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Empirical Models for Cyclic Voltammograms

by Jeffrey Joseph Samuel

Technological devices such as mobile phones and laptop computers have created an

immense demand for efficient and long lasting power sources such as Lithium-ion

batteries. Key to improving the current generation of batteries is the understanding

of Lithium based materials that are suitable for use in batteries. Researchers inves-

tigating battery materials often plot the output from their experiments as a cyclic

voltammogram. A voltammogram is simply a plot of Current against Potential.

In this thesis we investigate a range of empirical models for cyclic voltammograms

with a Bayesian perspective, using data from experiments carried out in the School

of Chemistry, University of Southampton. This work is motivated by the lack of well

formulated mathematical models for cyclic voltammograms involving a Lithium-ion

compound. By setting the models within a Bayesian framework, we are able to

obtain posterior predictive distributions for characteristics of the voltammogram of

interest to chemists.

Markov Chain Monte Carlo sampling methods are used to explore the posterior

distribution of the model parameters and to estimate the posterior predictive distri-

butions. We investigate four methods of modelling the experimental data: multiple

regression models for summary statistics, autoregressive models, sinusoidal models

and stochastic volatility models. The application of Bayesian model choice tech-

niques showed that the sinusoidal model provided the best description of the data.
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Chapter 1

Introduction

1.1 Motivation

Advances in technological devices have created an immense demand for efficient

battery power sources as demonstrated by the development of mobile phones and

laptop computers. If battery power sources had not been improved, mobile phones

would still be of a similar size as those in the 1980s. An example of an advancement is

the development of the Lithium-ion (Li-ion) battery. Without this development, the

invention of the laptop computer would not have been brought to fruition. However,

there are still improvements to be made. An example of this is to extend the length

of time a mobile phone or laptop computer can be used before the battery requires

re-charging. The Li-ion battery is the type of battery use in the majority of mobile

phones and computer laptops.

Chemists have a keen interest in furthering their knowledge about the chemical

compositions used in batteries, especially Lithium based compositions. It would

therefore be beneficial to the chemists if they had a model that could predict various

characteristics about the Current obtained from a given chemical composition. At

present there is no well formulated mathematical model available for Current as
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Potential varies over time. An alternative is to use experimental data to produce an

empirical model, for example using time series analysis with a Bayesian perspective.

Once we have chosen a model to use, it will then be possible to estimate particular

characteristics of the Current output curve. These characteristics are described in

Section 1.4.

1.2 The Experiment

The experiment described in this section is part of the Combechem e-Science project

(see www.combechem.org for further details). The experiment was carried out by

the Solid State Electrochemistry Group (referred to as the chemists henceforth) at

the University of Southampton. The purpose of this experiment was to explore

how Carbon affects the electrical output of battery power sources. The experiment

involved an 8 × 8 array of electrodes (or channels) shown in the left-hand panel in

Figure 1.1. The middle panel in Figure 1.1 shows a side view of the array and the

cell fully assembled is shown in the right-hand panel.

Figure 1.1: Equipment used in the experiment.

Sixty-three electrodes were coated with a chemical composition and the remaining

electrode was used as a reference electrode. Sixteen arrays can be run in parallel

which gives the capacity to study sixteen arrays each using sixty-three electrodes,

giving the capacity to examine 1008 individual electrodes of different chemical com-
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positions. The composition has three components, namely Acetylene Black (a pure

fine powdered Carbon), which conducts the Current and is called Carbon hence-

forth, Active (Lithium Manganese Oxide, LiMn2O4) which stores the energy, and

Binder which binds the Carbon and Active together.

The array of electrodes forms part of a circuit in which the Potential is varied

throughout the experiment. The Potential, measured in Volts (V), is applied to

the entire array and is varied between 3.20V and 4.50V since this is the chemists’

range of interest. The experiment is started by setting the Potential at 3.20V and

increasing it until it reaches 4.50V. The Potential is then decreased from 4.50V

back to 3.20V, which defines one complete cycle. The rate at which the Potential

is increased or decreased is called the scan rate and is measured in millivolts per

second (mVs−1). In the experiment discussed in this thesis, three different scan

rates were used: 0.05 mVs−1, 0.10mVs−1 and 0.20mVs−1 (referred to as scan rates

1, 2 and 3 respectively).

The Current is a measure of the amount of electric charge passed through the elec-

trode per second and is measured in milliamps (mA). The Current characterises how

fast the electrode can adapt to the new Potential supplied. The Potential and Cur-

rent are measured every 10 seconds. A burn-in cycle is the length of time required

for the equipment to settle down before the output produced from the experiment

is stable. Therefore, the burn-in cycle is removed before carrying out any analysis.

In the experiment, the percentage of Carbon was varied across the array. The

Carbon levels used were 0%, 1%, 2%, 3%, 5%, 7%, 10% and 20%. Seven channels

were allocated a Carbon level of 0% and eight channels were allocated to each of

the remaining Carbon levels. The level of Binder was set at 10% and the amount of

Active was set at 100(0.9-c)% where c is the proportion of Carbon used.

For scan rates 1, 2 and 3 we have 2, 3 and 4 replications, respectively. Each replica-

tion consisted of two complete cycles which can be used for data analysis. Thus the
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total experiment consisted of 19 cycles. The order in which the the scan rates were

run was randomised (see Table 1.1) so that any systematic variation in the output

from the experiment was avoided.

Run 1 2 3 4 5 6 7 8 9

Scan Rate (s) 0.10 0.20 0.10 0.20 0.05 0.20 0.05 0.10 0.20

Table 1.1: Order in which the scan rates were run.

As the scan rate increases, the time taken to complete one cycle decreases. This

is because we are increasing or decreasing the Potential from 3.20V to 4.50V via

different scan rates. A cycle for scan rate 1 takes approximately 14 hours, for scan

rate 2 it takes approximately 7 hours and for scan rate 3 it takes approximately 3.5

hours.

33
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Figure 1.2: Channel numbers (right) and their Carbon allocation (left). The empty

circle represents the reference electrode.

The row and column number for each electrode in the array were recorded and

allocated a Carbon level at random. This randomisation is to avoid any systematic

error occurring. For example, if all the channels with Carbon set at 1% were along

one edge of the array and some edge effect existed, then the results from these
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channels could produce incorrect results. The grids of the channel numbers and

Carbon allocation are shown in Figure 1.2.

The output values of the Current for each time index from each channel are extremely

small and were scaled up by a factor of 106 so that they are measured in nano-amps.

From herein, Current will be the original Current multiplied by 106. This also makes

the analysis easier as it avoids underflow in the computation.

The time index is denoted by T . Let Ta denote the time elapsed in seconds since

the start of the run (see Table 1.2). An observation on Current is made every 10

seconds.

Let ys,q,k(T ) denote the observed Current at the T
th time point, for Carbon level

k = 1, 2, . . . , 8, scan rate s = 1, 2, 3 and channel q = 1, 2, . . . , 63. Note each run has

a different scan rate s, see Table 1.1. The Potential at the T
th observation for scan

rate s is denoted by ps(T ).

Scan Rate

Rate 1 Rate 2 Rate 3

T Ta T Ta T Ta

1 10 1 10 1 10

2 20 2 20 2 20

3 30 3 30 3 30
...

...
...

...
...

...
...

...
...

... 1300 13000
...

... 2600 26000
...

...

5200 52000

Table 1.2: Time elapsed, Ta, in seconds, since the start of the run with corresponding

time index, T , for each of the three scan rates.
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k 1 2 3 4 5 6 7 8

Percentage 0 1 2 3 5 7 10 20

of Carbon

Table 1.3: Percentages of Carbon with index k.

1.3 Voltammogram
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Figure 1.3: Voltammogram from the experiment using scan rate 2 and Carbon at

10%.

A plot of Current against Potential, known as a voltammogram, is often used to

visualise output from many electrochemistry experiments such as the one described

above. An example of a voltammogram is given in Figure 1.3 which shows one
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complete cycle. Recall that for one complete cycle the Potential is started at 3.20V,

is increased to 4.50V and is decreased to 3.20V according to the scan rate. For the

voltammogram shown in Figure 1.3, we start at the point where the Potential is

3.20V and the Current is approximately zero. We follow the graph in a clockwise

direction until we return to the starting point. It should be noted that at the start of

a cycle the Current will not necessarily start at approximately zero due to possible

experimental error.

0 5000 10000 15000 20000 25000
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0
20

40
60

80
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ur
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nt

Figure 1.4: Plot of Current as a time series from the experiment using scan rate 2

and Carbon at 10%, where elapsed time Ta is measured in seconds.

Instead of plotting Current against Potential, an alternative is to plot the Current

as a time series, as shown in Figure 1.4. When viewing the data in this fashion the

task of building a model becomes easier.

We analyse the data from each of the three scan rates separately because the three
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time series (as shown in Table 1.2) have different lengths (5200, 2600 and 1300).

The ideal situation would be to have a joint multivariate analysis of the data from

the three different scan rates. It may be feasible to construct a hierarchical model

for the data from all the different scan rates. However, in this thesis we analyse the

data from the three different scan rates separately to avoid the issue of temporal

misalignment. We concentrate mainly on the data from scan rate 2 because there

were fewer malfunctioning channels (as discussed with the chemists).

1.4 Characteristics of Voltammograms

In this section we describe the characteristics of a voltammogram which are of

scientific interest to the chemists. These are defined for a typical voltammogram

which arises from a single channel, for a given scan rate, s, and a given Carbon

level, k. The features are of value to the chemists because they provide information

on the conditions where an experimental battery provides, for example, the greatest

output of Current.

The definitions are given in Table 1.4 in simple terms, and are illustrated in Figures

1.5 and 1.6. We return to the characteristics in Section 2.4, where they are defined

more formally and applied to the experiment.
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Characteristic Symbol Definition

Minimum

Potential

P
(min)
s,k The Potential value that produces the Mini-

mum Current.

Minimum Time T
(min)
s,k The time index where the Minimum

Current occurs.

Minimum

Current

I
(min)
s,k The smallest value of the observed Current.

Peak Potential P
(max)
s,k The Potential value that produces the Peak

Current.

Peak Time T
(max)
s,k The time point where the Peak Current occurs.

Peak Current I
(max)
s,k The maximum value of the observed Current.

Peak Separation

in Potential

P
(sep)
s,k The difference between the Peak Potential and

the Minimum Potential.

Peak Separation

in Time

T
(sep)
s,k The difference between the Peak Time and the

Minimum Time.

Peak Separation

in Current

I
(sep)
s,k The difference between the Peak Current and

the Minimum Current.

Peak Width in

Potential

P
(wid)
s,k The difference between the first and the last

value of Potential when the Current is at half

its observed maximum value.

Peak Width in

Time

T
(wid)
s,k The difference between the first and the last

time when the Current is at half its observed

maximum value.

Table 1.4: Characteristics and their symbols for a voltammogram where subscripts

s and k are the scan rate and the level (proportion) of Carbon respectively. The

superscript min, max, sep or wid is according to whether the characteristic is a

minimum, a maximum, a separation or a width respectively. These characteristics

are shown graphically in Figures 1.5 and 1.6.
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Figure 1.5: Characteristics of interest in a voltammogram.
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Figure 1.6: Characteristics of interest in a time series representation of a voltam-

mogram, where Ta is the elapsed time measured in seconds.
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1.5 Literature Review of Cyclic Voltammogram

Models

There are a number of articles that have proposed models for cyclic voltammograms

which have arisen from a variety of different experiments, for example, see Lundquist

et al. (2001), Lovric and Scholz (2003), Novak et al. (2001), Myland and Oldham

(2002a) and Myland and Oldham (2002b). We were informed by the chemists that

these were the most relevant papers for their experimental data. However, as will

be highlighted, the models proposed in these articles are not suitable for statistical

analysis for a variety of reasons.

Before we comment on the model proposed in Myland and Oldham (2002a), we

present the model, highlighting the key equations. Further, we note that we follow

the notation used in Myland and Oldham (2002a). The authors point out that the

key relationship is embodied by the equations

E(t) = E(< 0) + v(trev − |trev − t|) (1.1)

E(t)− E(< 0) = ηconc(t) + η
org
ohm(t) + η

aq
ohm(t) + η

org
asym(t) + η

aq
asym(t), (1.2)

where v is the scan rate, t is the time in seconds and trev is the reversal time.

The formal definition for the reversal time is given by (1.15). At each time t, the

true Potential is E(t) which is given by (1.1), and E(< 0) is the resting electrode

Potential, that is the Potential of the electrode before the experiment has started.

Equation (1.2) shows the difference between the true Potential at time t and the

resting Potential, E(< 0). E(< 0) is given by the Nernst’s relationship

E(< 0) = E
◦ +

RT

F
ln

�
c
2
PA

cNcCA

�
(1.3)

where the following are taken to have known values:
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E
◦ is standard Potential and, when multiplied by Faraday’s Constant, it is

equal to the Gibbs energy that accompanies a chemical reaction described in

Myland and Oldham (2002a, Section 3),

T is Temperature in Kelvin, R denotes the gas constant and F denotes Fara-

day’s constant.

The concentration coefficients cN and cPA used in Equation (1.3) are given by

cN = c
orig
N − cPA, (1.4)

(1.5)

and

cPA =
c
b
CAξ

2



−1 +

�

1 +
4corig

N

ξc
b
CA



 , (1.6)

where ξ = exp
�

F (E(<0)−E◦)
RT

�
. The original concentration coefficients c

orig
N and c

b
CA

and hence cPA and cN are assumed to have known values.

We are now able to return to Equations (1.1), (1.2) and define the notation used in

these equations as set out in Myland and Oldham (2002a).

ηconc(t) =
RT

F
ln

�
cPA(0, t)cPA(Z, t)cN(0, 0)cCA(Z, 0)

c
2
PA(0, 0)cN(0, t)cCA(Z, t)

�
(1.7)

η
org
ohm(t) =

I(t)RT

F 2A(DP + D
org
A )

� Z

0

1

cPA(z, t)
dz (1.8)

η
aq
ohm(t) =

I(t)RT

F 2A(DC + D
aq
A )

� Zref

Z

1

cCA(z, t)
dz (1.9)

η
org
asym =

RT (DP −D
org
A )

F (DP + D
org
A )

ln

�
cPA(Z, t)

cPA(0, t)

�
(1.10)

η
aq
asym =

RT (DC −D
aq
A )

F (DC + D
aq
A )

ln

�
cCA(Zref , t)

cPA(Z, t)

�
(1.11)
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where:

cN(0, t) = cN −
I(t)×Θ4{1

2 ;
DNt
Z2 }

FAZ
, (1.12)

cPA(z, t) = cPA(0, 0) +
DPA

2FAZD
org
A

�
I(t)×Θ4

�
z

2Z
;
DPAt

Z2

��
,

+
DPA

2FAZDP

�
I(t)×Θ4

�
Z − z

2Z
;
DPAt

Z2

��
, (1.13)

cCA(z, t) = c
b
CA −

√
DCA

2FAD
aq
A

�
I(t)√

πt
exp

�
−(z − Z)2

4DCAt

��
, (1.14)

Θ4(ζ, τ) = 1 + 2
∞�

j=1

(−1)j cos(2jπζ) exp(−j
2
π

2
τ).

Note that cPA(0, 0) = cPA and cN(0, 0) = cN. The constants listed below, as defined

in Myland and Oldham (2002a), used in Equations (1.7)-(1.14) are assumed to have

known values.

The diffusion coefficients DN, DP and D
org
A . As a consequence DPA can also

be calculated since:

DPA =
2DPD

org
A

DP + D
org
A

.

The diffusion coefficients DC and D
aq
A . As a consequence DCA can also be

calculated since:

DCA =
2DCD

aq
A

DC + D
aq
A

.

The area of the electrode denoted by A and the width of the organic layer (see

Figure 1.7).

Z is defined to be the distance between the working electrode and the end of

the organic layer (see Figure 1.7).

Zdep is defined to be the distance between the working electrode and the end

of the depletion zone (see Figure 1.7).
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Zref is defined to be the gap between the working electrode and the reference

electrode (see Figure 1.7).

z is defined to be the distance from the working electrode (see Figure 1.7).

The reversal Potential is denoted by Erev and the reversal time is given by

Erev − E(< 0)

v
. (1.15)

I(t) is a guess of the Current at time t.

Figure 1.7: Schematic from Myland and Oldham (2002a) showing the construction

of their cell and the definitions of the different distances used in their model.

The difference between E(t) and E(< 0) is denoted by ε, and is given by

ε = ηconc(t) + η
org
ohm(t) + η

org
asym(t) + η

asym
aq (t)− v (trev − |trev − t|) . (1.16)

The sign and magnitude of ε are used to refine the guess of I(t). If the mth guess

for the Current, Im, gives a difference εm and the (m + 1)th guess, Im+1, is still

unsatisfactory, giving an offset of εm+1, then the (m + 2)th guess is set to

Im+2 =
Imεm+1 − Im+1εm

εm+1 − εm
.
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In general, the difference ε in Equation (1.16) has to be less than 1 micro-Volt for

the difference to be acceptable.

The experiment in Myland and Oldham (2002a) differs from ours as they are using

a solution and our experiment is solid state based. In solution, reactions occur much

more quickly and experiments take approximately a minute to execute. In a solid,

reactions occur much more slowly, hence experiments take much longer to run. As

a consequence, the diffusive and concentration coefficients will differ significantly.

We would therefore have to treat the diffusive and concentration coefficients as

unknowns in our application. We were also informed by the chemists that, even if

we had estimates of these coefficients, the model would be inaccurate because of

the quicker reaction times in liquid compared to solids. One criticism of the model

is that there is no formal way of using empirical evidence for the initial guess of

I(t). Further, as this model has no error structure, modelling the underlying error

that is present in most, if not all experiments, leads to the belief that this model is

inappropriate.

Lundquist et al. (2001) only consider the discharge part of the cycle. This approach

is fine if the objective is to analyse the characteristics that occur in the discharge

process. However we are concerned with a variety of characteristics that occur

throughout a full cycle. In addition, the authors are trying to adapt what happens in

solution to solid materials. This approach is not necessarily the best as information

from one type of experiment is used to model data from another type of experiment.

The model proposed in Novak et al. (2001) is used to estimate the diffusion coefficient

of Lithium in LiMn2O4 (which measures the movement of Lithium). The authors

only consider using their model to simulate the discharge part of the cycle. In

addition, the authors only consider a Carbon loading (i.e proportions) of 18.4%.

In conclusion, we have been unable to find a model that incorporates different Car-

bon loadings into the current array of cyclic voltammogram models. Also, there
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is no possibility of incorporating previous scientific knowledge into these models.

The chemists also informed us that none of the models presently available in the

literature are suitable for adaptation to our experiment. A further criticism, is that

there is no consideration to account for the random error that is present in all exper-

iments. It should also be noted that it is not possible to predict the characteristics

of interest using these models. In fact, we have been unable to find any article that

considers finding predictive distributions for different characteristics for the battery

experiments.

The statistical models that we investigate in this thesis are purely empirical and are

not based on physical properties of Lithium-ion batteries. In theory, models based

on physical characteristics will perform better than the proposed empirical ones.

However, the models based on physical characteristics reviewed in this section do

not account for experimental error, forcing us to take the empirical modelling route.

1.6 Context of Project

The work presented in this thesis is part of the Combechem e-Science project. The

raw data was obtained from experiments that were conducted by Alan Spong and

post-doc Girts Vitens who provided information about the important characteristics

of the voltammogram and definitions of the characteristics. We were also informed

by Girts Vitens which characteristics were of particular importance. The concept of

being able to calculate the posterior predictive distributions of these characteristics

was of particular interest to them. Through regular meetings, especially with Girts

Vitens, we discussed results and received feedback. We discussed the validity of the

analysis conducted in Chapter 2 and output obtained from the models investigated,

as well as the conclusions reached in Chapters 5, 6, 7 and 8. Further to this, they

also gave direction on the current literature for modelling cyclic voltammograms. It



1. Introduction 18

should be noted that neither were involved in the formal supervision process.

In our discussions with the chemists, they were unable to provide us with values for

the prior distributions used in the models proposed in this thesis (see Section 3.2.1

for a detailed exposition about prior distributions). Also, the models examined in

Chapters 6, 7 and 8 are purely empirical and are not based on physical properties

of Lithium. They have not been used before to model data generated from experi-

ments such as that described in Section 1.2. As a result, we were unable to obtain

knowledge to inform prior distributions for analysing the data in this thesis. This

led to the use of vague prior distributions.

1.7 Objectives

There are a number of specific attributes of the voltammogram that are of interest

to the chemists which have particular meaning in Chemistry (these characteristics

are defined in Table 1.4). The primary objective of the chemists was to find out

if a systematic approach could be developed for analysing the data from their ex-

periments that would estimate these characteristics and quantify the uncertainty

of these estimates. Our objective was, by adopting the time series plot of Current

(Figure 1.4) to develop an empirical statistical model and thus obtain posterior pre-

dictive distributions for not only the characteristics of interest defined in Table 1.4

but also any other attributes. Therefore, we can satisfy the primary objective of the

chemists by developing an appropriate empirical model from which we can obtain

posterior predictive distributions for the characteristics. From these posterior pre-

dictive distributions we can provide estimates for the characteristics of interest and

probabilistic statements quantifying the uncertainty of these estimates. It should

be noted that the methodology developed in this thesis can be adapted to obtain

posterior predictive distributions for any other characteristics of interest which may

be proposed in the future.
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1.8 Choice of Model

The task of modelling the data becomes easier by thinking of the data as a time

series. There is a vast literature on the choice and complexity of time series models

that can be used in any practical application. Often, a very simple model is fitted

at the start of an investigation. Additional features are introduced if the simple

model is not found to be adequate for the data; and this process is repeated. Thus,

a model that is found to fit the data poorly is replaced by an entirely different type

of model. Alternatively, a modification to the model that is being applied could also

be considered. When considering how many parameters to include in the model,

there are various model choice criteria that can be used, see Section 3.7.

The initial time series model that we will use is an autoregressive process (AR pro-

cess), see Section 6.2 for more details. The reason for considering an autoregressive

process is based on the chemists’ belief that the present value of the Current is de-

pendent upon the recent previous values of the Current. The choice of the number

of past values of the Current (or previous values of the Current) to be used in the

autoregressive process will also be discussed in Section 6.2. The complexity of the

model will be increased by incorporating additional variables into the model. We

will also fit a model based on a Fourier series as this should model the sinusoidal

behaviour of the data shown in Figure 1.4. The complexity of the model will be in-

creased by attempting to model the variance. Our aim is to produce a parsimonious

model which will be used to make predictive inferences.

1.9 Overview of the Thesis

In this chapter, we have discussed the motivation for this thesis and provided a

synopsis of the experiment that gave rise to the data set. In Chapter 2, we carry

out exploratory analyses of the data sets.
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In Chapter 3 we review Bayesian methodology and techniques that will be used

to make predictive inferences. Essential to Bayesian methodology is the posterior

distribution which will be used in the analysis carried out in Chapters 5, 6, 7 and

8. In Chapter 4, we combine Bayesian methodology with the definitions of the

characteristics in Chapter 2 to derive posterior predictive distributions for each of

the characteristics of interest.

In Chapter 5, we analyse the summaries of the characteristics by fitting regression

models. In Chapters 6, 7 and 8 we propose three different modelling strategies for

the full current output curve. In each of these chapters we obtain the best model

and discuss the posterior predictive distributions of the characteristics of interest

under the best model.

In Chapter 9 we compare the various models developed in Chapters 5-8. In this

comparison we will include a discussion of the advantages and disadvantages of

the different techniques used to model the data. Finally, we conclude with some

discussions for possible improvements and future work.



Chapter 2

Exploratory Data Analysis

2.1 Introduction

The purpose of this chapter is to explore the data set. For brevity, we will show

the full exploratory analysis for the second replication of scan rate 2. A similar

analysis was also conducted for the second replication of scan rate 1 and scan rate

3. The data from these replications have been chosen since there is no evidence of

the instrumentation malfunctioning in these cases.

The size of the data set and the second replication of the scan rate is still large for

modelling purposes. One of the aims of this chapter is to reduce the size of the

data set further to lessen the computational burden. If we did not reduce the size

of the data set we would have to analyse 63 different time series where each time

series has length between 1250 and 5200. This would require a substantial amount

of computation time to fit the models and perform inference for the characteristics

of interest. Reduction in computation time would also make it more practical to fit

more complex models.

