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Abstract

We develop a new class of prior distributions for Bayesian comparison of nested

models, which we call intrinsic moment priors, by combining the well-established

notion of intrinsic prior with the recently introduced idea of non-local priors, and

in particular of moment priors. Specifically, we aim at testing the equality of two

proportions, based on independent samples, and thus focus on discrete data models.

Given two nested models, each equipped with a default prior, we first construct a

moment prior under the larger model. In this way, the asymptotic learning behavior

of the Bayes factor is strengthened, relative to currently used local priors, when the

smaller model holds; remarkably, this effect is already apparent for moderate sample

sizes. On the other hand, the asymptotic learning behavior of the Bayes factor when

the larger model holds is unchanged. However, without appropriate tuning, a moment

prior does not provide enough evidence for the larger model when the sample size is

small and the data only moderately support the smaller one. For this reason, we

apply to the moment prior an intrinsic prior procedure, which amounts to pulling

the moment prior towards the subspace specified by the smaller model; we provide

general guidelines for determining the training sample size necessary to implement

this step. Thus, by joining the virtues of moment and intrinsic priors, we obtain

an enhanced objective Bayesian testing procedure: i) our evidence for small samples

is broadly comparable to that given by current objective methods; ii) we achieve a

superior learning performance as the sample size increases (when the smaller model

holds). We first illustrate our methodology in a running Bernoulli example, where we

test a sharp null hypothesis, then we implement our procedure to test the equality

of two proportions. A detailed analysis of the properties of our method, including a

comparison with standard intrinsic priors, is presented together with an application

to a collection of real-world 2× 2 tables involving a sensitivity analysis and a cross-

validation study.

Keywords : Bayes factor; intrinsic prior; model choice; moment prior; non-local prior;

training sample size.



1 Introduction

The analysis of two independent binomial populations has a long history, dating back

to the beginning of the twentieth century; for an account see Howard (1998). If θ1

and θ2 denote the two population proportions, a typical hypothesis of interest is that

of equality, θ1 = θ2, or a one sided hypothesis, such as θ1 < θ2. For the latter

case Howard (1998) provides a Bayesian reinterpretation of frequentist tests as well

as a proposal for a fully Bayesian analysis based on a prior distribution embodying

dependence between θ1 and θ2.

In this paper we are concerned with testing the equality of the two proportions.

The problem is equivalent to testing independence in a 2×2 contingency table whose

row margins are fixed by design. Casella and Moreno (2009) recently provided a

detailed objective Bayesian analysis of the latter problem, also discussing alternative

sampling procedures, based on the notion of intrinsic prior.

Intrinsic priors are now recognized as a useful tool for Bayesian hypothesis testing

and more generally for model comparison, especially in an objective Bayesian setting.

Numerous applications ranging from variable selection (Casella and Moreno, 2006;

Casella et al., 2009) to change point problems (Moreno et al., 2005; Girón et al.,

2007) to contingency tables (Casella and Moreno, 2005; Consonni and La Rocca,

2008; Casella and Moreno, 2009) testify their potential.

Given two parametric models,M0 (the null model) nested inM1 (the alternative

model), each equipped with its own default prior distribution, pD0 (·) and pD1 (·), the

intrinsic (prior) approach suitably modifies pD1 (·) by “peaking” it around the subspace

specified by M0. In this way, M1 becomes more competitive against M0 precisely

when the comparison is most delicate, namely for data generating mechanisms close

to the null, and this displacement of prior mass effectively averts the Jeffreys-Lindley-

Bartlett paradox; see Kass and Raftery (1995, sect. 5.1) and Robert (2001, sect. 5.2.5).

The idea of “centering” the prior around the null, under the larger model, can be

traced back at least to Jeffreys and can also be performed outside the intrinsic prior

setup. A notable example in this sense is the hierarchical Bayesian framework, as

developed by Albert and Gupta (1982) and Albert (1990).
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Virtually all priors under M1 currently used for Bayesian hypothesis testing or

model comparison belong to the class of local priors, which do not vanish over the

subspace specified by the null. For instance, in the problem of testing the equality

of two proportions, the default prior will be a product of uniform priors (one for θ1

and one for θ2), or possibly a product of two Jeffreys priors. Clearly, these priors

are bounded away from zero on the line θ1 = θ2. The intrinsic prior for this problem

shares a similar feature; see Casella and Moreno (2009, sect. 3.2).

A serious deficiency of local priors relates to their asymptotic learning rate. Specif-

ically, the Bayes factor in favor of M1, when M1 holds, diverges in probability ex-

ponentially fast, as the sample size grows, whereas it converges to zero in probability

at polynomial rate only, when M0 holds. Although this fact is well known, it is

less known that this imbalance is already quite dramatic for moderate sample sizes.

However, this feature can be successfully corrected, as suggested in recent work of

Johnson and Rossell (2010), where these authors advocate the use of non-local priors,

and in particular of moment priors.

We find the idea of non-local priors appealing. At the same time, we concur that

the rationale underlying the intrinsic approach for tuning a default prior is useful.

We therefore combine non-local and intrinsic priors into a unified new class of priors

for testing nested models. These priors exhibit finite sample properties of the Bayes

factor comparable to those of the intrinsic approach, but they outperform current

local prior approaches (including the intrinsic one) in terms of asymptotic learning

behavior (when the null model holds). In this sense, we obtain an enhanced Bayesian

testing procedure.

