.2 Research Contributions

In this thesis, we set out to design a graph-based decentralised framework for electrical
power markets. This framework is developed in a gradual and consistent manner. We
depart from a basic graph-based representation of a system of linear equations and its
solution. Then we, gradually, attach several properties to the links of the graph until its
complete decentralisation is achieved. This process is described in the following sections,
where we outline the main contributions of this thesis (Sections 9.2.1-9.2.5).

9.2.1 A Graph-based Approach Framework for the Solution of Systems

of Linear Equations

In chapter 3 a graph-based model for systems of linear equations has been proposed.
Based on these graphs representing a system of linear equations our attention has turned
to a subset of systems of linear equations, the symmetric systems of linear equations.
The graphs representing the Hessian matrix belong to this class of systems of linear
equations. In addition, the kind of graphs this document is dealing with are those
that can be represented with a tree. Therefore, our attention was then switched to the
tree structured symmetric systems of linear equations. These are very important as
they provide us with a means to reduce graphs with no new elements generated at all.
As a result the sparsity of the system is completely preserved. Finally a graph-based
representation for the Newton step has been proposed as the basic graph model we will
use for the power market. This in turn is further analised in chapter 7.
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9.2.2 A Graph-based Economical Dispatch Solution

In chapter 4, a solution based on the graph model developed in chapter 3 was presented
for the economical dispatch problem with the limits on the generators relaxed. This kind
of graphs were not able to deal with the inequality constraints that are needed in order
to keep the generators within their bounds. Therefore, that graph-based model had to
be extended in order to deal with the actual active constraint set at each iteration. This
aspect is addressed by attaching a conditional property to the links of the graph. These
conditional links are active only when the right conditions are fulfilled. Specifically, in
our approach we only need to decide if parts of the graphs need to be visited or not.
This is done by using Karush-Khun-Tucker conditions. This leads to a very efficient
solution approach compared with the matrix-based approach, where handling rows and
columns is the burden. There, in order to avoid that, normally barriers methods are
used which penalize the objective function whenever the solution point tries to go out
of the barriers.

9.2.3 A Distributed Model for the DC-OPF

In chapter 5, a distributed algorithm for the DC optimal power flow has been presented.
This model was implemented using the auxiliary problem principle. It does not add any
overhead to the centralised model, which is replicated by each node. Furthermore, it
simplifies the centralised model by letting the different parties cooperate by sharing the
constraints of the transmission system.

Out of the analysis done in the previous decentralised model, a graph-based decentralisa-
tion approach is proposed in chapter 6. Based on the matrix contained within table 6.1,
a new graph-based algorithm has been presented. This algorithm takes advantage of the
graph structure to solve the problem. This approach allow us to scale up the system in
a very efficient way (i.e. linear in the number of generators, loads, and lines attached
to the electrical power system). To this end a graph-based algorithm to solve the OPF,
called gOPF , has been developed. gOPF is based in two basic algorithms; the gFOPF
algorithm and the gBOPF algorithm. gFOPF performs the Gaussian elimination and
gBOPF implements the backward substitution on the proposed graph-based represen-
tation of the system. These algorithms perform the minimum number of operations as
a result of the topological structure of the model. Also, as the sub-graphs derived for
each node can be represented using a tree structure, no fill-ins are created.

Summing up, in this part the main contributions are:

The explicit graph model derived from the mathematical model allows us to think about
the model in a modular fashion. This in turn will prevent us from using general sparse
matrix methods such as those in Tinney et al. (1985).
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The order in which this reduction has to be realized is a consequence of matrix graph
analysis, and is inspired in its topological structure.

In order to deal with the decentralisation, the concept of soft link and hard link have
been introduced. The hard link is the link which is regularly used in order to reduce the
graphs. On the other hand, the soft link is used as a means to compute the gradient
but no reduction process is performed with it.

9.2.4 A Graph-based Decentralised Model

Chapter 7 has presented a novel graph-based representation for the Newton method.
Based on this representation different decentralisation approaches have been proposed.
The main contribution in this chapter, besides these decentralisation approaches, is the
notion of decentralisation degree which this graph provides. This degree goes from a
completely decentralised approach where all the links are weaken (i.e. the gradient
method), to a full centralised approach where all the links are hard (i.e. the Newton
method). Within these two approaches there is a pletora of decentralisation possibilities
(i.e. the set of links that will be weakened). However, if the decentralisation process has
to be implemented in a systematic way, then some criteria has to be provided in order
to achieve it. Two such criteria have been proposed

• Dual-oriented approach: This is based on the type of variable and derives a de-
centralisation scheme which dissects the graph into two layers: one for the primal
variables and the other corresponding to the dual variables.

