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Empirical Models for Cyclic Voltammograms

by Jeffrey Joseph Samuel

Technological devices such as mobile phones and laptop computers have created an
immense demand for efficient and long lasting power sources such as Lithium-ion
batteries. Key to improving the current generation of batteries is the understanding
of Lithium based materials that are suitable for use in batteries. Researchers inves-
tigating battery materials often plot the output from their experiments as a cyclic
voltammogram. A voltammogram is simply a plot of Current against Potential.

In this thesis we investigate a range of empirical models for cyclic voltammograms
with a Bayesian perspective, using data from experiments carried out in the School
of Chemistry, University of Southampton. This work is motivated by the lack of well
formulated mathematical models for cyclic voltammograms involving a Lithium-ion
compound. By setting the models within a Bayesian framework, we are able to
obtain posterior predictive distributions for characteristics of the voltammogram of
interest to chemists.

Markov Chain Monte Carlo sampling methods are used to explore the posterior
distribution of the model parameters and to estimate the posterior predictive distri-
butions. We investigate four methods of modelling the experimental data: multiple
regression models for summary statistics, autoregressive models, sinusoidal models
and stochastic volatility models. The application of Bayesian model choice tech-

niques showed that the sinusoidal model provided the best description of the data.
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Chapter 1

Introduction

1.1 Motivation

Advances in technological devices have created an immense demand for efficient
battery power sources as demonstrated by the development of mobile phones and
laptop computers. If battery power sources had not been improved, mobile phones
would still be of a similar size as those in the 1980s. An example of an advancement is
the development of the Lithium-ion (Li-ion) battery. Without this development, the
invention of the laptop computer would not have been brought to fruition. However,
there are still improvements to be made. An example of this is to extend the length
of time a mobile phone or laptop computer can be used before the battery requires
re-charging. The Li-ion battery is the type of battery use in the majority of mobile
phones and computer laptops.

Chemists have a keen interest in furthering their knowledge about the chemical
compositions used in batteries, especially Lithium based compositions. It would
therefore be beneficial to the chemists if they had a model that could predict various
characteristics about the Current obtained from a given chemical composition. At

present there is no well formulated mathematical model available for Current as



1. Introduction 2

Potential varies over time. An alternative is to use experimental data to produce an
empirical model, for example using time series analysis with a Bayesian perspective.
Once we have chosen a model to use, it will then be possible to estimate particular
characteristics of the Current output curve. These characteristics are described in

Section 1.4.

1.2 The Experiment

The experiment described in this section is part of the Combechem e-Science project
(see www.combechem.org for further details). The experiment was carried out by
the Solid State Electrochemistry Group (referred to as the chemists henceforth) at
the University of Southampton. The purpose of this experiment was to explore
how Carbon affects the electrical output of battery power sources. The experiment
involved an 8 x 8 array of electrodes (or channels) shown in the left-hand panel in
Figure 1.1. The middle panel in Figure 1.1 shows a side view of the array and the

cell fully assembled is shown in the right-hand panel.

Figure 1.1: Equipment used in the experiment.

Sixty-three electrodes were coated with a chemical composition and the remaining
electrode was used as a reference electrode. Sixteen arrays can be run in parallel
which gives the capacity to study sixteen arrays each using sixty-three electrodes,

giving the capacity to examine 1008 individual electrodes of different chemical com-
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positions. The composition has three components, namely Acetylene Black (a pure
fine powdered Carbon), which conducts the Current and is called Carbon hence-
forth, Active (Lithium Manganese Oxide, LiMnyO4) which stores the energy, and
Binder which binds the Carbon and Active together.

The array of electrodes forms part of a circuit in which the Potential is varied
throughout the experiment. The Potential, measured in Volts (V), is applied to
the entire array and is varied between 3.20V and 4.50V since this is the chemists’
range of interest. The experiment is started by setting the Potential at 3.20V and
increasing it until it reaches 4.50V. The Potential is then decreased from 4.50V
back to 3.20V, which defines one complete cycle. The rate at which the Potential
is increased or decreased is called the scan rate and is measured in millivolts per
second (mVs™'). In the experiment discussed in this thesis, three different scan
rates were used: 0.05 mVs™', 0.10mVs ™' and 0.20mVs™" (referred to as scan rates
1, 2 and 3 respectively).

The Current is a measure of the amount of electric charge passed through the elec-
trode per second and is measured in milliamps (mA). The Current characterises how
fast the electrode can adapt to the new Potential supplied. The Potential and Cur-
rent are measured every 10 seconds. A burn-in cycle is the length of time required
for the equipment to settle down before the output produced from the experiment

is stable. Therefore, the burn-in cycle is removed before carrying out any analysis.

In the experiment, the percentage of Carbon was varied across the array. The
Carbon levels used were 0%, 1%, 2%, 3%, 5%, 7%, 10% and 20%. Seven channels
were allocated a Carbon level of 0% and eight channels were allocated to each of
the remaining Carbon levels. The level of Binder was set at 10% and the amount of
Active was set at 100(0.9-¢)% where ¢ is the proportion of Carbon used.

For scan rates 1, 2 and 3 we have 2, 3 and 4 replications, respectively. Each replica-

tion consisted of two complete cycles which can be used for data analysis. Thus the



1. Introduction 4

total experiment consisted of 19 cycles. The order in which the the scan rates were
run was randomised (see Table 1.1) so that any systematic variation in the output
from the experiment was avoided.
R | 1|2 ]3| a|s o] 7|80
Scan Rate (s) ‘ 0.10 ‘ 0.20 ‘ 0.10 ‘ 0.20 ‘ 0.05 ‘ 0.20 ‘ 0.05 ‘ 0.10 ‘ 0.20

Table 1.1: Order in which the scan rates were run.

As the scan rate increases, the time taken to complete one cycle decreases. This
is because we are increasing or decreasing the Potential from 3.20V to 4.50V via
different scan rates. A cycle for scan rate 1 takes approximately 14 hours, for scan

rate 2 it takes approximately 7 hours and for scan rate 3 it takes approximately 3.5

hours.
Column Number Column Number
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Figure 1.2: Channel numbers (right) and their Carbon allocation (left). The empty

circle represents the reference electrode.

The row and column number for each electrode in the array were recorded and
allocated a Carbon level at random. This randomisation is to avoid any systematic
error occurring. For example, if all the channels with Carbon set at 1% were along

one edge of the array and some edge effect existed, then the results from these
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channels could produce incorrect results. The grids of the channel numbers and
Carbon allocation are shown in Figure 1.2.

The output values of the Current for each time index from each channel are extremely
small and were scaled up by a factor of 10° so that they are measured in nano-amps.
From herein, Current will be the original Current multiplied by 10°. This also makes
the analysis easier as it avoids underflow in the computation.

The time index is denoted by T. Let T, denote the time elapsed in seconds since
the start of the run (see Table 1.2). An observation on Current is made every 10
seconds.

Let ys4x(T) denote the observed Current at the T time point, for Carbon level
k=1,2,...,8 scan rate s = 1,2,3 and channel ¢ = 1,2, ...,63. Note each run has
a different scan rate s, see Table 1.1. The Potential at the T*" observation for scan

rate s is denoted by ps(T).

Scan Rate

Rate 1 Rate 2 Rate 3
T T, T T, T T,
1 10 1 10 1 10
2 20 2 20 2 20
3 30 3 30 3 30

1300 | 13000
2600 | 26000

5200 | 52000

Table 1.2: Time elapsed, T, in seconds, since the start of the run with corresponding

time index, 7', for each of the three scan rates.
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e 1l2]s]a]s]o] 7] s
Percentage [0 | 1|2 |3 |5 |7 |10 20
of Carbon

Table 1.3: Percentages of Carbon with index k.

1.3 Voltammogram

80
1

60

20

Current

-20
1

T T T T T T T
3.2 3.4 3.6 3.8 4.0 4.2 4.4

Potential (in Volts)

Figure 1.3: Voltammogram from the experiment using scan rate 2 and Carbon at

10%.

A plot of Current against Potential, known as a voltammogram, is often used to
visualise output from many electrochemistry experiments such as the one described

above. An example of a voltammogram is given in Figure 1.3 which shows one
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complete cycle. Recall that for one complete cycle the Potential is started at 3.20V,
is increased to 4.50V and is decreased to 3.20V according to the scan rate. For the
voltammogram shown in Figure 1.3, we start at the point where the Potential is
3.20V and the Current is approximately zero. We follow the graph in a clockwise
direction until we return to the starting point. It should be noted that at the start of
a cycle the Current will not necessarily start at approximately zero due to possible

experimental error.

Current
-20 20 40 60 80
L L L L 1

—40
|

0 5000 10000 15000 20000 25000

Figure 1.4: Plot of Current as a time series from the experiment using scan rate 2

and Carbon at 10%, where elapsed time 7, is measured in seconds.

Instead of plotting Current against Potential, an alternative is to plot the Current
as a time series, as shown in Figure 1.4. When viewing the data in this fashion the
task of building a model becomes easier.

We analyse the data from each of the three scan rates separately because the three
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time series (as shown in Table 1.2) have different lengths (5200, 2600 and 1300).

The ideal situation would be to have a joint multivariate analysis of the data from
the three different scan rates. It may be feasible to construct a hierarchical model
for the data from all the different scan rates. However, in this thesis we analyse the
data from the three different scan rates separately to avoid the issue of temporal
misalignment. We concentrate mainly on the data from scan rate 2 because there

were fewer malfunctioning channels (as discussed with the chemists).

1.4 Characteristics of Voltammograms

In this section we describe the characteristics of a voltammogram which are of
scientific interest to the chemists. These are defined for a typical voltammogram
which arises from a single channel, for a given scan rate, s, and a given Carbon
level, k. The features are of value to the chemists because they provide information
on the conditions where an experimental battery provides, for example, the greatest
output of Current.

The definitions are given in Table 1.4 in simple terms, and are illustrated in Figures
1.5 and 1.6. We return to the characteristics in Section 2.4, where they are defined

more formally and applied to the experiment.
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Characteristic Symbol | Definition
Minimum Ps(f,?in) The Potential value that produces the Mini-
Potential mum Current.
Minimum Time Ts(zlin) The time index where the Minimum
Current occurs.
Minimum I S(fzin) The smallest value of the observed Current.
Current
Peak Potential Ps(’r,?ax) The Potential value that produces the Peak
Current.
Peak Time Ts(f,?ax) The time point where the Peak Current occurs.
Peak Current Ig,':ax) The maximum value of the observed Current.
Peak Separation Ps(f;p) The difference between the Peak Potential and
in Potential the Minimum Potential.
Peak Separation Ts(f,:p) The difference between the Peak Time and the
in Time Minimum Time.
Peak Separation | / S,jp ) The difference between the Peak Current and
in Current the Minimum Current.
Peak Width in Ps(f,:id) The difference between the first and the last
Potential value of Potential when the Current is at half
its observed maximum value.
Peak Width in TSZid) The difference between the first and the last

Time

time when the Current is at half its observed

maximum value.

Table 1.4: Characteristics and their symbols for a voltammogram where subscripts

s and k are the scan rate and the level (proportion) of Carbon respectively. The

superscript min, max, sep or wid is according to whether the characteristic is a

minimum, a maximum, a separation or a width respectively. These characteristics

are shown graphically in Figures 1.5 and 1.6.
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Figure 1.5: Characteristics of interest in a voltammogram.
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Figure 1.6: Characteristics of interest in a time series representation of a voltam-

mogram, where 7, is the elapsed time measured in seconds.
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1.5 Literature Review of Cyclic Voltammogram

Models

There are a number of articles that have proposed models for cyclic voltammograms
which have arisen from a variety of different experiments, for example, see Lundquist
et al. (2001), Lovric and Scholz (2003), Novak et al. (2001), Myland and Oldham
(2002a) and Myland and Oldham (2002b). We were informed by the chemists that
these were the most relevant papers for their experimental data. However, as will
be highlighted, the models proposed in these articles are not suitable for statistical
analysis for a variety of reasons.

Before we comment on the model proposed in Myland and Oldham (2002a), we
present the model, highlighting the key equations. Further, we note that we follow
the notation used in Myland and Oldham (2002a). The authors point out that the

key relationship is embodied by the equations

E(t) = E(<0)+v(trey = [trev — 1)) (1.1)

E(t) = E(<0) = Teone(t) + N (1) + Monen (8) + 105m (£) + miGym (1), (1.2)

where v is the scan rate, t is the time in seconds and t., is the reversal time.
The formal definition for the reversal time is given by (1.15). At each time ¢, the
true Potential is F(t) which is given by (1.1), and E(< 0) is the resting electrode
Potential, that is the Potential of the electrode before the experiment has started.
Equation (1.2) shows the difference between the true Potential at time ¢ and the

resting Potential, E(< 0). F(< 0) is given by the Nernst’s relationship

RT 2
E(<0)=E°+—1 PA 1.3
(<O =£+ Tn{ B 13

where the following are taken to have known values:
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E* is standard Potential and, when multiplied by Faraday’s Constant, it is
equal to the Gibbs energy that accompanies a chemical reaction described in

Myland and Oldham (2002a, Section 3),

T is Temperature in Kelvin, R denotes the gas constant and F' denotes Fara-

day’s constant.

The concentration coefficients ¢y and cpa used in Equation (1.3) are given by

e = 8 cp, (1.4)
N
(1.5)
and
b orig
céaé N
= =1 -1 1 1.6
CpA 5 +4/1+ s | (1.6)

where £ = exp {W}. The original concentration coefficients ¢3'® and ¢,
and hence cps and ¢y are assumed to have known values.
We are now able to return to Equations (1.1), (1.2) and define the notation used in

these equations as set out in Myland and Oldham (2002a).

RT cpa(0,t)cpa(Z; t)en(0,0)cca(Z,0)
conc t = 1 1.7
Ul ( ) F l’l{ c}%A(O,O)CN(O,t)CCA(Z>t) ( )
I(t)RT 7z
- d 1.8
Tobm (1) F2A(Dp + D3®) /0 cpa(z,1) ’ -
I(t)RT Bt 1
“ d 1.
nohm( ) FZA(DC + qu) ~/Z CCA(Z,t) < ( 9)
RT(Dp — D) {CPM t>}

- | 1.10
nasym F(DP + DoArg) CPA(Oa t) ( )
o BT = DY) {cm(zref»t)} (1.11)

= Do+ D) M ena(Z0) |
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where:

](t) X @4{1, DNt}

en(0,t) = o — Az , (1.12)

cpalz,t) = CPA(0,0)+%ZP‘})OA@{ ()><94{;Z D;;“H,
O i

cealz,t) = ch—%/_g%l [\I/(—t_)exp{_gfl);(jy}], (1.14)

O4(¢,7) = 1+22 I cos(2jm¢) exp(—j2m2T).

Note that cpa(0,0) = cpa and ex(0,0) = en. The constants listed below, as defined
in Myland and Oldham (2002a), used in Equations (1.7)-(1.14) are assumed to have

known values.

The diffusion coefficients Dy, Dp and D3®. As a consequence Dpy can also

be calculated since:
2DpDY®

Dpy = ————.
T De DY®

The diffusion coefficients D¢ and D3". As a consequence Dy can also be

calculated since:
2Dc DY

Doy = —2C7A
A~ D¢+ D%

The area of the electrode denoted by A and the width of the organic layer (see
Figure 1.7).

Z is defined to be the distance between the working electrode and the end of
the organic layer (see Figure 1.7).

Zgep 1s defined to be the distance between the working electrode and the end

of the depletion zone (see Figure 1.7).
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Zvet 18 defined to be the gap between the working electrode and the reference

electrode (see Figure 1.7).
z is defined to be the distance from the working electrode (see Figure 1.7).

The reversal Potential is denoted by E.., and the reversal time is given by

E... — E(<0)

. . (1.15)

I(t) is a guess of the Current at time ¢.

74
5]
reference 2
[ ] — '-Z £
electrode @ re
2
8 1 Zdep
ST
depletion =
ol |
organic
layer
‘ Lo
working
electrode
——
A

Figure 1.7: Schematic from Myland and Oldham (2002a) showing the construction

of their cell and the definitions of the different distances used in their model.

The difference between E(t) and E(< 0) is denoted by ¢, and is given by
€ = Neonc(l) + ng;%n(t) + Ugéﬁm(t) + Uizym(t) — U (trey — ltrev — t]) - (1.16)

The sign and magnitude of £ are used to refine the guess of I(¢). If the mth guess
for the Current, I,,, gives a difference ¢, and the (m + 1)th guess, I,, 41, is still

unsatisfactory, giving an offset of €,,,1, then the (m 4 2)th guess is set to

I o Imsm—‘rl - Im—i—lam
m+2 — .
Em+1 — Em
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In general, the difference £ in Equation (1.16) has to be less than 1 micro-Volt for
the difference to be acceptable.

The experiment in Myland and Oldham (2002a) differs from ours as they are using
a solution and our experiment is solid state based. In solution, reactions occur much
more quickly and experiments take approximately a minute to execute. In a solid,
reactions occur much more slowly, hence experiments take much longer to run. As
a consequence, the diffusive and concentration coefficients will differ significantly.
We would therefore have to treat the diffusive and concentration coefficients as
unknowns in our application. We were also informed by the chemists that, even if
we had estimates of these coefficients, the model would be inaccurate because of
the quicker reaction times in liquid compared to solids. One criticism of the model
is that there is no formal way of using empirical evidence for the initial guess of
I(t). Further, as this model has no error structure, modelling the underlying error
that is present in most, if not all experiments, leads to the belief that this model is
inappropriate.

Lundquist et al. (2001) only consider the discharge part of the cycle. This approach
is fine if the objective is to analyse the characteristics that occur in the discharge
process. However we are concerned with a variety of characteristics that occur
throughout a full cycle. In addition, the authors are trying to adapt what happens in
solution to solid materials. This approach is not necessarily the best as information
from one type of experiment is used to model data from another type of experiment.
The model proposed in Novak et al. (2001) is used to estimate the diffusion coefficient
of Lithium in LiMnyOy4 (which measures the movement of Lithium). The authors
only consider using their model to simulate the discharge part of the cycle. In

addition, the authors only consider a Carbon loading (i.e proportions) of 18.4%.

In conclusion, we have been unable to find a model that incorporates different Car-

bon loadings into the current array of cyclic voltammogram models. Also, there
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is no possibility of incorporating previous scientific knowledge into these models.
The chemists also informed us that none of the models presently available in the
literature are suitable for adaptation to our experiment. A further criticism, is that
there is no consideration to account for the random error that is present in all exper-
iments. It should also be noted that it is not possible to predict the characteristics
of interest using these models. In fact, we have been unable to find any article that
considers finding predictive distributions for different characteristics for the battery
experiments.

The statistical models that we investigate in this thesis are purely empirical and are
not based on physical properties of Lithium-ion batteries. In theory, models based
on physical characteristics will perform better than the proposed empirical ones.
However, the models based on physical characteristics reviewed in this section do

not account for experimental error, forcing us to take the empirical modelling route.

1.6 Context of Project

The work presented in this thesis is part of the Combechem e-Science project. The
raw data was obtained from experiments that were conducted by Alan Spong and
post-doc Girts Vitens who provided information about the important characteristics
of the voltammogram and definitions of the characteristics. We were also informed
by Girts Vitens which characteristics were of particular importance. The concept of
being able to calculate the posterior predictive distributions of these characteristics
was of particular interest to them. Through regular meetings, especially with Girts
Vitens, we discussed results and received feedback. We discussed the validity of the
analysis conducted in Chapter 2 and output obtained from the models investigated,
as well as the conclusions reached in Chapters 5, 6, 7 and 8. Further to this, they

also gave direction on the current literature for modelling cyclic voltammograms. It
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should be noted that neither were involved in the formal supervision process.

In our discussions with the chemists, they were unable to provide us with values for
the prior distributions used in the models proposed in this thesis (see Section 3.2.1
for a detailed exposition about prior distributions). Also, the models examined in
Chapters 6, 7 and 8 are purely empirical and are not based on physical properties
of Lithium. They have not been used before to model data generated from experi-
ments such as that described in Section 1.2. As a result, we were unable to obtain
knowledge to inform prior distributions for analysing the data in this thesis. This

led to the use of vague prior distributions.

1.7 Objectives

There are a number of specific attributes of the voltammogram that are of interest
to the chemists which have particular meaning in Chemistry (these characteristics
are defined in Table 1.4). The primary objective of the chemists was to find out
if a systematic approach could be developed for analysing the data from their ex-
periments that would estimate these characteristics and quantify the uncertainty
of these estimates. Our objective was, by adopting the time series plot of Current
(Figure 1.4) to develop an empirical statistical model and thus obtain posterior pre-
dictive distributions for not only the characteristics of interest defined in Table 1.4
but also any other attributes. Therefore, we can satisfy the primary objective of the
chemists by developing an appropriate empirical model from which we can obtain
posterior predictive distributions for the characteristics. From these posterior pre-
dictive distributions we can provide estimates for the characteristics of interest and
probabilistic statements quantifying the uncertainty of these estimates. It should
be noted that the methodology developed in this thesis can be adapted to obtain
posterior predictive distributions for any other characteristics of interest which may

be proposed in the future.
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1.8 Choice of Model

The task of modelling the data becomes easier by thinking of the data as a time
series. There is a vast literature on the choice and complexity of time series models
that can be used in any practical application. Often, a very simple model is fitted
at the start of an investigation. Additional features are introduced if the simple
model is not found to be adequate for the data; and this process is repeated. Thus,
a model that is found to fit the data poorly is replaced by an entirely different type
of model. Alternatively, a modification to the model that is being applied could also
be considered. When considering how many parameters to include in the model,
there are various model choice criteria that can be used, see Section 3.7.

The initial time series model that we will use is an autoregressive process (AR pro-
cess), see Section 6.2 for more details. The reason for considering an autoregressive
process is based on the chemists’ belief that the present value of the Current is de-
pendent upon the recent previous values of the Current. The choice of the number
of past values of the Current (or previous values of the Current) to be used in the
autoregressive process will also be discussed in Section 6.2. The complexity of the
model will be increased by incorporating additional variables into the model. We
will also fit a model based on a Fourier series as this should model the sinusoidal
behaviour of the data shown in Figure 1.4. The complexity of the model will be in-
creased by attempting to model the variance. Our aim is to produce a parsimonious

model which will be used to make predictive inferences.