The rest of the paper is organized as follows. Section 2 provides background

material on intrinsic and moment priors, with special reference to the testing problem

under consideration. Sections 3 and 4 represent the core of the paper: the former

presents a new class of non-local priors, which we name intrinsic moment priors, while

the latter implements the proposed methodology to obtain an enhanced objective

Bayesian test for the equality of two proportions. Section 5 applies our new test to a

collection of randomized binary trials of a new surgical treatment for stomach ulcers,

also discussed from a meta-analysis perspective by Efron (1996). Section 6 offers

some concluding remarks and investigates a few issues worth of further consideration.
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2 Priors for the comparison of nested models

We review in this section two methodologies for constructing priors when two nested

models are compared: intrinsic priors and moment priors.

Consider two sampling models for the same discrete observables:

M0 = {f0(·|ξ0), ξ0 ∈ Ξ0} vs M1 = {f1(·|ξ1), ξ1 ∈ Ξ1}, (1)

whereM0 is nested inM1, i.e., for all ξ0 ∈ Ξ0, f0(·|ξ0) = f1(·|ξ1), for some ξ1 ∈ Ξ̃0 ⊂

Ξ1. Let p0(ξ0) and p1(ξ1) be the priors under the two models, which we assume proper,

and denote the data by y = (y1, . . . , yn); occasionally we will write y(n) to stress the

dependence on n. The Bayes factor in favor of M1 (equivalently against M0) is

BF10(y) = m1(y)
m0(y)

, where mj(y) =
∫
fj(y|ξj)pj(ξj)dξj, j = 0, 1. We assume equal

prior probabilities for M0 and M1, so that the posterior probability of M1 can be

immediately recovered from BF10(y) as P(M1|y) = (1+BF01(y))−1, where BF01(y) =

1/BF10(y).

2.1 Intrinsic priors

Intrinsic priors were introduced in objective hypothesis testing to convert improper

priors into proper ones (Berger and Pericchi, 1996; Moreno, 1997; Moreno et al., 1998).

In this way, Bayes factors, which cannot be meaningfully evaluated using improper

priors, admit a sensible interpretation. However, this view of the intrinsic approach

is unduly restrictive and actually hinders its inherent nature, as it is apparent for

discrete data models: in this case the default priors are usually proper, but the

intrinsic approach may still be considered useful.

The actual implication of intrinsic priors is to “peak” the prior under the alterna-

tive around the region specified by the null, a suggestion dating back to Jeffreys; see

also Morris (1987). This is related to the Jeffreys-Lindley-Bartlett paradox, because

the idea is to counterbalance the excessive diffuseness of many standard default priors

under the alternative. Casella and Moreno (2005), Consonni and La Rocca (2008)

and Casella and Moreno (2009) reiterate this concept for discrete data models.

Let pD0 (ξ0) and pD1 (ξ1) be two default priors under M0 and M1, respectively; for

simplicity we assume them to be proper, as this will typically be the case with discrete
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data models. While we may in general retain pD0 (ξ0), it is often the case that pD1 (ξ1)

be inappropriate because it is relatively too diffuse, thus unduly penalizingM1 when

the data only mildly support M0. Let x = (x1, . . . , xt) be a vector of observables,

whose dimensionality t we call the training sample size. The intrinsic prior on ξ1 with

training sample size t is given by

pI1(ξ1|t) =
∑
x

pD1 (ξ1|x)mD
0 (x), (2)

where pD1 (ξ1|x) is the posterior density of ξ1 under M1, given x, and mD
0 (x) =∫

f0(x|ξ0)pD0 (ξ0)dξ0 is the marginal density of x under M0; it is natural to let t = 0

return the default prior.

We remark that (2) is not the original definition of intrinsic prior, but rather

its formulation as an expected posterior prior (Perez and Berger, 2002). We find

formula (2) especially appealing, because it makes clear that an intrinsic prior is a

mixture of fictitious posteriors. Notice that, as the training sample size t increases,

the intrinsic prior tends to “peak” on the subspace Ξ̃0. The choice of t is left to the

user, and it should be noticed that the standard notion of minimal training sample

size is vacuous in the context of discrete observables, because the default priors are

already proper by assumption.

Example 2.1 (Bernoulli) Denoting ξ1 by θ and ξ0 by θ0, consider the testing prob-

lem M0 : f0(y|θ0) = Bin(y|n, θ0) versus M1 : f1(y|θ) = Bin(y|n, θ), where θ0 is a

fixed value, while θ varies in (0, 1). Let the default prior be pD1 (θ|b) = Beta(θ|b, b)

for some b > 0. We take a symmetric prior because standard default objective priors

satisfy this property. The intrinsic prior in this case is given by

pI1(θ|b, t) =
t∑

x=0

Beta(θ|b+ x, b+ t− x)Bin(x|n, θ0). (3)

The solid curves in Figure 1(a), i.e., those specified by h = 0, illustrate the behavior

of the intrinsic priors with training sample size t = 0 (default prior), t = 1 and t = 8,

when θ0 = 0.25 and b = 1 (uniform default prior). The dashed curves (h = 1) should

be discarded for the time being. The effect of the intrinsic procedure is very clear:

already with t = 1 the density has become a straight line with negative slope, so as

to start privileging low values of θ, such as θ0 = 0.25, and with a training sample
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size t = 8 the effect is much more dramatic, with the density now having a mode

somewhere around 0.25 and then declining quickly. Figure 1(b) shows (again focus on

solid lines only), for n = 12 and different values of the observed count y, the posterior

probability of M1 as a function of the observed count y (evidence curve): switching

from t = 0 (default prior) to t = 1 (intrinsic prior with unit training sample), the

evidence in favor of the alternative model increases, especially in the region around

y = 3, while correctly remaining well below the 0.5-line.

