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In this thesis, an automatic, default, fully Bayesian model determination strategy for GLMMs
is considered. This strategy must address the two key issues of default prior specification
and computation.

Default prior distributions for the model parameters, that are based on a unit information
concept, are proposed.

A two-phase computational strategy, that uses a reversible jump algorithm and implementa-
tion of bridge sampling, is also proposed.

This strategy is applied to four examples throughout this thesis.
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BS,O plotted against ρ for the Π3 ≡ L(0, Ik) target distribution with the

relative MSE of Î(S,A)
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the Turtle Dataset. Î3 is the nested importance sampling approximation to I when the
mode and curvature are available . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.1 Plots of the approximate log profile likelihood against σ2 using the three different approxi-
mation methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.2 The types of move possible for the Turtle Dataset. . . . . . . . . . . . . . . . . . . . 126

x



Authors’ Declaration

I, Antony Marshall Overstall, declare that the thesis entitled

Default Bayesian Model Determination for Generalised Linear Mixed Models,

and the work presented in the thesis are both my own, and have been generated by me as
the result of my own original research. I confirm that:

• this work was done wholly or mainly while in candidature for a research degree at this
University;

• where any part of this thesis has previously been submitted for a degree or any other
qualification at this University or any other institution, this has been clearly stated;

• where I have consulted the published work of others, this is always clearly attributed;

• where I have quoted from the work of others, the source is always given. With the
exception of such quotations, this thesis is entirely my own work;

• I have acknowledged all main sources of help;

• where the thesis is based on work done by myself jointly with others, I have made clear
exactly what was done by others and what I have contributed myself;

• part of this work is being considered for publication in the Computational Statistics
and Data Analysis journal as Overstall and Forster (2009).

Signed:.....................................................

Date:.......................

xi



Acknowledgements

I would like to thank my supervisor Professor Jon Forster for his help with completing this
thesis.

xii



Chapter 1

Introduction

1.1 Bayesian Inference

1.1.1 Bayes’ Theorem

Suppose y is a n×1 vector of responses with joint probability density function (pdf), f(y|θ),
which depends on the k × 1 vector of unknown model parameters, θ ∈ Θ, where Θ ⊆ Rk

is known as the parameter space. In Bayesian inference, both y and θ are considered to be
random variables, so θ has a probability distribution with pdf, f(θ). Their joint pdf can be
written as

f(y,θ) = f(y|θ)f(θ) (1.1)

= f(θ|y)f(y). (1.2)

Equating (1.1) and (1.2) gives

f(θ|y) =
f(y|θ)f(θ)

f(y)

=
f(y|θ)f(θ)∫

Θ
f(y|θ)f(θ)dθ

. (1.3)

In the case of a discrete-valued θ, replace the integration in the denominator of (1.3) by a
summation. The identity (1.3) is known as Bayes’ theorem. Note that the denominator of
(1.3) does not depend on θ, so Bayes’ theorem can be rewritten as

f(θ|y) ∝ f(y|θ)f(θ). (1.4)

The quantity f(y|θ) is equivalent to the likelihood function. The quantity f(θ) is the pdf
of the prior distribution which reflects our knowledge of θ prior to observing the data, y.
The quantity f(θ|y) is the pdf of the posterior distribution of θ|y, which reflects our up-
dated knowledge of θ, having observed the data, y, and combined the information from the
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data with the information from the prior distribution, using Bayes’ theorem. Using this
terminology, (1.4) can be written as

posterior ∝ likelihood× prior.

1.1.2 Posterior Inference

Posterior inference can be undertaken either in an informal way; by the way of summary
quantities, e.g. mean, mode, variance, etc, or in a formal way; by way of making optimal
decisions based on minimising posterior expectations of appropriate loss functions.

Summary quantities of the posterior distribution of θ|y can be found via the posterior pdf,
f(θ|y). For instance, suppose g : Θ→ R,

E(g(θ)|y) =

∫
Θ

g(θ)f(θ|y)dθ,

gives us the posterior expectation of a function, g(θ), of the parameter θ. Setting g(θ) = θj,
gives us the posterior mean of the jth component of θ.

Another useful summary is a probability or credible interval, which is the Bayesian equivalent
of a classical confidence interval. A 100(1− α)% probability interval for the jth component,
θj, of θ is the interval (a, b) such that

P(a < θj < b|y) = 1− α.

Similarly, we can calculate the specific posterior probability that θ lies in some set Ω ⊆ Θ,
i.e.

P(θ ∈ Ω|y) =

∫
Ω

f(θ|y)dθ.

This is the Bayesian equivalent of a classical hypothesis test.

Formally, we may want a point estimate, θ̃(y) or θ̃, of the parameter θ. The decision-
theoretic approach is to minimise the posterior expectation of an appropriate loss function.
Consider estimating the jth component, θj, of θ using the squared error loss function:

L(θj, θ̃j) = (θj − θ̃j)2.

The posterior expectation of L(θj, θ̃j) is

E(L(θj, θ̃j)|y) = E(θ2
j |y)− 2θ̃jE(θj|y) + θ̃2

j .

This is minimised at the posterior mean, i.e. θ̃j = E(θj|y). Similarly, the absolute error loss
function, L(θj, θ̃j) = |θj − θ̃j|, results in θ̃j being the posterior median. The loss function

L(θj, θ̃j) =

{
0, if |θj − θ̃j| ≤ δ,

1, if |θj − θ̃j| > δ,

for small δ, results in θ̃j being the posterior mode.
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1.1.3 Model Determination

The data-generating process is the complete description of a random process from which the
data, y, arise. The true data-generating process would only be known in the presence of full
information. In the absence of full information, there is uncertainty about the data-generating
process. This uncertainty is quantified by a statistical model, which is a set of data-generating
processes, expressed by the likelihood function, f(y|θ) with θ ∈ Θ. In addition to f(y|θ), a
Bayesian statistical model possesses a prior distribution with pdf, f(θ).

In practice, we may be unsure about how to construct the form of the model and actually
propose several alternative models. There will be uncertainty amongst these models. To
overcome this we assume a single encompassing model. This is a union of all alternative
models. We now need to express our prior knowledge about the alternative models which we
do via prior model probabilities.

Suppose we have a set, M , of alternative models, where a model, m ∈ M , has a likelihood
fm(y|θm) = f(y|θm,m) and a prior distribution with pdf fm(θm) = f(θm|m) where θm ∈
Θm, and θm is a km × 1 vector.

The encompassing model is then the set of data-generating processes

{fm(y|θm) : θm ∈ Θm,m ∈M} ,

with parameter θ = (θm,m) ∈ Θ where

Θ =
⋃
m∈M

{m} ×Θm.

For Bayesian inference we require a prior distribution for θ = (θm,m) with pdf decomposed
as

f(θm,m) = f(θm|m)f(m)

= fm(θm)f(m),

where fm(θm) is the prior pdf of θm conditional on model m. The quantity f(m) is the prior
model probability, where f(m) > 0 and

∑
m∈M f(m) = 1.

Using Bayes’ theorem we can find the joint posterior pdf of θm and m:

f(θm,m|y) =
f(y|θm,m)f(θm|m)f(m)

f(y)
,

=
fm(y|θm)fm(θ)

fm(y)
× fm(y)f(m)

f(y)
, (1.5)

where the quantity fm(y) is known as the marginal likelihood and is given by

fm(y) =

∫
Θm

fm(y|θm)fm(θm)dθm. (1.6)
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Note from the second part of the right-hand side of (1.5) that

fm(y)f(m)

f(y)
=

fm(y)f(m)∑
m∈M fm(y)f(m)

= f(m|y), (1.7)

where f(m|y) is known as the posterior model probability of model m ∈ M . Again, Bayes’
theorem is used to update the prior model probabilities to the posterior model probabilities
in light of observing the data, y.

Therefore, we can extend the idea of posterior inference as described in Section 1.1.2 to that
of posterior inference under model uncertainty:

1. Evaluation of the posterior model probability, f(m|y), for each m ∈M (Model Deter-
mination),

2. Evaluation and summarisation of the posterior distribution, fm(θm|y) of the parame-
ters, θm of each model m ∈M (Posterior Inference).

Fisher (1922) stated that there are three aspects to valid statistical inference: a) model spec-
ification, b) estimation of the model parameters, and c) estimation of precision. Evaluation
of the posterior distribution of the parameters is equivalent to b) and c) of Fisher’s system.
Burnham and Anderson (1998) partition the model specification/determination aspect into
two parts: forming a set of candidate models and model selection. They go on to discuss
how the formation of a set of candidate models is “where the scientific and biological infor-
mation formally enter the investigation”. In this thesis, we assume the position that a set of
candidate models, M , has already been chosen.

Suppose we are comparing two models, 1 and 2, say, with posterior model probabilities f(1|y)
and f(2|y), respectively. Consider the posterior odds in favour of model 1

f(1|y)

1− f(1|y)
=
f(1|y)

f(2|y)
=
f(1)f1(y)

f(2)f2(y)
=

f(1)

1− f(1)

f1(y)

f2(y)
, (1.8)

where f(1) and f(2) are the prior model probabilities of models 1 and 2, respectively. The
quantity f1(y)/f2(y) of the ratio of marginal likelihoods is known as the Bayes’ factor in
favour of model 1. So (1.8) can be written

posterior odds = prior odds× Bayes’ factor.

1.1.4 Prior Distributions

The prior distribution is a contentious issue in Bayesian inference. As defined in Section 1.1
it represents all of our knowledge about the model parameters, θ, prior to observing the data,
y.
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There are two problems with this: 1) some critics of Bayesian inference argue that statistical
inference should be objective and personal opinions in the form of the prior distribution should
not be considered, and 2) what happens in the case where there is little prior knowledge?

The approach taken in this thesis is that we are in exactly the position of having little prior
knowledge. As a result of this, our goal is objective Bayesian inference. To achieve this, we
need to consider prior distributions which have a negligible effect on the posterior inference,
i.e. they are dominated by the likelihood. Box and Tiao (1992) and Kass and Wasserman
(1996) refer to these types of prior as reference priors, i.e. as a point of ‘reference’. However,
the term reference prior is used elsewhere in the literature to refer to a specific type of prior.
We use the term default prior. The resulting analysis is called the default analysis.

An obvious and natural default prior to use is the non-informative uniform prior, where
f(θ) ∝ 1. Therefore, f(θ|y) ∝ f(y|θ). Under this prior, the posterior mode of θ is equivalent
to the maximum likelihood estimate of θ. However, there may not exist a proper prior with
f(θ) ∝ 1. Specifically, this is the case if any part of the parameter space, Θ, is unbounded. In
this case, Lindley’s paradox (see Section 1.1.5) applies and we cannot use the uniform prior.
Also, a uniform prior distribution for a parameter θ, will not necessarily be a uniform prior
distribution for a transformation of θ, say φ = h(θ). We must, instead, use an informative
distribution which has a negligible effect on posterior inference as our default prior. The
construction of default priors is an active area of research for the practical application of
Bayesian methods.

It may well be the case that prior knowledge does exist and it is the opinion of some that
prior knowledge always exists and should be elicited into a prior distribution for θ. This
is, in itself, a non-trivial problem. Use of this type of prior results in subjective Bayesian
inference.

When considering a prior distribution it may be convenient to use a conjugate prior distri-
bution. A conjugate prior distribution has pdf f(θ) ∈ F , if the posterior distribution pdf
f(θ|y) ∈ F , i.e. the posterior distribution is from the same family of distributions, F , as the
prior distribution. Examples include:

1. Suppose yi
iid∼ N(θ, σ2), for i = 1, ..., n and where σ2 is known. The conjugate prior

distribution for θ is θ ∼ N(µ, τ 2). Then

θ|y ∼ N

(
nτ 2ȳ + σ2µ

nτ 2 + σ2
,

σ2τ 2

nτ 2 + σ2

)
.

2. Suppose yi
iid∼ Bernoulli(θ), for i = 1, ..., n. The conjugate prior distribution for θ is

θ ∼ Beta(α, β). Then
θ|y ∼ Beta(α + nȳ, β + n− nȳ).
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1.1.5 Lindley’s Paradox

Lindley’s paradox is best explained, initially, with a simple example which is adapted from
O’Hagan and Forster (2004, pg. 77). Suppose we have one observation, y, and we wish to
compare the following two models:

1. y ∼ N(0, σ2),

2. y ∼ N(θ, σ2), where θ ∼ N(0, τ 2),

where in both cases, σ2 is known. Model 1 is completely specified, whereas Model 2 has an
unknown mean, θ. In addition, suppose the following prior model probabilities: f(1) = p
and f(2) = 1− p. The posterior model probability of Model 1 is

f(1|y) =

p√
σ2

exp
(
− y2

2σ2

)
p√
σ2

exp
(
− y2

2σ2

)
+ 1−p√

σ2+τ2 exp
(
− y2

2(σ2+τ2)

)
→ 1 as τ 2 →∞,

provided p 6= 0. So, regardless of the observation collected, the posterior model probability
of Model 1 will tend to 1 as the variance of the prior approaches infinity.

This result is not specific to this example and can occur in any situation where the prior
distribution becomes improper over part of the parameter space.

Lindley’s paradox means that we cannot simply choose a prior with f(θ) ∝ 1 when there is
weak prior information and model uncertainty.

In fact, the problem of specifying a prior distribution under weak prior information and model
uncertainty is deeper than this. The Bayes’ factor, in this situation, can be very sensitive to
the choice of prior distribution. When comparing two nested models, the Bayes’ factor for
the simpler model can be made arbitrarily large by choosing a large enough prior variance
for the augmented parameter.

This is the motivation behind default priors, i.e. informative prior distributions that have a
negligible effect on posterior inference but provide a consistent amount of information across
all models for us to undertake model determination.

1.1.6 Hierarchical Models

Suppose we have a model, where the joint pdf of the data, y, depends on the vector of
parameters, ω. The prior distribution for ω will, in general, depend on the vector of hyper-
parameters, λ. If the prior distribution is completely specified then λ are known. However,
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in the case of a hierarchical model, λ are unknown and, therefore, have their own prior dis-
tribution known as the hyper-prior. We can write the model parameters as θ = (ω,λ)T and
decompose the prior pdf as

f(θ) = f(ω,λ)

= f(ω|λ)f(λ).

Obviously, the hyper-prior can depend on a further vector of hyper-hyper-parameters or 2-
hyper-parameters with a 2-hyper-prior distribution. This hierarchy can be extended to a
ν-hyper-prior.

1.2 Generalised Linear Mixed Models

Generalised linear mixed models (GLMMs) are useful when responses, which may be non-
normal, depend on a set of covariates and are correlated due to the existence of groups or
clusters. GLMMs are an extension of linear mixed models (LMMs) to non-normal responses
and an extension of generalised linear models (GLMs) to correlated responses. A Bayesian
GLMM is a hierarchical model as described in Section 1.1.6.

GLMMs are often referred to as GLMs with random effects in the classical literature.

1.2.1 Specification

Let yij be the jth response from the ith group where j = 1, ..., ni and i = 1, ..., G. Let
xij and zij denote the p × 1 and q × 1 vectors of regression and group-specific covariates,
respectively. These covariates are a subset of the available explanatory variables or products
of available explanatory variables. Let the total sample size be n =

∑G
i=1 ni. Conditional on

the ith group-specific parameters, ui, we assume that Yij is independently distributed from
some exponential family distribution with density

f(yij|ui) = exp

[
yijζij − b(ζij)

aij(φ)
+ c(yij, φ)

]
,

where ζij is the canonical parameter, φ is the dispersion parameter, and aij(), b(), and c()
are known functions. Define µij = E(Yij|ui) = b′(ζij) as the conditional mean of Yij. This is
related to the linear predictor, ηij, through

g(µij) = ηij = xTijβ + zijui, (1.9)

where g() is the link function, β is a p× 1 vector of regression parameters, and ui is a q × 1
vector of ith group-specific parameters.

Suppose yi = (yi1, ..., yin1)T , Xi = (xi1, ...,xini)
T , Zi = (zi1, ..., zini)

T , ηi = (ηi1, ..., ηin1)T ,
µi = (µi1, ..., µin1)T , and that the link function is applied elementwise, then

g(µi) = Xiβ + Ziui.
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Suppose further that y = (yT1 , ...,y
T
G)T , X = (XT

1 , ...,X
T
G)T , Z = diag(Z1, ...,ZG), η =

(ηT1 , ...,η
T
G)T , µ = (µT1 , ...,µ

T
G)T , and u = (uT1 , ...,u

T
G)T , then (1.9) can be rewritten in

matrix form as
g(µ) = Xβ + Zu,

where g() has been applied element-wise, i.e. g(µ) = (g(µ11), ..., g(µGnG))T .

We make the assumption that the first columns of Xi and Zi (if non-zero) are always formed
from a vector, of length ni, of ones. We also assume that the columns of Zi are a subset of
the columns of Xi. We also adhere to the modelling principle that if a column of Xi (or Zi) is
formed from the interaction between two explanatory variables, then those two explanatory
variables must have columns also in Xi (or Zi).

We complete the specification of a GLMM with ui
iid∼ N(0,D), for i = 1, ..., G, where the

variance components matrix, D, is an unstructured q × q positive-definite matrix which
depends upon the 1

2
(q2 + q) × 1 vector of variance components, d. Suppose D∗ = IG ⊗D,

where ⊗ denotes the Kronecker product, then u ∼ N(0,D∗).

The group-specific parameters, u, are often referred to as random effects. If ui
iid∼ N(0,D),

for i = 1, ..., G, then this is known as an exchangeable random effect structure.

A GLM is a special case of a GLMM, where Z = 0 and ni = 1.

1.2.2 Likelihood for GLMMs

We define the first-stage likelihood function for a GLMM as

f(y|β,u, φ) =
G∏
i=1

ni∏
j=1

exp

[
yijζij − b(ζij)

aij(φ)
+ c(yij;φ)

]
. (1.10)

Classical inference for GLMMs is based on maximising the integrated likelihood function

f(y|β,D, φ) =

∫
RGq

f(y,u|β,D, φ)du

=

∫
RGq

f(y|β,u, φ)f(u|D)du (1.11)

to obtain the maximum likelihood estimates of β, D, and φ. The integrated likelihood
is sometimes known as the marginal likelihood but we refrain from using this as we have
already used the term marginal likelihood for (1.6). The model that results in integrating
out the group-specific parameters is known as the marginal model. The integrand in (1.11),
f(y,u|β,D, φ), is termed the h-likelihood function by Lee et al. (2006).
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1.2.3 Bayesian Inference for GLMMs

Let θ = (βT ,uT ,dT , φ)T be the k × 1 vector of model parameters, where

k =

{
p+Gq + 1

2
q(q + 1) + 1 if φ is unknown

p+Gq + 1
2
q(q + 1) otherwise,

to align with the notation introduced in Section 1.1. To complete the specification of a
Bayesian GLMM we require a joint prior distribution for θ, with pdf decomposed as

f(θ) = f(β,u,d, φ),

= f(β|d, φ)f(u|d)f(d|φ)f(φ),

= f(β|D, φ)f(u|D)f(D|φ)f(φ).

