
Open∇FOAM Workshop

University of Southampton, 01-11-2010

Daniele Trimarchi
daniele.trimarchi@soton.ac.uk

mailto:daniele.trimarchi@soton.ac.uk
mailto:daniele.trimarchi@soton.ac.uk

Table of contents:

Table of contents:
OpenFOAM, UNIX AND THE MAC

Table of contents:
OpenFOAM, UNIX AND THE MAC
MESH GENERATION

Table of contents:
OpenFOAM, UNIX AND THE MAC
MESH GENERATION

presentation of the routine airfoil.exe

Table of contents:
OpenFOAM, UNIX AND THE MAC
MESH GENERATION

presentation of the routine airfoil.exe
GMSH: tutorial on the meshing of a simple geometry

Table of contents:
OpenFOAM, UNIX AND THE MAC
MESH GENERATION

presentation of the routine airfoil.exe
GMSH: tutorial on the meshing of a simple geometry
GMSH conversion: the utility gmshToFOAM and CreateBaffles

Table of contents:
OpenFOAM, UNIX AND THE MAC
MESH GENERATION

presentation of the routine airfoil.exe
GMSH: tutorial on the meshing of a simple geometry
GMSH conversion: the utility gmshToFOAM and CreateBaffles

UNSTEADY RANSE

Table of contents:
OpenFOAM, UNIX AND THE MAC
MESH GENERATION

presentation of the routine airfoil.exe
GMSH: tutorial on the meshing of a simple geometry
GMSH conversion: the utility gmshToFOAM and CreateBaffles

UNSTEADY RANSE
Imposing unsteady BC using ramp files

Table of contents:
OpenFOAM, UNIX AND THE MAC
MESH GENERATION

presentation of the routine airfoil.exe
GMSH: tutorial on the meshing of a simple geometry
GMSH conversion: the utility gmshToFOAM and CreateBaffles

UNSTEADY RANSE
Imposing unsteady BC using ramp files
forces, coefficients and samples extraction

Table of contents:
OpenFOAM, UNIX AND THE MAC
MESH GENERATION

presentation of the routine airfoil.exe
GMSH: tutorial on the meshing of a simple geometry
GMSH conversion: the utility gmshToFOAM and CreateBaffles

UNSTEADY RANSE
Imposing unsteady BC using ramp files
forces, coefficients and samples extraction
Airfoil case study: the pisoFOAM solver, SST turb. model & unsteady BC

Table of contents:
OpenFOAM, UNIX AND THE MAC
MESH GENERATION

presentation of the routine airfoil.exe
GMSH: tutorial on the meshing of a simple geometry
GMSH conversion: the utility gmshToFOAM and CreateBaffles

UNSTEADY RANSE
Imposing unsteady BC using ramp files
forces, coefficients and samples extraction
Airfoil case study: the pisoFOAM solver, SST turb. model & unsteady BC

DYNAMIC MESH HANDLING

Table of contents:
OpenFOAM, UNIX AND THE MAC
MESH GENERATION

presentation of the routine airfoil.exe
GMSH: tutorial on the meshing of a simple geometry
GMSH conversion: the utility gmshToFOAM and CreateBaffles

UNSTEADY RANSE
Imposing unsteady BC using ramp files
forces, coefficients and samples extraction
Airfoil case study: the pisoFOAM solver, SST turb. model & unsteady BC

DYNAMIC MESH HANDLING
Principles of mesh motion: ALE => the PimpleDyMFOAM solver, and the
velocityLaplacianMotionSolver

Table of contents:
OpenFOAM, UNIX AND THE MAC
MESH GENERATION

presentation of the routine airfoil.exe
GMSH: tutorial on the meshing of a simple geometry
GMSH conversion: the utility gmshToFOAM and CreateBaffles

UNSTEADY RANSE
Imposing unsteady BC using ramp files
forces, coefficients and samples extraction
Airfoil case study: the pisoFOAM solver, SST turb. model & unsteady BC

DYNAMIC MESH HANDLING
Principles of mesh motion: ALE => the PimpleDyMFOAM solver, and the
velocityLaplacianMotionSolver
tutorial case study: the moving beam

Table of contents:
OpenFOAM, UNIX AND THE MAC
MESH GENERATION

presentation of the routine airfoil.exe
GMSH: tutorial on the meshing of a simple geometry
GMSH conversion: the utility gmshToFOAM and CreateBaffles

UNSTEADY RANSE
Imposing unsteady BC using ramp files
forces, coefficients and samples extraction
Airfoil case study: the pisoFOAM solver, SST turb. model & unsteady BC

DYNAMIC MESH HANDLING
Principles of mesh motion: ALE => the PimpleDyMFOAM solver, and the
velocityLaplacianMotionSolver
tutorial case study: the moving beam

WRITING AND COMPILING USER APPLICATIONS AND LIBRARIES

Table of contents:
OpenFOAM, UNIX AND THE MAC
MESH GENERATION

presentation of the routine airfoil.exe
GMSH: tutorial on the meshing of a simple geometry
GMSH conversion: the utility gmshToFOAM and CreateBaffles

UNSTEADY RANSE
Imposing unsteady BC using ramp files
forces, coefficients and samples extraction
Airfoil case study: the pisoFOAM solver, SST turb. model & unsteady BC

DYNAMIC MESH HANDLING
Principles of mesh motion: ALE => the PimpleDyMFOAM solver, and the
velocityLaplacianMotionSolver
tutorial case study: the moving beam

WRITING AND COMPILING USER APPLICATIONS AND LIBRARIES
READING IN THE CODE: the library ‘Force.C’

Table of contents:
OpenFOAM, UNIX AND THE MAC
MESH GENERATION

presentation of the routine airfoil.exe
GMSH: tutorial on the meshing of a simple geometry
GMSH conversion: the utility gmshToFOAM and CreateBaffles

UNSTEADY RANSE
Imposing unsteady BC using ramp files
forces, coefficients and samples extraction
Airfoil case study: the pisoFOAM solver, SST turb. model & unsteady BC

DYNAMIC MESH HANDLING
Principles of mesh motion: ALE => the PimpleDyMFOAM solver, and the
velocityLaplacianMotionSolver
tutorial case study: the moving beam

WRITING AND COMPILING USER APPLICATIONS AND LIBRARIES
READING IN THE CODE: the library ‘Force.C’
PATCH DEFORMATIONS: a modified version of PimpleDyMFOAM for FSI

OpenFOAM and the MAC

OpenFOAM and the MAC

MAC core is UNIX, therefore it is possible to build OF

OpenFOAM and the MAC

MAC core is UNIX, therefore it is possible to build OF

It is however less easy than in Ubuntu....

OpenFOAM and the MAC

MAC core is UNIX, therefore it is possible to build OF

It is however less easy than in Ubuntu....

Very good guidance in the forum:

http://www.cfd-online.com/Forums/openfoam-
installation/77570-patches-openfoam-1-7-macos-x.html

http://www.cfd-online.com/Forums/openfoam-installation/77570-patches-openfoam-1-7-macos-x.html
http://www.cfd-online.com/Forums/openfoam-installation/77570-patches-openfoam-1-7-macos-x.html
http://www.cfd-online.com/Forums/openfoam-installation/77570-patches-openfoam-1-7-macos-x.html
http://www.cfd-online.com/Forums/openfoam-installation/77570-patches-openfoam-1-7-macos-x.html

OpenFOAM and the MAC

MAC core is UNIX, therefore it is possible to build OF

It is however less easy than in Ubuntu....

Very good guidance in the forum:

http://www.cfd-online.com/Forums/openfoam-
installation/77570-patches-openfoam-1-7-macos-x.html

You need Xode

http://developer.apple.com/technologies/tools

http://www.cfd-online.com/Forums/openfoam-installation/77570-patches-openfoam-1-7-macos-x.html
http://www.cfd-online.com/Forums/openfoam-installation/77570-patches-openfoam-1-7-macos-x.html
http://www.cfd-online.com/Forums/openfoam-installation/77570-patches-openfoam-1-7-macos-x.html
http://www.cfd-online.com/Forums/openfoam-installation/77570-patches-openfoam-1-7-macos-x.html
http://developer.apple.com/technologies/tools/
http://developer.apple.com/technologies/tools/

OpenFOAM and the MAC

MAC core is UNIX, therefore it is possible to build OF

It is however less easy than in Ubuntu....

Very good guidance in the forum:

http://www.cfd-online.com/Forums/openfoam-
installation/77570-patches-openfoam-1-7-macos-x.html

You need Xode

http://developer.apple.com/technologies/tools

And macPorts is a very confortable tool..!

www.macports.org

http://www.cfd-online.com/Forums/openfoam-installation/77570-patches-openfoam-1-7-macos-x.html
http://www.cfd-online.com/Forums/openfoam-installation/77570-patches-openfoam-1-7-macos-x.html
http://www.cfd-online.com/Forums/openfoam-installation/77570-patches-openfoam-1-7-macos-x.html
http://www.cfd-online.com/Forums/openfoam-installation/77570-patches-openfoam-1-7-macos-x.html
http://developer.apple.com/technologies/tools/
http://developer.apple.com/technologies/tools/
http://www.macports.org
http://www.macports.org

Unix: the use of the terminal

Unix: the use of the terminal

Unix: the use of the terminal
ls

Unix: the use of the terminal
ls

cd

Unix: the use of the terminal
ls

cd

pwd

Unix: the use of the terminal
ls

cd

pwd

mkdir

Unix: the use of the terminal
ls

cd

pwd

mkdir

>

Unix: the use of the terminal
ls

cd

pwd

mkdir

>

man

Unix: the use of the terminal
ls

cd

pwd

mkdir

>

man

rm / rm -r [!!!]