2.2 Moment Priors

Consider the testing problem (1). We say that the smaller model holds if the sampling

distribution of the data belongs toM0; we say that the larger model holds if it belongs

to M1 but not to M0. The following result shows an imbalance in the learning rate

of the Bayes factor for commonly used priors.

Result 2.1 In the testing problem (1) assume that p1(ξ1) is continuous and strictly

positive for all ξ1 ∈ Ξ1, and let the data y(n) = (y1, . . . , yn) arise under i.i.d. sampling.

IfM0 holds, then BF10(y
(n)) = Op(n

−(d1−d0)/2), as n→∞, where dj is the dimension

of Ξj, j = 1, 2, (d1 > d0); if M1 holds, then BF01(y
(n)) = e−Kn+Op(n1/2), as n → ∞,

for some K > 0.

We refer to Dawid (1999) for a proof of this result. It should be noted that a crucial

role is played by the fact that p1(ξ1) > 0 for all ξ1 ∈ Ξ̃0, so that the only way to speed

up the decrease of BF10(y
(n)) whenM0 holds is to force the prior density underM1

to vanish on Ξ̃0. This is indeed the approach taken by Johnson and Rossell (2010)

when defining their non-local priors. Their motivation, however, is also conceptual,

as it relates to an idea of separation between models.

Let g(ξ1) be a continuous function vanishing on Ξ̃0. From a given baseline (local)

prior p1(ξ1), define a new prior as

pM1 (ξ1) ∝ g(ξ1)p1(ξ1), (4)

which we name a generalized moment prior. For instance, if Ξ1 ⊆ R and Ξ̃0 = Ξ0 =

{ξ0}, with ξ0 a fixed value, we may take g(ξ1) = (ξ1 − ξ0)
2h, where h is a positive
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Figure 1: Prior densities and small sample evidence for the Bernoulli example.
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integer (h = 0 returns the baseline prior); this defines the moment prior introduced

by Johnson and Rossell (2010) for testing a sharp hypothesis on a scalar parameter.

It can be seen that in this case BF10(y
(n)) = Op(n

−1/2−h) when M0 holds, while we

still have BF01(y
(n)) = e−Kn+Op(n1/2) when M1 holds.

Example 2.2 (Bernoulli ctd.) For a given conjugate baseline prior Beta(θ|a1, a2)

define the corresponding conjugate moment prior of order h as

pCM1 (θ|a1, a2, h) =
(θ − θ0)2h

K(a1, a2, h, θ0)
× Beta(θ|a1, a2), (5)

where

K(a1, a2, h, θ0) =
θ2h0

B(a1, a2)

2h∑
j=0

(
2h

j

)
(−1)jθ−j0 B(a1 + j, a2), (6)

and B(a1, a2) is the Beta function with parameters (a1, a2). In particular, if h = 1

and a1 = a2 = b, with b a default choice (such as b = 1 or b = 1/2), we obtain the

default moment prior pDM1 (θ|b, h). The thin dashed curve in Figure 1(a), i.e., the one

specified by h = 1 and t = 0, represents the default moment prior with b = 1 when

θ0 = 0.25. The other two dashed curves (h = 1) with t = 1 (intermediate) and t = 8

(thick) should be ignored for the time being. The behavior of pDM1 (θ|b = 1, h = 1) is

the following: it is zero at the null value θ0 = 0.25, as required, it increases rapidly

as θ goes to 1, while it goes up more gently as θ goes to zero. It is clear that this

moment prior will not be suitable for testing purposes, because it puts too much mass

away from θ0. This is confirmed by the thin dashed line in Figure 1(b): the null model

is unduly favored. The thin dotted line in the same figure shows that things get even

worse for h = 2.

The next section takes up the above issue and provides an effective solution.

3 Intrinsic Moment Priors

From Example 2.2 it is clear that the default moment prior does not accumulate

enough mass around the null value (more generally around the subspace specified by

the null model). This suggests applying the intrinsic procedure to the default moment

prior, thus obtaining a new class of priors for testing nested hypotheses, which we

name intrinsic moment priors.
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Our strategy for enhanced objective Bayesian testing of two nested models thus

envisages the following steps: i) start with a default prior under each of the two

models; ii) construct the default moment prior of order h under the larger model; iii)

for a given training sample size t, generate the corresponding intrinsic prior, which

produces the intrinsic moment prior: this is the prior we recommend to compute the

Bayes factor. Step ii) improves the learning behavior under the null, while step iii)

makes sure that the testing procedure exhibits a good finite sample behavior in terms

of the evidence curve .

Example 3.1 (Bernoulli ctd.) Recall that the intrinsic prior is an average of fic-

titious posterior distributions. Since in our case we start from the default moment

prior (5) with a1 = a2 = b, the intrinsic moment prior for θ with training sample

size t will be given by

pIM1 (θ|b, h, t) =
t∑

x=0

(θ − θ0)2h

K(b+ x, b+ t− x, h, θ0)
Beta(θ|b+ x, b+ t− x)Bin(x|t, θ0), (7)

where K(a1, a2, h, θ0) is defined in (6), and we exploited conjugacy of pCM1 (θ|a1, a2, h).