In the exploratory analysis, any malfunctioning channels are removed from the data

set so that the results and inferences are not biased.
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2.2 Exploratory Analysis

Plots of the Current against time for each channel, for replicate 2 of scan rate 2 can

be found in Figures 2.1-2.8. From these time plots, it is clear that as the percentage

of Carbon increases, the profile of the Current output curve becomes much more

pronounced. According to the chemists, the Current output curve is expected to

look like the curve shown in the plot shown in Figure 1.4. A similar descriptive

analysis for each of the scan rates 1 and 3 was completed and similar results were

observed.

One of the anomalies from the data is the occasional spikes that occur. The spikes

occur when the instrument used to measure the Potential becomes unstable. The

home made instrumentation used in the experiment is complex and not very stable.

Another reason for the spikes is that the thin Lithium branches on the electrode

surface may cause a short in the circuit which could cause a sudden increase in

the Current. Therefore, it has been advised by our collaborative chemists that the

data must be smoothed in some manner so that these anomalies do not affect the

analysis.

When Carbon is set at 0%, we expect to see a flat line with Current having a value

of approximately zero, see Figure 2.1. This is the expected pattern as there is no

Carbon present to form a path to enable the Current to pass through the electrode.

At 1% Carbon, we have observed much more variation. The time series plots of

channels 10, 35, 38 and 63 in Figure 2.2 show a fairly flat pattern with very small

deviations about zero. The other four channels show some characteristics of the

time series curve that we expect with higher proportions of Carbon. When the

Carbon percentage is increased to 2% the variation is reduced with only channels

12, 16 and 41 showing departure from the expected pattern exhibited by the time

series of the other channels shown in Figure 2.3. When Carbon is set at 3% there

are no outliers but the spikes still occur occasionally. The plots shown in Figure 2.5
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show that channel 55 is the only channel that does not follow the pattern exhibited

by the other channels when the proportion of Carbon is 5%. Analysing the time

series plots for 7% Carbon shown in Figure 2.6, it can be gleamed that there are two

channels showing abnormal behaviour, namely channels 22 and 40. The plots with

10% Carbon show that channel 15 is the only channel exhibiting departure from the

behaviour indicated by the rest of the plots in Figure 2.7. From the time series plots

with 20% Carbon, shown in Figure 2.8, we can clearly see that channel 48 exhibits

behaviour different from the other channels shown. In Section 2.3, we discuss how

we dealt with malfunctioning channels, such as channel 48.
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Figure 2.1: Time series plots of Current (original Current×106), with Carbon set at

0% and scan rate 2, where elapsed time Ta is measured in seconds.
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Figure 2.2: Time series plots of Current (original Current×106), with Carbon set at

1% and scan rate 2, where elapsed time Ta is measured in seconds.
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Figure 2.3: Time series plots of Current (original Current×106), with Carbon set at

2% and scan rate 2, where elapsed time Ta is measured in seconds.
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Figure 2.4: Time series plots of Current (original Current×106), with Carbon set at

3% and scan rate 2, where elapsed time Ta is measured in seconds.
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Figure 2.5: Time series plots of Current (original Current ×106), with Carbon set

at 5% and scan rate 2, where elapsed time Ta is measured in seconds.
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Figure 2.6: Time series plots of Current(original Current×106), with Carbon set at

7% and scan rate 2, where elapsed time Ta is measured in seconds.
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Figure 2.7: Time series plots of Current (original Current×106), with Carbon set at

10% and scan rate 2, where elapsed time Ta is measured in seconds.
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Figure 2.8: Time series plots of Current (original Current×106) with Carbon set at

20% and scan rate 2, where elapsed time Ta is measured in seconds.
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2.3 Data Aggregation

As highlighted in Section 2.2, the Current output contains randomly occurring

spikes. It is important to note that the spikes will not necessarily occur at a sin-

gle time point. The effect of the spike could affect several consecutive time points,

although this is unlikely to happen. The length of time that the spike will last or

the probability of the spikes occurring cannot be calculated or quantified. As far as

we are concerned, the occurrence of these spikes is unpredictable. To remove these

fluctuations a smoothing process may be applied to the time series. It should be

noted that a smoothing process is not the only possibility. The data can be trans-

formed in a variety of ways, for example using the logarithmic scale or square root

transformations, for example, see Chatfield (2003, Chapter 2).

While smoothing the data, it is vital that important characteristics of the data are

retained in the transformed time series. We will calculate the mean of every five

time points to form a new smoother time series, see Equation (2.1). This shortens

the length of the time series to one fifth of the original time series. This will reduce

the computation time required to analyse the data. In Figure 2.9 it can be seen that

the effect of the spikes has been mostly removed. In addition, Figure 2.9 also shows

that the new time series follows almost the same pattern of the original time series

without the spikes. The transformed data shown in Figure 2.9 can be expressed as

xs,q,k(t) =
1

5

2�

u=−2

ys,q,k(t + u). (2.1)

Another possibility would have been to take the median of every 5 time points. This

is not guaranteed to remove the spikes as a spike could potentially influence more

than 5 five time points. In Table 2.1, we show the set of possible values for the time

index (t) and the time elapsed since start of run (ta) for the aggregated data.



2. Exploratory Data Analysis 33

Scan Rate

Rate 1 Rate 2 Rate 3

t ta t ta t ta

1 50 1 50 1 50

2 100 2 100 2 100

3 150 3 150 3 150
...

...
...

...
...

...
...

...
...

... 260 13000
...

... 520 26000
...

...

1040 52000

Table 2.1: Time elapsed, ta, in seconds, since the start of the run with corresponding

time index, t, for each of the three scan rates (Aggregated Data).

In Section 2.2, it was highlighted that some of the channels exhibited abnormal

behaviour. The time series plots in Figure 2.1 display a flat line about a Current

value of zero. Hence, there is little information to be gained by including these

channels in the analysis. Similarly, the time series plots shown in Figure 2.2 will

add very little information. In addition, the chemists’ scientific knowledge leads

us to believe that little will be gained by including the channels with 1% and 2%

of Carbon in the analysis hence these channels will be removed from our analysis.

It has been advised by the chemists that any malfunctioning channels should also

be removed from the analysis. By including these malfunctioning channels in the

analysis incorrect results and conclusions may be produced. It should be noted that

it is not possible to define a malfunctioning channel according to a set of axioms

such that they can be removed automatically. A malfunctioning channel needs to

be identified by careful inspection. In addition, we consulted the chemists about
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Figure 2.9: Comparison of raw and smoothed data for scan rate 2. The time elapsed

for the original data is Ta and for the aggregated data is ta. As Ta and ta are both

measured in seconds, this allows time to be measured in seconds for both sets of

data on the x-axis.

which channels were malfunctioning according to the profile of the Current output

curve to ensure that no functioning channels were removed accidentally.

A further transformation of the data that will be used takes the mean over the

channels to be included in the analysis. This aggregation is given by

xs,k(t) =
1

rs,k

�

∀q∈Qs,k

2�

u=−2

xsqk(t + u) (2.2)
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where xs,q,k(t) is defined in Equation (2.1), Qs,k is the set of channels used for analysis

with Carbon level k and scan rate s, rs,k is the number of channels in set Qs,k, that

is the malfunctioning channels have been excluded. We note that s = 1, 2, and 3

correspond to scan rates 0.05mVs−1, 0.10mVs−1 and 0.20mVs−1 respectively. The

sets Qs,k are shown below; Qs,1, Qs,2 and Qs,3 will be empty sets since we are not

including channels with 0%, 1% and 2% Carbon in our analysis. For scan rate 1,

the sets Q1,k are given by:

r1,4 = 8, Q1,4 = {1, 18, 19, 29, 31, 33, 39, 60}

r1,5 = 8, Q1,5 = {4, 7, 24, 27, 30, 47, 51, 55}

r1,6 = 6, Q1,6 = {5, 11, 14, 26, 36, 57}

r1,7 = 7, Q1,7 = {6, 23, 37, 43, 44, 45, 49}

r1,8 = 7, Q1,8 = {2, 8, 9, 17, 25, 52, 59}.

For scan rate 2, the sets Q2,k are given by:

r2,4 = 8, Q2,4 = {1, 18, 19, 29, 31, 33, 39, 60}

r2,5 = 7, Q2,5 = {4, 7, 24, 27, 30, 47, 51}

r2,6 = 6, Q2,6 = {5, 11, 14, 26, 36, 57}

r2,7 = 7, Q2,7 = {6, 23, 37, 43, 44, 45, 49}

r2,8 = 7, Q2,8 = {2, 8, 9, 17, 25, 52, 59}.

For scan rate 3, the sets Q3,k are given by:

r3,4 = 8, Q3,4 = {1, 18, 19, 29, 31, 33, 39, 55, 60}

r3,5 = 7, Q3,5 = {4, 7, 24, 27, 30, 47, 51}

r3,6 = 6, Q3,6 = {5, 11, 14, 26, 36, 57}

r3,7 = 6, Q3,7 = {23, 37, 43, 44, 45, 49}

r3,8 = 7, Q3,8 = {2, 8, 9, 17, 25, 52, 59}.
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In this thesis we never model the raw Current output denoted so far by ys,q,k(t).

Instead we shall only consider the aggregated data denoted by the notation x. Hence,

we will use the notation y to denote other quantities.

The aggregated data are shown in Figure 2.10. These are the data that we use for

fitting various models making predictive inferences.

The plots in Figures 2.10(a), 2.10(b), 2.10(c) clearly indicate that as the proportion

of Carbon increases the Peak Current continues to increase until the level of Carbon

reaches 10%. The Peak Current is lower at 20% of Carbon compared to that at 10%.

This indicates that the maximum Peak Current is achieved when the percentage of

Carbon is between 10% and 20%. The Minimum Current continues to decrease

up to 10% of Carbon and then increases at 20% of Carbon. When we compare

the plots of the aggregated data simultaneously it can be observed that the Peak

Current increases and the Minimum Current decreases as the scan rate increases.

This comparison also reveals that with slower scan rates there is a double peak that

becomes more pronounced. In addition, with the faster scan rates, the peaks and

troughs are much more smooth. Thus the aggregation of the data has made the

time series smoother and easier to manage in comparison to the original data. The

corresponding voltammograms are shown in Figure 2.11. We will refer back to these

voltammograms in the analysis and conclusion sections of later chapters.
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Figure 2.10: Time series plots of aggregated data for various percentages of Carbon

for: (a) scan rate 1, (b) scan rate 2 and (c) scan rate 3, where t denotes the time

index defined in Table 2.1.
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Figure 2.11: Aggregated voltammograms for various percentages of Carbon for: (a)

scan rate 1, (b) scan rate 2 and (c) scan rate 3.
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2.4 Definitions of Characteristics of Voltammo-

grams

In this section we define formally the characteristics that are associated with the

voltammogram which were introduced in Table 1.4 and Figures 1.5 and 1.6. The

Peak Current, denoted by I
(max)
s,k , is defined to be the maximum observed value of

the Current, that is:

I
(max)
s,k = max{xs,k(t); t = 1, . . . , Ns}

where Ns is the number of observations at scan rate s, and xs,k(t) is the observed

Current at time t for scan rate s and Carbon level k (see Equation (2.2)). We note

that s = 1, 2 and 3 corresponds to the values of the scan rate 0.05mVs−1, 0.10mVs−1

and 0.20mVs−1 respectively.

Let I
(wid)
s,k denote the quantity I

(max)
s,k /2. We are now in a position to define the

remaining characteristics of interest. Let t1,s,k be the first time that the Current

reaches I
(wid)
s,k and t2,s,k be the last time the Current reaches I

(wid)
s,k for the kth Carbon

level and scan rate s. In a similar way, let P1,s,k be the first value of Potential at

which the Current reaches I
(wid)
s,k and P2,s,k to be the last value of Potential at which

the Current is equal to I
(wid)
s,k .

The reason for the chemists’ interest in these characteristics is that the characteris-

tics defined in Table 2.2 provide a way of summarising the profile curve. The values

associated with the Peak Current and Minimum Current provide information that

can be used to understand how the Peak Current or Minimum Current changes

according to different scan rates. In addition, the Peak Time and Peak Potential

identify the point in the experiment when the Peak Current occurs, and the asso-

ciated Potential value. The reasoning and interest in the Minimum Current is the

same as that for the Peak Current.



2. Exploratory Data Analysis 40

Characteristic Symbol Definition

Minimum P
(min)
s,k The Potential value that produces I

(min)
s,k .

Potential

Minimum Time t
(min)
s,k The time point where I

(min)
s,k occurs.

Minimum Current I
(min)
s,k I

(min)
s,k = min{xs,k(t); t = 1, . . . , Ns}

Peak Potential P
(max)
s,k The Potential value that produces I

(max)
s,k .

Peak Time t
(max)
s,k The time point where I

(max)
s,k occurs.

Peak Current I
(max)
s,k I

(max)
s,k = max{xs,k(t); t = 1, . . . , Ns}

Peak Separation P
(sep)
s,k P

(max)
s,k − P

(min)
s,k

in Potential

Peak Separation t
(sep)
s,k t

(max)
s,k − t

(min)
s,k

in Time

Peak Separation I
(sep)
s,k I

(max)
s,k − I

(min)
s,k

in Current

Peak Width P
(wid)
s,k P2,s,k − P1,s,k

in Potential

Peak Width t
(wid)
s,k t2,s,k − t1,s,k

in Time

Table 2.2: Definitions for peak characteristics where subscripts s and k are the scan

rate and the level (proportion) of Carbon respectively. The superscript is min, max,

sep or wid according to whether the characteristic is a minimum, a maximum, a

separation or a width respectively. These characteristics are shown graphically in

Figures 1.5 and 1.6.
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2.5 Analysis of Characteristics

We now analyse the characteristics of interest. The data in the plots shown in Figure

2.12 (at the end of this section) was obtained from Figure 2.10 and the data in the

plots shown in Figure 2.13 obtained from the raw data.

Figure 2.12(a) appears to show no particular clear pattern for the value of the

Minimum Potential, with respect to Carbon for any of the scan rates. To achieve the

Peak Current, Figure 2.12(d) indicates that higher values of Potential are required

with faster scan rates to obtain the highest possible Current output.

Figure 2.12(b) indicates that the Minimum Current occurs at approximately the

same time for all proportions of Carbon for scan rates 2 and 3. For scan rate 1, this

relationship appears to become slightly more unstable, but the Minimum Current

still appears to occur at roughly the same time. The same relationship appears to

hold for the Peak Time, see Figure 2.12(e).

Figure 2.12(c) shows that for scan rates 1 and 2 the Minimum Current appears to

be roughly the same for Carbon proportions less than or equal to 10%. When the

level of Carbon is increased to 20% the Minimum Current appears to increase dra-

matically. For scan rate 3, the Minimum Current seems to follow the characteristic

of a parabola. From Figure 2.12(f), the Peak Current appears to be roughly the

same when the Carbon level is less than or equal to 10% for scan rates 1 and 2.

When the level of Carbon is increased to 20% there is a substantial decrease in the

value of the Peak Current.

The Peak Separation in Current, shown in Figure 2.12(i), increases with the scan

rate. In addition, the Peak Separation in Current appears to rise and then fall as

the proportion of Carbon increases. The Peak Separation in Time, shown in Figure

2.12(h), does not seem to be affected by the proportion of Carbon and is lower for

lower scan rates. Figure 2.12(g) does not appear to display any clear behaviour.

The Peak Width in Potential, shown in Figure 2.12(j), appears to decrease and then
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increase for scan rates 1 and 2 as the proportion of Carbon increases. This pattern

seems to follow the shape of a parabola. We note that the Peak Width in Potential

for scan rates 1 and 2, with Carbon set at 20%, is approximately the same. For scan

rate 3, the Peak Width in Potential appears to increase and then decrease as the

proportion of Carbon increases. The plot in Figure 2.12(k) indicates that the Peak

Width in terms of time appears to remain roughly the same for levels of Carbon

within the same scan rate. It should also be noted that for slower scan rates the

Peak Width in Time is longer.

The characteristics of interest defined in Table 1.4 were calculated for each of the

three scan rates. Table 2.3 provides a rough idea of the values of the characteristics of

interest for scan rate 2. It should be noted that the number of significant figures will

vary depending on the nature of the characteristic of interest that we are analysing.

Consider the Minimum Time and the Minimum Current. The Minimum Time is

the observation number at which the Minimum Current occurs, hence the Minimum

Time will be an integer. However, the Minimum Current is a continuous measure

and can therefore be recorded to the desired degree of accuracy. Therefore, we

have decided to record the values for each characteristic to an appropriate degree of

accuracy depending on its nature.

A plot of the data used for the regression models in Chapter 5 for scan rate 2 (using

the raw data) is shown Figure 2.13. The values for each of the characteristics were

calculated using the definitions of the characteristics of interest (shown in Tables

1.4 and 2.2) and the raw data from the experiment, which consists of all 9 runs

(see Table 1.1), and all the replicates for Carbon. If we were simply presented with

these summaries, the plots shown in Figure 2.13 would be the only plots we would

be able to obtain. The variability in the plots in Figure 2.13 arises because we

have not removed the malfunctioning channels. If we look at Figures 2.4 - 2.8, we

can see that there were quite a few channels that malfunctioned in the experiment.
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In our discussions with the chemists, they were unwavering in their interest in the

characteristics defined in Table 1.4. Further to this, they pointed out that these

characteristics are important and sensible measures to be considering even in light

of the variability of the data shown in Figure 2.13.

The values of the Minimum Potential (Figure 2.13(a)) indicate that there are outliers

present in the data. This pattern also occurs in the Peak Time values. In addition,

Figure 2.13(d) appears to show that the Peak Potential is approximately the same

for all proportions of Carbon. There is a similar pattern exhibited by the Minimum

Time (shown in Figure 2.13(b)). From Figure 2.13(e), it can be observed that while

there are a few outliers the Peak Time appears to be approximately the same for all

proportions of Carbon.

The values of the Minimum Current shown in Figure 2.13(c) appears to indicate no

outliers. The plot also indicates that as the Carbon increases the Minimum Current

value initially dips slightly and then increases. Figure 2.13(f) indicates that variance

is small for all the different proportions of Carbon and also suggests that the Peak

Current value significantly changes for different proportions of Carbon.

The Peak Separation values, shown in Figure 2.13(i), have small variation for each

proportion of Carbon. Also, the Peak Separation in Current increases slightly then

decreases as the proportion of Carbon increases. Peak Separation in Time (Figure

2.13(h)) shows that there are some outliers which originated from the malfunctioning

channels. However, the Peak Separation in Time appears to be approximately the

same for all proportions of Carbon. The Peak Separation in Potential appears to

decrease in linear fashion as the proportion of Carbon decreases.

Figures 2.13(j) and 2.13(k) show that there are a few outliers for the Peak Width

in Potential and Peak Width in Time respectively. We discovered that the data

points that appear to be outliers in the plots in Figures 2.13(j) and 2.13(k) are from

channels that malfunctioned.
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The characteristics of interest were also calculated for scan rates 1 and 3. Further,

to this, we also note that a critical analysis for scan rates 1 and 3 was conducted.

When generating the posterior predictive distributions, we have chosen to only look

at the predictive distributions for the Potential instead of time as it is the values of

the Potential that the chemists are interested in. Further, we note that we will only

concentrate on the Peak Potential, Peak Current and Peak Separation in Potential.

The first reason for this is that these were the initial characteristics of interest to

the chemists. The second reason is that these are the main characteristics that are

used to describe or analyse data that has arisen from the experiment described in

Section 1.2.

In Chapter 5, we perform a regression models based analysis of these data without

removing the values from the malfunctioning channels. This allows us to view the

results from the crude analysis in the presence of outliers. The model based methods

presented in Chapters 6-8 have these outliers removed.
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Characteristic Percentage of Carbon

3 5 7 10 20

Minimum 3.8280 3.8630 3.8430 3.8528 3.8328

Potential

Minimum 396 389 393 391 395

Time

Minimum -56.2125 -61.1457 -55.6400 -53.9771 -29.6629

Current

Peak 4.3462 4.3010 4.3412 4.3162 4.3262

Potential

Peak 229 220 228 223 225

Time

Peak 82.2200 85.8114 84.6600 78.1857 39.0000

Current

Peak Separation 0.5182 0.4380 0.4982 0.4634 0.4934

in Potential

Peak Separation 167 169 165 168 170

in Time

Peak Separation 138.4325 146.9571 140.3000 132.1629 68.66286

in Current

Peak Width 0.2750 0.2596 0.2550 0.2600 0.2896

in Potential

Peak Width 55 52 51 52 58

in Time

Table 2.3: Peak characteristics for scan rate 2 using the aggregated data shown in

Figure 2.10.
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Figure 2.12: Characteristics of interest for each scan rate and Carbon level using

the aggregated data shown in Figure 2.10, that is outliers have been removed, where

t is as defined in Table 2.1.
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Figure 2.13: Characteristics of interest for scan rate 2 at each Carbon level using

the raw data, that is outliers have not been removed, where t is as defined in Table

2.1.



Chapter 3

Bayesian Methods

3.1 Introduction

The Bayesian paradigm utilises information from the prior distribution and data

to determine the posterior distribution. The prior distribution represents the belief

in the parameters before the experiment and the posterior distribution represents

the degree of belief in the parameters after the experiment. Even though the idea

is not new, it is the development of computational power that has made Bayesian

data analysis practical. In particular, if the posterior distribution is analytically

intractable or difficult to integrate, the computational power available has made

it possible to apply Markov Chain Monte Carlo (MCMC) sampling methods to

estimate the posterior distribution of the parameters. We provide a brief synopsis

about MCMC methods in Section 3.4. In addition, Bayesian methods can also be

applied to assess the model’s performance, of which a few are discussed in Section

3.7.

In using the Bayesian approach, we are able to obtain the distribution of the pa-

rameters of the model given the data (called the posterior distribution), from which

it is possible to quantify the uncertainty about parameters in the model. It is also
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possible to obtain the posterior predictive distribution (see Section 3.6) for other

characteristics of interest that arise from the data. For examples from the applied

problem considered in this thesis, see Table 1.4. We estimate the characteristic of

interest by sampling from the posterior predictive distribution. From this sample

we can approximate various attributes such as the mean and the variance. It is also

possible to determine the probability that the characteristic of interest belongs to

any interval (a, b) where a, b ∈ R.

3.2 Bayesian Paradigm

Let θ denote the parameters in the model and x denote the data. The Bayes theorem

can be expressed as

f(θ|x) =
f(x|θ)f(θ)�

Θ f(x|θ)f(θ) dθ
(3.1)

where f(θ|x) is the probability density function of the posterior distribution, f(θ)

is the probability density function of the prior distribution, f(x|θ) is the likelihood

and Θ is the set of possible values for θ (called the parameter space). As noted

in Section 3.1, the prior distribution represents belief about the parameters in the

model before observing any data and the posterior distribution represents our belief

about the parameters after observing the data. The integral

f(x) =

�

Θ

f(x|θ)f(θ) dθ (3.2)

is called the marginal likelihood of the data and is only dependent upon x since

θ is integrated out. This integral is simply a constant of proportionality to ensure
�
Θ f(θ|x) dθ = 1. Hence Bayes theorem can now be expressed as

f(θ|x) ∝ f(x|θ)f(θ). (3.3)



3. Bayesian Methods 50

3.2.1 The Prior Distribution

The prior distribution is formed using expert opinion and/or past data. However,

in order to assign a prior distribution to the parameters of the model, a subjective

definition of probability is required. This is because the postulation of a prior dis-

tribution involves personal opinion. O’Hagan and Forster (2004) define subjective

probability as a measure of one person’s degree of belief. It is this aspect that has at-

tracted considerable criticism from the opponents of Bayesian statistics. The critics

argue that two experts with identical prior information may formulate completely

different prior distributions which may result in conflicting posterior distributions.

The Bayesian counter argument would be that provided the data are strong and the

prior distribution is formulated on reasonable grounds, then any inferences made

using the posterior distribution should be robust to slight differences in the prior

distribution. It is important to realise that prior information is often available and

can be extremely useful.

Prior distributions are sometimes chosen for convenience. Suppose we have observed

data x with likelihood f(x|θ). Suppose also that the prior distribution for θ comes

from a family of distributions F . If the prior distribution for θ is conjugate with

respect to the likelihood then the posterior distribution f(θ|x) also belongs to the

same family F , because of this, it will often be relatively easy to draw inferences

from the posterior distribution, especially if the family of distributions F is well

known and understood. This might not have been the case if f(θ) came from a

prior distribution that is not in F . See O’Hagan and Forster (2004, Chapter 6) and

Robert (2001, Chapter 3) for a more detailed discussion on prior distributions.
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3.2.2 The Posterior Distribution

There are various quantitative summaries of the posterior distribution such as a

measure of the location or dispersion that can provide answers to questions of inter-

est. Point estimates of the quantity of interest, such as the mean, are often given.