1.9 Overview of the Thesis

In this chapter, we have discussed the motivation for this thesis and provided a
synopsis of the experiment that gave rise to the data set. In Chapter 2, we carry

out exploratory analyses of the data sets.
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In Chapter 3 we review Bayesian methodology and techniques that will be used
to make predictive inferences. Essential to Bayesian methodology is the posterior
distribution which will be used in the analysis carried out in Chapters 5, 6, 7 and
8. In Chapter 4, we combine Bayesian methodology with the definitions of the
characteristics in Chapter 2 to derive posterior predictive distributions for each of
the characteristics of interest.

In Chapter 5, we analyse the summaries of the characteristics by fitting regression
models. In Chapters 6, 7 and 8 we propose three different modelling strategies for
the full current output curve. In each of these chapters we obtain the best model
and discuss the posterior predictive distributions of the characteristics of interest
under the best model.

In Chapter 9 we compare the various models developed in Chapters 5-8. In this
comparison we will include a discussion of the advantages and disadvantages of
the different techniques used to model the data. Finally, we conclude with some

discussions for possible improvements and future work.



Chapter 2

Exploratory Data Analysis

2.1 Introduction

The purpose of this chapter is to explore the data set. For brevity, we will show
the full exploratory analysis for the second replication of scan rate 2. A similar
analysis was also conducted for the second replication of scan rate 1 and scan rate
3. The data from these replications have been chosen since there is no evidence of
the instrumentation malfunctioning in these cases.

The size of the data set and the second replication of the scan rate is still large for
modelling purposes. One of the aims of this chapter is to reduce the size of the
data set further to lessen the computational burden. If we did not reduce the size
of the data set we would have to analyse 63 different time series where each time
series has length between 1250 and 5200. This would require a substantial amount
of computation time to fit the models and perform inference for the characteristics
of interest. Reduction in computation time would also make it more practical to fit
more complex models.

In the exploratory analysis, any malfunctioning channels are removed from the data

set so that the results and inferences are not biased.
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2.2 Exploratory Analysis

Plots of the Current against time for each channel, for replicate 2 of scan rate 2 can
be found in Figures 2.1-2.8. From these time plots, it is clear that as the percentage
of Carbon increases, the profile of the Current output curve becomes much more
pronounced. According to the chemists, the Current output curve is expected to
look like the curve shown in the plot shown in Figure 1.4. A similar descriptive
analysis for each of the scan rates 1 and 3 was completed and similar results were
observed.

One of the anomalies from the data is the occasional spikes that occur. The spikes
occur when the instrument used to measure the Potential becomes unstable. The
home made instrumentation used in the experiment is complex and not very stable.
Another reason for the spikes is that the thin Lithium branches on the electrode
surface may cause a short in the circuit which could cause a sudden increase in
the Current. Therefore, it has been advised by our collaborative chemists that the
data must be smoothed in some manner so that these anomalies do not affect the
analysis.

When Carbon is set at 0%, we expect to see a flat line with Current having a value
of approximately zero, see Figure 2.1. This is the expected pattern as there is no
Carbon present to form a path to enable the Current to pass through the electrode.
At 1% Carbon, we have observed much more variation. The time series plots of
channels 10, 35, 38 and 63 in Figure 2.2 show a fairly flat pattern with very small
deviations about zero. The other four channels show some characteristics of the
time series curve that we expect with higher proportions of Carbon. When the
Carbon percentage is increased to 2% the variation is reduced with only channels
12, 16 and 41 showing departure from the expected pattern exhibited by the time
series of the other channels shown in Figure 2.3. When Carbon is set at 3% there

are no outliers but the spikes still occur occasionally. The plots shown in Figure 2.5
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show that channel 55 is the only channel that does not follow the pattern exhibited
by the other channels when the proportion of Carbon is 5%. Analysing the time
series plots for 7% Carbon shown in Figure 2.6, it can be gleamed that there are two
channels showing abnormal behaviour, namely channels 22 and 40. The plots with
10% Carbon show that channel 15 is the only channel exhibiting departure from the
behaviour indicated by the rest of the plots in Figure 2.7. From the time series plots
with 20% Carbon, shown in Figure 2.8, we can clearly see that channel 48 exhibits
behaviour different from the other channels shown. In Section 2.3, we discuss how

we dealt with malfunctioning channels, such as channel 48.
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Figure 2.1: Time series plots of Current (original Currentx10°), with Carbon set at

0% and scan rate 2, where elapsed time T, is measured in seconds.
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Figure 2.2: Time series plots of Current (original Currentx10°%), with Carbon set at

1% and scan rate 2, where elapsed time T, is measured in seconds.
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Figure 2.3: Time series plots of Current (original Currentx10°), with Carbon set at

2% and scan rate 2, where elapsed time T, is measured in seconds.
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Figure 2.4: Time series plots of Current (original Currentx10°), with Carbon set at

3% and scan rate 2, where elapsed time T, is measured in seconds.
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Figure 2.5: Time series plots of Current (original Current x10°), with Carbon set

at 5% and scan rate 2, where elapsed time 7T}, is measured in seconds.
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Figure 2.6: Time series plots of Current(original Currentx10°), with Carbon set at

7% and scan rate 2, where elapsed time 7T}, is measured in seconds.
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Figure 2.7: Time series plots of Current (original Currentx10°), with Carbon set at

10% and scan rate 2, where elapsed time 7T, is measured in seconds.
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Figure 2.8: Time series plots of Current (original Currentx10%) with Carbon set at

20% and scan rate 2, where elapsed time T, is measured in seconds.
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2.3 Data Aggregation

As highlighted in Section 2.2, the Current output contains randomly occurring
spikes. It is important to note that the spikes will not necessarily occur at a sin-
gle time point. The effect of the spike could affect several consecutive time points,
although this is unlikely to happen. The length of time that the spike will last or
the probability of the spikes occurring cannot be calculated or quantified. As far as
we are concerned, the occurrence of these spikes is unpredictable. To remove these
fluctuations a smoothing process may be applied to the time series. It should be
noted that a smoothing process is not the only possibility. The data can be trans-
formed in a variety of ways, for example using the logarithmic scale or square root
transformations, for example, see Chatfield (2003, Chapter 2).

While smoothing the data, it is vital that important characteristics of the data are
retained in the transformed time series. We will calculate the mean of every five
time points to form a new smoother time series, see Equation (2.1). This shortens
the length of the time series to one fifth of the original time series. This will reduce
the computation time required to analyse the data. In Figure 2.9 it can be seen that
the effect of the spikes has been mostly removed. In addition, Figure 2.9 also shows
that the new time series follows almost the same pattern of the original time series

without the spikes. The transformed data shown in Figure 2.9 can be expressed as

2
1
xsv%k?(t) = g Z ys,q,k(t + U) (21)

u=—2
Another possibility would have been to take the median of every 5 time points. This
is not guaranteed to remove the spikes as a spike could potentially influence more
than 5 five time points. In Table 2.1, we show the set of possible values for the time

index (¢) and the time elapsed since start of run (¢,) for the aggregated data.
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Scan Rate
Rate 1 Rate 2 Rate 3
t ta t ta t ta

1 50 1 50 1 50
2 100 2 100 2 100
3 150 3 150 3 150

260 | 13000
520 | 26000

1040 | 52000

Table 2.1: Time elapsed, t,, in seconds, since the start of the run with corresponding

time index, ¢, for each of the three scan rates (Aggregated Data).

In Section 2.2, it was highlighted that some of the channels exhibited abnormal
behaviour. The time series plots in Figure 2.1 display a flat line about a Current
value of zero. Hence, there is little information to be gained by including these
channels in the analysis. Similarly, the time series plots shown in Figure 2.2 will
add very little information. In addition, the chemists’ scientific knowledge leads
us to believe that little will be gained by including the channels with 1% and 2%
of Carbon in the analysis hence these channels will be removed from our analysis.
It has been advised by the chemists that any malfunctioning channels should also
be removed from the analysis. By including these malfunctioning channels in the
analysis incorrect results and conclusions may be produced. It should be noted that
it is not possible to define a malfunctioning channel according to a set of axioms
such that they can be removed automatically. A malfunctioning channel needs to

be identified by careful inspection. In addition, we consulted the chemists about
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Figure 2.9: Comparison of raw and smoothed data for scan rate 2. The time elapsed
for the original data is T, and for the aggregated data is ¢,. As T, and ¢, are both
measured in seconds, this allows time to be measured in seconds for both sets of

data on the z-axis.

which channels were malfunctioning according to the profile of the Current output
curve to ensure that no functioning channels were removed accidentally.
A further transformation of the data that will be used takes the mean over the

channels to be included in the analysis. This aggregation is given by

rk®) = —— 3% walt+w) (2.2)

.
K VgeQq p u=—2
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where z; , () is defined in Equation (2.1), Q) is the set of channels used for analysis
with Carbon level k and scan rate s, 75 is the number of channels in set ()%, that
is the malfunctioning channels have been excluded. We note that s = 1, 2, and 3
correspond to scan rates 0.05mVs™', 0.10mVs™! and 0.20mVs™" respectively. The
sets Qs are shown below; @1, Q52 and @), 3 will be empty sets since we are not
including channels with 0%, 1% and 2% Carbon in our analysis. For scan rate 1,

the sets ()1 are given by:

ra = 8, Qia={1,18,19,29,31,33,39,60}
rs = 8, Q5 =1{4,7,24,27,30,47,51,55}
re = 6, Qig=1{5,11,14,26,36,57}

ry = T, Qur = {6,23,37,43,44,45 49}

rs = 7, Qs =1{2,8,9,17,25,52, 59}.
For scan rate 2, the sets (2 are given by:

ras = 8, Qa4 ={1,18,19,29,31,33,39,60}
ros = T, Qus={4,7,24,27,30,47,51}
rag = 6, Qag={5,11,14,26,36,57}

raz = T, Qa7 ={6,23,37,43,44,45,49}

ros = 7, Q28 =12,8,9,17,25,52, 59}.
For scan rate 3, the sets (03 are given by:

rsa = 8, Q34 ={1,18,19,29,31,33,39,55,60}
r3s = T, Q35 =1{4,7,24,27,30,47,51}

r3¢ = 6, Q36 ={5,11,14,26,36,57}

rs7 = 6, Q37 ={23,37,43,44, 45,49}

rss = 7, Qs ={2,8,9,17,25,52,59}.
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In this thesis we never model the raw Current output denoted so far by v qx(t).
Instead we shall only consider the aggregated data denoted by the notation x. Hence,
we will use the notation y to denote other quantities.

The aggregated data are shown in Figure 2.10. These are the data that we use for
fitting various models making predictive inferences.

The plots in Figures 2.10(a), 2.10(b), 2.10(c) clearly indicate that as the proportion
of Carbon increases the Peak Current continues to increase until the level of Carbon
reaches 10%. The Peak Current is lower at 20% of Carbon compared to that at 10%.
This indicates that the maximum Peak Current is achieved when the percentage of
Carbon is between 10% and 20%. The Minimum Current continues to decrease
up to 10% of Carbon and then increases at 20% of Carbon. When we compare
the plots of the aggregated data simultaneously it can be observed that the Peak
Current increases and the Minimum Current decreases as the scan rate increases.
This comparison also reveals that with slower scan rates there is a double peak that
becomes more pronounced. In addition, with the faster scan rates, the peaks and
troughs are much more smooth. Thus the aggregation of the data has made the
time series smoother and easier to manage in comparison to the original data. The
corresponding voltammograms are shown in Figure 2.11. We will refer back to these

voltammograms in the analysis and conclusion sections of later chapters.
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Figure 2.10: Time series plots of aggregated data for various percentages of Carbon

for: (a) scan rate 1, (b) scan rate 2 and (c) scan rate 3, where ¢ denotes the time

index defined in Table 2.1.
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2.4 Definitions of Characteristics of Voltammo-
grams

In this section we define formally the characteristics that are associated with the
voltammogram which were introduced in Table 1.4 and Figures 1.5 and 1.6. The
Peak Current, denoted by I s(f,?ax), is defined to be the maximum observed value of

the Current, that is:
15 = max{w, () t=1,..., N}

where N is the number of observations at scan rate s, and w(t) is the observed
Current at time ¢ for scan rate s and Carbon level k (see Equation (2.2)). We note
that s = 1,2 and 3 corresponds to the values of the scan rate 0.05mVs~*, 0.10mVs™!
and 0.20mVs~! respectively.

Let I S(:Zid) denote the quantity I s(fzax) /2. We are now in a position to define the
remaining characteristics of interest. Let t;; be the first time that the Current
reaches Igzid) and ts 5 1, be the last time the Current reaches I s(f,?d) for the kth Carbon
level and scan rate s. In a similar way, let P, be the first value of Potential at
which the Current reaches I S,fd) and Ps 5, to be the last value of Potential at which
the Current is equal to Is(:',fd).

The reason for the chemists’ interest in these characteristics is that the characteris-
tics defined in Table 2.2 provide a way of summarising the profile curve. The values
associated with the Peak Current and Minimum Current provide information that
can be used to understand how the Peak Current or Minimum Current changes
according to different scan rates. In addition, the Peak Time and Peak Potential
identify the point in the experiment when the Peak Current occurs, and the asso-

ciated Potential value. The reasoning and interest in the Minimum Current is the

same as that for the Peak Current.
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Characteristic Symbol | Definition

Minimum Ps(fn) The Potential value that produces [ S(fzin).
Potential

Minimum Time tifl,zin) The time point where [ S(fzin) occurs.
Minimum Current Iﬁin) Is(fzin) =min{xs,(t); t=1,..., Ny}
Peak Potential Rg(f,?ax) The Potential value that produces [ s(f,fax).
Peak Time tif?cax) The time point where [ S(fzax) occurs.
Peak Current I:Zax) Is(fzax) =max{zs(t); t=1,..., Ny}
Peak Separation PS,SP) Ps(’r,?ax) - Ps(,r,?in)

in Potential

Peak Separation tSZp) tiﬁcax) — tg’,?n)

in Time

Peak Separation | ] S(f,:p) I s(fzax) —1I s(fzin)

in Current

Peak Width PYY | Py — P

in Potential

Peak Width £ to sk =tk

in Time

Table 2.2: Definitions for peak characteristics where subscripts s and k are the scan

rate and the level (proportion) of Carbon respectively. The superscript is min, max,

sep or wid according to whether the characteristic is a minimum, a maximum, a

separation or a width respectively. These characteristics are shown graphically in

Figures 1.5 and 1.6.
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2.5 Analysis of Characteristics

We now analyse the characteristics of interest. The data in the plots shown in Figure
2.12 (at the end of this section) was obtained from Figure 2.10 and the data in the
plots shown in Figure 2.13 obtained from the raw data.

Figure 2.12(a) appears to show no particular clear pattern for the value of the
Minimum Potential, with respect to Carbon for any of the scan rates. To achieve the
Peak Current, Figure 2.12(d) indicates that higher values of Potential are required
with faster scan rates to obtain the highest possible Current output.

Figure 2.12(b) indicates that the Minimum Current occurs at approximately the
same time for all proportions of Carbon for scan rates 2 and 3. For scan rate 1, this
relationship appears to become slightly more unstable, but the Minimum Current
still appears to occur at roughly the same time. The same relationship appears to
hold for the Peak Time, see Figure 2.12(e).

Figure 2.12(c) shows that for scan rates 1 and 2 the Minimum Current appears to
be roughly the same for Carbon proportions less than or equal to 10%. When the
level of Carbon is increased to 20% the Minimum Current appears to increase dra-
matically. For scan rate 3, the Minimum Current seems to follow the characteristic
of a parabola. From Figure 2.12(f), the Peak Current appears to be roughly the
same when the Carbon level is less than or equal to 10% for scan rates 1 and 2.
When the level of Carbon is increased to 20% there is a substantial decrease in the
value of the Peak Current.

The Peak Separation in Current, shown in Figure 2.12(i), increases with the scan
rate. In addition, the Peak Separation in Current appears to rise and then fall as
the proportion of Carbon increases. The Peak Separation in Time, shown in Figure
2.12(h), does not seem to be affected by the proportion of Carbon and is lower for
lower scan rates. Figure 2.12(g) does not appear to display any clear behaviour.

The Peak Width in Potential, shown in Figure 2.12(j), appears to decrease and then
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increase for scan rates 1 and 2 as the proportion of Carbon increases. This pattern
seems to follow the shape of a parabola. We note that the Peak Width in Potential
for scan rates 1 and 2, with Carbon set at 20%, is approximately the same. For scan
rate 3, the Peak Width in Potential appears to increase and then decrease as the
proportion of Carbon increases. The plot in Figure 2.12(k) indicates that the Peak
Width in terms of time appears to remain roughly the same for levels of Carbon
within the same scan rate. It should also be noted that for slower scan rates the
Peak Width in Time is longer.

The characteristics of interest defined in Table 1.4 were calculated for each of the
three scan rates. Table 2.3 provides a rough idea of the values of the characteristics of
interest for scan rate 2. It should be noted that the number of significant figures will
vary depending on the nature of the characteristic of interest that we are analysing.
Consider the Minimum Time and the Minimum Current. The Minimum Time is
the observation number at which the Minimum Current occurs, hence the Minimum
Time will be an integer. However, the Minimum Current is a continuous measure
and can therefore be recorded to the desired degree of accuracy. Therefore, we
have decided to record the values for each characteristic to an appropriate degree of
accuracy depending on its nature.

A plot of the data used for the regression models in Chapter 5 for scan rate 2 (using
the raw data) is shown Figure 2.13. The values for each of the characteristics were
calculated using the definitions of the characteristics of interest (shown in Tables
1.4 and 2.2) and the raw data from the experiment, which consists of all 9 runs
(see Table 1.1), and all the replicates for Carbon. If we were simply presented with
these summaries, the plots shown in Figure 2.13 would be the only plots we would
be able to obtain. The variability in the plots in Figure 2.13 arises because we
have not removed the malfunctioning channels. If we look at Figures 2.4 - 2.8, we

can see that there were quite a few channels that malfunctioned in the experiment.
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In our discussions with the chemists, they were unwavering in their interest in the
characteristics defined in Table 1.4. Further to this, they pointed out that these
characteristics are important and sensible measures to be considering even in light
of the variability of the data shown in Figure 2.13.

The values of the Minimum Potential (Figure 2.13(a)) indicate that there are outliers
present in the data. This pattern also occurs in the Peak Time values. In addition,
Figure 2.13(d) appears to show that the Peak Potential is approximately the same
for all proportions of Carbon. There is a similar pattern exhibited by the Minimum
Time (shown in Figure 2.13(b)). From Figure 2.13(e), it can be observed that while
there are a few outliers the Peak Time appears to be approximately the same for all
proportions of Carbon.

The values of the Minimum Current shown in Figure 2.13(c) appears to indicate no
outliers. The plot also indicates that as the Carbon increases the Minimum Current
value initially dips slightly and then increases. Figure 2.13(f) indicates that variance
is small for all the different proportions of Carbon and also suggests that the Peak
Current value significantly changes for different proportions of Carbon.

The Peak Separation values, shown in Figure 2.13(i), have small variation for each
proportion of Carbon. Also, the Peak Separation in Current increases slightly then
decreases as the proportion of Carbon increases. Peak Separation in Time (Figure
2.13(h)) shows that there are some outliers which originated from the malfunctioning
channels. However, the Peak Separation in Time appears to be approximately the
same for all proportions of Carbon. The Peak Separation in Potential appears to
decrease in linear fashion as the proportion of Carbon decreases.

Figures 2.13(j) and 2.13(k) show that there are a few outliers for the Peak Width
in Potential and Peak Width in Time respectively. We discovered that the data
points that appear to be outliers in the plots in Figures 2.13(j) and 2.13(k) are from

channels that malfunctioned.
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The characteristics of interest were also calculated for scan rates 1 and 3. Further,

to this, we also note that a critical analysis for scan rates 1 and 3 was conducted.

When generating the posterior predictive distributions, we have chosen to only look
at the predictive distributions for the Potential instead of time as it is the values of
the Potential that the chemists are interested in. Further, we note that we will only
concentrate on the Peak Potential, Peak Current and Peak Separation in Potential.
The first reason for this is that these were the initial characteristics of interest to
the chemists. The second reason is that these are the main characteristics that are
used to describe or analyse data that has arisen from the experiment described in
Section 1.2.

In Chapter 5, we perform a regression models based analysis of these data without
removing the values from the malfunctioning channels. This allows us to view the
results from the crude analysis in the presence of outliers. The model based methods

presented in Chapters 6-8 have these outliers removed.
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Characteristic Percentage of Carbon

3 5 7 10 20
Minimum 3.8280 3.8630 3.8430 3.8528 3.8328
Potential
Minimum 396 389 393 391 395
Time
Minimum -56.2125 | -61.1457 | -55.6400 | -53.9771 | -29.6629
Current
Peak 4.3462 4.3010 4.3412 4.3162 4.3262
Potential
Peak 229 220 228 223 225
Time
Peak 82.2200 | 85.8114 | 84.6600 | 78.1857 | 39.0000
Current
Peak Separation | 0.5182 0.4380 0.4982 0.4634 0.4934
in Potential
Peak Separation 167 169 165 168 170
in Time
Peak Separation | 138.4325 | 146.9571 | 140.3000 | 132.1629 | 68.66286
in Current
Peak Width 0.2750 0.2596 0.2550 0.2600 0.2896
in Potential
Peak Width 55 52 51 52 58
in Time

Figure 2.10.

Table 2.3: Peak characteristics for scan rate 2 using the aggregated data shown in
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Figure 2.12: Characteristics of interest for each scan rate and Carbon level using
the aggregated data shown in Figure 2.10, that is outliers have been removed, where

t is as defined in Table 2.1.
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Figure 2.13: Characteristics of

Proportion of Carbon

interest for scan rate 2 at each Carbon level using

the raw data, that is outliers have not been removed, where ¢ is as defined in Table

2.1.



Chapter 3

Bayesian Methods

3.1 Introduction

The Bayesian paradigm utilises information from the prior distribution and data
to determine the posterior distribution. The prior distribution represents the belief
in the parameters before the experiment and the posterior distribution represents
the degree of belief in the parameters after the experiment. Even though the idea
is not new, it is the development of computational power that has made Bayesian
data analysis practical. In particular, if the posterior distribution is analytically
intractable or difficult to integrate, the computational power available has made
it possible to apply Markov Chain Monte Carlo (MCMC) sampling methods to
estimate the posterior distribution of the parameters. We provide a brief synopsis
about MCMC methods in Section 3.4. In addition, Bayesian methods can also be
applied to assess the model’s performance, of which a few are discussed in Section
3.7.