• Agent-oriented approach: This scheme is based on the multi-agent paradigm where
they are sharing some constraints. This approach derives graphs where the vari-
ables and links are decomposed based on an agent membership criterion.

Additionally, we have shown that these graphs provide a direct means to compute the
gradient. Therefore, we can claim that these graphs are self contained as no more
additional structures are needed in order to solve them.

9.2.5 An Agent-based Model

Finally, chapter 8 has presented an algorithm based on the agency concepts. This
algorithm derives the graphs presented along the previous chapters. To this end, the
needed ontologies to describe electrical power markets as well as separable quadratic
programs were defined. Therefore, the matrix formulation model is not needed in order
to obtain these graphs. This was the procedure used in chapters 4 and 6 where the matrix
formulation was needed in order to derive the graphs. These graphs can be reformulated
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using concepts drawn from the multi-agent systems Wooldridge (2002). They have a goal
in mind which is to optimise their operation with just the local information. But they
are constrained by several physical constraints which must be preserved at every time.
The components derived from the decomposition process can be though as an agent
system as they

• are autonomous, their decisions are based on their own information as well as the
information they gather from their local environment,

• have social ability, they intercommunicate their corresponding states (e.g. δ, λ)
with their neighbours in order to exchange their actual state so everybody can
take better decisions about their future states.

• act Proactively, they will be adapting their state accordingly with the changes
in the environment always acting as selfish agents, but as the economic theory
predicts the “invisible hand” will lead the market to an optimum allocation of
resources.

• cooperate in order to preserve the transmission constraints below their limits.

9.3 Future work

The work presented in this thesis can be extended to further research lines. These are
described in the next paragraphs.

9.3.1 Addressing the AC-OPF

As described in appendix A, the DC-OPF uses a power flow model which is a simpli-
fication of the AC-OPF. Therefore, all the second derivatives would not necessarily be
linear. To address this aspect the links functionality must be enhanced so they can
deal with expressions instead of scalars. To this end, an expression tree would have
to be attached to each link which would be evaluated whenever is needed. In fact, in
the actual work we use an expression when the bounding constraints are evaluated, but
this expression is well known. This evaluation is done in the matrix approach before
attempting to solve the Newton step. The difference here is that all this evaluation
would be executed in line as the graph is traversed.

9.3.2 Profit Maximisation

The problem addressed until now in this work, assumes a cooperative behaviour as all
the agents are cooperating in order to solve the system. Nevertheless, in a competitive
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market scenario, all the agents will be trying to maximize their own profit. The con-
straint space would be the same but the objective function would change. The objective
function each generator g would be searching for is given by equation 9.1

max
pg ,λ

(λp− Cg(pg)) (9.1)

Here the objective function itself has a dual variable within its formulation. Furthermore,
the objective function is not convex anymore. Therefore Newton’s method will lead the
search toward a local maximum. The research challenge in this setting is how the graph
representation has to be modified in order to solve such formulation.

9.3.3 Unit Commitment Problem

The unit commitment problem determines which generators have to be committed at
each stage along some predetermined time horizon. This would involve the solution of
the DCOPF at each stage. However, there are some intertemporal constraints which
couple the variables from one point in time to the next. The optimisation problem in
this case is given by the social welfare maximisation along the period of time considered.
Two of the questions where research has to be done are: What is the graph topology for
this problem? and How the decentralisation of the graph is to be addressed?

9.3.4 Addressing Non-separable Convex Quadratic Problems

With the methodology developed in this work, links were only created between primal
variables and dual variables. This kind of topoloogy has its roots at the separability of
the objective function. These functions as well as the constraints were convex. Neverthe-
less, there are other quadratic problems which are non separable but convex. Therefore,
this methodology could be applied to this kind of systems with some modifications to
the way the problems are defined as well as processed.
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Appendix A

DC Power Flow Derivation

Let us consider the node i, i ∈ N, displayed in figure A.1 where the symbol j represent the
imaginary operator. In this model |Gi| generators producing pig + jqig MV, |Li| variable
loads consuming pil + jqil MV and a fixed load consuming Pi + jQi MV are attached
to node i where g ∈ Gi and l ∈ Li. Out of this node there are |Γi| interconnections to
some other nodes using lines whose admittance is gik + jbik where k ∈ Γi.

+

iP iQ

iV iδ

ikg ikb

igp igq ilp ilq ++ + jj

j

j

Figure A.1: Node model for the AC Optimal Power Flow

Writing the flow equillibrium equations for this node leads to equation A.1 for the active
power and equation A.2 for the reactive power.