In addition, probability intervals for the quantity of interest are also specified. For

example, the mean and the 95% probability intervals are often provided.

Suppose we wish to estimate g(θ) which represents the quantity of interest such as

the mean. Then the posterior mean for g(θ) is given by

E[g(θ)|x] =

�
Θ g(θ)f(x|θ)f(θ) dθ�

Θ f(x|θ)f(θ) dθ
. (3.4)

We therefore calculate g(θ) using the conditional expectation E[g(θ)|x] shown

in Equation (3.4). Just as the posterior mean is a common measure of loca-

tion, probability intervals are a popular method for measuring dispersion. Let

P (a < θi < b) = (1 − α) where a, b ∈ R, α is a specified significance level and

θi is some component of θ. Then the probability interval for θi is constructed by

calculating the real values a and b such that P (θi < a) = α/2 and P (θi > b) = α/2.

One possible hypothesis test would be to calculate the probability that θi ∈ (a, b)

given the observed data x, where a, b ∈ R. This is an easy calculation provided

that the posterior density for θ is known.

3.2.3 Sensitivity Analysis

An essential factor when choosing a vague or diffuse prior distribution is the sensi-

tivity of the model parameters with respect to the prior distribution. Any inferences

made via the posterior distribution should generally not be sensitive to any misspec-

ification of the prior distribution. This is because data, not the prior, should drive

the inference. A simple method to check the sensitivity of the model parameters

with respect to the prior distribution is to vary the values of the parameters in
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the prior distribution and compare the inferences from the corresponding posterior

distributions. Clearly, if the inferences are very similar, then the model parameters

are robust to choice of the prior. However, if the inferences are not similar, then the

model parameters are not robust to the choice of the prior and careful thought is

required in constructing the prior distribution.

Suppose sensitivity to the prior distribution exists and that the prior distribution is

f0(θ). Now suppose after inferences from the posterior distribution have been drawn

that f0(θ) was not the result of the most careful consideration, and it is now thought

that f1(θ) should be the prior distribution. Suppose also that in changing the prior

distribution from f0(θ) to f1(θ) significantly changes the inferences drawn from the

posterior distribution. We are presented with a sensitivity issue with regards to the

prior. One possible way of resolving this issue is to carry out a reliable reassessment

of the prior information. If this is not possible, then the sensitivity can only be

resolved by direct consideration of the posterior distribution. If the inferences using

f0(θ) and f1(θ) are clearly different, then one may decide which one disagrees with

the prior beliefs about θ having observed the data.

The above discussion highlights a few issues with regard to robustness to the prior

distribution. Further detailed discussion about sensitivity to the prior distribution

can be found in O’Hagan and Forster (2004, Chapter 4).

3.3 Hierarchical Models

The structure of a hierarchical model is where the parameters (θ1, θ2, . . . , θp) are

dependent on some hyperparameters (φ1,φ2, . . . , φm) where p and m are the number

of parameters and hyperparameters respectively. Just as the distribution of the data

is written conditionally on the parameters (θ1, θ2, . . . , θp) as f(x|θ), the distribution

for θ = (θ1, θ2, . . . , θp) is written conditionally on the hyperparameters as f(θ|φ).
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The Bayesian paradigm can be easily extended to obtain the joint posterior distri-

bution of θ and φ which is given in Equation (3.5). The joint posterior distribution

shown in Equation (3.5) is used to make inferences about φ and θ.

f(θ, φ|x) =
f(x|θ)f(θ|φ)f(φ)�

Φ
�
Θ f(x|θ)f(θ|φ)f(φ) dθ dφ

∝ f(x|θ)f(θ|φ)f(φ) (3.5)

where Θ and Φ are the parameter spaces for θ and φ respectively. The marginal

posterior distribution for φ is given by

f(φ|x) =

�
f(θ, φ|x) dθ

∝ f(φ)

�
f(x|θ)f(θ|φ) dθ

∝ f(φ)f(x|φ)

which can be used to make inferences about φ. We note that the Bayesian paradigm

can be easily extended to handle any number of levels that are in the hierarchical

model.

3.4 Markov Chain Monte Carlo

A problem that occurs often in Bayesian inference is the calculation of posterior

distributions that have high dimensionality. The problem is to evaluate the ex-

pectation in Equation (3.4) for some function g(θ). If the posterior distribution is

analytically intractable or difficult to integrate a method is required to evaluate the

expectation in Equation (3.4). A well known method for dealing with this problem

is Markov Chain Monte Carlo (MCMC). A key component of this method is Monte

Carlo integration. The general form of MCMC given by the Metropolis-Hastings

algorithm will be described in Section 3.5. For a thorough exposition of MCMC

methods in Bayesian computation, see, for example, Chen et al. (2000).
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3.4.1 Monte Carlo Integration

Monte Carlo integration is a method for estimating the population mean E[g(θ)|x].

To estimate the population mean, samples θ(l), where l is a dummy variable used to

reference the samples of θ, are obtained from f(θ|x) via MCMC. The population

mean of g(θ) can then be estimated by the mean of the samples

E[g(θ)|x] ≈ 1

n

n�

l=1

g(θ(l)). (3.6)

Clearly, as n → ∞ the sample mean will tend to the population mean. It should

be noted that the choice of n is under the control of the analyst. Any process can

be used to generate the θ(l) which draws random samples throughout the support

of the posterior distribution f(θ|x) in the correct proportions. A popular method

is to use a Markov chain (see Gilks et al.,1996, Chapter 1 for further details) that

has the posterior distribution f(θ|x) as the stationary distribution.

3.5 Metropolis Hastings Algorithm

A method is now in place to estimate E[g(θ)|x] where x represents the data but a

Markov chain needs to be constructed such that the stationary distribution is the dis-

tribution of interest, that is the posterior distribution. One method of constructing

a suitable Markov chain is the Metropolis-Hastings algorithm. This algorithm was

initially proposed by Metropolis et al. (1953) and generalised by Hastings (1970).

The Metropolis-Hastings algorithm works in the following way. At each iteration l,

the next state θ(l+1) is chosen by sampling a candidate point φ from a proposal dis-

tribution q(. | θ(l)). It should be noted that the proposal distribution could depend

on the current point θ(l). Then the candidate point φ is accepted with probability

α(θ(l)
,φ) which is calculated using

α(θ(l)
,φ) = min

�
1,

f(φ)q(θ(l) | φ)

f(θ(l))q(φ | θ(l))

�
(3.7)
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where f(.) represents the posterior distribution. If φ is accepted, then the next state

becomes θ(l+1) = φ. If φ is rejected, then θ(l+1) = θ(l), that is the chain does not

move.

There are a multitude of sampling methods that are a special case of the Metropolis-

Hastings algorithm such as the Gibbs sampler, the Metropolis algorithm and the

independence sampler. An exposition of the Metropolis Algorithm and the Gibbs

Sampler will be given in Sections 3.5.1 and 3.5.2 respectively. For detailed exposi-

tions of the independence sampler see Tierney (1994) and Gilks et al. (1996, Chapter

1).

3.5.1 Metropolis Algorithm

The Metropolis algorithm proposed in Metropolis et al. (1953) only considers pro-

posals from symmetric distributions such that q(φ|θ) = q(θ|φ) for all θ and φ where

θ is the parameter and φ is a candidate point from the chosen proposal distribution.

For the Metropolis algorithm the acceptance probability in Equation (3.7) becomes

α(θ(l)
,φ) = min

�
1,

f(φ)

f(θ(l))

�
.

When choosing the proposal distribution, its scale (for example Σ in the multivariate

normal case) needs to be chosen carefully. For the rest of our discussion in this

section, we will only consider the case of a single parameter. In this case, the

acceptance probability α(θ(l)
,φ) is given by

α(θ(l)
,φ) = min

�
1,

f(φ)

f(θ(l))

�

where θ is the parameter and φ is the candidate point. A proposal distribution

generating small steps φ− θ
(l) will have a high acceptance probability but will mix

slowly as shown in Figure 3.1(b). If the scale is chosen such that the steps between

φ and θ
(l) are large, then quite often we will be jumping from the body to the tails
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of the distribution resulting in small values of f(φ)/f(θ(l)) and low probability of

acceptance. In this case the chain will not move which will also result in slow mixing

as shown in Figure 3.1(c). The ideal scenario is to scale the proposal distribution

such that both of these extremes are avoided. It should be noted that similar

principles apply when considering more than one parameter.
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Figure 3.1: Trace plots from Metropolis algorithms with stationary distribution

N(0,1) and proposal distributions (a) q(.|θ) =N(θ,0.5), (b) q(.|θ) = N(θ,0.1) and

(c) q(.|θ) = N(θ,15.0). The burn-in is taken to be left of the dotted line and the

95% theoretical probability interval is indicated by the dashed line. This example

is taken from Gilks et al. (1996, page 6).

3.5.2 Gibbs Sampling

The Gibbs sampler is a special case of the Metropolis-Hastings algorithm and was

proposed by Geman and Geman (1984). A clear detailed exposition on Gibbs sam-
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pling can be found in Casella and George (1992). Candidates under a Gibbs sampler

are always accepted, that is the acceptance probability is always one. Gibbs sam-

pling involves conditioning on each parameter in turn. We start by setting the

iteration counter l = 1 and give initial values to the parameters θ
(0)
1 , θ

(0)
2 , θ

(0)
3 . . . θ

(0)
p

where p is the number of parameters and p > 1. New values for the parameters

are obtained by sampling successively from the conditional posterior distribution

for each parameter in turn which are given by:

θ
(l)
1 ∼ f(θ1 | θ(l−1)

2 , θ
(l−1)
3 , θ

(l−1)
4 , . . . , θ

(l−1)
p ),

θ
(l)
2 ∼ f(θ2 | θ(l)

1 , θ
(l−1)
3 , θ

(l−1)
4 , . . . , θ

(l−1)
p ),

...

θ
(l)
p ∼ f(θp | θ(l)

1 , θ
(l)
2 , θ

(l)
3 , . . . , θ

(l)
p−1).

Change the value of l to l + 1 and repeat the sampling procedure above until con-

vergence is reached. Gammerman and Lopes (2006) provide further details of the

Gibbs sampler.

3.5.3 Monte Carlo Error

When applying MCMC methods, it is important to consider convergence and accu-

racy of estimation. If the chain does not converge, then clearly we will not be able

to obtain a sample of the parameters from the posterior distribution. If the chain

does converge then we need to consider the accuracy of the parameter estimates.

The accuracy of the estimates can be measured via the mean-squared error of g(θ)

from Equation (3.6), which is also referred to as the ergodic mean, see Gilks et al.

(1996, Chapters 1 and 3). The mean-squared error of g(θ) is given by

MSE(g(θ)) =
Varf (g(θ))

n

�
1 + 2

n−1�

l=1

ρd(g(θ(l)))

�
(3.8)
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where n is the number of samples, Varf (g(θ)) denotes we are taking the variance

under the posterior distribution represented by f(θ|x) and ρd(g(θ(l))) is the lag d

autocorrelation in g(θ(l)) where l is a dummy variable used to reference the samples

of θ obtained from f(θ|x) via MCMC. It should be noted that we have been unable

to find a simpler expression in the literature, however, Besag and Green (1993) note

a similar expression using different notation.

If the chain converges geometrically (Meyn and Tweedie, 1993 presents an extensive

treatment on geometric convergence), then the mean squared error for g(θ) will be

finite. If the mean squared error for g(θ) is finite, then it can be made as small

as desired by increasing n, see Geyer (1992) and Besag and Green (1993) for more

details.

3.5.4 Issues in Implementing MCMC

When implementing MCMC methods, there are several issues that need to be taken

into account. Gilks et al. (1996) has a more detailed account with regards to these

issues. Smith and Roberts (1993) also give a detailed exposition of implementa-

tion and convergence issues with regards to MCMC methods. Papaspiliopoulos

and Roberts (2008) discuss the stability and convergence of the Gibbs sampler for

Bayesian hierarchical models. As mentioned in Section 3.1, the development and

availability of computational power has created the need to incorporate MCMC

methods into statistical software, for example, see Graves (2007) where design ideas

for software incorporating MCMC methods are discussed and Chen et al. (2000)

discuss MCMC methods in Bayesian computation.

One such issue is the choice of the starting values θ(0). If the chain mixes rapidly,

then the chain will find its way to the stationary distribution fairly quickly from

extreme starting values which is illustrated in Figure 3.1(a). For a slow mixing

chain, the starting value will need to be chosen with care to avoid a long burn-in
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period. Roughly speaking, a chain is said to mix well if samples are drawn from the

whole support of the stationary distribution and does not stay at the same value for

any length of time.

Determining the length of the burn-in period is an important exercise when using

MCMC methods. The length of the burn-in period is dependent upon the initial

starting value θ(0). The next factor to consider when determining the length of the

burn-in is the rate of convergence of the distribution of θ(l) given the initial θ(0)

to the stationary distribution. The final consideration we wish to highlight is how

similar the distribution of θ(l+1) given θ(l) needs to be to the stationary distribution.

The simplest method is to look at a plot of the output of all the samples generated

and ascertain how long the chain takes to generate samples from the stationary

distribution.

When to stop the chain is another important matter. If the chain is stopped too

soon, then θ(l) will not be a sample from the stationary distribution. One solution

to this problem is to run several chains of length n in parallel with different starting

values and compare the estimates of E[g(θ)|x]. If there is not adequate agreement

between the estimates, then it is clear that n must be increased.

As already mentioned, the samples {θ(1)
,θ(2)

, . . . , θ(n)} will be dependent samples.

To reduce the dependence in the samples, the simplest method is to take every kth

sample, hence k × n samples must be generated by the chain. It should also be

noted that we cannot prove that any of the sampling algorithms described above

have converged. We can only empirically assess using some diagnostic plots to check

if the sampling algorithm has converged to the stationary distribution.
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3.6 Posterior Predictive Distribution

A key concept that is necessary to make predictive inferences about a particular

quantity, such as the mean, is the posterior predictive distribution for the mean. For

our applied problem, this will enable us to produce posterior predictive distributions

for various characteristics of interest for proportions of Carbon that have not been

experimented with. It is important to note that we will need the ability to obtain

the posterior predictive distribution for the quantity required using different models.

Let θ denote the parameters in the model. Then the posterior distribution for θ,

given data x, is given by

f(θ | x) =
f(θ)f(x | θ)�

Θ f(θ)f(x | θ) dθ

where Θ is the parameter space as defined in Section 3.2. Now imagine that the

entire experiment is replicated and let z be the vector of possible responses. Then

the predictive density for z under the chosen model is

f(z | x) =

�

Θ

f(z | θ)f(θ | x) dθ. (3.9)

If this distribution is analytically intractable or is difficult to integrate, then we

can use various MCMC methods described in Section 3.4 to generate samples from

the posterior predictive distribution and make inferences based upon these samples.

The samples that are drawn from the posterior predictive distribution are obtained

in two stages. The first stage is to sample from the posterior distribution of θ shown

in Equation (3.2). Each θ(l) can then be used to obtain z(l) given θ(l) and data x.

We can obtain an estimate of the mean of z using

E[z|x] ≈ 1

n

n�

l=1

z(l)
.

This is the method that will be used to obtain posterior predictive distributions

for the quantities described in Tables 1.4 and 2.2. We concentrate on the posterior

predictive distributions for specific characteristics in Chapter 4.
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3.7 Model Choice Criteria

In Section 3.7.2, the method used to compare the models is presented. The reason

for using the chosen criterion is discussed in Section 3.7.3 and comparisons made

to other available model choice criteria. However, it is important to look at other

diagnostics of model performance and not just numerical values of model choice

criterion. For example, plots of the residuals may exhibit any characteristic of the

data that has not been accounted for by the model and would not be highlighted by

a numerical value calculated by the model choice criterion. This will be discussed

further in Section 3.8. In Section 3.7.3, we give a brief evaluation of the model choice

criteria we have discussed.

3.7.1 Bayes Factors

The Bayesian approach for hypothesis testing was developed by Jeffreys (1935,

1961). Before we define the Bayes factor, we need to define the marginal likelihood

for model m(j). The marginal likelihood for model m(j) is denoted by f(x|m(j)) and

is defined by Equation (3.2). We define the Bayes factor by

B21 =
f(x|m(2))

f(x|m(1))
. (3.10)

In the case where we wish to test the null hypothesis H0 against the alternative

hypothesis H1, the Bayes factor can be expressed as

B10 =
f(x|m(1))

f(x|m(0))

where m(0) and m(1) are the models under H0 and H1 respectively. It should be

noted that the Bayes factor can only be defined when the marginal density of the

data under each model is fully defined.

Jeffreys (1961) proposed interpreting B10 using half units on the log10 scale. Kass

and Raftery (1995) suggest pooling two categories to obtain a method for interpret-
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ing B10 as shown in Table 3.1.

log10(B10) B10 Evidence against H0

0 to 0.5 1 to 3.2 Not worth more than a bare mention

0.5 to 1 3.2 to 10 Substantial

1 to 2 10 to 100 Strong

> 2 > 100 Decisive

Table 3.1: Interpretation of the Bayes factor as proposed in Kass and Raftery (1995).

For a more detailed modern exposition see Kass and Raftery (1995). In addition,

Gelman et al. (2004, Chapter 6) discuss an example of where Bayes factors are

useful and an example of where they are a distraction.

3.7.2 Predictive Model Choice Criterion (PMCC)

The PMCC was proposed in Ibrahim and Laud (1995) and developed by Gelfand

and Ghosh (1998). For each model m ∈ M where M is the set of models under

consideration, the value of the criterion is calculated and the model with the smallest

value is the best model. However, it is important to balance the improvement of

a model and the amount of extra computation time required to include the extra

parameter or parameters. The predictive density in Equation (3.9) is central to the

PMCC as this is the distribution from which we obtain z. The criteria is to choose

a model which has the smallest value of

L
2
m = E[(z − x)T (z − x)]

where the expectation is taken with respect to the predictive density in Equation

(3.9) for model m and x is the observed data. It can be shown that L
2
m has the
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decomposition

L
2
m =

N�

o=1

�
(E[zo|x]− xo)

2 + Var(zo|x)
�

(3.11)

where o is the dummy variable indicating the oth observation and N is the number of

observations. In Equation (3.11), the first component measures the goodness of fit,

that is how close the predictions produced by the model are to the observed data.

The second component is the penalty component, that is the model is penalised

for increasing the number of parameters in the model through the variance of the

predictions. This is because as the number of parameters increases, the variance of

the predictions obtained from the model increases. Hence, the model’s performance

is measured by a combination of how close the predictions are to the observed data

and the variability of the predictions. Ibrahim and Laud (1995) note that a good

model should make predictions that are similar to the observations obtained from

an experiment. Therefore, the best model from set of models under consideration,

should be the model with the lowest L
2
m.

3.7.3 Evaluation of Model Choice Criteria

Some other popular criterion for comparing models are Akaike’s Information Crite-

rion (AIC; originally proposed in Akaike, 1973 and also published in Koehler and

Murphree, 1988). The AIC from Koehler and Murphree (1988) is given by Equation

(3.13). Let p denote the number of parameters and θ̂ is the maximum likelihood

of θ. The Bayes Factor and the AIC are given by Equations (3.12) and (3.13),

respectively.

B21 =
f(x|m(2))

f(x|m(1))
(3.12)

AIC = −2 log f(x|θ̂) + 2p (3.13)

Model selection via the AIC is based upon selecting the minimum value. When

using the AIC, asymptotic considerations are required for a formal comparison be-
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tween competing models. Sahu (2004) notes that model selection criterion involving

asymptotic arguments are often invalid for small data sets. It should be noted

that the AIC is not robust to outliers. Ibrahim and Laud (1995) point out that

PMCC probably suffers from the same problem. One solution that the authors sug-

gest would be to calculate the PMCC with and without the outliers which should

highlight their effects.

Sahu (2004) points out that Bayesian model choice methods are attractive because

they do not rely on asymptotic arguments. When using decision theoretic method to

choose a model, the PMCC is the most appropriate criterion under normal likelihood

and a symmetric loss function. Sahu (2004) highlights that it is possible to use

different loss functions. There are other Bayesian methods that have been proposed

to discriminate between models. One such method is the reversible jump MCMC

which is proposed by Green (1995).

Kass and Raftery (1995) point out that the integral required to calculate f(x)

shown in Equation (3.2) can be analytically intractable and must be computed via

numerical methods. In the same article, the authors also highlight that the statistical

software available is inefficient due to large sample sizes. In this case, the integrand

becomes highly peaked around its maximum. A second reason for the integrand

in Equation (3.2) being intractable is due to the dimensions. In this case, Markov

Chain Monte Carlo methods can be applied with some adaptation. A review of

these techniques is provided in Evans and Swartz (1995). As we have highlighted

here, the Bayes Factor also has its technical difficulties.

A more detailed exposition on Bayesian model selection and applications in practical

problems are presented in Sahu (2004) and Robert (2001, Chapter 7). Another

Bayesian model selection criterion is the Deviance Information Criterion, proposed

by Spiegelhalter et al. (2002).
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3.8 Model Adequacy via Residual Analysis

Once a model has been fitted, the residuals should be examined to check that the

model describes the data adequately. If the chosen model provides a good fit, the

residuals should show a random cluster around zero. For the time series models

considered in this thesis (see Chapters 6, 7 and 8), we expect the plot of the residuals

against time to have a mean of zero and a constant variance.

In time series analysis, it is possible to define a number of different types of residuals,

for example see Mauricio (2008). In the analysis presented in this thesis, we define

the residuals to be the difference between the observed and the fitted values. The

fitted values are obtained by replacing parameters by their Bayes estimates. These

fitted values are often the one-step ahead predictions. This is a consequence of

using the time series analysis, see West and Harrison (1999, Chapter 10) for several

examples of using these type of residuals in practical data analyses.



Chapter 4

Predictive Distributions

4.1 Introduction

As mentioned in Section 1.6, the main objectives of this thesis is to study the

characteristics of interest defined in Table 1.4. In this chapter, we develop Bayesian

methodologies to achieve this objective. We also develop the computational methods

required to implement these Bayesian methods.

Throughout this thesis, we will treat Potential and Current as continuous variables.

This is because Current is the response variable and can theoretically take any value

within a given range for a particular experiment. In the literature it is implicitly

assumed that Potential is a continuous variable, for examples, see Lovric and Scholz

(2003) and Lundquist et al. (2001). Further to this, we will treat time as discrete

(except in Chapter 5 where time is treated as continuous), since the Current is

recorded at a particular time point and not between time points. These issues are

discussed further in Section 4.5.

We define the following notations used in this chapter. Unless stated otherwise, for

ease of notation we drop the scan rate subscript; the developments in this chapter

will be applied to each of the scan rates individually. The rest of the generic nota-
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tion that is common to all sections of this chapter is given by: θ is the vector of

parameters for the model, Θ is the parameter space of θ, ck is the proportion of

Carbon corresponding to the k
th level, t is the time index as defined in Table 2.1

and n is the number of samples from the sampling algorithm chosen, for example,

the Gibbs sampler. Further to this, let xk(t) represent the Current at time t for

Carbon level k and

xk = (xk(1), xk(2), . . . , xk(N)),

p = (p(1), p(2), . . . , p(N))

where p(t) is the Potential at time t and N is the length of the time series (which

is dependent on the scan rate). In addition to this, our generic model for xk(t) will

be of the form

xk(t) = g(xk(t− 1), . . .) + εk(t)

where t = 1, . . . , N for a suitable function g(. . . ) which may depend on additional

parameters.

The voltammogram characteristics, defined in Table 1.4, are functions of Current,

Potential and the associated time indices, say h(xk, ck,p), where the function h(. . .)

is a characteristic of interest, such as I
(max)
k . Under the Bayesian paradigm, we make

inferences for h(xk, ck,p) by using the posterior predictive distribution

f(h(zk, ck,p)|xk, ck, p) =

�

Θ

f(h(zk, ck, p)|θ)f(θ|xk, ck,p) dθ (4.1)

where zk = (zk(1), zk(2), . . . , zk(N)) is a set of future observations with the same

Potential and other associated covariate values such as Carbon.

The posterior predictive distribution shown in Equation (4.1) can be calculated

using Monte Carlo integration (see Section 3.4.1). At each MCMC iteration, we

generate a replicate data set zk = (zk(1), zk(2), . . . , zk(N)) successively in time as

the one-step ahead predictions, and the quantity of interest, the h(. . .) function, is
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calculated and then ergodic means are formed at the end of the MCMC run. Thus

the time series formulation of the data here leads to the averages of the one-step

ahead predictions used to make predictive inference.

The characteristics we will be focusing on are the Peak Potential, Peak Current and

the Peak Separation in Potential, since these are the main characteristics of interest.