The conditional distribution of the group-specific parameters, u|D, has already been speci-
fied, as part of the specification of a GLMM, as N(0, IG ⊗D). Therefore, it only remains to
specify a prior distribution for the remaining parameters, β,D and φ, with their joint pdf
decomposed as

f(β,D, φ) = f(β|D, φ)f(D|φ)f(φ). (1.12)

The pdf of the posterior distribution of β, u, D and φ is given by

f(β,u,D, φ|y) ∝ f(y|β,u, φ)f(β|D, φ)f(u|D)f(D|φ)f(φ).

The pdf of the marginal posterior distribution of β, D and φ is given by

f(β,D, φ|y) =

∫
RGq

f(β,u,D, φ|y)du,

∝ f(y|β,D, φ)f(β|D, φ)f(D|φ)f(φ).

The model determination terminology introduced in Section 1.1.3 can now be applied to a
GLMM.

1.3 The Problem

In Section 1.1.3, we described the basic quantities required for model determination, which
we would like to apply to Bayesian GLMM determination. The integral in the denomina-
tor of (1.3), i.e. the marginal likelihood, is rarely analytically tractable, thus necessitating
computational methods to approximate the integral. However, the group-specific parameter,
u, often has large dimensionality if the number of groups, G, is large, thus the choice of
method for approximating the marginal likelihood or posterior model probability is critical.
We address this issue in Chapters 4 and 5.

Once a satisfactory method for computing an approximation to the marginal likelihood or
posterior model probability has been chosen, we then need to consider a default prior distri-
bution for β, D, and φ for objective Bayesian model determination. We address this issue in
Chapter 3.
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Essentially, the problem focused on in this thesis is to develop a default Bayesian model deter-
mination strategy which addresses the issues of computation and default prior specification
under weak prior information.

In the next Section, we introduce an example of a dataset that exemplifies the problems we
can encounter when we try to apply objective Bayesian model determination to GLMMs.

1.4 Turtle Data Example

We introduce an example of a dataset that a set of GLMMs can be applied to. This shows
the problem of model uncertainty amongst GLMMs and will be used as a running example
to illustrate the methodology introduced in Chapters 3, 4 and 5 .

The dataset termed the Turtle Data is analysed by Sinharay and Stern (2000) and Sinharay
and Stern (2005). It contains the survival status (0=died, 1=survived), birthweight (in
grams), and clutch (i.e. family) membership of 244 newborn turtles from 31 different clutches.
The researchers wish to determine whether there is a birthweight effect on the survival chances
of a newborn turtle, having accounted for the fact that the survival probability of a turtle
may be correlated with the survival probability of another turtle within the same clutch.
Suppose yij and zij are the survival status and the birthweight, respectively, of the jth turtle
in the ith clutch for i = 1, ..., 31 and j = 1, ..., ni. The clutch sizes, n1, ..., n31, have minimum,
maximum and mean of 1, 18 and 7.9, respectively.

We assume that yij ∼ Bernoulli(µij) where ηij = g(µij). We follow Sinharay and Stern (2005)
and use the probit link function, i.e. µij = Φ(ηij) so that g(µij) = Φ−1(µij). Let xij =

zij−z̄..
s

be the standardised zij, where s2 is the sample variance of the zijs. We consider a total of
five possible models:

1. ηij = β1,

2. ηij = β1 + β2xij,

3. ηij = β1 + ui where ui
iid∼ N(0, σ2),

4. ηij = β1 + β2xij + ui where ui
iid∼ N(0, σ2),

5. ηij = (β1 + u1i) + (β2 + u2i)xij where ui = (u1i, u2i)
T iid∼ N(0,D).

Models 1 and 2 are GLMs where the survival probability of a newborn turtle is independent
of the survival probability of turtles within the same clutch. Model 1 assumes that survival is
independent of birthweight, i.e. there is no birthweight effect, whereas Model 2 assumes that
there is a birthweight effect. Models 3, 4 and 5 are GLMMs where the survival of a newborn
turtle is assumed to be correlated with the survival of turtles within the same clutch, i.e.
there is a clutch effect. Model 3 assumes that there is no birthweight effect on survival.
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Table 1.1: Dimensionality of the model parameters for the five models applied to the Turtle Data.

Model Dimensionality of the
model parameters

1 1
2 2
3 33
4 34
5 67

Models 4 and 5 assume that there is a birthweight effect on survival and for Model 4, the
clutch effect is the same for each turtle in the same clutch, whereas for Model 5, the clutch
effect depends upon the turtle’s birthweight.

The marginal likelihood is not analytically tractable for any of the five models and will need
to be approximated. Table 1.1 gives the dimensionality of the model parameters for each of
the models. We see that including the group-specific parameters significantly increases the
dimensionality of the resulting integral approximation.

Sinharay and Stern (2000) and Sinharay and Stern (2005) considered model determination,
with respect to computation only, between Models 2 and 4, i.e. determining whether or not
there exists a group-specific intercept.

In both papers, the integrated likelihood function is evaluated by using Simpson’s rule. We see
in Chapter 2 that this quadrature approach becomes impractical for q > 1. They, therefore,
do not consider model determination including Model 5 since q = 2, in this case. In this
thesis, we develop a model determination approach that can be used when q > 1.

In both papers, a diffuse prior distribution was applied to the regression parameters, β,
in Models 2 and 4. In Sinharay and Stern (2000), an inverse-gamma prior distribution,
IG(5

2
, 3

2
), is applied to σ2 in Model 4 and a Bayes factor of 3.25 is found in favour of Model

2. In Sinharay and Stern (2005) a prior distribution is applied to σ2 in Model 4 with pdf

f(σ2) =
1

(1 + σ2)2
,

and a Bayes factor of 1.273 is found in favour of Model 2.

Kass and Raftery (1995) give guidelines on how to interpret Bayes factors. In their interpre-
tation, a Bayes factor of 1.273 in favour of Model 2 is “not worth more than a bare mention”,
whereas a Bayes factor of 3.25 represents “substantial” evidence in favour of Model 2. We
see from this example the danger of applying arbitrary prior distributions to the parameters
of competing models. Sinharay and Stern (2000) and Sinharay and Stern (2005) were both
concerned with computation only, so were not attempting to define default priors for model
determination.

11



Chapter 2

Previous Work

2.1 Introduction

This chapter, on previous work on Bayesian model determination strategies for GLMMs,
is split into two parts: computation for GLMMs and default priors for GLMMs. The first
part will start by discussing the importance of computation in Bayesian inference, we then
describe some general computational methods and describe how these methods have been
applied to GLMMs in the literature. The second part on default priors will discuss some
default priors that have been applied to GLMMs and special cases of GLMMs, e.g. linear
models.

2.2 Computation for GLMMs

2.2.1 Introduction

In Section 1.1.3, we defined the two aspects of posterior inference under model uncertainty
as

1. Evaluation of the posterior model probability, f(m|y), for each m ∈M (Model Deter-
mination),

2. Evaluation and summarisation of the posterior distribution, with pdf fm(θm|y) of the
parameters, θm of each model m ∈M (Posterior Inference).

To achieve 1., we either need to evaluate the marginal likelihood, fm(y), of model m ∈M to
compute the posterior model probabilities, evaluate the ratio of marginal likelihoods (Bayes’
factors), fk(y)/fm(y) of models k,m ∈ M , or evaluate the posterior model probabilities
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directly. Typically, except for certain special cases, these require the evaluation of intractable,
possibly high dimensional, integrals by approximation. To achieve 2., we typically want to
evaluate quantities such as the posterior mean, posterior variance or posterior quantiles.
Again these require the evaluation of intractable integrals by approximation. Also in the
pursuit of 2., we may want to evaluate the posterior mode, requiring the maximisation of
fm(θm|y) which, in general, will not be analytically tractable.

Example

Suppose we have a binary response, yi ∼ Bernoulli(pi) where

log

(
pi

1− pi

)
= β,

for i = 1, ..., n and β ∈ R, giving a very simple logistic regression model. The likelihood is
then

f(β|y) =
n∏
i=1

exp (βyi)

1 + exp (β)
.

Suppose as a prior distribution for β we choose the normal distribution with mean µ and
variance σ2, i.e. β ∼ N(µ, σ2). Therefore the posterior distribution has pdf given by Bayes’
Theorem

f(β|y) =
exp

(
− (β−µ)2

2σ2

)∏n
i=1

exp(βyi)
1+exp(β)∫∞

−∞ exp
(
− (β−µ)2

2σ2

)∏n
i=1

exp(βyi)
1+exp(β)

dβ
(2.1)

The denominator of (2.1) is an intractable integral, and maximisation of the posterior pdf

f(β|y) ∝ exp
(
− (β−µ)2

2σ2

)∏n
i=1

exp(βyi)
1+exp(β)

is also an analytically intractable problem. �

There exist two different approaches for approximating integrals: deterministic methods (also
known as numerical methods) and stochastic methods (known as Monte Carlo methods). In
this thesis, we make use of both types of approach. In Section 2.2.2, we describe some of the
deterministic methods we implement in this thesis.

Monte Carlo methods refer to a broad selection of methods for approximating intractable
integrals, by generating samples from the required distribution (usually the posterior dis-
tribution), and then forming sample averages to approximate the integral. For example,
suppose we wish to evaluate the expectation, µ, of the random variable, θ ∼ Π, where the
distribution, Π, has pdf π(θ), i.e.

µ = E(θ) =

∫
Θ

θπ(θ)dθ. (2.2)

Suppose that the integral in (2.2) is intractable. A Monte Carlo approximation, µ̂, to µ is to
generate a sample, θ1, ..., θn, of size n from the distribution Π and then set

µ̂ =
1

n

n∑
i=1

θi.
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More generally, a Monte Carlo approximation, µ̂g, to µg = E(g(θ)) for some function g :
Θ→ R, is to generate θ1, ...,θn from the distribution, Π, and then set

µ̂g =
1

n

n∑
i=1

g(θi).

We can also approximate quantities such as the median or quantiles by their corresponding
sample quantities.

Obviously, to use these methods we need to be able to generate a sample from the required
distribution (usually the posterior distribution). Again, there exist Monte Carlo methods for
doing so and we describe some of these in Sections 2.2.3 and 2.2.4.

As discussed we also need to consider methods for maximising a function. As with approx-
imating integrals, there are deterministic and stochastic methods. In this thesis, we only
consider deterministic maximisation methods and these are briefly reviewed in Section 2.2.2.
For stochastic methods for maximising a function see, for example, Robert and Casella (1999,
Ch. 5).

2.2.2 Deterministic Methods

In this Section, we describe some deterministic methods for evaluating integrals and max-
imising functions that we implement in this thesis. We also highlight some of the limitations
of deterministic methods, and the cases where Monte Carlo methods are preferred.

Approximations to moments of functions of random variables

In 2.2.1 we described the Monte Carlo approximation to the expectation, µg, of the function,
g : Θ → R, of a random variable, θ, with pdf π(θ), i.e. µg = E (g(θ)). Suppose the mean
and variance matrix of θ is m and Σ, respectively. We can use a first-order Taylor series
expansion of g() about m to derive deterministic approximations to E(g(θ)) and var(g(θ)).
Note that

g(θ) ≈ g(m) + (θ −m)T
dg(θ)

dθ

∣∣∣∣
θ=m

.

Therefore the expectation of g(θ) is approximated by

E(g(θ)) ≈ g(m),

and the variance of g(θ) by

var(g(θ)) ≈ dg(θ)

dθT

∣∣∣∣
θ=m

Σ
dg(θ)

dθ

∣∣∣∣
θ=m

.

Obviously, we can use a higher-order Taylor series expansion to achieve higher accuracy.
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Laplace method for approximating an integral

Suppose we wish to evaluate the intractable integral∫
Θ

g(θ)dθ, (2.3)

where the dimension of θ is k.

We take the second-order Taylor series expansion of log g(θ) about the value, m, which
maximises g(θ), i.e.

log g(θ) ≈ log g(m) +
1

2
(θ −m)T

∂2 log g(θ)

∂θ∂θT

∣∣∣∣
θ=m

(θ −m).

Note that the first-order term disappears since ∂ log g(θ)
∂θ

∣∣∣
θ=m

= 0. Therefore,

g(θ) ≈ g(m) exp

(
−1

2
(θ −m)TV−1(θ −m)

)
,

where V = − ∂2 log g(θ)

∂θ∂θT

∣∣∣−1

θ=m
, and∫

Θ

g(θ)dθ ≈ g(m)(2π)
k
2 |V|

1
2 . (2.4)

Note that to implement (2.4), we need to have maximised g(θ) to find m. This method of
approximating an integral is known as the Laplace method.

Typically, (2.3) is in the form of a marginal likelihood with g(θm) = fm(y|θm)fm(θm) and
m representing the posterior mode. In this case, Tierney and Kadane (1986) state that
this method “will produce reasonable results as long as the posterior is unimodal or at least
dominated by a single mode”, and that this method has an error of order O(n−1) where n is
the sample size.

We present an alternative method for approximating the marginal likelihood where we re-
quire the maximum likelihood estimate as opposed to the posterior mode. Suppose now we
specifically wish to evaluate the marginal likelihood, fm(y) =

∫
Θm

fm(y|θm)fm(θm)dθm, of
model m ∈M . The second-order Taylor series expansion of the log-likelihood, log fm(y|θm),
about the maximum likelihood estimate, θ̂m, is

log fm(y|θm) ≈ log fm(y|θ̂m)− 1

2
(θm − θ̂m)TV−1

m (θm − θ̂m),

where Vm = − ∂2 log fm(y|θm)

∂θmθ
T
m

∣∣∣−1

θm=θ̂m
. We assume that |θm − θ̂m| is small, then fm(θm) varies

slowly and can be approximated by the constant fm(θ̂m). Therefore

fm(y) ≈ fm(θ̂m)fm(y|θ̂m)(2π)
km
2 |Vm|

1
2 (2.5)
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O’Hagan and Forster (2004, pg. 180) state that this method also has an error of order O(n−1),
where n is the sample size.

The reason that both of these methods perform more accurately as the sample size increases,
is that the posterior distribution approaches normality as n→∞.

We use a form of the Laplace approximation in Chapter 5 to approximate the integrated
likelihood (1.11) of a GLMM where we replace the first-stage likelihood by a quadratic
approximation.

Quadrature

Quadrature is another name for numerical integration. We first consider the one-dimensional
integral

I =

∫ b

a

g(θ)dθ.

Quadrature methods work by calculating g() at n points θ1, ..., θn and then using the resulting
g(θ1), ..., g(θn) in some formula such as a weighted average

Î =
n∑
i=1

wig(θi). (2.6)

A simple quadrature method is Simpson’s rule. Here the interval [a, b] is divided into n equal
sub-intervals, g() is then evaluated at the mid-point of each sub-interval, and then equal
weights, wi = b−a

n
, are used, giving

Îs =
b− a
n

n∑
i=1

g(a+ (2i− 1)(b− a)/(2n)), (2.7)

as the Simpson’s rule approximation to I. A potential problem with Simpson’s rule is that,
typically, the limits of integration may be a = −∞ and/or b = ∞. In practice, we can just
set very wide limits for a and b in (2.7) and assume that g() is negligible outside [a, b].

A quadrature method which takes advantage of approximate normality of g(θ) is the Gauss-
Hermite rule which requires a = −∞ and b = ∞. The n-point Gauss-Hermite rule uses
points θ1, ..., θn and weights w1, ..., wn, such that Î = I if exp

(
θ
2

)
g(θ) is a polynomial of

order 2n−1. Since we can approximate exp
(
θ
2

)
g(θ) arbitrarily accurately with a polynomial

of order 2n−1, the accuracy of the Gauss-Hermite rule increases as n increases. Abramowitz
and Stegun (1965, pg. 924) contains tables of points and weights for different values of n.

Gauss-Hermite quadrature can be extended to approximate the p-dimensional integral

I =

∫
Rp
g(θ)dθ,

as

Î =
N∑
j=1

wjg(θj), (2.8)
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where N =
∏p

i=1 ni, and wj is the weight associated with the point θj. The rule (2.8) is
formed by applying the one-dimensional ni-point Gauss-Hermite rule in the ith dimension.
The weight wj = w1j1w2j2 ...wpjp is the product of the p one-dimensional weights.

Simpson’s rule can also be extended to p dimensions by applying the one-dimensional Simp-
son’s rule in each dimension.

The major drawback of quadrature rules is that they require
∏p

i=1 ni function evaluations
of g(), which becomes infeasibly large as p increases. For the high-dimensional integral
approximations that occur in GLMMs, quadrature methods are not a feasible set of methods.
However, for low dimensional integral approximations, quadrature methods can be very useful
(see, for example, Skrondal and Rabe-Hesketh (2004)).

Optimisation

In this Section, we briefly describe methods for maximising a function g : Rk → R, i.e. finding
the value m ∈ Rk such that g(m) ≥ g(θ) for all θ ∈ Rk. It is generally easier to maximise
the logarithm of a function rather than the function itself, i.e. maximise h(θ) = log g(θ).

The best known technique for maximising a function is the Newton-Raphson method, or

simply the Newton method. It requires the vector of first derivatives, h(θ∗) = dh(θ)
dθ

∣∣∣
θ=θ∗

and

the Hessian matrix H(θ∗) = d2h(θ)

dθdθT

∣∣∣
θ=θ∗

. The algorithm for finding m is as follows

1. Start at the initial value θ0.

2. Suppose the current value is θi, and set

θi+1 = θi −H(θi)−1h(θi).

3. Repeat 2. to 3., unless the sequence θ0, ...,θi+1, has converged, in which case, m = θi+1.

This method is derived by using the 2nd order Taylor series expansion of h(θ) about m. The
sequence will converge rapidly to m provided θ0 is sufficiently close to m. In fact, if θ0 is
within the inflexion boundary about m, then convergence is guaranteed.

In this thesis, we will need to maximise a function when both the vector of first derivatives and
the Hessian matrix are available, and to do so we can use the Newton method as described
above. However, we also need to maximise a function where neither the vector of first
derivatives nor the Hessian matrix are available. In this case, we can use Quasi-Newton
methods where h(θ) and H(θ) are approximated at each iteration. From the output of a
quasi-Newton algorithm, we can obtain an approximation to the Hessian matrix evaluated
at m. For more details on quasi-Newton methods, see, for example, Fletcher (2000). The
Newton method and Quasi-Newton methods are readily implemented in many mathematical
and statistical software packages. For instance, the functions optim and nlminb, available
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in the statistical software package R (R Development Core Team (2009)), were used in this
thesis.

2.2.3 Random Number Generation

In Section 2.2.1, we briefly described how Monte Carlo methods can be used to approximate
integrals. We will discuss this further in Section 2.2.5, but we noted the assumption that
we can generate from the required distribution. In this and the next Section, we describe
methods for generating random samples (or approximately random samples) from probability
distributions.

Many methods exist in the literature for generating samples from standard probability distri-
butions. These include inversion and the ratio-of-uniforms methods, and are covered in, for
example, Gentle (1998). In this Section, we describe general-purpose methods for generat-
ing samples from arbitrary univariate probability distributions with log-concave pdfs. Being
able to generate from univariate distributions will become useful when we consider Gibbs
sampling in Section 2.2.4.

