A synthesis of marine sediment core d13C data over the last 150 000 years


Oliver, K.I.C., Hoogakker, B.A.A., Crowhurst, S., Henderson, G.M., Rickaby, R.E.M., Edwards, N.R. and Elderfield, H. (2009) A synthesis of marine sediment core d13C data over the last 150 000 years. Climate of the Past Discussions, 5, 2497-2554. (doi:10.5194/cpd-5-2497-2009).

Download

Full text not available from this repository.

Description/Abstract

The isotopic composition of carbon, d13C, in seawater is used in reconstructions of ocean circulation, marine productivity, air-sea gas exchange, and biosphere carbon storage. Here, a synthesis of d13C measurements taken from foraminifera in marine sediment cores over the last 150,000 years is presented. The dataset comprises previously published and unpublished data from benthic and planktonic records throughout the global ocean. Data are placed on a common 18O age scale suitable for examining orbital timescale variability but not millennial events, which are removed by a 10 ka filter. Error estimates account for the resolution and scatter of the original data, and uncertainty in the relationship between d13C of calcite and of dissolved inorganic carbon (DIC) in seawater. This will assist comparison with 13C of DIC output from models, which can be further improved using model outputs such as temperature, DIC concentration, and alkalinity to improve estimates of fractionation during calcite formation.

High global deep ocean d13C, indicating isotopically heavy carbon, is obtained during Marine Isotope Stages (MIS) 1, 3, 5a, 5c and 5e, and low d13C during MIS 2, 4 and 6, which are temperature minima, with larger amplitude variability in the Atlantic Ocean than the Pacific Ocean. This is likely to result from changes in biosphere carbon storage, modulated by changes in ocean circulation, productivity, and air-sea gas exchange. The North Atlantic vertical 13C gradient is greater during temperature minima than temperature maxima, attributed to changes in the spatial extent of Atlantic source waters. There are insufficient data from shallower than 2500 m to obtain a coherent pattern in other ocean basins. The data synthesis indicates that basin-scale d13C during the last interglacial (MIS 5e) is not clearly distinguishable from the Holocene (MIS 1) or from MIS 5a and 5c, despite significant differences in ice volume and atmospheric CO2 concentration during these intervals. Similarly, MIS 6 is only distinguishable from MIS 2 or 4 due to globally lower 13C values both in benthic and planktonic data. This result is obtained despite individual records showing differences between these intervals, indicating that care must be used in interpreting large scale signals from a small number of records.

Item Type: Article
ISSNs: 1814-9340 (print)
1814-9359 (electronic)
Related URLs:
Subjects: Q Science > Q Science (General)
Divisions: University Structure - Pre August 2011 > School of Ocean & Earth Science (SOC/SOES)
ePrint ID: 164615
Date Deposited: 30 Sep 2010 13:17
Last Modified: 27 Mar 2014 19:17
URI: http://eprints.soton.ac.uk/id/eprint/164615

Actions (login required)

View Item View Item