In using the Bayesian approach, we are able to obtain the distribution of the pa-
rameters of the model given the data (called the posterior distribution), from which

it is possible to quantify the uncertainty about parameters in the model. It is also
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possible to obtain the posterior predictive distribution (see Section 3.6) for other
characteristics of interest that arise from the data. For examples from the applied
problem considered in this thesis, see Table 1.4. We estimate the characteristic of
interest by sampling from the posterior predictive distribution. From this sample
we can approximate various attributes such as the mean and the variance. It is also
possible to determine the probability that the characteristic of interest belongs to

any interval (a,b) where a, b € R.

3.2 Bayesian Paradigm

Let @ denote the parameters in the model and  denote the data. The Bayes theorem

can be expressed as
x|0)f
féle) - 11O
f@ (z|0)f(0) dO

where f(@|x) is the probability density function of the posterior distribution, f(8)

(3.1)

is the probability density function of the prior distribution, f(x|@) is the likelihood
and © is the set of possible values for @ (called the parameter space). As noted
in Section 3.1, the prior distribution represents belief about the parameters in the
model before observing any data and the posterior distribution represents our belief

about the parameters after observing the data. The integral

=Lf@@ﬂ®d0 (3.2)

is called the marginal likelihood of the data and is only dependent upon @ since
0 is integrated out. This integral is simply a constant of proportionality to ensure

f@ (0|x) df = 1. Hence Bayes theorem can now be expressed as

f(Blz) o f(x|6)f(6). (3-3)
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3.2.1 The Prior Distribution

The prior distribution is formed using expert opinion and/or past data. However,
in order to assign a prior distribution to the parameters of the model, a subjective
definition of probability is required. This is because the postulation of a prior dis-
tribution involves personal opinion. O’Hagan and Forster (2004) define subjective
probability as a measure of one person’s degree of belief. It is this aspect that has at-
tracted considerable criticism from the opponents of Bayesian statistics. The critics
argue that two experts with identical prior information may formulate completely
different prior distributions which may result in conflicting posterior distributions.
The Bayesian counter argument would be that provided the data are strong and the
prior distribution is formulated on reasonable grounds, then any inferences made
using the posterior distribution should be robust to slight differences in the prior
distribution. It is important to realise that prior information is often available and
can be extremely useful.

Prior distributions are sometimes chosen for convenience. Suppose we have observed
data @ with likelihood f(x|@). Suppose also that the prior distribution for 8 comes
from a family of distributions F. If the prior distribution for 0 is conjugate with
respect to the likelihood then the posterior distribution f(@|x) also belongs to the
same family F, because of this, it will often be relatively easy to draw inferences
from the posterior distribution, especially if the family of distributions F is well
known and understood. This might not have been the case if f(€) came from a
prior distribution that is not in F. See O’Hagan and Forster (2004, Chapter 6) and

Robert (2001, Chapter 3) for a more detailed discussion on prior distributions.
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3.2.2 The Posterior Distribution

There are various quantitative summaries of the posterior distribution such as a
measure of the location or dispersion that can provide answers to questions of inter-
est. Point estimates of the quantity of interest, such as the mean, are often given.
In addition, probability intervals for the quantity of interest are also specified. For
example, the mean and the 95% probability intervals are often provided.

Suppose we wish to estimate ¢g(@) which represents the quantity of interest such as
the mean. Then the posterior mean for g(@) is given by

_fgg :B\O ( ) d@

Blo®)le] = T 0 o

(3.4)

We therefore calculate ¢(@) using the conditional expectation E[g(0)|x] shown
in Equation (3.4). Just as the posterior mean is a common measure of loca-
tion, probability intervals are a popular method for measuring dispersion. Let
P(a < 0; < b) = (1 — a) where a, b € R, « is a specified significance level and
0; is some component of 8. Then the probability interval for #; is constructed by
calculating the real values a and b such that P(6; < a) = «/2 and P(0; > b) = a/2.
One possible hypothesis test would be to calculate the probability that 0; € (a,b)
given the observed data x, where a, b € R. This is an easy calculation provided

that the posterior density for € is known.

3.2.3 Sensitivity Analysis

An essential factor when choosing a vague or diffuse prior distribution is the sensi-
tivity of the model parameters with respect to the prior distribution. Any inferences
made via the posterior distribution should generally not be sensitive to any misspec-
ification of the prior distribution. This is because data, not the prior, should drive
the inference. A simple method to check the sensitivity of the model parameters

with respect to the prior distribution is to vary the values of the parameters in
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the prior distribution and compare the inferences from the corresponding posterior
distributions. Clearly, if the inferences are very similar, then the model parameters
are robust to choice of the prior. However, if the inferences are not similar, then the
model parameters are not robust to the choice of the prior and careful thought is
required in constructing the prior distribution.

Suppose sensitivity to the prior distribution exists and that the prior distribution is
f0(@). Now suppose after inferences from the posterior distribution have been drawn
that fo(@) was not the result of the most careful consideration, and it is now thought
that f1(@) should be the prior distribution. Suppose also that in changing the prior
distribution from fy(0) to f1(0) significantly changes the inferences drawn from the
posterior distribution. We are presented with a sensitivity issue with regards to the
prior. One possible way of resolving this issue is to carry out a reliable reassessment
of the prior information. If this is not possible, then the sensitivity can only be
resolved by direct consideration of the posterior distribution. If the inferences using
f0(0) and f1(0) are clearly different, then one may decide which one disagrees with
the prior beliefs about 8 having observed the data.

The above discussion highlights a few issues with regard to robustness to the prior
distribution. Further detailed discussion about sensitivity to the prior distribution

can be found in O’Hagan and Forster (2004, Chapter 4).

3.3 Hierarchical Models

The structure of a hierarchical model is where the parameters (6y,60s,...,6,) are
dependent on some hyperparameters (¢, ¢2, . . ., ¢,) where p and m are the number
of parameters and hyperparameters respectively. Just as the distribution of the data
is written conditionally on the parameters (0y,6s,...,0,) as f(x|@), the distribution

for @ = (01,65, ..,0,) is written conditionally on the hyperparameters as f(0|¢).
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The Bayesian paradigm can be easily extended to obtain the joint posterior distri-
bution of @ and ¢ which is given in Equation (3.5). The joint posterior distribution

shown in Equation (3.5) is used to make inferences about ¢ and 6.

B £(x10)(016)£(¢)
6. 912) = T 1) 1016 () 46 i

x f(x|6)/(0|9)f(¢) (3:5)

where © and ® are the parameter spaces for @ and ¢ respectively. The marginal

posterior distribution for ¢ is given by

f(lz) = / 1(6. ¢|z) 46

x f(¢) / £(z]0)£(6]¢) 46
x f(e)f(z|o)

which can be used to make inferences about ¢. We note that the Bayesian paradigm
can be easily extended to handle any number of levels that are in the hierarchical

model.

3.4 Markov Chain Monte Carlo

A problem that occurs often in Bayesian inference is the calculation of posterior
distributions that have high dimensionality. The problem is to evaluate the ex-
pectation in Equation (3.4) for some function ¢(@). If the posterior distribution is
analytically intractable or difficult to integrate a method is required to evaluate the
expectation in Equation (3.4). A well known method for dealing with this problem
is Markov Chain Monte Carlo (MCMC). A key component of this method is Monte
Carlo integration. The general form of MCMC given by the Metropolis-Hastings
algorithm will be described in Section 3.5. For a thorough exposition of MCMC

methods in Bayesian computation, see, for example, Chen et al. (2000).
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3.4.1 Monte Carlo Integration

Monte Carlo integration is a method for estimating the population mean E|[g(0)|x].
To estimate the population mean, samples 0(1), where [ is a dummy variable used to
reference the samples of 6, are obtained from f(8|x) via MCMC. The population

mean of ¢(@) can then be estimated by the mean of the samples

Elo®)la] ~ -3 4(6"). (36)

Clearly, as n — oo the sample mean will tend to the population mean. It should
be noted that the choice of n is under the control of the analyst. Any process can
be used to generate the 0" which draws random samples throughout the support
of the posterior distribution f(@|x) in the correct proportions. A popular method
is to use a Markov chain (see Gilks et al.,1996, Chapter 1 for further details) that

has the posterior distribution f(@|x) as the stationary distribution.

3.5 Metropolis Hastings Algorithm

A method is now in place to estimate E[g(0)|x] where x represents the data but a
Markov chain needs to be constructed such that the stationary distribution is the dis-
tribution of interest, that is the posterior distribution. One method of constructing
a suitable Markov chain is the Metropolis-Hastings algorithm. This algorithm was
initially proposed by Metropolis et al. (1953) and generalised by Hastings (1970).
The Metropolis-Hastings algorithm works in the following way. At each iteration [,
the next state 8™ is chosen by sampling a candidate point ¢ from a proposal dis-
tribution (. | ). It should be noted that the proposal distribution could depend
on the current point 8. Then the candidate point ¢ is accepted with probability
(0, ¢) which is calculated using

(09, ¢) = min (1,

f(®)a(6" | 4) ) (3.7)

F(89)a(¢ | 6Y)
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where f(.) represents the posterior distribution. If ¢ is accepted, then the next state
becomes 8TV = . If ¢ is rejected, then 84D = W that is the chain does not
move.

There are a multitude of sampling methods that are a special case of the Metropolis-
Hastings algorithm such as the Gibbs sampler, the Metropolis algorithm and the
independence sampler. An exposition of the Metropolis Algorithm and the Gibbs
Sampler will be given in Sections 3.5.1 and 3.5.2 respectively. For detailed exposi-

tions of the independence sampler see Tierney (1994) and Gilks et al. (1996, Chapter

1).

3.5.1 Metropolis Algorithm

The Metropolis algorithm proposed in Metropolis et al. (1953) only considers pro-
posals from symmetric distributions such that ¢(¢|0) = ¢(0|¢) for all @ and ¢ where
0 is the parameter and ¢ is a candidate point from the chosen proposal distribution.
For the Metropolis algorithm the acceptance probability in Equation (3.7) becomes

(Y, ¢) = min (1, %)

When choosing the proposal distribution, its scale (for example ¥ in the multivariate
normal case) needs to be chosen carefully. For the rest of our discussion in this
section, we will only consider the case of a single parameter. In this case, the
acceptance probability a(6"), ¢) is given by

a(Q(l), ¢) = min <1, fiéﬁ?))

where 6 is the parameter and ¢ is the candidate point. A proposal distribution

generating small steps ¢ — %) will have a high acceptance probability but will mix
slowly as shown in Figure 3.1(b). If the scale is chosen such that the steps between

¢ and 69 are large, then quite often we will be jumping from the body to the tails
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of the distribution resulting in small values of f(¢)/f(6") and low probability of
acceptance. In this case the chain will not move which will also result in slow mixing
as shown in Figure 3.1(c). The ideal scenario is to scale the proposal distribution
such that both of these extremes are avoided. It should be noted that similar

principles apply when considering more than one parameter.

Figure 3.1: Trace plots from Metropolis algorithms with stationary distribution
N(0,1) and proposal distributions (a) ¢(.|#) =N(6,0.5), (b) ¢(.|¢) = N(#,0.1) and
(c) ¢q(.|0) = N(0,15.0). The burn-in is taken to be left of the dotted line and the
95% theoretical probability interval is indicated by the dashed line. This example
is taken from Gilks et al. (1996, page 6).

3.5.2 Gibbs Sampling

The Gibbs sampler is a special case of the Metropolis-Hastings algorithm and was

proposed by Geman and Geman (1984). A clear detailed exposition on Gibbs sam-
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pling can be found in Casella and George (1992). Candidates under a Gibbs sampler
are always accepted, that is the acceptance probability is always one. Gibbs sam-
pling involves conditioning on each parameter in turn. We start by setting the
iteration counter [ = 1 and give initial values to the parameters 0(0 9(0) 9(0) .0y (0)
where p is the number of parameters and p > 1. New values for the parameters

are obtained by sampling successively from the conditional posterior distribution

for each parameter in turn which are given by:

I (N G ) e NN )
6 ~ f(Oa] 6,657,607, 60,

p

o0~ £(0,100,09,09, .. 60).

Change the value of [ to [ + 1 and repeat the sampling procedure above until con-
vergence is reached. Gammerman and Lopes (2006) provide further details of the

Gibbs sampler.

3.5.3 Monte Carlo Error

When applying MCMC methods, it is important to consider convergence and accu-
racy of estimation. If the chain does not converge, then clearly we will not be able
to obtain a sample of the parameters from the posterior distribution. If the chain
does converge then we need to consider the accuracy of the parameter estimates.
The accuracy of the estimates can be measured via the mean-squared error of g(8)
from Equation (3.6), which is also referred to as the ergodic mean, see Gilks et al.

(1996, Chapters 1 and 3). The mean-squared error of ¢g(8) is given by

MSE(¢(8)) = Varf( (1 42 Z palg ) (3.8)
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where n is the number of samples, Var(g(@)) denotes we are taking the variance
under the posterior distribution represented by f(0|x) and ps(g(6")) is the lag d
autocorrelation in g(G(l)) where [ is a dummy variable used to reference the samples
of 8 obtained from f(8|x) via MCMC. It should be noted that we have been unable
to find a simpler expression in the literature, however, Besag and Green (1993) note
a similar expression using different notation.

If the chain converges geometrically (Meyn and Tweedie, 1993 presents an extensive
treatment on geometric convergence), then the mean squared error for g(8) will be
finite. If the mean squared error for ¢(@) is finite, then it can be made as small
as desired by increasing n, see Geyer (1992) and Besag and Green (1993) for more
details.

3.5.4 Issues in Implementing MCMC

When implementing MCMC methods, there are several issues that need to be taken
into account. Gilks et al. (1996) has a more detailed account with regards to these
issues. Smith and Roberts (1993) also give a detailed exposition of implementa-
tion and convergence issues with regards to MCMC methods. Papaspiliopoulos
and Roberts (2008) discuss the stability and convergence of the Gibbs sampler for
Bayesian hierarchical models. As mentioned in Section 3.1, the development and
availability of computational power has created the need to incorporate MCMC
methods into statistical software, for example, see Graves (2007) where design ideas
for software incorporating MCMC methods are discussed and Chen et al. (2000)
discuss MCMC methods in Bayesian computation.

One such issue is the choice of the starting values 0 If the chain mixes rapidly,
then the chain will find its way to the stationary distribution fairly quickly from
extreme starting values which is illustrated in Figure 3.1(a). For a slow mixing

chain, the starting value will need to be chosen with care to avoid a long burn-in
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period. Roughly speaking, a chain is said to mix well if samples are drawn from the
whole support of the stationary distribution and does not stay at the same value for
any length of time.

Determining the length of the burn-in period is an important exercise when using
MCMC methods. The length of the burn-in period is dependent upon the initial
starting value 0”). The next factor to consider when determining the length of the
burn-in is the rate of convergence of the distribution of oY given the initial 6
to the stationary distribution. The final consideration we wish to highlight is how
similar the distribution of §¢*+V given 0" needs to be to the stationary distribution.
The simplest method is to look at a plot of the output of all the samples generated
and ascertain how long the chain takes to generate samples from the stationary
distribution.

When to stop the chain is another important matter. If the chain is stopped too
soon, then Y will not be a sample from the stationary distribution. One solution
to this problem is to run several chains of length n in parallel with different starting
values and compare the estimates of E[g(0)|x]. If there is not adequate agreement
between the estimates, then it is clear that n must be increased.

As already mentioned, the samples {9(1), 9(2), e ,0(”)} will be dependent samples.
To reduce the dependence in the samples, the simplest method is to take every kth
sample, hence k x n samples must be generated by the chain. It should also be
noted that we cannot prove that any of the sampling algorithms described above
have converged. We can only empirically assess using some diagnostic plots to check

if the sampling algorithm has converged to the stationary distribution.
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3.6 Posterior Predictive Distribution

A key concept that is necessary to make predictive inferences about a particular
quantity, such as the mean, is the posterior predictive distribution for the mean. For
our applied problem, this will enable us to produce posterior predictive distributions
for various characteristics of interest for proportions of Carbon that have not been
experimented with. It is important to note that we will need the ability to obtain
the posterior predictive distribution for the quantity required using different models.
Let 8 denote the parameters in the model. Then the posterior distribution for 0,
given data x, is given by

_ [O)f(]0)
I, [(0)/(x ] 6) a8

where © is the parameter space as defined in Section 3.2. Now imagine that the

CAED

entire experiment is replicated and let z be the vector of possible responses. Then

the predictive density for z under the chosen model is

f(z | x) = / f(z]0)£(0 | ) do. (3.9)

If this distribution is analytically intractable or is difficult to integrate, then we
can use various MCMC methods described in Section 3.4 to generate samples from
the posterior predictive distribution and make inferences based upon these samples.
The samples that are drawn from the posterior predictive distribution are obtained
in two stages. The first stage is to sample from the posterior distribution of 8 shown
in Equation (3.2). Each 8% can then be used to obtain z® given 8% and data .

We can obtain an estimate of the mean of z using

1 n
Elz|z] =~ - > 20
=1

This is the method that will be used to obtain posterior predictive distributions
for the quantities described in Tables 1.4 and 2.2. We concentrate on the posterior

predictive distributions for specific characteristics in Chapter 4.
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3.7 Model Choice Criteria

In Section 3.7.2, the method used to compare the models is presented. The reason
for using the chosen criterion is discussed in Section 3.7.3 and comparisons made
to other available model choice criteria. However, it is important to look at other
diagnostics of model performance and not just numerical values of model choice
criterion. For example, plots of the residuals may exhibit any characteristic of the
data that has not been accounted for by the model and would not be highlighted by
a numerical value calculated by the model choice criterion. This will be discussed
further in Section 3.8. In Section 3.7.3, we give a brief evaluation of the model choice

criteria we have discussed.

3.7.1 Bayes Factors

The Bayesian approach for hypothesis testing was developed by Jeffreys (1935,
1961). Before we define the Bayes factor, we need to define the marginal likelihood
for model m;). The marginal likelihood for model my; is denoted by f(x|m;)) and
is defined by Equation (3.2). We define the Bayes factor by

f(®|m)

B fx|m))

(3.10)

In the case where we wish to test the null hypothesis Hy against the alternative
hypothesis H;, the Bayes factor can be expressed as

B, - fEmy)

0 = T

f(@lm )

where m g and m(;) are the models under Hy and H,; respectively. It should be
noted that the Bayes factor can only be defined when the marginal density of the
data under each model is fully defined.

Jeffreys (1961) proposed interpreting Bjo using half units on the log,, scale. Kass
and Raftery (1995) suggest pooling two categories to obtain a method for interpret-
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ing Bjo as shown in Table 3.1.

log,,(B1o) Bio Evidence against Hy

0to 0.5 1 to 3.2 Not worth more than a bare mention
0.5to1 3.2 to 10 | Substantial
1to2 10 to 100 | Strong

> 2 > 100 Decisive

Table 3.1: Interpretation of the Bayes factor as proposed in Kass and Raftery (1995).

For a more detailed modern exposition see Kass and Raftery (1995). In addition,
Gelman et al. (2004, Chapter 6) discuss an example of where Bayes factors are

useful and an example of where they are a distraction.

3.7.2 Predictive Model Choice Criterion (PMCC)

The PMCC was proposed in Ibrahim and Laud (1995) and developed by Gelfand
and Ghosh (1998). For each model m € M where M is the set of models under
consideration, the value of the criterion is calculated and the model with the smallest
value is the best model. However, it is important to balance the improvement of
a model and the amount of extra computation time required to include the extra
parameter or parameters. The predictive density in Equation (3.9) is central to the
PMCC as this is the distribution from which we obtain z. The criteria is to choose

a model which has the smallest value of
L} = El(z—z)"(z — )]

where the expectation is taken with respect to the predictive density in Equation

(3.9) for model m and x is the observed data. It can be shown that L?, has the
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decomposition
Z{ [20]@] — 3,)” + Var(z,|z) } (3.11)

where o is the dummy Varlable mdlcatlng the oth observation and N is the number of
observations. In Equation (3.11), the first component measures the goodness of fit,
that is how close the predictions produced by the model are to the observed data.
The second component is the penalty component, that is the model is penalised
for increasing the number of parameters in the model through the variance of the
predictions. This is because as the number of parameters increases, the variance of
the predictions obtained from the model increases. Hence, the model’s performance
is measured by a combination of how close the predictions are to the observed data
and the variability of the predictions. Ibrahim and Laud (1995) note that a good
model should make predictions that are similar to the observations obtained from
an experiment. Therefore, the best model from set of models under consideration,

should be the model with the lowest L?,.

3.7.3 Evaluation of Model Choice Criteria

Some other popular criterion for comparing models are Akaike’s Information Crite-
rion (AIC; originally proposed in Akaike, 1973 and also published in Koehler and
Murphree, 1988). The AIC from Koehler and Murphree (1988) is given by Equation
(3.13). Let p denote the number of parameters and 6 is the maximum likelihood

of 8. The Bayes Factor and the AIC are given by Equations (3.12) and (3.13),

respectively.
f(®|m)
By = ——=¢ 3.12
“ f(®|lmq)) (3.12)
AIC = —2log f(x|0) + 2p (3.13)

Model selection via the AIC is based upon selecting the minimum value. When

using the AIC, asymptotic considerations are required for a formal comparison be-
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tween competing models. Sahu (2004) notes that model selection criterion involving
asymptotic arguments are often invalid for small data sets. It should be noted
that the AIC is not robust to outliers. Ibrahim and Laud (1995) point out that
PMCC probably suffers from the same problem. One solution that the authors sug-
gest would be to calculate the PMCC with and without the outliers which should
highlight their effects.

Sahu (2004) points out that Bayesian model choice methods are attractive because
they do not rely on asymptotic arguments. When using decision theoretic method to
choose a model, the PMCC is the most appropriate criterion under normal likelihood
and a symmetric loss function. Sahu (2004) highlights that it is possible to use
different loss functions. There are other Bayesian methods that have been proposed
to discriminate between models. One such method is the reversible jump MCMC
which is proposed by Green (1995).

Kass and Raftery (1995) point out that the integral required to calculate f(x)
shown in Equation (3.2) can be analytically intractable and must be computed via
numerical methods. In the same article, the authors also highlight that the statistical
software available is inefficient due to large sample sizes. In this case, the integrand
becomes highly peaked around its maximum. A second reason for the integrand
in Equation (3.2) being intractable is due to the dimensions. In this case, Markov
Chain Monte Carlo methods can be applied with some adaptation. A review of
these techniques is provided in Evans and Swartz (1995). As we have highlighted
here, the Bayes Factor also has its technical difficulties.