Vi
∑
k∈Γi

[
Vk[gik cos(δi − δk) + bik sin(δi − δk)]

]
−
∑
g∈Gi

pg +
∑
l∈Li

pl + Pi = 0 (A.1)

Vi
∑
k∈Γi

[
Vk[gik sin(δi − δk)− bik cos(δi − δk)]

]
−
∑
g∈Gi

qg +
∑
l∈Li

ql +Qi = 0 (A.2)

In the DC-OPF study only the active power is under interest. Reactive Power is con-
sidered as an ancilliary service which has to be provided by the ISO and its cost must
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be socialized among the market players. Therefore equation A.2 is disregarded. On the
other hand three assumptions are introduced

• A plain voltage is assumed i.e. 1 pu on every node,

• The resistance compared with the reactance is negligible i.e. rik � xik, and

• The difference between δi and δk is very small.

The first assumption rules out Vi and Vk from equation A.1. The second assumption
strips the term gik cos(δi−δk) off equation A.1. Applying these two assumptions equation
A.1 can be expressed using equation A.3

∑
k∈Γi

[bik sin(δi − δk)]−
∑
g∈Gi

pg +
∑
l∈Li

pl + Pi = 0 (A.3)

Finally, based on the third assumption as δi ≈ δk a final assumption is derived as shown
by equation A.4.

sin(δi − δk) ≈ δi − δk (A.4)

Therefore equation A.3 is finally reduced into equation A.5

∑
k∈Γi

[bik(δi − δk)]−
∑
g∈Gi

pg +
∑
l∈Li

pl + Pi = 0 (A.5)

This is the expression used in the DC Optimal Power Flow. A final remark on the
notation used throughout this document. The terms which represent produced power
are denoted with p and the terms representing consumed power or loads are denoted as
q. Therefore in equation A.5, the term pl is replaced by ql and Pi is denoted as Qi. This
leads to an equivalent expression given by equation A.6 such as the one used in equation
2.1.

∑
k∈Γi

[bik(δi − δk)]−
∑
g∈Gi

pg +
∑
l∈Li

ql +Qi = 0 (A.6)



Appendix B

Electrical Power Market DTD

<?xml version=’ 1 .0 ’ encoding=’UTF−8 ’ ?>

< !−−− S p e c i f i e s an E l e c t r i c a l Power Market which compr i se s

EPMId − The Id f o r t h e EPM

zones − Composed by a s e p a r a b l e q u a d r a t i c f u n c t i o n such as

i n t e r c o nn e c t i o n s − These are t h e l i n e s which connec t t h e d i f e r e n t zones

s e t up − Add i t i o na l i n f o rma t i on to s e t up t he system

−−>

< !ELEMENT EPM (EPMId, zones , i n t e r c onne c t i on s ? , setup )>

< !ELEMENT EPMId (#PCDATA) >

< !ELEMENT zones ( zone+)>

< !−−− Def ine s a zone w i t h i n t h e EPM. I t s f i e l d s are

zoneId − The zone Id

bu se s − The s e t o f bu s e s l o c a t e d w i t h i n t h i s zone

l i n e s − The s e t o f l i n e s w i t h i n t h i s zone

−−>
< !ELEMENT zone ( zoneId , buses , l i n e s )>

< !ELEMENT zoneId (#PCDATA) >

< !ELEMENT buses ( bus+)>

< !−−− Def ine s an e l e c t r i c a l bus and the components a t t a c h e d to i t .

bu s Id − The bus Id

d e l t a − The e l e c t r i c a l ang l e f o r t h i s bus

lambda − The l o c a t i o n a l marg ina l p r i c e (LMP) a t t h i s bus

l o c a t i o n − The c oo r d i n a t e s where t h i s bus i s l o c a t e d

generatedPower − The power which i s b e i n g i n j e c t e d in t h i s bus

f i x edLoad − The non−e l a s t i c l oad a t t a c h e d to t h i s bus ( i f t h e r e i s any )