Notice that (7) describes a family of prior distributions, including standard intrinsic

priors (h = 0) as well as the default prior (h = 0, t = 0) as special cases. In order

to compute the Bayes factor BF IM
10 (y|b, h, t) =

mIM
1 (y|b,h,t)
f0(y|θ0) , where mIM

1 (y|b, h, t) =∫
f1(y|θ)pIM1 (θ|b, h, t)dθ and f0(y|θ0) = Bin(y|n, θ0), we exploit the fact that the Bayes

factor using an intrinsic prior is a weighted average of conditional Bayes factors based

on the starting prior; see for example Consonni and La Rocca (2008, Proposition 3.4).

Thus, we find

BF IM
10 (y|b, h, t) =

t∑
x=0

BFCM
10 (y|b+ x, b+ t− x, h)Bin(x|t, θ0), (8)

where BFCM
10 (y|a1, a2, h) =

mCM
1 (y|a1,a2,h)
f0(y|θ0) , and we then compute mCM

1 (y|a1, a2, h) =∫
f1(y|θ)pCM1 (θ|a1, a2, h)dθ by means of the useful relationship

mCM
1 (y|a1, a2, h) =

K(a1 + y, a2 + n− y, h, θ0)
K(a1, a2, h, θ0)

mC
1 (y|a1, a2), (9)

where mC
1 (y|a1, a2) =

∫
f1(y|θ)pC1 (θ|a1, a2)dθ =

(
n
y

)B(a1+y,a2+n−y)
B(a1,a2)

is the usual Beta-

Binomial marginal density using the conjugate prior pC1 (θ|a1, a2) = Beta(θ|a1, a2).

8



Notice that equation (9) reveals a structural relationship between the marginal data

distribution based on a conjugate moment prior and that based on its conjugate base-

line prior; its scope is in fact general. A consequence of (9) is that the Bayes factor

based on a conjugate moment prior can be readily computed from the usual Bayes

factor based on a conjugate prior:

BFCM
10 (y|a1, a2, h) =

K(a1 + y, a2 + n− y, h, θ0)
K(a1, a2, h, θ0)

BFC
10(y|a1, a2), (10)

where BFC
10(y|a1, a2) =

mC
1 (y|a1,a2)
f0(y|θ0) .

Figure 1(a) shows (letting b = 1) the effect of applying the intrinsic procedure to

the default moment prior of order h = 1 (dashed curves): as t grows, the overall shape

of the prior density changes considerably, because more and more probability mass in

the extremes is displaced towards θ0, giving rise to two modes, while the non-local

nature of the prior is preserved, because the density remains zero at θ0 = 0.25. In

this way, as shown in Figure 1(b), the evidence against the null for small samples

is brought back to more reasonable values (with respect to the default moment prior).

More specifically, Figure 1(b) shows that the intrinsic moment prior with h = 1 and

t = 8 (a choice explained later in subsection 3.1) performs comparably to the uniform

prior (and to the standard intrinsic prior with unit training sample) over a broad

range of values for the observed count y; this intrinsic moment prior results in a

smaller amount of evidence for values of y close to the null, which is to be expected

for continuity, but induces a steeper evidence gradient as y moves away from the null,

which makes it appealing.

The learning behavior of the intrinsic moment prior is illustrated in Figure 2(a),

which reports the average posterior probability of the null model (computed on 1000

simulated data sets of increasing size) letting first θ = 0.25 and then θ = 0.4 (an

instance of the alternative model). It is apparent from this plot that a non-local prior

(h > 0) is needed, if strong evidence in favor of the null has “ever” to be achieved, but

also that the intrinsic procedure is crucial to calibrate small sample evidence. These

results are striking, and they signal that our method actually represents a marked im-

provement over current methods. Notice that there is an associated cost: the moment

prior trades off speed in learning the alternative model for speed in learning the null

model; the intrinsic procedure is remarkably effective in controlling this trade off.
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Next we discuss the choice of the hyperparameters h and t. The value of h

determines the asymptotic behavior of BF IM
10 (y(n)), as n → ∞. The choice h = 1 is

enough to change the convergence rate to M0 from sub-linear to super-linear (when

M0 holds). Even though the convergence rate toM1 (whenM1 holds) is unchanged,

we have seen that increasing h induces a delay in learningM1. Thus, we recommend

letting h = 1 by default, and trying h = 2 for sensitivity purposes. We discuss the

choice of t in a separate subsection.

3.1 Choosing the training sample size

Recall that the goal of the intrinsic procedure is to pull mass toward the null sub-

space in the prior under M1. There is clearly a tension here between this aim and

that of leaving enough mass in other areas of the parameter space, not to unduly

discredit M1. This is precisely the issue we face when choosing t. We now provide

some guidelines for the Bernoulli problem, with a view to more general situations.

Fix θ0 = 1/2; this represents the worst scenario in terms of the information content

of a single observation. In this case, the minimal sample size capable of providing

evidence both in favor of the null and of the larger model is n = 2. Then, the data

values y = 0 and y = 2 are in favor of M1, while the value y = 1 supports the null

model. Consider the weight of evidence against the null using an intrinsic moment

prior, i.e., WOEy(t) = logBF IM
10 (y|b, h, t), where we focus on the dependence on t

for a given choice of b, h (and given data y). Clearly, for symmetry, WOE0(t) =

WOE2(t).