Rejection sampling

Suppose we wish to generate a sample from the distribution, Π, with pdf π(θ) ∝ g(θ).
Suppose we can easily generate from the sampling distribution, S, of the random variable, Z,
which has pdf s(z). Let g(z)/s(z) ≤ A <∞ and U ∼ U[0, 1]. We may not be able to derive
sup(g(z)/s(z)), but we can derive an upper bound. Now

X = Z

∣∣∣∣U ≤ g(Z)

As(Z)
∼ Π.

The joint pdf of Z and U is s(z, u) = s(z), so Z|U ≤ g(z)/As(z) has pdf

f

(
z

∣∣∣∣u ≤ g(z)

As(z)

)
=

∫ g(z)
As(z)

0 s(u, z)du∫
R

∫ g(z)
As(z)

0 s(u, z)dudz

,

=
g(θ)∫

Θ
g(θ)dθ

,

= π(θ).

So an algorithm to generate θ from Π is as follows:

1. Generate z from the sampling distribution, S, and u from U[0, 1].

2. If u ≤ g(z)
As(z)

, then set θ = z, otherwise repeat 1. and 2.
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This method is known as rejection sampling.

The probability of accepting any pair (z, u) in rejection sampling is

P

(
U ≤ g(Z)

As(Z)

)
=

∫
R g(x)dx

A
.

Therefore, the probability of acceptance is maximised by setting A = supz∈R

(
g(z)
s(z)

)
. In turn,

the probability of acceptance can be increased by choosing an s(z) that ‘mimics’ g(z) as

closely as possible, thus reducing supz∈R

(
g(z)
s(z)

)
. Rejection sampling can actually be applied

for sampling in k dimensions. However, as O’Hagan and Forster (2004, pg. 277) state “it

is difficult to obtain a sampling distribution s(z) for which the acceptance rate
∫

Rk g(x)dx

A

is not small”. Therefore, in practice rejection sampling is usually reserved for univariate
distributions.

Adaptive Rejection Sampling

Adaptive rejection sampling (ARS) is a method proposed by Gilks and Wild (1992) to gen-
erate from the univariate distribution, Π, with pdf π(θ) = g(θ)/

∫
Θ
g(θ)dθ, where g(θ) is

log-concave, i.e. if h(θ) = log g(θ) then d2h(θ)
dθ2 < 0 for θ ∈ Θ. Also assume that Θ is

connected, and that g(θ) is continuous and differentiable on Θ.

ARS improves rejection sampling by, after each value is generated from the sampling distri-
bution, adapting S so that it ‘mimics’ Π more closely. An optional squeezing function can
also be defined to give a quick rejection test. This feature attempts to minimise the number
of evaluations of g(θ) which is assumed to be a computationally expensive process.

At every rejection, the first derivative of h(θ) is computed at the point generated from S
and a tangent to h(θ) is found. In between the intersections of the tangents, an upper
bound to h(θ) is formed by the tangents. Therefore, S is formed from piecewise exponential
distributions by exponentiating the upper bound. To initialise the algorithm, we need a set
of at least two points along with the evaluations of h(θ) and dh(θ)

dθ
at those points. Figure 2.1

shows the situation for three points, θ1, θ2 and θ3. The underlying distribution, Π, in Figure
2.1 is a normal distribution.

For more details, including how to construct the optional squeezing function and the specific
algorithm, see Gilks and Wild (1992). For a similar method that does not require derivatives
of h(θ) see Gilks (1992).

2.2.4 Markov Chain Monte Carlo

Markov chain Monte Carlo (MCMC) methods are a collection of general-purpose methods for
generating a sample from a complicated probability distribution which is known, generally,
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Figure 2.1: Upper hull for h(θ) = log g(θ) for a log-concave pdf, π(θ) = g(θ)/
∫

Θ
g(θ)dθ for r = 3.

θ
θ1 θ2 θ3

h(θ)
Upper Bound
Tangents

as the target distribution, which we denote Π, with pdf π(θ) where θ ∈ Θ. In this Section,
we use notation and terminology which is used in the field of MCMC.

A discrete-time homogeneous Markov chain, θ0,θ1, ...,θn is a dependent sequence of values
which are defined by the transition kernel :

P (x, A) = P (θi+1 ∈ A|θi = x).

The transition kernel represents the probability of the next value, θi+1, belonging to the set
A ⊂ Θ, when the previous value, θi, was x. Similarly, the n-step transition kernel is defined
as

P n(x, A) = P (θi+n ∈ A|θi = x),

i.e. the probability of the nth next value, θi+n, belonging to the set A, when the ith value is
x. The initial value of the chain is θ0 and the distribution of the nth value, θn, is given by
P n(θ0, A).

We want to generate from the target distribution, Π, so we require, for some n,

P n(θ0, A) ≈ Pπ(θ ∈ A) =

∫
A

π(θ)dθ, (2.9)

for all A ⊂ Θ and for any initial value, θ0. So regardless of the initial value, the distribution of
θn is approximately equal to the target distribution. The first step in satisfying this condition
is to ensure that the stationary distribution of the Markov chain is the target distribution,
i.e. if θi ∼ Π, then θi+1 ∼ Π, or in terms of the transition kernel

Pπ(θ ∈ A) =

∫
A

π(θ)dθ =

∫
Θ

P (θ, A)π(θ)dθ, (2.10)
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for all A ⊂ Θ. The condition (2.10) is difficult to verify for any particular transition kernel.
However, we can choose a transition kernel that satisfies the condition of reversibility for Π.
Reversibility holds when (θi,θi+1) has the same distribution as the time-reversed (θi+1,θi),
i.e. if the detailed balance equations :

P (θi+1 ∈ A,θi ∈ B) =

∫
B

P (θ, A)π(θ)dθ

= P (θi+1 ∈ B,θi ∈ A) =

∫
A

P (θ, B)π(θ)dθ,

hold for A,B ⊂ Θ. If B = Θ, then the integral in the first line becomes (2.10) and, therefore,
reversibility implies that Π is the stationary distribution.

A Markov chain is ergodic if

sup
A⊂Θ
|P n(θ0, A)− Pπ(θ ∈ A)| → 0, (2.11)

as n → ∞. In other words, starting from an arbitrary initial value, θ0, the nth value in
the chain, θn, tends to be a value from the target distribution, Π, as n tends to infinity.
This is a very important property for an MCMC sampler, since if we have n iterations (for
sufficiently large n) from an ergodic Markov chain with Π as its stationary distribution then
the approximation (2.9) can be justified by (2.11) (see, for example, O’Hagan and Forster
(2004, pg. 263-264)).

A Markov chain is ergodic if it is irreducible, aperiodic and Harris recurrent.

A Markov chain is irreducible if, for any θ0 and any A ⊂ Θ such that Pπ(θ ∈ A) > 0,
there exists n such that P n(θ0, A) > 0. So, regardless of the initial value, θ0, the chain can
eventually visit any region, A, of the parameter space, Θ. Suppose Cm(θ0) ⊂ Θ is the set
of all possible values of θm that can be visited from an initial θ0. A Markov chain can be
reducible if for two different initial values, θ∗ and θ∗∗, Cm(θ∗) ∩ Cm(θ∗∗) = ∅.

A Markov chain is periodic with period d if it cycles between d disjoint subsets of Θ. For
example, suppose there are two disjoint subsets C1 and C2, where θi ∈ C1 implies θi+1 ∈ C2,
and θi ∈ C2 implies θi+1 ∈ C1, then the chain is periodic with period 2. A Markov chain is
aperiodic if it is not periodic.

Let ηA be the number of visits of a Markov chain to the subset A ⊂ Θ. A Markov chain is
recurrent if for any A ⊂ Θ such that Pπ(θ ∈ A) > 0, then E(ηA) = ∞. A Markov chain is
Harris recurrent if for any A ⊂ Θ such that Pπ(θ ∈ A) > 0, then P (ηA =∞) = 1. In other
words, a Harris recurrent Markov chain visits the subset A infinitely often, regardless of the
initial value.

The ergodic theorem for Markov chains states that, for an ergodic Markov chain, {θ1, ...,θn},

1

n

n∑
i=1

h(θi)→ EΠ(h(θ)),
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as n → ∞, with probability one. In other words, if we have an ergodic Markov chain,
{θ1, ...,θn}, with stationary distribution, Π, we can approximate EΠ(h(θ)) =

∫
Θ
h(θ)π(θ)dθ

by 1
n

∑n
i=1 h(θi) with large n.

Suppose we have a Markov chain, {θ0,θ1, ...,θt, ...,θt+n}, with initial value, θ0. We retain,
for summary of Π, the values {θt+1, ...,θt+n}, i.e. we discard the first t values. The values
{θ0, ...,θt} are called the burn-in phase. We are required to specify a value for t, for which,
effectively, the chain has become independent of the initial value, θ0. We can choose t = 0,
if θ0 is a representative value such as the mode of Π. We discuss the value of t further when
we consider convergence issues for the practical implementation of MCMC methods on page
26.

Metropolis-Hastings Algorithm

So far we have discussed some general properties of MCMC samplers. We now describe a
specific, but very flexible, MCMC sampler known as the Metropolis-Hastings algorithm. The
most popular of MCMC samplers: the random-walk algorithm, the independence sampler
and Gibbs sampling are all special cases of the Metropolis-Hastings algorithm.

The Metropolis-Hastings algorithm works by generating proposals from a proposal distri-
bution. These proposals are then accepted or rejected in such a way that the accepted
proposals form a sample from the target distribution. We provide an informal derivation of
the algorithm.

Suppose (θi,θ∗) is the random vector consisting of the current value of the chain, θi, and
the proposal, θ∗. This vector has joint pdf

f(θi,θ∗) = q(θi,θ∗)π(θi),

where q(θi,θ∗) is the pdf of the proposal distribution, Q, which is conditional on θi. If θ∗

was automatically accepted and for reversibility to hold, the following condition should be
satisfied

q(θi,θ∗)π(θi) = q(θ∗,θi)π(θ∗). (2.12)

Now (2.12) is unlikely to hold, so we introduce the acceptance probability, α(., .) ≤ 1, such
that transitions from θi to θ∗ are accepted with probability α(θi,θ∗), transitions from θ∗ to
θi are accepted with probability α(θ∗,θi), and

q(θi,θ∗)α(θi,θ∗)π(θi) = q(θ∗,θi)α(θ∗,θi)π(θ∗). (2.13)

Suppose
q(θi,θ∗)π(θi) > q(θ∗,θi)π(θ∗) (2.14)

and set α(θ∗,θi) = 1, then

α(θi,θ∗) =
π(θ∗)q(θ∗,θi)

π(θi)q(θi,θ∗)
.
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Now, suppose that the inequality in (2.14) is reversed and α(θi,θ∗) = 1, then reversibility is
ensured if

α(θi,θ∗) = min

[
1,
π(θ∗)q(θ∗,θi)

π(θi)q(θi,θ∗)

]
. (2.15)

In practice, it is usually the case that π(θ) = g(θ)/
∫

Θ
g(θ)dθ, where the normalising con-

stant,
∫

Θ
g(θ)dθ is unavailable. However, it is clear that

π(θ∗)

π(θi)
=
g(θ∗)

g(θi)
,

since
∫

Θ
g(θ)dθ cancels out in both the numerator and denominator, and we can still evaluate

α(θi,θ∗).

In summary, the Metropolis-Hastings algorithm proceeds as follows:

1. Choose an initial value, θ0.

2. Suppose the current value of the chain is θi.

3. Generate a proposal, θ∗, from the proposal distribution, Q, with pdf, q(θi, .).

4. Calculate the acceptance probability, α(θi,θ∗), according to (2.15).

5. With probability α(θi,θ∗) accept the proposal and set the current value as θi+1 = θ∗.
Otherwise, set the current value as θi+1 = θi.

6. Repeat steps 2. to 6.

The Metropolis-Hastings algorithm provides a general-purpose method of generating a sam-
ple from an arbitrary multivariate distribution where we may not have a normalised pdf.
O’Hagan and Forster (2004, pg. 267) state that a sufficient condition for ergodicity is that
q(θi,θ) > 0 for all θ ∈ Θ.

We now describe some important special cases of the Metropolis-Hastings algorithm which
arise from particular choices of the proposal distribution.

Suppose the proposal distribution is symmetric about the current value of the chain, θi, such
that θ∗ = θi + ε, where ε is a realisation of some random variable whose distribution is
symmetric about 0 and does not depend on θi. In this case, q(θi,θ∗) = q(θ∗,θi) and the
acceptance probability reduces to

α(θi,θ∗) = min

[
1,
π(θ∗)

π(θi)

]
. (2.16)

A Metropolis-Hastings algorithm with this choice of proposal distribution is known as a
random-walk Metropolis-Hastings algorithm. We see from (2.16), that proposals to areas of
higher target density will always be accepted.
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Typically, the distribution of ε will be normal with mean 0 and covariance matrix Σ, i.e.
θ∗|θi ∼ N(θi,Σ).

The key issue in the implementation of the random-walk algorithm is the variance of the
proposal distribution, Σ. For example, consider a one-dimensional example where θ∗ = θi+ε,
and ε ∼ N(0, σ2

ε ). If σ2
ε is small, then θ∗ will be close to θi and the acceptance probability

will be close to 1. Therefore, proposals will be accepted with high probability but the chain
will take a large number of iterations to fully explore the target distribution. On the other
hand, suppose σ2

ε is large, then a lot of the proposals will be made in regions of low target
density and will be rejected.

This means that some tuning is required before we can run the Metropolis-Hastings algorithm
and save the accepted proposals. One way of tuning is to assess the acceptance rate of the
algorithm. Roberts and Rosenthal (2001) assess the efficiency of various Metropolis-Hastings
algorithms and state that for the random-walk Metropolis-Hastings algorithm “on smooth
densities, any acceptance rate between 0.1 and 0.4 ought to perform close to optimal”. They
also state that even low acceptance rates of order 0.1 “can be very close to optimal”. Gelman
et al. (1996) find that the optimal acceptance rate is approximately 23%.

Suppose the proposal distribution does not depend on the the current value of the chain, θi,
so that q(θi,θ∗) = s(θ∗), then the acceptance probability simplifies to

α(θi,θ∗) = min

[
1,
π(θ∗)s(θi)

π(θi)s(θ∗)

]
. (2.17)

A Metropolis-Hastings algorithm with this proposal distribution is known as the independence
sampler.

The performance of the independence sampler depends on how well the proposal distribution
‘mimics’ the target distribution. If the tails of the proposal distribution are light relative
to those of the target distribution, then a low number of proposals are made in the tails of
the target distribution, this leads to the chain compensating and becoming stuck at a tail
value when one is actually proposed. This is the same problem that impacts upon multi-
dimensional rejection sampling as discussed in Section 2.2.3. O’Hagan and Forster (2004,
pg. 271) state that, for these reasons, “the independence sampler is rarely the most efficient
MCMC sampler for any given problem”.

We now describe a very popular Metropolis-Hastings algorithm known as Gibbs sampling.
Let θ = (θ1, ...,θj, ...,θB)T be the k dimensional vector of parameters where the target
distribution has pdf, π(θ). Therefore, we have partitioned θ into B blocks. Let θj be the jth

block of kj parameters, so that
∑B

j=1 kj = k. Finally, let θ\j = (θ1, ...,θj−1,θj+1, ...,θB)T ,
which is θ with the jth block, θj, removed. The jth full conditional distribution, Πj, of θj
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has pdf

πj(θj) = π(θj|θ\j),

=
π(θ1, ...,θj, ...,θB)∫

Θj
π(θ1, ...,θj, ...,θB)dθj

,

=
π(θ1, ...,θj, ...,θB)

c(θ\j)
.

Suppose the current value of the chain is θi = (θi1, ...,θ
i
j−1,θ

i
j,θ

i
j+1, ...,θ

i
B)T and we propose

to just update the jth block. Therefore the proposal is θ∗ = (θi1, ...,θ
i
j−1,θ

∗
j ,θ

i
j+1, ...,θ

i
B)T

which we generate from the distribution with pdf

q(θi,θ∗) = πj(θj).

Consider the acceptance probability of the resulting Metropolis-Hastings algorithm

α(θi,θ∗) = min

1,
π(θi1, ...,θ

i
j−1,θ

∗
j ,θ

i
j+1, ...,θ

i
B)

π(θi1,...,θ
i
j−1,θ

i
j ,θ

i
j+1,...,θ

i
B)

c(θ\j)

π(θi1, ...,θ
i
j−1,θ

i
j,θ

i
j+1, ...,θ

i
B)

π(θi1,...,θ
i
j−1,θ

∗
j ,θ

i
j+1,...,θ

i
B)

c(θ\j)

 ,
= 1.

Hence, by choosing a proposal distribution for θj equal to the full conditional distribution, Πj,
of θj, then the acceptance probability will always be one and all proposals will be accepted.

The Gibbs sampling algorithm is:

1. Choose an initial value, θ0.

2. Suppose the current value of the chain is θi.

3. The next value of the chain, θi+1, is obtained in the following way:

θi+1
1 is generated from Π1 with pdf π(θ1|θi2, ...,θiB)

θi+1
2 is generated from Π2 with pdf π(θ2|θi+1

1 ,θi3, ...,θ
i
B)

· · · · · ·
θi+1
j is generated from Πj with pdf π(θj|θi+1

1 , ...,θi+1
j−1,θ

i
j+1, ...,θ

i
B)

· · · · · ·
θi+1
B is generated from ΠB with pdf π(θB|θi+1

1 , ...,θi+1
B−1).

4. Repeat steps 2. to 4.

Step 3. is known as a scan of the Gibbs sampling algorithm.

The only drawback of Gibbs sampling is the difficulty in generating a value, θi+1
j , from

the full conditional distribution of θj (known as updating θj) since these are, typically, not
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available. We can use a general Metropolis-Hastings step to update θj and this is known as
the Metropolis within Gibbs algorithm. Alternatively, if we partition θ so that θj is scalar,
i.e. θj = θj, then we can use the method of adaptive rejection sampling described in Section
2.2.3 to generate a value from the univariate full conditional distribution, provided πj(θj) is
log-concave.

Gibbs sampling is the most popular MCMC sampler in applied Bayesian statistics for gener-
ating a sample from the posterior distribution. Two possible reasons for this are conditional
conjugacy and conditional independence.

If the block, θj, is conditionally conjugate then the full conditional distribution of θj will
belong to the same family as the prior distribution of θj and will be, presumably, easy to
generate from. This can be the case for the variance components matrix, D, in a GLMM
and will be discussed further in Section 2.2.7.

Conditional independence occurs in hierarchical models (which GLMMs are a subset of).
Suppose f(y|θ) =

∏
j f(yj|θj) and f(θ|φ) =

∏
j f(θj|φ), then the posterior distribution of

the θj’s will be conditionally independent given φ. This is the case for the group-specific
parameters, ui’s, in a GLMM.

Due to these reasons, there exist off-the-shelf software packages such as BUGS (Bayesian
inference Using Gibbs Sampling) and JAGS (Just Another Gibbs Sampler) which can produce
a sample from the posterior distribution without the user having to specify the method used
to generate from the full conditional distributions. The ease of use of these packages has
further popularised Gibbs sampling.

These issues are further discussed in relation to GLMMs in Section 2.2.7.