A more detailed exposition on Bayesian model selection and applications in practical
problems are presented in Sahu (2004) and Robert (2001, Chapter 7). Another
Bayesian model selection criterion is the Deviance Information Criterion, proposed

by Spiegelhalter et al. (2002).



3. Bayesian Methods 65

3.8 Model Adequacy via Residual Analysis

Once a model has been fitted, the residuals should be examined to check that the
model describes the data adequately. If the chosen model provides a good fit, the
residuals should show a random cluster around zero. For the time series models
considered in this thesis (see Chapters 6, 7 and 8), we expect the plot of the residuals
against time to have a mean of zero and a constant variance.

In time series analysis, it is possible to define a number of different types of residuals,
for example see Mauricio (2008). In the analysis presented in this thesis, we define
the residuals to be the difference between the observed and the fitted values. The
fitted values are obtained by replacing parameters by their Bayes estimates. These
fitted values are often the one-step ahead predictions. This is a consequence of
using the time series analysis, see West and Harrison (1999, Chapter 10) for several

examples of using these type of residuals in practical data analyses.



Chapter 4

Predictive Distributions

4.1 Introduction

As mentioned in Section 1.6, the main objectives of this thesis is to study the
characteristics of interest defined in Table 1.4. In this chapter, we develop Bayesian
methodologies to achieve this objective. We also develop the computational methods
required to implement these Bayesian methods.

Throughout this thesis, we will treat Potential and Current as continuous variables.
This is because Current is the response variable and can theoretically take any value
within a given range for a particular experiment. In the literature it is implicitly
assumed that Potential is a continuous variable, for examples, see Lovric and Scholz
(2003) and Lundquist et al. (2001). Further to this, we will treat time as discrete
(except in Chapter 5 where time is treated as continuous), since the Current is
recorded at a particular time point and not between time points. These issues are
discussed further in Section 4.5.

We define the following notations used in this chapter. Unless stated otherwise, for
ease of notation we drop the scan rate subscript; the developments in this chapter

will be applied to each of the scan rates individually. The rest of the generic nota-
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tion that is common to all sections of this chapter is given by: 0 is the vector of
parameters for the model, © is the parameter space of 8, ¢, is the proportion of
Carbon corresponding to the k¥ level, t is the time index as defined in Table 2.1
and n is the number of samples from the sampling algorithm chosen, for example,
the Gibbs sampler. Further to this, let x;(t) represent the Current at time ¢ for
Carbon level k and

Ty = (mk(1)>xk(2)7 st 7$k(N))v

p = (»(1),p(2),...,p(N))

where p(t) is the Potential at time ¢t and N is the length of the time series (which
is dependent on the scan rate). In addition to this, our generic model for x(t) will

be of the form

xp(t) = glap(t —1),...) +en(t)

where t = 1,..., N for a suitable function ¢(...) which may depend on additional
parameters.

The voltammogram characteristics, defined in Table 1.4, are functions of Current,
Potential and the associated time indices, say h(xy, cx, p), where the function A(. . .)
is a characteristic of interest, such as [ ,imax). Under the Bayesian paradigm, we make

inferences for h(xy, ¢k, p) by using the posterior predictive distribution

F(h(ze ¢ P) |0, i, p) = /e F(h(z0 01, 9)|0) (Bl 1, p) 0B (4.1)

where zp = (2(1), 2(2), ..., 2x(IV)) is a set of future observations with the same
Potential and other associated covariate values such as Carbon.

The posterior predictive distribution shown in Equation (4.1) can be calculated
using Monte Carlo integration (see Section 3.4.1). At each MCMC iteration, we
generate a replicate data set z, = (zx(1), 2x(2), ..., z(N)) successively in time as

the one-step ahead predictions, and the quantity of interest, the h(...) function, is
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calculated and then ergodic means are formed at the end of the MCMC run. Thus
the time series formulation of the data here leads to the averages of the one-step
ahead predictions used to make predictive inference.

The characteristics we will be focusing on are the Peak Potential, Peak Current and
the Peak Separation in Potential, since these are the main characteristics of interest.
Moreover, the posterior predictive distributions involving time and Potential will be
providing the same information as they are just different ways of referencing data
points, hence we will focus on the Potential as this is how the chemists reference
the data. The final reason is for the purposes of brevity. We will provide brief
comments regarding the calculation of the other posterior predictive distributions

where appropriate.

4.2 Predictive Inferences for Current
The posterior predictive distribution for Peak Current, I ,Emax), is given by
P, o, p) = / FU™™16) f (Blay, e, ) d6. (4.2)
e

We can estimate the distribution shown in Equation (4.2) using MCMC methods in
the following way. A predictive cycle z,(cl) (t) where t = 1,..., N is generated at each

iteration of the MCMC sampling algorithm. We can calculate I ,Emax’l) using
1m0 = max{z"(t); t=1,... N} (4.3)
where [ ,gmax’l) is a draw from the posterior distribution shown in Equation (4.2).

Using these samples, we can now estimate the quantity E[/ ,gmax)\a:k, Ck, p| using
E[Ilgmax)’wk, Ck,p] _ /[]gmaX)f(IjgmaX)‘mka Ckzp) d[IgmaX)

1 . (max,l)
— L. 4.4
R (4.4)

IS
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The approximation shown in Equation (4.4) can be used to estimate the mean of
the [ ,imax) for each level of Carbon using an iterative model fitting procedure such
as Gibbs sampler or Metropolis-Hastings algorithm.

Similarly, the posterior predictive distribution for Minimum Current, [ ,Szmin), can be

defined as
J" @, e p) = /@ JI10) (8l cr. p) 6. (4.5)
We can define E[I ,gmin)]a:k, ¢y, p| similarly and obtain an estimate using samples
I,gmin’l) = min{z,gl)(t); t=1,....,N}

from the posterior predictive distribution shown in Equation (4.5) and the estimate

is obtained at the end of the MCMC run by forming suitable averages.

4.3 Predictive Inferences for Time

To estimate the Peak Time, t,imax), we need to calculate F [t,(cmax)]:ck, kg, P, which
requires the posterior predictive distribution f (t,(cmax)\a:k, ¢k, p). This posterior pre-

(max)

dictive distribution for ¢, is given by

FE™) |z 0o, ) — / F1810) £ (0|4 c1. p) 0. (4.6)

We can estimate the posterior predictive distribution shown in Equation (4.6) in
exactly the same way we estimated the distribution shown in Equation (4.2). As
before, we generate a predictive cycle z,g) (t) for each iteration of the MCMC sampling
algorithm. We can then obtain t,gmax’l) for each of the predictive cycles generated
by the MCMC sampling algorithm. Each t,(fmax’l) will be a draw from the posterior

predictive distribution shown in Equation (4.6). We are now able to calculate the
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quantity F [t,&max)|a:k, k), which is given by

B |2y, e, p] = Z 10 £ (40 |, o, p)
t(max)
k
1 = max
S gmet), (4.7)
=1
Similarly, to estimate the Minimum Time, tgcmin), we need to calculate F/ [t,gmin) |ek, ek, P

which requires the posterior predictive distribution
FE™ @y, o, p) = / FE"™10) (62, cr, p) d6. (4.8)
e

By using the same methodology to calculate E[t,(cmax)|mk,ck,p], we can calculate

E [tfgmin) |}, i, p| using
B |z cpp] = Zn:t,gmi“’l). (4.9)
n =1

Let t,(feP’l) be the predicted Peak Separation in Time which is simply the difference

between the predicted Peak Time and the predicted Minimum Time, that is tffep’l) =

t,(gmax’l) - t,(cmin’l). To estimate E[t,(:ep)]wk, ¢k, p|, we require the posterior predictive

density for t,(:ep), which is given by
F ewcp) = [ S0V 10)f e, p) do.
o
We are now in a position to estimate F [t;:ep) |k, i, p], which is given by

B[t @y, crop] = th(:ep)f(t;(:ep)\xk,ckvp)

(sep)
>

1 zn: (sep,l)
- t P, )
n < k

i=1

We now have a sample from the posterior predictive distribution for the Peak Sep-

IS

aration in Time and can therefore estimate tﬁ:ep).
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Before we estimate E [t;Wid)|a:k,ck,p], where tgmd) is the Peak Width in Time, we

need to know the posterior predictive distribution of t,(CWid), which is given by

Ft e, e, p) = / F(t7"V10) f (Bl e, p) d6 (4.10)
)
where t,(CWid) = to — t1x. Let tgl)k be the first predicted time that the Current

reaches [ ,gWid’l) and té{)k be the final predicted time the Current reaches [ ,iwjd’l) where
1 ,gwjd’l) =1 ,gmax’l) /2 and superscript wid denotes that we are considering the Peak

Width. Hence, by definition, the predicted Peak Width in Time is given by

wid, ! ! !
e = 1) — ¢ (4.11)

)

Using Equations (4.10) and (4.11), we are able to estimate E[t,(fid)]:ck, ¢k, | by

wid wid wid
Bty lzy, cr,p) = Z Y £ |2k, e, p)
tlgWid)

IS

1 (widy)
— t, .
" E b

=1

4.4 Predictive Inferences for Potential

To estimate the mean of the predictive Peak Potential for each Carbon level k,

Pk(max), we require the posterior predictive distribution

F(P™ )y cpp) = / F(P™™16) f (B2, cx, p) dO. (4.12)
)

Let P and P™™" be the predicted Potential which produces the Minimum
or Peak Current for the kth Carbon level and the [th iteration respectively. Each
Pk(max’l) will be a draw from the posterior predictive distribution shown in Equation

4.12). Using Equation (4.12), we can now calculate F pma) Ty, Cg, p| which is
k
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given by

E[P]gmaX)|wk, Ck,p] _ /P]EmaX)f(Pk(;maX)|mk7 Ck;p)dplimaX)
1 - max
PO DR

=1

In a similar way, we can also calculate FE [P,Emin)|a:k,ck,p] using samples from the

IS

posterior predictive distribution

FPY™™ |2y p) = / F(PL™18) (8, cr p) 6.
(C]

Before we construct an estimate for the Peak Separation in Potential, P,ESEP) =

Pk(max) — Pk(min), we need to calculate the posterior predictive distribution for P,gseP),

which is given by

FP |2y 0o p) = / F(PL18) £ (B4, c1, p) . (4.13)
©

Using the definitions of Pk(min’l) and P,Emax’l), the predictive Peak Separation in Po-

tential, Pk(sep’l), can now be defined as
Pésep,l) _ Pk(rnax,l) B P’gmin,l) (414)

where the superscript sep denotes that we are concerned with the Peak Separation.

Using Equations (4.13) and (4.14) we can estimate B[P |@y, ¢, p] using

E[ngsep”wmckap] = /P;gsep)f(P;gSEP)Wk,Ck>P)de(S€p)

1 n
) - Z Ps(é;k.

=1

Before we estimate E [P,gwjd)|wk, ¢k, ] we need to calculate the posterior predictive

distribution of Pk(Wid) given by

FPI Ny, o, p) = / F(PY10) £ (8, cx, ) d6. (4.15)
©
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Let Pl(l,)C be the first predicted Potential value at which the Current is equal to [, ,gWid’l).
Similarly, let 132(1,)C be the last predicted Potential value at which the Current is equal
to [ ,EWid’l). Then the predicted Peak Width in Potential, denoted by P,EWid’l>7 can be
defined as

wid,l l l
P = Pl — Pl (4.16)

We are now able to estimate the predictive distribution of the Peak Width in Poten-
tial. Using equations (4.15) and (4.16) we are now able to estimate E[Pk(Wid) |Tk, ck, D)
by

E[P,gWid)‘wk,Ck,p] _ /Pk(wid)f(Pk(wid)’mk’Ck’p)dplgwid)

1~ widy)
~> B
-1

IS

where Pk(Wid) =Py — P

4.5 Closing Remarks

In this chapter, we have derived the posterior predictive distributions and discussed
how to approximate these via MCMC methods. We note that the characteristics we
will be focusing on will be the Peak Potential, Peak Current and Peak Separation
in Potential.

We note that characteristics of interest involving time, such as the Peak Time, will
be treated as discrete. However, in Section 5.3, the posterior predictive distributions
involving time, such as Peak Time, are modelled as a continuous response due to
the nature and simplicity of the models. Hence, the predictions for characteristics
of interest involving time are on a continuous scale. In contrast, the posterior
predictive distributions of the Peak Current as plotted in Figure 6.8 for example, are

obtained using the characteristics of the series of replications zj(t) for the response
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Current. Hence the value of ¢ corresponding to the fitted (or equivalently one-step
ahead) Peak Current can only take one of the possible discrete values of ¢. Thus,
posterior predictive distributions involving time will essentially be discrete, but these
distributions involving time in Section 5.3 will be continuous.

The characteristics of interest involving Potential and Current will be treated as
continuous. The reason for treating Current as continuous is because clearly it can
take any value and therefore any of the characteristics defined in Table 1.4 involving
Current could also take any possible value. As noted in Section 4.1, Potential is
assumed to be a continuous variable in the literature, for examples see Lovric and
Scholz (2003) and Lundquist et al. (2001). We will follow the approach taken in the
literature by treating Potential as a continuous variable.

The methodology developed here is generic in the sense that it can be adopted for
any model based analysis. In addition, the computation methods will work with any

MCMC algorithm which is able to draw samples from the posterior distribution.



Chapter 5

Regression Models for Summary

Characteristics

5.1 Introduction

In this chapter, we calculate the characteristics of interest (see Table 2.2) from the
raw data and model each of them using polynomial regression models which the
chemists were keen to explore. We adopt a Bayesian approach with vague prior
distributions for each of the model parameters, in line with the methods used in the
rest of this thesis. The joint posterior and the full conditional posterior distributions
will be derived for each model parameter.

We fit linear, quadratic and cubic models and select the best model using the PMCC
method (see Section 3.7.2) and assess its predictive value for each characteristic
separately, for each scan rate.

Our preferred modelling approaches involve modelling the whole Current output
curve rather than the summary statistics and will be presented later in Chapters 6,
7 and 8. These approaches have the advantage that inferences can be made for any

characteristics of interest to the chemists from using a single model.
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5.2 Regression Models for Summary Character-
istics

Let h; denote the mean value of a particular characteristic, for the kth level of
Carbon (k =1,..., K) averaged over the replicate runs and replicate channels (see
Chapter 1) for a particular scan rate. For ease of notation, we drop the subscript,
s, that has denoted the scan rate (s = 1,2,3). The characteristics examined are
17 P and PE (see Table 2.2).

It is important to note that the only possible variable that we can use for our
model is the proportion of Carbon as we do not know the Potential and time values
associated with each of the characteristics. Hence, the only type of model that we

will consider is given by

hie = PBo+ > Bych + ex (5.1)

q=1
where hy, is the characteristic of interest to be modelled for the &' Carbon level,
g is dummy variable for the power, w is the degree of the polynomial, ¢; is the
k™ Carbon level, 3y and B = (B4,...,0=)! are the parameters of the model, &
represents the residual for the k' Carbon level. As already noted in Section 5.1,
this model can be applied to each of the scan rates.

It is possible to use more complex regression models than the model shown in Equa-
tion (5.1), such as using fractional powers. Our purpose here is to simply illustrate
what is possible using simple regression models by only looking at the data for each
characteristic individually. As already mentioned in Section 5.1, we also note that
the chemists were keen to explore what this model could achieve.

The likelihood for the model is given by
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where 72 = 072 and K is the total number of distinct Carbon levels. We will assume

vague priors for the parameters, which are given by:

50 ~ N(Ovvg)v
By ~ N(Ovvg)v

7 ~ Gamma(d,,dy),

where vg,v1,...,Vy, di and dy are constants to be chosen, and throughout this
thesis, Gamma(d;,d2) denotes the Gamma distribution with mean j—;. In addition,
let V' = diag(v?,v2,...,v%). The posterior distribution for the model in Equation

(5.1) is then given by

= 203
where
€p = hi — (50 + Zﬁq%)
q=1
and

K
¢:5+d1—1-

The conditional posterior distributions for the unknown parameters 3y, 8 and 72,

are given by:
ﬁ0|18a7_2 ~ N(/”’O)Ug)v

BlBo, 7> ~ N (ug Xs),
80,8 ~ Gamma(v,¢),
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where:

l"l/ﬁ = 7'2 (T2CTC + V_l)_l Z cvec,k(h’k - ﬁO)a

o A cy
2 (ov)
cy G 5
Cc = ,
cx % %
2 3 w\T
Cyeck — (Ckyckacka"'vck)7
1/} = _+d17
K
1
o = = (Ek) + dsy
2
k=1

5.3 Analysis and Conclusions

An example of the data set to be modelled is shown in Figure 2.13. The estimates of
the parameters for the polynomial regression models were found to be fairly robust
when we varied the prior variances for 3y, 3 and the values of the hyperparameters
d; and dy for 72. For the results presented in this section, we set the value for the
prior variances at 10® and the values of both d; and dy were set to 0.001. Vague
priors were used as we have no prior information about the model parameters. We
compared different regression models using the PMCC and found the best model

for each characteristic for each scan rate, see Table 5.1.
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Scan Rate

1 2 3
Minimum 3 2 2
Potential
Minimum 2 3 3
Time
Minimum 1 2 1
Current
Peak 3 1 2
Potential
Peak 2 3 1
Time
Peak 1 2 2
Current
Peak Separation 2 2 2
in Potential
Peak Separation 2 3 2
in Time
Peak Separation 2 1 2
in Current
Peak Width 1 2 3
in Potential
Peak Width 1 2 3
in Time

Table 5.1: The best polynomial degree to use for each characteristic and scan rate.
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The MCMC diagnostic plots for the Peak Potential, Peak Current and Peak Sepa-
ration in Potential are shown in Figures 5.1, 5.2, and 5.3. We thinned the samples
obtained from the MCMC algorithm by taking every fifth iteration. The autocorre-
lation function (acf) plots also provide evidence that the samples of the parameters
are not highly correlated. The value of the acf tails off as expected for a MCMC
sampling algorithm that has the properties of convergence. The diagnostic plots
also indicate that we have obtained an approximate sample from the stationary

distribution for each of the parameters.

Parameter Prior Variances
10° 10" 10"
Bo 44162 | 4.4164 | 4.4164
(0.0297) | (0.0295) | (0.0295)
B -0.9802 | -0.9796 | -0.9796
(0.2730) | (0.2746) | (0.2746)
o? 0.0638 | 0.0637 | 0.0637
(0.0059) | (0.0058) | (0.0058)

Table 5.2: Parameter estimates, posterior mean and standard deviations (within
parenthesis) for different prior variances for the linear model for Peak Potential for

scan rate 2.

The inferences obtained for the regression model parameters were fairly robust when
we varied the prior variances. This is illustrated by the similarity of the parameter
estimates under different prior variances, which are shown in Tables 5.2-5.4 for
scan rate 2. The results in these tables confirm that the values of the parameter
estimates are not changed very much for the different prior variances used. A similar
sensitivity analysis was carried for the other characteristics for scan rates 1 and 3,

and similar results were obtained (omitted for brevity). For the remainder of the
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Parameter Prior Variances

108 10%0 10"
Bo 89.6317 89.6053 89.6053
(6.7780) (6.7656) (6.7656)
51 -192.0526 | -192.7984 | -192.7984
(149.2340) | (149.1309) | (149.1309)
B2 -264.7277 | -259.0127 | -259.0127
(612.4815) | (612.5552) | (612.5552)
o? 680.9840 | 680.4227 | 680.4227
(62.2958) | (62.6931) | (62.6931)

Table 5.3: Parameter estimates, posterior mean and standard deviations (within
parenthesis) for different prior variances for the quadratic model for Peak Current

for scan rate 2.

results presented in this section, we use the value for the prior variances at 108 and
for each of dy,d> we use 0.001.

To plot the distribution densities shown in Figures 5.4-5.6, we used the plot and
density commands with a Gaussian kernel in R is employed, see Venables and Ripley
(2002) and Silverman (1986).

The posterior predictive distributions for the Peak Potential, Peak Current and Peak
Separation in Potential in Figures 5.4, 5.5 and 5.6, respectively, appear to follow the
pattern of the observations shown in Figure 2.13. We also note that the variations
between the Carbon levels for each of these characteristics are as expected.

We next use the model to predict Peak Potential, Peak Current and Peak Sepa-
ration in Potential at six values of Carbon within the range of 3-20% which were
not run in the experiment, namely 6%, 8%, 12%, 14%, 16%, 18% and 20%. The

posterior predictive distributions for the Peak Potential, Peak Current, and Peak
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Parameter Prior Variances
108 10%0 10"
Bo 0.9421 0.9432 0.9432
(0.0545) | (0.0546) | (0.0546)
B -7.5463 | -7.5686 | -7.5686
(1.1998) | (1.2033) | (1.2033)
Ba 26.0416 | 26.1109 | 26.1109
(4.9379) | (4.9537) | (4.9537)
o? 0.0441 0.0442 0.0442
(0.0041) | (0.0041) | (0.0041)

Table 5.4: Parameter estimates, posterior mean and standard deviations (within
parenthesis) for different prior variances for the quadratic model for Peak Separation

in Potential for scan rate 2.

Separation in Potential for these levels of Carbon are displayed in Figures 5.7, 5.8,
and 5.9, respectively. By including the posterior predictive distributions shown in
Figures 5.7-5.9, we are simply illustrating the predictive usefulness of the best model
proposed in this chapter.

In general, there appears to be very little uncertainty about the posterior predictive
distributions for the characteristics shown in detail in Figures 5.7-5.9. This same
property was exhibited for the other characteristics of interest (these are shown in
Appendix B.2). The mean of the posterior predictive distribution for Peak Current,
see Figure 5.8, shows a realistic difference between Carbon levels (guided by the
chemists). Similarly, the distributions in Figure 5.7 are centred on values we would
expect for the Peak Potential. The mode of the posterior predictive distributions
gradually decreases as the proportion of Carbon decreases, following the pattern

shown in Figure 2.13(d). The posterior predictive distributions for the Peak Current
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Figure 5.1: Trace and autocorrelation plots of every fifth sample generated by the
Gibbs sampler for all the parameters of the linear model for Peak Potential for scan

rate 2.

show that as the proportion of Carbon increases the location of the distribution
decreases. This is the same pattern of behaviour shown in Figure 2.13(f). When we
look at the posterior predictive distributions of the Peak Separation in Potential in
Figure 5.9, we see that the location of the distribution decreases as the proportion of
Carbon decreases. This follows the pattern exhibited by the data shown in Figure
2.13(g). As in standard regression analysis, it is possible to further refine these
models using diagnostic residual plots. However, we do not pursue those here since
the regression models are not our preferred modelling approaches as mentioned in

Section 5.1; see also further related discussion in Section 9.2.
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Figure 5.2: Trace and autocorrelation plots of every fifth sample generated by the
Gibbs sampler for all the parameters of the quadratic model for Peak Current for

scan rate 2.
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Figure 5.3: Trace and autocorrelation plots of every fifth sample generated by the
Gibbs sampler for all the parameters of the quadratic model for Peak Separation in

Potential for scan rate 2.
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Figure 5.4: Density plots of posterior predictive distributions of Peak Potential for

scan rate 2.
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Figure 5.5: Density plots of posterior predictive distributions of Peak Current for

scan rate 2.