g ene ra t o r − The s e t o f g ene ra t o r a t t a c h e d to t h e bus ,

e l a s t i c L o a d − The s e t o f e l a s t i c l o a d s

−−>
< !ELEMENT bus ( busId , de l ta , lambda , l o ca t i on , generatedPower ,

f ixedLoad ? , ( generator | e l a s t i cLoad )∗ )>
< !ELEMENT busId (#PCDATA)>

< !ELEMENT de l t a (#PCDATA)>

< !ELEMENT lambda (#PCDATA)>

< !ELEMENT l o c a t i o n ( xLocation , yLocation )>

< !ELEMENT xLocation (#PCDATA)>

< !ELEMENT yLocation (#PCDATA)>

< !ELEMENT generatedPower (#PCDATA)>

< !ELEMENT f ixedLoad (#PCDATA)>

< !−−− Def ine s t h e a t r i b u t e s o f a g ene ra t o r

genId − Generator Id ,

genType − The type o f genera tor ,

ac tua lPower − The power t h i s g ene ra t o r i s a c t u a l l y producing ,

minimumPower − The minimum power t h i s g ene ra t o r has to produce ,

maxumumPower − The maximum power t h i s g ene ra t o r can produce ,

−−−−−−−−−−−−−−−−−−−−−−−−−−−− Continue in nex t page −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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−−−−−−−−−−−−−−−−−−−−−−−−−−−− Continued from pr e v i o u s page −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

quadra t i cMode l − The mathemat ica l model f o r t h e p roduc t i on

f un c t i o n o f t h i s g ene ra t o r

−−>
< !ELEMENT generator ( genId , genType , actualPower , minimumPower ,

maximumPower , quadraticModel )>

< !ELEMENT genId (#PCDATA)>

< !ELEMENT genType (#PCDATA)>

< !ELEMENT actualPower (#PCDATA)>

< !ELEMENT minimumPower (#PCDATA)>

< !ELEMENT maximumPower (#PCDATA)>

< !ELEMENT quadraticModel ( a l phaCoe f f i c i en t , b e t aCoe f f i c i en t ,

gammaCoeff ic ient )>

< !ELEMENT a l phaCoe f f i c i e n t (#PCDATA)>

< !ELEMENT be t aCo e f f i c i e n t (#PCDATA)>

< !ELEMENT gammaCoeff ic ient (#PCDATA)>

< !−−− Def ine s t h e a t r i b u t e s o f an e l e a s t i c l oad

l o a d I d − Load Id ,

actua lPowerFlow − The power t h i s g ene ra t o r i s a c t u a l l y producing ,

minimumPower − The minimum power t h i s g ene ra t o r has to produce ,

maxumumPower − The maximum power t h i s g ene ra t o r can produce ,

concaveModel − The mathemat ica l model f o r t h e b e n e f i t

f u n c t i o n o f t h i s l oad

−−>
< !ELEMENT e l a s t i cLoad ( loadId , actualPower , minimumPower ,

maximumPower , concaveModel )>

< !ELEMENT l oadId (#PCDATA)>

< !−−− Def ine s t h e a t r i b u t e s f o r t h e concave model o f t h e l oad

b e t a C o e f f i c i e n t : The l i n e a r c o e f f i c i e n t ,

gammaCoe f f i c i en t : The q u ad r a t i c c o e f f i c i e n t ,

−−>
< !ELEMENT concaveModel ( b e t aCoe f f i c i en t , gammaCoeff ic ient )>

< !ELEMENT l i n e s ( l i n e ∗)>
< !−−− Def ine s t h e a t r i b u t e s o f a t r an sm i s s i on l i n e

l i n e I d − Line Id ,

actua lPowerFlow − The power f l ow i n g through t h i s l i n e ,

maxPowerFlow − The maximum power f l ow t h i s l i n e can handle ,

fromBus − The bus where t h e power f l ow i s coming from ,

toBus − The bus where t h e power f l ow i s go ing to ,

r e s i s t a n c e − This l i n e r e s i s t a n c e ,

r ea c t ance − This l i n e r eac t ance

−−>
< !ELEMENT l i n e ( l i n e Id , actualPowerFlow , maxPowerFlow , fromBus ,

toBus , r e s i s t an c e , r eac tance )>

< !ELEMENT l i n e I d (#PCDATA)>

< !ELEMENT actualPowerFlow (#PCDATA)>

< !ELEMENT maxPowerFlow (#PCDATA)>

< !ELEMENT fromBus (#PCDATA)>

< !ELEMENT toBus (#PCDATA)>

< !ELEMENT r e s i s t a n c e (#PCDATA)>

< !ELEMENT r eactance (#PCDATA)>

< !ELEMENT i n t e r c onne c t i on s ( i n t e r c onnec t i on+)>

< !ELEMENT i n t e r c onnec t i on ( l i n e Id , actualPowerFlow , maxPowerFlow , fromBus ,

toBus , r e s i s t an c e , r eactance )>

< !ELEMENT setup (mapFileName , EPMDescription )>

< !ELEMENT mapFileName (#PCDATA)>

< !ELEMENT EPMDescription (#PCDATA) >

Listing B.1: DTD to describe Electrical Power Markets



Appendix C

Listing for the one node EPM

model

In this part the XML specification model for the one node case is described in listing
C.1 whose corrresponding QSP listing is given in listing F.1 in appendix F.
<?xml version=” 1.0 ”?>