Moreover, the posterior predictive distributions involving time and Potential will be

providing the same information as they are just different ways of referencing data

points, hence we will focus on the Potential as this is how the chemists reference

the data. The final reason is for the purposes of brevity. We will provide brief

comments regarding the calculation of the other posterior predictive distributions

where appropriate.

4.2 Predictive Inferences for Current

The posterior predictive distribution for Peak Current, I
(max)
k , is given by

f(I(max)
k |xk, ck,p) =

�

Θ

f(I(max)
k |θ)f(θ|xk, ck,p) dθ. (4.2)

We can estimate the distribution shown in Equation (4.2) using MCMC methods in

the following way. A predictive cycle z
(l)
k (t) where t = 1, . . . , N is generated at each

iteration of the MCMC sampling algorithm. We can calculate I
(max,l)
k using

I
(max,l)
k = max{z(l)

k (t); t = 1, . . . , N} (4.3)

where I
(max,l)
k is a draw from the posterior distribution shown in Equation (4.2).

Using these samples, we can now estimate the quantity E[I(max)
k |xk, ck,p] using

E[I(max)
k |xk, ck,p] =

�
I

(max)
k f(I(max)

k |xk, ck, p) dI
(max)
k

� 1

n

n�

l=1

I
(max,l)
k . (4.4)



4. Predictive Distributions 69

The approximation shown in Equation (4.4) can be used to estimate the mean of

the I
(max)
k for each level of Carbon using an iterative model fitting procedure such

as Gibbs sampler or Metropolis-Hastings algorithm.

Similarly, the posterior predictive distribution for Minimum Current, I
(min)
k , can be

defined as

f(I(min)
k |xk, ck,p) =

�

Θ

f(I(min)
k |θ)f(θ|xk, ck, p) dθ. (4.5)

We can define E[I(min)
k |xk, ck,p] similarly and obtain an estimate using samples

I
(min,l)
k = min{z(l)

k (t); t = 1, . . . , N}

from the posterior predictive distribution shown in Equation (4.5) and the estimate

is obtained at the end of the MCMC run by forming suitable averages.

4.3 Predictive Inferences for Time

To estimate the Peak Time, t
(max)
k , we need to calculate E[t(max)

k |xk, ck, p], which

requires the posterior predictive distribution f(t(max)
k |xk, ck,p). This posterior pre-

dictive distribution for t
(max)
k is given by

f(t(max)
k |xk, ck,p) =

�

Θ

f(t(max)
k |θ)f(θ|xk, ck, p) dθ. (4.6)

We can estimate the posterior predictive distribution shown in Equation (4.6) in

exactly the same way we estimated the distribution shown in Equation (4.2). As

before, we generate a predictive cycle z
(l)
k (t) for each iteration of the MCMC sampling

algorithm. We can then obtain t
(max,l)
k for each of the predictive cycles generated

by the MCMC sampling algorithm. Each t
(max,l)
k will be a draw from the posterior

predictive distribution shown in Equation (4.6). We are now able to calculate the
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quantity E[t(max)
k |xk, ck], which is given by

E[t(max)
k |xk, ck, p] =

�

t(max)
k

t
(max)
k f(t(max)

k |xk, ck,p)

� 1

n

n�

l=1

t
(max,l)
k . (4.7)

Similarly, to estimate the Minimum Time, t
(min)
k , we need to calculate E[t(min)

k |xk, ck, p]

which requires the posterior predictive distribution

f(t(min)
k |xk, ck,p) =

�

Θ

f(t(min)
k |θ)f(θ|xk, ck,p) dθ. (4.8)

By using the same methodology to calculate E[t(max)
k |xk, ck,p], we can calculate

E[t(min)
k |xk, ck, p] using

E[t(min)
k |xk, ck,p] � 1

n

n�

l=1

t
(min,l)
k . (4.9)

Let t
(sep,l)
k be the predicted Peak Separation in Time which is simply the difference

between the predicted Peak Time and the predicted Minimum Time, that is t
(sep,l)
k =

t
(max,l)
k − t

(min,l)
k . To estimate E[t(sep)

k |xk, ck,p], we require the posterior predictive

density for t
(sep)
k , which is given by

f(t(sep)
k |xk, ck,p) =

�

Θ

f(t(sep)
k |θ)f(θ|xk, ck, p) dθ.

We are now in a position to estimate E[t(sep)
k |xk, ck,p], which is given by

E[t(sep)
k |xk, ck,p] =

�

t(sep)
k

t
(sep)
k f(t(sep)

k |xk, ck, p)

� 1

n

n�

i=1

t
(sep,l)
k .

We now have a sample from the posterior predictive distribution for the Peak Sep-

aration in Time and can therefore estimate t
(sep)
k .
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Before we estimate E[t(wid)
k |xk, ck,p], where t

(wid)
k is the Peak Width in Time, we

need to know the posterior predictive distribution of t
(wid)
k , which is given by

f(t(wid)
k |xk, ck, p) =

�

Θ

f(t(wid)
k |θ)f(θ|xk, ck,p) dθ (4.10)

where t
(wid)
k = t2,k − t1,k. Let t

(l)
1,k be the first predicted time that the Current

reaches I
(wid,l)
k and t

(l)
2,k be the final predicted time the Current reaches I

(wid,l)
k where

I
(wid,l)
k = I

(max,l)
k /2 and superscript wid denotes that we are considering the Peak

Width. Hence, by definition, the predicted Peak Width in Time is given by

t
(wid,l)
k = t

(l)
2,k − t

(l)
1,k. (4.11)

Using Equations (4.10) and (4.11), we are able to estimate E[t(wid)
k |xk, ck,p] by

E[t(wid)
k |xk, ck,p] =

�

t(wid)
k

t
(wid)
k f(t(wid)

k |xk, ck,p)

� 1

n

n�

l=1

t
(wid,l)
k .

4.4 Predictive Inferences for Potential

To estimate the mean of the predictive Peak Potential for each Carbon level k,

P
(max)
k , we require the posterior predictive distribution

f(P (max)
k |xk, ck,p) =

�

Θ

f(P (max)
k |θ)f(θ|xk, ck,p) dθ. (4.12)

Let P
(min,l)
k and P

(max,l)
k be the predicted Potential which produces the Minimum

or Peak Current for the kth Carbon level and the lth iteration respectively. Each

P
(max,l)
k will be a draw from the posterior predictive distribution shown in Equation

(4.12). Using Equation (4.12), we can now calculate E[P (max)
k |xk, ck, p] which is
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given by

E[P (max)
k |xk, ck, p] =

�
P

(max)
k f(P (max)

k |xk, ck,p)dP
(max)
k

� 1

n

n�

l=1

P
(max,l)
k .

In a similar way, we can also calculate E[P (min)
k |xk, ck, p] using samples from the

posterior predictive distribution

f(P (min)
k |xk, ck,p) =

�

Θ

f(P (min)
k |θ)f(θ|xk, ck,p) dθ.

Before we construct an estimate for the Peak Separation in Potential, P
(sep)
k =

P
(max)
k −P

(min)
k , we need to calculate the posterior predictive distribution for P

(sep)
k ,

which is given by

f(P (sep)
k |xk, ck,p) =

�

Θ

f(P (sep)
k |θ)f(θ|xk, ck,p) dθ. (4.13)

Using the definitions of P
(min,l)
k and P

(max,l)
k , the predictive Peak Separation in Po-

tential, P
(sep,l)
k , can now be defined as

P
(sep,l)
k = P

(max,l)
k − P

(min,l)
k (4.14)

where the superscript sep denotes that we are concerned with the Peak Separation.

Using Equations (4.13) and (4.14) we can estimate E[P (sep)
k |xk, ck,p] using

E[P (sep)
k |xk, ck, p] =

�
P

(sep)
k f(P (sep)

k |xk, ck,p)dP
(sep)
k

� 1

n

n�

l=1

P
(l)
sep,k.

Before we estimate E[P (wid)
k |xk, ck, p] we need to calculate the posterior predictive

distribution of P
(wid)
k given by

f(P (wid)
k |xk, ck,p) =

�

Θ

f(P (wid)
k |θ)f(θ|xk, ck,p) dθ. (4.15)
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Let P
(l)
1,k be the first predicted Potential value at which the Current is equal to I

(wid,l)
k .

Similarly, let P
(l)
2,k be the last predicted Potential value at which the Current is equal

to I
(wid,l)
k . Then the predicted Peak Width in Potential, denoted by P

(wid,l)
k , can be

defined as

P
(wid,l)
k = P

(l)
2,k − P

(l)
1,k. (4.16)

We are now able to estimate the predictive distribution of the Peak Width in Poten-

tial. Using equations (4.15) and (4.16) we are now able to estimate E[P (wid)
k |xk, ck,p]

by

E[P (wid)
k |xk, ck,p] =

�
P

(wid)
k f(P (wid)

k |xk, ck, p)dP
(wid)
k

� 1

n

n�

l=1

P
(wid,l)
k

where P
(wid)
k = P2,k − P1,k.

4.5 Closing Remarks

In this chapter, we have derived the posterior predictive distributions and discussed

how to approximate these via MCMC methods. We note that the characteristics we

will be focusing on will be the Peak Potential, Peak Current and Peak Separation

in Potential.

We note that characteristics of interest involving time, such as the Peak Time, will

be treated as discrete. However, in Section 5.3, the posterior predictive distributions

involving time, such as Peak Time, are modelled as a continuous response due to

the nature and simplicity of the models. Hence, the predictions for characteristics

of interest involving time are on a continuous scale. In contrast, the posterior

predictive distributions of the Peak Current as plotted in Figure 6.8 for example, are

obtained using the characteristics of the series of replications zk(t) for the response
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Current. Hence the value of t corresponding to the fitted (or equivalently one-step

ahead) Peak Current can only take one of the possible discrete values of t. Thus,

posterior predictive distributions involving time will essentially be discrete, but these

distributions involving time in Section 5.3 will be continuous.

The characteristics of interest involving Potential and Current will be treated as

continuous. The reason for treating Current as continuous is because clearly it can

take any value and therefore any of the characteristics defined in Table 1.4 involving

Current could also take any possible value. As noted in Section 4.1, Potential is

assumed to be a continuous variable in the literature, for examples see Lovric and

Scholz (2003) and Lundquist et al. (2001). We will follow the approach taken in the

literature by treating Potential as a continuous variable.

The methodology developed here is generic in the sense that it can be adopted for

any model based analysis. In addition, the computation methods will work with any

MCMC algorithm which is able to draw samples from the posterior distribution.



Chapter 5

Regression Models for Summary

Characteristics

5.1 Introduction

In this chapter, we calculate the characteristics of interest (see Table 2.2) from the

raw data and model each of them using polynomial regression models which the

chemists were keen to explore. We adopt a Bayesian approach with vague prior

distributions for each of the model parameters, in line with the methods used in the

rest of this thesis. The joint posterior and the full conditional posterior distributions

will be derived for each model parameter.

We fit linear, quadratic and cubic models and select the best model using the PMCC

method (see Section 3.7.2) and assess its predictive value for each characteristic

separately, for each scan rate.

Our preferred modelling approaches involve modelling the whole Current output

curve rather than the summary statistics and will be presented later in Chapters 6,

7 and 8. These approaches have the advantage that inferences can be made for any

characteristics of interest to the chemists from using a single model.
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5.2 Regression Models for Summary Character-

istics

Let hk denote the mean value of a particular characteristic, for the kth level of

Carbon (k = 1, . . . , K) averaged over the replicate runs and replicate channels (see

Chapter 1) for a particular scan rate. For ease of notation, we drop the subscript,

s, that has denoted the scan rate (s = 1, 2, 3). The characteristics examined are

I
(max)
k , P

(max)
k and P

(sep)
k (see Table 2.2).

It is important to note that the only possible variable that we can use for our

model is the proportion of Carbon as we do not know the Potential and time values

associated with each of the characteristics. Hence, the only type of model that we

will consider is given by

hk = β0 +
��

q=1

βqc
q
k + εk (5.1)

where hk is the characteristic of interest to be modelled for the k
th Carbon level,

q is dummy variable for the power, � is the degree of the polynomial, ck is the

k
th Carbon level, β0 and β = (β1, . . . , β�)T are the parameters of the model, εk

represents the residual for the k
th Carbon level. As already noted in Section 5.1,

this model can be applied to each of the scan rates.

It is possible to use more complex regression models than the model shown in Equa-

tion (5.1), such as using fractional powers. Our purpose here is to simply illustrate

what is possible using simple regression models by only looking at the data for each

characteristic individually. As already mentioned in Section 5.1, we also note that

the chemists were keen to explore what this model could achieve.

The likelihood for the model is given by

�
τ

2
�K

2 exp




−
τ

2

2

K�

k=1

�
hk − β0 −

��

q=1

βqc
q
k

�2




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where τ
2 = σ

−2 and K is the total number of distinct Carbon levels. We will assume

vague priors for the parameters, which are given by:

β0 ∼ N(0, v2
0),

βq ∼ N(0, v2
q ),

τ
2 ∼ Gamma(d1, d2),

where v0, v1, . . . , v�, d1 and d2 are constants to be chosen, and throughout this

thesis, Gamma(d1,d2) denotes the Gamma distribution with mean d1
d2

. In addition,

let V = diag(v2
1, v

2
2, . . . , v

2
�). The posterior distribution for the model in Equation

(5.1) is then given by

�
τ

2
�ψ

exp

�
−τ

2

2

K�

k=1

(εk)
2 − β

2
0

2v2
0

− 1

2
βT

V
−1β − d2τ

2

�

where

εk = hk −
�

β0 +
��

q=1

βqc
q
k

�

and

ψ =
K

2
+ d1 − 1.

The conditional posterior distributions for the unknown parameters β0, β and τ
2,

are given by:

β0|β, τ
2 ∼ N

�
µ0,σ

2
0

�
,

β|β0, τ
2 ∼ N� (µβ, Σβ) ,

τ
2|β0,β ∼ Gamma(ψ,φ),
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where:

µ0 = τ
2

�
τ

2
K +

1

v
2
0

�−1
�

K�

k=1

�
hk −

��

q=1

βqc
q
k

��
,

σ
2
0 =

�
τ

2
K +

1

v
2
0

�−1

,

µβ = τ
2
�
τ

2
C

T
C + V

−1
�−1

K�

k=1

cvec,k(hk − β0),

Σβ =
�
τ

2
C

T
C + V

−1
�−1

,

C =





c1 c
2
1 . . . c

�
1

c2 c
2
2 . . . c

�
2

...
...

...
...

cK c
2
K . . . c

�
K




,

cvec,k = (ck, c
2
k, c

3
k, . . . , c

�
k )T

,

ψ =
K

2
+ d1,

φ =
1

2

K�

k=1

(εk)
2 + d2.

5.3 Analysis and Conclusions

An example of the data set to be modelled is shown in Figure 2.13. The estimates of

the parameters for the polynomial regression models were found to be fairly robust

when we varied the prior variances for β0, β and the values of the hyperparameters

d1 and d2 for τ
2. For the results presented in this section, we set the value for the

prior variances at 108 and the values of both d1 and d2 were set to 0.001. Vague

priors were used as we have no prior information about the model parameters. We

compared different regression models using the PMCC and found the best model

for each characteristic for each scan rate, see Table 5.1.
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Scan Rate

1 2 3

Minimum 3 2 2

Potential

Minimum 2 3 3

Time

Minimum 1 2 1

Current

Peak 3 1 2

Potential

Peak 2 3 1

Time

Peak 1 2 2

Current

Peak Separation 2 2 2

in Potential

Peak Separation 2 3 2

in Time

Peak Separation 2 1 2

in Current

Peak Width 1 2 3

in Potential

Peak Width 1 2 3

in Time

Table 5.1: The best polynomial degree to use for each characteristic and scan rate.
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The MCMC diagnostic plots for the Peak Potential, Peak Current and Peak Sepa-

ration in Potential are shown in Figures 5.1, 5.2, and 5.3. We thinned the samples

obtained from the MCMC algorithm by taking every fifth iteration. The autocorre-

lation function (acf) plots also provide evidence that the samples of the parameters

are not highly correlated. The value of the acf tails off as expected for a MCMC

sampling algorithm that has the properties of convergence. The diagnostic plots

also indicate that we have obtained an approximate sample from the stationary

distribution for each of the parameters.

Parameter Prior Variances

108 1010 1012

β0 4.4162 4.4164 4.4164

(0.0297) (0.0295) (0.0295)

β1 -0.9802 -0.9796 -0.9796

(0.2730) (0.2746) (0.2746)

σ
2 0.0638 0.0637 0.0637

(0.0059) (0.0058) (0.0058)

Table 5.2: Parameter estimates, posterior mean and standard deviations (within

parenthesis) for different prior variances for the linear model for Peak Potential for

scan rate 2.

The inferences obtained for the regression model parameters were fairly robust when

we varied the prior variances. This is illustrated by the similarity of the parameter

estimates under different prior variances, which are shown in Tables 5.2-5.4 for

scan rate 2. The results in these tables confirm that the values of the parameter

estimates are not changed very much for the different prior variances used. A similar

sensitivity analysis was carried for the other characteristics for scan rates 1 and 3,

and similar results were obtained (omitted for brevity). For the remainder of the
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Parameter Prior Variances

108 1010 1012

β0 89.6317 89.6053 89.6053

(6.7780) (6.7656) (6.7656)

β1 -192.0526 -192.7984 -192.7984

(149.2340) (149.1309) (149.1309)

β2 -264.7277 -259.0127 -259.0127

(612.4815) (612.5552) (612.5552)

σ
2 680.9840 680.4227 680.4227

(62.2958) (62.6931) (62.6931)

Table 5.3: Parameter estimates, posterior mean and standard deviations (within

parenthesis) for different prior variances for the quadratic model for Peak Current

for scan rate 2.

results presented in this section, we use the value for the prior variances at 108 and

for each of d1,d2 we use 0.001.

To plot the distribution densities shown in Figures 5.4-5.6, we used the plot and

density commands with a Gaussian kernel in R is employed, see Venables and Ripley

(2002) and Silverman (1986).

The posterior predictive distributions for the Peak Potential, Peak Current and Peak

Separation in Potential in Figures 5.4, 5.5 and 5.6, respectively, appear to follow the

pattern of the observations shown in Figure 2.13. We also note that the variations

between the Carbon levels for each of these characteristics are as expected.

We next use the model to predict Peak Potential, Peak Current and Peak Sepa-

ration in Potential at six values of Carbon within the range of 3-20% which were

not run in the experiment, namely 6%, 8%, 12%, 14%, 16%, 18% and 20%. The

posterior predictive distributions for the Peak Potential, Peak Current, and Peak
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Parameter Prior Variances

108 1010 1012

β0 0.9421 0.9432 0.9432

(0.0545) (0.0546) (0.0546)

β1 -7.5463 -7.5686 -7.5686

(1.1998) (1.2033) (1.2033)

β2 26.0416 26.1109 26.1109

(4.9379) (4.9537) (4.9537)

σ
2 0.0441 0.0442 0.0442

(0.0041) (0.0041) (0.0041)

Table 5.4: Parameter estimates, posterior mean and standard deviations (within

parenthesis) for different prior variances for the quadratic model for Peak Separation

in Potential for scan rate 2.

Separation in Potential for these levels of Carbon are displayed in Figures 5.7, 5.8,

and 5.9, respectively. By including the posterior predictive distributions shown in

Figures 5.7-5.9, we are simply illustrating the predictive usefulness of the best model

proposed in this chapter.

In general, there appears to be very little uncertainty about the posterior predictive

distributions for the characteristics shown in detail in Figures 5.7-5.9. This same

property was exhibited for the other characteristics of interest (these are shown in

Appendix B.2). The mean of the posterior predictive distribution for Peak Current,

see Figure 5.8, shows a realistic difference between Carbon levels (guided by the

chemists). Similarly, the distributions in Figure 5.7 are centred on values we would

expect for the Peak Potential. The mode of the posterior predictive distributions

gradually decreases as the proportion of Carbon decreases, following the pattern

shown in Figure 2.13(d). The posterior predictive distributions for the Peak Current
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Figure 5.1: Trace and autocorrelation plots of every fifth sample generated by the

Gibbs sampler for all the parameters of the linear model for Peak Potential for scan

rate 2.

show that as the proportion of Carbon increases the location of the distribution

decreases. This is the same pattern of behaviour shown in Figure 2.13(f). When we

look at the posterior predictive distributions of the Peak Separation in Potential in

Figure 5.9, we see that the location of the distribution decreases as the proportion of

Carbon decreases. This follows the pattern exhibited by the data shown in Figure

2.13(g). As in standard regression analysis, it is possible to further refine these

models using diagnostic residual plots. However, we do not pursue those here since

the regression models are not our preferred modelling approaches as mentioned in

Section 5.1; see also further related discussion in Section 9.2.
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Figure 5.2: Trace and autocorrelation plots of every fifth sample generated by the

Gibbs sampler for all the parameters of the quadratic model for Peak Current for

scan rate 2.
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Figure 5.3: Trace and autocorrelation plots of every fifth sample generated by the

Gibbs sampler for all the parameters of the quadratic model for Peak Separation in

Potential for scan rate 2.



5. Regression Models for Summary Characteristics 86

4.30 4.35 4.40 4.45

0
5

10
15

Carbon: 3%

Potential (in Volts)

D
en

si
ty

4.30 4.35 4.40 4.45

0
5

10
15

20

Carbon: 5%

Potential (in Volts)

4.30 4.35 4.40

0
5

10
15

20

Carbon: 7%

Potential (in Volts)

4.26 4.28 4.30 4.32 4.34 4.36 4.38

0
5

10
15

20
25

Carbon: 10%

Potential (in Volts)

D
en

si
ty

4.10 4.15 4.20 4.25 4.30 4.35

0
2

4
6

8
10

12

Carbon: 20%

Current (in Volts)

Figure 5.4: Density plots of posterior predictive distributions of Peak Potential for

scan rate 2.
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Figure 5.5: Density plots of posterior predictive distributions of Peak Current for

scan rate 2.
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Figure 5.6: Density plots of posterior predictive distributions of Peak Separation in

Potential for scan rate 2.

4.30 4.35 4.40

0
5

10
15

20

Carbon: 6%

D
en

si
ty

4.28 4.30 4.32 4.34 4.36 4.38 4.40

0
5

10
15

20
25

Carbon: 8%

4.25 4.30 4.35

0
5

10
15

20

Carbon: 12%

4.20 4.25 4.30 4.35

0
5

10
15

Carbon: 14%

Potential (in Volts)

D
en

si
ty

4.20 4.25 4.30 4.35

0
5

10
15

Carbon: 16%

Potential (in Volts)

4.15 4.20 4.25 4.30 4.35

0
2

4
6

8
10

12
14

Carbon: 18%

Potential (in Volts)

Figure 5.7: Density plots of posterior predictive distributions of Peak Potential for

scan rate 2.
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Figure 5.8: Density plots of posterior predictive distributions of Peak Current for

scan rate 2.
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Figure 5.9: Density plots of posterior predictive distributions of Peak Separation in

Potential for scan rate 2.



Chapter 6

Autoregressive Models

6.1 Introduction

In statistical modelling, it is desirable to start with the simplest model and then

to gradually increase the complexity if appropriate. The first model we will use for

the voltammogram is an autoregressive process, as this is the simplest time series

model. The complexity of the autoregressive model will be increased by gradually

incorporating additional variables into the model. In this chapter, we will develop

the autoregressive models under the Bayesian paradigm.

We will derive the full posterior distribution as well as the conditional posterior dis-

tribution for each parameter in each model. The conditional posterior distributions

will be required to implement the MCMC sampling algorithm. We will concentrate

on the aggregated data from derived from array 3 as set out in Chapter 2, although

the models developed here can be adjusted for data sets for other replicates and

arrays. The output from the MCMC sampling algorithm will be used to make in-

ferences about the characteristics of the Current output curve that are of interest,

as developed in Chapter 4.
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6.2 Autoregressive Process

An autoregressive model, is very similar to a multiple linear regression model. The

difference is that the value we will attempt to predict is regressed on the past values

of the data rather than on separate predictor variables. The process W (t) is an

autoregressive process of order R (abbreviated to AR(R)) if

W (t) = α1W (t− 1) + α2W (t− 2) + . . . + αRW (t−R) + ε(t) (6.1)

where t is the time index for a generic time series and the process ε(t) is assumed

to be the independently distributed random error. The order of an autoregressive

process is often determined using model choice techniques, as discussed in Section

3.7. Other diagnostic methods, such as the autocorrelation function can also be used

to determine the order of an autoregressive process, for example see Chatfield (2003,

Chapter 4). We will now discuss some basic concepts regarding the AR processes.