Broadly speaking, the intrinsic approach rests on the following considerations:

i) WOE1(t = 0) is too small; ii) WOE0(t = 0) and WOE2(t = 0) can be safely

reduced without much harm. Point i) stems from the consideration that, when the

data support the null model (y = 1 in our setup), and the prior is the default one

(t = 0), the evidence in favor of M1 is too low for small sample sizes, because the

default prior is too diffuse. On the other hand, as already remarked elsewhere, when

the data clearly do not support M0 there will be enough evidence in favor of M1

for all reasonable (not overly diffuse) priors. Now, as t increases, so does WOE1(t),

while WOE0(t) and WOE2(t) decrease, and point ii) comes into play.
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As t diverges, the prior underM1 will progressively concentrate around the region

defined by M0, so that the marginal data distributions under the two models will

eventually coincide, and WOEy(t) will converge to zero, whatever the data y. What

is then a natural minimal threshold for t to consider? To answer this question, define

the total weight of evidence TWOE(t) =
∑

yWOEy(t) and consider the weight of

evidence as a sort of currency: we will be certainly willing to trade off a decrease

in WOE0(t) and WOE2(t) for an increase in WOE1(t) as long as we get more than

we give, that is, as long as we increase TWOE(t). Define t∗ = argmaxt TWOE(t).

The value t∗ represents the minimal training sample size we should take into con-

sideration when implementing the intrinsic procedure. Notice that this definition of

minimal training sample size is not the usual one, which is adopted in the context of

intrinsic priors or expected posterior priors (i.e., the smallest sample size such that

the posterior is proper for all data outcomes). Also notice that, in practice, we need

to check that t∗ be well-defined. Then, we will probably be willing to let t vary

over{t∗, . . . , t∗ + n} for a sensitivity analysis.

We remark that the above strategy to find t∗ in an intrinsic procedure is general,

at least for discrete data models. In particular, the above strategy can be used to

determine the minimal training sample size for the standard intrinsic prior (h = 0).

Figure 2(b) plots TWOE(t) for h = 0, 1, 2, assuming a uniform default prior (b = 1).

Interestingly, when h = 0 (standard intrinsic prior), we find t∗ ∈ {0, 1}. This seeming

indeterminacy can be explained by noticing that, when θ0 = 0.5, the intrinsic prior

with t = 1 is the uniform prior, i.e., it is the same as the default prior. It follows

that, according to our criterion, when the starting prior is uniform, we could even

dispense with the intrinsic procedure. On the other hand, when the starting prior is

the default moment prior of order h = 1, it turns out that t∗ = 8, while for h = 2

we obtain t∗ = 13, so that with non-local moment priors the intrinsic procedure is

necessary: this makes sense, because the starting prior puts mass at the endpoints of

the parameter space in a rather extreme way.
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4 Testing the equality of two proportions

We consider as larger model the product of two binomial models

M1 : f1(y1, y2|θ1, θ2) = Bin(y1|n1, θ1)Bin(y2|n1, θ2), (11)

where n1 and n2 are fixed sample sizes. The null model assumes θ1 = θ2 = θ, so that

M0 : f0(y1, y2|θ) = Bin(y1|n1, θ)Bin(y2|n1, θ). (12)

A default prior for θ under M0 is pD0 (θ|b) = Beta(θ|b, b), where b = 1 (or b = 1/2),

while under M1 a default prior for (θ1, θ2) is pD1 (θ1, θ2|b) = Beta(θ1|b, b)Beta(θ2|b, b);

in principle we could use different values of b for the two models, but we feel that

little is lost by keeping our analysis simpler. For later purposes it is expedient to

set the notation for a more general conjugate prior under M1, which we write as

pC1 (θ1, θ2|a) = Beta(θ1|a11, a12)Beta(θ2|a21, a22), where a = [[ajk]k=1,2]j=1,2 is a matrix

of strictly positive real numbers. Then, we consider the conjugate moment prior

pCM1 (θ1, θ2|a, h) =
(θ1 − θ2)2h

K(a, h)
Beta(θ1|a11, a12)Beta(θ2|a21, a22), (13)

where

K(a, h) =
2h∑
j=0

(
2h

j

)
(−1)j

B(a11 + j, a12)

B(a11, a12)

B(a21 + 2h− j, a22)
B(a21, a22)

. (14)

As usual h = 0 returns pC1 (θ1, θ2|a). The default moment prior pDM1 (θ1, θ2|b, h) is

obtained by letting a11 = a12 = a21 = a22 = b.