Unix: the use of the terminal
ls

cd

pwd

mkdir

>

man

rm / rm -r [!!!]

the .bash files

Unix: the use of the terminal
ls

cd

pwd

mkdir

>

man

rm / rm -r [!!!]

the .bash files

make ➙ wmake

Unix: the use of the terminal
ls

cd

pwd

mkdir

>

man

rm / rm -r [!!!]

the .bash files

make ➙ wmake

http://info.ee.surrey.ac.uk/Teaching/Unix/

http://info.ee.surrey.ac.uk/Teaching/Unix/
http://info.ee.surrey.ac.uk/Teaching/Unix/

Airfoil.exe

Airfoil.exe

Fortran program for creating a BlockMesh input file

Airfoil.exe

Fortran program for creating a BlockMesh input file

Geometry: 2D airfoil types (http://www.ae.illinois.edu/m-selig/ads.html)

http://www.ae.illinois.edu/m-selig/ads.html
http://www.ae.illinois.edu/m-selig/ads.html

Airfoil.exe

Fortran program for creating a BlockMesh input file

Geometry: 2D airfoil types (http://www.ae.illinois.edu/m-selig/ads.html)

http://www.ae.illinois.edu/m-selig/ads.html
http://www.ae.illinois.edu/m-selig/ads.html

Airfoil.exe

Fortran program for creating a BlockMesh input file

Geometry: 2D airfoil types (http://www.ae.illinois.edu/m-selig/ads.html)

http://www.ae.illinois.edu/m-selig/ads.html
http://www.ae.illinois.edu/m-selig/ads.html

Airfoil.exe

2 Input files: airfoil.data ; input.data

Fortran program for creating a BlockMesh input file

Geometry: 2D airfoil types (http://www.ae.illinois.edu/m-selig/ads.html)

http://www.ae.illinois.edu/m-selig/ads.html
http://www.ae.illinois.edu/m-selig/ads.html

Airfoil.exe

2 Input files: airfoil.data ; input.data

Fortran program for creating a BlockMesh input file

Geometry: 2D airfoil types (http://www.ae.illinois.edu/m-selig/ads.html)

http://www.ae.illinois.edu/m-selig/ads.html
http://www.ae.illinois.edu/m-selig/ads.html

Airfoil.exe

2 Input files: airfoil.data ; input.data

Fortran program for creating a BlockMesh input file

Geometry: 2D airfoil types (http://www.ae.illinois.edu/m-selig/ads.html)

http://www.ae.illinois.edu/m-selig/ads.html
http://www.ae.illinois.edu/m-selig/ads.html

Airfoil.exe

2 Input files: airfoil.data ; input.data

Fortran program for creating a BlockMesh input file

Geometry: 2D airfoil types (http://www.ae.illinois.edu/m-selig/ads.html)

http://www.ae.illinois.edu/m-selig/ads.html
http://www.ae.illinois.edu/m-selig/ads.html

Airfoil.exe

2 Input files: airfoil.data ; input.data

Fortran program for creating a BlockMesh input file

Geometry: 2D airfoil types (http://www.ae.illinois.edu/m-selig/ads.html)

http://www.ae.illinois.edu/m-selig/ads.html
http://www.ae.illinois.edu/m-selig/ads.html

Airfoil.exe

2 Input files: airfoil.data ; input.data
complile the program: Makefile

Fortran program for creating a BlockMesh input file

Geometry: 2D airfoil types (http://www.ae.illinois.edu/m-selig/ads.html)

http://www.ae.illinois.edu/m-selig/ads.html
http://www.ae.illinois.edu/m-selig/ads.html

Airfoil.exe

2 Input files: airfoil.data ; input.data
complile the program: Makefile

Fortran program for creating a BlockMesh input file

Geometry: 2D airfoil types (http://www.ae.illinois.edu/m-selig/ads.html)

http://www.ae.illinois.edu/m-selig/ads.html
http://www.ae.illinois.edu/m-selig/ads.html

Airfoil.exe

2 Input files: airfoil.data ; input.data
complile the program: Makefile

Fortran program for creating a BlockMesh input file

Geometry: 2D airfoil types (http://www.ae.illinois.edu/m-selig/ads.html)

http://www.ae.illinois.edu/m-selig/ads.html
http://www.ae.illinois.edu/m-selig/ads.html

Airfoil.exe

2 Input files: airfoil.data ; input.data
complile the program: Makefile

 http://www-roc.inria.fr/MACS/spip.php?rubrique69

Fortran program for creating a BlockMesh input file

Geometry: 2D airfoil types (http://www.ae.illinois.edu/m-selig/ads.html)

http://www-roc.inria.fr/MACS/spip.php?rubrique69
http://www-roc.inria.fr/MACS/spip.php?rubrique69
http://www.ae.illinois.edu/m-selig/ads.html
http://www.ae.illinois.edu/m-selig/ads.html

Gmsh
OpenSource meshing program with GUI and scripting language
(for Mac, Unix, Win)
Pro: Easy to use, cross plattform
Cons: difficult for complex geometries, and no hybrid meshes (..?)
Online: http://geuz.org/gmsh/ => gmsh2.4

http://geuz.org/gmsh/
http://geuz.org/gmsh/

Gmsh: basic scripting commands

Gmsh: basic scripting commands
Point(0) = {x, y, z};

Gmsh: basic scripting commands
Point(0) = {x, y, z};
Line(0) = {0, 1};

Gmsh: basic scripting commands
Point(0) = {x, y, z};
Line(0) = {0, 1};
Transfinite Line {0} = N Using Progression P;

Gmsh: basic scripting commands
Point(0) = {x, y, z};
Line(0) = {0, 1};
Transfinite Line {0} = N Using Progression P;
Line Loop(2) = {0, 1, -2, -3};
Plane Surface(1) = {2};

Gmsh: basic scripting commands
Point(0) = {x, y, z};
Line(0) = {0, 1};
Transfinite Line {0} = N Using Progression P;
Line Loop(2) = {0, 1, -2, -3};
Plane Surface(1) = {2};

Gmsh: basic scripting commands
Point(0) = {x, y, z};
Line(0) = {0, 1};
Transfinite Line {0} = N Using Progression P;
Line Loop(2) = {0, 1, -2, -3};
Plane Surface(1) = {2};
Transfinite Surface {1};

Gmsh: basic scripting commands
Point(0) = {x, y, z};
Line(0) = {0, 1};
Transfinite Line {0} = N Using Progression P;
Line Loop(2) = {0, 1, -2, -3};
Plane Surface(1) = {2};
Transfinite Surface {1};

Gmsh: basic scripting commands
Point(0) = {x, y, z};
Line(0) = {0, 1};
Transfinite Line {0} = N Using Progression P;
Line Loop(2) = {0, 1, -2, -3};
Plane Surface(1) = {2};
Transfinite Surface {1};
Recombine Surface {1};

Gmsh: basic scripting commands
Point(0) = {x, y, z};
Line(0) = {0, 1};
Transfinite Line {0} = N Using Progression P;
Line Loop(2) = {0, 1, -2, -3};
Plane Surface(1) = {2};
Transfinite Surface {1};
Recombine Surface {1};

Gmsh: basic scripting commands
Point(0) = {x, y, z};
Line(0) = {0, 1};
Transfinite Line {0} = N Using Progression P;
Line Loop(2) = {0, 1, -2, -3};
Plane Surface(1) = {2};
Transfinite Surface {1};
Recombine Surface {1};
Extrude {0, 0, H}
{
 Surface{1};
 Layers{{n1,n2,n3,n4},{.25,.5,.75,1}};
 Recombine;
}

Gmsh: basic scripting commands
Point(0) = {x, y, z};
Line(0) = {0, 1};
Transfinite Line {0} = N Using Progression P;
Line Loop(2) = {0, 1, -2, -3};
Plane Surface(1) = {2};
Transfinite Surface {1};
Recombine Surface {1};
Extrude {0, 0, H}
{
 Surface{1};
 Layers{{n1,n2,n3,n4},{.25,.5,.75,1}};
 Recombine;
}
Physical Surface("Inlet") = {1};

Gmsh: basic scripting commands
Point(0) = {x, y, z};
Line(0) = {0, 1};
Transfinite Line {0} = N Using Progression P;
Line Loop(2) = {0, 1, -2, -3};
Plane Surface(1) = {2};
Transfinite Surface {1};
Recombine Surface {1};
Extrude {0, 0, H}
{
 Surface{1};
 Layers{{n1,n2,n3,n4},{.25,.5,.75,1}};
 Recombine;
}
Physical Surface("Inlet") = {1};
Physical Volume("AIR") = {1,2, 3, 4};

gmshToFoam

gmshToFoam
Once created in .msh format, the mesh has to be converted for
OpenFOAM

gmshToFoam
Once created in .msh format, the mesh has to be converted for
OpenFOAM

Create directory System, which containes:

gmshToFoam
Once created in .msh format, the mesh has to be converted for
OpenFOAM

Create directory System, which containes:

 ‘ControlDict’, ‘FvSchemes’ and ‘Fvsolution’

gmshToFoam
Once created in .msh format, the mesh has to be converted for
OpenFOAM

Create directory System, which containes:

 ‘ControlDict’, ‘FvSchemes’ and ‘Fvsolution’

type in terminal: gmshToFoam MyMesh.msh

CreateBaffles

CreateBaffles
Example of the 2D spinnaker section: download the file
 (http://www-roc.inria.fr/MACS/spip.php?rubrique69)

http://www-roc.inria.fr/MACS/spip.php?rubrique69
http://www-roc.inria.fr/MACS/spip.php?rubrique69

CreateBaffles
Example of the 2D spinnaker section: download the file
 (http://www-roc.inria.fr/MACS/spip.php?rubrique69)
Create dirs and the files; run gmshToFoam

http://www-roc.inria.fr/MACS/spip.php?rubrique69
http://www-roc.inria.fr/MACS/spip.php?rubrique69

CreateBaffles
Example of the 2D spinnaker section: download the file
 (http://www-roc.inria.fr/MACS/spip.php?rubrique69)
Create dirs and the files; run gmshToFoam
look at the output in terminal:

http://www-roc.inria.fr/MACS/spip.php?rubrique69
http://www-roc.inria.fr/MACS/spip.php?rubrique69

CreateBaffles
Example of the 2D spinnaker section: download the file
 (http://www-roc.inria.fr/MACS/spip.php?rubrique69)
Create dirs and the files; run gmshToFoam
look at the output in terminal:
.....
Patch 0 gets name walls
Patch 1 gets name outlet
Patch 2 gets name wing
Patch 3 gets name inlet
.....
Writing zone 0 to cellZone Air and cellSet
.....
Writing zone 2 to faceZone faceZone_2 and faceSet

http://www-roc.inria.fr/MACS/spip.php?rubrique69
http://www-roc.inria.fr/MACS/spip.php?rubrique69

CreateBaffles
Example of the 2D spinnaker section: download the file
 (http://www-roc.inria.fr/MACS/spip.php?rubrique69)
Create dirs and the files; run gmshToFoam
look at the output in terminal:
.....
Patch 0 gets name walls
Patch 1 gets name outlet
Patch 2 gets name wing
Patch 3 gets name inlet
.....
Writing zone 0 to cellZone Air and cellSet
.....
Writing zone 2 to faceZone faceZone_2 and faceSet

The sail surface, called (in gmsh) ‘wing’ has the facezone label ‘2’
assigned.

http://www-roc.inria.fr/MACS/spip.php?rubrique69
http://www-roc.inria.fr/MACS/spip.php?rubrique69

CreateBaffles
Example of the 2D spinnaker section: download the file
 (http://www-roc.inria.fr/MACS/spip.php?rubrique69)
Create dirs and the files; run gmshToFoam
look at the output in terminal:
.....
Patch 0 gets name walls
Patch 1 gets name outlet
Patch 2 gets name wing
Patch 3 gets name inlet
.....
Writing zone 0 to cellZone Air and cellSet
.....
Writing zone 2 to faceZone faceZone_2 and faceSet

The sail surface, called (in gmsh) ‘wing’ has the facezone label ‘2’
assigned.
type in terminal: createBaffles faceZone_2 wing

http://www-roc.inria.fr/MACS/spip.php?rubrique69
http://www-roc.inria.fr/MACS/spip.php?rubrique69

...and finally the end...