6.2.1 Stationarity

From an intuitive point of view, a time series is said to be stationary if there is

no systematic change in the mean and the variance over time. More simply, if the

properties of one part a stationary time series is identical to any other part of it.

Before fitting a time series model, it is often necessary to ensure that it is stationary.

There are many techniques that can be used to make a time series stationary such

as differencing, which are discussed in Chatfield (2003, Chapter 2).

Formally, there are two types of stationarity: strict stationarity and weak station-

arity. A time series is said to be strictly stationary if the joint distribution of

W (t1), . . . , W (tκ) is the same as the joint distribution of W (t1 + ι), . . . , W (tκ + ι)

for all ι, t1, . . . , tN and t1 < t2 < . . . tκ. Hence, shifting the time origin by amount

ι has no effect on the joint distributions. In particular, if κ = 1, strict stationar-

ity implies that for all t, W (t) has the same distribution. Assume that the first
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two moments are finite with E[W (t)] = µ(t) and Var(W (t)) = σ
2(t), then strict

stationarity implies that µ(t) and σ
2(t) are both constants independent of t.

To define weak stationarity, we need to define the autocovariance function. If {W (t)}

is a process where t = 0, 1, 2, . . . , N such that Var(W (t)) < ∞ for each t, then the

autocovariance function of {W (t)} is defined by

γ(m,h) = Cov(W (m),W (h))

= E[(W (m)− E[W (m)])(W (h)− E[W (h)])]

where m, h ∈ {0, 1, 2, . . . , N}.

Brockwell and Davis (1991) define weak stationarity as follows. The time series

{W (t), t ∈ Z} where Z = {0,±1,±2, . . . }, is said to have weak stationarity if :

(i) E[(W (t))2] <∞ for all t ∈ Z,

(ii) E[W (t)] = m for all t ∈ Z where m is some constant,

(iii) γ(m,h) = γ(m + t, h + t) for all m,h ∈ Z.

If the time series {W (t)} is weakly stationary, then γ(m−h, 0) = γ for all m, h ∈ Z.

In this case, it is convenient to redefine the autocovariance function as the function

of a single variable, which is given by

γ(ι) ≡ γ(ι, 0)

= Cov(W (t + ι),W (t)) for all ι, t ∈ Z.

The function γ(.) is often referred to as the autocovariance function of {W (t)} and

γ(ι) as its value at lag ι. Using this definition of the autocovariance function, the

autocorrelation function of {W (t)} is defined as the function whose value at lag ι is

given by

ρ(ι) ≡ γ(ι)

γ(0)

= Corr(W (t + ι),W (t)) for all ι, t ∈ Z.



6. Autoregressive Models 92

For more details on stationary time series see Brockwell and Davis (1991, Chapter

1).

6.2.2 Estimating the Parameters of an AR Process

Let W (t) be an AR(R) process with mean µ, then

W (t)− µ = α1(W (t− 1)− µ) + . . . + αR(W (t−R)− µ) + ε(t).

Given observations w(1), w(2), . . . , w(N), the parameter estimates µ̂, α̂1, . . . , α̂R can

be obtained by minimising the sum of the squared residuals. A second method is

to solve the Yule-Walker equations. There are many sources in the literature that

provide a detailed account of the two methods mentioned above, for example, see

Chatfield (2003, Chapter 3) and Brockwell and Davis (1991, Chapter 8). Another

method of parameter estimation is to use MCMC sampling methods. These are

discussed in detail in Section 3.4.

6.2.3 Determining the Order of an AR Process

One method that can be used to determine the order of an AR process is to use the

sample autocorrelation function. The sample autocorrelation coefficient at lag d is

given by

rd =

�N−d
t=1 (w(t)− w̄) (w(t + k)− w̄)

�N
t=1(w(t)− w̄)

where N is the length of the time series and w̄ = 1
N

�N
t=1 w(t).

For a first order autoregressive process, AR(1), it can be shown that ρ(ι) = α
ι
1,

see Chatfield (2003, pp. 41-42). Thus, the theoretical autocorrelation decreases

exponentially and the sample autocorrelation should also follow a similar pattern.

For higher order autoregressive processes the autocorrelation function is a mixture
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of damped exponential or sinusoidal functions. There are more detailed accounts

in the literature on using the autocorrelation function to determine the order of an

AR process, for example, see Chatfield (2003, Chapter 4).

As with estimating the parameters, there are also Bayesian methods for dealing with

the assessment of the order of the AR process. Various Bayesian model assessment

tools can be used to help estimate the order of an AR processes. One such method

is called the predictive model choice criteria (PMCC) as discussed in Section 3.7.

The model with the lowest PMCC value should be the best model from the set of

models under consideration.

6.3 Autoregressive Models

The first model we will fit to the aggregated data from array 3 will be an autore-

gressive process of order Rα. For the remainder of this chapter, we will denote the

vector of parameters by the generic symbol θ, t will denote the time index as defined

in Table 2.1 and N will denote the length of the time series, depending on the scan

rate. For ease of notation, we drop the subscript, s, which we have used to denote

the scan rate. The model is given by

xk(t) =
Rα�

i=1

αixk(t− i) + εk(t) (6.2)

where t = Rα + 1, Rα + 2, . . . , N and k = 1, 2, . . . , K. The likelihood for the model

in Equation (6.2) is given by

f(x|θ) ∝ (τ 2)
N−Rα

2 exp

�
− τ

2

2

K�

k=1

N�

t=Rα+1

(εk(t))
2

�

where θ = (α, τ
2)T , α = (α1,α2, . . . , αRα)T and τ

2 = σ
−2. The Bayesian model is

completed by assuming the prior distributions

αi ∼ N(0, v2
i ) and τ

2 ∼ Gamma(d1, d2), (6.3)
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where vi, d1, d2 are constants to be chosen. The joint posterior distribution is given

by

f(θ | x) ∝ (τ 2)ψ2−1 exp

�
− 1

2
τ

2
K�

k=1

N�

t=Rα+1

(εk(t))
2 − 1

2
αT

V
−1
α α− d2τ

2

�

where Vα = diag(v2
1, v

2
2, . . . , v

2
Rα

) and ψ1 = 1
2(N − Rα) + d1. The conditional pos-

terior distributions are obtained from the full posterior distribution by finding the

distribution of each parameter given the remaining parameters and data.

6.3.1 Incorporating Potential in the Model

To improve the accuracy of the model in Section 6.3, factors that affect the response

need to be incorporated in the model. The simplest factor to incorporate in the

model is the Potential via a polynomial in Potential. Incorporating Potential in this

way may seem inappropriate, however, it is the first simplest form we have tried.

We realise the limitations of this model and propose a more flexible autoregressive

model in Section 6.4 and that has been shown to be superior for prediction. We

return our attention to the model incorporating Potential via a polynomial which is

given by

xk(t) =
Rα�

i=1

αixk(t− i) +

Rη�

jη=1

ηjη(p(t))jη + εk(t) (6.4)

where t = Rα + 1, Rα + 2, . . . , N , and p(t) is the Potential at time t. The likelihood

function of the parameters for this model is given by

f(x | θ,p) ∝
�
τ

2
�N−Rα

2 exp

�
− 1

2
τ

2
K�

k=1

N�

t=Rα+1

(εk(t))
2

�
(6.5)

where θ = (α,η, τ
2)T , η = (η1, η2, . . . , ηRη)

T . we assign non-informative prior

distributions to ηjη , ηjη ∼ N(0, w2
jη

). Further to this, we note that v
2
i , w

2
jη

, d1 and

d2 are constants to be chosen. The full posterior distribution is simply the product
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of the prior distributions and the likelihood shown in Equation (6.5) which is given

by

f(θ | x,p) ∝
�
τ

2
�ψ1−1

exp

�
− 1

2
τ

2
K�

k=1

N�

t=Rα+1

�
εk(t)

�2

−1

2
αT

V
−1
α α− 1

2
ηT

V
−1
η η − d2τ

2

�
(6.6)

where Vη = (w2
1, w

2
2, . . . , w

2
Rη

) and ψ1 = 1
2(N −Rα) + d1.

It would be possible to use fractional polynomials, that is a polynomial function

where the powers are rational numbers rather than just integers. This could be

costly exploration as we have very little information as to what sort of fractional

powers to use. In addition, a model that incorporates the Potential as a second

autoregressive process is likely to be a better model. This is because the value of

the Current at time t will be influenced by previous values of the Potential (see

Section 6.4 for further details).

6.3.2 Incorporating Potential and Carbon in the Model

To further improve the accuracy of the model we will now deal with the effect of

Carbon. A polynomial in Carbon will be used to account for the effect of Carbon.

The modified model is given by

xk(t) =
Rα�

i=1

αixk(t− i) +

Rη�

jη=1

ηjη(p(t))jη +

Rγ�

q=1

γqc
q
k + εk(t) (6.7)

where t = Rα + 1, Rα + 2, . . . , N , ck is the kth level of Carbon and xk(t) is the

Current for Carbon level k at time t. As before, the {εk(t)} are a sequence (over

time t) of independent and identically distributed Gaussian random variables with

mean 0 and variance σ
2. We can clearly obtain the previous models from the general

model shown in Equation (6.7) by simply setting the relevant parameters to zero.
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The likelihood is given by

f(x | θ,p, c) ∝ (τ 2)ψ1−1 exp

�
− 1

2
τ

2
K�

k=1

N�

t=Rα+1

(εk(t))
2

�

where θ = (α, η,γ, τ
2)T and γ = (γ1, γ2, . . . , γRγ )

T . To complete the Bayesian

model, we use non-informative prior distributions (as stated in Section 6.3.1), to-

gether with γq ∼ N(0, g2
q ) where gq are constants to be chosen and q = 1, 2, . . . Rγ.

The full posterior distribution is obtained by taking the product of the likelihood

and the prior is given by

f(θ | x,p, c) ∝ (τ 2)ψ1−1 exp

�
− 1

2
τ

2
K�

k=1

N�

t=Rα+1

(εk(t))
2

−1

2
αT

V
−1
α α− 1

2
ηT

V
−1
η η − 1

2
γT (Vγ)

−1γ − d2τ
2

�

where Vγ = diag(g2
1, g

2
2, . . . , g

2
Rγ

) and c = (c1, c2, . . . , cK)T .

The conditional posterior distributions are given by:

α | η,γ, τ
2
, X, p, c ∼ NRα(µα, Σα),

η | α,γ, τ
2
, X, p, c ∼ NRη(µη, Ση),

γ | α,η, τ
2
, X, p, c ∼ NRγ (µγ, Σγ),

τ
2 | α,η,γ, X, p, c ∼ Gamma(ψ1,ϕ),

where:

µα = τ
2ΣαX

T Y α, Σα = τ
−2(XT

X + τ
−2

V
−1
α )−1

,

Y α = (yα,1(Rα + 1), . . . , yα,1(N), yα,2(Rα + 1), . . . , yα,2(N), . . . ,

yα,K(Rα + 1), . . . , yα,K(N))T
,

yα,k(t) = xk(t)−
Rη�

jη=1

ηjη(p(t))jη −
Rγ�

q=1

γq(ck)
q
,
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X =





x1(Rα) x1(Rα − 1) . . . x1(1)
...

...
...

...

x1(N − 1) x1(N − 2) . . . x1(N −Rα)

x2(Rα) x2(Rα − 1) . . . x2(1)
...

...
...

...

x2(N − 1) x2(N − 2) . . . x2(N −Rα)
...

...
...

...

xK(Rα) xK(Rα − 1) . . . xK(1)
...

...
...

...

xK(N − 1) xK(N − 2) . . . xK(N −Rα)





,

µη = τ
2ΣηP

T
Yη, Ση = (τ 2

P
T
P + V

−1
η )−1

,

Y η = (yη,1(Rα + 1), . . . , yη,1(N), yη,2(Rα + 1), . . . , yη,2(N), . . . ,

yη,K(Rα + 1), . . . , yη,K(N))T
,

yη,k(t) = xk(t)−
Rα�

i=1

αixk(t− i)−
Rγ�

q=1

γqc
q
k,

µγ = τ
2ΣγC

T
Yγ, Σγ = (τ 2

C
T
C + (VRγ )

−1)−1
,

Y γ = (yγ,1(Rα + 1), . . . , yγ,1(N), yγ,2(Rα + 1), . . . , yγ,2(N), . . . ,

yγ,K(Rα + 1), . . . , yγ,K(N))T
,

yγ,k(t) = xk(t)−
Rα�

i=1

αixk(t− i)−
Rη�

jη=1

ηjη(p(t))jη ,

P =





p(Rα + 1) (p(Rα + 1))2
. . . (p(Rα + 1))Rη ,

...
...

...
...

p(N) (p(N))2
. . . (p(N))Rη

...
...

...
...

p(Rα + 1) (p(Rα + 1))2
. . . (p(Rα + 1))Rη

...
...

...
...

p(N) (p(N))2
. . . (p(N))Rη





,
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C =





c1 c
2
1 . . . c

Rγ

1

...
...

...
...

c1 c
2
1 . . . c

Rγ

1

c2 c
2
2 . . . c

Rγ

2

...
...

...
...

cK c
2
K . . . c

Rγ

K
...

...
...

...

cK c
2
K . . . c

Rγ

K





,

ϕ =
1

2

K�

k=1

N�

t=Rα+1

(εk(t))
2 + d2.

6.4 Models Using Two Autoregressive Processes

A more realistic method is to incorporate the Potential using an autoregressive

process as past values of the Potential have an effect on the present value of the

Current. In this case the model is given by

xk(t) =
Rα�

i=1

αixk(t− i) +

Rβ�

q=0

βjp(t− j) +

Rγ�

q=1

γqc
q
k + εk(t)

where t ≥ max(Rα + 1, Rβ + 1) and as noted earlier, {εk(t)} denotes a sequence

of independent and identically distributed Gaussian random variables with mean 0

and variance σ
2. The likelihood is given by

f(x | θ,p, c) ∝ (τ 2)
−K(n−r)

2 exp

�
− 1

2
τ

2
K�

k=1

N�

t=r�+1

(εk(t))
2

�

where r
� = max(Rα, Rβ), θ = (α,β,γ, τ

2)T , β = (β0, β1, β2, . . . , βRβ
)T and

εk(t) = xk(t)−
�

Rα�

i=1

αixk(t− i) +

Rβ�

j=0

βjp(t− j) +

Rγ�

q=1

γqc
q
k

�
.
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Assign non-informative prior distributions to the parameters, where vi, wj, gq are

the variances for α, β, γ respectively. The full posterior distribution obtained by

taking the product of the likelihood and the prior is given by

f(θ | x, p, c) ∝ (τ 2)ψ2−1 exp

�
− 1

2
τ

2
K�

k=1

N�

t=r�+1

(εk(t))
2 − 1

2
αT

V
−1
α α

−1

2
βT

V
−1
β β − 1

2
γT

V
−1
γ γ − d2τ

2

�

where ψ2 = 1
2K(N − r

�) + d1.

The conditional posterior distributions are given by:

α | β,γ, τ
2
, X, p, c ∼ NRα(µα, Σα),

β | α,γ, τ
2
, X, p, c ∼ NRβ

(µβ, Σβ),

γ | α,β, τ
2
, X, p, c ∼ NRγ (µγ, Σγ),

τ
2 | α, β,γ, X, p, c ∼ Gamma(ψ2,ϕ),

where:

µα = τ
2ΣαX

T Y α, Σα = τ
−2(XT

X + V
−1
α )−1

,

Y α = (yα,1(r
� + 1), . . . , yα,1(N, yα,2(r

� + 1), . . . , yα,2(N), . . . ,

yα,K(r� + 1), . . . , yα,K(N))T
,

yα,k(t) = xk(t)−
Rβ�

j=0

βjp(t− j)−
Rγ�

q=1

γq(ck)
q
,
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X =





x1(r�) x1(r� − 1) . . . x1(r� −Rα + 1)
...

...
...

...

x1(N − 1) x1(N − 2) . . . x1(N −Rα + 1)

x2(r�) x2(r� − 1) . . . x2(r� −Rα + 1)
...

...
...

...

x2(N − 1) x2(N − 2) . . . x2(N −Rα + 1)
...

...
...

...

xK(r�) xK(r� − 1) . . . xK(r� −Rα + 1)
...

...
...

...

xK(N − 1) xK(N − 2) . . . xK(N −Rα + 1)





,

µβ = τ
2ΣβP

T
Yβ, Σβ = (τ 2

P
T
P + V

−1
β )−1

,

Y β = (yβ,1(r
� + 1), . . . , yβ,1(N), yβ,2(r

� + 1), . . . , yβ,2(N), . . . ,

yβ,K(r� + 1), . . . , yβ,K(N))T
,

yβ,k(t) = xk(t)−
Rα�

i=1

αixk(t− i)−
Rγ�

q=1

γqc
q
k,

P =





p(r� + 1) p(r�) p(r� − 1) . . . p(r� −Rβ + 1)
...

...
...

...
...

p(N) p(N − 1) p(N − 2) . . . p(N −Rβ + 1)
...

...
...

...
...

p(r� + 1) p(r�) p(r� − 1) . . . p(r� −Rβ + 1)
...

...
...

...
...

p(N) p(N − 1) p(N − 2) . . . p(N −Rβ + 1)





,

µγ = τ
2ΣγC

T
Yγ, Σγ = (τ 2

C
T
C + V

−1
γ )−1

,

Y γ = (yγ,1(r
� + 1), . . . , yγ,1(N), yγ,2(r

� + 1), . . . , yγ,2(N), . . . ,

yγ,K(r� + 1), . . . , yγ,K(N))T
,
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yγ,k(t) = xk(t)−
Rα�

i=1

αixk(t− i)−
Rβ�

j=1

βjp(t− j),

ϕ =
1

2

K�

k=1

N�

t=r�+1

(εk(t))
2 + d2.

6.5 Analysis and Conclusions

Equation (6.8), see below, defines the way in which we will refer to each model and

to which models we are restricting ourselves to. We note that in trying to develop

a model in applied problems, it is possible to continually adjust models to obtain a

better model. Hence, it is necessary to restrict the models that we are considering

in some way. Further, the models we have chosen cover the model space developed

in this chapter quite extensively with relatively little increase in the complexity of

the analysis. We have chosen to purposely include Carbon as the chemists, based

on their experience, believe that Carbon has a fundamental effect on the Current

output.

M1(Rα, Rγ) : xk(t) =
Rα�

i=1

αixk(t− i) +

Rγ�

q=1

γqc
q
k + εk(t)

M2(Rα, Rη, Rγ) : xk(t) =
Rα�

i=1

αixk(t− i) +

Rη�

jη=1

ηjη(p(t))jη +

Rγ�

q=1

γqc
q
k + εk(t)

M3(Rα, Rβ, Rγ) : xk(t) =
Rα�

i=1

αixk(t− i) +

Rβ�

j=0

βjp(t− j) +

Rγ�

q=1

γqc
q
k + εk(t)

(6.8)

The values for Rα, Rβ (or Rη) and Rγ shown in Tables 6.1, 6.2 and 6.3 were chosen by

cycling around each variable in a nested loop structure. Hence, a thorough model

search was conducted for various combinations of Rα, Rβ (or Rη) and Rγ. The

combination of values shown in Tables 6.1, 6.2 and 6.3 were those that produced the
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lowest PMCC values. It can be observed from these tables that for each scan rate,

the 3 models presented have similar performances, under PMCC.

Model Goodness Penalty PMCC

Specification of fit

M1(Rα = 30,Rγ = 1) 194.4657 195.0966 389.5623

M2(Rα = 34,Rη = 3,Rγ = 1) 197.5542 192.6735 390.2277

M3(Rα = 25,Rβ = 20,Rγ = 1) 193.8198 195.9621 389.7819

Table 6.1: Predictive model choice criteria for selected models for scan rate 1.

Model Goodness Penalty PMCC

Specification of fit

M1(Rα = 11,Rγ = 1) 38.8481 40.7423 79.5903

M2(Rα = 11,Rη = 3,Rγ = 2) 38.5283 45.2663 83.7945

M3(Rα = 11,Rβ = 11,Rγ = 1) 36.3307 38.8855 75.2162

Table 6.2: Predictive model choice criteria for selected models for scan rate 2.

Model Goodness Penalty PMCC

Specification of fit

M1(Rα = 12,Rγ = 2) 217.7710 220.2873 438.0583

M2(Rα = 13,Rη = 3,Rγ = 1) 214.9017 223.8122 438.7138

M3(Rα = 12,Rβ = 11,Rγ = 1) 170.5442 30.1754 351.5307

Table 6.3: Predictive model choice criteria for selected models for scan rate 3.

To complete the rest of our analysis for scan rate 2, we use model M3(Rα = 11, Rβ =

11, Rγ = 1) which has PMCC value at least 5.9% smaller than the values of the
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other two models, see Table 6.2. The diagnostic plots for this model is shown in

Figures 6.1 and 6.2. These plots indicate that the MCMC algorithm is sampling

accurately from the posterior distribution. The algorithm appears to be covering

the full space for each of the parameters. Figure 6.2 shows that there is relatively

little autocorrelation present in the sample.

The parameter estimates for the chosen model were fairly robust when we varied

the prior variances for α, β, γ and the hyperparameters d1, d2 for τ
2, see Table

6.4. We also calculated the standard deviations of the posterior distribution of

the parameters. These turned out to be similar to each other and are omitted for

brevity. This study shows that the choice of the prior variance has little effect on

the parameter estimates, as also seen in Section 5.3. As in Section 5.3, we set the

value for each of the prior variances to 108 and the values of d1 and d2 to 0.001.

We now examine the residuals which were calculated by working out the difference

between the one-step ahead predictions and the observed values shown in Figures

2.10 and 2.11. This is a standard technique used in time series analysis, which

is also discussed in Section 3.8. The residual plot shown in Figure 6.3 indicates

that the variance of the residuals is not constant. The behaviour of the residuals

becomes much more varied around the times when the Current is near its peak

value. This pattern repeats itself when the Current is near its minimum value. As

we are interested in predicting various characteristics about the peak and minimum

points of the Current output, it is necessary to improve the model. We note that,

although we have only shown the plots from scan rate 2 (to illustrate our findings),

the corresponding plots for scan rates 1 and 3 exhibited similar behaviour.

The location of the distributions shown in Figure 6.4 appears to be near the value

of the Potential that we would expect, see Figure 2.11. This is also true for the

distributions of the Peak Separation in Potential, see Figure 6.6.

As noted in Section 5.3, we used the plot and density commands in R to plot the
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posterior predictive distribution densities shown in Figures 6.4-6.6. This is also the

case for the other posterior predictive distribution densities shown in Figures 6.7-6.9.

We next use the model to predict Peak Potential, Peak Current and Peak Sepa-

ration in Potential at six values of Carbon within the range of 3-20% which were

not run in the experiment, namely 6%, 8%, 12%, 14%, 16%, 18% and 20%. The

posterior predictive distributions for the Peak Potential, Peak Current and Peak

Separation in Potential for these levels of Carbon are displayed in Figures 6.7, 6.8

and 6.9, respectively. We are unable to compare these posterior predictive distri-

butions to observed data. Hence, we need to use the chemists’ knowledge of these

experiments to analyse the posterior predictive distributions in Figures 6.7, 6.8 and

6.9. In addition to this, as noted in Section 5.3, by including the posterior predictive

distributions shown in the aforementioned figures, we are illustrating the predictive

usefulness of the best model proposed in this chapter.