Adaptive Rejection Metropolis Sampling

In Section 2.2.3, we discussed the method of adaptive rejection sampling for generating from
a univariate distribution, Π, where the pdf of this distribution, π(θ), is log-concave. Being
able to do so is important when we considered Gibbs sampling in the previous Section.

Gilks et al. (1995) proposed Adaptive Rejection Metropolis Sampling (ARMS) as a generali-
sation of ARS when π(θ) is not necessarily log-concave. It does so by the introduction of a
Metropolis accept/reject step. If π(θ) is log-concave, then ARMS reduces to the derivative
free version of ARS proposed by Gilks (1992). See Gilks et al. (1995) for more details on
ARMS, including the algorithm.

Convergence Issues for MCMC

On page 22, we discussed how, for a Markov Chain,
{
θ0, ...,θt,θt+1,θt+n

}
, with initial value

θ0, we discard the first t+1 values
{
θ0, ...,θt

}
, and retain the last n values,

{
θt+1,θt+n

}
, for
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inference. The first t iterations of an MCMC algorithm that produces
{
θ0, ...,θt

}
is called

the burn-in phase. The key question is: what value should t take so that the chain has
become independent of θ0? When a chain has become independent of θ0 it is said to have
converged in distribution. If θ0 is a representative value of Π, such as the mode, then t can
be 0.

There exist many formal convergence diagnostic tools, many of which are implemented in
BUGS. We, however, take an informal, entirely pragmatic approach to assessing convergence
by inspecting trace plots of the model parameters as suggested by O’Hagan and Forster
(2004, pg. 287-288).

We can improve convergence in Gibbs sampling, where the full conditional distributions are
univariate, by using the method of ordered overrelaxation proposed by Neal (1995). Sup-
pose we are in Step 3. of the Gibbs sampling algorithm on page 25, and are attempt-
ing to generate a value, θi+1

j , from the univariate full conditional distribution with pdf

π(θj|θi+1
1 , ...,θi+1

j−1,θ
i
j+1, ...,θ

i
B). The ordered overrelaxation algorithm to obtain θi+1

j is

1. Generate N values, independently, from the full conditional distribution with pdf
π(θj|θi+1

1 , ...,θi+1
j−1,θ

i
j+1, ...,θ

i
B).

2. Arrange these N values, in addition to θij, in increasing order, as follows

θ
(0)
j ≤ θ

(1)
j ≤ ... ≤ θ

(r)
j = θij ≤ ... ≤ θ

(N)
j ,

where ties are broken at random and r is the index of θij.

3. Let θi+1
j = θ

(N−r)
j .

Proof that ordered overrelaxation retains Π as the stationary distribution is given by Neal
(1995). Note that if N = 1, then ordered overrelaxation is ordinary Gibbs sampling. It
would first appear that the computational expense of ordered overrelaxation is approximately
N times that of ordinary Gibbs sampling. However, by using ARS or ARMS to achieve
the sampling in Step 1. of the ordered overrelaxation algorithm, we adapt the sampling
distribution to be closer to the full conditional distribution, so the sampling becomes more
efficient and the computational expense is less than N times that of ordinary Gibbs sampling.
Neal (1995) suggests using N = 20 for routine use.

Ordered overrelaxation can be implemented in BUGS. For the remainder of this thesis, we
use ordered overrelaxation whenever we generate a posterior sample using Gibbs sampling.

2.2.5 Monte Carlo Integration

A crucial quantity in Bayesian model determination is the marginal likelihood for model
m ∈M

fm(y) =

∫
Θ

fm(y|θm)fm(θ)dθ.
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The marginal likelihoods are used to evaluate the posterior model probabilities of models inM
according to (1.7) and the Bayes’ factor between any two models in M , i.e. fm1(y)/fm2(y). In
this Section, we describe several Monte Carlo methods for approximating fm(y). Throughout
this Section we describe methods for approximating a general integral

I =

∫
Θ

g(θ)dθ,

where π(θ) = g(θ)/
∫

Θ
g(θ)dθ is the pdf of the distribution, Π, and I = fm(y) if g(θ) =

fm(y|θm)fm(θ), or if, equivalently, Π is the posterior distribution. However, in some cases
the prior distribution may not have a normalised pdf and we may need to find the normalising
constant, hence the more general setup for this Section.

Importance Sampling

Recall from Section 2.2.1, the Monte Carlo approximation, µ̂f , to µf = E(f(θ)) where θ ∼ Π
for some function f : Θ→ R, is to generate θ1, ...,θn from Π and then set

µ̂f =
1

n

n∑
i=1

f(θi).

Consider the integral

I =

∫
Θ

g(θ)

h(θ)
h(θ)dθ

= EH

(
g(θ)

h(θ)

)
, (2.18)

where θ is from the distribution, H, with the pdf, h(θ). Note that (2.18) can be approximated
using the Monte Carlo method, thus

ÎIS =
1

n

n∑
i=1

g(θi)

h(θi)
, (2.19)

and {θ1, ...,θn} is a sample generated from H. This method is known as importance sampling.

It is easy to see that E(ÎIS) = I, so ÎIS is an unbiased approximation of I with variance

var(ÎIS) =
1

n
varH

(
g(θ)

h(θ)

)
,

≈ 1

n2

n∑
i=1

g(θi)
2

h(θi)2
− 1

n
Î2
IS.

As n increases, ÎIS becomes a more accurate approximation to I, provided that varH

(
g(θ)
h(θ)

)
is finite. The variance of the importance sampling approximation depends upon how well
h(θ) ‘mimics’ g(θ) in a similar way to how the performance of the independence sampler
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depends on how well the proposal distribution ‘mimics’ the target distribution and also how
well the sampling distribution, S, ‘mimics’ Π in rejection sampling. To see this, suppose
h(θ) ∝ g(θ), then var(ÎIS) = 0 and ÎIS = I. A common choice for the distribution, H, is the
normal distribution but we see in the next example that this can be a bad choice.

Example (from O’Hagan and Forster (2004, pg. 254))

Suppose θ ∈ R and g(θ) ∝ (1 + θ2)−1, i.e. Π is a t distribution with 1 degree of freedom, also
known as the Cauchy distribution, and let H be N(m, v). Then

EH

(
g(θ)2

h(θ)2

)
= (2πv)

1
2

∫
R
(1 + θ2)−2 exp

[
(θ −m)2

2v

]
dθ,

this integral is divergent for all m and v, and var(ÎIS) =∞. So if Π is any t-distribution and
H is any normal distribution then ÎIS will not converge even as n→∞. �

Reciprocal Importance Sampling

Note that

1 =

∫
Θ

h(θ)dθ,

=

∫
Θ

h(θ)

π(θ)
π(θ)dθ,

=

∫
Θ

h(θ)I

g(θ)
π(θ)dθ.

Therefore I = Eπ

[
h(θ)
g(θ)

]−1

, and the reciprocal importance sampling approximation to I is

ÎRIS =

[
1

n

n∑
i=1

h(θi)

g(θi)

]−1

,

where {θ1, ...,θn} is a sample generated from Π. Noting that E
(

1
X

)
> 1

E(X)
for any positive

random variable, X, it can be shown that E(ÎRIS) > I, so the reciprocal importance sampling
approximation to I is biased. The variance of the approximation is

var(ÎRIS) =
I4

n
varΠ

(
h(θ)

g(θ)

)
+O

(
1

n2

)
.

The approximation is asymptotically, with respect to n, unbiased, provided varΠ

(
h(θ)
g(θ)

)
is

finite.
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Candidate’s Method

Recall from page 28 that π(θ) = g(θ)/I which leads to the candidate’s formula:

I =
g(θ)

π(θ)
.

Therefore, the candidate’s method approximation to I is

ÎC =
g(θ∗)

π̂(θ∗)
, (2.20)

for any value θ∗ ∈ Θ. Obviously, this method relies on having an approximation to the
density, π̂(θ∗), of Π at θ∗, based on a sample {θ1, ...,θn} generated from Π. Methods of
density estimation will be more accurate in areas of high density, so it is suggested that the
value θ∗ used in (2.20) be close to the mode of Π. In low dimensional problems, we can use
kernel density estimation, but this is unlikely to be sufficiently accurate in higher dimensions.

Chib and Jeliazkov (2001) propose a method for approximating the density, π̂(θ∗), based on
output from a Metropolis-Hastings algorithm. Using (2.13), which ensures that reversibility
holds for the Metropolis-Hastings algorithm, we have∫

Θ

q(θ,θ∗)α(θ,θ∗)π(θ)dθ =

∫
Θ

q(θ∗,θ)α(θ∗,θ)π(θ∗)dθ,

which leads to

π(θ∗) =

∫
Θ
q(θ,θ∗)α(θ,θ∗)π(θ)dθ∫
Θ
q(θ∗,θ)α(θ∗,θ)dθ

,

=
Eπ [q(θ,θ∗)α(θ,θ∗)]

EQ|θ∗ [α(θ∗,θ)]
. (2.21)

The numerator and denominator of (2.21) can be approximated using the Monte Carlo
method, i.e.

π̂(θ∗) =
1
n2

∑n2

i=1 q(θ
(2)
i ,θ∗)α(θ

(2)
i ,θ∗)

1
n1

∑n1

i=1 α(θ∗,θ
(1)
i )

,

where {θ(1)
1 , ...,θ(1)

n1
} and {θ(2)

1 , ...,θ(2)
n2
} are samples generated from the proposal distribution

given the current value, θ∗, which is denoted Q|θ∗, and Π, respectively, and also q(θ
(2)
i ,θ∗) is

the pdf of the proposal distribution given current value, θ
(2)
i , evaluated at θ∗. Alternatively,

Chib (1995) proposes a method for approximating the density of Π at θ∗ based on output
from the Gibbs sampler.

Bridge Sampling

Suppose that h(θ) is the pdf of the distribution, H, and that γ(θ) is a function such that
0 < |

∫
Θ
γ(θ)g(θ)h(θ)dθ| <∞, and that since

1 =

∫
Θ
γ(θ)g(θ)h(θ)dθ∫

Θ
γ(θ)g(θ)h(θ)dθ

,
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it follows that

I =

∫
Θ
γ(θ)g(θ)h(θ)dθ∫

Θ
γ(θ)h(θ)π(θ)dθ

,

=
EH [γ(θ)g(θ)]

EΠ [γ(θ)h(θ)]
. (2.22)

As for approximating the density of Π at θ∗ in the candidate’s method, we can approximate
the numerator and denominator of (2.22) using the Monte Carlo method. Therefore, the
bridge sampling approximation to I is

ÎBS =
1
nH

∑nH
i=1 γ(θHi )g(θHi )

1
nΠ

∑nΠ

i=1 γ(θΠ
i )h(θΠ

i )
, (2.23)

where {θH1 , ...,θHnH} and {θΠ
1 , ...,θ

Π
nΠ
} are samples generated from H and Π, respectively.

Bridge sampling was first proposed by Meng and Wong (1996) in a slightly different way for
approximating the ratio of normalising constants where h(θ) is also unnormalised.

Noting that E
(
X
Y

)
> E(X)

E(Y )
, for any positive random variables X and Y , it can be shown that

E(ÎBS) > I for finite nH and nΠ, but is asymptotically, with respect to nH and nΠ, unbiased.
The variance of the approximation is

var(ÎBS) =
I2

nH

varH(g(θ)γ(θ))

EH(g(θ)γ(θ))2
+
I4

nΠ

varΠ(h(θ)γ(θ))

EH(g(θ)γ(θ))2
+O

(
1

n2
H + n2

Π

)
. (2.24)

If γ(θ) = 1
h(θ)

, then bridge sampling reduces to importance sampling. Similarly, if γ(θ) = 1
g(θ)

,

then ÎBS = ÎRIS. Meng and Wong (1996) show that the optimal γ(θ), with respect to
minimising (2.24), is

γO(θ) = (nΠg(θ) + nHIh(θ))−1 ,

with variance

var(ÎBS,O) =
I2

nHnΠ

[∫
Θ

π(θ)h(θ)

nHh(θ) + nΠπ(θ)
dθ

]−1

− 1

nH
− 1

nΠ

+O

(
1

n2
H + n2

Π

)
. (2.25)

Obviously, the optimal γ(θ) depends on the unknown normalising constant, I. However,
Meng and Wong (1996) suggest iterating the following scheme, starting from an initial value,

Î
(0)
BS,O, until convergence

Î
(t+1)
BS,O =

1
nH

∑nH
i=1

lHi

nΠlHi+nH Î
(t)
BS,O

1
nΠ

∑nΠ

i=1
1

nΠlΠi+nH Î
(t)
BS,O

, (2.26)

where lki = g(θ
(k)
i )/h(θ

(k)
i ) for k = H,Π.

Consider the general bridge sampler approximation given in (2.23), where h(θ) = q(θ∗,θ),
i.e. H is the proposal distribution of a Metropolis-Hastings algorithm given current value θ∗

and γ(θ) = α(θ∗,θ)/g(θ). The bridge sampling approximation to I is then

ÎBS =
1
nH

∑nH
i=1 α(θ∗,θHi )

1
nΠ

∑nΠ

i=1 α(θ∗,θΠ
i )h(θΠ

i )/g(θΠ
i )
.
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Using (2.13), we see that

α(θ∗,θΠ
i ) =

q(θΠ
i ,θ

∗)α(θΠ
i ,θ

∗)g(θΠ
i )

h(θΠ
i )g(θ∗)

,

and

α(θ∗,θΠ
i )h(θΠ

i )/g(θΠ
i ) =

q(θΠ
i ,θ

∗)α(θΠ
i ,θ

∗)

g(θ∗)
,

so the bridge sampling approximation reduces to

ÎBS =

g(θ∗)
nH

∑nH
i=1 α(θ∗,θHi )

1
nΠ

∑nΠ

i=1 α(θΠ
i ,θ

∗)q(θΠ
i ,θ

∗)
. (2.27)

We can see that (2.27) is the Chib and Jeliazkov (2001) candidate’s method approximation
to I which is, therefore, a special case of bridge sampling with a sub-optimal choice of γ(θ).
This was first noted by Mira and Nicholls (2004).

We defer further discussion of bridge sampling, as applied to GLMMs, to Subsection 2.2.7
and also our implementation of bridge sampling to GLMMs to Chapter 4.

Nested Sampling

In this Section, we describe a relatively new method for approximating I =
∫

Θ
g(θ)dθ, called

nested sampling proposed by Skilling (2006).

Recall the importance sampling identity

I =

∫
Θ

g(θ)

h(θ)
h(θ)dθ,

=

∫
Θ

L(θ)h(θ)dθ,

= EH (L(θ)) , (2.28)

where L(θ) = g(θ)
h(θ)

> 0. Let x = Ψ(l) = P (L(θ) > l) so that Ψ() is the survival function

of the univariate random variable, L(θ), when θ ∼ H. Now Ψ−1(x) = sup{l : Ψ(l) > x},
i.e. the (1− x)th quantile of the distribution of L(θ). Suppose x ∼ U[0, 1], then Ψ−1(x) is a
random variable. We now find the distribution of this random variable. The Jacobian of the
transformation is ∣∣∣∣dxdl

∣∣∣∣ =

∣∣∣∣dΨ(l)

dl

∣∣∣∣ =

∣∣∣∣d(1− FL(θ)(l))

dl

∣∣∣∣ = fL(θ)(l),

where FL(θ)(l) and fL(θ)(l) are the distribution function and pdf of the random variable L(θ),
respectively, so that FL(θ)(l) = 1 − Ψ(l). Then the pdf, fΨ−1(x)(z), of the random variable
Ψ−1(x) is given by

fΨ−1(x)(z) = fL(θ)(z),
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for z > 0. Therefore, Ψ−1(x) has the same distribution as L(θ) and

I = EH (L(θ)) ,

= EU[0,1]

(
Ψ−1(x)

)
,

=

∫ 1

0

Ψ−1(x)dx. (2.29)

Since d
dx

Ψ−1(x) = − 1
fL(θ)(Ψ

−1(x))
< 0, Ψ−1(x) is a decreasing function.

The one-dimensional integral (2.29) can be approximated by a quadrature method as

ÎNS =
m∑
i=1

(xi−1 − xi)Ψ−1(xi), (2.30)

where 0 < xm < xm−1 < ... < x1 < x0 = 1. The problem now is how to evaluate the function
Ψ−1(). Skilling (2006) proposes a method which does not require direct evaluation of Ψ−1().
Suppose that x1, ..., xm are randomly generated as

xi =
i∏

k=1

tk,

where tk = maxr=1,...,N{ur,k} and u1,k, ..., uN,k
iid∼ U[0, 1]. Then it can be shown that E(xi−1−

xi) ≈ e−(i−1)/N − e−i/N . Therefore we can update the nested sampling approximation to

ÎNS =
m∑
i=1

(e−(i−1)/N − e−i/N)Ψ−1(xi), (2.31)

although this still requires apparent evaluation of Ψ−1(xi). However, if θi1, ...,θiN are gen-
erated from the distribution H|L(θ) > L(θi) and we let θi ∈ {θi1, ...,θiN} be such that
L(θ) = min{L(θi1), ..., L(θiN)}, then Ψ−1(xi) has the same distribution as L(θi) (see Evans
(2007)). We then replace Ψ−1(xi) in (2.31) by L(θi). The nested sampling approximation is
then

ÎNS =
m∑
i=1

(e−(i−1)/N − e−i/N)L(θi). (2.32)

Evans (2007) shows that
∑m

i=1(e−(i−1)/N − e−i/N)g(xi)→
∫ 1

0
g(x)dx as N →∞ and m/N →

∞ in probability for xi as generated above and for any continuous function g : [0, 1] → R.
Chopin and Robert (2009) provide a central limit theorem result for nested sampling where

the variance of the approximation is O(N−
1
2 ).

The following algorithm can be used to find ÎNS, the nested sampling approximation to I.

1. Generate a sample Θ1 = {θ1, ...,θN} from H. Set i = 1, and ÎNS = 0.

2. Let θi ∈ Θi be such that L(θi) = min{L(θ1), ..., L(θN)} and set Θ
(S)
i = Θi\θi.

33



3. Generate θ∗ from H|L(θ) > L(θi), and set Θi+1 = Θ
(S)
i ∩ θ

∗ and let

ÎNS = ÎNS + (e−(i−1)/N − e−i/N)L(θi).

Put i = i+ 1.

4. Repeat steps 2. to 3. until ÎNS has converged.

Nested sampling was originally proposed by Skilling (2006) to approximate the marginal
likelihood where H is the prior distribution and L(θ) is the likelihood function. Evans
(2007) suggested the use of nested sampling for general integration problems and that is
what we have described above. The description above can be seen as a special case of
nested importance sampling as proposed by Chopin and Robert (2009). We will discuss this
extension and a further extension of nested sampling in Chapter 4.

2.2.6 Markov Chain Monte Carlo Model Determination

In Section 2.2.5, we describe several methods for approximating the marginal likelihood,
fm(y), of each model m ∈M , with the objective of evaluating the posterior model probability,
f(m|y). The general approach of evaluating the marginal likelihood for each model and, in
turn, the posterior model probability, is referred to as the marginal likelihood approach by
Chen et al. (2000, pg. 237). If the number of models, |M |, is large, approximating each
marginal likelihood to the sufficient level of accuracy required may become impractical. In
fact, even when fm(y) can be evaluated exactly, as is the case for linear models with the
conjugate normal-inverse-gamma prior, it can be impractical to evaluate fm(y) for every
model, if |M | is very large.