...and finally the end...

The new mesh is written in a new directory, called as the time-step
in the ControlDict (es: 0.02)

...and finally the end...

The new mesh is written in a new directory, called as the time-step
in the ControlDict (es: 0.02)
Still a modification has to be done in constant/polymesh

...and finally the end...

The new mesh is written in a new directory, called as the time-step
in the ControlDict (es: 0.02)
Still a modification has to be done in constant/polymesh
All surfaces are now patches, therefore walls and empty entries are
to be substituted:

walls walls
 { {
 type patch; type wall;
 nFaces 244; nFaces 244;
 startFace 38241; startFace 38241;
 } }

...and finally the end...

The new mesh is written in a new directory, called as the time-step
in the ControlDict (es: 0.02)
Still a modification has to be done in constant/polymesh
All surfaces are now patches, therefore walls and empty entries are
to be substituted:

Unsteady BC with ramp files

Unsteady BC with ramp files

Very easy strategy for imposing variable boundary conditions
Ex: variation in inlet velocity or body motion

Unsteady BC with ramp files

Very easy strategy for imposing variable boundary conditions
Ex: variation in inlet velocity or body motion

Use a ‘ramp’ file for describing the variation in time

Unsteady BC with ramp files

Very easy strategy for imposing variable boundary conditions
Ex: variation in inlet velocity or body motion

Use a ‘ramp’ file for describing the variation in time

Ramp
(
 (0.0 (0 0 0))
 (0.015 (.5 0 0))
 (0.025 (0 0 0))
 (0.05 (-1 0 0))
)

Unsteady BC with ramp files

Very easy strategy for imposing variable boundary conditions
Ex: variation in inlet velocity or body motion

Use a ‘ramp’ file for describing the variation in time

Ramp
(
 (0.0 (0 0 0))
 (0.015 (.5 0 0))
 (0.025 (0 0 0))
 (0.05 (-1 0 0))
)

U (cellMotionU, PointMotionU.....)
boundaryField
{
 inlet
 {
 type

 timeVaryingUniformFixedValue;
 fileName "ramp"
 outOfBounds repeat;

 }
...
...

}

Force extraction

Force extraction
Add in the system/controlDict file the entry for force extraction

Force extraction
Add in the system/controlDict file the entry for force extraction

Forces can be extracted with ‘libforce’, lift and drag coeffs with
‘libforceCoeffs’

Force extraction
Add in the system/controlDict file the entry for force extraction

Forces can be extracted with ‘libforce’, lift and drag coeffs with
‘libforceCoeffs’

controlDict
....
forces
{
 type forces;
 functionObjectLibs ("libforces.dylib"); // .dylib on Mac and .so on Linux
 outputControl outputTime;
 patches (wing); //Name of patche to integrate forces
 pName p;
 Uname U;
 rhoName rhoInf;
 rhoInf 1.2; //Reference density for fluid
 pRef 0;
 CofR (0 0 0); //Origin for moment calculations
 }

Sampling www.openfoam.com/docs/user

http://www.openfoam.com/docs/user
http://www.openfoam.com/docs/user

Sampling
Add in workdir/system a file called sampleDict

www.openfoam.com/docs/user

http://www.openfoam.com/docs/user
http://www.openfoam.com/docs/user

Sampling
Add in workdir/system a file called sampleDict
Samples can be extracted during the execution, or post-execution,
typing; ‘sample’

www.openfoam.com/docs/user

http://www.openfoam.com/docs/user
http://www.openfoam.com/docs/user

Sampling
Add in workdir/system a file called sampleDict
Samples can be extracted during the execution, or post-execution,
typing; ‘sample’

sampleDict
interpolationScheme cellPoint;
setFormat raw;
sets
(
 MySample //Filename
 {
 type uniform;
 axis xyz;
 start (3.8 1.5 0.005);
 end (4 1.5 0.005);
 nPoints 3;
 }
);
surfaces ();
fields (U);

www.openfoam.com/docs/user

http://www.openfoam.com/docs/user
http://www.openfoam.com/docs/user

Sampling
Add in workdir/system a file called sampleDict
Samples can be extracted during the execution, or post-execution,
typing; ‘sample’

sampleDict
interpolationScheme cellPoint;
setFormat raw;
sets
(
 MySample //Filename
 {
 type uniform;
 axis xyz;
 start (3.8 1.5 0.005);
 end (4 1.5 0.005);
 nPoints 3;
 }
);
surfaces ();
fields (U);

cell
cellPoint
CellPointFace

www.openfoam.com/docs/user

http://www.openfoam.com/docs/user
http://www.openfoam.com/docs/user

Sampling
Add in workdir/system a file called sampleDict
Samples can be extracted during the execution, or post-execution,
typing; ‘sample’

sampleDict
interpolationScheme cellPoint;
setFormat raw;
sets
(
 MySample //Filename
 {
 type uniform;
 axis xyz;
 start (3.8 1.5 0.005);
 end (4 1.5 0.005);
 nPoints 3;
 }
);
surfaces ();
fields (U);

cell
cellPoint
CellPointFace

raw
GnuPlot

...

www.openfoam.com/docs/user

http://www.openfoam.com/docs/user
http://www.openfoam.com/docs/user

Sampling
Add in workdir/system a file called sampleDict
Samples can be extracted during the execution, or post-execution,
typing; ‘sample’

sampleDict
interpolationScheme cellPoint;
setFormat raw;
sets
(
 MySample //Filename
 {
 type uniform;
 axis xyz;
 start (3.8 1.5 0.005);
 end (4 1.5 0.005);
 nPoints 3;
 }
);
surfaces ();
fields (U);

cell
cellPoint
CellPointFace

raw
GnuPlot

...

uniform
face
midPoint
midPointAndFace
curve
cloud

www.openfoam.com/docs/user

http://www.openfoam.com/docs/user
http://www.openfoam.com/docs/user

Sampling
Add in workdir/system a file called sampleDict
Samples can be extracted during the execution, or post-execution,
typing; ‘sample’

sampleDict
interpolationScheme cellPoint;
setFormat raw;
sets
(
 MySample //Filename
 {
 type uniform;
 axis xyz;
 start (3.8 1.5 0.005);
 end (4 1.5 0.005);
 nPoints 3;
 }
);
surfaces ();
fields (U);

cell
cellPoint
CellPointFace

raw
GnuPlot

...

uniform
face
midPoint
midPointAndFace
curve
cloud

x
y
z
xyz
distance

www.openfoam.com/docs/user

http://www.openfoam.com/docs/user
http://www.openfoam.com/docs/user

Sampling
Add in workdir/system a file called sampleDict
Samples can be extracted during the execution, or post-execution,
typing; ‘sample’

sampleDict
interpolationScheme cellPoint;
setFormat raw;
sets
(
 MySample //Filename
 {
 type uniform;
 axis xyz;
 start (3.8 1.5 0.005);
 end (4 1.5 0.005);
 nPoints 3;
 }
);
surfaces ();
fields (U);

cell
cellPoint
CellPointFace

raw
GnuPlot

...

uniform
face
midPoint
midPointAndFace
curve
cloud

x
y
z
xyz
distance

patcName
interpolate
triangulate

www.openfoam.com/docs/user

http://www.openfoam.com/docs/user
http://www.openfoam.com/docs/user

Sampling
Add in workdir/system a file called sampleDict
Samples can be extracted during the execution, or post-execution,
typing; ‘sample’

sampleDict
interpolationScheme cellPoint;
setFormat raw;
sets
(
 MySample //Filename
 {
 type uniform;
 axis xyz;
 start (3.8 1.5 0.005);
 end (4 1.5 0.005);
 nPoints 3;
 }
);
surfaces ();
fields (U);

cell
cellPoint
CellPointFace

raw
GnuPlot

...

uniform
face
midPoint
midPointAndFace
curve
cloud

x
y
z
xyz
distance

patcName
interpolate
triangulate

www.openfoam.com/docs/user

http://www.openfoam.com/docs/user
http://www.openfoam.com/docs/user

Airfoil case study:
pisoFOAM, SST turbulence model & unsteady BC

pisoFOAM: unsteady solver of the SIMPLE family (Semi-
Implicit Method for Pressure Linked Equations) => iterative method:

Airfoil case study:
pisoFOAM, SST turbulence model & unsteady BC

pisoFOAM: unsteady solver of the SIMPLE family (Semi-
Implicit Method for Pressure Linked Equations) => iterative method:

 guess p* and solve u*

Airfoil case study:
pisoFOAM, SST turbulence model & unsteady BC

pisoFOAM: unsteady solver of the SIMPLE family (Semi-
Implicit Method for Pressure Linked Equations) => iterative method:

 guess p* and solve u*

 find correction for p* (by mean of ∇·u*=0)

Airfoil case study:
pisoFOAM, SST turbulence model & unsteady BC

pisoFOAM: unsteady solver of the SIMPLE family (Semi-
Implicit Method for Pressure Linked Equations) => iterative method:

 guess p* and solve u*

 find correction for p* (by mean of ∇·u*=0)

Airfoil case study:
pisoFOAM, SST turbulence model & unsteady BC

pisoFOAM: unsteady solver of the SIMPLE family (Semi-
Implicit Method for Pressure Linked Equations) => iterative method:

 guess p* and solve u*

 find correction for p* (by mean of ∇·u*=0)