Based on the chemists’ feedback, we realised that the AR model is rather poor at

predicting the Peak Potential. Note that the posterior predictive distribution is

multi-modal (see Figure 6.7) and, guided by the chemists, we expected the mode of

this distribution to be near the second mode. This multi-model nature of the poste-

rior predictive distribution for the Peak Potential will, in turn, affect the posterior

predictive distribution for the Peak Width in Potential. As the model appears to

be rather poor at predicting the various characteristics involving Potential, it is not

surprising that the same behaviour was found with respect to the posterior predic-

tive distributions for Peak Time and Peak Separation in Time. We re-iterate that

this is due to Potential and time are just different ways of referring to a particular

observation.
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Parameter Prior Variances

108 1010 1012

α1 1.5663 1.5659 1.5659

α2 0.0774 0.0784 0.0784

α3 -0.5127 -0.5134 -0.5134

α4 -0.1492 -0.1489 -0.1489

α5 -0.2032 -0.2042 -0.2042

α6 0.1107 0.1112 0.1112

α7 -0.0195 -0.0189 -0.0189

α8 0.1780 0.1776 0.1776

α9 -0.0537 -0.0528 -0.0528

α10 0.0757 0.0742 0.0742

α11 -0.0705 -0.0699 -0.0699

β0 33.0286 33.1308 33.1308

β1 -59.9870 -60.2273 -60.2273

β2 -0.7939 -0.6421 -0.6421

β3 16.2813 16.2315 16.2315

β4 21.0300 21.0805 21.0805

β5 11.4082 11.4892 11.4892

β6 -11.2009 -11.1565 -11.1565

β7 -8.6967 -8.9484 -8.9484

β8 3.5305 3.4945 3.4945

β9 -17.9063 -17.6956 -17.6956

β10 16.1107 16.0585 16.0585

β11 -2.8047 -2.8155 -2.8155

γ1 0.0011 0.0024 0.0024

σ
2 0.0152 0.0152 0.0152

Table 6.4: Parameter estimates (posterior mean) for different prior variances for the

best autoregressive model for scan rate 2.
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Figure 6.1: Trace plots generated by the Gibbs sampler for all the parameters of the

best autoregressive model for scan rate 2.
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Figure 6.2: Autocorrelation plots generated by the Gibbs sampler for all the param-

eters of the best autoregressive model for scan rate 2.
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Figure 6.3: Differences between data and one-step ahead predictions, where t denotes

the time index defined in Table 2.1.
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Figure 6.4: Density plots of posterior predictive distributions of Peak Potential for

scan rate 2.
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Figure 6.5: Density plots of posterior predictive distributions of Peak Current for

scan rate 2.
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Figure 6.6: Density plots posterior predictive distributions of Peak Separation in

Potential for scan rate 2.
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Figure 6.7: Density plots of posterior predictive distributions of Peak Potential for

scan rate 2.
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Figure 6.8: Density plots posterior predictive distributions of Peak Current for scan

rate 2.
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Figure 6.9: Density plots of posterior predictive distributions of Peak Separation in

Potential for scan rate 2.



Chapter 7

Sinusoidal Models

7.1 Introduction

A well established method for modelling periodical features is to use trigonometric

functions (referred to as sinusoidal models or Fourier Form). Sinusoidal models have

been applied in a variety of applications, for example: Muller and Phillips (2007)

applies sinusoidal models to Ozone Air pollution, Crellin et al. (1998) and Srivastava

et al. (2003) apply these type of models in image analysis, and Dubnov and Rodet

(1997) and Desainte-Catherine and Hanna (2000) are examples of applications to the

modelling of sound. There has also been much research on estimating the parameters

of sinusoidal models, for example Hainsworth and Macleod (2003) and Barone and

Ragona (1997).

If a time series exhibits a periodical nature, then it is logical to build a model that

accounts for this. The data we wish to analyse, shown in Figure 2.10, exhibits a

periodical nature and hence we need to adapt the model we have developed in Chap-

ter 6. In this chapter, we further develop our model to account for the periodical

nature.
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7.2 Sinusoidal Model

Assume that we have a time series that contains a deterministic sinusoidal model

which is given by

λt = µ + a cos(ωt) + b sin(ωt) + εt (7.1)

where ω is some known frequency, the random error term is denoted by εt, λt denotes

the observations, t denotes the time index for a generic time series and µ, a and b

are parameters to be estimated. By writing the model in Equation (7.1) in matrix

form, we obtain

E[Λ] = Aθ

where

Λ = (λ1, . . . , λN)T
, θ = (µ, a, b)T

and

A =





1 cos(ω) sin(ω)

1 cos(2ω) sin(2ω)
...

...
...

1 cos(Nω) sin(Nω)





where N is the length of a generic time series. This model is an example of a general

linear model as it is linear in µ, a and b. The least squares estimate of θ is obtained

by minimising
�N

t=1(λt − µ− a cos(ωt)− b sin(ωt))2 from which we obtain

θ̂ = (AT
A)−1

A
TΛ. (7.2)

The solution in Equation (7.2) is valid for any frequency ω. However, the model

only makes practical sense for values of ω that are not too high or low. The Nyquist

frequency (see Section 7.3 and West and Harrison, 1999), given by ω = π, completes
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one cycle every two observations. The lowest frequency is where one complete cycle

is the whole length of the time series. The highest and lowest possible values of the

frequency ω will be explained in more detail in Section 7.3. If we equate the cycle

length 2π/ω to N , the lowest frequency is then given by 2π/N . The least squares

estimate of θ̂ turn out to be simple if ω is restricted to one of the values

ωm = 2πm/N, where m = 1, . . . , N/2. (7.3)

From Equation (7.3) we can see that the frequency increases in equal steps from the

lowest frequency 2π/N up to the Nyquist frequency π. In the case when ω = π,

(AT
A) is a diagonal matrix as a result of the trigonometric results shown in equations

(7.4)-(7.7) below:

N�

t=1

cos(ωmt) =
N�

t=1

sin(ωmt) = 0, (7.4)

N�

t=1

cos(ωmt) cos(ωnt) =






0, m �= n,

N, m = n = N/2,

N/2, m = n �= N/2,

(7.5)

N�

t=1

sin(ωmt) sin(ωnt) =






0, m �= n,

0, m = n = N/2

N/2, m = n �= N/2,

(7.6)

N�

t=1

cos(ωmt) sin(ωnt) = 0, ∀ m,n. (7.7)

If (AT
A) is diagonal, then (AT

A)−1 is also diagonal which makes it easy to calculate

the least squares estimate of θ. In this case, for some frequency ωm, where m �= N/2,
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we obtain:

µ̂ =
N�

t=1

λt/N = λ̄,

â = 2

� N�

t=1

λt cos(ωmt)

�
/N,

b̂ = 2

� N�

t=1

λt sin(ωmt)

�
/N.

If m = N/2 we obtain

µ̂ = λ̄,

α̂ =
N�

t=1

(−1)t
λt/N

and the term in b sin(ωt) is zero for all t.

7.3 The Nyquist Frequency and the Lowest Fun-

damental Frequency

We define the Nyquist frequency as follows as the upper bound. Suppose that ob-

servations are taken at intervals equal time intervals δt, then the Nyquist frequency

is given by ωN = π/δt. In terms of cycles per unit time we have ωN/2π = 1/2δt.

We note, throughout this section, that t and N are as defined in Section 7.2.

Consider the following example which involves thinking about the sampling rate

required and the Nyquist frequency. Suppose that the situation where temperature

readings are taken daily at midday for a particular period of time in a certain

town. From these observations, it would not be possible to ascertain whether nights

are warmer or colder than the days during the period of time of interest. In this

situation, the Nyquist frequency is ωN = π per day, that is 1 cycle is completed every

2 days. If we wanted to investigate variation within a day, we need a frequency of
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2π per day, that is one complete cycle is completed per day. However, to do this a

higher sampling rate would have to be used.

We will now demonstrate why there exists a lowest fundamental frequency below

which it is not sensible to fit a sinusoidal model to the data. Suppose that we

have 6 months of daily temperature readings from winter to summer. Using this

data alone, it would not be possible to differentiate between an upward trend or

if winters are colder than summers. In contrast, with 1 year’s data, it would then

become obvious that winters are colder than summers. Thus, if we are interested

in temperature variation between the seasons, we require at least 1 year’s worth of

data and thus the lowest frequency we can fit is 1 cycle per year. For example, if we

had weekly observations, for 1 year we would have N = 52 , δt = 1 week and the

lowest angular frequency given by 2π/Nδt corresponds to 1/Nδt cycles per week,

which corresponds to 1/52 cycles per week.

The lowest fundamental frequency which is 2π/Nδ is also referred to as the fun-

damental Fourier frequency since the Fourier series representation of the data cal-

culated when ωm = 2πm/Nδ for m = 1, . . . , N/2 are all integer multiples of the

fundamental frequency which are also referred to as harmonics. The term funda-

mental frequency is more appropriately used when some function f(t) is periodic

with period Π such that f(t+mΠ) = f(t) where m ∈ {1, 2, . . . , N} . Then ω = 2π/Π

is the fundamental frequency and the Fourier series representation of f(t) is a sum

over the harmonics of the fundamental frequency.

From the discussion above, we can see that the Nyquist frequency does not depend

on N but the sampling frequency. In contrast to this, the lowest frequency does

not depend on the sampling rate but is dependent upon N . This means that for

lower frequencies we have to collate data over longer periods of time and for higher

frequencies observations need to be taken more frequently. For a more detailed

synopsis see Chatfield(2003, Chapter 7) and West and Harrison(1999, Chapter 8).
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7.4 Fourier Form Representation of Cyclical Func-

tions

The model in Equation (7.1) is the simplest example of a sinusoidal model. A more

complex and practical representation of periodic functions that arise in various sce-

narios such as astronomy, geophysical studies and electrical systems, is the Fourier

form of the model. The basic idea behind this representation of some cyclical func-

tion g(t) where t = 0, . . . , N − 1, that is any N real numbers can be expressed as a

linear combination of trigonometric terms which is dependent on the frequency ω.

Let Rf = N/2 if N is even and Rf = (N − 1)/2 if N is odd. The Fourier series

representation of some time series λt is given by

λt = a0 +

Rf�

r=1

�
ar cos

�
2πrt

N

�
+ br sin

�
2πrt

N

��
(7.8)

where Rf ≤ N/2 and coefficients ar, br are given by:

a0 =
1

N

N−1�

t=0

λt, aN/2 =
1

N

N−1�

t=0

(−1)t
λt, bN/2 = 0,

ar = 2
N

�N−1
t=0 λt cos(2πrt/N)

br = 2
N

�N−1
t=0 λt sin(2πrt/N)





, 1 ≤ r < N/2. (7.9)

An analysis using this model setup is referred to as a Fourier analysis or harmonic

analysis. The Fourier series representation in Equation (7.8) has exactly N param-

eters to describe N observations, hence there is no error term. The results shown
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in equation (7.9) can be proved (see Appendix C for proof) using the identities:

N−1�

t=0

cos

�
2πmt

N

�
sin

�
2πnt

N

�
= 0,

N−1�

t=0

cos

�
2πmt

N

�
cos

�
2πnt

N

�
=






0, m �= n,

N, m = n = N/2,

N/2, m = n �= N/2,

N−1�

t=0

sin

�
2πmt

N

�
sin

�
2πnt

N

�
=






0, m �= n,

0, m = n = N/2,

N/2, m = n �= N/2,

N−1�

t=0

cos

�
2πmt

N

�
=

N−1�

t=0

sin

�
2πmt

N

�
= 0,

where m and n are integers.

We now return our attention to Equation (7.8). The parameters ar and br are often

referred to as the Fourier coefficients. For r = 1, . . . , Rf , define the function Sr(t)

(known as the r
th harmonic) by:

Sr(t) = ar cos

�
2πrt

N

�
+ br sin

�
2πrt

N

�

= Ar cos

�
2πrt

N
+ ρr

�
,

Ar = (a2
r + b

2
r)

1/2
,

ρr = arctan

�
−br

ar

�
,

where t = 0, . . . , N − 1, Ar and ρr are referred to as the amplitude and phase of the

r
th harmonic respectively. The maximum value of Sr(t) is equal to the amplitude and

the position of the maximum value of the r
th harmonic is determined by the phase.

The r
th harmonic occurs when ρ = 2Rf and is known as the Nyquist harmonic. As

bN/2 = 0, then AN/2 = |aN/2| and ρN/2 = 0. The frequency of the r
th harmonic
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is given by 2πr/N and the cycle length is ρ/r. The first harmonic is also known

as the fundamental harmonic with frequency α and length ρ. The r
th harmonic

completes r full cycles for each complete cycle of the fundamental harmonic. For a

more detailed exposition including how Fourier series are used in Dynamic Models,

see Pole et al. (1994, Chapter 3) and West and Harrison (1999, Chapter 8).

7.5 Adaptation of the Fourier Model

The Fourier model described in Section 7.4 will be adapted slightly for application to

our data sets. Instead of having the full set of Fourier coefficients we will determine

the number of coefficients via the PMCC, hence there will be an error term in the

model. The adjusted Fourier model will be

xk(t) = a0 +

Rf�

r=1

�
ar cos(ωr(t− 1)) + br sin(ωr(t− 1))

�
+ εk(t) (7.10)

where t = 1, . . . N , ω = 2π
N , εk(t) ∼ N(0,σ2) ,Rf ≤ N/2 for N even and Rf ≤

(N − 1)/2 for N odd. For the remainder of this chapter, t denotes the time index

defined in Table 2.1 and N denotes the number of observations which is dependent

upon the scan rate. The likelihood for the model in Equation (7.10) is given by

�
τ

2

2π

�NK
2

exp

�
− τ

2

2

K�

k=1

N�

t=1

ε
2
k(t)

�
(7.11)

where τ
2 = σ

−2. As with our earlier models, we will use vague priors for the

parameters which are given by:

a0 ∼ N(0, v2
0),

ar ∼ N(0, v2
a,r),

br ∼ N(0, v2
b,r), (7.12)

τ
2 ∼ Gamma(d1, d2),
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where v0, va,r, vb,r, d1 and d2 are constants to be chosen. Let a = (a1, a2, . . . , aRf
)T

and b = (b1, b2, . . . , bRf
)T . The posterior distribution for the model in equation

(7.10) is given by

(τ 2)ψ3−1 exp

�
− τ

2

2

K�

k=1

N�

t=1

ε
2
k(t)−

a
2
0

2v2
0

− 1

2
aT (Va)

−1a− 1

2
bT (Vb)

−1b− d2τ
2

�

where ψ3 = NK
2 +d1, Va = diag(v2

a,1, v
2
a,2, . . . , V

2
a,Rf

) and Vb = diag(v2
b,1, v

2
b,2, . . . , V

2
b,Rf

).

We will now consider additional features exhibited in our data, shown in Figure

2.10, we wish to model. If we look at Figure 2.10, we can see that different values

are observed for the different proportions of Carbon. A simple way to account for

this in the model would be to incorporate a polynomial in Carbon. In addition, to

model the effect of the Potential, we will also incorporate an AR process in Potential

and previous values of Current. The new model is given by

xk(t) = a0 +

Rf�

r=1

�
ar cos(ωr(t− 1)) + br sin(ωr(t− 1))

�
+

Rα�

i=1

αixk(t− i)

+

Rβ�

j=0

βjp(t− j) +

Rγ�

q=1

γqc
q
k + εk(t)

where t ≥ (Rα +1, Rβ +1). The likelihood for this model is of the same form as the

likelihood given in Equation (7.11). The εk(t) is given by

εk(t) = xk(t)−
�

a0 +

Rf�

r=1

�
ar cos(ωr(t− 1)) + br sin(ωr(t− 1))

�

+
Rα�

i=1

αixk(t− i) +

Rβ�

j=0

βjp(t− j) +

Rγ�

q=1

γqc
q
k

�
.

As before, we will use vague priors for the parameters which are stated in Equation

(7.12) and Section 6.4. The posterior distribution for the model in equation (7.10)
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is given by

f(θ|x, p, c) ∝ (τ 2)ψ2−1 exp

�
−τ

2

2

K�

k=1

N�

t=r�+1

εk(t)−
a

2
0

2v2
0

− 1

2
aT

V
−1
a a

−1

2
bT

V
−1
b b− 1

2
αT

V
−1
α α− 1

2
βT

V
−1
β β

−1

2
γT

V
−1
γ γ − d2τ

2

�

where x, p and c are vectors for the Current, Potential and Carbon levels respec-

tively, ψ2 = K(N−r�)
2 +d1, r

� = max(Rα, Rβ). The conditional posterior distributions

are given by:

a0|a, b, α,β,γ, τ
2
, X, p, c ∼ N(µ0,σ0)

a|a0, b, α,β,γ, τ
2
, X, p, c ∼ NRf

(µa, Σa)

b|a0,a,α,β, γτ
2
, X, p, c ∼ NRf

(µb, Σb)

α|a0, a, b,β,γ, τ
2
, X, p, c ∼ NRα(µα, Σα)

β|a0, a, b,α,γ, τ
2
, X, p, c ∼ NRβ

(µβ, Σβ)

γ|a0,a, b, α,β, τ
2
, X, p, c ∼ NQ(µγ, Σγ)

τ
2|a0,a, b,α,β, γ, X, p, c ∼ Gamma(ψ2,ϕ),

where:

µ0 =

�
τ

σ0

�2
�

K�

k=1

N�

t=r�+1

yk(t)

�
,

σ
2
0 =

�
τ

2
K(N − r

�)− v
−1
0

�−1
,

µa = τ
2ΣaA

T Y a, Σa =
�
τ

2
A

T
A + V

−1
a

�−1
,

Y a =

�
K�

k=1

ya,k(r
� + 1),

K�

k=1

ya,k(2), . . . ,
K�

k=1

ya,k(N)

�T

,
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ya,k(t) = xk(t)−



a0 +

Rf�

r=1

br sin(rωt− rω) +
Rα�

i=1

αixk(t− i)

+

Rβ�

j=0

βjp(t− j) +

Rγ�

q=1

γqc
q
k



 ,

A =





cos(ωr
�) cos(2ωr

�) . . . cos(Rfωr
�)

cos(ω(r� + 1)) cos(2ω(r� + 1)) . . . cos(Rfω(r� + 1))
...

...
...

cos(ω(N − 1)) cos(2ω(N − 1)) . . . cos(Rfω(N − 1))




,

µb = τ
2ΣbB

T Y b,

Σb =
�
τ

2
B

T
B + V

−1
b

�−1
,

Y b =

�
K�

k=1

yb,k(r
� + 1),

K�

k=1

yb,k(2), . . . ,
K�

k=1

yb,k(N)

�T

,

yb,k(t) = xk(t)−



a0 +

Rf�

r=1

ar cos rω(t− 1) +
Rα�

i=1

αixk(t− i)

+

Rβ�

j=0

βjp(t− j) +

Rγ�

q=1

γqc
q
k



 ,

B =





sin(ωr
�) sin(2ωr

�) . . . sin(Rfωr
�)

sin(ω(r� + 1)) sin(2ω(r� + 1)) . . . sin(Rfω(r� + 1))
...

...
...

sin(ω(N − 1)) sin(2ω(N − 1)) . . . sin(Rfω(N − 1))




,

µα = τ
2ΣαX

T Y α,

Σα =
�
τ

2
X

T
X + V

−1
α

�−1
,

Y α = (yα,1(r
� + 1), . . . , yα,1(N), . . . , yα,K(r� + 1), . . . , yα,K(N))T

,

yα,k(t) = xk(t)−



a0 +

Rf�

r=1

(ar cos (Rfω(t− 1)) + br sin (Rfω(t− 1))) +

+

Rβ�

j=0

βjp(t− j) +

Rγ�

q=1

γqc
q
k



 ,
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µβ = τ
2ΣβP

T Y β,

Σβ =
�
τ

2
P

T
P + V

−1
β

�−1
,

Y β = (yβ,1(r
� + 1), . . . , yβ,1(N), yβ,2(r

� + 1), . . . , yβ,2(N), . . . ,

yβ,K(r� + 1), . . . , yβ,K(N))T
,

yβ,k(t) = xk(t)−



a0 +

Rf�

r=1

(ar cos (rω(t− 1)) + br sin (rω(t− 1))) +

+
Rα�

i=1

αixk(t− i) +

Rγ�

q=1

γqc
q
k

�
,

µγ = τ
2ΣγC

T Y γ,

Σγ =
�
τ

2
C

T
C + (Vγ

�−1
,

Y γ = (yγ,1(r
� + 1), . . . , yγ,1(N), yγ,2(r

� + 1), . . . , yγ,2(N), . . . ,

yγ,K(r� + 1), . . . , yγ,K(N))T
,

yγ,k = xk(t)−



a0 +

Rf�

r=1

(ar cos rω(t− 1) + br sin rω(t− 1)) +

+
Rα�

i=1

αixk(t− i) +

Rβ�

j=0

βjp(t− j)



 ,

ϕ =
1

2

K�

k=1

N�

t=r�+1

ε
2
k(t) + d2.

7.6 Analysis and Conclusions

The parameter estimates for the sinusoidal models were fairly robust when we varied

the prior variances for a0, a, b, α, β, γ and the hyperparameters d1 and d2 for τ
2.

This is illustrated by the similarity of the parameter estimates under different prior

variances, which are shown in Table 7.2 for the best sinusoidal model for scan rate 2.

We also calculated the standard deviations for the parameter estimates and found

that these were very similar under different prior variances and hence are omitted
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for brevity. As in Section 6.5, we set the value for the prior variances to 108 and

for the hyperparameters d1 and d2 to 0.001. The analysis presented in the next

paragraph finds this best model.

As in Section 6.5, the values for Rα, Rβ, Rf and Rγ shown in Table 7.1, were chosen

by cycling around each variable in a nested loop structure. Hence, a thorough

model search was conducted for various combinations of Rα, Rβ, Rf and Rγ. The

combination of values for Rα, Rβ, Rf and Rγ for each scan rate, shown in Table 7.1,

is the combination that produced the lowest PMCC value.

Scan Rate Model Goodness Penalty PMCC

Specification of fit

1 M4(Rα = 21, Rβ = 15, 192.1585 182.3373 374.4958

Rγ = 1, Rf = 20)

2 M4(Rα = 8, Rβ = 10, 36.2345 33.74563 69.9802

Rγ = 1, Rf=11)

3 M4(Rα = 8, Rβ = 5, 149.7985 161.6283 311.4268

Rγ = 1, Rf = 11)

Table 7.1: Table of PMCC values for the best sinusoidal model for each scan rate.

From Table 7.1, according to the PMCC, we can see that the sinusoidal model

performs better than the AR models used in Chapter 6. When we looked at the

time series diagnostic plots for the parameters we found that the algorithm was

covering the parameter space and that the algorithm did not appear to get stuck in

a particular location for any of the parameters. However, the acf plot indicated that

there was strong autocorrelation (significant as the value of the acf was above the

dotted line). To reduce the dependence in the parameter samples, we took every

40th sample generated by the algorithm. This gave us the well behaved diagnostic

plots shown in Figures 7.1 and 7.2.
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As we have already noted in Section 6.5, the residuals were calculated by working

out the difference between the one-step ahead predictions and the observed values

shown in Figures 2.10 and 2.11. The residual plots, shown in Figure 7.3, indicate

that the variance of the residuals is not constant. The behaviour of the residuals

becomes much more varied around the times when the Current is around the peak

and minimum values. This same behaviour was exhibited in the residual plots in

Figure 6.3. As we noted in Section 6.5, our main objective is predicting various

characteristics about the peak and minimum points of the Current output, hence it

is necessary to improve the model. We have only shown the plots from scan rate 2

to illustrate our findings. The corresponding plots for scan rates 1 and 3 exhibited

similar behaviour.

Figures 7.4 and 7.6 provide the plots of the posterior predictive distribution included

in the analysis for the Peak Potential and the Peak Separation in Potential, for each

of the five levels of Carbon included in the analysis. The location of the posterior

predictive distributions shown in Figure 7.5 appears to be located near the values

that we would expect for the Peak Current. This is similarly true for the posterior

predictive distributions of the Peak Potential which are shown in Figure 7.4.

We note that the posterior predictive distributions shown in Figures 7.7, 7.8 and

7.9, are for Carbon levels not used in the experiment. As already noted in Section

5.3, we are unable to compare the posterior predictive distributions in the aforemen-

tioned plots to any observations. By including the posterior predictive distributions

shown in Figures 7.7-7.9, we are simply illustrating the predictive usefulness of the

sinusoidal model proposed in this chapter. The posterior predictive distributions for

the Peak Potential in Figure 7.7 and Peak Current in Figure 7.8 are very similar

(or almost identical) and there is little difference between Carbon levels. This is

also the case for the posterior predictive distributions shown in Figure 7.9. For the

posterior predictive distributions shown in Figures 7.7-7.9 we would expect there to
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be slightly more variation between different Carbon levels. A similar critical analysis

was also conducted for the other scan rates, but as mentioned earlier, we illustrate

with data obtained for scan rate 2.
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Parameter Prior Variances

108 1010 1012

a0 -0.0002 -0.0002 -0.0004

a1 0.0177 0.0176 0.0176

a2 -0.0206 -0.0207 -0.0207

a3 0.0090 0.0089 0.0089

a4 -0.0288 -0.0286 -0.0285

a5 0.0352 0.0349 0.0349

a6 -0.0046 -0.0046 -0.0045

a7 -0.0125 -0.0126 -0.0126

a8 0.0036 0.0037 0.0038

a9 -0.0079 -0.0079 -0.0079

a10 0.0141 0.0141 0.0141

a11 -0.0066 -0.0067 -0.0068

b1 0.0595 0.0599 0.0603

b2 -0.0691 -0.0689 -0.0689

b3 0.0204 0.0205 0.0205

b4 0.0404 0.0404 0.0404

b5 -0.0332 -0.0331 -0.0330

b6 0.0178 0.0178 0.0179

b7 -0.0199 -0.0198 -0.0197

b8 0.0129 0.0128 0.0129

b9 0.0048 0.0048 0.0049

b10 -0.0001 -0.0001 -0.0001

b11 -0.0039 -0.0040 -0.0039

α1 1.4733 1.4743 1.4734

α2 0.1293 0.1280 0.1292
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Parameter Prior Variances

108 1010 1012

α3 -0.4775 -0.4787 -0.4784

α4 -0.1206 -0.1188 -0.1189

α5 -0.1985 -0.1982 -0.1992

α6 0.1398 0.1394 0.1395

α7 -0.0305 -0.0308 -0.0300

α8 0.0835 0.0837 0.0832

β0 34.1056 34.0896 34.0636

β1 -57.6140 -57.4719 -57.3746

β2 -2.6375 -2.8461 -2.9301

β3 13.8800 14.0571 13.9931

β4 18.7478 18.5584 18.5396

β5 9.9999 10.0387 10.0224

β6 -8.8091 -8.5617 -8.3225

β7 -7.9568 -8.1181 -8.1941

β8 8.0766 7.8820 7.7699

β9 -20.0307 -19.9551 -19.8304

β10 12.2381 12.3272 12.2630

γ1 0.0019 0.0018 0.0032

σ
2 0.0142 0.0142 0.0142

Table 7.2: Parameter estimates (posterior mean) for different prior variances for the

best sinusoidal model for scan rate 2.