5. Regression Models for Summary Characteristics 87

Carbon: 3% Carbon: 5% Carbon: 7%

Density.
5 10 1
L L L
5 10 15 20
L L L L
5 10 15 20
L L L L
I
—
>
—
-

T T T T T T T T T T T
065 070 075 080 058 060 062 064 066 068 070 050 055 060
Current Current Current
Carbon: 10% Carbon: 20%

Density
o 5 10 15
L L L
o 2 4 & 8 10 12
L L L L L L

T T T T T T T
035 040 045 050 055 035 040 045 050 055 060

Current Current

Figure 5.6: Density plots of posterior predictive distributions of Peak Separation in

Potential for scan rate 2.
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scan rate 2.
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Figure 5.8: Density plots of posterior predictive distributions of Peak Current for

scan rate 2.
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Chapter 6

Autoregressive Models

6.1 Introduction

In statistical modelling, it is desirable to start with the simplest model and then
to gradually increase the complexity if appropriate. The first model we will use for
the voltammogram is an autoregressive process, as this is the simplest time series
model. The complexity of the autoregressive model will be increased by gradually
incorporating additional variables into the model. In this chapter, we will develop
the autoregressive models under the Bayesian paradigm.

We will derive the full posterior distribution as well as the conditional posterior dis-
tribution for each parameter in each model. The conditional posterior distributions
will be required to implement the MCMC sampling algorithm. We will concentrate
on the aggregated data from derived from array 3 as set out in Chapter 2, although
the models developed here can be adjusted for data sets for other replicates and
arrays. The output from the MCMC sampling algorithm will be used to make in-
ferences about the characteristics of the Current output curve that are of interest,

as developed in Chapter 4.
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6.2 Autoregressive Process

An autoregressive model, is very similar to a multiple linear regression model. The
difference is that the value we will attempt to predict is regressed on the past values
of the data rather than on separate predictor variables. The process W (t) is an

autoregressive process of order R (abbreviated to AR(R)) if
W(t)=aW(t—1)+ Wt —-2)+...+agW(t—R)+<(t) (6.1)

where t is the time index for a generic time series and the process £(t) is assumed
to be the independently distributed random error. The order of an autoregressive
process is often determined using model choice techniques, as discussed in Section
3.7. Other diagnostic methods, such as the autocorrelation function can also be used
to determine the order of an autoregressive process, for example see Chatfield (2003,

Chapter 4). We will now discuss some basic concepts regarding the AR processes.

6.2.1 Stationarity

From an intuitive point of view, a time series is said to be stationary if there is
no systematic change in the mean and the variance over time. More simply, if the
properties of one part a stationary time series is identical to any other part of it.
Before fitting a time series model, it is often necessary to ensure that it is stationary.
There are many techniques that can be used to make a time series stationary such
as differencing, which are discussed in Chatfield (2003, Chapter 2).

Formally, there are two types of stationarity: strict stationarity and weak station-
arity. A time series is said to be strictly stationary if the joint distribution of
W(ty),...,W(t,) is the same as the joint distribution of W (t; +¢),..., W (t, +¢)
for all ¢, t1,...,ty and t; < ty < ...t.. Hence, shifting the time origin by amount
¢t has no effect on the joint distributions. In particular, if k = 1, strict stationar-

ity implies that for all ¢, W (t) has the same distribution. Assume that the first
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two moments are finite with E[W(t)] = p(t) and Var(W(t)) = o2(t), then strict
stationarity implies that u(¢) and o%(¢) are both constants independent of ¢.

To define weak stationarity, we need to define the autocovariance function. If {WW(t)}
is a process where t = 0,1,2,..., N such that Var(W(t)) < oo for each ¢, then the

autocovariance function of {W(¢)} is defined by
y(m,h) = Cov(W(m),W(h))
= E[(W(m)— EW(m))(W(h) — E[W(h)])]

where m,h € {0,1,2,...,N}.
Brockwell and Davis (1991) define weak stationarity as follows. The time series

{W(t),t € Z} where Z = {0, £1,+2, ...}, is said to have weak stationarity if :
(i) E[(W(t))?] < oo for all t € Z,
(il) E[W(t)] = m for all t € Z where m is some constant,
(iii) y(m,h) =~y(m+t,h+t) for all m,h € Z.

If the time series {W ()} is weakly stationary, then ~(m — h,0) =~ for all m, h € Z.
In this case, it is convenient to redefine the autocovariance function as the function

of a single variable, which is given by

(¢, 0)
= Cov(W(t+1),W(t)) forallteZ.

v(¢)

The function v(.) is often referred to as the autocovariance function of {WW(¢)} and
v(¢) as its value at lag ¢. Using this definition of the autocovariance function, the
autocorrelation function of {W(¢)} is defined as the function whose value at lag ¢ is
given by
_ 20
p(t)

7(0)
= Corr(W(t+1¢),W(t)) forall.teZ.
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For more details on stationary time series see Brockwell and Davis (1991, Chapter

1).

6.2.2 Estimating the Parameters of an AR Process

Let W(t) be an AR(R) process with mean p, then
W(t)—p=01(W(t—1)—p)+...+ar(W(t —R) — p) +e(t).

Given observations w(1),w(2),...,w(N), the parameter estimates fi, ay, ..., ar can
be obtained by minimising the sum of the squared residuals. A second method is
to solve the Yule-Walker equations. There are many sources in the literature that
provide a detailed account of the two methods mentioned above, for example, see
Chatfield (2003, Chapter 3) and Brockwell and Davis (1991, Chapter 8). Another
method of parameter estimation is to use MCMC sampling methods. These are

discussed in detail in Section 3.4.

6.2.3 Determining the Order of an AR Process

One method that can be used to determine the order of an AR process is to use the
sample autocorrelation function. The sample autocorrelation coefficient at lag d is
given by

N-d _ _

1 (w(t) —w) (w(t + k) —w)

Zi\;(w(t) — W)

where N is the length of the time series and w = Ziil w(t).

rq =

For a first order autoregressive process, AR(1), it can be shown that p(:) = o,
see Chatfield (2003, pp. 41-42). Thus, the theoretical autocorrelation decreases
exponentially and the sample autocorrelation should also follow a similar pattern.

For higher order autoregressive processes the autocorrelation function is a mixture
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of damped exponential or sinusoidal functions. There are more detailed accounts
in the literature on using the autocorrelation function to determine the order of an
AR process, for example, see Chatfield (2003, Chapter 4).

As with estimating the parameters, there are also Bayesian methods for dealing with
the assessment of the order of the AR process. Various Bayesian model assessment
tools can be used to help estimate the order of an AR processes. One such method
is called the predictive model choice criteria (PMCC) as discussed in Section 3.7.
The model with the lowest PMCC value should be the best model from the set of

models under consideration.

6.3 Autoregressive Models

The first model we will fit to the aggregated data from array 3 will be an autore-
gressive process of order R,. For the remainder of this chapter, we will denote the
vector of parameters by the generic symbol 0, ¢t will denote the time index as defined
in Table 2.1 and N will denote the length of the time series, depending on the scan
rate. For ease of notation, we drop the subscript, s, which we have used to denote

the scan rate. The model is given by

Ra
x(t) = Z a;xg(t — 1) + ex(t) (6.2)

where t = Ry, + 1, Ry +2,...,N and k =1,2,..., K. The likelihood for the model
in Equation (6.2) is given by

f(w!9)0<(72)wexp<—%z > m(t»?)

k=1 t=Ra+1

T 2

where 0 = (a, 73T, a = (a1, ay,...,ag, )’ and 72 = 072, The Bayesian model is

completed by assuming the prior distributions

a; ~ N(0,v?) and 7%~ Gammal(d,,d,), (6.3)
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where v;, dy, dy are constants to be chosen. The joint posterior distribution is given

by

fw|@mo%Wpr(—;ﬂz:§:<@@f—ng;a—@e)

where V,, = diag(v?,v3,...,v% ) and 1 = $(N — R,) + d;. The conditional pos-
terior distributions are obtained from the full posterior distribution by finding the

distribution of each parameter given the remaining parameters and data.

6.3.1 Incorporating Potential in the Model

To improve the accuracy of the model in Section 6.3, factors that affect the response
need to be incorporated in the model. The simplest factor to incorporate in the
model is the Potential via a polynomial in Potential. Incorporating Potential in this
way may seem inappropriate, however, it is the first simplest form we have tried.
We realise the limitations of this model and propose a more flexible autoregressive
model in Section 6.4 and that has been shown to be superior for prediction. We

return our attention to the model incorporating Potential via a polynomial which is

given by . .
oult) = 3t = i)+ 3wy, (b0 + <10 (64

where t = R, + 1, Ry, +2,..., N, and p(t) is the Potential at time t. The likelihood

function of the parameters for this model is given by

K N
N 1, 2
f(x]6,p) o (%) 7 exp<_§f > (@) (6.5)
k=1 t=Ra+1
where 8 = (o,n, 7)), n = (m,m2,...,1r,)". we assign non-informative prior

distributions to 7, , n;, ~ N (O,w?n). Further to this, we note that v?, w?.n, d; and

do are constants to be chosen. The full posterior distribution is simply the product
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of the prior distributions and the likelihood shown in Equation (6.5) which is given
by

1
"V la— -0V in — d272> (6.6)

where V, = (w}, w3, ..., wg ) and ¢ = (N — R,) + di.

It would be possible to use fractional polynomials, that is a polynomial function
where the powers are rational numbers rather than just integers. This could be
costly exploration as we have very little information as to what sort of fractional
powers to use. In addition, a model that incorporates the Potential as a second
autoregressive process is likely to be a better model. This is because the value of
the Current at time ¢ will be influenced by previous values of the Potential (see

Section 6.4 for further details).

6.3.2 Incorporating Potential and Carbon in the Model

To further improve the accuracy of the model we will now deal with the effect of
Carbon. A polynomial in Carbon will be used to account for the effect of Carbon.

The modified model is given by

Ra R'r] R»y
w(t) = Y cw(t — i)+ Y, (p(6)" + D ek +enlt) (6.7)
i=1 gn=1 q=1

where t = R, + 1,R, +2,..., N, ¢ is the kth level of Carbon and x(t) is the
Current for Carbon level k at time t. As before, the {ex(t)} are a sequence (over
time t) of independent and identically distributed Gaussian random variables with
mean 0 and variance o2. We can clearly obtain the previous models from the general

model shown in Equation (6.7) by simply setting the relevant parameters to zero.
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The likelihood is given by

f@ | 6,p.¢) ox ()" exp <— LIDY <ek<t>>2>

where 0 = (a,m,v,7%)" and v = (91,72,...,7&,)". To complete the Bayesian
model, we use non-informative prior distributions (as stated in Section 6.3.1), to-
gether with 7, ~ N(0, gg) where g, are constants to be chosen and ¢ = 1,2,... R,.
The full posterior distribution is obtained by taking the product of the likelihood

and the prior is given by

fO|2.p.c) <¢2>wl—1exp<—§TZZ > (e’

1 _ 1 _ 1
—5a'Vila—on'V in — oy (1) Ty - d272>
where V, = diag(g7, 95, ..., 9% ) and ¢ = (c1,¢a,. .., cx)".

The conditional posterior distributions are given by:

o | ’I’],")’,TQ,X,p7C ~ NRQ(“’aaza)u
n | a7’777—27X7p7c ~ NRn(un7En)7
~ ’ a7n77—27X7p7c ~ NR-Y(”’WE’}/)a

7_2 ’ 01777777X7P>C ~ Gamma(wh@))
where:

Bo = T8 XY, So=7(X"X +72V, )7,
YOé = (yayl(Ra—f—1)7"'aya,1(N)7ya,2(Ra+1)7"'73/04,2(]\7)7-“7

ya,K(Ra + 1)7 ce 7ya,K(N))T7

Yark(t) = xx(t) — Z 5, ()" — Z’Yq(ckz)q,

j,,:l
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r1(Ra)  x1(Ra—1) ... x1(1)
i (N—=1) z(N-=2) ... z1(N—R,)
ZCQ(RQ) LEQ(Ra — 1) e [EQ(l)
X =
.I‘Q(N— 1) .%’Q(N—Q) .QZQ(N—Ra)
TL‘K(RQ) J}K(Ra—l) IK(l)
.TK(N—l) I'K(N—Q) .’EK(N—RQ)

e = TNPTY,, %, = (PP V)
Y,,] = (yn,l(Roz =+ 1) ..... yn71(N)7 me(Ra + 1) ..... yn’Q(N) .....
Yni(Ra + 1),y e (V)T
Ro Ry
ypi(t) = m(t) = Y it —i) — > vch,
=1 q=1
p, = 7207, 8, = (r2CTC + (Vg,) )7
ny = (y’y,l(Ra —+ 1) ..... yfy,l(N)y y%Q(Ra + 1) ..... y772(N) .....

y'y,K(Ra =+ 1)7 s 7y’Y,K(N))T7

Ra R,
Yy(t) = ai(t) — Z ;g (t — i) — Z i, ()7,

p(Ra+1) (p(Ra+ 1))2 o (p(Ra + 1))R"7
p(N) (p(N))? (p(N))en
P = :
P(Ra+1) (p(Ra+ 1)) (P(Rq + 1))
p(N) (p(N))? (p(IN))
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R
o A& ...
R
o A "
R
o A ..o
¢ = ,
R
cx Cr'
R
cK % cr'
1 KX
k=1 t=Rq+1

6.4 Models Using Two Autoregressive Processes

A more realistic method is to incorporate the Potential using an autoregressive
process as past values of the Potential have an effect on the present value of the

Current. In this case the model is given by

Ra Rﬁ R’Y
wr(t) = oump(t— i)+ Y Biplt — j) + D vach + exlt)
=1 q=0 q=1

where ¢t > max(R, + 1, Rz + 1) and as noted earlier, {e;(¢)} denotes a sequence
of independent and identically distributed Gaussian random variables with mean 0

and variance o2. The likelihood is given by

f@]8.p,¢) o ()75 exp (‘ DY <ek<t>>2>
k=1 t=r'+1

Where TI = HlaX(Ro“Rﬂ), 0 = (a7/6777T2)T7 /8 = (ﬁ07ﬁ17ﬁ27 cee 7ﬁRﬁ)T and
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Assign non-informative prior distributions to the parameters, where v;, w;, g, are
the variances for a;, 3, 7 respectively. The full posterior distribution obtained by
taking the product of the likelihood and the prior is given by

K

[0]2pe) <r2>¢2—1exp<—§v2z > (@) - ja’V, e

k=1 t=r'+1
_lﬁTv—lﬁ _ 1 Tv—l _ d 2
2 B 2’7 o Y 2T

where ¢y = SK(N — 1) + dy.

The conditional posterior distributions are given by:

« ‘ B>77T2,Xapvc ~ NRa(”a)EOé))
/8 | a,'y,TQ,X,p,c ~ NRﬁ(“ﬁazﬁ)a
vy ‘ aw@77—27X7p7c ~ NRW(N'yaE’Y)v

7-2 ‘ a,,@,"/,X,p,C ~ Gamma(¢27<ﬂ>7

where:

po = TN XTY,, S, = A(XTX + V)
Ya = (ya,l(r/+1)7'~-7ya,1(N7ya,2(T/+1)a"'7y0¢,2(N)a"'7

ya,K(TI + 1)7 o 7ya,K(N))T’

Rg R,
var(t) = an(t) =D Gp(t =) = D ()",
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x1(1) zi(r'=1) ... x(r' =Ry +1)
ri(N—=1) z(N—-2) ... 21(N—R,+1)
xo(1") zo(r' = 1) ... (' — Ra+1)
X = ,
xQ(N—l) .TQ(N—Z) xg(N—Ra+1)
ri(r') oz’ —=1) ... xg(’ — Rsa+1)
I‘K(N—l) .’L’K(N—Q) JJK(N—RQ+1)

hg = TQEﬂPTYg, Eﬂ: (TQPTP—i-Vﬁil)il,
Y/B = (yﬁ;l(rl+1)7..'7y6,1<N)7y/872(T/+1)7"'7yﬁ,2(N)7"'7

Yo (' + 1), ... ysx(N)",

Ra R,
yak(t) = wn(t) = gt —i) = Y yect,
=1 q=1

p(r'+1)  p(’)  p('—=1) ... p(r'—Rsg+1)
p(N)  p(N—=1) p(N=2) ... p(N—-Rz+1)
P = : :
p(r'+1)  p(r)  p(r'—=1) ... p(r'—Rg+1)
p(N)  p(N—-1) p(N—-2) ... p(N—-Rsz+1)

p, = 78,07, %, =(CTC+ Vv,
Y’Y = (y771(’l",+1),...,3/%1(]\[),:(/%2(7’/—’-1),...7y%2(N),...,

y’y,K(T/ + 1)7 s 7y'y,K(N))T7
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pal®) = mu(0) =Y et — i)~ 3 Gplt — )
b= 23 Y @) ra

6.5 Analysis and Conclusions

Equation (6.8), see below, defines the way in which we will refer to each model and
to which models we are restricting ourselves to. We note that in trying to develop
a model in applied problems, it is possible to continually adjust models to obtain a
better model. Hence, it is necessary to restrict the models that we are considering
in some way. Further, the models we have chosen cover the model space developed
in this chapter quite extensively with relatively little increase in the complexity of
the analysis. We have chosen to purposely include Carbon as the chemists, based

on their experience, believe that Carbon has a fundamental effect on the Current

output.
Ra Ry
Mi(Ro, By) ¢ ap(t) = gt — i) + > yqch + ex(t)

i=1 q=1
Ra Ry Ry

My(Ro, Ry, Ry) + ailt) = agap(t — i) + Y my, (00" + D 7€t + ex(t)
i=1 Jn=1 q=1
R Rﬁ R"/

Ms(Ro, Rg, Ry)  an(t) =D agag(t — i)+ Y Biplt — ) + > v4ch + ex(t)
i=1 j=0 q=1

The values for R, R (or R,)) and R, shown in Tables 6.1, 6.2 and 6.3 were chosen by
cycling around each variable in a nested loop structure. Hence, a thorough model
search was conducted for various combinations of R,, Rs (or R,) and R,. The

combination of values shown in Tables 6.1, 6.2 and 6.3 were those that produced the



6. Autoregressive Models

102

lowest PMCC values. It can be observed from these tables that for each scan rate,

the 3 models presented have similar performances, under PMCC.

Model Goodness | Penalty | PMCC
Specification of fit

M(R, =30,R, =1) 194.4657 | 195.0966 | 389.5623

My(R, = 34,R, =3,R, =1) | 197.5542 | 192.6735 | 390.2277

M;3(R, =25,Rg =20,R, = 1) | 193.8198 | 195.9621 | 389.7819

Table 6.1: Predictive model choice criteria for selected models for scan rate 1.

Model Goodness | Penalty | PMCC
Specification of fit
M,(R,=11,R, =1) 38.8481 40.7423 | 79.5903
My(R, =11,R, = 3,R, =2) | 38.5283 45.2663 | 83.7945
M;3(R, =11,Rg = 11,R, = 1) | 36.3307 | 38.8855 | 75.2162

Table 6.2: Predictive model choice criteria for selected models for scan rate 2.

Model Goodness | Penalty | PMCC
Specification of fit

M,(R, =12,R, = 2) 217.7710 | 220.2873 | 438.0583

My(R, =13,R, =3,R, =1) | 214.9017 | 223.8122 | 438.7138

M;3(R, =12,Rg = 11,R, = 1) | 170.5442 30.1754 | 351.5307

Table 6.3: Predictive model choice criteria for selected models for scan rate 3.

To complete the rest of our analysis for scan rate 2, we use model M3(R, = 11, Rg =

11, R, = 1) which has PMCC value at least 5.9% smaller than the values of the
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other two models, see Table 6.2. The diagnostic plots for this model is shown in
Figures 6.1 and 6.2. These plots indicate that the MCMC algorithm is sampling
accurately from the posterior distribution. The algorithm appears to be covering
the full space for each of the parameters. Figure 6.2 shows that there is relatively
little autocorrelation present in the sample.

The parameter estimates for the chosen model were fairly robust when we varied
the prior variances for a;, 3, v and the hyperparameters d,, d, for 72, see Table
6.4. We also calculated the standard deviations of the posterior distribution of
the parameters. These turned out to be similar to each other and are omitted for
brevity. This study shows that the choice of the prior variance has little effect on
the parameter estimates, as also seen in Section 5.3. As in Section 5.3, we set the
value for each of the prior variances to 10® and the values of d; and dy to 0.001.
We now examine the residuals which were calculated by working out the difference
between the one-step ahead predictions and the observed values shown in Figures
2.10 and 2.11. This is a standard technique used in time series analysis, which
is also discussed in Section 3.8. The residual plot shown in Figure 6.3 indicates
that the variance of the residuals is not constant. The behaviour of the residuals
becomes much more varied around the times when the Current is near its peak
value. This pattern repeats itself when the Current is near its minimum value. As
we are interested in predicting various characteristics about the peak and minimum
points of the Current output, it is necessary to improve the model. We note that,
although we have only shown the plots from scan rate 2 (to illustrate our findings),
the corresponding plots for scan rates 1 and 3 exhibited similar behaviour.

The location of the distributions shown in Figure 6.4 appears to be near the value
of the Potential that we would expect, see Figure 2.11. This is also true for the
distributions of the Peak Separation in Potential, see Figure 6.6.

As noted in Section 5.3, we used the plot and density commands in R to plot the
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posterior predictive distribution densities shown in Figures 6.4-6.6. This is also the

case for the other posterior predictive distribution densities shown in Figures 6.7-6.9.