SST: blend between k-ε (far from the wall) and k-ω (close to
the wall). Good model for engineering type applications

Airfoil case study:
pisoFOAM, SST turbulence model & unsteady BC

pisoFOAM: unsteady solver of the SIMPLE family (Semi-
Implicit Method for Pressure Linked Equations) => iterative method:

 guess p* and solve u*

 find correction for p* (by mean of ∇·u*=0)

SST: blend between k-ε (far from the wall) and k-ω (close to
the wall). Good model for engineering type applications

Set variable inlet velocity with a ramp file

Airfoil case study:
pisoFOAM, SST turbulence model & unsteady BC

pisoFOAM: unsteady solver of the SIMPLE family (Semi-
Implicit Method for Pressure Linked Equations) => iterative method:

 guess p* and solve u*

 find correction for p* (by mean of ∇·u*=0)

SST: blend between k-ε (far from the wall) and k-ω (close to
the wall). Good model for engineering type applications

Set variable inlet velocity with a ramp file

Extract forces on the wing

Airfoil case study:
pisoFOAM, SST turbulence model & unsteady BC

Airfoil case study: directory listing

Working Directory

Airfoil case study: directory listing

Working Directory

‘0’ constant system

Airfoil case study: directory listing

Working Directory

‘0’ constant system

k omega U p

Airfoil case study: directory listing

Working Directory

‘0’ constant system

k omega U p

k � 3
2 (

5
100uin)

2

ω �
√
k

L

Airfoil case study: directory listing

Working Directory

‘0’ constant system

k omega U p ControlDict fvSchemes fvSolutions

k � 3
2 (

5
100uin)

2

ω �
√
k

L

Airfoil case study: directory listing

Working Directory

‘0’ constant system

k omega U p

polyMesh RASProperties transportProperties turbulenceProperties

ControlDict fvSchemes fvSolutions

k � 3
2 (

5
100uin)

2

ω �
√
k

L

Airfoil case study: directory listing

Working Directory

‘0’ constant system

k omega U p

polyMesh RASProperties transportProperties turbulenceProperties

ControlDict fvSchemes fvSolutions

boundary cellZone faces faceZones ...

k � 3
2 (

5
100uin)

2

ω �
√
k

L

Case:
undeformable Spinnaker geometry in gusts

Case:
undeformable Spinnaker geometry in gusts

Principles of mesh motion:
ALE and the PimpleDyMFOAM solver

Principles of mesh motion:
ALE and the PimpleDyMFOAM solver

Arbitrary Lagrangian Eulerian methods:

Principles of mesh motion:
ALE and the PimpleDyMFOAM solver

Arbitrary Lagrangian Eulerian methods:
Deform the Eulerian fluid mesh in lagrangian way on the moving
interface

Principles of mesh motion:
ALE and the PimpleDyMFOAM solver

Arbitrary Lagrangian Eulerian methods:
Deform the Eulerian fluid mesh in lagrangian way on the moving
interface
Mesh boundaries remain unchanged

Principles of mesh motion:
ALE and the PimpleDyMFOAM solver

Arbitrary Lagrangian Eulerian methods:
Deform the Eulerian fluid mesh in lagrangian way on the moving
interface
Mesh boundaries remain unchanged
In the domain all is allowed, provided that some regularity is
respected

Principles of mesh motion:
ALE and the PimpleDyMFOAM solver

Arbitrary Lagrangian Eulerian methods:
Deform the Eulerian fluid mesh in lagrangian way on the moving
interface
Mesh boundaries remain unchanged
In the domain all is allowed, provided that some regularity is
respected

Principles of mesh motion:

Principles of mesh motion:
The Grid has now its own velocity => this should be considered in

order to be conservative

Principles of mesh motion:
The Grid has now its own velocity => this should be considered in

order to be conservative
Navier-Stokes equation are reformulated in the ALE framework, by

taking into account the mesh velocity w

Principles of mesh motion:
The Grid has now its own velocity => this should be considered in

order to be conservative
Navier-Stokes equation are reformulated in the ALE framework, by

taking into account the mesh velocity w

Principles of mesh motion:
The Grid has now its own velocity => this should be considered in

order to be conservative
Navier-Stokes equation are reformulated in the ALE framework, by

taking into account the mesh velocity w

Principles of mesh motion:
The Grid has now its own velocity => this should be considered in

order to be conservative
Navier-Stokes equation are reformulated in the ALE framework, by

taking into account the mesh velocity w

Formally, the convective
term only changes

Principles of mesh motion:
The Grid has now its own velocity => this should be considered in

order to be conservative
Navier-Stokes equation are reformulated in the ALE framework, by

taking into account the mesh velocity w

Formally, the convective
term only changes

This is equivalent to make velocities relative to the mesh
motion. In pimpleDyMFOAM:

 // Make the fluxes relative to the mesh motion
 fvc::makeRelative(phi, U);

Set up the case for the moving beam:

Set up the case for the moving beam:

Set up the case for the moving beam:

Beam Top Bottom Inlet Outlet
U ramp 0 0 pressureInletOutletVelocity 0
p ZeroG. ZeroG. ZeroG. totalPressure - 0 ZeroG.

Set up the case for the moving beam:

A dynamic mesh type and a mesh motion solver have to be chosen

Beam Top Bottom Inlet Outlet
U ramp 0 0 pressureInletOutletVelocity 0
p ZeroG. ZeroG. ZeroG. totalPressure - 0 ZeroG.

Set up the case for the moving beam:

A dynamic mesh type and a mesh motion solver have to be chosen
This is done in Constant/dynamicMeshDict

Beam Top Bottom Inlet Outlet
U ramp 0 0 pressureInletOutletVelocity 0
p ZeroG. ZeroG. ZeroG. totalPressure - 0 ZeroG.

Set up the case for the moving beam:

A dynamic mesh type and a mesh motion solver have to be chosen
This is done in Constant/dynamicMeshDict

This choice determines the additional input files to be added

Beam Top Bottom Inlet Outlet
U ramp 0 0 pressureInletOutletVelocity 0
p ZeroG. ZeroG. ZeroG. totalPressure - 0 ZeroG.

Choice of the dynamic mesh class:

dynamicInkJetFvMesh: moves the mesh using analytical expression
(See tutorial from Gonzales, Chalmers university)

dynamicMotionSolverFvMesh: prescribes mesh motions, for example on
boundaries, and it allows the direct specification of mesh points motions
(velocities or displacements).

Choice of the motion solver:

Choice of the motion solver:

Choice of the motion solver:

Choice of the motion solver:

 Constant/dinamicMeshDict
--

20 dynamicFvMesh dynamicMotionSolverFvMesh;
21 motionSolverLibs ("libfvMotionSolvers.so");
22 solver velocityLaplacian;
23 diffusivity directional (1 200 0);
 --

Using the velocityLaplacianMotionSolver:

Using the velocityLaplacianMotionSolver:

Basic Idea: define the motion of the boundaries in terms of velocity,
and solve a laplacian (therefore apply a diffusion) in the rest of the
domain

Using the velocityLaplacianMotionSolver:

Basic Idea: define the motion of the boundaries in terms of velocity,
and solve a laplacian (therefore apply a diffusion) in the rest of the
domain

The motion can be defined as a constant velocity or via a ‘ramp’ file

Using the velocityLaplacianMotionSolver:

Basic Idea: define the motion of the boundaries in terms of velocity,
and solve a laplacian (therefore apply a diffusion) in the rest of the
domain

The motion can be defined as a constant velocity or via a ‘ramp’ file

Two files have to be added in the ‘0’ directory: cellMotionU and
pointMotionU. Their definition is as usual for FOAM files, and in
this case they are equal:

And finally some results:

And finally some results:

WRITING AND COMPILING USER APPLICATIONS AND
LIBRARIES

Tutorial from:
http://www.tfd.chalmers.se/~hani/kurser/OS_CFD_2009/

Report, files and presentation by: Andreu Oliver Gonzalez

http://www.tfd.chalmers.se/~hani/kurser/OS_CFD_2009/
http://www.tfd.chalmers.se/~hani/kurser/OS_CFD_2009/

Before to get into the code...

Before to get into the code...
C++ is an object oriented programming language, OpenFOAM is

build up to objects and classes
www.cplusplus.com/doc

Deitel & Deitel: C++ How to program

http://www.cplusplus.com
http://www.cplusplus.com

Before to get into the code...
C++ is an object oriented programming language, OpenFOAM is

build up to objects and classes
www.cplusplus.com/doc

Deitel & Deitel: C++ How to program

A reference: & indicates an address in the computer memory, and it can
be seen as a bookmark. Treat variables as references is good, since the

object is not copied or transferred in the memory

http://www.cplusplus.com
http://www.cplusplus.com

Before to get into the code...
C++ is an object oriented programming language, OpenFOAM is

build up to objects and classes
www.cplusplus.com/doc

Deitel & Deitel: C++ How to program

A reference: & indicates an address in the computer memory, and it can
be seen as a bookmark. Treat variables as references is good, since the

object is not copied or transferred in the memory

Classes have member functions, the same named function applied to
different objects produces different calls. Functions should be

(generally) searched in the object’s class, or in the parent classes

http://www.cplusplus.com
http://www.cplusplus.com

Before to get into the code... Inheritance

Before to get into the code... Inheritance
CLASS

POLYGONS
{B, H}

CLASS
TRIANGLE

CLASS
RECTANGLE

AREA=B*H/2 AREA=B*H

Before to get into the code... Inheritance
CLASS

POLYGONS
{B, H}

CLASS
TRIANGLE

CLASS
RECTANGLE

AREA=B*H/2 AREA=B*H

//Define objects:
 Triangle Tria{2,3}
 Rectangle Rec{3,4}
//Calculate area:
 Tria.area();
 Rec.area();

Before to get into the code... Inheritance

OpenFOAM makes a large use of ineritance, therefore it is necessary to
use the doxygen (http://foam.sourceforge.net/doc/Doxygen/html/)

CLASS
POLYGONS

{B, H}

CLASS
TRIANGLE

CLASS
RECTANGLE

AREA=B*H/2 AREA=B*H

//Define objects:
 Triangle Tria{2,3}
 Rectangle Rec{3,4}
//Calculate area:
 Tria.area();
 Rec.area();

http://foam.sourceforge.net/doc/Doxygen/html/
http://foam.sourceforge.net/doc/Doxygen/html/