< !DOCTYPE eps SYSTEM ”EPM. dtd”>

<EPM>

<EPMId>OneNodeExampleOnScotland</EPMId>

<zones>

<zone>

<zoneId>Zone North </ zoneId>

<buses>

<bus>

<busId> Edinburgh </busId>

<de l t a> 1 .0 </ de l t a>

<lambda> 1 .0 </lambda>

<l o c a t i o n>

<xLocation> 0.5213483146067416 </ xLocation>

<yLocation> 0.3422018348623853 </ yLocation>

</ l o c a t i o n>

<generatedPower> 0 .0 </generatedPower>

<f ixedLoad> 850 .0 </ f ixedLoad>

<generator>

<genId> G−Edinburgh−1 </genId>

<genType> Pelton </genType>

<actualPower> 1 .0 </actualPower>

<minimumPower> 150 .0 </minimumPower>

<maximumPower> 600 .0 </maximumPower>

<quadraticModel>

<a l phaCoe f f i c i e n t> 510 .0 </ a l phaCoe f f i c i e n t>

<be t aCo e f f i c i e n t> 7 .92 </ b e t aCo e f f i c i e n t>

<gammaCoeff ic ient> 0.001562 </ gammaCoeff ic ient>

</ quadraticModel>

</ generator>

<generator>

<genId> G−Edinburgh−2 </genId>

<genType> Pelton </genType>

<actualPower> 1 .0 </actualPower>

<minimumPower> 100 .0 </minimumPower>

<maximumPower> 400 .0 </maximumPower>

<quadraticModel>

<a l phaCoe f f i c i e n t> 310 .0 </ a l phaCoe f f i c i e n t>

<be t aCo e f f i c i e n t> 7 .85 </ b e t aCo e f f i c i e n t>

<gammaCoeff ic ient> 0.00194 </ gammaCoeff ic ient>

</ quadraticModel>

</ generator>

<generator>

<genId> G−Edinburgh−3 </genId>

−−−−−−−−−−−−−−−−−−−−−−−−−−−− Continue in next page −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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−−−−−−−−−−−−−−−−−−−−−−−−−−−− Continued from prev ious page −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

<genType> Pelton </genType>

<actualPower> 1 .0 </actualPower>

<minimumPower> 50 .0 </minimumPower>

<maximumPower> 250 .0 </maximumPower>

<quadraticModel>

<a l phaCoe f f i c i e n t> 78 .0 </ a l phaCoe f f i c i e n t>

<be t aCo e f f i c i e n t> 7 .97 </ b e t aCo e f f i c i e n t>

<gammaCoeff ic ient> 0.00482 </ gammaCoeff ic ient>

</ quadraticModel>

</ generator>

</bus>

</buses>

</zone>

</ zones>

</EPM>

Listing C.1: XML description for the one node EPMS example based on the EPM
DTD in listing B.1



Appendix D

Listing for the two nodes EPM

model

In this part the XML specification model for the two nodes case is described in listing
D.1 whose corrresponding QSP listing is given in listing G.1 in appendix G.
<?xml version=” 1.0 ”?>