We next use the model to predict Peak Potential, Peak Current and Peak Sepa-
ration in Potential at six values of Carbon within the range of 3-20% which were
not run in the experiment, namely 6%, 8%, 12%, 14%, 16%, 18% and 20%. The
posterior predictive distributions for the Peak Potential, Peak Current and Peak
Separation in Potential for these levels of Carbon are displayed in Figures 6.7, 6.8
and 6.9, respectively. We are unable to compare these posterior predictive distri-
butions to observed data. Hence, we need to use the chemists’ knowledge of these
experiments to analyse the posterior predictive distributions in Figures 6.7, 6.8 and
6.9. In addition to this, as noted in Section 5.3, by including the posterior predictive
distributions shown in the aforementioned figures, we are illustrating the predictive
usefulness of the best model proposed in this chapter.

Based on the chemists’ feedback, we realised that the AR model is rather poor at
predicting the Peak Potential. Note that the posterior predictive distribution is
multi-modal (see Figure 6.7) and, guided by the chemists, we expected the mode of
this distribution to be near the second mode. This multi-model nature of the poste-
rior predictive distribution for the Peak Potential will, in turn, affect the posterior
predictive distribution for the Peak Width in Potential. As the model appears to
be rather poor at predicting the various characteristics involving Potential, it is not
surprising that the same behaviour was found with respect to the posterior predic-
tive distributions for Peak Time and Peak Separation in Time. We re-iterate that
this is due to Potential and time are just different ways of referring to a particular

observation.
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Parameter Prior Variances
108 10%0 10'2
o 1.5663 1.5659 1.5659
Qo 0.0774 | 0.0784 | 0.0784
Qs -0.5127 | -0.5134 | -0.5134
oy -0.1492 | -0.1489 | -0.1489
Qs -0.2032 | -0.2042 | -0.2042
o 0.1107 | 0.1112 0.1112
ar -0.0195 | -0.0189 | -0.0189
o 0.1780 | 0.1776 | 0.1776
Qg -0.0537 | -0.0528 | -0.0528
a1 0.0757 | 0.0742 0.0742
o1 -0.0705 | -0.0699 | -0.0699
Bo 33.0286 | 33.1308 | 33.1308
IG5 -59.9870 | -60.2273 | -60.2273
B2 -0.7939 | -0.6421 | -0.6421
B3 16.2813 | 16.2315 | 16.2315
on 21.0300 | 21.0805 | 21.0805
Os 11.4082 | 11.4892 | 11.4892
Bs -11.2009 | -11.1565 | -11.1565
B7 -8.6967 | -8.9484 | -8.9484
Bs 3.5305 | 3.4945 3.4945
B9 -17.9063 | -17.6956 | -17.6956
Bio 16.1107 | 16.0585 | 16.0585
B -2.8047 | -2.8155 | -2.8155
" 0.0011 0.0024 | 0.0024
o? 0.0152 | 0.0152 | 0.0152

Table 6.4: Parameter estimates (posterior mean) for different prior variances for the

best autoregressive model for scan rate 2.
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Figure 6.1: Trace plots generated by the Gibbs sampler for all the parameters of the

best autoregressive model for scan rate 2.
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Figure 6.2: Autocorrelation plots generated by the Gibbs sampler for all the param-

eters of the best autoregressive model for scan rate 2.
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the time index defined in Table 2.1.
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Figure 6.5:

scan rate 2.
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Chapter 7

Sinusoidal Models

7.1 Introduction

A well established method for modelling periodical features is to use trigonometric
functions (referred to as sinusoidal models or Fourier Form). Sinusoidal models have
been applied in a variety of applications, for example: Muller and Phillips (2007)
applies sinusoidal models to Ozone Air pollution, Crellin et al. (1998) and Srivastava
et al. (2003) apply these type of models in image analysis, and Dubnov and Rodet
(1997) and Desainte-Catherine and Hanna (2000) are examples of applications to the
modelling of sound. There has also been much research on estimating the parameters
of sinusoidal models, for example Hainsworth and Macleod (2003) and Barone and
Ragona (1997).

If a time series exhibits a periodical nature, then it is logical to build a model that
accounts for this. The data we wish to analyse, shown in Figure 2.10, exhibits a
periodical nature and hence we need to adapt the model we have developed in Chap-
ter 6. In this chapter, we further develop our model to account for the periodical

nature.
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7.2 Sinusoidal Model

Assume that we have a time series that contains a deterministic sinusoidal model
which is given by

At = i+ acos(wt) 4 bsin(wt) + & (7.1)
where w is some known frequency, the random error term is denoted by &;, A; denotes
the observations, ¢t denotes the time index for a generic time series and u, a and b

are parameters to be estimated. By writing the model in Equation (7.1) in matrix

form, we obtain

E[A] = A0

where

and

1 cos(w)  sin(w)

1 cos(2w) sin(2w)
1 cos(Nw) sin(Nw)

where N is the length of a generic time series. This model is an example of a general
linear model as it is linear in p, a and b. The least squares estimate of @ is obtained

by minimising S, (A, — 1 — a cos(wt) — bsin(wt))? from which we obtain
6 = (ATA)TATA. (7.2)

The solution in Equation (7.2) is valid for any frequency w. However, the model
only makes practical sense for values of w that are not too high or low. The Nyquist

frequency (see Section 7.3 and West and Harrison, 1999), given by w = 7, completes
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one cycle every two observations. The lowest frequency is where one complete cycle
is the whole length of the time series. The highest and lowest possible values of the
frequency w will be explained in more detail in Section 7.3. If we equate the cycle
length 27 /w to N, the lowest frequency is then given by 2w /N. The least squares

estimate of @ turn out to be simple if w is restricted to one of the values
wm = 2mm/N, where m=1,... N/2. (7.3)

From Equation (7.3) we can see that the frequency increases in equal steps from the
lowest frequency 27 /N up to the Nyquist frequency 7. In the case when w = m,
(AT A) is a diagonal matrix as a result of the trigonometric results shown in equations

(7.4)-(7.7) below:

Zcos(wmt) = Z sin(wy,t) = 0, (7.4)

t=1
(

N 0, m#n

Z cos(wpt) cos(wpt) = N, m=n=N/2, (7.5)

- | N2, m=n#N/2
(

N 0, m#n

Zsm )sin(w,t) = 0, m=n=N/2 (7.6)

= | N2, m=n#N/2

Zcos(wmt) sin(wpt) = 0, YV m,n. (7.7)

If (AT A) is diagonal, then (AT A)~! is also diagonal which makes it easy to calculate

the least squares estimate of 6. In this case, for some frequency w,,, where m # N/2,
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we obtain:

If m = N/2 we obtain

ey
Il

[
I

==
0

=

>

~

=

and the term in bsin(wt) is zero for all t.

7.3 The Nyquist Frequency and the Lowest Fun-
damental Frequency

We define the Nyquist frequency as follows as the upper bound. Suppose that ob-
servations are taken at intervals equal time intervals d¢, then the Nyquist frequency
is given by wy = 7/dt. In terms of cycles per unit time we have wy/2m = 1/24t.
We note, throughout this section, that ¢ and N are as defined in Section 7.2.

Consider the following example which involves thinking about the sampling rate
required and the Nyquist frequency. Suppose that the situation where temperature
readings are taken daily at midday for a particular period of time in a certain
town. From these observations, it would not be possible to ascertain whether nights
are warmer or colder than the days during the period of time of interest. In this
situation, the Nyquist frequency is wy = 7 per day, that is 1 cycle is completed every

2 days. If we wanted to investigate variation within a day, we need a frequency of
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27 per day, that is one complete cycle is completed per day. However, to do this a
higher sampling rate would have to be used.

We will now demonstrate why there exists a lowest fundamental frequency below
which it is not sensible to fit a sinusoidal model to the data. Suppose that we
have 6 months of daily temperature readings from winter to summer. Using this
data alone, it would not be possible to differentiate between an upward trend or
if winters are colder than summers. In contrast, with 1 year’s data, it would then
become obvious that winters are colder than summers. Thus, if we are interested
in temperature variation between the seasons, we require at least 1 year’s worth of
data and thus the lowest frequency we can fit is 1 cycle per year. For example, if we
had weekly observations, for 1 year we would have N = 52 | 6t = 1 week and the
lowest angular frequency given by 2w /Ndt corresponds to 1/Ndt cycles per week,
which corresponds to 1/52 cycles per week.

The lowest fundamental frequency which is 27/NJ is also referred to as the fun-
damental Fourier frequency since the Fourier series representation of the data cal-
culated when w,, = 27m/Né for m = 1,...,N/2 are all integer multiples of the
fundamental frequency which are also referred to as harmonics. The term funda-
mental frequency is more appropriately used when some function f(¢) is periodic
with period II such that f(t+mlIl) = f(t) wherem € {1,2,..., N} . Thenw = 27/II
is the fundamental frequency and the Fourier series representation of f(t) is a sum
over the harmonics of the fundamental frequency.

From the discussion above, we can see that the Nyquist frequency does not depend
on N but the sampling frequency. In contrast to this, the lowest frequency does
not depend on the sampling rate but is dependent upon N. This means that for
lower frequencies we have to collate data over longer periods of time and for higher
frequencies observations need to be taken more frequently. For a more detailed

synopsis see Chatfield(2003, Chapter 7) and West and Harrison(1999, Chapter 8).
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7.4 Fourier Form Representation of Cyclical Func-
tions

The model in Equation (7.1) is the simplest example of a sinusoidal model. A more
complex and practical representation of periodic functions that arise in various sce-
narios such as astronomy, geophysical studies and electrical systems, is the Fourier
form of the model. The basic idea behind this representation of some cyclical func-
tion g(t) where t =0,..., N — 1, that is any N real numbers can be expressed as a
linear combination of trigonometric terms which is dependent on the frequency w.
Let Ry = N/2if N is even and Ry = (N —1)/2 if N is odd. The Fourier series
representation of some time series \; is given by

Ry

2mrt 2mrt
At = r b, si 7.8
¢ ao+;[a00s(N>+ SIH(N>:| (7.8)
where Ry < N/2 and coefficients a,, b, are given by:
s, =,
ap = N Z At an/2 = N Z(—l)t)\t, bN/Q =0,
t=0 t=0
a = % i\;l A cos(2mrt/N)
, 1 <r < NJ2. (7.9)
b, = 2 A sin(27rt/N)

An analysis using this model setup is referred to as a Fourier analysis or harmonic
analysis. The Fourier series representation in Equation (7.8) has exactly N param-

eters to describe N observations, hence there is no error term. The results shown
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in equation (7.9) can be proved (see Appendix C for proof) using the identities:

= cos 2mmt “in 2mnt\ 0
N N -
t=0
)
0, m #n,
= 2mmt 2mnt N N/o
cos cos | — | = —n =
t:O N N ) m n / Y
\ N/2, m=mn# N/2,
)
0, m # n,
= (2mmt\ . [ 2mnt N/o
sin sin | — | = —n=
\ N/2, m=mn+# N/2,
= cos 2rmt\ iy “in 2rmt\ 0
N N N Y
=0 t=0

where m and n are integers.
We now return our attention to Equation (7.8). The parameters a, and b, are often
referred to as the Fourier coefficients. For r = 1,..., Ry, define the function S, (t)

(known as the 7! harmonic) by:

2mrt 2mrt
S.(t) = a,cos (%)+brsin( 7;\:)

2mrt
= Ar r |
cos( N —l—p)

A= (@l + 5",

&)
pr = arctan ,
ar

wheret =0,..., N —1, A, and p, are referred to as the amplitude and phase of the

r*" harmonic respectively. The maximum value of S, (t) is equal to the amplitude and
the position of the maximum value of the r*" harmonic is determined by the phase.
The r'" harmonic occurs when p = 2R; and is known as the Nyquist harmonic. As

by = 0, then Ayje = |ans2| and py2 = 0. The frequency of the ™ harmonic
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is given by 27r/N and the cycle length is p/r. The first harmonic is also known
as the fundamental harmonic with frequency o and length p. The r*" harmonic
completes r full cycles for each complete cycle of the fundamental harmonic. For a
more detailed exposition including how Fourier series are used in Dynamic Models,

see Pole et al. (1994, Chapter 3) and West and Harrison (1999, Chapter 8).

7.5 Adaptation of the Fourier Model

The Fourier model described in Section 7.4 will be adapted slightly for application to
our data sets. Instead of having the full set of Fourier coefficients we will determine
the number of coefficients via the PMCC, hence there will be an error term in the
model. The adjusted Fourier model will be

Ry
z(t) = ap + Z [aT cos(wr(t — 1)) + by sin(wr(t — 1)) | + ex(¢) (7.10)

r=1
where t = 1,...N, w = 2Z, &,(t) ~ N(0,0%) ,Ry < N/2 for N even and Ry <
(N —1)/2 for N odd. For the remainder of this chapter, ¢ denotes the time index
defined in Table 2.1 and N denotes the number of observations which is dependent

upon the scan rate. The likelihood for the model in Equation (7.10) is given by

g\ NE 9 K N
T 2 T 9
(%) - ( Iy gk@)) (7.11)
where 72 = 072, As with our earlier models, we will use vague priors for the

parameters which are given by:

ag ~ N(O,vg),
ap ~ N(O,vir),

b, ~ N(0,v;,), (7.12)

7 ~ Gammal(d,,d,),
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where vy, Vg, Vb, di and dy are constants to be chosen. Let a = (ay,as, ... ,aRf)T
and b = (by,bo,... ,be)T. The posterior distribution for the model in equation

(7.10) is given by

2\1p3—1 72 - 2 a(Q) L 7 -1 1.7 -1 2
(T exp | =5 ng(t)—ﬁ—éa (Va)™'a = 56" (Vi) "'b — dar
k=1 t=1 0

where iy = £E4dy, V, = diag(v2,,v2,, ... Vir,) and Vi = diag(vj 1,07, ..., Vi, )-
We will now consider additional features exhibited in our data, shown in Figure
2.10, we wish to model. If we look at Figure 2.10, we can see that different values
are observed for the different proportions of Carbon. A simple way to account for
this in the model would be to incorporate a polynomial in Carbon. In addition, to
model the effect of the Potential, we will also incorporate an AR process in Potential
and previous values of Current. The new model is given by

Ry

x(t) = ag+ Z {ar cos(wr(t — 1)) + b, sin(wr(t — 1)) ] + Zazxk (t—1)

r=1
+Zﬁ]p (t—17) "‘Z’chk + ex(t)
q=1
where t > (R, + 1, Rz +1). The likelihood for this model is of the same form as the
likelihood given in Equation (7.11). The e(t) is given by

ep(t) = xp(t) — (ao + Z [ar cos(wr(t — 1)) + b, sin(wr(t — 1))]

r=1
Ro Rﬁ R’Y
+D gkt —i) + > Bt =)+ Y %ci) :
i=1 =0 q=1

As before, we will use vague priors for the parameters which are stated in Equation

(7.12) and Section 6.4. The posterior distribution for the model in equation (7.10)
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is given by
I 1
fO)z,p,c) oc (72)2 lexp <_EZ Z ex(t 2% §aTVafla
1t= T/+1
—%bTV 'b— o'V, o - 5Tvﬁ—1ﬁ
_%,YTVY—I,Y o d27_2>

where @, p and ¢ are vectors for the Current, Potential and Carbon levels respec-
tively, 1y = KN=r) L gy, ¢ = = max(R,, Rg). The conditional posterior distributions

are given by:

ala,b, e, 8,7, 7%, X, p,c ~ N(uo,00)

alag,b,a, 8,7, 7, X,p,c ~ Ng, (1, 2a)
blag,a,a, B,v7*, X,p,c ~ NRf(/,Lb,Eb)
alag,a,b,8,7, 7%, X, p,c ~ Ng,(tto,Za)
5|aoaa>b,aa%7'27X,PaC ~ ﬁ(,“l’ﬂ’zﬂ)
~lag,a,b,c, B, 7%, X, p,c ~ No(py, 24)

7'2|CL0, a, b7 a,,@,’y,X,p, c ~ Gamma(d}% ()0)7

where:

=
Q
I
t%’
£
~
h<
s
1
Q
I
R
N
}ﬂ
.
_|_
5



7. Sinusoidal Models 122

Ya,k (t)

Ry
x(t) — (ao + Zb sin(rwt — rw) + Z%fﬂk (t—1)

r=1 =1

Ry R,
+Zﬁjp(t —Jj)+ Z%CZ ’
=0 q=1

cos(wr’) cos(2wr’) . cos(Rpwr’)
cos(w(r'+1)) cos(2w(r' +1)) ... cos(Rpw(r' +1))
cos(w(N —1)) cos(2w(N —1)) ... cos(Rjw(N —1))
25,BTY .

(©*BTB + V—l)‘1 ,

K T
<Zyb,k(7“/+ Zybk Zybk > ;
k=1

Ry Ra
x(t) — (ao —i—Zarcosrw(t— 1 +Za xp(t —1)

r=1 =1

Ry
+Zﬁ]p (t—3j —i—quck) )

sin(wr’) sin(2wr”) . sin(Rywr’)
sin(w(r'+1)) sin(2w(r'+1)) ... sin(Rjw(r' +1))
sin(w(N — 1)) sin(2w(N —1)) ... sin(Rjw(N —1))
Y. XY,

(FXTX + V)7

(ya,l(rl+ 1)7 .. 7ya,1<N)7° .. 7yoz,K(T/ + 1)7 e 7ya,K(N))T7

r=1

By
x(t) — (ao + Z (a, cos (Ryw(t — 1)) + by sin (Rpw(t — 1))) +

Ry
+Zﬁjp (t—y +Z’chk> \
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ps = T°85P"Yg,
S = (FPPTP+VY) T
Yﬁ = (y@l(r, + 1)) s 7yﬁ,1(N)7yﬁ,2(Tl + 1)7 cee ayﬁ@(N)v B

y57K(T/ + 1), e ,ygyK(N))T,
Ry

ysr(t) = x(t) — | ao+ Z (ay cos (rw(t — 1)) + b, sin (rw(t — 1))) +

r=1

Ra R,
+ Z a;xy(t —1i) + Z ’chZ) ,
i—1 g=1
B, = TQEVCTYV,
X, = (TQCTC + (V,Y)_1 ,
Y, = (yyu(r"+1), . ys 1 (N), gy 2(r' + 1), ... Y5 2(N), ..o,

Y (1 + 1),y (V)T
Ry
Yy = xx(t) — | ao+ Z (arcosrw(t — 1) + by.sinrw(t — 1)) +
r=1

Ra Rg
+Y am(t—i)+ Y Bp(t—j) |,
i=1 j=0

1 K N
o = EZ > ei(t) + da
k=1 t=r'+1

7.6 Analysis and Conclusions

The parameter estimates for the sinusoidal models were fairly robust when we varied
the prior variances for ag, a, b, a, 3, v and the hyperparameters d; and d, for 72.
This is illustrated by the similarity of the parameter estimates under different prior
variances, which are shown in Table 7.2 for the best sinusoidal model for scan rate 2.
We also calculated the standard deviations for the parameter estimates and found

that these were very similar under different prior variances and hence are omitted
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for brevity. As in Section 6.5, we set the value for the prior variances to 10® and
for the hyperparameters d; and dy to 0.001. The analysis presented in the next
paragraph finds this best model.

As in Section 6.5, the values for R,, Rz, Ry and R, shown in Table 7.1, were chosen
by cycling around each variable in a nested loop structure. Hence, a thorough
model search was conducted for various combinations of ., Rg, Ry and R,. The
combination of values for R, Rg, Ry and R, for each scan rate, shown in Table 7.1,

is the combination that produced the lowest PMCC value.

Scan Rate Model Goodness | Penalty | PMCC
Specification of fit

1 My(R, =21,Rs =15, | 192.1585 | 182.3373 | 374.4958
R, =1, Ry =20)

2 My(R, =8, Rs = 10, 36.2345 | 33.74563 | 69.9802
R, =1, Rs=11)

3 My(R, =8,Rs =5, | 149.7985 | 161.6283 | 311.4268
R,=1,R;=11)

Table 7.1: Table of PMCC values for the best sinusoidal model for each scan rate.

From Table 7.1, according to the PMCC, we can see that the sinusoidal model
performs better than the AR models used in Chapter 6. When we looked at the
time series diagnostic plots for the parameters we found that the algorithm was
covering the parameter space and that the algorithm did not appear to get stuck in
a particular location for any of the parameters. However, the acf plot indicated that
there was strong autocorrelation (significant as the value of the acf was above the
dotted line). To reduce the dependence in the parameter samples, we took every
40" sample generated by the algorithm. This gave us the well behaved diagnostic
plots shown in Figures 7.1 and 7.2.
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As we have already noted in Section 6.5, the residuals were calculated by working
out the difference between the one-step ahead predictions and the observed values
shown in Figures 2.10 and 2.11. The residual plots, shown in Figure 7.3, indicate
that the variance of the residuals is not constant. The behaviour of the residuals
becomes much more varied around the times when the Current is around the peak
and minimum values. This same behaviour was exhibited in the residual plots in
Figure 6.3. As we noted in Section 6.5, our main objective is predicting various
characteristics about the peak and minimum points of the Current output, hence it
is necessary to improve the model. We have only shown the plots from scan rate 2
to illustrate our findings. The corresponding plots for scan rates 1 and 3 exhibited
similar behaviour.

Figures 7.4 and 7.6 provide the plots of the posterior predictive distribution included
in the analysis for the Peak Potential and the Peak Separation in Potential, for each
of the five levels of Carbon included in the analysis. The location of the posterior
predictive distributions shown in Figure 7.5 appears to be located near the values
that we would expect for the Peak Current. This is similarly true for the posterior
predictive distributions of the Peak Potential which are shown in Figure 7.4.