Before to get into the code... Inheritance

OpenFOAM makes a large use of ineritance, therefore it is necessary to
use the doxygen (http://foam.sourceforge.net/doc/Doxygen/html/)

CLASS
POLYGONS

{B, H}

CLASS
TRIANGLE

CLASS
RECTANGLE

AREA=B*H/2 AREA=B*H

//Define objects:
 Triangle Tria{2,3}
 Rectangle Rec{3,4}
//Calculate area:
 Tria.area();
 Rec.area();

Before to get into the code... Inheritance

OpenFOAM makes a large use of ineritance, therefore it is necessary to
use the doxygen (http://foam.sourceforge.net/doc/Doxygen/html/)

CLASS
POLYGONS

{B, H}

CLASS
TRIANGLE

CLASS
RECTANGLE

AREA=B*H/2 AREA=B*H

//Define objects:
 Triangle Tria{2,3}
 Rectangle Rec{3,4}
//Calculate area:
 Tria.area();
 Rec.area();

How to find entries:

}

How to find entries:
Looking into the code:
OpenFOAM/src/postProcessing/functionObjects/forces/forces/Force.C, lines 225 to 299

// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
void Foam::forces::read(const dictionary& dict)
{

...
const fvMesh& mesh = refCast<const fvMesh>(obr_);
patchSet_ =
 mesh.boundaryMesh().patchSet(wordList(dict.lookup("patches")));
...
pName_ = dict.lookupOrDefault<word>("pName", "p");
UName_ = dict.lookupOrDefault<word>("UName", "U");
rhoName_ = dict.lookupOrDefault<word>("rhoName", "rho");
...
rhoRef_ = readScalar(dict.lookup("rhoInf"));
pRef_ = dict.lookupOrDefault<scalar>("pRef", 0.0);
CofR_ = dict.lookup("CofR");

}

How to find entries:
Looking into the code:
OpenFOAM/src/postProcessing/functionObjects/forces/forces/Force.C, lines 225 to 299

// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
void Foam::forces::read(const dictionary& dict)
{

...
const fvMesh& mesh = refCast<const fvMesh>(obr_);
patchSet_ =
 mesh.boundaryMesh().patchSet(wordList(dict.lookup("patches")));
...
pName_ = dict.lookupOrDefault<word>("pName", "p");
UName_ = dict.lookupOrDefault<word>("UName", "U");
rhoName_ = dict.lookupOrDefault<word>("rhoName", "rho");
...
rhoRef_ = readScalar(dict.lookup("rhoInf"));
pRef_ = dict.lookupOrDefault<scalar>("pRef", 0.0);
CofR_ = dict.lookup("CofR");

}

obr: Pointer to the objectRegistry [l.174] :
 Foam::forces::forces
 (
 const word& name,
 const objectRegistry& obr,
 const dictionary& dict,
 const bool loadFromFiles
)
 :
 name_(name),
 obr_(obr),
 active_(true),

 ...

How to find entries:
Looking into the code:
OpenFOAM/src/postProcessing/functionObjects/forces/forces/Force.C, lines 225 to 299

// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
void Foam::forces::read(const dictionary& dict)
{

...
const fvMesh& mesh = refCast<const fvMesh>(obr_);
patchSet_ =
 mesh.boundaryMesh().patchSet(wordList(dict.lookup("patches")));
...
pName_ = dict.lookupOrDefault<word>("pName", "p");
UName_ = dict.lookupOrDefault<word>("UName", "U");
rhoName_ = dict.lookupOrDefault<word>("rhoName", "rho");
...
rhoRef_ = readScalar(dict.lookup("rhoInf"));
pRef_ = dict.lookupOrDefault<scalar>("pRef", 0.0);
CofR_ = dict.lookup("CofR");

}

How to find entries:
Looking into the code:
OpenFOAM/src/postProcessing/functionObjects/forces/forces/Force.C, lines 225 to 299

// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
void Foam::forces::read(const dictionary& dict)
{

...
const fvMesh& mesh = refCast<const fvMesh>(obr_);
patchSet_ =
 mesh.boundaryMesh().patchSet(wordList(dict.lookup("patches")));
...
pName_ = dict.lookupOrDefault<word>("pName", "p");
UName_ = dict.lookupOrDefault<word>("UName", "U");
rhoName_ = dict.lookupOrDefault<word>("rhoName", "rho");
...
rhoRef_ = readScalar(dict.lookup("rhoInf"));
pRef_ = dict.lookupOrDefault<scalar>("pRef", 0.0);
CofR_ = dict.lookup("CofR");

}

 patchSet is then the list of patches specified in the controlDict

How to find entries:
Looking into the code:
OpenFOAM/src/postProcessing/functionObjects/forces/forces/Force.C, lines 225 to 299

// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
void Foam::forces::read(const dictionary& dict)
{

...
const fvMesh& mesh = refCast<const fvMesh>(obr_);
patchSet_ =
 mesh.boundaryMesh().patchSet(wordList(dict.lookup("patches")));
...
pName_ = dict.lookupOrDefault<word>("pName", "p");
UName_ = dict.lookupOrDefault<word>("UName", "U");
rhoName_ = dict.lookupOrDefault<word>("rhoName", "rho");
...
rhoRef_ = readScalar(dict.lookup("rhoInf"));
pRef_ = dict.lookupOrDefault<scalar>("pRef", 0.0);
CofR_ = dict.lookup("CofR");

}

How to find entries:
Looking into the code:
OpenFOAM/src/postProcessing/functionObjects/forces/forces/Force.C, lines 225 to 299

// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
void Foam::forces::read(const dictionary& dict)
{

...
const fvMesh& mesh = refCast<const fvMesh>(obr_);
patchSet_ =
 mesh.boundaryMesh().patchSet(wordList(dict.lookup("patches")));
...
pName_ = dict.lookupOrDefault<word>("pName", "p");
UName_ = dict.lookupOrDefault<word>("UName", "U");
rhoName_ = dict.lookupOrDefault<word>("rhoName", "rho");
...
rhoRef_ = readScalar(dict.lookup("rhoInf"));
pRef_ = dict.lookupOrDefault<scalar>("pRef", 0.0);
CofR_ = dict.lookup("CofR");

}

controlDict
forces
{
 type forces;
 functionObjectLibs ("libforces.dylib");
 outputControl outputTime;
 patches (wing);
 pName p;
 Uname U;
 rhoName rhoInf;
 rhoInf 1.2; //Reference density for fluid
 pRef 0;
 CofR (0 0 0); //Origin for moment calculations
 }

And how the calculation is actually done (1):
OpenFOAM/src/postProcessing/functionObjects/forces/forces/Force.C, lines 393 to 447

Foam::forces::forcesMoments Foam::forces::calcForcesMoment() const
{
 forcesMoments fm
 ...
 {
 const volVectorField& U = obr_.lookupObject<volVectorField>(UName_);
 const volScalarField& p = obr_.lookupObject<volScalarField>(pName_);
 const fvMesh& mesh = U.mesh();
 const surfaceVectorField::GeometricBoundaryField& Sfb =
 mesh.Sf().boundaryField();
 ...

And how the calculation is actually done (1):
OpenFOAM/src/postProcessing/functionObjects/forces/forces/Force.C, lines 393 to 447

Foam::forces::forcesMoments Foam::forces::calcForcesMoment() const
{
 forcesMoments fm
 ...
 {
 const volVectorField& U = obr_.lookupObject<volVectorField>(UName_);
 const volScalarField& p = obr_.lookupObject<volScalarField>(pName_);
 const fvMesh& mesh = U.mesh();
 const surfaceVectorField::GeometricBoundaryField& Sfb =
 mesh.Sf().boundaryField();
 ...
 was read from the controlDict

And how the calculation is actually done (1):
OpenFOAM/src/postProcessing/functionObjects/forces/forces/Force.C, lines 393 to 447

Foam::forces::forcesMoments Foam::forces::calcForcesMoment() const
{
 forcesMoments fm
 ...
 {
 const volVectorField& U = obr_.lookupObject<volVectorField>(UName_);
 const volScalarField& p = obr_.lookupObject<volScalarField>(pName_);
 const fvMesh& mesh = U.mesh();
 const surfaceVectorField::GeometricBoundaryField& Sfb =
 mesh.Sf().boundaryField();
 ...

And how the calculation is actually done (1):
OpenFOAM/src/postProcessing/functionObjects/forces/forces/Force.C, lines 393 to 447

Foam::forces::forcesMoments Foam::forces::calcForcesMoment() const
{
 forcesMoments fm
 ...
 {
 const volVectorField& U = obr_.lookupObject<volVectorField>(UName_);
 const volScalarField& p = obr_.lookupObject<volScalarField>(pName_);
 const fvMesh& mesh = U.mesh();
 const surfaceVectorField::GeometricBoundaryField& Sfb =
 mesh.Sf().boundaryField();
 ...

And how the calculation is actually done (1):
OpenFOAM/src/postProcessing/functionObjects/forces/forces/Force.C, lines 393 to 447

Foam::forces::forcesMoments Foam::forces::calcForcesMoment() const
{
 forcesMoments fm
 ...
 {
 const volVectorField& U = obr_.lookupObject<volVectorField>(UName_);
 const volScalarField& p = obr_.lookupObject<volScalarField>(pName_);
 const fvMesh& mesh = U.mesh();
 const surfaceVectorField::GeometricBoundaryField& Sfb =
 mesh.Sf().boundaryField();
 ...

And how the calculation is actually done (1):
OpenFOAM/src/postProcessing/functionObjects/forces/forces/Force.C, lines 393 to 447

Foam::forces::forcesMoments Foam::forces::calcForcesMoment() const
{
 forcesMoments fm
 ...
 {
 const volVectorField& U = obr_.lookupObject<volVectorField>(UName_);
 const volScalarField& p = obr_.lookupObject<volScalarField>(pName_);
 const fvMesh& mesh = U.mesh();
 const surfaceVectorField::GeometricBoundaryField& Sfb =
 mesh.Sf().boundaryField();
 ...

mesh() has to be a function of the class
volScalarFIeld, returning a reference to the

mesh associated with the field U. But
volScalarField is class template... Where is it?

And how the calculation is actually done (1):
OpenFOAM/src/postProcessing/functionObjects/forces/forces/Force.C, lines 393 to 447

Foam::forces::forcesMoments Foam::forces::calcForcesMoment() const
{
 forcesMoments fm
 ...
 {
 const volVectorField& U = obr_.lookupObject<volVectorField>(UName_);
 const volScalarField& p = obr_.lookupObject<volScalarField>(pName_);
 const fvMesh& mesh = U.mesh();
 const surfaceVectorField::GeometricBoundaryField& Sfb =
 mesh.Sf().boundaryField();
 ...