< !DOCTYPE eps SYSTEM ”EPM. dtd”>

<EPM>

<EPMId>OneNodeExampleOnScotland</EPMId>

<zones>

<zone>

<zoneId>Zone North </ zoneId>

<buses>

<bus>

<busId> Edinburgh </busId>

<de l t a> 1 .0 </ de l t a>

<lambda> 1 .0 </lambda>

<l o c a t i o n>

<xLocation> 0.5213483146067416 </ xLocation>

<yLocation> 0.3422018348623853 </ yLocation>

</ l o c a t i o n>

<generatedPower> 0 .0 </generatedPower>

<f ixedLoad> 850 .0 </ f ixedLoad>

<generator>

<genId> G−Edinburgh−1 </genId>

<genType> Pelton </genType>

<actualPower> 1 .0 </actualPower>

<minimumPower> 150 .0 </minimumPower>

<maximumPower> 600 .0 </maximumPower>

<quadraticModel>

<a l phaCoe f f i c i e n t> 510 .0 </ a l phaCoe f f i c i e n t>

<be t aCo e f f i c i e n t> 7 .92 </ b e t aCo e f f i c i e n t>

<gammaCoeff ic ient> 0.001562 </ gammaCoeff ic ient>

</ quadraticModel>

</ generator>

<generator>

<genId> G−Edinburgh−2 </genId>

<genType> Pelton </genType>

<actualPower> 1 .0 </actualPower>

<minimumPower> 100 .0 </minimumPower>

<maximumPower> 400 .0 </maximumPower>

<quadraticModel>

<a l phaCoe f f i c i e n t> 310 .0 </ a l phaCoe f f i c i e n t>

<be t aCo e f f i c i e n t> 7 .85 </ b e t aCo e f f i c i e n t>

<gammaCoeff ic ient> 0.00194 </ gammaCoeff ic ient>

</ quadraticModel>

</ generator>

<generator>

<genId> G−Edinburgh−3 </genId>

−−−−−−−−−−−−−−−−−−−−−−−−−−−− Continue in next page −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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−−−−−−−−−−−−−−−−−−−−−−−−−−−− Continued from prev ious page −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

<genType> Pelton </genType>

<actualPower> 1 .0 </actualPower>

<minimumPower> 50 .0 </minimumPower>

<maximumPower> 250 .0 </maximumPower>

<quadraticModel>

<a l phaCoe f f i c i e n t> 78 .0 </ a l phaCoe f f i c i e n t>

<be t aCo e f f i c i e n t> 7 .97 </ b e t aCo e f f i c i e n t>

<gammaCoeff ic ient> 0.00482 </ gammaCoeff ic ient>

</ quadraticModel>

</ generator>

</bus>

</buses>

</zone>

</ zones>

</EPM>

Listing D.1: XML description for the two node EPMS example based on the DTD in
listing B.1



Appendix E

Quadratic Separable

Programming DTD

<?xml version=’ 1 .0 ’ encoding=’UTF−8 ’ ?>

< !−−− S p e c i f i e s a Quadrat ic s e p a r a b l e Program whose form i s

Ob j e c t i v e Func t i on : Composed by a s e p a r a b l e q u a d r a t i c f u n c t i o n such as

sum( f (Xi ) )

where each s epa ra t e d f un c t i o n has t h e form:

f ( Xi)=ALPHAi+BETAi∗Xi+GAMMAi∗Xiˆ2

each Xi i s c a l l e d an o b j e c t i v eV a r i a b l e

Con s t r a i n t s : There are s e v e r a l k i nd s

E qua l i t y Con s t r a i n t s

sum(Ci∗Xi)+Y = RHS

I n e q u a l i t y Con s t r a i n t s

sum(Ci∗Xi)+Y <= RHS

Bound Const ra int s

lowerLimit<=Xi

Xi<=upperLimit

Some Ci ’ s can be zero so that term d i s s apea r s

Y i s c a l l e d a nonObject iveVar iab le

Elements :

ob j e c t i v eVa r i ab l e+

nonObject iveVar iab le ∗
c on s t r a i n t+

agent∗
−−>

<!ELEMENT QSP ( ob j e c t i v eVa r i ab l e +, nonObject iveVar iab le ∗ , c on s t r a i n t +, agent∗)>

<!−−− S p e c i f i e s v a r i a b l e s which appear with in the ob j e c t i v e func t i on

Elements :

varNname− The name f o r the var i ab l e ,

alpha − The constant c o e f f i c i e n t ,

beta − The l i n e a r c o e f f i c i e n t ,

gamma − The quadrat i c c o e f f i c i e n t ,

lowerLimit − The lower boud f o r t h i s var i ab l e ,

upperLimit − The upper bound f o r t h i s v a r i ab l e

−−>
<!ELEMENT ob j e c t i v eVa r i ab l e (varName , x In i t ? , alpha ? , beta ? , gamma, upperLimit ? ,

lowerLimit ?)>

<!−−− S p e c i f i e s a NonObject iveVariable which appear only in the c on s t r a i n t s

F i ed s :

consName − The name f o r the var i ab l e ,

x I n i t ? − Var iab le i n i t i a l value ,

−−−−−−−−−−−−−−−−−−−−−−−−−−−− Continue in next page −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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−−−−−−−−−−−−−−−−−−−−−−−−−−−− Continued from prev ious page −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

lowerLimit − The lower boud f o r t h i s var i ab l e ,

upperLimit − The upper bound f o r t h i s v a r i ab l e

−−>
<!ELEMENT nonObject iveVar iab le (varName , x I n i t ? , lowerLimit ? , upperLimit?)>

<!−−− S p e c i f i e s a c on s t r a i n t . . .+ term +. . . ( [= ] | [ <=] )RHS

