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Abstract

Ground calibration targets (GCTs) play a vital role in atmospheric correction of satellite
sensor data in the optical region, but selecting suitable targets is a subjective and time-
consuming task. This paper describes a method to automatically select suitable GCTs, using a
combination of remotely sensed multispectral and topographic data. Desirable characteristics
for GCTs sites were identified from the literature, and used to devise a semi-automated
workflow based on programs written in IDL. combined with routines offered by ITTVIS
ENVI and Definiens eCognition. Spatial statistics were used to assess local patterns of spatial
uniformity, and endmember abundances (extracted using the SMACC algorithm) were used in
a novel method to ensure a spread of calibration sites throughout the brightness range for each
band. The result of this process was a map of candidate GCTs, classified according to their
suitability.

1 Introduction

Ground calibration targets (GCTs) are used in the empirical line method (ELM) of
atmospheric correction (Smith and Milton, 1999), for vicarious calibration of satellite and
aircraft sensors (Thome, 2001; Secker et al., 2001), for validation of atmospheric correction
methods based on radiative transfer (RT) models (Holm et al., 1989), and in hybrid
approaches to atmospheric correction (Clark et al., 2003). Furthermore, if the spectral
properties of GCTs are stable over time they can be considered as samples from a class of
image objects known as ‘pseudo-invariant features’ (PIF) (Schott et al., 1988), which may be
used for normalising a time series of images (Schmidt et al., 2008).

GCTs may be defined statistically, based on the properties of the image data (Elvidge et al.,
1995; Canty and Nielsen, 2008) or real-world objects may be used, such as unvegetated areas
or artificial surfaces (Caselles and Garcia, 1989). For relative normalisation of several images,
statistically-derived GCTs may suffice, but if it is necessary to convert an image to
reflectance it is generally necessary to use real-world target whose spectral properties can be
characterised using field spectroscopy. In this case there is debate in the literature between
those who argue for use of a large number of GCTs covering a range of reflectance and
distributed across the image (Karpouzli and Malthus, 2003) and those who favour more
detailed investigation of a single bright target (Moran et al., 2001). Identifying such GCTs is a
time-consuming and subjective process, so the aim of this study was to produce an automated
method to select areas that meet the basic criteria for a good GCT for use with all methods of
empirical atmospheric correction (Table 1).



Table 1 - Overview of the desirable characteristics of GCTs (Smith and Milton, 1999, Karpouzli and Malthus,

2003)

Criterion Justification

Large Minimises the effect of the point spread function. Slater
(1980) recommends an area at least 8x the nominal
pixel size.

Range of reflectances Avoids extrapolating the regression line beyond the

limits of the GCT data. Mid-range reflectance GCTs are
also useful to check the linearity of the relationship.

Stable over time Few if any GCTs are spectrally invariant over time, but
the changes in some surfaces can be accounted for by
use of a BRDF model (Moran et al., 2001).

Spatially homogenous Reduces the importance of positional accuracy in the
ground measurements and minimises the effect of
image misregistration. Reduces the probability of
mixed pixels occurring.

Flat Reduces the importance of the time of image
acquisition.
Sites spread throughout Ensures the variation in atmospheric conditions across
the image the image to be accounted for.
2 Method

The study focused on data from SPOT-5 HRG as its 10 metre nominal spatial resolution and
spectral bands in visible and near infra-red wavelengths mean that it is well-suited to land
cover mapping in Europe.

2.1 Processing and thresholding

IDL code was written within the ENVI environment to automate the steps described below.
Getis-Ord statistics (Getis, 1994) were used to measure spatial uniformity, as this has been
shown to be more sensitive to small-scale variations than the co-efficient of variation
(Bannari et al., 2005). Large magnitude positive values show bright uniform areas, and large
magnitude negative values show dark uniform areas. A novel method was used to ensure the
selected calibration sites were some of the darkest and brightest pixels in each band. GCTs
were selected which were close to the endmembers of the image, as this ensures they are close
to the edges of the pixel cloud, and therefore the minima and maxima of the image. The
SMACC algorithm (Gruninger et al., 2004) was used, and was set to output abundance
images for five endmembers. The images produced in the previous two stages were converted
to a binary image masks by selecting the top and bottom 0.3% of the Getis-Ord images and
the top 0.3% of the endmember abundance images. These thresholds were empirically
derived.
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Figure 1 - Overview of the method

2.2 Site selection

This was performed using fuzzy object-based classification in Definiens eCognition version 4.
The image was segmented at two levels and classified according to a set of rules (shown in
Figure 2). The Customised Feature function in eCognition was used to allow rules to be
created based on the percentage of the image object selected in the binary masks derived
above. When studying the images it was found that a number of buildings had sawtooth roofs.
These are unsuitable for use as GCTs as their reflectance varies considerably with changes in
Sun angle. These were excluded by a rule checking the coefficient of variation of an aspect
image created from the DSM. It was found that this rule worked even when the sawtooths had
a periodicity less than the resolution of the sensor..