7. Sinusoidal Models 129

0 1000 3000 5000

−0
.0
4

0.
02

a 0

0 1000 3000 5000

0.
00

0.
03

a 1

0 1000 3000 5000

−0
.0
5

−0
.0
1

a 2

0 1000 3000 5000

−0
.0
10

0.
01
0

a 3

0 1000 3000 5000

−0
.0
45

−0
.0
20

a 4

0 1000 3000 5000

0.
02

0.
04

a 5

0 1000 3000 5000

−0
.0
15

0.
00
0

a 6

0 1000 3000 5000

−0
.0
25

−0
.0
05

a 7

0 1000 3000 5000−0
.0
10

0.
00
5

a 8

0 1000 3000 5000

−0
.0
20

0.
00
0

a 9

0 1000 3000 5000

0.
00
5

0.
02
0

a 1
0

0 1000 3000 5000

−0
.0
15

0.
00
0

a 1
1

0 1000 3000 5000

−0
.0
5

0.
05

0.
15

Iteration

b 1

0 1000 3000 5000

−0
.0
9

−0
.0
6

Iteration

b 2

0 1000 3000 5000

0.
00

0.
04

Iteration

b 3

0 1000 3000 5000

0.
02
5

0.
04
5

Iteration

b 4

0 1000 3000 5000

−0
.0
6

−0
.0
3

b 5

0 1000 3000 5000

0.
00
5

0.
02
0

b 6

0 1000 3000 5000

−0
.0
4

−0
.0
1

b 7

0 1000 3000 5000

0.
00
0

0.
01
5

b 8

0 1000 3000 5000

−0
.0
10

0.
01
0

b 9

0 1000 3000 5000

−0
.0
10

0.
00
5

b 1
0

0 1000 3000 5000

−0
.0
20

0.
00
0

b 1
1

0 1000 3000 5000

1.
42

1.
48

1.
54

α 1

0 1000 3000 5000

0.
00

0.
15

α 2

0 1000 3000 5000

−0
.6
5

−0
.4
5

α 3

0 1000 3000 5000

−0
.3
0

−0
.1
0

α 4

0 1000 3000 5000

−0
.3
0

−0
.1
5

α 5

0 1000 3000 5000

0.
00

0.
15

Iteration

α 6

0 1000 3000 5000

−0
.1
5

0.
00

Iteration

α 7

0 1000 3000 5000

0.
00

0.
10

Iteration

α 8

0 1000 3000 5000

20
30

40
50

Iteration

β 0



7. Sinusoidal Models 130

0 1000 3000 5000

−8
0

−6
0

−4
0

β 1

0 1000 3000 5000

−3
0

0
20

β 2

0 1000 3000 5000

−1
0

10
30

β 3

0 1000 3000 5000

−1
0

10
30

β 4

0 1000 3000 5000

−1
0

10
30

β 5

0 1000 3000 5000

−3
0

0
20

β 6

0 1000 3000 5000

−3
0

0
20

β 7

0 1000 3000 5000

−2
0

0
20

β 8

0 1000 3000 5000

−4
0

−2
0

0

Iteration

β 9

0 1000 3000 5000

0
10

20
30

Iteration

β 1
0

0 1000 3000 5000

−0
.2
0

0.
00

0.
15

Iteration

γ 1

0 1000 3000 5000

0.
01
30

0.
01
50

Iteration

σ2

Figure 7.1: Trace plots of every 40th sample generated by the Gibbs sampler for all

the parameters of the best sinusoidal model for scan rate 2.
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Figure 7.2: Autocorrelation plots of every 40th sample generated by the Gibbs sam-

pler for all the parameters of the best sinusoidal model for scan rate 2.
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Figure 7.3: Differences between data and one-step ahead predictions, where t denotes

the time index defined in Table 2.1.



7. Sinusoidal Models 133

4.290 4.292 4.294 4.296

0
20

0
40

0
60

0
Carbon: 3%

Potential (in Volts)

D
en

is
ty

2 3 4 5 6

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Carbon: 5%

Potential (in Volts)

3 4 5 6

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Carbon: 7%

Potential (in Volts)

4.260 4.262 4.264 4.266

0
20

0
40

0
60

0
80

0
10

00

Carbon: 10%

Potential (in Volts)

D
en

si
ty

3 4 5 6

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Carbon: 20%

Potential (in Volts)

Figure 7.4: Density plots of posterior predictive distributions of Peak Potential for

scan rate 2.
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Figure 7.5: Density plots of posterior predictive distributions of Peak Current for

scan rate 2.
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Figure 7.6: Density plots of posterior predictive distributions of Peak Separation in

Potential for scan rate 2.
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Figure 7.7: Density plots of posterior predictive distributions of Peak Potential for

scan rate 2.
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Figure 7.8: Density plots of posterior predictive distributions of Peak Current for

scan rate 2.
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Figure 7.9: Density plots of posterior predictive distributions of Peak Separation in

Potential for scan rate 2.



Chapter 8

Stochastic Volatility Models

8.1 Introduction

The residual plots for the models developed in Chapters 6 and 7 show more vari-

ation where the peaks and troughs occur. Although the residuals are quite small,

we need to model the peaks and troughs more accurately. This is because we are

interested in predicting characteristics about the peaks and troughs using their pos-

terior predictive distributions. We will attempt to resolve this issue by modelling

the variance instead of assuming the variance to be constant. These types of models

are more generally known as stochastic volatility models. As before we will use a

MCMC sampling algorithm to make predictive inferences about the characteristics

of interest. We review the current literature on stochastic volatility models with a

Bayesian perspective before analysing the data. As stated in Sections 6.1 and 7.1,

we will be modelling the aggregated data shown in Figure 2.10.

There are a number of different stochastic volatility models that have been proposed

such as the Black-Scholes (Black and Scholes, 1973) model and the Heston model

(Heston, 1993) which are widely used in finance. Another type of stochastic volatil-

ity model was introduced by Engle (1982) known as autoregressive conditional het-
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eroscedastic (ARCH) models. Before reviewing ARCH (autoregressive conditional

heteroscedastic) and GARCH (general autoregressive conditional heteroscedastic)

models, we consider modelling conditional means and variances in Section 8.3. In

Section 8.2 we provide a brief literature review on stochastic volatility models. Our

adopted models for conditional means and variances are described in Section 8.8.

8.2 Literature Review

Although the subject of Bayesian stochastic volatility models is relativity young in

comparison to some of the other areas of statistical modelling, the body of research

on stochastic volatility models is vast. We provide a brief review by discussing the

contributions from the key articles in this subject.

As mentioned in Section 8.1, the main purpose of stochastic volatility models has

been to model various aspects of the financial markets, for example, see Jacquier

et al. (1994). In the aforementioned article, the authors propose new techniques and

a simplified approach for the analysis of stochastic volatility models in which the

logarithm of a conditional variance follows an autoregressive model. Jacquier et al.

(1994) compare stochastic volatility models and ARCH models. The authors of the

aforementioned article conclude that in their view stochastic volatility models are

a promising alternative to various ARCH models. The vast majority of this article

concentrates on how the Metropolis algorithm is used to construct a Markov chain

simulation tool and how this can be used to draw inferences about the parameters

and construct multi-step-ahead predictive densities. The authors compare their re-

sults to those obtained from the method of moments (see Melino and Turnbull, 1990)

and quasi-maximum likelihood methods (see Ruiz, 1994 and Harvey et al.,1994) that

have been proposed. Jacquier et al. (1994) concludes that their proposed method

outperforms the method of moments and quasi-maximum likelihood techniques. A
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number of articles have appeared since the publication of Jacquier et al. (1994),

for example, see Chib et al. (2001), Kim et al. (1998), Broto and Ruiz (2004) and

Liesenfeld and Richard (2006).

While ARCH models are useful for a variety of applications, especially finance, this

type of model would be more powerful if we could generalise to the multivariate

case. Harvey et al. (1994) point out that the generalisation of this model to the

multivariate case means that it can be difficult to obtain parameter estimates and

interpret. They suggest an alternative method of modelling the variance as an unob-

served stochastic process. The logarithm of this component is modelled directly as

a linear stochastic process, such as an autoregressive process. According to Harvey

et al. (1994), one of the advantages is that their properties can be obtained from the

properties of the process generating the variance component. The principal disad-

vantage of this method is that the maximum likelihood method is difficult to apply.

The authors conclude that the multivariate stochastic variance model (or stochastic

volatility model) has a natural interpretation and is relatively parsimonious, al-

though the authors do not quantify how parsimonious in comparison to a suitable

alternative model. Harvey et al. (1994) applied their methods to model daily dollar-

pound exchange rates and show that the parameters can be estimated without too

much difficulty via a quasi-maximum likelihood approach. The model fits well to

the exchange rates and is able to capture common movements in volatility.

Chib et al. (2001) also discuss the fitting and comparison of high dimensional mul-

tivariate time series models with time varying conditions. The class of stochastic

volatility models the authors used are more complex compared to the models used

in the articles highlighted above. The sampling algorithm used to obtain estimates

for the parameters relies on MCMC methods which incorporate a special method

for sampling the parameters of the univariate stochastic volatility process. Chib

et al. (2001) also provide methods for estimating the log-likelihood functions. The
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authors conclude their work by highlighting that their model is robust to the choice

of the prior distribution as well as the starting value for the MCMC algorithm. The

authors believed that their approach was the first practical approach for modelling

financial assets such as exchange rates. It should be noted that many contributions

to developing various ways of using stochastic volatility models in finance such as

Harvey et al. (1994), were made throughout the nineties.

We conclude this section by commenting on Broto and Ruiz (2004). The authors

point out that while stochastic volatility models have an intuitive appeal, their appli-

cation has been limited due to the inability of estimating their parameters. However,

as we have shown and as is noted by Broto and Ruiz (2004), there have been several

new techniques for estimating the parameters in a stochastic volatility model which

are reviewed in this article. Liesenfeld and Richard (2006) present an estimation

technique which is very close to what has been proposed by Broto and Ruiz (2004).

Liesenfeld and Richard (2006) use a type of importance sampling algorithm (see

Spiegelhalter et al., 2002 for further details on importance sampling) to perform a

classical and a Bayesian analysis of univariate and multivariate stochastic volatility

models. The authors point out that their sampling procedure is highly generic and

hence changes in the model being analysed can be accommodated. Broto and Ruiz

(2004) conclude that the several estimation techniques that they have considered

for the parameters in a stochastic volatility model seem to match the benchmark

established by the MCMC procedure of Jacquier et al. (1994).

8.3 Modelling Conditional Means and Variances

Throughout this section, and Sections 8.4-8.6, we use t, t = 1, 2, . . . , N , and N to

denote the time index and the number of observations respectively for a generic

time series. Further, let Yt be the observation and u1,t, . . . up,t be the explanatory
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variables at time t, where p denotes the number of explanatory variables. Consider

the situation where we are modelling with a constant conditional variance, that is

Var(Yt|u1,t, . . . , up,t)=σ
2. The regression model of Yt on u1,t, . . . , up,t is given by

Yt = f(u1,t, u2,t, . . . , up,t) + εt (8.1)

where εt has zero mean and constant variance σ
2. The conditional mean of Yt given

u1,t, . . . , up,t is given by

E[Yt|u1,t, u2,t, . . . , up,t] = f(u1,t, u2,t, . . . , up,t).

Equation (8.1) can be modified such that a non-constant variance is allowed, that is

conditional heteroscedasticity. Let σ
2(u1,t, u2,t, . . . , up,t) be the conditional variance,

that is

Var(Yt|u1,t, u2,t, . . . , up,t) = σ
2(u1,t, u2,t, . . . , up,t).

The model is given by

Yt = f(u1,t, u2,t, . . . , up,t) + σ(u1,t, u2,t, . . . , up,t)εt.

The function σ(u1,t, u2,t, . . . , up,t) represents the standard deviation and should there-

fore be non-negative. This implies that if σ(.) is a linear function then the param-

eters must be constrained such that σ(.) ≥ 0. Modelling non-constant variances in

regression is treated in detail in Ruppert (1988). Models that have a conditional

variance are sometimes referred to as variance function models. The GARCH model

is a special class of these types of models and are discussed in Section 8.6.

8.4 ARCH Processes

Let {εt} be independent N(0, 1) where t = 1, . . . , N . Then

E[εt|εt−1, . . . ] = 0 and Var(εt|εt−1, . . .) = 1.
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The process Yt is an ARCH(1) process if

Yt = εt

�
α0 + α1Y

2
t−1 (8.2)

for α0 ≥ 0 and α1 ≥ 0. We can express Equation (8.2) as

Y
2
t = (α0 + α1Y

2
t−1)ε

2
t . (8.3)

We can see from Equation (8.3) that an ARCH(1) process is similar to a AR(1)

process in Y
2
t and with a multiplicative white noise in place of a additive white

noise process. Let σ
2
t represent the conditional variance of Yt given past values, that

is σ
2
t = Var(Yt|Yt−1, . . .). Since εt is independent of Yt−1 and E[ε2

t ] = Var(εt) = 1,

then the mean and variance are given by

E[Yt|Yt−1, . . .] = 0, (8.4)

and

Var(Yt|Yt−1, . . .) = E[(α0 + α1Y
2
t−1)ε

2
t |Yt−1, Yt−2, . . .]

= (α0 + α1Y
2
t−1)E[ε2

t |Yt−1, Yt−2, . . .]

= α0 + α1Y
2
t−1. (8.5)

It is a requirement that α0 ≥ 0 and α1 ≥ 0 since the standard deviation cannot

be negative. A further restriction is that α1 < 1 for Yt to have a finite variance.

When α1 ≥ 1, the variance becomes infinite. We start proving this by taking the

expectation of Equation (8.3), which is given by

E[Y 2
t ] = E[ε2

t (α0 + α1Y
2
t−1)]

= E[ε2
t ]E[α0 + α1Y

2
t−1].

Since E[�2
t ] = 1 and εt is independent of Yt−1, we obtain

E[Y 2
t ] = E[α0 + α1Y

2
t−1]

E[Y 2
t ] > α1E[Y 2

t−1]

E[Y 2
t ]

E[Y 2
t−1]

> α1.



8. Stochastic Volatility Models 142

If α1 > 1, then E[Y 2
t ] > E[Y 2

t−1], that is the sequence Yt is continually increasing,

then σ
2
t will continue to increase as σ

2
t is dependent upon α1 and the sequence of Yt.

Hence, the variance of Yt will be infinite. Consider the equations

E[σ2
t |Yt−1] = α0 + α1Y

2
t−1

and

E[σ2
t |Yt−2, . . .] = α0 + α1(α0 + α1Y

2
t−2).

If α1 = 1 then the quantity α1(α0+α1Y
2
t−2) will continue to grow, and hence resulting

in an infinite variance. Therefore we require α < 1 for Yt to have a finite variance.

From Equation (8.5) we can see that if Yt−1 has an unexpected large deviation from

the mean such that Yt−1 is large, then the variance of Yt−1 will have an unusually

large variance. It follows that Yt is expected to have a large deviation from the mean

of zero. This volatility continues to have an affect, that is if Yt has a large deviation,

then σ
2
t+1 will be large, which means that Yt+1 will be large and so the volatility

continues to propagate. Conversely, if Y
2
t−1 is smaller than expected, then σ

2
t is

small and Y
2
t is expected to be small and so the pattern continues. This behaviour

of unusual volatility continues its presence in the Yt but not forever.

In this section, we have only considered an ARCH(1) process. However this can

easily be extended to an ARCH(q) process. We say that Yt is an ARCH(q) process

if

Yt = σtεt,

where the conditional standard deviation given past values Yt−1, Yt−2, . . . is given by

σt =

����α0 +
q�

i=1

αiY
2
t ,

where q is the number of parameters in the ARCH process. The properties regarding

the conditional and unconditional mean for an ARCH(1) process is same for an
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ARCH(q) process, that is the conditional and unconditional mean are constant.

Just like an ARCH(1) process, an ARCH(q) process has a constant unconditional

variance and non-constant conditional variance.

8.5 Combining ARCH and AR Processes

An AR(1) has a non-constant mean and a constant conditional variance. In Section

8.4, we showed that an ARCH(1) process has a conditional mean that is constant

and a non-constant conditional variance. If it is believed that the mean and variance

of a process are dependent on the past then we can combine the AR and ARCH

models. We will now concentrate on the simple task of combining an AR(1) model

with an ARCH(1) model.

Let ζt be an ARCH(1) process such that ζt = εt

�
α0 + α1ζ

2
t−1 where εt is Gaussian

white noise with zero mean and unit variance. Suppose that

Yt = φYt−1 + ζt.

The process Yt looks like an AR(1) process, except the noise term is an ARCH(1)

process which replaces the independent white noise process. To ensure that Yt is

stationary with finite variance it is necessary that |φ| < 1 and α1 < 1. In addition,

it is naturally assumed that α0 ≥ 0 and α1 ≥ 0, as discussed in Section 8.4. In

Figure 8.1, a simulation of an AR(1)ARCH(1) process with the individual parts is

shown. It can be seen that when the ARCH(1) term is more volatile (shown in the

bottom left hand panel of Figure 8.1), then the AR(1)ARCH(1) process moves more

rapidly.

The process Yt has a conditional mean and variance that are dependent on the past

and non-constant. By combining an AR process with an ARCH process it is possible

to model a wide variety of time series. Indeed, it is possible to combine any ARMA
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Figure 8.1: Simulation of 100 observations from an AR(1)ARCH(1) process. The

values of the parameters are α0 = 1.00, α1 = 0.95, µ = 0.10 and φ = 0.80. This

example is taken from Ruppert (2004, page 369).

model with any GARCH model which increases the variety and complexity of the

models that can be used.

8.6 GARCH Models

The ARCH(q) process has a deficiency in that the volatility comes in short bursts.

This is illustrated by the bottom left hand panel in Figure 8.1. If we want a model

with volatility that is sustained for a longer period of time, then a GARCH model

would be a better choice. The GARCH(p,q) model is given by

Yt = εtσt
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and

σt =

����α0 +
q�

i=1

αiY
2
t−i +

p�

j=1

βjσ
2
t−j, (8.6)

where αi ≥ 0 for i = 1, . . . , q and βj ≥ 0 for j = 1, . . . , p. From Equation (8.6),

it can be seen that σt−1,σt−2, . . . , σt−p are fed back into σt, hence the conditional

standard deviation exhibit longer periods of high or low volatility than that of an

ARCH process. An ARCH model is a special case of a GARCH model.

If we compare simulations from an GARCH(1,1) and an AR(1)GARCH(1,1) pro-

cesses shown in Figure 8.2, it can be seen that the GARCH(1,1) process is less

volatile than the AR(1)GARCH(1,1) process. The large value of the parameter β1

will mean that σt will have a high correlation with σt−1. This is the force behind the

longer lasting effect of the volatility in comparison to the ARCH(1) process shown

in Figure 8.1.

8.7 Time Dependent Variance

A simple extension of the AR(Rα) model is to use a time dependent variance instead

of assuming a constant variance. In this case, the model will have a variance for

each time point. This will mean that for each scan rate we will have a different

number of time dependent variances. In this case, the model for the aggregated

data in Figures 2.10 and 2.11 is given by

xk(t) =
Rα�

i=1

αixk(t− i) + εk(t),

where εk(t) ∼ N(0, σ2
t ), τ

2
t = σ

−2
t and from herein, t denotes the time index defined

in Table 2.1. As with the other models, we will use vague priors which are given by

αi ∼ N(0,ωi) and τ
2
t ∼ Gamma(d1, d2),
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Figure 8.2: Simulation of 500 observations from an AR(1)GARCH(1,1) process. The

values of the parameters are α0 = 1.00, α1 = 0.08, β1 = 0.90, and φ = 0.80. This

example is taken from Ruppert (2004, page 371).

where ωi is the prior variance for αi and d1, d2 are constants. We note that τ
2
t are

identically and independently distributed a-priori. The posterior distribution for

this model is given by

N�

t=r+1

(τt)
K−2a−2 exp

�
−1

2

K�

k=1

N�

t=r+1

τ
2
t ε

2
k(t)−

1

2
αTΩ−1

α α− b

N�

t=r+1

τ
2
t

�
,

where Ωα = diag(ω1,ω2, . . . , ωRα) and from herein, N denotes the number of obser-

vations which is dependent on the scan rate. From a theoretical point of view, this

model should perform poorly as the number of parameters is going to be large. This

model can also be seen as a slight departure from our parsimonious approach as the

number of parameters will increase dramatically. When we used this model on a
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single level of Carbon at scan rate 2, we found that the performance of this model

was extremely poor under the PMCC in comparison to models already tested and

developed in Chapters 6 and 7.

8.8 Variance Function

A better approach is to use a simple functional form for the variance. If we use

too many parameters in the variance function, the model may not perform well in

comparison to the competing models developed thus far. We are going to use a

simple AR(1)ARCH(1) model which will incorporate a sinusoidal component. This

model will have a conditional mean and variance that are both non-constant. In

addition, this model also produces short bursts of volatility which is what happens

about the peaks and minimum points in the data.

There are obviously an infinite number of different variance functions that we could

try and hence will be unable to test them all. We will restrict our approach to

incorporating simple polynomial of the Carbon and a AR process in Potential in the

variance as these are believed to be the driving forces behind the chemical process

which affects the Current. As we can see from the plots in Figure 2.10 it is the

Carbon that has the biggest effect on the characteristics of interest. The model we

will use is of the form

xk(t) = α0 + α1xk(t− 1) + β0p(t) + β1p(t− 1) +

Rq�

q=1

γqc
q
k

+

Rf�

r=1

(ar cos(ωr(t− 1)) + br sin(ωr(t− 1))) + εk(t). (8.7)

We assume that εk(t) ∼ N(0, σ2
k(t)), where

σ
2
k(t) = exp



−



φ0 +

Rφ�

i=1

φjc
i
k +

Rν�

m=1

νmp(t−m) + ηxk(t− 1)







 . (8.8)
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We will consider one specific model in detail, that is, we will show how the posterior

distribution is constructed and how to estimate the parameters. The model we will

consider in detail is the general model that is shown in Equation (8.7) in conjunction

with Equation (8.8). The likelihood for this model is given by

�
K�

k=1

N�

t=2

(Var (xk(t)|θ))−
1
2

�
exp

�
−1

2

K�

k=1

N�

t=2

(xk(t)− E [xk(t)|θ])2

Var (xk(t)|θ)

�
, (8.9)

where θ = (α0,α1, β,γ,a, b,φ0,φ, ν, η)T , β = (β0, β1)T , γ = (γ1, γ2, . . . , γRγ )
T ,

a = (a1, a2, . . . , aRf
)T , b = (b1, b2, . . . , bRf

)T and φ = (φ1,φ2, . . . , φRφ
)T . As we are

including an autoregressive process of order 1 in our model, it follows that t ≥ 2.

The conditional expectation E [xk(t)|θ] is given by

α0 + α1xk(t− 1) + β0p(t) + β1p(t− 1) +

Rq�

q=1

γqc
q
k

+

Rf�

r=1

(ar cos(ωr(t− 1)) + br sin(ωr(t− 1))) ,

since the εk(t) have mean zero. The conditional variance Var (xk|θ) is given by

exp



−



φ0 +

Rφ�

i=1

φjc
i
k +

Rν�

m=0

νmp(t−m) + ηxk(t− 1)







 .