Consider now the intrinsic approach applied to pDM1 . A natural requirement for

an objective analysis is that the resulting joint prior for (θ1, θ2) be symmetric. It can

be checked that, for the purely intrinsic case (h = 0), this happens even if the training

sample sizes in the two groups, t1 and t2, are different (resulting from the fact that

we use a single value of b for pDM0 and pDM1 ). On the other hand, for the non-local

case (h > 0), symmetry is only guaranteed if t1 = t2 = t (the balanced case). We

thus define the intrinsic moment prior of order h with training sample size t as

pIM1 (θ1, θ2|b, h, t) =
t∑

x1=0

t∑
x2=0

pDM1 (θ1, θ2|x1, x2, b, h)mD
0 (x1, x2|b), (15)

where

mD
0 (x1, x2|b) =

(
t

x1

)(
t

x2

)
B(b+ x1 + x2, b+ 2t− x1 − x2)

B(b, b)
, (16)
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and h = 0 returns the standard intrinsic prior pI1(θ1, θ2|b, t) with balanced training

samples of size t. The default moment posterior in (15) can be computed as

pDM1 (θ1, θ2|x1, x2, b, h) = pCM1 (θ1, θ2|a?x, h), (17)

where (a?x)11 = b+ x1, (a?x)12 = b+ t− x1, (a?x)21 = b+ x2, and (a?x)22 = b+ t− x2.

Recall that the Bayes factor against M0 using an intrinsic moment prior under

M1 is given by

BF IM
10 (y1, y2|b, h, t) =

t∑
x1=0

t∑
x2=0

BFCM
10 (y1, y2|b, a?x, h)mD

0 (x1, x2|b), (18)

where BFCM
10 (y1, y2|b, a?x, h) is the Bayes factor based on the right hand side of (17).

Similarly to the Bernoulli case, we can write

BFCM
10 (y1, y2|b, a, h) =

K(a?y, h)

K(a, h)
BFC

10(y1, y2|b, a), (19)

where (a?y)11 = a11 + y1, (a?y)12 = a12 + n1 − y1, (a?y)21 = a21 + y2, and (a?y)22 =

a22 + n2 − y2. A standard computation then gives

mC
1 (y1, y2|a) =

(
n1

y1

)(
n2

y2

)
B(a11 + y1, a12 + n1 − y1)B(a21 + y2, a22 + n2 − y2)

B(a11, a12)B(a21, a22)
,

and it follows that the Bayes factor against M0, using a conjugate moment prior

under M1, can be written as

BFC
10(y1, y2|b, a) =

B(b, b)B(a11 + y1, a12 + n1 − y1)B(a21 + y2, a22 + n2 − y2)
B(a11, a12)B(a21, a22)B(b+ y1 + y2, b+ n1 + n2 − y1 − y2)

. (20)

Using (20) in (19) and plugging the latter into (18) provides an explicit expression

for BF IM
10 (y1, y2|b, h, t).

4.1 Choice of hyperparameters

The intrinsic moment prior pIM1 (θ1, θ2|b, h, t) depends on three hyperparameters. As in

the Bernoulli case, we recommend choosing b = 1, which provides a uniform marginal

distribution of y1+y2 underM0 and of (y1, y2) underM1, and h = 1, which is enough

to change the asymptotic behavior of the Bayes factor under the null from sub-linear

to super-linear. As for the choice of t, we follow the general procedure outlined in the

Bernoulli example, with suitable specific modifications to deal with the present case.
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Clearly n1 = n2 = 1 represent the minimal sample sizes for the testing problem

at hand. In this case, of the four possible data outcomes, two are supportive forM0,

namely (y1 = 0, y2 = 0) and (y1 = 1, y2 = 1), and two, namely (y1 = 0, y2 = 1) and

(y1 = 1, y2 = 0), are supportive forM1. We repeat the argument in subsection 3.1 and

take t∗ = argmaxt TWOE(t) as the minimal training sample size, where TWOE(t) =∑
yWOEy(t) and WOEy(t) = logBF IM

10 (y1, y2|b, h, t).

Figure 3(a) plots TWOE(t) for h = 0, 1, 2. As for the Bernoulli case, t∗ is well-

defined and when h = 0 (standard intrinsic prior) we get t∗ = 0. Hence, we would

recommend a sensitivity analysis with t ∈ {0,min{n1, n2}}, say, in line with the

analysis carried out by Casella and Moreno (2009, Table 2) on a collection of 2 × 2

tables, which we also examine later in this paper (section 5). On the other hand,

when the starting prior is the default moment prior with h = 1 we find t∗ = 6, while

for h = 2 we get t∗ = 11. Thus, as for the Bernoulli case, it turns out that starting

with a non-local moment prior the intrinsic approach is needed. In the following

subsection we highlight some features of the intrinsic moment priors specified by the

above values of h and t = t∗ (including h = 0 and t∗ = 0).

4.2 Characteristics of intrinsic moment priors

Figure 4 presents a collection of nine priors for (θ1, θ2) under M1, each labelled

with its corresponding correlation coefficient r. Although the absolute values of r

are of dubious utility in describing these distributions, because of their shape, the

comparison of these values enables us to highlight the roles played by h and t: as h

grows the prior mass is displaced from areas around the line θ1 = θ2 to the corners

(θ1 = 0, θ2 = 1) and (θ1 = 1, θ2 = 0), thus inducing negative correlation; on the other

hand, as t grows the prior mass is pulled back towards either side of the line θ1 = θ2,

and positive correlation is induced. The priors in the first row are local, while those in

the second and third row are non-local. The three distributions on the main diagonal

represent, for the three valutes of h, our suggested priors based on the criterion for

the choice of t described in subsection 4.1. Notice that r ' 0 for all three suggested

priors, so that the chosen value of t can be seen as “compensating” for h.
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Some further insight into the structure of the priors on the main diagonal of

Figure 4 can be gleaned by looking at Figure 3(b), which reports their marginal

distributions (identical for θ1 and θ2). All three densities are symmetric around 0.5,

but the two intrinsic moment priors with h > 0 tend to moderately favor the outer

values of the interval (0, 1).