We note that the posterior predictive distributions shown in Figures 7.7, 7.8 and
7.9, are for Carbon levels not used in the experiment. As already noted in Section
5.3, we are unable to compare the posterior predictive distributions in the aforemen-
tioned plots to any observations. By including the posterior predictive distributions
shown in Figures 7.7-7.9, we are simply illustrating the predictive usefulness of the
sinusoidal model proposed in this chapter. The posterior predictive distributions for
the Peak Potential in Figure 7.7 and Peak Current in Figure 7.8 are very similar
(or almost identical) and there is little difference between Carbon levels. This is
also the case for the posterior predictive distributions shown in Figure 7.9. For the

posterior predictive distributions shown in Figures 7.7-7.9 we would expect there to
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be slightly more variation between different Carbon levels. A similar critical analysis

was also conducted for the other scan rates, but as mentioned earlier, we illustrate

with data obtained for scan rate 2.
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Parameter Prior Variances
108 10%0 10'2
agp -0.0002 | -0.0002 | -0.0004
ay 0.0177 | 0.0176 | 0.0176
as -0.0206 | -0.0207 | -0.0207
as 0.0090 | 0.0089 | 0.0089
ay -0.0288 | -0.0286 | -0.0285
as 0.0352 | 0.0349 | 0.0349
ag -0.0046 | -0.0046 | -0.0045
ar -0.0125 | -0.0126 | -0.0126
as 0.0036 | 0.0037 | 0.0038
ag -0.0079 | -0.0079 | -0.0079
ayp 0.0141 | 0.0141 | 0.0141
an -0.0066 | -0.0067 | -0.0068
by 0.0595 | 0.0599 | 0.0603
by -0.0691 | -0.0689 | -0.0689
bs 0.0204 | 0.0205 | 0.0205
by 0.0404 | 0.0404 | 0.0404
bs -0.0332 | -0.0331 | -0.0330
bs 0.0178 | 0.0178 | 0.0179
b; -0.0199 | -0.0198 | -0.0197
bs 0.0129 | 0.0128 | 0.0129
bg 0.0048 | 0.0048 | 0.0049
b1o -0.0001 | -0.0001 | -0.0001
b1 -0.0039 | -0.0040 | -0.0039
o 1.4733 | 1.4743 | 1.4734
Qs 0.1293 | 0.1280 | 0.1292
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Parameter Prior Variances

108 10" 10"2
o -0.4775 | -0.4787 | -0.4784
o -0.1206 | -0.1188 | -0.1189
as -0.1985 | -0.1982 | -0.1992
o 0.1398 | 0.1394 | 0.1395
oy -0.0305 | -0.0308 | -0.0300
g 0.0835 | 0.0837 | 0.0832
o 34.1056 | 34.0896 | 34.0636
Iih -57.6140 | -57.4719 | -57.3746
By -2.6375 | -2.8461 | -2.9301
s 13.8800 | 14.0571 | 13.9931
By 18.7478 | 18.5584 | 18.5396
s 9.9999 | 10.0387 | 10.0224
s -8.8091 | -8.5617 | -8.3225
Br -7.9568 | -8.1181 | -8.1941
s 8.0766 | 7.8820 | 7.7699
By -20.0307 | -19.9551 | -19.8304
Bro 12.2381 | 12.3272 | 12.2630
o 0.0019 | 0.0018 |  0.0032
o2 0.0142 | 0.0142 | 0.0142

Table 7.2: Parameter estimates (posterior mean) for different prior variances for the

best sinusoidal model for scan rate 2.
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Figure 7.2: Autocorrelation plots of every 40" sample generated by the Gibbs sam-

pler for all the parameters of the best sinusoidal model for scan rate 2.
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Figure 7.5:

scan rate 2.
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Figure 7.8:

scan rate 2.
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Chapter 8

Stochastic Volatility Models

8.1 Introduction

The residual plots for the models developed in Chapters 6 and 7 show more vari-
ation where the peaks and troughs occur. Although the residuals are quite small,
we need to model the peaks and troughs more accurately. This is because we are
interested in predicting characteristics about the peaks and troughs using their pos-
terior predictive distributions. We will attempt to resolve this issue by modelling
the variance instead of assuming the variance to be constant. These types of models
are more generally known as stochastic volatility models. As before we will use a
MCMC sampling algorithm to make predictive inferences about the characteristics
of interest. We review the current literature on stochastic volatility models with a
Bayesian perspective before analysing the data. As stated in Sections 6.1 and 7.1,
we will be modelling the aggregated data shown in Figure 2.10.

There are a number of different stochastic volatility models that have been proposed
such as the Black-Scholes (Black and Scholes, 1973) model and the Heston model
(Heston, 1993) which are widely used in finance. Another type of stochastic volatil-

ity model was introduced by Engle (1982) known as autoregressive conditional het-
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eroscedastic (ARCH) models. Before reviewing ARCH (autoregressive conditional
heteroscedastic) and GARCH (general autoregressive conditional heteroscedastic)
models, we consider modelling conditional means and variances in Section 8.3. In
Section 8.2 we provide a brief literature review on stochastic volatility models. Our

adopted models for conditional means and variances are described in Section 8.8.

8.2 Literature Review

Although the subject of Bayesian stochastic volatility models is relativity young in
comparison to some of the other areas of statistical modelling, the body of research
on stochastic volatility models is vast. We provide a brief review by discussing the
contributions from the key articles in this subject.

As mentioned in Section 8.1, the main purpose of stochastic volatility models has
been to model various aspects of the financial markets, for example, see Jacquier
et al. (1994). In the aforementioned article, the authors propose new techniques and
a simplified approach for the analysis of stochastic volatility models in which the
logarithm of a conditional variance follows an autoregressive model. Jacquier et al.
(1994) compare stochastic volatility models and ARCH models. The authors of the
aforementioned article conclude that in their view stochastic volatility models are
a promising alternative to various ARCH models. The vast majority of this article
concentrates on how the Metropolis algorithm is used to construct a Markov chain
simulation tool and how this can be used to draw inferences about the parameters
and construct multi-step-ahead predictive densities. The authors compare their re-
sults to those obtained from the method of moments (see Melino and Turnbull, 1990)
and quasi-maximum likelihood methods (see Ruiz, 1994 and Harvey et al.,1994) that
have been proposed. Jacquier et al. (1994) concludes that their proposed method

outperforms the method of moments and quasi-maximum likelihood techniques. A
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number of articles have appeared since the publication of Jacquier et al. (1994),
for example, see Chib et al. (2001), Kim et al. (1998), Broto and Ruiz (2004) and
Liesenfeld and Richard (2006).

While ARCH models are useful for a variety of applications, especially finance, this
type of model would be more powerful if we could generalise to the multivariate
case. Harvey et al. (1994) point out that the generalisation of this model to the
multivariate case means that it can be difficult to obtain parameter estimates and
interpret. They suggest an alternative method of modelling the variance as an unob-
served stochastic process. The logarithm of this component is modelled directly as
a linear stochastic process, such as an autoregressive process. According to Harvey
et al. (1994), one of the advantages is that their properties can be obtained from the
properties of the process generating the variance component. The principal disad-
vantage of this method is that the maximum likelihood method is difficult to apply.
The authors conclude that the multivariate stochastic variance model (or stochastic
volatility model) has a natural interpretation and is relatively parsimonious, al-
though the authors do not quantify how parsimonious in comparison to a suitable
alternative model. Harvey et al. (1994) applied their methods to model daily dollar-
pound exchange rates and show that the parameters can be estimated without too
much difficulty via a quasi-maximum likelihood approach. The model fits well to
the exchange rates and is able to capture common movements in volatility.

Chib et al. (2001) also discuss the fitting and comparison of high dimensional mul-
tivariate time series models with time varying conditions. The class of stochastic
volatility models the authors used are more complex compared to the models used
in the articles highlighted above. The sampling algorithm used to obtain estimates
for the parameters relies on MCMC methods which incorporate a special method
for sampling the parameters of the univariate stochastic volatility process. Chib

et al. (2001) also provide methods for estimating the log-likelihood functions. The
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authors conclude their work by highlighting that their model is robust to the choice
of the prior distribution as well as the starting value for the MCMC algorithm. The
authors believed that their approach was the first practical approach for modelling
financial assets such as exchange rates. It should be noted that many contributions
to developing various ways of using stochastic volatility models in finance such as
Harvey et al. (1994), were made throughout the nineties.

We conclude this section by commenting on Broto and Ruiz (2004). The authors
point out that while stochastic volatility models have an intuitive appeal, their appli-
cation has been limited due to the inability of estimating their parameters. However,
as we have shown and as is noted by Broto and Ruiz (2004), there have been several
new techniques for estimating the parameters in a stochastic volatility model which
are reviewed in this article. Liesenfeld and Richard (2006) present an estimation
technique which is very close to what has been proposed by Broto and Ruiz (2004).
Liesenfeld and Richard (2006) use a type of importance sampling algorithm (see
Spiegelhalter et al., 2002 for further details on importance sampling) to perform a
classical and a Bayesian analysis of univariate and multivariate stochastic volatility
models. The authors point out that their sampling procedure is highly generic and
hence changes in the model being analysed can be accommodated. Broto and Ruiz
(2004) conclude that the several estimation techniques that they have considered
for the parameters in a stochastic volatility model seem to match the benchmark

established by the MCMC procedure of Jacquier et al. (1994).

8.3 Modelling Conditional Means and Variances

Throughout this section, and Sections 8.4-8.6, we use ¢, t = 1,2,..., N, and N to
denote the time index and the number of observations respectively for a generic

time series. Further, let Y; be the observation and w;,,...u,; be the explanatory
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variables at time ¢, where p denotes the number of explanatory variables. Consider
the situation where we are modelling with a constant conditional variance, that is

Var(Y;|uy g, - .., ups)=02. The regression model of Y; on uyy, ..., u,, is given by
Y = flurg, oy, ..., ups) + & (8.1)
where &, has zero mean and constant variance 0. The conditional mean of Y; given
Uiy, ..., Upy 1S given by
E[Yg|u17t, U2,t; e 7up,t} = f(uLt, Uz,u Ce 7up,t)-

Equation (8.1) can be modified such that a non-constant variance is allowed, that is
conditional heteroscedasticity. Let o%(uy 4, uay, - . -, up:) be the conditional variance,
that is

Var(Yg|u1¢, Uty - - - 7up,t) = 02<U1,t; Uty - - - ;Up,t)-

The model is given by

}/t = f(ul,ta u?,tv s 7up,t) + O-(ul,ta u2,t7 cee 7up,t)€t'

The function o (uy ¢, uat, . . ., up ) represents the standard deviation and should there-
fore be non-negative. This implies that if o(.) is a linear function then the param-
eters must be constrained such that o(.) > 0. Modelling non-constant variances in
regression is treated in detail in Ruppert (1988). Models that have a conditional
variance are sometimes referred to as variance function models. The GARCH model

is a special class of these types of models and are discussed in Section 8.6.

8.4 ARCH Processes

Let {e:} be independent N(0,1) where t =1,..., N. Then

Eletlet—1,...] =0 and Var(eei—,...) = 1.
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The process Y; is an ARCH(1) process if

Vi =en/ap+ ¥, (8.2)

for ap > 0 and 3 > 0. We can express Equation (8.2) as
Y = (a0 + ar Y2 )y (8.3)
We can see from Equation (8.3) that an ARCH(1) process is similar to a AR(1)
process in Y;? and with a multiplicative white noise in place of a additive white
noise process. Let o2 represent the conditional variance of Y; given past values, that
is 02 = Var(Y;|Y;_1,...). Since g is independent of Y; ; and E[e?] = Var(g;) = 1,
then the mean and variance are given by
EY|Y,.q,...] = 0, (8.4)
and
VaI'(}/HY;,l, .. ) = E[(O{O + Oél}/?_l)é‘%’}/;,l, )/t-,g, - ]
= (ap+ V2 )E[E|Yi1, Yo, .. ]
= QO + 061}/;2_1. (85)
It is a requirement that ag > 0 and a; > 0 since the standard deviation cannot
be negative. A further restriction is that a; < 1 for Y; to have a finite variance.
When «a; > 1, the variance becomes infinite. We start proving this by taking the
expectation of Equation (8.3), which is given by
ElY?] = Elgf(ao+aiY2))]
= Elef]Elag + a1V 4].
Since E[¢?] = 1 and & is independent of Y;_;, we obtain
E[Y?] = Elag+aV2]

E[Y?] > aEY2]
E[YY]
EY2,]

aq.
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If a; > 1, then E[Y}?] > E[Y?,], that is the sequence Y; is continually increasing,
then o2 will continue to increase as o7 is dependent upon «a; and the sequence of Y;.

Hence, the variance of Y; will be infinite. Consider the equations
Elo}|Yia] = ag + V2,

and

E[gf]Yt_Q, ] =g+ ag(ag + 0113/}2,2).

If a; = 1 then the quantity a;(ap+a;1Y,?,) will continue to grow, and hence resulting

in an infinite variance. Therefore we require o < 1 for Y; to have a finite variance.

From Equation (8.5) we can see that if ¥;_; has an unexpected large deviation from
the mean such that Y; i is large, then the variance of Y; ; will have an unusually
large variance. It follows that Y; is expected to have a large deviation from the mean
of zero. This volatility continues to have an affect, that is if Y; has a large deviation,
then afﬂ will be large, which means that Y;,; will be large and so the volatility
continues to propagate. Conversely, if Y;2, is smaller than expected, then o2 is
small and Y;? is expected to be small and so the pattern continues. This behaviour
of unusual volatility continues its presence in the Y; but not forever.

In this section, we have only considered an ARCH(1) process. However this can
easily be extended to an ARCH(q) process. We say that Y; is an ARCH(q) process
if

Y, = o454,

where the conditional standard deviation given past values Y;_1,Y; o, ... is given by

where ¢ is the number of parameters in the ARCH process. The properties regarding

the conditional and unconditional mean for an ARCH(1) process is same for an
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ARCH(q) process, that is the conditional and unconditional mean are constant.
Just like an ARCH(1) process, an ARCH(q) process has a constant unconditional

variance and non-constant conditional variance.

8.5 Combining ARCH and AR Processes

An AR(1) has a non-constant mean and a constant conditional variance. In Section
8.4, we showed that an ARCH(1) process has a conditional mean that is constant
and a non-constant conditional variance. If it is believed that the mean and variance
of a process are dependent on the past then we can combine the AR and ARCH
models. We will now concentrate on the simple task of combining an AR(1) model
with an ARCH(1) model.

Let ¢; be an ARCH(1) process such that ¢, = 5t\/m where ; is Gaussian

white noise with zero mean and unit variance. Suppose that
Yi=0Yi1+G.

The process Y; looks like an AR(1) process, except the noise term is an ARCH(1)
process which replaces the independent white noise process. To ensure that Y, is
stationary with finite variance it is necessary that |¢| < 1 and «; < 1. In addition,
it is naturally assumed that oy > 0 and a; > 0, as discussed in Section 8.4. In
Figure 8.1, a simulation of an AR(1)ARCH(1) process with the individual parts is
shown. It can be seen that when the ARCH(1) term is more volatile (shown in the
bottom left hand panel of Figure 8.1), then the AR(1)ARCH(1) process moves more
rapidly.

The process Y; has a conditional mean and variance that are dependent on the past
and non-constant. By combining an AR process with an ARCH process it is possible

to model a wide variety of time series. Indeed, it is possible to combine any ARMA
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Figure 8.1: Simulation of 100 observations from an AR(1)ARCH(1) process. The
values of the parameters are og = 1.00, oy = 0.95, p = 0.10 and ¢ = 0.80. This

example is taken from Ruppert (2004, page 369).

model with any GARCH model which increases the variety and complexity of the

models that can be used.

8.6 GARCH Models

The ARCH(q) process has a deficiency in that the volatility comes in short bursts.
This is illustrated by the bottom left hand panel in Figure 8.1. If we want a model
with volatility that is sustained for a longer period of time, then a GARCH model
would be a better choice. The GARCH(p,q) model is given by

Y, = g04



8. Stochastic Volatility Models 145

and

q p
oy =, | Qo+ Z athQ_i + Z 5;‘0152_]'7 (8.6)
i=1 j=1

where a; > 0 for i = 1,...,¢ and §; > 0 for j = 1,...,p. From Equation (8.6),
it can be seen that o, 1,01_9,...,0,, are fed back into o, hence the conditional
standard deviation exhibit longer periods of high or low volatility than that of an
ARCH process. An ARCH model is a special case of a GARCH model.

If we compare simulations from an GARCH(1,1) and an AR(1)GARCH(1,1) pro-
cesses shown in Figure 8.2, it can be seen that the GARCH(1,1) process is less
volatile than the AR(1)GARCH(1,1) process. The large value of the parameter /3
will mean that o; will have a high correlation with o;_;. This is the force behind the
longer lasting effect of the volatility in comparison to the ARCH(1) process shown
in Figure 8.1.

8.7 Time Dependent Variance

A simple extension of the AR(R,) model is to use a time dependent variance instead
of assuming a constant variance. In this case, the model will have a variance for
each time point. This will mean that for each scan rate we will have a different
number of time dependent variances. In this case, the model for the aggregated

data in Figures 2.10 and 2.11 is given by

xp(t) = za: a;xp(t — 1) + (1),

where () ~ N(0,02), 72 = 0,2 and from herein, ¢ denotes the time index defined

in Table 2.1. As with the other models, we will use vague priors which are given by

a; ~ N(0,w;) and 77~ Gamma(dy,d,),



8. Stochastic Volatility Models 146

White Noise Ot
o -
~ 4
~
- o J
o + v -
- < A
T4
o
o~
i
~
® _|
! T T T T T T T T T T T T
0 100 200 300 400 500 0 100 200 300 400 500
GARCH(1,1) AR(1)GARCH(1,1)
o o
3 @
o o |
S &
2 e
o o
o o
T T
o o
S &
I 1
Q Q
? 7 ?
T T T T T T T T T T T T
0 100 200 300 400 500 [ 100 200 300 400 500
Time Time

Figure 8.2: Simulation of 500 observations from an AR(1)GARCH(1,1) process. The
values of the parameters are ag = 1.00, oy = 0.08, 3; = 0.90, and ¢ = 0.80. This

example is taken from Ruppert (2004, page 371).

where w; is the prior variance for «; and dy, do are constants. We note that Tf are
identically and independently distributed a-priori. The posterior distribution for
this model is given by

N KN 1 N

H (1)5 2 2 exp (—5 Z Z T2ed(t) — §aTQ;1a —b Z 7'3) ,

t=r+1 k=1 t=r+1 t=r+1

where Q, = diag(wy,ws, ..., wg,) and from herein, N denotes the number of obser-
vations which is dependent on the scan rate. From a theoretical point of view, this
model should perform poorly as the number of parameters is going to be large. This
model can also be seen as a slight departure from our parsimonious approach as the

number of parameters will increase dramatically. When we used this model on a
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single level of Carbon at scan rate 2, we found that the performance of this model
was extremely poor under the PMCC in comparison to models already tested and

developed in Chapters 6 and 7.

8.8 Variance Function

A better approach is to use a simple functional form for the variance. If we use
too many parameters in the variance function, the model may not perform well in
comparison to the competing models developed thus far. We are going to use a
simple AR(1)ARCH(1) model which will incorporate a sinusoidal component. This
model will have a conditional mean and variance that are both non-constant. In
addition, this model also produces short bursts of volatility which is what happens
about the peaks and minimum points in the data.

There are obviously an infinite number of different variance functions that we could
try and hence will be unable to test them all. We will restrict our approach to
incorporating simple polynomial of the Carbon and a AR process in Potential in the
variance as these are believed to be the driving forces behind the chemical process
which affects the Current. As we can see from the plots in Figure 2.10 it is the
Carbon that has the biggest effect on the characteristics of interest. The model we

will use is of the form

ri(t) = ao+arag(t —1) + Bop(t) + Gip(t — 1) + i’quZ
+ Z (a, cos(wr(t — 1)) + by sin(wr(t — 1))) + k(). (8.7)

We assume that e (t) ~ N(0,02(t)), where

Ry R,
oi(t) = exp | — | ¢o+ Z pich + Z Ump(t —m) + nxg(t — 1) . (8.8)
i=1 m=1
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We will consider one specific model in detail, that is, we will show how the posterior
distribution is constructed and how to estimate the parameters. The model we will
consider in detail is the general model that is shown in Equation (8.7) in conjunction
with Equation (8.8). The likelihood for this model is given by

(Tt oo (-5 33 A s

(NI

where 6 = (O‘Oaah/@v’%aﬂ b> ¢07¢7 v, 77)T, 6 = (60761)T7 Y= (717727 s 7’737)T7
a = (ay,as,... ,aRf)T, b= (by,by,... ,be)T and ¢ = (¢1, o, . .. ,¢R¢)T. As we are
including an autoregressive process of order 1 in our model, it follows that ¢ > 2.

The conditional expectation E [z (t)|0] is given by

Rq
ag + aqxg(t — 1) + Bop(t) + Bip(t — 1) + Z VaC
q=1
By
+ Z (a, cos(wr(t — 1)) + b, sin(wr(t — 1))),
r=1

since the €4 (t) have mean zero. The conditional variance Var (z|@) is given by

Rg R,
exp | = |60+ S gk + S vmplt — m) +naa(t — 1)
i=1 m=0

As before we will assume non-informative prior distributions. For parameters ay,

a1, Bo, B1, ar and b, assume non-informative priors as in Section 7.5 and:

¢ONN(Ovd¢0)7 qszN(O)dqbz)v
v~ N<O> de)7 77 ~ N(O’ dT])? (810)

where dy ¢, da,4,, d1,¢;5 d2,6,, 1,0, d2y, diy, day are constants to be chosen. By taking

the product of the prior distributions shown in Equation (8.10) and the likelihood
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in Equation (8.9) we obtain the posterior distribution given by

2 2
_&_ﬂ—lT —1 _lT -1 lT -1 LT -1
eXp< 2vg 2u; 2’8 V'B '8 27 V’Y Y 20, V:l a b V;) b
Ro K N
% v? n? 2 1
B N o : Var (2:.]10)) 2
2d, b0 2dsy, 2d27] z_; 2ds o IHE( ( k’ ))
K N )
1 (z(t) — E [zx(¢)|6])
2 ’ 8.11
exp< %Z:Z Var (246) (8.11)

The conditional posterior distributions for the parameters obtained from the expres-
sion shown in Equation (8.11) are extremely difficult to sample from. The MCMC
methods that have been used to obtain parameter estimates for stochastic volatility
models such as that shown in Equation (8.11) are the Metropolis-Hastings algo-
rithm (see Section 3.5) and rejection sampling. Jacquier et al. (2003) suggest using
a rejection-sampling method or the Metropolis-Hastings independence sampler, (see
Gilks et al., 1996, Chapter 5). If the rejection sampling method is used as proposed
in Jacquier et al. (2003), then the possibility of a high rejection rate could result in
having to run the algorithm for long periods of time to obtain a good approximation
of the posterior distribution. When using the independence sampler, the choice of
the proposal distribution is critical to the efficiency of the algorithm. This becomes
even more important when dealing with large data sets such as the data set we are
dealing with. Due to the difficulty of being able to write down the conditional dis-
tributions for stochastic volatility models, there are a number of articles such as Yu
and Meyer (2006) that have used WinBuGS to obtain estimates for the parameters
in the various stochastic volatility models under consideration. One advantage of
using WinBUGS is that a proposal distribution is not required. Further to this,
WinBUGS is also efficient at generating random samples of the model parameters.
This latter approach of using WinBUGS is the one we shall adopt. The sampling
methodology implemented by WinBUGS is discussed in Section 8.9.