Reversible Jump MCMC

An alternative to the marginal likelihood approach, is to generate a sample from the param-
eter space

Θ =
⋃
m∈M

{m} ×Θm,

of the posterior distribution, θm,m|y, of the encompassing model as described in Section

1.1.3, using MCMC methods. We will then have a sequence {(m(1),θ
(1)

m(1)), ..., (m
(n),θ

(n)

m(n))} as
the MCMC sample. The posterior model probability of model m ∈M is then approximated
by 1

n

∑n
k=1 I(m(k) = m), i.e. the proportion of occurrences of model m in the MCMC sample.

We can also use the MCMC sample for posterior inference conditional on model m ∈M , by
only selecting, as our posterior sample, the values in the MCMC sample where m(k) = m.

The parameter θm has different interpretations for different m. We need to update θm
simultaneously with m, and, therefore, Gibbs sampling is not an appropriate method for
generating a sample from θm,m|y.

34



Instead, we focus on a more general Metropolis-Hastings algorithm. Suppose the current
value in the chain is (m(i),θ

(i)

m(i)), then a proposal, (m∗,θ∗m∗), is made from the proposal

distribution, Q|(m(i),θ
(i)

m(i)), given the current value, (m(i),θ
(i)

m(i)). It is generally more conve-
nient to propose a model, m∗, and then propose model parameters, θ∗m∗ , conditional on m∗.

Therefore, the pdf of Q|(m(i),θ
(i)

m(i)) can be decomposed as

q
(

(m(i),θ
(i)

m(i)), (m,θm)
)

= qm

(
(m(i),θ

(i)

m(i)),m
)
qθm

(
(m(i),θ

(i)

m(i)), (m,θm) |m
)
.

As with all Metropolis-Hastings algorithms, the choice of proposal is crucial for effective
performance in practice. An obvious starting point is to make the proposal distribution in-
dependent of the current values of the chain yielding an independence sampler. Therefore,
q((m(i),θ

(i)

m(i)
), (m,θm)) = s(m,θm) = sm(m)sθm(θm|m). Similar to the within-model inde-

pendence sampler discussed in Section 2.2.4, the performance is dependent on how well sm(m)
and sθm(θm|m) ‘mimic’ f(m|y) and fm(θm|y), respectively. An effective independence sam-
pler will, therefore, need considerable information about each posterior distribution of θm,
and can be seen as an alternative to the marginal likelihood approach using the methods
described in Section 2.2.5. O’Hagan and Forster (2004, pg. 298) point out that if |M | is
small to moderate, then the correspondence between sm(m) and f(m|y) is not so crucial and
sm(m) ∝ 1 will often suffice.

Green (1995) proposes a Metropolis-Hastings algorithm, called the reversible jump algorithm,
for generating from θm,m|y, where the proposals are allowed to depend on the current value

of the chain, (m(i),θ
(i)

m(i)). For moves from m(i) to m∗ where the current model parameters

are θ
(i)

m(i) , we specify a proposal distribution with pdf q(v|θ(i)

m(i) ,m
(i),m∗). In the algorithm

we generate v from this distribution. The proposal is then a function of v and θ
(i)

m(i) . The
reversible jump algorithm is as follows:

1. Let the current values of the chain be (m(i),θ
(i)

m(i)) where the dimension of θ
(i)

m(i) is km(i) .

2. Propose a new model, m∗, with probability h(m(i),m∗).

3. Generate v from the proposal distribution with pdf q(v|θ(i)

m(i) ,m
(i),m∗).

4. Set (θ∗m∗ ,v
∗) = gm(i),m∗(θ

(i)

m(i) ,v), where gm(i),m∗ is a deterministic one-to-one function

and specified so that km(i) + dim(v) = km∗ + dim(v∗). Note that gm(i),m∗ = g−1
m∗,m(i) .

5. Accept the proposed move from m(i) to m∗ with probability

α
[
(m(i),θ

(i)

m(i)), (m
∗,θ∗m∗)

]
= min

[
1,

fm∗(y|θ∗m∗)fm∗(θ∗m∗)f(m∗)

fm(i)(y|θ(i)

m(i))fm(i)(θ
(i)

m(i))f(m(i))

× h(m∗,m(i))q(v∗|θ∗m∗ ,m∗,m(i))

h(m(i),m∗)q(v|θ∗m(i) ,m(i),m∗)∣∣∣∣∣∂gm(i),m∗(θ
(i)

m(i) ,v)

∂(θ
(i)

m(i) ,v)

∣∣∣∣∣
]
.
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6. Repeat steps 1. to 5.

The reversible jump algorithm has the independence sampler algorithm as a special case
when gm(i),m∗(θ

(i)

m(i) ,v) = (v∗,θ∗m∗), where dim(v) = km∗ and dim(v∗) = km(i) .

Han and Carlin (2001) and Dellaportas et al. (2002) review other MCMC methods for gen-
erating from θm,m|y including the product space search (Carlin and Chib (1995)) and the
Metropolised product space search. The product space search is a Gibbs sampler for gener-
ating from θm,m|y. However, for the Gibbs sampler to work pseudoprior distributions need
be specified and, in addition, |M | − 1 of these are generated from at each iteration of the
algorithm. Both Han and Carlin (2001) and Dellaportas et al. (2002) give this reason for
the impracticality of the product space search when |M | is large. The Metropolised product
space search proposed by Dellaportas et al. (2002) uses a combined Gibbs and Metropolis
approach so that we only need to generate from one pseudoprior distribution at each itera-
tion. It can then be shown that the Metropolised product space search is equivalent to the
independence sampler described above.

Variable Selection

Many statistical models can be represented by γ ∈ {0, 1}k where if γj = 1, then θj is present
in the model, and if γj = 0, then θj is not present, for j = 1, ..., k. Gibbs sampling can be
used to generate a posterior sample of (θ,γ) with pdf

f(θ,γ|y) ∝ f(y|θ,γ)f(θ|γ)f(γ).

Of course, since γ is a set of additional parameters, we need to specify an appropriate prior
distribution. Let γ\j be γ with the jth element, γj, removed. It may make sense to make the
prior distribution of γj independent of γ\j, i.e. f(γj|γ\j) = f(γj). However, in hierarchical
models the prior distribution for γj may depend on γ\j.

Let θ be partitioned as θ = (θγ ,θ\γ)T where θγ corresponds to those elements of θ where
γj = 1 and θ\γ corresponds to those elements where γj = 0. The pdf of the prior distribution
of θ|γ can then be further decomposed as

f(θ|γ) = f(θγ |γ)f(θ\γ |θγ ,γ).

For Gibbs sampling, the full conditional posterior distributions are given by Dellaportas et al.
(2002) as

f(θγ |θ\γ ,γ,y) ∝ f(y|θ,γ)f(θγ |γ)f(θ\γ |θγ ,γ) (2.33)

f(θ\γ |θγ ,γ,y) ∝ f(θ\γ |θγ ,γ) (2.34)

and

f(γj = 1|γ\j,θ,y)

f(γj = 0|γ\j,θ,y)
=
f(y|θ, γj = 1,γ\j)

f(y|θ, γj = 0,γ\j)

f(θ|γj = 1,γ\j)

f(θ|γj = 0,γ\j)

f(γj = 1,γ\j)

f(γj = 0,γ\j)
. (2.35)
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2.2.7 Applications to GLMMs and other models

In this last Section, we discuss how the general computational methods described above have
been applied specifically to GLMMs in the literature.

Suppose, in a classical analysis, we required maximum likelihood estimates (mles) of the
model parameters. The standard approach is to maximise the integrated likelihood function,
f(y|β,D, φ), to obtain the mles of β, D and φ. To evaluate f(y|β,D, φ) we need to perform
the integration in (1.11) which is often analytically intractable. Breslow and Clayton (1993)
show how to apply the Laplace method to this problem by approximating the first-stage
likelihood function, f(y|β,u, φ) by a normal pdf. This method results in two very similar
methods of obtaining mles of β, D and φ which are known as penalised quasi-likelihood
(PQL) and marginal quasi-likelihood (MQL). Rue et al. (2009) use the Laplace method for
approximating the posterior marginal distributions for latent Gaussian models, which can be
a special case of GLMMs. Pinheiro and Chao (2006) and Joe (2008) assess the accuracy of the
Laplace method, among other methods, for obtaining the mles of β and D in GLMMs, where
the response is either Bernoulli or Poisson distributed, i.e. φ = 1. Joe (2008) recommends
the use of the Laplace method “for quick comparisons of competing mixed models”.

Due to the possible conditional conjugacies and conditional independences that can arise in
GLMMs, Gibbs sampling is a popular method for generating a posterior sample.

Suppose we specify an inverse-Wishart prior distribution, IW(ρ,R), with ρ degrees of freedom
and scale matrix, R, for the variance components matrix, D. Also suppose that the prior
distribution for β is independent of D, so that f(β|D, φ) = f(β|φ) in the decomposition
(1.12). Note that ρ and R may depend on φ. Then the pdf of the full conditional distribution
of D reduces to

f(D|y,β,u, φ) ∝ f(u|D)f(D|φ), (2.36)

∝ |D|−
ρ+q+1

2 exp

(
−1

2
tr(RD−1)

) G∏
i=1

|D|−
1
2 exp

(
−1

2
uTi D−1ui

)
,

= |D|−
ρ+G+q+1

2 exp

(
−1

2
tr

((
G∑
i=1

uiu
T
i + R

)
D−1

))
.

Therefore, the full conditional distribution of D is the inverse-Wishart distribution with
ρ + G degrees of freedom and scale matrix,

∑G
i=1 uiu

T
i + R, i.e. the inverse-Wishart prior

distribution for D is the conditional conjugate prior distribution. It is easy to generate from
the inverse-Wishart distribution so in an iteration of a Gibbs sampler it is easy to update D.
Note that if the prior distribution for D is not the inverse-Wishart or the prior distribution
for β is not independent of D then this conditional conjugacy will not exist.

In general, similar conditional independences to (2.36) arise for β, u and D, i.e.

f(β|y,u,D, φ) ∝ f(y|β,u, φ)f(β|D, φ), (2.37)

f(ui|yi,β,D, φ) ∝ f(yi|β,ui, φ)f(ui|D), (2.38)

f(D|y,β,u, φ) ∝ f(β|D, φ)f(u|D)f(D|φ). (2.39)
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Zeger and Karim (1991) describe a Gibbs sampling algorithm for generating a posterior
sample for a GLMM, where φ = 1. Their algorithm takes advantage of the conditional
conjugacy arising from using an inverse-Wishart prior distribution for D and f(β|D) = f(β).
To update β and ui, Zeger and Karim (1991) propose the use of rejection sampling. The
algorithm of Zeger and Karim (1991) can be made more efficient and extended to cases
where φ is unknown and where the general conditional independences of (2.37), (2.38) and
(2.39) are present by using ARS or ARMS to update the model parameters, β, u, D and φ.
This is the general method of BUGS and JAGS. Zhao et al. (2006) recommend the use of
a BUGS derivative known as WinBUGS (Lunn et al. (2000)) to generate posterior samples
from GLMMs as it “performs excellently among various off-the-shelf competitors”. For the
remainder of this thesis, we use WinBUGS to generate any posterior samples from GLMMs
that we may need. WinBUGS can be called remotely within the statistical software package
R using the package R2WinBUGS (Sturtz et al. (2005)). Note that BUGS and JAGS require
the prior distributions of the model parameters to be proper.

Sinharay and Stern (2005) assessed several methods for approximating the Bayes factors be-
tween GLMMs using an empirical study. They assessed the methods of importance sampling,
candidate’s method and bridge sampling to approximate the Bayes factor by the marginal
likelihood approach. They also assessed the reversible jump algorithm to approximate the
Bayes factor. Sinharay and Stern (2005) concluded that bridge sampling provided approx-
imations to the Bayes factor with the smallest standard deviation. The reversible jump
algorithm provided approximations with the largest standard deviation.

DiCiccio et al. (1997) also assessed several methods for approximating marginal likelihoods
for more general applications than Sinharay and Stern (2005). DiCiccio et al. (1997) report
that, again, bridge sampling performs well and “provides substantial improvement” on the
other methods.

George and McCulloch (1993) applied variable selection to linear models in an algorithm
known as Stochastic Search Variable Selection (SSVS). In this algorithm, the maximal model
is assumed throughout and the regression parameters are constrained to be close to zero when
γj = 0. Therefore, we can assume that f(y|β,γ) = f(y|β) and this removes the dependence
of the full conditional posterior distribution of γj on y.

Cai and Dunson (2006) propose a stochastic search variable selection algorithm for model
determination amongst GLMMs. The integrated likelihood is approximated by using a
second-order Taylor series approximation to the first-stage likelihood as opposed to the
Laplace method which uses a second-order Taylor series approximation to the first-stage
log-likelihood. The variance components matrix is decomposed as

D = ΛΓΓTΛ,

where Λ = diag(λ1, ..., λq), λk ≥ 0 for k = 1, ..., q and Γ is a lower triangular matrix, i.e.

Γ =


1
γ21 1
...

...
. . .

γq1 γq2 · · · 1

 ,
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where γkl ∈ R. If λk > 0, then D is positive-definite and if λk = 0, then the kth row and
column of D are zero, and the submatrix of D with the kth row and column removed is also
positive-definite. This decomposition allows the SSVS algorithm to be used. The parameters
are updated in the algorithm using ARMS. We will further discuss the method of Cai and
Dunson (2006) for approximating the integrated likelihood in Chapter 5.

We can draw several conclusions from Section 2.2 on computation for GLMMs. First, Gibbs
sampling implemented using the statistical software package BUGS is a convenient method
for generating a posterior sample. With regards to approximating the posterior model proba-
bilities, the marginal likelihood approach using bridge sampling to approximate the marginal
likelihood is reported to perform well (Sinharay and Stern (2005) and DiCiccio et al. (1997)).
However, as described in Section 2.2.6, the marginal likelihood approach can prove inefficient
if the number of models, |M |, is large. Cai and Dunson (2006) propose an MCMC model
determination method that means we do not need to approximate the marginal likelihood
for every model in M .

There do exist Bayesian approaches to model determination that do not attempt to evaluate
the posterior model probabilities of the models in M . One such approach is that of informa-
tion criteria which are a measure of goodness of fit adjusted by model complexity. Examples
of information criteria are the Bayesian Information Criterion (BIC) and Deviance Informa-
tion Criterion (DIC). In both cases, ‘better’ models have smaller values of the information
criterion. Both criteria listed above attempt to trade a measure of goodness of fit against
model complexity. BIC does this by adding log n times the number of parameters in the
model. A disadvantage of this, pointed out by Spiegelhalter et al. (2002), is that the number
of parameters in a hierarchical model is not a well-defined quantity and, hence, not a good
measure of model complexity. Spiegelhalter et al. (2002) proposed the DIC as an alternative
that does not use the number of parameters. For a model m ∈M , the DIC is defined as

DICm = 2E(Dm(θm)|y)−Dm(E(θm|y)),

where
Dm(θm) = −2 log fm(y|θm) + 2 log f(y),

is known as the Bayesian deviance. The quantity f(y) is the same for each model and,
therefore, does not affect the relative values of DICm and need not be evaluated. The DICm

can be approximated by using an MCMC method to generate a sample from the posterior
distribution of model m ∈M . See Spiegelhalter et al. (2002) for more details. A disadvantage
of both information criteria listed above and all information criteria, in general, is that they
need to be evaluated for all models in M , similar to the marginal likelihood approach. In
the case of DIC, where a posterior sample is required, this will be a very computationally
intensive approach.
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2.3 Default Priors applied to GLMMs and other mod-

els

In this Section, we discuss the subject of default priors. Since our goal is to develop default
priors for GLMMs, we focus on default priors in the literature for this class of models.
However, we review some important general default prior approaches. This review is not
meant to be exhaustive and for a larger review, see Kass and Wasserman (1996). We then
discuss how these approaches have been applied to GLMMs, or important special cases of
GLMMs.

Kass and Wasserman (1996) provide two interpretations of default priors. “The first inter-
pretation asserts that reference [default] priors are formal representations of ignorance. The
second asserts that there is no objective, unique prior that represents ignorance; instead, ref-
erence [default] priors are chosen by public agreement, much like units of length and weight.
In this interpretation, reference [default] priors are akin to a default option in a computer
package”. Kass and Wasserman (1996) suggest that, at that point, the second interpretation
is more popular since no unique default prior can exist and research is focused on developing
default priors which are useful in practice. Subsequently, we adopt this second interpretation
of default priors in this thesis.

2.3.1 Jeffreys Prior

In Section 1.1.4 we discussed the problem of Lindley’s paradox when using a non-informative
uniform distribution for θ, i.e. f(θ) ∝ 1. Another problem in using the uniform prior is
that if we are completely ignorant about θ then we should be completely ignorant about a
transformation, φ = g(θ), of θ. However,

f(φ) = f(g−1(φ))

∣∣∣∣dg−1(φ)

dφ

∣∣∣∣ ∝ ∣∣∣∣dg−1(φ)

dφ

∣∣∣∣ ,
and, in general, this may not be proportional to one, resulting in a non-uniform prior distri-
bution. Therefore, the prior distribution is not invariant to transformations.

Define the Fisher information, Iθ, as

Iθ = −E

[
∂2 log f(y|θ)

∂θ∂θT

]
.

Jeffreys prior is defined such that
f(θ) ∝ |Iθ|

1
2 ,

and it can be shown that this rule is invariant to the transformation, φ = g(θ).

Examples

1. Suppose y1, ..., yn
iid∼ N(µ, σ2), where σ2 is known. The Fisher information is then

Iµ = n
σ2 , and Jeffreys prior is the improper uniform distribution with f(µ) ∝ 1.
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2. Suppose y1, ..., yn
iid∼ N(µ, σ2), where µ is known. The Fisher information is then Iσ2 =

n
2σ4 , and Jeffreys prior has f(σ2) ∝ 1

σ2 .

3. Suppose y1, ..., yn
iid∼ N(µ, σ2), where µ and σ2 are unknown. The Fisher information is

then

Iµ,σ2 =

(
n
σ2 0
0 n

2σ4

)
,

and Jeffreys prior has f(µ, σ2) ∝
(

1
σ2

) 3
2 . �

As shown in the above examples, Jeffreys prior can be improper and care must be taken to
ensure that the resulting posterior distribution is proper.

Ibrahim and Laud (1991) studied the use of Jeffreys prior applied to the regression parameters
of GLMs and found conditions which ensure that the resulting posterior distribution is proper.

Natarajan and Kass (2000) proposed an approximate Jeffreys prior for the variance compo-
nents, d, of a GLMM. They give the approximate Fisher information matrix, Îd, for d with
(r, s)th element

Îd,rs =
G∑
i=1

tr

(
V−1
i

∂D

∂dr
V−1
i

∂D

∂ds

)
,

where Vi = D +
(
ZT
i WiZi

)−1
and Wi = diag {var(Yij)g

′(µij)
2}−1

, for r, s = 1, ..., 1
2
q(q + 1).