As before we will assume non-informative prior distributions. For parameters α0,

α1, β0, β1, ar and br assume non-informative priors as in Section 7.5 and:

φ0 ∼ N(0, dφ0), φi ∼ N(0, dφi),

ν ∼ N(0, dνm), η ∼ N(0, dη), (8.10)

where d1,φ0 , d2,φ0 , d1,φi , d2,φi , d1,ν , d2,ν , d1,η, d2,η are constants to be chosen. By taking

the product of the prior distributions shown in Equation (8.10) and the likelihood
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in Equation (8.9) we obtain the posterior distribution given by

exp

�
− α

2
0

2v0
− α

2
1

2v1
− 1

2
βT

V
−1
β β − 1

2
γT

V
−1
γ γ − 1

2
aT

V
−1
a a− 1

2
bT

V
−1
b b

− φ
2
0

2d2,φ0

− ν
2

2d2,ν
− η

2

2d2,η
−

Rφ�

i=1

φ
2
i

2d2,φi




�

K�

k=1

N�

t=2

(Var (xk|θ))−
1
2

�

exp

�
−1

2

K�

k=1

N�

t=2

(xk(t)− E [xk(t)|θ])2

Var (xk|θ)

�
. (8.11)

The conditional posterior distributions for the parameters obtained from the expres-

sion shown in Equation (8.11) are extremely difficult to sample from. The MCMC

methods that have been used to obtain parameter estimates for stochastic volatility

models such as that shown in Equation (8.11) are the Metropolis-Hastings algo-

rithm (see Section 3.5) and rejection sampling. Jacquier et al. (2003) suggest using

a rejection-sampling method or the Metropolis-Hastings independence sampler, (see

Gilks et al., 1996, Chapter 5). If the rejection sampling method is used as proposed

in Jacquier et al. (2003), then the possibility of a high rejection rate could result in

having to run the algorithm for long periods of time to obtain a good approximation

of the posterior distribution. When using the independence sampler, the choice of

the proposal distribution is critical to the efficiency of the algorithm. This becomes

even more important when dealing with large data sets such as the data set we are

dealing with. Due to the difficulty of being able to write down the conditional dis-

tributions for stochastic volatility models, there are a number of articles such as Yu

and Meyer (2006) that have used WinBuGS to obtain estimates for the parameters

in the various stochastic volatility models under consideration. One advantage of

using WinBUGS is that a proposal distribution is not required. Further to this,

WinBUGS is also efficient at generating random samples of the model parameters.

This latter approach of using WinBUGS is the one we shall adopt. The sampling

methodology implemented by WinBUGS is discussed in Section 8.9.

Now that we have shown how the posterior distribution is constructed and how we
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aim to obtain samples of the parameters we will show in slightly more detail the

four models we consider here. The four stochastic models we will consider are given

below. Note that for each model, xk(t) is given by Equation (8.7).

Stochastic Volatility Model 1 (M5(Rγ, Rf , Rφ)):

σ
2
k(t) = exp



−



φ0 +

Rφ�

i=1

φjc
i
k







 .

Stochastic Volatility Model 2 (M6(Rγ, Rf , Rφ, Rν)):

σ
2
k(t) = exp



−



φ0 +

Rφ�

i=1

φjc
i
k +

Rν�

m=0

νmp(t−m)







 .

Stochastic Volatility Model 3 (M7(Rγ, Rf , Rφ)):

σ
2
k(t) = exp



−



φ0 +

Rφ�

i=1

φjc
i
k + ηxk(t− 1)







 .

Stochastic Volatility Model 4 (M8(Rγ, Rf , Rφ, Rν)):

σ
2
k(t) = exp



−



φ0 +

Rφ�

i=1

φjc
i
k +

Rν�

m=0

νmp(t− 1) + ηxk(t− 1)







 .

8.9 Sampling Methodology Used by WinBUGS

Lunn et al. (2000) state that WinBUGS attempts to use the most appropriate sam-

pling method for each parameter. When the full conditional posterior distribution is

available in closed form, WinBUGS can identify the closed form and implement the

most appropriate sampling method. When the full conditional posterior distribu-

tion is not available in closed form, WinBUGS examines the situation and chooses

a suitable general sampling method. Table 8.1 (from Lunn et al., 2000) shows the

sampling method hierarchy used by WinBUGS in order of precedence. As we will be

using WinBUGS to apply the stochastic volatility models proposed in Section 8.8,
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it follows that the sampling method hierarchy shown in Table 8.1 illustrates how

the samples of the parameters in our stochastic volatility models will be obtained.

For further details on WinBUGS see Lunn et al. (2000).

Target Distribution Sampling Method

Discrete Inversion of cumulative distribution

function (trivial)

Closed form (conjugate) Direct sampling using standard algo-

rithms

Log-concave Derivative-free adaptive rejection sam-

pling (Gilks, 1992)

Restricted range Slice sampling (Neal, 1997)

Unrestricted range Metropolis-Hastings (Metropolis et al.,

1953 and Hastings, 1970)

Table 8.1: Sampling method hierarchy used by WinBUGS in order of precedence.

Each method is only used if no previous method in the hierarchy is appropriate (see

Lunn et al., 2000 for further details).

8.10 Analysis and Conclusions

As with the models used in Sections 6.5 and 7.6, the optimal values for Rγ, Rf Rφ

and Rν , were found using a nested search method for each in turn. The combinations

of values that produced the lowest PMCC values for each scan rate are shown in

Table 8.2.

The parameter estimates were fairly robust when we varied the prior variances for

all the parameters (see Table 8.3). As in Section 7.6, we calculated the standard

deviations for the parameter estimates and found that these were very similar under
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Scan Rate Model PMCC

1 M5(Rγ = 1, Rf = 6, Rφ = 3) 132556.88

M6(Rγ = 1, Rf = 6, Rφ = 3, Rν = 2) 172043.03

M7(Rγ = 1, Rf = 6, Rφ = 3) 131783.20

M8(Rγ = 1, Rf = 6, Rφ = 3, Rν = 2) 252200.83

2 M5(Rγ = 1, Rf = 6, Rφ = 2) 10964.21

M6(Rγ = 1, Rf = 6, Rφ = 2, Rν = 2) 17523.50

M7(Rγ = 1, Rf = 6, Rφ = 2) 9786.03

M8(Rγ = 1, Rf = 6, Rφ = 2, Rν = 1) 26266.48

3 M5(Rγ = 1, Rf = 6, Rφ = 2) 33939.67

M6(Rγ = 1, Rf = 6, Rφ = 2, Rν = 2) 33200.63

M7(Rγ = 1, Rf = 6, Rφ = 2) 31216.89

M8(Rγ = 1, Rf = 6, Rφ = 2, Rν = 2) 35456.49

Table 8.2: Table of PMCC values for different models for the three different scan

rates.

different prior variances and hence are omitted for brevity. As noted in earlier

chapters, it is reassuring to find that the parameter estimates are robust to these

changes in the prior distributions.

According to the PMCC, the best model is M7(Rγ = 1, Rf = 6, Rφ = 2) for scan

rate 2. For the results presented in this section, we use the aforementioned model

and set the value for each prior variance to 108.

When we looked at the trace plots for the parameters of the stochastic volatility

model we found that the algorithm was covering the parameter space at a very slow

rate and that the algorithm did not appear to get stuck in a particular location for

any of the parameters. The acf plot indicated that there was strong autocorrelation
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Parameter Prior Variances

108 1010 1012

α0 29.4902 29.4901 29.4901

α1 0.9654 0.9654 0.9654

β0 -18.5246 -18.5246 -18.5246

β1 10.8707 10.8707 10.8707

γ1 0.5605 0.5605 0.5605

a1 -4.6342 -4.6342 -4.6342

a2 0.8108 0.8108 0.8108

a3 -0.5593 -0.5593 -0.5593

a4 -0.2420 -0.2420 -0.2420

a5 -0.0264 -0.0264 -0.0264

a6 -0.0701 -0.0701 -0.0701

b1 1.0200 1.0200 1.0200

b2 -0.4111 -0.4111 -0.4111

b3 0.1344 0.1344 0.1344

b4 -0.2632 -0.2632 -0.2632

b5 0.2753 0.2753 0.2753

b6 -0.0353 -0.0353 -0.0353

φ0 7.2988 7.2988 7.2988

φ1 -148.0661 -148.0673 -148.0673

φ2 537.1717 537.1735 537.1735

η -0.0143 -0.0143 -0.0143

Table 8.3: Parameter estimates (posterior mean) for different prior variances for the

best stochastic volatility model.
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(significant as the value of the acf was above the dotted line), in parameter samples

generated by the algorithm. To reduce the dependence in the parameter samples, we

experimented as to how often to sample from the chain initially choosing relatively

small values such as picking every 5th, 10th, 20th sample generated by the algorithm.

Further experimentation led us to taking every 200th sample generated by the algo-

rithm. This gave us the well behaved diagnostic plots shown in Figures 8.3 and 8.4,

which appear to indicate that the sample obtained covers the full parameter space.

The residual plots in Figure 8.5 appear to indicate that the stochastic volatility

model has not adequately modelled the data. Further to this, they do not appear to

have a constant variance, as we would expect for a good fitting model. This could

partially explain why the PMCC is much higher than that for the sinusoidal model

used in Section 7.6.
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Figure 8.5: Differences between data and one-step ahead predictions.

As in Section 7.6, we will compare the posterior predictive distributions obtained via

the best stochastic volatility model to our knowledge obtained from the plots shown
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in Figures 2.12. The posterior predictive distributions for the Peak Current, shown

in Figure 8.7, appears to produce a much closer fit than either the autoregressive or

sinusoidal model. The posterior predictive distributions for the Peak Potential are

located where we would expect. We note that these posterior predictive distributions

appear to be identical and that we would expect some variation between the different

Carbon levels. For the posterior predictive distributions in Figure 8.8, four out of

the five Carbon levels also appear to be identical. The model appears to produce

posterior predictive distributions for the Peak Separation in Potential located where

we would expect.

We note that the posterior predictive distributions shown in Figures 8.9, 8.10 and

8.11, are for Carbon levels not used in the experiment. Therefore, we are unable to

compare these posterior predictive distributions to any observed values. As already

noted in Section 5.3, by including the posterior predictive distributions shown in

Figures 8.9-8.11, we are simply illustrating the predictive usefulness of the best

stochastic volatility model proposed in this chapter.

The posterior predictive distributions for the Peak Current shown in Figure 8.10

appear to be centered on values that are much lower than we would expect and

compared to the values obtained from the sinusoidal model used in Chapter 7. There

is a small amount of variation in the location of the distributions between different

Carbon levels. We also note that the distributions in Figure 8.10 are very similar

in shape. The posterior predictive distributions for the Peak Potential, shown in

Figure 8.9, indicate more uncertainty about where the Peak Potential occurs. The

posterior predictive distributions for the Peak Separation in Potential, shown in

Figure 8.11, are centred on values that are slightly lower than what we expect based

on our experience so far with regards to this particular data set. As we highlighted

earlier, we have only concentrated on scan rate 2. A similar analysis was conducted

for the other scan rates.
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Figure 8.3: Trace plots of every 200th sample generated by WinBUGS for all the

parameters of the best stochastic volatility model for scan rate 2.
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Figure 8.4: Autocorrelation plots of every 200th sample generated by WinBUGS for

all the parameters of the best stochastic volatility model for scan rate 2.
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Figure 8.6: Posterior predictive distributions of Peak Potential for scan rate 2.
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Figure 8.7: Posterior predictive distributions of Peak Current for scan rate 2.
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Figure 8.8: Posterior predictive distributions of Peak Separation in Potential for

scan rate 2.
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Figure 8.9: Posterior predictive distribution of Peak Potential for scan rate 2.
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Figure 8.10: Posterior predictive distribution of Peak Current for scan rate 2.
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Figure 8.11: Posterior predictive distribution of Peak Separation in Potential for

scan rate 2.



Chapter 9

Conclusions and Future Work

9.1 Introduction

This chapter draws a number of overall conclusions by comparing the various mod-

elling strategies presented so far. The comparison using the PMCC allows us to

select the best set of models for the data. This chapter also provides some com-

ments pointing out the limitations of the proposed methods, and it ends with a

discussion of a few ideas for further developing the analysis and empirical modelling

for cyclic voltammograms.

9.2 Model Comparisons

The Bayesian methods used for making inference throughout the thesis also allow

us to compare various models presented previously in Chapters 5-8. As mentioned

in Section 3.7.2, the best model is the one which provides the minimum value of

the PMCC. For the overall comparison, we still use the PMCC since all the models

under consideration are based on the assumption of normally distributed error distri-

butions. As stated in Section 3.7.2, the PMCC minimises the expected value of the
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squared-error loss function which is most suitable for use with normally distributed

error distributions.

In the overall comparison, we do not include the regression models for the summary

statistics presented in Chapter 5 since these models do not describe the full data

set for a cyclic voltammogram as the other models presented in the subsequent

chapters do. As discussed before, these simple to use off-the-shelf regression models

can provide a quick and crude analysis of one characteristic at a time, independent

of the other characteristics. This may lead to problems in the analysis since the

voltammogram characteristics are dependent, for example, the Minimum Current,

I
(min)
s,k , cannot be greater than the Peak Current, I

(max)
s,k . A single time series model

for a voltammogram avoids these types of problems and are compared next.

Scan Model PMCC

Rate

1 M1(Rα = 30,Rγ = 1) 389.56

M4(Rα = 21, Rβ = 15, Rγ = 1, Rf = 20) 374.50

M7(Rγ = 1, Rf = 6, Rφ = 3) 131783.20

2 M3(Rα = 11,Rβ = 11,Rγ = 1) 75.22

M4(Rα = 8, Rβ = 10, Rγ = 1, Rf = 11) 69.98

M7(Rγ = 1, Rf = 6, Rφ = 2) 9786.03

3 M3(Rα = 12,Rβ = 11,Rγ = 1) 351.53

M4(Rα = 8, Rβ = 5, Rf = 11, Rγ = 1) 311.43

M7(Rγ = 1, Rf = 6, Rφ = 3, Rν = 2) 31216.89

Table 9.1: The value of the PMCC for the best time series model found for each

of the three different scan rates. The first model is the best autoregressive model,

the second is the best sinusoidal model and the third is the best stochastic volatility

model for each scan rate.
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Table 9.1 provides the value of the PMCC for the best time series model found for

each of the three different scan rates from the three different classes of models, viz.

autoregressive, sinusoidal and stochastic volatility presented in Chapters 6, 7, and 8

respectively. We observe that the stochastic volatility models are the worst in each

case. This is expected, since the PMCC penalises a model through its predictive

variance and the predictions using the stochastic volatility models are very volatile.

The values of the criterion for the autoregressive and sinusoidal models are on a

comparable scale, and we can see from Table 9.1 that the sinusoidal models are

the best ones for the data for each of the three different scan rates. Although

the sinusoidal models turn out to be the best, we recall from Chapter 7 that the

sinusoidal models do not describe realistic differences in values of Current due to

the differences in Carbon levels. This can be a potential problem if the chemists

want to predict values of Current for different levels of Carbon only. However these

models are recommended since the primary objective of the thesis is to describe and

analyse characteristics of cyclic voltammograms.

We end this section by discussing a few limitations of the modelling approaches

presented in the thesis. First, we have only modelled the data for different scan

rates independently but scan rates affect the behaviour of the different time series,

see Figure 2.11. Ideally a joint model of the data from all three different scan rates

should be formulated, see Section 9.3.

Second, we note all the models presented here are well-known time series models.

The primary reason for using these models is the need to have easily interpretable

models aimed at non-specialist practitioners in Chemistry. Although the simple

models have been able to cope with the fitting of data sets that have a large number

of observations, we believe there is scope for applying more complex models and

alternative techniques such as non-parametric methods, for example, see Fan and

Yao (2005) and Chen et al. (2004). In the following section, we discuss some of
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these techniques. We note that the Bayesian predictive inference and computation

methods for the different characteristics of interest by postulating a single time series

model can be adopted for any future more complex model for the data from a cyclic

voltammogram.

Lastly, note that throughout the thesis we have used the default vague prior distri-

butions for all the model parameters. These analyses, although successful, can be

greatly enhanced by carefully incorporating informative prior distributions. How-

ever, that would require a substantial study on prior elicitation and is beyond the

scope of this thesis. We simply note that the analysis presented in this thesis will

be useful for providing guidance on the choice, scale and location of the prior dis-

tributions.

9.3 Future Work

As mentioned before, we have modelled the data independently for the three different

scan rates. However, it is desirable to have a single hierarchical model for the

data from all three scan rates. Such a model will allow learning across the scan

rates by sharing information regarding the behaviour of the characteristics of the

data. The main difficulty in developing a single hierarchical model lies in the time

series of different lengths that are obtained for different scan rates, see Table 2.1.

These unbalanced time series can perhaps be modelled using a variable dimensional

parameter space and analysed using the reversible jump Markov Chain Monte Carlo

(RJMCMC), for example, see Green (1995) and Dellaportas et al. (2002). Thus by

combining a unified hierarchical model with an RJMCMC sampling algorithm a

powerful methodology for modelling and analysis of cyclic voltammogram data can

be developed, although this would be computationally expensive and would require

a long time to generate the results.
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The models presented in this thesis can also be improved by well-known variable

dimensional B-spline models, for example, see De Boor (2002). Other methods

such as principal component analysis, for example, see Johnson and Wichern (2002)

could also be considered. This thesis is a start on empirical modelling of cyclic

voltammogram data. Such strategies, combined with chemists’ knowledge regarding

the physical properties of the experiments, can bear further fruitful research in this

area.



Appendix A

Data

A.1 Plots of Data for Scan Rates 1 and 3
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Figure A.1: Time series plots of Current with Carbon set at 0% and scan rate 1,

where elapsed time Ta is measured in seconds.
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Figure A.2: Time series plots of Current with Carbon set at 1% and scan rate 1,

where elapsed time Ta is measured in seconds.
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Figure A.3: Time series plots of Current with Carbon set at 2% and scan rate 1,

where elapsed time Ta is measured in seconds.
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Figure A.4: Time series plots of Current with Carbon set at 3% and scan rate 1,

where elapsed time Ta is measured in seconds.
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Figure A.5: Time series plots of Current with Carbon set at 5% and scan rate 1,

where elapsed time Ta is measured in seconds.
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Figure A.6: Time series plots of Current with Carbon set at 7% and scan rate 1,

where elapsed time Ta is measured in seconds.
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Figure A.7: Time series plots with Carbon set at 10% and scan rate 1, where elapsed

time Ta is measured in seconds.
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Figure A.8: Time series plots of Current with Carbon set at 20% and scan rate 1,

where elapsed time Ta is measured in seconds.
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Figure A.9: Time series plots of Current with Carbon set at 0% and scan rate 3,

where elapsed time Ta is measured in seconds.
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Figure A.10: Time series plots of Current with Carbon set at 1% and scan rate 3,

where elapsed time Ta is measured in seconds.
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Figure A.11: Time series plots of Current with Carbon set at 2% and scan rate 3,

where elapsed time Ta is measured in seconds.
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Figure A.12: Time series plots of Current with Carbon set at 3% and scan rate 3,

where elapsed time Ta is measured in seconds.
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Figure A.13: Time series plots of Current with Carbon set at 5% and scan rate 3,

where elapsed time Ta is measured in seconds.
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Figure A.14: Time series plots of Current with Carbon set at 7% and scan rate 3,

where elapsed time Ta is measured in seconds.
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Figure A.15: Time series plots of Current with Carbon set at 10% and scan rate 3,

where elapsed time Ta is measured in seconds.
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Figure A.16: Time series plots of Current with Carbon set at 20% and scan rate 3,

where elapsed time Ta is measured in seconds.
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Figure A.17: Plots of characteristics of interest for scan rate 1 at each Carbon level

using the raw data, that is, outliers have not been removed, where t is as defined in

Table 2.1.
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Figure A.18: Plots of characteristics of interest for scan rate 3 at each Carbon level

using the raw data, that is, outliers have not been removed, where t is as defined in

Table 2.1
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B.1 MCMC Diagnostic Plots
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Figure B.1: Trace and autocorrelation plots of every fifth sample generated by the

Gibbs sampler for all the parameters of the quadratic model for Minimum Potential.
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Figure B.2: Trace and autocorrelation plots of every fifth sample generated by the

Gibbs sampler for all the parameters of the quadratic model for Minimum Current.
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Figure B.3: Trace and autocorrelation plots of every fifth sample generated by the

Gibbs sampler for all the parameters of the linear model for Peak Separation in

Current.
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Figure B.4: Trace and autocorrelation plots of every fifth sample generated by the

Gibbs sampler for all the parameters of the quadratic model for Peak Width in

Potential.
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B.2 Density Plots
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Figure B.5: Density plots of posterior predictive distributions of Minimum Potential

for scan rate 2.
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Figure B.6: Density plots of posterior predictive distributions of Minimum Current

for scan rate 2.
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Figure B.7: Density plots of posterior predictive distributions of Peak Separation in

Current for scan rate 2.
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Figure B.8: Density plots of posterior predictive distributions of Peak Width in

Potential for scan rate 2.
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Figure B.9: Density plots of posterior predictive distributions of Minimum Potential

for scan rate 2.
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Figure B.10: Density plots of posterior predictive distributions of Minimum Current

for scan rate 2.
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Figure B.11: Density plots of posterior predictive distributions of Peak Separation

in Current for scan rate 2.
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Figure B.12: Density plot of posterior predictive distributions of Peak Width in

Potential for scan rate 2.



Appendix C

Fourier Series Models Analysis

Throughout this appendix, N and t denote the number of observations and time

index respectively for a generic time series . For this proof we will require the use

of the following identities:

N−1�

t=0

cos

�
2πmt

N

�
sin

�
2πnt

N

�
= 0, (C.1)

N−1�
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N

�
=


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

0 m �= n,

N m = n = N
2 ,

N
2 m = n �= N

2 ,

(C.2)

N−1�

t=0

sin

�
2πmt

N

�
sin

�
2πnt

N

�
=


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

0 m �= n,

0 m = n = N
2 ,

N
2 m = n �= N

2 ,

(C.3)

N−1�

t=0

cos

�
2πmt

N

�
=

N−1�

t=0

sin

�
2πmt

N

�
= 0, (C.4)

where m and n are integers. From the Fourier series representation, given by

λt = a0 +

Rf�

r=1

�
ar cos

�
2πrt

N

�
+ br sin

�
2πrt

N

��
,



C. Fourier Series Models Analysis 195

where r = 1, . . . , Rf , we obtain the equations below for each of the λt where t =

1, . . . , N .

λ0 = a0 +

Rf�

r=1

�
ar cos(0) + br sin(0)

�

λ1 = a0 +

Rf�

r=1

�
ar cos(αr) + br sin(αr)

�

λ2 = a0 +

Rf�

r=1

�
ar cos(2αr) + br sin(2αr)

�

...
...

λN−1 = a0 +

Rf�

r=1

�
ar cos(αr(N − 1)) + br sin(αr(N − 1))

�

Summing the above equations with respect to t, we obtain

N−1�

t=0

λt =
N−1�

t=0

a0 +

Rf�

r=1

N−1�

t=0

�
ar cos(αrt) + br sin(αrt)

�
(C.5)

where α = 2π/N throughout the rest of this proof. Re-arranging the summations

in Equation (C.5), we obtain

N−1�

t=0

λt =
N−1�

t=0

a0 +

Rf�

r=1

ar

N−1�

t=0

cos(αrt) +

Rf�
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br

N−1�

t=0

sin(αrt). (C.6)

Applying the identity from Equation (C.4) to Equation (C.6), we obtain

Na0 =
N−1�

t=0

λt

a0 =
1

N

N−1�

t=0

λt

as required.
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We will now take Equation (C.6) and multiply both sides by cos(α�t) giving

N−1�

t=0

λt cos(α�t) = a0

N−1�

t=0

cos(α�t) +

Rf�
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where � denotes an integer for the remainder of this proof. Using the identities in

equations (C.1) and (C.2) we obtain
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when r = � = N
2 . We will now take Equation (C.6) and multiply through by sin(α�t)

which gives
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Using the identities in Equations (C.1) and (C.4), we obtain
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Applying the identity in Equation (C.3) to the above equation, we obtain

Nbr

2
=

N−1�

t=0

λt sin(αrt)

br =
2

N

N−1�

t=0

λt sin(αrt)

when r = � �= N
2 and bN/2 = 0 when r = � = N

2 as required.
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