F i ed s :

consName − The name f o r the cons t ra in t ,

type − The con s t a r i n t type i . e . EQUALITY| INEQUALITY,

term − The con s t r a i n t i s formed by one or more terms ,

RHS − The con s t r a i n t Right Hand Side

−−>
<!ELEMENT con s t r a i n t ( consName , type , term+, RHS)+>

<!−−− S p e c i f i e s a term c o e f f i c i e n t ∗varName

F i ed s :

c o e f f i c i e n t − The term ’ s c o e f f i c i e n t name ,

varName − The term va r i ab l e c on s t r a i n t type

i . e . EQUALITY| INEQUALITY,

term − The con s t r a i n t i s formed by one or more terms ,

RHS − The con s t r a i n t Right Hand Side

−−>
< !ELEMENT term ( c o e f f i c i e n t , varName)>

< !−−− S p e c i f i e s an agen t who has v a r i a b l e s and c o n s t r a i n t s

F i e d s :

c o e f f i c i e n t − The term co e f f i c i e n t n ame f o r t h e c on s t r a i n t ,

varName − The term v a r i a b l e c o n s t r i n t t ype

i . e . EQUALITY | INEQUALITY,

term − The c o n s t r a i n t i s formed by one or more terms ,

RHS − The c o n s t r a i n t Righ t Hand Side

−−>
< !ELEMENT agent ( agentName , varName+, consName+)>

< !−−− Name o f a v a r i a b l e <St r ing> −−>
< !ELEMENT varName (#PCDATA)>

< !−−− I n i t i a l v a l u e <double> −−>
< !ELEMENT x In i t (#PCDATA)>

< !−−− Constant c o e f f i c i e n t in a q u ad r a t i c f u n c t i o n <double> −−>
< !ELEMENT alpha (#PCDATA)>

< !−−− Linear c o e f f i c i e n t in a q u a d r a t i c f u n c t i o n <double> −−>
< !ELEMENT beta (#PCDATA)>

< !−−− Quadrat ic c o e f f i c i e n t in a q u a d r a t i c f u n c t i o n <double> −−>
< !ELEMENT gamma (#PCDATA)>

< !−−− Lower l i m i t f o r a v a r i a b l e <double> −−>
< !ELEMENT lowerLimit (#PCDATA)>

< !−−− Upper l i m i t f o r a v a r i a b l e <double> −−>
< !ELEMENT upperLimit (#PCDATA)>

< !−−− Name f o r a c o n s t r a i n t <St r ing> −−>
< !ELEMENT consName (#PCDATA)>

< !−−− Cons t r a in t t ype <INEQUALITY | EQUALITY> −−>
< !ELEMENT type (#PCDATA)>

< !−−− A number <double> −−>
< !ELEMENT c o e f f i c i e n t (#PCDATA)>

< !−−− The con s t an t in t h e Righ t Hand S ide o f a c o n s t r a i n t <double> −−>
< !ELEMENT RHS (#PCDATA)>

< !−−− Name f o r an Agent <St r ing> −−>
< !ELEMENT agentName (#PCDATA)>

Listing E.1: DTD to describe Quadratic Separable Programs



Appendix F

Listing for the one node QSP

model

In this part the XML specification model for the one node case is described in listing
F.1 whose corrresponding EPM listing is given in listing C.1 in appendix C.
<?xml version=” 1.0 ”?>

< !DOCTYPE QSP SYSTEM ”QSP. dtd”>

<OneNodeExampleOnScotland−QSP>

<ob j e c t i v eVa r i ab l e>

<varName> power .G−Edinburgh−1 </varName>

<alpha> 459 .0 </ alpha>

<beta> 6 .48 </beta>

<gamma> 0.00128 </gamma>

<lowerLimit> 150 .0 </ lowerLimit>

<upperLimit> 600 .0 </upperLimit>

</ ob j e c t i v eVa r i ab l e>

<ob j e c t i v eVa r i ab l e>

<varName> power .G−Edinburgh−2 </varName>

<alpha> 310 .0 </ alpha>

<beta> 7 .85 </beta>

<gamma> 0.00194 </gamma>

<lowerLimit> 100 .0 </ lowerLimit>

<upperLimit> 400 .0 </upperLimit>

</ ob j e c t i v eVa r i ab l e>

<ob j e c t i v eVa r i ab l e>

<varName> power .G−Edinburgh−3 </varName>

<alpha> 78 .0 </ alpha>

<beta> 7 .97 </beta>

<gamma> 0.00482 </gamma>

<lowerLimit> 50 .0 </ lowerLimit>

<upperLimit> 250 .0 </upperLimit>

</ ob j e c t i v eVa r i ab l e>

<c on s t r a i n t>

<consName> powerBalance . Edinburgh</consName>

<type> EQUALITY </ type>

<term>

<varName> power .G−Edinburgh−1 </varName>

<c o e f f i c i e n t> 1 </ c o e f f i c i e n t>

</term>

<term>

<varName> power .G−Edinburgh−2 </varName>

<c o e f f i c i e n t> 1 </ c o e f f i c i e n t>

</term>

<term>

<varName> power .G−Edinburgh−3 </varName>

<c o e f f i c i e n t> 1 </ c o e f f i c i e n t>

</term>

<RHS> 850 .0 </RHS>

</ con s t r a i n t>

−−−−−−−−−−−−−−−−−−−−−−−−−−−− Continue in next page −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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−−−−−−−−−−−−−−−−−−−−−−−−−−−− Continued from prev ious page −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