And how the calculation is actually done (1):
OpenFOAM/src/postProcessing/functionObjects/forces/forces/Force.C, lines 393 to 447

Foam::forces::forcesMoments Foam::forces::calcForcesMoment() const
{
 forcesMoments fm
 ...
 {
 const volVectorField& U = obr_.lookupObject<volVectorField>(UName_);
 const volScalarField& p = obr_.lookupObject<volScalarField>(pName_);
 const fvMesh& mesh = U.mesh();
 const surfaceVectorField::GeometricBoundaryField& Sfb =
 mesh.Sf().boundaryField();
 ...

mesh is object of the class fvMesh.
searching in the Doxygen for this class:

And how the calculation is actually done (1):
OpenFOAM/src/postProcessing/functionObjects/forces/forces/Force.C, lines 393 to 447

Foam::forces::forcesMoments Foam::forces::calcForcesMoment() const
{
 forcesMoments fm
 ...
 {
 const volVectorField& U = obr_.lookupObject<volVectorField>(UName_);
 const volScalarField& p = obr_.lookupObject<volScalarField>(pName_);
 const fvMesh& mesh = U.mesh();
 const surfaceVectorField::GeometricBoundaryField& Sfb =
 mesh.Sf().boundaryField();
 ...

mesh is object of the class fvMesh.
searching in the Doxygen for this class:

And how the calculation is actually done (1):
OpenFOAM/src/postProcessing/functionObjects/forces/forces/Force.C, lines 393 to 447

Foam::forces::forcesMoments Foam::forces::calcForcesMoment() const
{
 forcesMoments fm
 ...
 {
 const volVectorField& U = obr_.lookupObject<volVectorField>(UName_);
 const volScalarField& p = obr_.lookupObject<volScalarField>(pName_);
 const fvMesh& mesh = U.mesh();
 const surfaceVectorField::GeometricBoundaryField& Sfb =
 mesh.Sf().boundaryField();
 ...

And how the calculation is actually done (1):
OpenFOAM/src/postProcessing/functionObjects/forces/forces/Force.C, lines 393 to 447

Foam::forces::forcesMoments Foam::forces::calcForcesMoment() const
{
 forcesMoments fm
 ...
 {
 const volVectorField& U = obr_.lookupObject<volVectorField>(UName_);
 const volScalarField& p = obr_.lookupObject<volScalarField>(pName_);
 const fvMesh& mesh = U.mesh();
 const surfaceVectorField::GeometricBoundaryField& Sfb =
 mesh.Sf().boundaryField();
 ...

Sfb is then a reference to the face area vector of the mesh boundaryField (inlet, outlet,
walls, wing, ...) as it is defined in the mesh and in the boundary files (as p or U)

And how the calculation is actually done (2):

And how the calculation is actually done (2):
OpenFOAM/src/postProcessing/functionObjects/forces/forces/Force.C, lines 461 to 490

 ...
 forAllConstIter(labelHashSet, patchSet_, iter)
 {
 label patchi = iter.key();

 vectorField Md = mesh.C().boundaryField()[patchi] - CofR_;

 vectorField pf = Sfb[patchi]*(p.boundaryField()[patchi] - pRef);

 fm.first().first() += rho(p)*sum(pf);

 fm.second().first() += rho(p)*sum(Md ^ pf);
 ...
 }
 }
 ...
 return fm;
}

And how the calculation is actually done (2):
OpenFOAM/src/postProcessing/functionObjects/forces/forces/Force.C, lines 461 to 490

 ...
 forAllConstIter(labelHashSet, patchSet_, iter)
 {
 label patchi = iter.key();

 vectorField Md = mesh.C().boundaryField()[patchi] - CofR_;

 vectorField pf = Sfb[patchi]*(p.boundaryField()[patchi] - pRef);

 fm.first().first() += rho(p)*sum(pf);

 fm.second().first() += rho(p)*sum(Md ^ pf);
 ...
 }
 }
 ...
 return fm;
}

OpenFOAM iterator, as a ‘for’ cycle.

And how the calculation is actually done (2):
OpenFOAM/src/postProcessing/functionObjects/forces/forces/Force.C, lines 461 to 490

 ...
 forAllConstIter(labelHashSet, patchSet_, iter)
 {
 label patchi = iter.key();

 vectorField Md = mesh.C().boundaryField()[patchi] - CofR_;

 vectorField pf = Sfb[patchi]*(p.boundaryField()[patchi] - pRef);

 fm.first().first() += rho(p)*sum(pf);

 fm.second().first() += rho(p)*sum(Md ^ pf);
 ...
 }
 }
 ...
 return fm;
}

OpenFOAM iterator, as a ‘for’ cycle.

It cycles (using the index ‘iter’) over the objects in the patchSet

And how the calculation is actually done (2):
OpenFOAM/src/postProcessing/functionObjects/forces/forces/Force.C, lines 461 to 490

 ...
 forAllConstIter(labelHashSet, patchSet_, iter)
 {
 label patchi = iter.key();

 vectorField Md = mesh.C().boundaryField()[patchi] - CofR_;

 vectorField pf = Sfb[patchi]*(p.boundaryField()[patchi] - pRef);

 fm.first().first() += rho(p)*sum(pf);

 fm.second().first() += rho(p)*sum(Md ^ pf);
 ...
 }
 }
 ...
 return fm;
}

OpenFOAM iterator, as a ‘for’ cycle.

It cycles (using the index ‘iter’) over the objects in the patchSet

This has been previously defined as the list of the patches on
which we want to integrate forces (coming from the controlDict)

And how the calculation is actually done (2):
OpenFOAM/src/postProcessing/functionObjects/forces/forces/Force.C, lines 461 to 490

 ...
 forAllConstIter(labelHashSet, patchSet_, iter)
 {
 label patchi = iter.key();

 vectorField Md = mesh.C().boundaryField()[patchi] - CofR_;

 vectorField pf = Sfb[patchi]*(p.boundaryField()[patchi] - pRef);

 fm.first().first() += rho(p)*sum(pf);

 fm.second().first() += rho(p)*sum(Md ^ pf);
 ...
 }
 }
 ...
 return fm;
}

And how the calculation is actually done (2):
OpenFOAM/src/postProcessing/functionObjects/forces/forces/Force.C, lines 461 to 490

 ...
 forAllConstIter(labelHashSet, patchSet_, iter)
 {
 label patchi = iter.key();

 vectorField Md = mesh.C().boundaryField()[patchi] - CofR_;

 vectorField pf = Sfb[patchi]*(p.boundaryField()[patchi] - pRef);

 fm.first().first() += rho(p)*sum(pf);

 fm.second().first() += rho(p)*sum(Md ^ pf);
 ...
 }
 }
 ...
 return fm;
}

mesh is object of the class fvMesh

And how the calculation is actually done (2):
OpenFOAM/src/postProcessing/functionObjects/forces/forces/Force.C, lines 461 to 490

 ...
 forAllConstIter(labelHashSet, patchSet_, iter)
 {
 label patchi = iter.key();

 vectorField Md = mesh.C().boundaryField()[patchi] - CofR_;

 vectorField pf = Sfb[patchi]*(p.boundaryField()[patchi] - pRef);

 fm.first().first() += rho(p)*sum(pf);

 fm.second().first() += rho(p)*sum(Md ^ pf);
 ...
 }
 }
 ...
 return fm;
}

mesh is object of the class fvMesh

From the Doxygen then:

And how the calculation is actually done (2):
OpenFOAM/src/postProcessing/functionObjects/forces/forces/Force.C, lines 461 to 490

 ...
 forAllConstIter(labelHashSet, patchSet_, iter)
 {
 label patchi = iter.key();

 vectorField Md = mesh.C().boundaryField()[patchi] - CofR_;

 vectorField pf = Sfb[patchi]*(p.boundaryField()[patchi] - pRef);

 fm.first().first() += rho(p)*sum(pf);

 fm.second().first() += rho(p)*sum(Md ^ pf);
 ...
 }
 }
 ...
 return fm;
}

mesh is object of the class fvMesh

From the Doxygen then:

And how the calculation is actually done (2):
OpenFOAM/src/postProcessing/functionObjects/forces/forces/Force.C, lines 461 to 490

 ...
 forAllConstIter(labelHashSet, patchSet_, iter)
 {
 label patchi = iter.key();

 vectorField Md = mesh.C().boundaryField()[patchi] - CofR_;

 vectorField pf = Sfb[patchi]*(p.boundaryField()[patchi] - pRef);

 fm.first().first() += rho(p)*sum(pf);

 fm.second().first() += rho(p)*sum(Md ^ pf);
 ...
 }
 }
 ...
 return fm;
}

mesh is object of the class fvMesh

From the Doxygen then:

And how the calculation is actually done (2):
OpenFOAM/src/postProcessing/functionObjects/forces/forces/Force.C, lines 461 to 490

 ...
 forAllConstIter(labelHashSet, patchSet_, iter)
 {
 label patchi = iter.key();

 vectorField Md = mesh.C().boundaryField()[patchi] - CofR_;

 vectorField pf = Sfb[patchi]*(p.boundaryField()[patchi] - pRef);

 fm.first().first() += rho(p)*sum(pf);

 fm.second().first() += rho(p)*sum(Md ^ pf);
 ...
 }
 }
 ...
 return fm;
}

mesh is object of the class fvMesh

From the Doxygen then:

The entire expression returns a vector with the cell centres of the
patch that we chosed for integrating forces

And how the calculation is actually done (2):
OpenFOAM/src/postProcessing/functionObjects/forces/forces/Force.C, lines 461 to 490

 ...
 forAllConstIter(labelHashSet, patchSet_, iter)
 {
 label patchi = iter.key();

 vectorField Md = mesh.C().boundaryField()[patchi] - CofR_;

 vectorField pf = Sfb[patchi]*(p.boundaryField()[patchi] - pRef);

 fm.first().first() += rho(p)*sum(pf);

 fm.second().first() += rho(p)*sum(Md ^ pf);
 ...
 }
 }
 ...
 return fm;
}

And how the calculation is actually done (2):
OpenFOAM/src/postProcessing/functionObjects/forces/forces/Force.C, lines 461 to 490