The approximate expression for Fisher information can be used to define an approximate
Jeffreys prior as

f(d) ∝ |Id|
1
2 .

This prior is improper. Natarajan and Kass (2000) tried to find conditions which ensure
that the resulting posterior distribution is proper, when the approximate Jeffreys prior for
D is used in conjunction with a uniform prior for the regression parameters, β, but were
unsuccessful due to the “complicated nature of its [the prior’s] dependence on D”.

2.3.2 Unit Information Prior

Suppose θ ∈ Rk, then the unit information prior is defined as the multivariate normal
distribution with mean m and variance matrix Σ, i.e. θ ∼ N(m,Σ). The mean, m, is
hopefully obvious from the context of the problem. For example, in regression-type problems
where θ are the regression parameters, then m = (m,0)T , where typically m = 0, also. The
variance matrix, Σ, is chosen so that the prior provides the same amount of information as
one observation. For independent and identically distributed responses, this is achieved by

setting Σ equal to the inverse of the average Fisher information, i.e.
(

1
n
Iθ
)−1

.

Smith and Spiegelhalter (1980) first suggested the use of the unit information prior for the
regression parameters, β, of the linear model where m = 0 and Σ = nσ2(XTX)−1. Smith
and Spiegelhalter (1980) discuss how the elements of XTX are O(n), so by choosing Σ =
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nσ2(XTX)−1 we are taking a fixed prior where the variance does not increase with increasing
n. Kass and Wasserman (1995) show that if a unit information prior is assumed for β then
the error of the BIC-type approximation to the marginal likelihood is reduced from O(1) to

O(n−
1
2 ).

Ntzoufras et al. (2003) extended the unit information prior to the regression parameters, β,
of a GLM. The Fisher information in this case is

Iβ = XTWX,

where W = diag{var(Yi)g
′(µi)

2}−1, g(µi) = xTi β is the link function and var(Yi) is a function
of µi = g−1(xTi β). Obviously, Iβ typically depends on the unknown parameters β. Ntzoufras
et al. (2003) proposes replacing β in Iβ by its prior mean, m. Therefore Σ = n(XTWmX)−1,
where Wm = diag{var(Yi)g

′(µi)
2}|−1

β=m. Note that due to the substitution of m for β in W,
this is only an approximate unit information prior. This approximate unit information prior
for GLMs was adopted by Nott and Leonte (2004).

Pauler (1998) extended the concept of the unit information prior to the regression param-
eters, β, of an LMM. The Fisher information used by Pauler (1998) is derived from the
integrated likelihood, which is analytically tractable for LMMs. In this case, the effective
sample size is dependent on whether βj (the jth element of β for j = 1, ..., p) has an associ-
ated group-specific parameter. We will discuss this further when we attempt to extend the
unit information prior to GLMMs in Chapter 3.

2.3.3 Uniform Shrinkage Prior

The uniform shrinkage prior is a prior distribution that can be applied to the variance
components of mixed models. We motivate it by considering the following example from
Daniels (1999). Suppose yi ∼ N(µi, σ

2), for i = 1, ..., n, where µi ∼ N(0, τ 2) and σ2 is known.
The posterior mean of µ = (µ1, ..., µn)T is

E(µ|y) =
τ 2

σ2 + τ 2
µ̂ = ρµ̂,

where µ̂ = y is the mle of µ and ρ = τ2

σ2+τ2 ∈ (0, 1) is the shrinkage parameter. The
shrinkage parameter controls how much the mle of µ is “shrunk” towards the prior mean, 0.
The uniform shrinkage prior for τ 2 is induced by assuming that ρ ∼ U[0, 1] and then finding
the probability distribution for τ 2 by transformation. It can be shown that, in this case, the
uniform shrinkage prior for τ 2 has pdf f(τ 2) = σ2

(σ2+τ2)2 . This distribution is proper and has

median σ2.

Gustafson et al. (2006) and Natarajan and Kass (2000) proposed approximate uniform shrink-
age priors for the variance components matrix, D, in GLMMs. Natarajan and Kass (2000)
give the following shrinkage estimate of the ith group-specific parameter

ûi = DZT
i

(
W̃−1

i + ZiDZT
i

)−1

(ỹi − η̃i), (2.40)

42



where ỹi is the working vector with jth element ỹij = η̃ij + (yij − η̃ij)g
′(µij), and W̃i =

diag {var(Yij)g
′(µij)

2}−1

ui=0, and, µ̃ij and η̃ij are evaluated at ui = 0. Natarajan and Kass
(2000) show that (2.40) can be written as

ûi = Si0 + (I− Si)DZT
i W̃i(ỹi − η̃i),

where Si = (D−1 +ZT
i W̃iZi)

−1ZT
i W̃iZi takes the role of a multivariate shrinkage parameter.

A component-wise uniform distribution is placed on Si, having first replaced ZT
i W̃iZi by its

average over the G groups. From this an approximate uniform shrinkage prior distribution
for D can be induced with pdf

f(D) ∝

∣∣∣∣∣I +

(
1

G

G∑
i=1

ZT
i W̃iZi

)
D

∣∣∣∣∣
−q−1

.

Natarajan and Kass (2000) show that their uniform shrinkage prior for D is proper and find
conditions which ensure that the posterior distribution is proper when this prior is used with
an improper uniform prior for β. The approximate uniform shrinkage priors depend on the
unknown regression parameters, β, through the weight matrix, W̃i and both Gustafson et al.
(2006) and Natarajan and Kass (2000) suggest replacing β by its mle from the corresponding
GLM, i.e. retain the regression parameters but remove the group-specific parameters. This
induces a data-dependent prior, but Natarajan and Kass (2000) point out that it is a mild
form of data-dependence since W̃i varies slowly with β.

2.3.4 Intrinsic Prior

To define the intrinsic prior, we first need to define the intrinsic Bayes factor. A common,
ad-hoc solution to deriving a default prior distribution is to partition the observations, y,
into a training sample and a comparison sample. The likelihood from the training sample is
used in conjunction with a diffuse prior distribution to find a prior distribution using Bayes’
theorem. This prior is then used with the likelihood from the comparison sample to define a
marginal likelihood and Bayes factor. The resulting Bayes factor is called the partial Bayes
factor. Obviously, this approach can be sensitive to the partitioning of y into the training
and comparison samples.

Suppose we have two models, i.e. M = {1, 2}. Let y(l) and y(c) be the disjoint train-
ing and comparison samples, respectively, such that y = (y(l),y(c))T . Let fm(y(l)) =∫

Θm
fm(y(l)|θm)fDm (θm)dθm be the marginal likelihood for model m ∈ M that corresponds

to the likelihood, fm(y(l)|θm), from y(l) and a diffuse prior, FD
m , with pdf, fDm (θm). A train-

ing sample, y(l), is proper if 0 < fm(y(l)) < ∞, for all m ∈ M . Furthermore, a training
sample, y(l), is minimal if it is proper but no subset of it is proper. Note that, in general,
there will exist multiple minimal training samples and let Y = {y(1), ...,y(L)} denote the
set of all minimal training samples.

It can be shown that the partial Bayes factor between models 1 and 2 with respect to using
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the training sample, y(l), can be written

B21(y(l)) =

∫
Θ2
f2(y(c)|θ2)

f2(y(l)|θ2)fD2 (θ2)∫
Θ2

f2(y(l)|θ2)fD2 (θ2)dθ2
dθ2∫

Θ1
f1(y(c)|θ1)

f1(y(l)|θ1)fD1 (θ1)∫
Θ1

f1(y(l)|θ1)fD1 (θ1)dθ1
dθ1

= BD
21B

D
12(y(l)),

where

BD
21 =

∫
Θ2
f2(y|θ2)fD2 (θ2)dθ2∫

Θ1
f1(y|θ1)fD1 (θ1)dθ1

is the Bayes factor between models 1 and 2 under the likelihood from the entire y and diffuse
priors, FD

1 and FD
2 , and

BD
12(y(l)) =

1

BD
21(y(l))

=
f1(y(l))

f2(y(l))

is the inverse of the Bayes factor between models 1 and 2 under the likelihood from the
training sample, y(l), and diffuse priors, FD

1 and FD
2 . Berger and Pericchi (1996) define the

arithmetic intrinsic Bayes factor (AIBF) between models 1 and 2 as the arithmetic mean of
the partial Bayes factors for all minimal training samples, i.e.

BAI
21 =

1

L

L∑
l=1

B21(y(l)) =
BD

21

L

L∑
l=1

BD
12(y(l)). (2.41)

Likewise, the geometric intrinsic Bayes factor (GIBF) between models 1 and 2 is

BGI
21 =

(
L∏
l=1

B21(y(l))

) 1
L

= BD
21

(
L∏
l=1

BD
12(y(l))

) 1
L

.

In general, BAI
21 6= 1

BAI12
, where BAI

12 is found by using (2.41) with the indices reversed. If

model 1 is nested within model 2, then we can set BAI
12 ≡ 1

BAI21
.

Berger and Pericchi (1996) define the intrinsic priors, F I
1 and F I

2 , to be the prior distributions
that, when combined with the likelihood from y, would result in the (arithmetic or geometric)
intrinsic Bayes factor. In other words,

BI
21 =

∫
Θ2
f2(y|θ2)f I2 (θ2)dθ2∫

Θ1
f1(y|θ1)f I1 (θ1)dθ1

,

where BI
21 is the (arithmetic or geometric) intrinsic Bayes factor and f I1 (θ1) and f I2 (θ2) are

the pdfs of F I
1 and F I

2 , respectively. Common choices for FD
1 and FD

2 for deriving F I
1 and

F I
2 are Jeffreys prior or the reference prior (see Section 2.3.5).

Consider the problem of model determination between the following models

1. yij ∼ N(µ1, σ
2
1),

44



2. yij ∼ N(µ2 + u2i, σ
2
2), where u2i

iid∼ N(0, τ 2
2 ),

where i = 1, ..., G and j = 1, ..., n∗, and, in particular, specifying a default prior distribution
for the variance component, τ 2. Garcia-Donato and Sun (2007) derived two intrinsic priors
for τ 2, where the choice of the prior for FD

1 and FD
2 is Jeffreys prior or the reference prior.

2.3.5 Reference Prior

Define H(f(θ)) = −
∫

Θ
f(θ) log f(θ)dθ to be the entropy of f(θ). The expected information

measure, Iθ(y), provided by y about θ is given by Bernardo (1979) as

Iθ(y) =

∫
f(y)

∫
Θ

f(θ|y) log
f(θ|y)

f(θ)
dθdy,

= H(f(θ))−
∫
f(y)H(f(θ|y))dy.

If we repeat the experiment that gave us y, the expected information we possess about
θ would increase. Suppose Fk is the prior distribution with pdf, fk(θ), that maximises
the expected information about θ, provided by k independent replications of the experiment
giving us {y1, ...,yk}. The reference posterior distribution, after the actual experiment giving
us y, has pdf f0(θ|y) = limk→∞ fk(θ|y), where fk(θ|y) ∝ f(y|θ)fk(θ). Bernardo (1979)
defines the reference prior distribution as having pdf f0(θ) satisfying f0(θ|y) ∝ f(y|θ)f0(θ).
Note that it is not necessarily true that f0(θ) = limk→∞ fk(θ).

Bernardo (1979) goes on to show that, for a continuous θ with no nuisance parameters
and under appropriate conditions for asymptotic normality of the posterior distribution, the
reference prior is Jeffreys prior.

Consider the following simple mixed model: yij ∼ N(µ+ ui, σ
2), where u1, ..., uG

iid∼ N(0, τ 2),
for j = 1, ..., n∗ and i = 1, ..., G. Berger and Bernardo (1992) derive the reference prior for
the model parameters µ, σ2 and τ 2.

2.3.6 Other Default Priors Applied to GLMMs

In this Section, we describe some of the default priors for the variance components that do
not fit into the above categories.

Browne and Draper (2006) consider various diffuse prior distributions for variance compo-
nents of mixed models including the IG(ε, ε) and U

[
0, 1

ε

]
for small ε > 0. They evaluate the

effect these prior distributions have on posterior inference. They concluded that an unbiased
point estimate of the variance component can be found for all but very small values of G
when used with one of the above diffuse prior distributions.
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Kass and Natarajan (2006) propose a default prior for D which is a member of the condition-
ally conjugate inverse-Wishart distribution, IW(m,Φ). Kass and Natarajan (2006) suggest
m = q and Φ = mR, where R is a prior “guess” at D.

2.3.7 Conclusions

We see from the above review that the focus of default prior distributions for the parameters
of a GLMM has been focused on the variance components.

Reference and intrinsic priors have been applied to linear mixed models but it is unclear
how they can be generalised to GLMMs. Jeffreys prior can be applied approximately to D
in a GLMM but it is improper and Natarajan and Kass (2000) could not show when the
posterior would be proper. Some authors (Natarajan and Kass (2000) and Gustafson et al.
(2006)) have had success with uniform shrinkage priors but these priors are data-dependent.
However, we could use the strategy of Ntzoufras et al. (2003) and replace β by its prior mean
as opposed to its mle, to remove the data-dependence. The inverse-Wishart prior of Kass
and Natarajan (2006) has the computational advantages described in Section 2.2.7.

What is clear is that there is no agreement on default priors as discussed by Kass and
Wasserman (1996) for the prior distribution for β or D. In this Section, we have not reviewed
any default prior options for the dispersion parameter, φ. In many cases, either φ will be
known or it will be unknown but present in all of the models. For the latter case, we can
specify the same prior for φ for each model and O’Hagan and Forster (2004, pg. 179) state
that the “posterior model probabilities are typically not sensitive to this prior, and it is
possible to use a limiting improper prior, if required.”
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Chapter 3

Default Priors for GLMMs

3.1 Introduction

In this Chapter, we propose default priors for the model parameters β and D in a GLMM
that are based on a unit information concept. We discussed in Section 2.3.2 how versions of
unit information priors have been applied to the regression parameters, β, in linear models,
GLMs and LMMs.

We show, in this Chapter, how a unit information prior can be applied to the regression
parameters, β, of a GLMM in two different ways depending on which form of the likelihood
is considered; either the first-stage likelihood or the integrated likelihood. Pauler (1998)
proposed a unit information prior distribution for β in LMMs based on the integrated like-
lihood and we show that this can be generalised to the regression parameters of a GLMM,
approximately. We also propose an approximate unit information prior distribution for β
in GLMMs based on the first-stage likelihood. Using the prior distribution based on the
first-stage likelihood has a computational advantage in that the prior for β does not depend
on D. They also have an advantage in being more flexible for certain types of response.

Before we proceed, it is useful to discuss the general concept of unit information prior distribu-
tions. The definition of the unit information prior for model parameters, θ, is a multivariate
normal distribution with mean, m, and variance, Σ. The variance matrix, Σ, contains the
same amount of information as one typical observation. This is appealing since the prior will
never provide more information than the data.

Let Iθ(θ) denote the Fisher information matrix of θ defined by

Iθ(θ) = E

(
∂ log f(y|θ)

∂θ

∂ log f(y|θ)

∂θT

)
.

Under certain regularity conditions, it can be shown that

Iθ(θ) = −E

(
∂2 log f(y|θ)

∂θ∂θT

)
,
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and that

Iθ(θ) = var

(
∂ log f(y|θ)

∂θ

)
.

If observations, y, are independent and identically distributed, then the amount of Fisher
information in one observation (unit information) is then

Iθ(θ)

n
,

where n is the sample size. It follows that Σ = nIθ(θ)−1.

Examples

1. Suppose that y1, ..., yn
iid∼ N(µ, σ2), where σ2 is known. The Fisher information is

Iµ(µ) =
n

σ2
,

and the unit information is 1
σ2 . This example can be seen as a special case of the next

example.

2. Suppose y ∼ N(Xβ, σ2In), where σ2 is known. The Fisher information is

Iβ(β) =
1

σ2
XTX,

and the unit information is 1
nσ2 XTX.

3. Suppose that y1, ..., yn
iid∼ Poisson(exp(µ)). The Fisher information is

Iµ(µ) = n exp(µ),

and the unit information is exp(µ).�

Example 2 shows how a unit information prior can be applied to the regression parameters
of a linear model, so that

β ∼ N(m, nσ2(XTX)−1). (3.1)

Example 3 demonstrates a potential problem with the unit information prior, i.e. the Fisher
information in this problem, and in general, depends on the unknown parameters, θ. That
is why the Fisher information, Iθ(θ), is denoted as a function of θ. Ntzoufras et al. (2003)
encountered this problem with the Fisher information for the regression parameters, β, of
a GLM. Their solution is to replace β in Iβ(β) by its prior mean, m. This is an approach
we shall take throughout this Chapter. Therefore, in Example 3 above an approximate unit
information prior distribution of µ is µ ∼ N(m, exp(−m)). An alternative would be to replace
β by its maximum likelihood estimate, β̂, but this would result in a data-dependent prior
distribution which we wish to avoid.
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The model in Example 3 is actually a simple case of a GLM, where the link function, g(µi),
is the log link. For a general GLM, the Fisher information is given by

Iβ(β) = XTWβ,φX,

where Wβ,φ = diag {var(Yi)g
′(µi)

2}−1
is the weight matrix. Note that Wβ,φ is, typically, a

function of β through var(Yi) and g′(µi). We now replace β in Iβ(β) by its prior mean, m,
to give

Iβ(m) = XTWm,φX,

where Wm,φ = diag {var(Yi)g
′(µi)

2}|−1
β=m. Therefore an approximate unit information prior

for the regression parameters, β, of a GLM is

β ∼ N(m, n(XTWm,φX)−1). (3.2)

A linear model is actually a special case of a GLM, but var(Yi) does not depend on β and
g′(µi) = 1, so the weight matrix does not depend on β.

However, for the linear model and some cases of GLMs, the Fisher information depends on
the unknown dispersion parameter, φ, through the weight matrix, Wm,φ. Note that, in a
linear model, the dispersion parameter φ = σ2. We can use two approaches:

a) replace φ in Wm,φ by its prior mean, or

b) allow the prior distribution of β to be conditional on φ.

Both approaches are effected by the fact that the variance of the prior distribution of β
is heavily dependent on φ, and in particular, the prior of φ. The variance of the response
in a GLM is proportional to a(φ). It follows that the prior variance of β is proportional
to a(φ). If we choose approach a) from above and set the prior mean of φ such that a(φ)
is small but the true value of φ is such that a(φ) is large than the prior for β maybe too
informative, and vice versa. Approach b) is also prone to this drawback if we use a prior
distribution for φ which is too informative and the true value of φ lies in a region of this
distribution that has low density. However, consider approach b) from above, and choose
a diffuse prior for φ. The advantage of this approach is that it adapts the prior variance
of β to the scale of the response. Also, for the linear model, a multivariate normal prior
distribution for β that is conditional on φ = σ2 is the conjugate prior distribution. The
drawback of option b) is that we then have to be careful on setting the hyperparameters of
the prior for φ because of Lindley’s paradox. However, if we make the assumption that φ is
present in all of the models, then we can use a diffuse prior for φ. To this end, (O’Hagan
and Forster 2004, pg. 179) state that “the only exception [to not using an arbitrarily diffuse
prior] is for a parameter which is present in all models under consideration, and which is
given the same prior under each model. The posterior model probabilities are typically not
sensitive to this prior, and it is possible to use a limiting improper prior, if required”. We
will assume throughout, that if a dispersion parameter exists for one model m ∈ M then
it exists in all models in M . A disadvantage of this approach is that we now cannot make
formal Bayesian model determination decisions about the response distribution. For example,
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suppose we had responses, y1, ..., yn, that are continuous and positive. We maybe uncertain
whether the response distribution is normal or gamma but we cannot, using Bayesian model
determination methods, decide which one is true since the dispersion parameters under these
two distributions have differing interpretations. This issue is outside the scope of this thesis.