Figure 3(c) reports the average posterior probability of the null model (computed

on 1000 simulated data sets of increasing size) letting first θ1 = θ2 = 0.25 and then

θ1 = 0.25, θ2 = 0.4 (an instance of the alternative model). The learning behavior is

quite different under the three priors. As for the Bernoulli example, when the data

are generated under the null model a much quicker correct response is provided by

the non-local intrinsic moment priors: for sample sizes up to 500 the average posterior

probability of M0 under the default prior does not cross the 0.9 threshold, whereas

under the non-local intrinsic moment priors it reaches the 95% threshold by the time

300 observations have been collected. On the other hand, switching from h = 0

to h > 0, the learning behavior under the alternative model is compromised in the

short run, but not in the long run: there is an initial increase in the average posterior

probability of the null model that takes about 100 observations to be neutralized, then

the delay in learning stabilizes and by the time 500 observations have been collected

strong evidence is achieved. These results suggest that the trade off in favor of M1

can be pushed further, when the intrinsic procedure is applied, and this provides

motivation for a sensitivity analysis with t > t∗.

Figure 3(d) illustrates the small sample behaviour of intrinsic moment priors, by

reporting the contour lines in the (y1, y2)-plane (n1 = n2 = 12) for selected thresholds

of the posterior probability ofM1. One can see, visually, a good degree of agreement

among all three priors. There is also a clear indication that the higher thresholds,

such as 90% and 95%, are reached for pairs (y1, y2) closer to the y1 = y2 line under

the non-local intrinsic moment priors than under the default prior. Similarly to the

Bernoulli example, this is due to the steeper gradient of the evidence surface as the

data move away from the null supporting values.
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5 Application

In this section we analyze data from 41 randomized trials of a new surgical treatment

for stomach ulcers. For each trial the number of occurrences and nonoccurrences

under Treatment (the new surgery, group 1 ) and Control (an older surgery, group 2 )

are reported; see Efron (1996, Table 1). Occurrence here refers to an adverse event:

recurrent bleeding. Efron (1996) analyzed these data with the aim of performing a

meta-analysis, using empirical Bayes methods. On the other hand our objective is

to establish whether the probability of occurrence is the same under Treatment and

Control in each individual table; for a similar analysis see Casella and Moreno (2009).

We analyze the data using the intrinsic moment priors of section 4, letting b = 1

and comparing the results given by different choices of h and t. Specifically, we

perform a sensitivity analysis with respect to the actual choice of t, and a cross-

validation study of the predictive performance achieved by different choices of h.

5.1 Sensitivity analysis

We let t vary from t∗ to t∗ + min {n1, n2} both for h = 0 (standard local prior) and

h = 1 (recommended non-local prior), where t∗ = 0 for h = 0 and t∗ = 6 for h = 1

(minimal training sample size as discussed in subsection 4.1), while n1 and n2 are

the trial sample sizes for Treatment and Control. For each of the above pairs (h, t),

and for all 41 tables in the dataset, we evaluate the posterior probability of the null

model. It turns out that the latter is quite insensitive to any further increase in t

(beyond t∗+min {n1, n2}). We report our findings in Figure 5(a), where the tables are

arranged (for a better appreciation of our results) from left to right in increasing order

of | y1
n1
− y2

n2
| (absolute difference in observed proportions): this explains the mostly

declining pattern of the posterior probabilities of the null model. The range of these

probabilities is depicted as a vertical segment, separately for the standard intrinsic

and the intrinsic moment prior, and the values for t = t∗ and t = t∗ + min{n1, n2}

are marked with circles and triangles, respectively, so that in practice (thanks to a

monotonic behavior) we can see an arrow describing the overall change in probability.

One can identify three sets of tables: left-hand (up to table 38), center (tables from

20 to 7) and right-hand (remaining tables). Some specific comments follow below.
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on the horizontal axis identifies a table.
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Consider first the left-hand tables. Except for table 18 (and possibly table 38)

the posterior probability of M0 ranges above the value 0.5, which can be regarded

as a conventional decision threshold for model choice under a 0–1 loss function. The

non-local intrinsic moment prior (black arrow) produces values for the posterior prob-

ability of M0 higher than under the standard intrinsic prior (white arrow): this is

only to be expected, because of the local versus non-local nature of these priors. All

arrows point downwards: this is the effect of the intrinsic procedure; when the data

support the null model, the action of pulling the prior towards the null subspace

makes the alternative more competitive and takes evidence away from M0. Save for

table 18 (and possibly 38) a robust conclusion can be reached in favor of the equality

of proportions between the two groups. Next consider the tables in the center. Here

the lengths of the intervals are shorter than before, with the majority of tables ex-

hibiting a posterior probability of the null below the 0.5 threshold, and the remaining

ones hovering over it. Again all arrows point downwards, indicating that the intrinsic

procedure is working in favor of the alternative, although to a much lesser extent

than for the left-hand tables. This makes sense because M0 is less supported in this

group of tables, and hence the amount of evidence that can be transferred to M1 is

limited. The conclusion against the equality of the two proportions is robust for the

majority of the tables in this group, but the analysis is inconclusive for tables 32, 26

and 33. Finally, the pattern of the right-hand tables indicates a low support for the

null, with the possible exception of table 6. Most of the arrows point upwards, but

all ranges are very short and on some occasions negligible: this is the action of the

intrinsic procedure in favor of M0, because the data do not support the null model.