2.3 Refining the site selection
The selected sites were then subjected to a second stage of screening as to their suitability for
the specific application. In the present study this stage was performed manually.

3 Data sources

A SPOT-5 HRG half-scene (029/246) centred on 51° 12°N, 1°27°W was acquired by CNES
on 10™ June 2006 in support of the NCAVEO Field Campaign (Milton et al., 2008), and a
subset 7.3km x 5.4km centred on the town of Andover, Hampshire was used in this study
(Figure 3). The digital surface model was derived from an interferometric synthetic aperture



radar (IFSAR) survey undertaken by Intermap Technologies (NEXTMap Britain) and had an
estimated vertical precision of 30cm.
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Figure 2 - Rules used for object-based classification in eCognition

4 Results

Figure 3 shows the candidate GCTs on the SPOT image, identified by numbers which will be
used in the discussion below.
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Figure 3 - SPOT HRG image showing dark GCTs in yellow and bright GCTs in magenta




Figure 4 shows that the selected GCTs cover the three vertices of the pixel cloud very well,
and therefore the site selection procedure is producing good candidate GCTs for this image.

3.1 Dark GCT

All the dark GCT selected by the automated method were water bodies, so the data from all
four were merged. The composite water class was positively skewed, especially in the near
infra-red band; this is thought to have arisen from aquatic macrophytes which were visible in
some of the lakes. In order to purify the water class, the 30 pixels within the candidate water
GCT having the lowest near infra-red values were identified, and the median of these was
taken to represent the definitive dark GCT.
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Figure 6 - (a) Distribution of DN values from GCT B1297 (red line: mean, green line:
median); (b) Aerial photograph of GCT B1297 (source Google Earth, 2010)

Building roof B757 was the single best bright GCT. It had a high reflectance in all three
SPOT HRG VNIR bands (as high as the vegetated field in the NIR band), and the distribution
of DN values was almost normal except for a tail of dark pixels, probably due to the regular
pattern of dark panels on the roof (Figure 7). As with the dark target, the median of the DN
values represented the central tendency of the data better than the mean.
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Figure 7 - (a) Distribution of DN values from GCT B757, (red line: mean, green line:
median); (b) Aerial photograph of GCT B757 (source Google Earth, 2010)

5 Discussion

The method was successful in identifying a range of dark and light targets which satisfied the
basic criteria outlined in Table 1. The candidate GCTs were distributed across the area of
interest, and covered the complete range of brightness values in each band. Having



automatically identified the potential sites, it was necessary to study each individually to
assess its suitability for use with the ELM, and to identify the single target most suitable for
use with the refined ELM (Moran et al, 2001). The dark targets were all small lakes which
might not be suitable at some times of the year due to high sediment load or algal blooms, and
some of the bright targets were of limited value, either because they were inaccessible on the
ground, or because aerial photos revealed that the roofs had vertical structures that would cast
shadows at certain times of the day. However, one of the bright targets (B757) would be very
suitable as a primary GCT for use with the refined ELM. The roof was very bright in all the
SPOT bands, reasonably uniform even on the aerial photos, and was easily accessible on the
ground (Figure 7).

One of the weaknesses of atmospheric correction methods based on ground targets concerns
the spatial variability of the atmosphere, but we suggest that the method described in this
paper can address this to some extent. The initial set of candidate GCTs identified by the
automated method could be used to investigate spatial variation in haze across the scene, for
example by studying the tasselled-cap ‘yellowness’ axis which has been associated with
atmospheric haze (Crist, 1984). Assuming little or no variation in haze is observed, the
analyst would then has greater confidence in a refined ELM correction based on field spectral
measurements (BRDF) made at the primary GCT (B757).

6 Conclusion

The paper has demonstrated the potential of an automated object-based method to select
candidate GCTs for atmospheric correction, but is has also shown the importance of manual
screening of the selected objects. All of the GCTs selected by the automated method had
potential value, whether for investigating the spatial variability of the atmosphere, as sites for
use with the ELM, or as locations for detailed field measurements in support of the refined
ELM. Further work will focus on refining and automating the methodology so as to provide
an integrated image processing environment to support empirical image-based atmospheric
correction.
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