<agent>

<agentName> A. Edinburgh </agentName>

<varName> power .G−Edinburgh−1 </varName>

<varName> power .G−Edinburgh−2 </varName>

<varName> power .G−Edinburgh−3 </varName>

<consName> powerBalance . Edinburgh </consName>

</ agent>

</OneNodeExampleOnScotland−QSP>

Listing F.1: XML description for the one node QSP example based on the DTD in
listing E.1



Appendix G

Listing for the two nodes QSP

model

In this part the XML specification model for the one node case is described in listing
G.1 whose corrresponding EPM listing is given in listing D.1 in appendix D.
<?xml version=” 1.0 ”?>

< !DOCTYPE QSP SYSTEM ”QSP. dtd”>

<TwoNodesExampleOnScotland−QSP>

<ob j e c t i v eVa r i ab l e>

<varName> power .G−Edinburgh−1 </varName>

<alpha> 459 .0 </ alpha>

<beta> 6 .48 </beta>

<gamma> 0.00128 </gamma>

<lowerLimit> 150 .0 </ lowerLimit>

<upperLimit> 600 .0 </upperLimit>

</ ob j e c t i v eVa r i ab l e>

<ob j e c t i v eVa r i ab l e>

<varName> power .G−Edinburgh−2 </varName>

<alpha> 310 .0 </ alpha>

<beta> 7 .85 </beta>

<gamma> 0.00194 </gamma>

<lowerLimit> 100 .0 </ lowerLimit>

<upperLimit> 400 .0 </upperLimit>

</ ob j e c t i v eVa r i ab l e>

<ob j e c t i v eVa r i ab l e>

<varName> power .G−Glasgow−1 </varName>

<alpha> 78 .0 </ alpha>

<beta> 7 .97 </beta>

<gamma> 0.00482 </gamma>

<lowerLimit> 50 .0 </ lowerLimit>

<upperLimit> 250 .0 </upperLimit>

</ ob j e c t i v eVa r i ab l e>

<nonObject iveVar iab le>

<varName> de l t a . Glasgow </varName>

</ nonObject iveVar iab le>

<c on s t r a i n t>

<consName> powerBalance . Edinburgh</consName>

<type> EQUALITY </ type>

<term>

<varName> power .G−Edinburgh−1 </varName>

<c o e f f i c i e n t> 1 </ c o e f f i c i e n t>

</term>

<term>

<varName> power .G−Edinburgh−2 </varName>

<c o e f f i c i e n t> 1 </ c o e f f i c i e n t>

</term>

<term>

<varName> de l t a . Glasgow </varName>

<c o e f f i c i e n t> −1.0 </ c o e f f i c i e n t>

</term>

−−−−−−−−−−−−−−−−−−−−−−−−−−−− Continue in next page −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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−−−−−−−−−−−−−−−−−−−−−−−−−−−− Continued from prev ious page −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

<RHS> 450 .0 </RHS>

</ con s t r a i n t>

<c on s t r a i n t>

<consName> powerBalance . Glasgow</consName>

<type> EQUALITY </ type>

<term>

<varName> power .G−Glasgow−1 </varName>

<c o e f f i c i e n t> 1 </ c o e f f i c i e n t>

</term>

<term>

<varName> de l t a . Glasgow </varName>

<c o e f f i c i e n t> 1 .0 </ c o e f f i c i e n t>

</term>

<RHS> 400 .0 </RHS>

</ con s t r a i n t>

<agent>

<agentName> A. Edinburgh </agentName>

<varName> power .G−Edinburgh−1 </varName>

<varName> power .G−Edinburgh−2 </varName>

<consName> powerBalance . Edinburgh </consName>

</ agent>

<agent>

<agentName> A. Glasgow </agentName>

<varName> power .G−Glasgow−1 </varName>

<varName> de l t a . Glasgow </varName>

<consName> powerBalance . Glasgow </consName>

</ agent>

</TwoNodesExampleOnScotland−QSP>

Listing G.1: XML description for the two nodes QSP example based on the DTD in
listing E.1
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