5.2 Cross-validation study

We now compare the predictive performance of the intrinsic moment priors with

h = 0, h = 1 and h = 2, taking for granted that t should be equal to t∗ (for any given

value of h). To this aim, we assign a logarithmic score to each probability forecast p,

say, of an event E: the score is log(p), if E occurs, and log(1−p), if Ē occurs; this is a

proper scoring rule (Bernardo and Smith, 1994, sect. 2.7.2). Notice that each score is

negative, the maximum value it can achieve is zero, and higher scores indicate a better
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prediction. Suppose we want to predict an occurrence in group 1. We exclude this

case from the dataset and compute θ̂
(1)
1 as the Bayesian model average of the posterior

means of θ1 underM1 and θ underM0 based on counts (y1− 1, n1− y1, y2, n2− y2);

similarly, for an occurrence in group 2, we compute θ̂
(1)
2 upon interchanging subscript

1 and 2 above. On the other hand, to predict a nonoccurrence in group 1, we let θ̂
(0)
1

be the Bayesian model average of the posterior means of θ1 under M1 and θ under

M0 based on counts (y1, n1 − y1 − 1, y2, n2 − y2); as before, the computation of θ̂
(0)
2

to predict a nonoccurrence in group 2 requires interchanging subscript 1 and 2. In

the spirit of cross-validation, we repeat the analysis for each case and compute the

overall mean score

S =
y1 log θ̂

(1)
1 + (n1 − y1) log(1− θ̂(0)1 ) + y2 log θ̂

(1)
2 + (n2 − y2) log(1− θ̂(0)2 )

n1 + n2

. (21)

Now let Sh be the score associated to the intrinsic moment prior of order h,

h = 0, 1, 2. Of particular interest are the differences S1 − S0 and S2 − S0. A positive

value for S1 − S0, say, means that the prior with h = 1 produces on average a better

forecasting system than the standard intrinsic prior (h = 0); notice that the latter

coincides with the default uniform prior because t∗ = 0. One can use a first order

expansion of the logarithmic score to gauge the difference more concretely: a positive

difference S1 − S0 = d > 0 means that the prior with h = 1 generates “correctly-

oriented probability forecasts” (higher values for occurrences and lower values for

nonoccurrences) which are, on average, d × 100 % better than those produced by

the standard intrinsic prior. Here the average is taken over the combination of event

outcomes (occurrence/nonoccurrence) and groups (Treatment/Control) with weights

given by the observed sample frequencies. Since d > 0 is an average of score differences

over the four blocks of events, there is no guarantee of a uniform improvement in

prediction across all of them.

Figure 5(b) reports the results of our cross-validation study with the tables again

arranged from left to right in increasing order of absolute difference in observed pro-

portions. Essentially for all tables, but with the notable exception of the last four, the

non-local intrinsic moment priors perform better than the standard intrinsic prior,

with differences in score ranging from −0.1% to 3.8% (median improvement 0.5%)

when h = 1 and from 0.0% to 4.9% (median improvement 0.7%) when h = 2. On
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the other hand, for the last four tables, which are clearly against the null, the per-

formance of the non-local priors is much worse: this happens because the intrinsic

moment priors produce a greater degree of posterior shrinkage towards the null within

the alternative model. Differences in score range from −0.4% down to −8.6%, when

h = 1, and from −0.8% down to −13.1%, when h = 2. Notice that the intrinsic

moment prior predicts better with h = 2 than with h = 1 when the difference in score

is positive, but the reverse occurs for negative differences in score; in the latter case

the performance can be appreciably worse. On grounds of prudence, these results

seem to reinforce our recommendation in favor of the choice h = 1.

6 Discussion

In this paper we have presented a general methodology to construct objective Bayesian

tests for nested hypotheses in discrete data models. The only required input is a de-

fault (proper) parameter prior under each of the entertained models. The fundamental

tool in our approach is represented by a particular class of non-local priors, which

we name intrinsic moment priors. These priors combine the virtues of moment and

intrinsic priors to obtain enhanced objective tests, whose learning rate is strongly ac-

celerated, relative to current local prior methods, when the smaller model holds, while

remaining sufficiently fast for practical purposes, when the larger model holds. Small

sample evidence is also broadly comparable with that afforded by modern objective

methods, including those based on intrinsic priors.

A robustness analysis is naturally embedded in our approach, by letting the train-

ing sample size vary over a grid of values. The notion of minimal training sample

size is more delicate to handle in our case than in the case of the standard intrinsic

approach. To this aim, we devised the notion of total weight of evidence as a natural

currency to trade evidence stakes (on the log scale). While this notion worked fine

in our problems, its broad applicability still remains an open issue and should be

carefully evaluated in each specific case. In particular, it would be interesting to see

how far its scope could be extended beyond discrete data models.

The general methodological framework developed in this paper was tried out on a

substantive statistical issue, namely testing the equality of two independent propor-
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tions. This resulted in a novel objective Bayesian test for this problem, which leads

to sharper conclusions, even for moderately large samples, when the two population

proportions are actually equal. An extension of our methods to testing independence

in general contingency tables under a variety of sampling schemes, as in Casella and

Moreno (2009), would constitute a natural and useful development.
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