Now that we have shown how the posterior distribution is constructed and how we
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aim to obtain samples of the parameters we will show in slightly more detail the
four models we consider here. The four stochastic models we will consider are given
below. Note that for each model, xj(t) is given by Equation (8.7).

Stochastic Volatility Model 1 (M5(R,, Ry, Ry)):

Ry

op(t) = exp | - ¢o+z¢j02
i=1

Stochastic Volatility Model 2 (Mg(R,, Rs, Ry, R,)):

Ry Ry
ob(t) = exp | —[do+ D> ik + > vmp(t—m)
i=1 m=0

Stochastic Volatility Model 3 (M7(R,, Ry, Ry)):

Ry
op(t) = exp | — ¢o+z¢j02+77l’k(t—1)

i=1

Stochastic Volatility Model 4 (Ms(R,, Ry, Ry, R,)):

Ry R,
oi(t) = exp | — | do+ D dich+ Y vplt —1) +nay(t — 1)
i=1 m=0

8.9 Sampling Methodology Used by WinBUGS

Lunn et al. (2000) state that WinBUGS attempts to use the most appropriate sam-
pling method for each parameter. When the full conditional posterior distribution is
available in closed form, WinBUGS can identify the closed form and implement the
most appropriate sampling method. When the full conditional posterior distribu-
tion is not available in closed form, WinBUGS examines the situation and chooses
a suitable general sampling method. Table 8.1 (from Lunn et al., 2000) shows the
sampling method hierarchy used by WinBUGS in order of precedence. As we will be
using WinBUGS to apply the stochastic volatility models proposed in Section 8.8,



8. Stochastic Volatility Models 151

it follows that the sampling method hierarchy shown in Table 8.1 illustrates how
the samples of the parameters in our stochastic volatility models will be obtained.

For further details on WinBUGS see Lunn et al. (2000).

Target Distribution Sampling Method

Discrete Inversion of cumulative distribution
function (trivial)

Closed form (conjugate) | Direct sampling using standard algo-
rithms

Log-concave Derivative-free adaptive rejection sam-
pling (Gilks, 1992)

Restricted range Slice sampling (Neal, 1997)
Unrestricted range Metropolis-Hastings (Metropolis et al.,
1953 and Hastings, 1970)

Table 8.1: Sampling method hierarchy used by WinBUGS in order of precedence.
Each method is only used if no previous method in the hierarchy is appropriate (see

Lunn et al., 2000 for further details).

8.10 Analysis and Conclusions

As with the models used in Sections 6.5 and 7.6, the optimal values for R., Ry R,
and R,,, were found using a nested search method for each in turn. The combinations
of values that produced the lowest PMCC values for each scan rate are shown in
Table 8.2.

The parameter estimates were fairly robust when we varied the prior variances for
all the parameters (see Table 8.3). As in Section 7.6, we calculated the standard

deviations for the parameter estimates and found that these were very similar under
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Scan Rate Model PMCC
1 Ms;(R,=1,R;=6,R, =3) 132556.88
M¢(R,=1,R;=6,R, =3,R, =2) | 172043.03
M;(R,=1,R;=6,R, =3) 131783.20
Ms(R,=1,R; =6,R, =3,R, =2) | 252200.83
2 Ms(R, =1,R; = 6, Ry = 2) 10964.21
M¢(R,=1,R;y=6,R, =2,R,=2) | 17523.50
M;(R,=1,R;=6,R, =2) 9786.03
Ms(R,=1,Rf=6,R,=2,R,=1)| 26266.48
3 Ms;(R,=1,R;=6,R;, =2) 33939.67
M¢(R,=1,R;=6,R, =2,R,=2)| 33200.63
M;(R,=1,R;y=6,R;, =2) 31216.89
Ms(R,=1,R;y=6,R, =2,R, =2) | 35456.49

Table 8.2: Table of PMCC values for different models for the three different scan

rates.

different prior variances and hence are omitted for brevity. As noted in earlier
chapters, it is reassuring to find that the parameter estimates are robust to these
changes in the prior distributions.

According to the PMCC, the best model is M7(R, = 1,R; = 6, R, = 2) for scan
rate 2. For the results presented in this section, we use the aforementioned model
and set the value for each prior variance to 10%.

When we looked at the trace plots for the parameters of the stochastic volatility
model we found that the algorithm was covering the parameter space at a very slow
rate and that the algorithm did not appear to get stuck in a particular location for

any of the parameters. The acf plot indicated that there was strong autocorrelation
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Parameter Prior Variances
108 10%0 10'2
%) 29.4902 29.4901 29.4901
a 0.9654 0.9654 0.9654
Bo -18.5246 | -18.5246 | -18.5246
0 10.8707 10.8707 10.8707
" 0.5605 0.5605 0.5605
a -4.6342 -4.6342 -4.6342
as 0.8108 0.8108 0.8108
as -0.5593 -0.5593 -0.5593
ay -0.2420 -0.2420 -0.2420
as -0.0264 -0.0264 -0.0264
ag -0.0701 -0.0701 -0.0701
by 1.0200 1.0200 1.0200
by -0.4111 -0.4111 -0.4111
bs 0.1344 0.1344 0.1344
by -0.2632 -0.2632 -0.2632
bs 0.2753 0.2753 0.2753
bs -0.0353 -0.0353 -0.0353
oo 7.2988 7.2988 7.2988
01 -148.0661 | -148.0673 | -148.0673
02 5371717 | 537.1735 | 537.1735
n -0.0143 -0.0143 -0.0143

best stochastic volatility model.

Table 8.3: Parameter estimates (posterior mean) for different prior variances for the
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(significant as the value of the acf was above the dotted line), in parameter samples
generated by the algorithm. To reduce the dependence in the parameter samples, we
experimented as to how often to sample from the chain initially choosing relatively
small values such as picking every 5%, 10", 20" sample generated by the algorithm.
Further experimentation led us to taking every 200" sample generated by the algo-
rithm. This gave us the well behaved diagnostic plots shown in Figures 8.3 and 8.4,

which appear to indicate that the sample obtained covers the full parameter space.

The residual plots in Figure 8.5 appear to indicate that the stochastic volatility
model has not adequately modelled the data. Further to this, they do not appear to
have a constant variance, as we would expect for a good fitting model. This could
partially explain why the PMCC is much higher than that for the sinusoidal model
used in Section 7.6.

Carbon: 3% Carbon: 5%

T T T
200 300 400 500

Time, t Time, t

Carbon: 7% Carbon: 10%

T T T T
200 300 400 500

Carbon: 20%

T T
200 300 400 500

Time, t

Figure 8.5: Differences between data and one-step ahead predictions.

As in Section 7.6, we will compare the posterior predictive distributions obtained via

the best stochastic volatility model to our knowledge obtained from the plots shown
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in Figures 2.12. The posterior predictive distributions for the Peak Current, shown
in Figure 8.7, appears to produce a much closer fit than either the autoregressive or
sinusoidal model. The posterior predictive distributions for the Peak Potential are
located where we would expect. We note that these posterior predictive distributions
appear to be identical and that we would expect some variation between the different
Carbon levels. For the posterior predictive distributions in Figure 8.8, four out of
the five Carbon levels also appear to be identical. The model appears to produce
posterior predictive distributions for the Peak Separation in Potential located where
we would expect.

We note that the posterior predictive distributions shown in Figures 8.9, 8.10 and
8.11, are for Carbon levels not used in the experiment. Therefore, we are unable to
compare these posterior predictive distributions to any observed values. As already
noted in Section 5.3, by including the posterior predictive distributions shown in
Figures 8.9-8.11, we are simply illustrating the predictive usefulness of the best
stochastic volatility model proposed in this chapter.

The posterior predictive distributions for the Peak Current shown in Figure 8.10
appear to be centered on values that are much lower than we would expect and
compared to the values obtained from the sinusoidal model used in Chapter 7. There
is a small amount of variation in the location of the distributions between different
Carbon levels. We also note that the distributions in Figure 8.10 are very similar
in shape. The posterior predictive distributions for the Peak Potential, shown in
Figure 8.9, indicate more uncertainty about where the Peak Potential occurs. The
posterior predictive distributions for the Peak Separation in Potential, shown in
Figure 8.11, are centred on values that are slightly lower than what we expect based
on our experience so far with regards to this particular data set. As we highlighted
earlier, we have only concentrated on scan rate 2. A similar analysis was conducted

for the other scan rates.
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Figure 8.3: Trace plots of every 200" sample generated by WinBUGS for all the

parameters of the best stochastic volatility model for scan rate 2.
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Figure 8.4: Autocorrelation plots of every 200" sample generated by WinBUGS for

all the parameters of the best stochastic volatility model for scan rate 2.
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Chapter 9

Conclusions and Future Work

9.1 Introduction

This chapter draws a number of overall conclusions by comparing the various mod-
elling strategies presented so far. The comparison using the PMCC allows us to
select the best set of models for the data. This chapter also provides some com-
ments pointing out the limitations of the proposed methods, and it ends with a
discussion of a few ideas for further developing the analysis and empirical modelling

for cyclic voltammograms.

9.2 Model Comparisons

The Bayesian methods used for making inference throughout the thesis also allow
us to compare various models presented previously in Chapters 5-8. As mentioned
in Section 3.7.2, the best model is the one which provides the minimum value of
the PMCC. For the overall comparison, we still use the PMCC since all the models
under consideration are based on the assumption of normally distributed error distri-

butions. As stated in Section 3.7.2, the PMCC minimises the expected value of the
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squared-error loss function which is most suitable for use with normally distributed
error distributions.

In the overall comparison, we do not include the regression models for the summary
statistics presented in Chapter 5 since these models do not describe the full data
set for a cyclic voltammogram as the other models presented in the subsequent
chapters do. As discussed before, these simple to use off-the-shelf regression models
can provide a quick and crude analysis of one characteristic at a time, independent
of the other characteristics. This may lead to problems in the analysis since the
voltammogram characteristics are dependent, for example, the Minimum Current,
I gﬁin) , cannot be greater than the Peak Current, [ ;rgax). A single time series model

for a voltammogram avoids these types of problems and are compared next.

Scan Model PMCC
Rate
1 | Mi(Ry,=30,R,=1) 389.56
My(R, =21,R3=15,R, =1, R; = 20) 374.50
M;(R,=1,R; =6,R, =3) 131783.20
2 | M3s(R, =11,Rg =11,R, = 1) 75.22
My(R,=8,Rs=10,R, =1, Ry = 11) 69.98
M;(R,=1,R; =6,Ry=2) 9786.03
3 | Ms(R, =12,R3 =11,R, = 1) 351.53
My(R,=8,Rs=5R;=11,R, = 1) 311.43
M;(R,=1,R;=6,Ry=3,R, =2) 31216.89

Table 9.1: The value of the PMCC for the best time series model found for each
of the three different scan rates. The first model is the best autoregressive model,
the second is the best sinusoidal model and the third is the best stochastic volatility

model for each scan rate.
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Table 9.1 provides the value of the PMCC for the best time series model found for
each of the three different scan rates from the three different classes of models, viz.
autoregressive, sinusoidal and stochastic volatility presented in Chapters 6, 7, and 8
respectively. We observe that the stochastic volatility models are the worst in each
case. This is expected, since the PMCC penalises a model through its predictive
variance and the predictions using the stochastic volatility models are very volatile.
The values of the criterion for the autoregressive and sinusoidal models are on a
comparable scale, and we can see from Table 9.1 that the sinusoidal models are
the best ones for the data for each of the three different scan rates. Although
the sinusoidal models turn out to be the best, we recall from Chapter 7 that the
sinusoidal models do not describe realistic differences in values of Current due to
the differences in Carbon levels. This can be a potential problem if the chemists
want to predict values of Current for different levels of Carbon only. However these
models are recommended since the primary objective of the thesis is to describe and
analyse characteristics of cyclic voltammograms.

We end this section by discussing a few limitations of the modelling approaches
presented in the thesis. First, we have only modelled the data for different scan
rates independently but scan rates affect the behaviour of the different time series,
see Figure 2.11. Ideally a joint model of the data from all three different scan rates
should be formulated, see Section 9.3.

Second, we note all the models presented here are well-known time series models.
The primary reason for using these models is the need to have easily interpretable
models aimed at non-specialist practitioners in Chemistry. Although the simple
models have been able to cope with the fitting of data sets that have a large number
of observations, we believe there is scope for applying more complex models and
alternative techniques such as non-parametric methods, for example, see Fan and

Yao (2005) and Chen et al. (2004). In the following section, we discuss some of
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these techniques. We note that the Bayesian predictive inference and computation
methods for the different characteristics of interest by postulating a single time series
model can be adopted for any future more complex model for the data from a cyclic
voltammogram.

Lastly, note that throughout the thesis we have used the default vague prior distri-
butions for all the model parameters. These analyses, although successful, can be
greatly enhanced by carefully incorporating informative prior distributions. How-
ever, that would require a substantial study on prior elicitation and is beyond the
scope of this thesis. We simply note that the analysis presented in this thesis will
be useful for providing guidance on the choice, scale and location of the prior dis-

tributions.

9.3 Future Work

As mentioned before, we have modelled the data independently for the three different
scan rates. However, it is desirable to have a single hierarchical model for the
data from all three scan rates. Such a model will allow learning across the scan
rates by sharing information regarding the behaviour of the characteristics of the
data. The main difficulty in developing a single hierarchical model lies in the time
series of different lengths that are obtained for different scan rates, see Table 2.1.
These unbalanced time series can perhaps be modelled using a variable dimensional
parameter space and analysed using the reversible jump Markov Chain Monte Carlo
(RIMCMC), for example, see Green (1995) and Dellaportas et al. (2002). Thus by
combining a unified hierarchical model with an RIJIMCMC sampling algorithm a
powerful methodology for modelling and analysis of cyclic voltammogram data can
be developed, although this would be computationally expensive and would require

a long time to generate the results.
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The models presented in this thesis can also be improved by well-known variable
dimensional B-spline models, for example, see De Boor (2002). Other methods
such as principal component analysis, for example, see Johnson and Wichern (2002)
could also be considered. This thesis is a start on empirical modelling of cyclic
voltammogram data. Such strategies, combined with chemists’ knowledge regarding
the physical properties of the experiments, can bear further fruitful research in this

area.
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A.1 Plots of Data for Scan Rates 1 and 3
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Figure A.1: Time series plots of Current with Carbon set at 0% and scan

where elapsed time T, is measured in seconds.
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Figure A.2: Time series plots of Current with Carbon set at 1% and scan rate

where elapsed time T, is measured in seconds.
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Figure A.3: Time series plots of Current with Carbon set at 2% and scan rate 1,

where elapsed time T, is measured in seconds.
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Figure A.4: Time series plots of Current with Carbon set at 3% and scan rate 1,

where elapsed time T, is measured in seconds.
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Figure A.5: Time series plots of Current with Carbon set at 5% and scan rate 1,

where elapsed time T, is measured in seconds.
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Figure A.6: Time series plots of Current with Carbon set at 7% and scan rate 1,

where elapsed time T, is measured in seconds.
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Figure A.7: Time series plots with Carbon set at 10% and scan rate 1, where elapsed

time 7T, is measured in seconds.
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Figure A.8: Time series plots of Current with Carbon set at 20% and scan rate 1,

where elapsed time T, is measured in seconds.
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Figure A.9: Time series plots of Current with Carbon set at 0% and scan rate 3,

where elapsed time T, is measured in seconds.
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Figure A.10: Time series plots of Current with Carbon set at 1% and scan rate 3,

where elapsed time T, is measured in seconds.
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Figure A.12: Time series plots
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of Current with Carbon set at 3% and scan rate 3,
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Figure A.13: Time series plots of Current with Carbon set at 5% and scan rate 3,

where elapsed time T, is measured in seconds.
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Figure A.14: Time series plots of Current with Carbon set at 7% and scan rate 3,

where elapsed time T, is measured in seconds.
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where elapsed time T, is measured in seconds.
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Time series plots of Current with Carbon set at 10% and scan rate 3,
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Figure A.16: Time series plots of Current with Carbon set at 20% and scan rate 3,

where elapsed time T, is measured in seconds.
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Figure A.17: Plots of characteristics of interest for scan rate 1 at each Carbon level
using the raw data, that is, outliers have not been removed, where ¢ is as defined in

Table 2.1.
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Figure A.18: Plots of characteristics of interest for scan rate 3 at each Carbon level

using the raw data, that is, outliers have not been removed, where ¢ is as defined in

Table 2.1



Appendix B

B.1 MCMC Diagnostic Plots



B. 186

0
2
o«
0
8 |
©
- 4
0
8
©
I
<
©
T T T T T T < T T T T T T
[ 1000 2000 3000 4000 5000 [ 1000 2000 3000 4000 5000
Iteration Iteration
o o g
g 4
=)
o |
i 0
3
2 4
o | S
1
- % 8 ]
T S
) 0
& H &
i Q|
o
0
g A o
&
S
T T T T T T ° T T T T T T
[ 1000 2000 3000 4000 5000 [ 1000 2000 3000 4000 5000
Iteration Iteration
Bo B
e e
o o
S 7 o 7
© ©
S 7 o 7
) )
< < < <
S 7 |
N J N J
. J : J
=] “Hrrwwrr 7777777777777777777 3 J“Hrrwrrr 7777777777777777777
D e T D L e
T T T T T T T T T T T T T T T T
[ 5 10 15 20 25 30 35 [ 5 10 15 20 25 30 35
Lag Lag
B2 o
e e
@ | @
S
© ©
o 7 =
w w
g g
< <

0.
0.

Figure B.1: Trace and autocorrelation plots of every fifth sample generated by the

Gibbs sampler for all the parameters of the quadratic model for Minimum Potential.
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B.2 Density Plots
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Figure B.5: Density plots of posterior predictive distributions of Minimum Potential

for scan rate 2.
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Figure B.6: Density plots of posterior predictive distributions of Minimum Current

for scan rate 2.
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Figure B.7: Density plots of posterior predictive distributions of Peak Separation in

Current for scan rate 2.
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Figure B.8: Density plots of posterior predictive distributions of Peak Width in

Potential for scan rate 2.



B. 192

Carbon: 6% Carbon: 8% Carbon: 12%

372 am are a7 se0  am a7s a0 385 380 385 3% 385
Carbon: 14% Carbon: 16% Carbon: 18%
o] / \
< | / \\
\
\
/ \\
T T T T T T T T T T T
a8 ass 3% 395 a0 ass 3% 395 3g0 385 3%
Curent Curent Gurent

Figure B.9: Density plots of posterior predictive distributions of Minimum Potential

for scan rate 2.

Carbon: 6% Carbon: 8% Carbon: 12%
g o [
| ER / \
/ \
1 g | g | J \\
T T T T T T < T T T ° T T T T T
G s o4 w2 60 -8 o o0 s e w0 s 0 s
Carbon: 14% Carbon: 16%

o
0o 005 010 015
000 005 010 015
L L L
000 005 010 o5

60 S 50 s s 50 a5 40 50 -5 -0 K3

Figure B.10: Density plots of posterior predictive distributions of Minimum Current

for scan rate 2.
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Figure B.11: Density plots of posterior predictive distributions of Peak Separation

in Current for scan rate 2.
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Potential for scan rate 2.



Appendix C

Fourier Series Models Analysis

Throughout this appendix, N and ¢ denote the number of observations and time
index respectively for a generic time series . For this proof we will require the use

of the following identities:

N-1
2mmt 2mnt
COS( 7;? )sin (Ln> = 0, (C.1)
=0
0 m#n,
N-1
2mt 2mnt
cos( o )cos (ﬂ) = N m=n=1%, (C.2)
-0
t [ 5 m=n#%,
0 m#n,
N—lS 2amt i 2mnt 0 N (C 3)
111 111 — — = = — .
2 N N m=n= g,
|3 m=nzd
N-1 N-1
2mmt . 2mmt
2 cos( N )—;sm( N > = 0, (C.4)

where m and n are integers. From the Fourier series representation, given by

Ry

)\t:ao-i-z

r=1

{ar cos <

2mrt
N

> +stin<

2mrt
N

)|
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where 7 = 1,..., Ry, we obtain the equations below for each of the \; where ¢ =
1,...,N.

X = ap+ Z a, cos(0) + b, sin(O)]

M = ag+ Z a, cos(ar) + b, sin(ar)}

Ay = ag+ Z a, cos(2ar) + b, sin(2ar)}

Avo1i = ao+ f: [ar cos(ar(N — 1)) + b, sin(ar(N — 1))]

r=1
Summing the above equations with respect to t, we obtain

N-1 N-1 N-1

M= ao+ isz [ar cos(art) + b, sm(omf)] (C.5)

t=0 t=0 r=1 t=
where o = 27 /N throughout the rest of this proof. Re-arranging the summations

in Equation (C.5), we obtain

N-1 N-1 Ry N-1 N-1
M = ag + Z a, Z cos(art) + Z b, sin(art). (C.6)
t=0 =0 r=1  t=0 r=1  t=0

N-1
N(lo = )\t
t=0
N-1
1
= -3
aop N t
t=0

as required.
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We will now take Equation (C.6) and multiply both sides by cos(apt) giving

N-1 N-1 Ry  N-1
Arcos(apt) = ag Y cos(apt) + Z a, Z cos(apt) cos(art)
=0 =0 r=1  t=0

Ry
+ Z b, Z cos(avot) sin(art),

where ¢ denotes an integer for the remainder of this proof. Using the identities in

equations (C.1) and (C.2) we obtain

N-1
N
GTQ = A¢ cos(art)
t=0
o N- 1)\ )
a, = — ¢ cos(art)
N =
when r = g # %7 and
N-1
NCLN/Q = (—1)t)\t
t=0
1 N—l( o
an/e = >3 - t
NS

whenr = p = % We will now take Equation (C.6) and multiply through by sin(aet)

which gives

N-1 N-1 Ry N-1
Aesin(apt) = ag Z sin(aot) + Z ar Z cos(avot) sin art
=0 t=0 r=1 =0
Ry N-1
+ Z b, Z sin(avot) sin(art).
r=1 t=0
Using the identities in Equations (C.1) and (C.4), we obtain
N-1 N-1
¢ sin(aurt) Z b, Z sin(apt) sin(art).
t=0 t=0
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Applying the identity in Equation (C.3) to the above equation, we obtain

N-1
Nb, :
5 = ¢ sin(art)
=0
o N1
b, = ¥ tz_; A¢ sin(art)

when r = o # % and by, = 0 when r = o = % as required.
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