 ...
 forAllConstIter(labelHashSet, patchSet_, iter)
 {
 label patchi = iter.key();

 vectorField Md = mesh.C().boundaryField()[patchi] - CofR_;

 vectorField pf = Sfb[patchi]*(p.boundaryField()[patchi] - pRef);

 fm.first().first() += rho(p)*sum(pf);

 fm.second().first() += rho(p)*sum(Md ^ pf);
 ...
 }
 }
 ...
 return fm;
}

Sfb is the (reference to) the face area vector

And how the calculation is actually done (2):
OpenFOAM/src/postProcessing/functionObjects/forces/forces/Force.C, lines 461 to 490

 ...
 forAllConstIter(labelHashSet, patchSet_, iter)
 {
 label patchi = iter.key();

 vectorField Md = mesh.C().boundaryField()[patchi] - CofR_;

 vectorField pf = Sfb[patchi]*(p.boundaryField()[patchi] - pRef);

 fm.first().first() += rho(p)*sum(pf);

 fm.second().first() += rho(p)*sum(Md ^ pf);
 ...
 }
 }
 ...
 return fm;
}

Sfb is the (reference to) the face area vector

It is here multiplied for the pressure boundaryField => pf returns
the vector of forces insisting on the chosen patch

And how the calculation is actually done (2):
OpenFOAM/src/postProcessing/functionObjects/forces/forces/Force.C, lines 461 to 490

 ...
 forAllConstIter(labelHashSet, patchSet_, iter)
 {
 label patchi = iter.key();

 vectorField Md = mesh.C().boundaryField()[patchi] - CofR_;

 vectorField pf = Sfb[patchi]*(p.boundaryField()[patchi] - pRef);

 fm.first().first() += rho(p)*sum(pf);

 fm.second().first() += rho(p)*sum(Md ^ pf);
 ...
 }
 }
 ...
 return fm;
}

And how the calculation is actually done (2):
OpenFOAM/src/postProcessing/functionObjects/forces/forces/Force.C, lines 461 to 490

 ...
 forAllConstIter(labelHashSet, patchSet_, iter)
 {
 label patchi = iter.key();

 vectorField Md = mesh.C().boundaryField()[patchi] - CofR_;

 vectorField pf = Sfb[patchi]*(p.boundaryField()[patchi] - pRef);

 fm.first().first() += rho(p)*sum(pf);

 fm.second().first() += rho(p)*sum(Md ^ pf);
 ...
 }
 }
 ...
 return fm;
}

Modifying pimpleDyMFOAM for Fluid Structure
 interactions: imposing patch deformations:

Modifying pimpleDyMFOAM for Fluid Structure
 interactions: imposing patch deformations:

Until now, it is easy to impose rigid body movements, in terms of
velocities of displacements

Modifying pimpleDyMFOAM for Fluid Structure
 interactions: imposing patch deformations:

Until now, it is easy to impose rigid body movements, in terms of
velocities of displacements

The solver has then be modified in order to read the cell displacements
from a file, coming from a structural solver

Modifying pimpleDyMFOAM for Fluid Structure
 interactions: imposing patch deformations:

Until now, it is easy to impose rigid body movements, in terms of
velocities of displacements

The solver has then be modified in order to read the cell displacements
from a file, coming from a structural solver

Three modifications:

Modifying pimpleDyMFOAM for Fluid Structure
 interactions: imposing patch deformations:

Until now, it is easy to impose rigid body movements, in terms of
velocities of displacements

The solver has then be modified in order to read the cell displacements
from a file, coming from a structural solver

Three modifications:

1_ In the initial phase an output file is created with the coordinates of the
face-centres of the interface, namely the sail surface. This is used for
calculating the connectivity file

Modifying pimpleDyMFOAM for Fluid Structure
 interactions: imposing patch deformations:

Until now, it is easy to impose rigid body movements, in terms of
velocities of displacements

The solver has then be modified in order to read the cell displacements
from a file, coming from a structural solver

Three modifications:

1_ In the initial phase an output file is created with the coordinates of the
face-centres of the interface, namely the sail surface. This is used for
calculating the connectivity file

2_ Before the mesh update, displacements of the mesh (cells) are read
from a file, which comes from the structural calculation.

Modifying pimpleDyMFOAM for Fluid Structure
 interactions: imposing patch deformations:

Until now, it is easy to impose rigid body movements, in terms of
velocities of displacements

The solver has then be modified in order to read the cell displacements
from a file, coming from a structural solver

Three modifications:

1_ In the initial phase an output file is created with the coordinates of the
face-centres of the interface, namely the sail surface. This is used for
calculating the connectivity file

2_ Before the mesh update, displacements of the mesh (cells) are read
from a file, which comes from the structural calculation.

3_At the end of the routine, pressures at the interface are written to an
output file

1 IOdictionary coupling
2 (
3 IOobject
4 (
5 "CouplingDict",
6 runTime.constant(),
7 mesh,
8 IOobject::MUST_READ,
9 IOobject::NO_WRITE
10)
11);
12
13 word sail=coupling.lookup("wing");
14
15 label sailL = mesh.boundaryMesh().findPatchID(sail);
19
20 const polyPatch &SailMesh=mesh.boundaryMesh()[sailL];
21
22 int nFaces=SailMesh.size()/2;

Output the patch face centres to file /1:

1 IOdictionary coupling
2 (
3 IOobject
4 (
5 "CouplingDict",
6 runTime.constant(),
7 mesh,
8 IOobject::MUST_READ,
9 IOobject::NO_WRITE
10)
11);
12
13 word sail=coupling.lookup("wing");
14
15 label sailL = mesh.boundaryMesh().findPatchID(sail);
19
20 const polyPatch &SailMesh=mesh.boundaryMesh()[sailL];
21
22 int nFaces=SailMesh.size()/2;

Output the patch face centres to file /1:

Opens a Dictionary called
CouplingDict and placed in

Constant, and assigns this object
to the variable “coupling”

1 IOdictionary coupling
2 (
3 IOobject
4 (
5 "CouplingDict",
6 runTime.constant(),
7 mesh,
8 IOobject::MUST_READ,
9 IOobject::NO_WRITE
10)
11);
12
13 word sail=coupling.lookup("wing");
14
15 label sailL = mesh.boundaryMesh().findPatchID(sail);
19
20 const polyPatch &SailMesh=mesh.boundaryMesh()[sailL];
21
22 int nFaces=SailMesh.size()/2;

Output the patch face centres to file /1:

1 IOdictionary coupling
2 (
3 IOobject
4 (
5 "CouplingDict",
6 runTime.constant(),
7 mesh,
8 IOobject::MUST_READ,
9 IOobject::NO_WRITE
10)
11);
12
13 word sail=coupling.lookup("wing");
14
15 label sailL = mesh.boundaryMesh().findPatchID(sail);
19
20 const polyPatch &SailMesh=mesh.boundaryMesh()[sailL];
21
22 int nFaces=SailMesh.size()/2;

Output the patch face centres to file /1:

Searches in the Dict the entry
“wing”, and assigns its (char)

value to the variable “sail”. This
should correspond to a physical

surface in the mesh.

1 IOdictionary coupling
2 (
3 IOobject
4 (
5 "CouplingDict",
6 runTime.constant(),
7 mesh,
8 IOobject::MUST_READ,
9 IOobject::NO_WRITE
10)
11);
12
13 word sail=coupling.lookup("wing");
14
15 label sailL = mesh.boundaryMesh().findPatchID(sail);
19
20 const polyPatch &SailMesh=mesh.boundaryMesh()[sailL];
21
22 int nFaces=SailMesh.size()/2;

Output the patch face centres to file /1:

Searches in the Dict the entry
“wing”, and assigns its (char)

value to the variable “sail”. This
should correspond to a physical

surface in the mesh.

CouplingDict

wing vela;

1 IOdictionary coupling
2 (
3 IOobject
4 (
5 "CouplingDict",
6 runTime.constant(),
7 mesh,
8 IOobject::MUST_READ,
9 IOobject::NO_WRITE
10)
11);
12
13 word sail=coupling.lookup("wing");
14
15 label sailL = mesh.boundaryMesh().findPatchID(sail);
19
20 const polyPatch &SailMesh=mesh.boundaryMesh()[sailL];
21
22 int nFaces=SailMesh.size()/2;

Output the patch face centres to file /1:

1 IOdictionary coupling
2 (
3 IOobject
4 (
5 "CouplingDict",
6 runTime.constant(),
7 mesh,
8 IOobject::MUST_READ,
9 IOobject::NO_WRITE
10)
11);
12
13 word sail=coupling.lookup("wing");
14
15 label sailL = mesh.boundaryMesh().findPatchID(sail);
19
20 const polyPatch &SailMesh=mesh.boundaryMesh()[sailL];
21
22 int nFaces=SailMesh.size()/2;

Output the patch face centres to file /1:

• boundarymesh() is not a member
function of fvMesh, BUT a class
itself. (..?).