Notice that if the dispersion parameter is unknown, then the weight matrix will always depend
on φ. To save space, we suppress the dependence of the weight matrix on φ by dropping the
the subscript φ.

We now turn our attention to mixed models. Consider the following example.

Example Suppose yij ∼ N(µ+ ui, σ
2) where ui ∼ N(0, τ 2) for j = 1, ..., n∗ and i = 1, ..., G.

This model is known as a one-way random effects model. The total sample size is n = n∗G.
The log of the integrated likelihood is

log f(y|µ, τ 2, σ2) ∝ −G
2

log

(
σ2

n∗τ 2 + σ2

)
− 1

2σ2

G∑
i=1

n∗∑
j=1

(yij − ȳi.)2 − n∗

2

G∑
i=1

(ȳi. − µ)2

n∗τ 2 + σ2
.

Therefore, the Fisher information for µ is

Iµ(µ) =
n

n∗τ 2 + σ2
.

Note that Iµ(µ) is O(G) not O(n). In other words, the information on µ from the data is
proportional to the number of groups, G, not the total sample size, n.�

This example demonstrates a further obstacle with unit information priors, i.e. the informa-
tion is not always proportional to the total sample size and therefore, how is unit information
defined in this case? In the example, unit information would be found by dividing Iµ(µ) by
G, and the unit information prior for µ is

µ ∼ N

(
m,

n∗τ 2 + σ2

n∗

)
.

In the next Section, we describe an approach proposed by Pauler (1998) which involves
investigating unit information based on the integrated likelihood from an LMM. The same
problem as in the above example, which is a special case of an LMM, arises. However,
Pauler (1998) shows that the information on a regression parameter, βj, for j = 1, ..., p, is
proportional to either the total sample size or the number of groups, depending on which
group-specific parameters are included. Note that the prior for µ in the above example is
conditional on the variance component, τ 2.

Pauler (1998) list three minimal requirements for default priors under model uncertainty.
They are:

1. The prior must be proper.
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2. The prior must be located at a null value. By null value, we mean a value that we
hope the data will indicate is not valid. This has an analogy with the null hypothesis
in classical hypothesis testing.

3. The prior variance should represent vague information that is calibrated with, but less
than, the information in the likelihood.

Unit information priors satisfy all these requirements. Since the distribution for θ is normal
with finite variance, the prior distribution is proper. We are free to choose the mean, m, of the
prior distribution, which can be set at a null value, thus satisfying the second requirement.
As discussed earlier, the prior variance is calibrated with the likelihood and provides less
information than that in the data.

We have control over the mean, m, of the unit information prior. From above, m needs be
set at a null value. Consider the vector of regression parameters, β, where

β = (β1, ..., βp)
T

= (β1,β\1)T .

The 1st element, β1, with prior mean m1, corresponds to the intercept term, whereas the
remaining elements, β\1, with prior means m\1, corresponds to the explanatory variables. A

null value for β\1 is 0. So we set m = (m1,0)T . The value for m1 is, in some cases, obvious.

For example, for Bernoulli responses, m1 = g
(

1
2

)
, corresponds to a prior mean of 1

2
for the

responses which is the middle of the sample space. In other cases, it is less clear what value
m1 should take. We discuss this issue on an example-by-example basis.

The unit information priors, as described so far, are only applicable to parameters in Rk,
which are suitable for regression parameters of regression-type models such as linear models
and GLMs. In Section 3.3, we propose a prior for the variance components matrix, D, that
is based on a unit information concept.

In the all encompassing model, we have a choice for the prior model probability, f(m), of
model m ∈ M , such that

∑
m∈M f(m) = 1. A common approach, and one taken for the

remainder of this thesis, is to assume that f(m) = 1
|M | , i.e. a discrete uniform distribution

over the prior model probabilities. However, the strategy proposed in this thesis can be used
with any prior model probabilities and we actually take account of this in our presentation
of a reversible jump algorithm for GLMMs in Chapter 5. An alternative approach to using a
discrete uniform distribution over the prior model probabilities is given by Dellaportas et al.
(2009).
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3.2 Default Priors based on the Integrated Likelihood

3.2.1 Regression Parameters

Consider the LMM
yij ∼ N

(
xTijβ + zTijui, σ

2Ini
)
,

where xij and zij are p × 1 and q × 1 vectors of regression and group-specific covariates,
respectively. This model can be written in matrix form as

y ∼ N
(
Xβ + Zu, σ2In

)
,

where X and Z are as defined in Section 1.2.1. The marginal model, which gives the integrated
likelihood, is

y ∼ N
(
Xβ, σ2In + ZD∗ZT

)
,

where D∗ = IG ⊗D. The log integrated likelihood is then

log f(y|β,D, σ2) ∝ −1

2
log
∣∣σ2In + ZD∗ZT

∣∣− 1

2
(y −Xβ)T

(
σ2In + ZD∗ZT

)−1
(y −Xβ) .

The Fisher information with respect to β is

Iβ(β) = E

(
−∂

2 log f(y|β,D, σ2)

∂β∂βT

)
,

= XT
(
σ2In + ZD∗ZT

)−1
X,

=
G∑
i=1

XT
i

(
σ2Ini + ZiDZT

i

)−1
Xi. (3.3)

The Fisher information, (3.3), is a p × p matrix which does not depend on β. The kth
diagonal element, Iβ(β)kk, of Iβ(β) represents the amount of information provided by the
data about the kth element, βk, of β, for k = 1, ..., p. It follows from (3.3) that

Iβ(β)kk =
G∑
i=1

xTik
(
σ2Ini + ZiDZT

i

)−1
xik,

where xik is the kth column of Xi. Note that

(
σ2Ini + ZiDZT

i

)−1
=

1

σ2

(
Ini −

1

σ2
ZiD

(
Iq +

1

σ2
ZT
i ZiD

)−1

ZT
i

)
, (3.4)

(see, for example, Henderson and Searle (1981)), and recall that the columns of Zi are a
subset of the columns of Xi. Assume that the columns of Xi are orthogonal, that D is a
diagonal matrix such that D = diag

{
τ 2

1 , ..., τ
2
q

}
, and that xTikxik = O(ni), for k = 1, ..., p.

Using (3.4), it can be shown that

Iβ(β)kk =
1

σ2

G∑
i=1

xTikxik −
q∑
l=1

τ 2
l

σ2 + τ 2
l zTilzil

(
ni∑
t=1

ziltxikt

)2

, (3.5)
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where xikt is the tth element of xik, zil is the lth column of Zi with tth element zilt.

Suppose that βk has an associated group-specific parameter. This means that the kth column
of Xi is contained in Zi, for i = 1, ..., G. In this case, (3.5) reduces to

Iβ(β)kk =
1

σ2

G∑
i=1

xTikxik −
τ 2
k

σ2 + τ 2
kxTikxik

(xTikxik)
2,

=
G∑
i=1

xTikxik
σ2 + τ 2

kxTikxik
. (3.6)

Suppose, now that βk does not have an associated group-specific parameter and, therefore,
the kth column of Xi cannot be found in Zi. In this case, (3.5) reduces to

Iβ(β)kk =
1

σ2

G∑
i=1

xTikxik. (3.7)

By studying expressions (3.6) and (3.7), we see that if βk has an associated group-specific
parameter, then the Fisher information for βk is O(G), whereas if βk has no associated group-
specific parameter, then the Fisher information is O(n). Pauler (1998) states that these
results also hold for an unrestricted variance components matrix, D, and for Xi with non-
orthogonal columns. The amount of information in the integrated likelihood on a regression
parameter, βk, is dependent on which group-specific parameters are included in the model.

Consider a general problem with a p-dimensional θ with Fisher information Iθ(θ). Let
Λ = diag

{√
Nk

}
, where Nk is the order (n or G in the case of an LMM) of the kth diagonal

element, Iθ(θ)kk, of Iθ(θ). The general unit information prior distribution is then

θ ∼ N
(
m,ΛIθ(m)−1Λ

)
.

Note that in this definition, we have replaced the unknown θ in Iθ(θ) by its prior mean, m,
as proposed by Ntzoufras et al. (2003).

We can apply this more general definition of a unit information prior to the regression pa-
rameters, β, of an LMM. So

β ∼ N

m,Λ

(
G∑
i=1

XT
i

(
σ2Ini + ZiDZT

i

)−1
Xi

)−1

Λ

 , (3.8)

where Λ = diag
{√

Nk

}
and

Nk =

{
G, if βk has an associated group-specific parameter,
n, if otherwise.

(3.9)

Note that the prior for β is conditional on the variance components matrix, D. We consider
a marginal prior distribution for D later. A linear model is a special case of an LMM and
the prior for β in (3.8) reduces to that shown in (3.1) in this case, since Zi = 0 and Nk = n
for all k.
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We now define a unit information prior for the regression parameters, β, of a GLMM based
on the integrated likelihood. First, we need to approximate the integrated likelihood so that
we can find an approximate, analytic expression for the Fisher information of β. Recall that
the integrated likelihood is

f(y|β,D, φ) =

∫
RGq

f(y|β,u, φ)f(u|D)du. (3.10)

We use the Laplace approximation for the integral in (3.10). We first need a quadratic
approximation to the first-stage likelihood. Following McCulloch and Searle (2001, pg. 232-
234), consider a 1st order Taylor series expansion of the link function, g(yij), evaluated at
yij about the conditional mean, µij,

g(yij) ≈ ỹij = g(µij) + g′(µij)(yij − µij),
= ηij + g′(µij)(yij − µij).

Let ỹij be the elements of ỹ, which is termed the working vector. In matrix form

ỹ = η + g′(µ)(y − µ).

We replace β in g′(µ) by an approximation β̃ and ui in g′(µ) by its prior mean, 0, and so

ỹ = η + g′(µ)|β=β̃,u=0 (y − µ).

Therefore,
E(Ỹ|u) = Xβ + Zu,

and
var(Ỹ|u) ≈W−1

β̃,0
= diag

{
var(Yij)g

′(µij)
2
}
β=β̃,u=0

,

where we have replaced β and u in var(Yij) by β̃ and 0. We assume that

ỹ ∼ N
(
Xβ + Zu,W−1

β̃,0

)
,

and we can approximate the first-stage log-likelihood by

−1

2
log |W−1

β̃,0
| − 1

2
(ỹ −Xβ − Zu)TWβ̃,0(ỹ −Xβ − Zu),

We can then approximate the log of the integrated likelihood by

log f̂(y|β,D, φ) ∝ −1

2
log |W−1

β̃,0
| − 1

2
log |D∗| − 1

2
log |D∗−1 + ZTWβ̃,0Z|

-
1

2
(ỹ −Xβ)T (W−1

β̃,0
+ ZD∗ZT )(ỹ −Xβ). (3.11)

For fixed values of D∗ and φ we can find approximate maximum likelihood estimates of β by
iteratively fitting an LMM with responses ỹij found using the current estimates β̃ in Wβ̃,0.
Once this iterative scheme has converged, the resulting estimates of β are known as the
maximum marginal quasi-likelihood (MQL) estimates of β (see, for example, Breslow and
Clayton (1993)).
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An approximation to the Fisher information of β can be obtained by replacing β̃ in Wβ̃,0 in
(3.11) by its prior mean, m, to get Wm,0. Then

Îβ(m,0) =
G∑
i=1

XT
i

(
W−1

i,m,0 + ZiDZT
i

)−1
Xi,

where Wi,m,0 = diag {var(Yij)g
′(µij)

2}−1

β=m,ui=0.

We assume that W−1
i,m,0 = σ2

i Ini for some σ2
i . To see this, note that µij|β=m,u=0 = g−1(m1),

i.e. a constant. This assumption holds for most standard GLMMs. One notable exception is
when the responses are from the Poisson distribution with exposures which are not constant
within group i. Under the above assumption that W−1

i,m,0 = σ2
i Ini for some σ2

i ,

Îβ(m,0) =
G∑
i=1

XT
i (σ2

i Ini + ZiDZT
i )−1Xi,

where we have assumed that var(Yij)g
′(µij)

2|β=m,u=0 = σ2
i for all j = 1, ..., ni. By replacing

σ2 by σ2
i in (3.4) we find that the approximate Fisher information of βk is

Îβ(m,0)kk =
G∑
i=1

(
xTikxik
σ2
i

−
q∑
l=1

τ 2
l

σ2
i + τ 2

l zTilzil

ni∑
t=1

ziltxikt

ni∑
r=1

zilrxikr

)
,

where we have, again, assumed that D = diag
{
τ 2

1 , ..., τ
2
q

}
and the columns of Xi are orthog-

onal.

We can use the same results of Pauler (1998) to show that if βk has an associated group-
specific parameter then Îβ(m,0) is O(G) but if βk does not have an associated group-specific

parameter then Îβ(m,0) is O(n).

Therefore an approximate unit information prior for the regression parameters, β, of a GLMM
based on the integrated likelihood is

β ∼ N

(
m,Λ

(
G∑
i=1

XT
i

(
σ2
i Ini + ZiDZT

i

)−1
Xi

)
Λ

)
, (3.12)

where Λ = diag {Nk} and Nk is as defined in (3.9).

A GLM is a special case of a GLMM and the prior in (3.12) reduces to that shown in (3.2)
for the β of a GLM since ni = 1, Zi = 0 and Nk = n. Also we see that the above prior
reduces to that shown in (3.8) for the β of an LMM since σ2

i = σ2 for all i.

Note that the prior shown in (3.12) is conditional on the variance components matrix, D.
This means that the full conditional pdf of D decomposes as

f(D|y,β,u, φ) ∝ f(u|D)f(D|φ)f(β|D),

so the full conditional distribution of D is not independent of β. Suppose the prior distribu-
tion of D is the inverse-Wishart distribution. If D is conditionally independent of β and y

55



then the full conditional distribution of D is also inverse-Wishart. However, if the prior of
β depends on D then the full conditional distribution of D is not inverse-Wishart. This is a
computational disadvantage if we use Gibbs sampling to generate a posterior sample. Indeed,
if q > 1 and the prior distribution for D inverse-Wishart, then WinBUGS has difficulties in
generating a posterior sample from the posterior distribution of the resulting GLMM. This is
because WinBUGS requires that if the inverse-Wishart distribution is used than it must be
conditionally conjugate, i.e. the prior distribution for β must not depend on D. We could
replace D in (3.12) by its prior mean, if it exists, to remove the dependence of the prior
distribution of β on D. However, the disadvantage of doing so is that the prior variance of
β will become heavily dependent on the prior mean of D. This is similar to in Section 3.1
where the prior distribution of β in a linear model depends on σ2.

Another issue with this prior is that var(Yij)g
′(µij)

2|β=m,ui=0 = σ2
i for all j = 1, ..., ni.

This does not hold for an example we consider in Chapter 6. In this example, yij ∼
Poisson(Eijλij) where Eij is the exposure for the jth unit in the ith group. Therefore,
var(Yij)g

′(µij)
2|β=m,ui=0 = 1

Eij exp(m1)
and Eij 6= Ei for all j = 1, ..., ni.

For these reasons we seek an alternative to this prior distribution that is still based on a unit
information concept. In Section 3.3, we define a unit information prior for the regression
parameters, β, which is based on the first-stage likelihood.

3.2.2 Variance Components

In Section 3.2.1, we defined a unit information prior for the regression parameters, β, based
on the integrated likelihood but found it had some unattractive properties. We go on to define
a unit information prior for β in Section 3.3 that does not have these unattractive properties.
We are also able to define a default prior for D which is based on a unit information prior in
Section 3.3. Nevertheless, in this Section, we discuss, heuristically, how we would define a unit
information prior for the variance components matrix, D, based on the integrated likelihood.
The preceding discussion on unit information priors has relied on the model parameters, θ,
lying in Rk and thus, to be plausible for the prior distribution for θ being a multivariate
normal distribution. This is clearly not appropriate for the variance components matrix, D,
which lies in Pq, the set of all q × q positive-definite matrices.

Recall that D depends on t = 1
2
q(q+1) unique elements denoted d = (d1, ..., dt)

T . Natarajan
and Kass (2000) give the (r, s)th element of the approximate Fisher information matrix,
Îd(d,β,u), of d as

Î(d,β,u)rs =
G∑
i=1

tr

(
V−1
i

∂D

∂dr
V−1
i

∂D

∂ds

)
,

for r, s = 1, ..., t, where

Vi = D +
(
ZiWiZ

T
i

)−1
,

and Wi = diag {var(Yij)g
′(µij)

2}−1
. The approximate Fisher information for d depends on

the unknown D as well as β and u. We can assume an inverse-Wishart prior distribution for

56



D, with shape parameter ρ > q − 1 and scale matrix R, i.e.

D ∼ IW(ρ,R),

so that D has pdf, f(D), such that

f(D) ∝ |D|−
ρ+q+1

2 exp

(
−1

2
tr(RD−1)

)
.

Using this specification, we can induce a distribution for d and therefore a prior mean of d
which we denote as d̃. We can then replace d, β and u in the approximate Fisher information
of d by the prior means of d, m and 0, respectively, to give Îd(d̃,m,0).

To define a unit information prior for d, and therefore D, we could find the order, Nr, of the
rth diagonal elements of Îd(d̃,m,0) which are denoted as Îd(d̃,m,0)rr. The prior variance
of d could then be set to ΛÎd(d̃,m,0)−1Λ, where Λ = diag

{√
Nr

}
.

We see in Section 3.3 how to define a unit information prior for D, based on the first-stage
likelihood.

3.3 Default Priors based on the First-Stage Likelihood

3.3.1 Regression Parameters

We now define a unit information prior for the regression parameters, β, of a GLMM based
on the first-stage likelihood. The first-stage likelihood of a GLMM is

f(y|β,u, φ) =
G∏
i=1

ni∏
j=1

exp

[
yijζij − b(ζij)

aij(φ)
+ c(yij;φ)

]
.

The log of the first-stage likelihood is then

log f(y|β,u, φ) =
G∑
i=1

ni∑
j=1

[
yijζij − b(ζij)

aij(φ)
+ c(yij;φ)

]
.