1 IOdictionary coupling
2 (
3 IOobject
4 (
5 "CouplingDict",
6 runTime.constant(),
7 mesh,
8 IOobject::MUST_READ,
9 IOobject::NO_WRITE
10)
11);
12
13 word sail=coupling.lookup("wing");
14
15 label sailL = mesh.boundaryMesh().findPatchID(sail);
19
20 const polyPatch &SailMesh=mesh.boundaryMesh()[sailL];
21
22 int nFaces=SailMesh.size()/2;

Output the patch face centres to file /1:

• boundarymesh() is not a member
function of fvMesh, BUT a class
itself. (..?).
• boundaryMesh() is its constructor

1 IOdictionary coupling
2 (
3 IOobject
4 (
5 "CouplingDict",
6 runTime.constant(),
7 mesh,
8 IOobject::MUST_READ,
9 IOobject::NO_WRITE
10)
11);
12
13 word sail=coupling.lookup("wing");
14
15 label sailL = mesh.boundaryMesh().findPatchID(sail);
19
20 const polyPatch &SailMesh=mesh.boundaryMesh()[sailL];
21
22 int nFaces=SailMesh.size()/2;

Output the patch face centres to file /1:

• boundarymesh() is not a member
function of fvMesh, BUT a class
itself. (..?).
• boundaryMesh() is its constructor
• findPatchID is function member of

this class

1 IOdictionary coupling
2 (
3 IOobject
4 (
5 "CouplingDict",
6 runTime.constant(),
7 mesh,
8 IOobject::MUST_READ,
9 IOobject::NO_WRITE
10)
11);
12
13 word sail=coupling.lookup("wing");
14
15 label sailL = mesh.boundaryMesh().findPatchID(sail);
19
20 const polyPatch &SailMesh=mesh.boundaryMesh()[sailL];
21
22 int nFaces=SailMesh.size()/2;

Output the patch face centres to file /1:

1 IOdictionary coupling
2 (
3 IOobject
4 (
5 "CouplingDict",
6 runTime.constant(),
7 mesh,
8 IOobject::MUST_READ,
9 IOobject::NO_WRITE
10)
11);
12
13 word sail=coupling.lookup("wing");
14
15 label sailL = mesh.boundaryMesh().findPatchID(sail);
19
20 const polyPatch &SailMesh=mesh.boundaryMesh()[sailL];
21
22 int nFaces=SailMesh.size()/2;

Output the patch face centres to file /1:

Globally, sailL is the label
(the numbering) of the
surface defined in the

CouplingDict

1 IOdictionary coupling
2 (
3 IOobject
4 (
5 "CouplingDict",
6 runTime.constant(),
7 mesh,
8 IOobject::MUST_READ,
9 IOobject::NO_WRITE
10)
11);
12
13 word sail=coupling.lookup("wing");
14
15 label sailL = mesh.boundaryMesh().findPatchID(sail);
19
20 const polyPatch &SailMesh=mesh.boundaryMesh()[sailL];
21
22 int nFaces=SailMesh.size()/2;

Output the patch face centres to file /1:

1 IOdictionary coupling
2 (
3 IOobject
4 (
5 "CouplingDict",
6 runTime.constant(),
7 mesh,
8 IOobject::MUST_READ,
9 IOobject::NO_WRITE
10)
11);
12
13 word sail=coupling.lookup("wing");
14
15 label sailL = mesh.boundaryMesh().findPatchID(sail);
19
20 const polyPatch &SailMesh=mesh.boundaryMesh()[sailL];
21
22 int nFaces=SailMesh.size()/2;

Output the patch face centres to file /1:

and SailMesh a reference to
the boundary-Mesh defining

the surface in the mesh

1 IOdictionary coupling
2 (
3 IOobject
4 (
5 "CouplingDict",
6 runTime.constant(),
7 mesh,
8 IOobject::MUST_READ,
9 IOobject::NO_WRITE
10)
11);
12
13 word sail=coupling.lookup("wing");
14
15 label sailL = mesh.boundaryMesh().findPatchID(sail);
19
20 const polyPatch &SailMesh=mesh.boundaryMesh()[sailL];
21
22 int nFaces=SailMesh.size()/2;

Output the patch face centres to file /1:

1 IOdictionary coupling
2 (
3 IOobject
4 (
5 "CouplingDict",
6 runTime.constant(),
7 mesh,
8 IOobject::MUST_READ,
9 IOobject::NO_WRITE
10)
11);
12
13 word sail=coupling.lookup("wing");
14
15 label sailL = mesh.boundaryMesh().findPatchID(sail);
19
20 const polyPatch &SailMesh=mesh.boundaryMesh()[sailL];
21
22 int nFaces=SailMesh.size()/2;

Output the patch face centres to file /1:

Sail is function of a template class,
therefore it is multi-purpose, applicable

to different objects.

1 IOdictionary coupling
2 (
3 IOobject
4 (
5 "CouplingDict",
6 runTime.constant(),
7 mesh,
8 IOobject::MUST_READ,
9 IOobject::NO_WRITE
10)
11);
12
13 word sail=coupling.lookup("wing");
14
15 label sailL = mesh.boundaryMesh().findPatchID(sail);
19
20 const polyPatch &SailMesh=mesh.boundaryMesh()[sailL];
21
22 int nFaces=SailMesh.size()/2;

Output the patch face centres to file /1:

Sail is function of a template class,
therefore it is multi-purpose, applicable

to different objects.
It is /2, since the zero thickness surface
is described as a series of superposed

faces

1 IOdictionary coupling
2 (
3 IOobject
4 (
5 "CouplingDict",
6 runTime.constant(),
7 mesh,
8 IOobject::MUST_READ,
9 IOobject::NO_WRITE
10)
11);
12
13 word sail=coupling.lookup("wing");
14
15 label sailL = mesh.boundaryMesh().findPatchID(sail);
19
20 const polyPatch &SailMesh=mesh.boundaryMesh()[sailL];
21
22 int nFaces=SailMesh.size()/2;

Output the patch face centres to file /1:

23
24 std::ofstream myfile;
25 myfile.open ("FluidMesh_centres.txt", std::ios::app);
26
27 myfile<<nFaces<<"\n";
28 for (int n=0; n<nFaces; n++)
29 {
30 myfile<<SailMesh.faceCentres()[n][0]<<
 " " <<SailMesh.faceCentres()[n][1]<<
31 " " << SailMesh.faceCentres()[n][2]<<"\n";
32 }
33
34 myfile.close();

Output the patch face centres to file /2:

23
24 std::ofstream myfile;
25 myfile.open ("FluidMesh_centres.txt", std::ios::app);
26
27 myfile<<nFaces<<"\n";
28 for (int n=0; n<nFaces; n++)
29 {
30 myfile<<SailMesh.faceCentres()[n][0]<<
 " " <<SailMesh.faceCentres()[n][1]<<
31 " " << SailMesh.faceCentres()[n][2]<<"\n";
32 }
33
34 myfile.close();

Output the patch face centres to file /2:

faceCentres() is again a template
function, applied here to an object of
the class boundaryMesh, it returns the
vector (x,y,z) with the coordinates of

the centres of the mesh faces

23
24 std::ofstream myfile;
25 myfile.open ("FluidMesh_centres.txt", std::ios::app);
26
27 myfile<<nFaces<<"\n";
28 for (int n=0; n<nFaces; n++)
29 {
30 myfile<<SailMesh.faceCentres()[n][0]<<
 " " <<SailMesh.faceCentres()[n][1]<<
31 " " << SailMesh.faceCentres()[n][2]<<"\n";
32 }
33
34 myfile.close();

Output the patch face centres to file /2:

faceCentres() is again a template
function, applied here to an object of
the class boundaryMesh, it returns the
vector (x,y,z) with the coordinates of

the centres of the mesh faces

The operator [] is used in C++ for
accessing the vector entries

23
24 std::ofstream myfile;
25 myfile.open ("FluidMesh_centres.txt", std::ios::app);
26
27 myfile<<nFaces<<"\n";
28 for (int n=0; n<nFaces; n++)
29 {
30 myfile<<SailMesh.faceCentres()[n][0]<<
 " " <<SailMesh.faceCentres()[n][1]<<
31 " " << SailMesh.faceCentres()[n][2]<<"\n";
32 }
33
34 myfile.close();

Output the patch face centres to file /2:

Read the cell displacements from file /1:
 #include "readCellDisp.h"

 volVectorField::GeometricBoundaryField &meshDisplacement =

 const_cast<volVectorField&>

 (mesh.objectRegistry::lookupObject<volVectorField>("cellDisplacement"))

 .boundaryField();

Read the cell displacements from file /1:
 #include "readCellDisp.h"

 volVectorField::GeometricBoundaryField &meshDisplacement =

 const_cast<volVectorField&>

 (mesh.objectRegistry::lookupObject<volVectorField>("cellDisplacement"))

 .boundaryField();

Searches in the objectRegistry of the
mesh the entry “cellDisplacement”,

which is an object of the class
volVectorField

ObjectRegistry is function member of
the class fvMesh

Read the cell displacements from file /1:
 #include "readCellDisp.h"

 volVectorField::GeometricBoundaryField &meshDisplacement =

 const_cast<volVectorField&>

 (mesh.objectRegistry::lookupObject<volVectorField>("cellDisplacement"))

 .boundaryField();

Searches in the objectRegistry of the
mesh the entry “cellDisplacement”,

which is an object of the class
volVectorField

ObjectRegistry is function member of
the class fvMesh

From the cellDisplacement vector, searches the
entries corresponding to the boundaryField (inlet,

outlet, walls, sail...)

Whatever is returned, forces it to be a
reference to a volVectorField.

We have then the address in the
computer memory where

displacements of the boundary field
cells are stored

Read the cell displacements from file /1:
 #include "readCellDisp.h"

 volVectorField::GeometricBoundaryField &meshDisplacement =

 const_cast<volVectorField&>

 (mesh.objectRegistry::lookupObject<volVectorField>("cellDisplacement"))

 .boundaryField();

Searches in the objectRegistry of the
mesh the entry “cellDisplacement”,

which is an object of the class
volVectorField

ObjectRegistry is function member of
the class fvMesh

From the cellDisplacement vector, searches the
entries corresponding to the boundaryField (inlet,

outlet, walls, sail...)

Read the cell displacements from file /1:
 #include "readCellDisp.h"

 volVectorField::GeometricBoundaryField &meshDisplacement =

 const_cast<volVectorField&>

 (mesh.objectRegistry::lookupObject<volVectorField>("cellDisplacement"))

 .boundaryField();

Read the cell displacements from file /1:
 #include "readCellDisp.h"

 volVectorField::GeometricBoundaryField &meshDisplacement =

 const_cast<volVectorField&>

 (mesh.objectRegistry::lookupObject<volVectorField>("cellDisplacement"))

 .boundaryField();

label fluidSideI = mesh.boundaryMesh().findPatchID(sail);

const polyPatch &fluidMesh=mesh.boundaryMesh()[fluidSideI];

labelList interfacePointLabels = mesh.boundaryMesh()[fluidSideI].meshPoints();

vectorField &mDisp=refCast<vectorField>(meshDisplacement[fluidSideI]);

Read the cell displacements from file /2:

We need now to find the adress of the moving patch
(identified by the variable “sail”) in the global

cellDisplacement Boundary-Field

std::ifstream fin("Cell_Displ_out");
int pSize=fluidMesh.size();
vector move;
fin>>pSize;

double u;
double v;
double w;

List<vector> dispVals(fluidMesh.size());

Read the cell displacements from file /3:

Read the cell displacements from file /3:

Read the cell displacements from file /3:

forAll(fluidMesh,i) {
 fin >> u;
 fin >> v;
 fin >> w; // Values from the structrual solver

 dispVals[i][0]=u;
 dispVals[i][1]=v;
 dispVals[i][2]=w;

 vector dd = dispVals[i];;

 mDisp[i]=dd;
 }