Then we see that
∂ log f(y|β,u, φ)

∂β
=

G∑
i=1

ni∑
j=1

yij − µij
var(Yij)g′(µij)

xij. (3.13)

Therefore the Fisher information of β is

Iβ(β,u) =
G∑
i=1

ni∑
j=1

1

var(Yij)g′(µij)2
xijx

T
ij,

= XTWX,
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where W = diag {var(Yij)g
′(µij)

2}−1
. Note that Iβ(β,u) depends on β and u. We replace

these by their prior means of m and 0, respectively, to give

Iβ(m,0) = XTWm,0X,

where Wm,0 = diag {var(Yij)g
′(µij)

2}|−1

β=m,u=0. Note that Iβ(m,0)kk is O(n). So a unit
information prior for β of a GLMM based on the first-stage likelihood is

β ∼ N
(
m, n(XTWm,0X)−1

)
. (3.14)

This prior distribution is not conditional on the variance components matrix, D, and therefore
if the prior distribution of D is inverse-Wishart, then we can take advantage of the conditional
independence of D and, β and y.

The unit information prior (3.14) reduces to that in (3.1) and (3.2) for linear models and
GLMs, respectively.

The prior in (3.14) can also be applied to an LMM. In this case Wm,0 = 1
σ2 In and

β ∼ N
(
m, nσ2(XTX)−1

)
.

3.3.2 Variance Components

We now define a prior for the variance components matrix, D, based on a unit information
concept and the first-stage likelihood. Since a GLMM is a hierarchical model, D does not
feature in the first-stage likelihood. Indeed, we are attempting to define a default hyperprior
for D.

We begin by letting the prior distribution of D be the inverse-Wishart distribution with
shape parameter ρ and scale matrix R, so that

D ∼ IW(ρ,R).

It can be shown that E(D) = 1
ρ−q−1

R, provided ρ > q + 1.

Suppose we regard the model as non-hierarchical so that D is actually a fixed hyperparameter
that we need to determine to define the prior distribution for u. We proceed by beginning
to define a unit information prior for u based on the first-stage likelihood.

The log of the first-stage likelihood is

log f(y|β,u, φ) =
G∑
i=1

ni∑
j=1

(
yijζij − b(ζij)

aij(φ)
+ c(yij;φ)

)
,

and it follows that the Fisher information for ui is

Iui(β,ui) = ZT
i WiZi,
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for i = 1, ..., G, where Wi = diag {var(Yij)g
′(µij)

2}−1
. The Fisher information ui depends on

β and ui, so we replace these by their prior means of m and 0, respectively, to give

Iui(m,0) = ZT
i Wi,m,0Zi,

for i = 1, ..., G, where Wi,m,0 = diag {var(Yij)g
′(µij)

2}−1

β=m,ui=0. It is easy to show that the
diagonal elements, Iui(m,0)kk, of Iui(m,0), for k = 1, ..., q, are O(ni). Therefore, the unit
information of ui is 1

ni
ZT
i Wi,m,0Zi, for i = 1, ..., G. Since we have G groups we find the

average unit information over the G groups as 1
G

∑G
i=1

1
ni

ZT
i Wi,m,0Zi. This is similar to how

Natarajan and Kass (2000) average a similar quantity over the G groups for the uniform
shrinkage prior for D as discussed in Section 2.3.3. If D was a fixed hyperparameter and we

were defining a unit information prior for u we would set D = G
(∑G

i=1
1
ni

ZT
i Wi,m,0Zi

)−1

.

However, since D is not fixed we let its expectation

E(D) =
R

ρ− q − 1
= G

(
G∑
i=1

1

ni
ZT
i Wi,m,0Zi

)−1

,

so that

R = (ρ− q − 1)G

(
G∑
i=1

1

ni
ZT
i Wi,m,0Zi

)−1

.

It remains to find a value for the shape parameter, ρ > q + 1, or if ρ = q + ε + 1, to find a
value for ε > 0. If the ui’s are regarded as responses, with likelihood

f(u|D) ∝ |D|−
G
2 exp

(
−1

2

G∑
i=1

uTi D−1ui

)
. (3.15)

The prior distribution for D has pdf

f(D) ∝ |D|−
2q+2+ε

2 exp

(
1

2
tr(RD−1)

)
.

An increase in ε by one corresponds to the prior distribution contributing one extra group of
responses. Since the likelihood (3.15) will provide information for D that is proportional to
G, we can argue that ε = 1, using a unit information concept. Therefore the prior distribution
for D is

D ∼ IW(ρ,R),

where ρ = q + 2 and

R = G

(
G∑
i=1

1

ni
ZT
i Wi,m,0Zi

)−1

.

3.4 Dispersion Parameter

In this Section, we focus on default priors for the dispersion parameter, φ, of GLMMs (and
therefore linear models, GLMs and LMMs). In Section 3.1, we discussed how, if a parameter is
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present in all models in M then, the prior distribution of that parameter is unimportant with
regards to the posterior model probabilities. We assumed in Section 3.1 that the dispersion
parameter, if unknown, will be present in all models in M . Therefore, we can apply a very
diffuse prior distribution for φ.

In a linear model, φ = σ2, i.e. the dispersion parameter is the variance of the response,
independent of the mean of the response. In this case, the conjugate prior distribution for σ2

is the inverse-gamma distribution, IG(a, b), with shape parameter, a, and scale parameter,
b, where a, b > 0. A common way to make the inverse-gamma distribution diffuse is to set
a = b = ε, where ε is small. We will follow this approach throughout and will apply this
diffuse prior to all dispersion parameters that we encounter.

3.5 Simulation Study

In this Section, we test the robustness and efficacy of using the default priors for β and D
based on the first-stage likelihood that we proposed in Section 3.3.

We test these priors using simulation studies. Let yij be a response from an exponential
family distribution with mean µij = g−1(ηij) and dispersion parameter φ. We consider model
determination amongst five models with the following linear predictors:

1. ηij = β1,

2. ηij = β1 + β2xij,

3. ηij = β1 + ui, where ui
iid∼ N(0, τ 2),

4. ηij = β1 + ui + β2xij, where ui
iid∼ N(0, τ 2),

5. ηij = (β1 + u1i) + (β2 + u2i)xij, where ui = (ui1, ui2)T
iid∼ N(0,D),

for j = 1, ..., n∗ and i = 1, ..., G, where n = Gn∗. We generate responses from the model
with linear predictor 4. To do this, we generate x′ij independently from the standard normal
distribution and then set xij to be the standardised x′ij. We then choose the true values
β∗ = (β∗1 , β

∗
2)T , φ∗ (if unknown for the chosen response distribution), and τ ∗2. We generate

u∗i independently from N(0, τ ∗2) and use them to find the true linear predictor via η∗ij =
β∗1 + u∗i + β∗2xij. We then generate yij from the chosen distribution with mean µij = g−1(η∗ij)
and dispersion parameter φ∗.

We choose three different combinations of n∗ and G so that n = 100, always. They are
(n∗, G) = (10, 10), (n∗, G) = (5, 20) and (n∗, G) = (20, 5).

We consider three different response distributions: normal, Bernoulli and Poisson. For the
Bernoulli and Poisson distributions, the dispersion parameter is known. For the normal
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distribution, the dispersion parameter is σ2, the variance of the response, and we set this to
be 1.

For all response distributions, we set the intercept parameter, β∗1 , to be 1
2
. We are now left

with a choice of the parameters β∗2 and τ ∗2. We generate these parameters from the U[0, a]
distribution where a = 5 for the Bernoulli response distribution and a = 5

4
for the normal

and Poisson response distributions.

For each combination of (n∗, G) and response distribution, we generate the true values β∗2
and τ ∗2, and then generate the responses. For each of the five models, we apply the default
priors we proposed in Section 3.3 to the parameters β and D. In the unit information prior
distribution for β, we set m1 = 0 and recall that the remaining elements of the prior mean
are also 0. When the response distribution is normal, the dispersion parameter, σ2, is present
in all five models, and, according to Section 3.4, we can apply the same diffuse IG(ε, ε) prior
distribution where ε = 0.001. We then approximate the posterior model probabilities using
the reversible jump algorithm that we describe in Chapter 5. We run this algorithm for a
total of 2000 iterations, with a burn-in phase of 100 iterations. We repeat this process 500
times, in each case recording β∗2 , τ ∗2, and the approximated posterior model probabilities. In
each case, we also record the observed variance, τ̂ ∗2, of the u∗i ’s, i.e.

τ̂ ∗2 =
1

G− 1

G∑
i=1

(u∗i − ū∗)2,

where ū∗ = 1
G

∑G
i=1 u

∗
i .

Model 4 is the true model. However, by generating β∗2 and τ ∗2 from U[0, a] we hope that the
default priors will give more posterior model probability to the simpler, more parsimonious
Models 1, 2 and 3, when β∗2 and/or τ ∗2 are small. Although Model 5 is also the true model
in the sense that Model 4 is nested within Model 5, it is never the most parsimonious model
and we hope that the default priors will give small posterior model probability to Model 5.

To show the efficacy of the unit information prior for β, we plot the aggregate posterior
model probabilities of Models 2, 4 and 5, i.e. the models that contain a β2 parameter,
against β∗2 . To show the efficacy of the unit information prior for D, we plot the aggregate
posterior model probabilities of Models 3, 4 and 5, i.e. the models that contain group-specific
parameters against τ ∗2 and, in a separate plot, against the observed value, τ̂ ∗2, of τ ∗2. The
reason we produce this additional plot of the posterior model probabilities against τ̂ ∗2 is
that, particularly for small values of G, the actual variance observed in the ui’s can be much
smaller than the true value and the model determination strategy can have trouble detecting
it. For larger G, the two plots should be approximately the same, since τ̂ ∗2 → τ ∗2 as G
increases.

Figures 3.1, 3.2 and 3.3 show these plots for the Poisson, normal and Bernoulli responses,
respectively, for the three combinations of (n∗, G). Consider the first column in the three
Figures. The same behaviour is shown in all three Figures, i.e. the aggregate posterior model
probability of the models that contain a β2 term increasing from 0 to 1 as β∗2 increases from
0. The same behaviour can be seen for the aggregate posterior model probability of the
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Figure 3.1: Aggregate posterior model probabilities for Models 2, 4 and 5 (first column) and Models 3,
4 and 5 (second and third columns) plotted against β∗2 (first column), τ∗2 (second column), and τ̂∗2 (third
column), for Poisson responses. The rows correspond to (n∗, G) as (20, 5), (10, 10) and (5, 20), respectively.
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models that contain a group-specific intercept increases from 0 to 1 as τ̂ ∗2 increases from
0. As expected, the strategy has difficulty in favouring models containing a group-specific
intercept when τ̂ ∗2 is small, regardless of the value of τ ∗2.

This behaviour of the aggregate posterior model probability increasing from 0 is exactly that
which we desire. i.e. the proposed default priors penalise too complicated models.

With regards to Model 5, which is never the most parsimonious model available, Table
3.1 shows sample statistics of the posterior model probabilities of Model 5 for each of the
combinations of (n∗, G), for Poisson, normal and Bernoulli responses.

Table 3.1 shows that the posterior model probabilities of Model 5 are typically very small
indicating that we will rarely favour a too complicated model using the proposed default
priors.

For each dataset generated, we generated a posterior sample of size 2000 after a burn-in
phase of 500 iterations using WinBUGS under Model 4, i.e. the hypothetically true model.
Using this sample we produced 95% probability intervals for the parameters β1, β2 and τ 2

for the Poisson and Bernoulli response distributions and for the parameters β1, β2, τ 2 and σ2

for the normal response distribution. Using a posterior sample {θ1, ..., θN} of size N of the
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Figure 3.2: Aggregate posterior model probabilities for Models 2, 4 and 5 (first column) and Models 3,
4 and 5 (second and third columns) plotted against β∗2 (first column), τ∗2 (second column), and τ̂∗2 (third
column), for normal responses. The rows correspond to (n∗, G) as (20, 5), (10, 10) and (5, 20), respectively.
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parameter θ, a (1− α)% probability interval for θ is approximated by(
θ(Nα2 ), θ(N(1−α)

2 )

)
,

where θ(k) denotes the kth value of the ordered posterior sample. We now investigate the
coverage rates of those probability intervals. Table 3.2 shows the coverage rates.

From Table 3.2, note that for the regression parameters, β1 and β2, and the dispersion
parameter, σ2, for normal responses, the coverage rates are very close to the nominal value
of 95%. The coverage rates for the variance component, τ 2, are still close to 95% but are
always about 5% too low. Also shown in Table 3.2 is the median value, V , of τ ∗2 when the
probability interval for τ 2 does not contain τ ∗2. Note that the value V is small compared to
the theoretical median of all of the τ ∗2’s of 0.625 for Poisson and normal responses and 2.5
for Bernoulli responses. This indicates that the probability interval for τ 2, does not contain
τ ∗2 when the value of τ ∗2 is small. In these case, we have shown earlier that we are unlikely
to favour models which contain group-specific parameters, i.e. models with non-zero τ 2.
Therefore, we should not be concerned that the probability interval does not contain τ ∗2 in
these cases, since we are unlikely to choose a model that contains τ 2 and are more likely to
favour a more parsimonious model.
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Figure 3.3: Aggregate posterior model probabilities for Models 2, 4 and 5 (first column) and Models 3,
4 and 5 (second and third columns) plotted against β∗2 (first column), τ∗2 (second column), and τ̂∗2 (third
column), for Bernoulli responses. The rows correspond to (n∗, G) as (20, 5), (10, 10) and (5, 20), respectively.
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3.6 Turtle Data Example

We apply the proposed unit information priors to the model parameters of the five models
that can be applied to the Turtle Dataset. We set m1 = 0, since this corresponds a prior
mean of 1

2
for the response.

For Models 1 and 3, the prior for the regression parameter is β ∼ N(0, π
2
). For Models 2, 4

and 5, the prior for the regression parameters is

β ∼ N

(
0,
π

2

(
1 0
0 n

n−1

))
.

For Models 3 and 4, the prior for the variance component is σ2 ∼ IG
(

3
2
, π

4

)
. Finally, for

Model 5, the prior for the variance components matrix is D ∼ IW(4,R), where

R =
π

2

1∑G
i=1

∑ni
j=1

x2
ij

ni
− 1

G

(∑G
i=1

∑ni
j=1

xij
ni

)2

( ∑G
i=1

∑ni
j=1

x2
ij

ni
−
∑G

i=1

∑ni
j=1

xij
ni

−
∑G

i=1

∑ni
j=1

xij
ni

G

)
.

We approximate the posterior model probabilities by using the marginal likelihood approach.
The method used to approximate the marginal likelihoods is importance sampling. The de-
tails on how this is achieved is given in Section 4.5.1, and the approximate marginal likelihoods
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Table 3.1: Sample statistics of the posterior model probabilities of Model 5 for Poisson, normal and Bernoulli
responses for each of the combinations of (n∗, G).

Poisson Responses
(n∗, G) (20, 5) (10, 10) (5, 20)

Minimum 0.000 0.000 0.000
Median 0.024 0.013 0.014

Maximum 1.000 0.993 0.911
Normal Responses

(n∗, G) (20, 5) (10, 10) (5, 20)
Minimum 0.000 0.000 0.000
Median 0.050 0.047 0.054

Maximum 0.915 0.998 0.986
Bernoulli Responses

(n∗, G) (20, 5) (10, 10) (5, 20)
Minimum 0 0 0
Median 0.119 0.130 0.144

Maximum 0.963 0.915 0.968

are given in Table 4.1 on page 100. Note that the sample size used in the importance sampler
is so large that the approximations can be considered exact. These marginal likelihoods give
rise to the posterior model probabilities shown in Table 3.3, accurate to four decimal places.

The posterior model probabilities of Models 1 and 3 are negligible indicating there is strong
evidence of a birthweight effect on the survival probability of a turtle. Model 5 has the
highest posterior model probability which indicates that this birthweight effect is different
for the different clutches.

The Bayes factor in favour of Model 2 over Model 4 is 1.862. This is closer to the equivalent
Bayes factor of Sinharay and Stern (2005) than the equivalent Bayes factor of Sinharay and
Stern (2000) but we have used a formal concept to define our prior distribution for σ2.

3.7 Discussion

In this Chapter, we discussed unit information prior distributions applied to the regression
parameters, β, and the variance components matrix, D, of a GLMM. For the regression
parameters, β, we defined unit information priors based on the integrated and first-stage
likelihoods.

We found that the prior for β based on the integrated likelihood was conditional on D and
could not be applied when var(Yij)g

′(µij)
2|β=m,ui=0 is not constant for all j = 1, ..., ni. The

fact that the prior is conditional on D is a computational disadvantage if D has an inverse-
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Table 3.2: Coverage rates of the probability intervals for the parameters for the Poisson, normal and
Bernoulli responses for each of the combinations of (n∗, G). The nominal rate is 95%.

Poisson Responses
(n∗, G) (20, 5) (10, 10) (5, 20)
β1 0.950 0.950 0.952
β2 0.936 0.944 0.958
τ 2 0.892 0.906 0.910
V 0.0515 0.0740 0.0725

Normal Responses
(n∗, G) (20, 5) (10, 10) (5, 20)
β1 0.938 0.940 0.948
β2 0.938 0.936 0.948
τ 2 0.916 0.874 0.912
σ2 0.960 0.944 0.948
V 0.0580 0.0755 0.0662

Bernoulli Responses
(n∗, G) (20, 5) (10, 10) (5, 20)
β1 0.966 0.964 0.952
β2 0.952 0.948 0.958
τ 2 0.902 0.878 0.900
V 0.250 0.234 0.290

Table 3.3: Posterior Model Probabilities, f((m|y) of the five models for the Turtle Dataset having used
the proposed unit information prior distributions.

Model, m Posterior Model
Probability, f(m|y)

1 0.0000
2 0.3484
3 0.0013
4 0.1871
5 0.4632

Wishart prior distribution since D is not conditionally conjugate. We could replace D in the
prior by its prior mean but this is not recommended since the prior variance for β would be
heavily dependent on this value.

The unit information prior for β based on the first-stage likelihood is independent of D and
can be applied when var(Yij)g

′(µij)
2|β=m,ui=0 is not constant for all j = 1, ..., ni. For these

reasons , we prefer the prior for β based on the first-stage likelihood. We then defined a unit
information concept prior for D based on the first-stage likelihood.

In Section 3.5, we tested the efficacy and robustness of these default priors with respect to
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model determination by using simulation studies. We found that using the proposed default
prior distributions would lead to model determination that had behaviour that we desired.
That is, as the true value of the parameter increased the posterior model probability of the
models that contained that parameter correspondingly increased. The default priors seemed
to penalise over complicated models.

Note that the proposed unit information prior for β based on the first-stage likelihood is
approximate in the sense that β and ui are replaced in the weight matrix in the Fisher infor-
mation by their prior means, m and 0, respectively. We mentioned that β could be replaced
by some maximum likelihood estimate, β̂, resulting in a data-dependent prior distribution.
This approach of replacing β by its maximum likelihood estimate is suggested by Natarajan
and Kass (2000) and Gustafson et al. (2006), among others. However, in either case, as noted
by Gustafson et al. (2006), “the weight matrix tends to vary slowly over the parameter space
in most instances”.

For the unit information concept prior distribution for D we also take the approach of replac-
ing β and ui in the weight matrix by their prior means. Again the weight matrix will vary
slowly over the parameter space. The unit information concept prior for D is not unique in
that we have a choice for the parameter ρ. We chose ρ = q+ 2, so that the mean of the prior
distribution for D exists.

We applied the proposed unit information prior distributions to the models of the Turtle
Dataset and arrived at a model determination conclusion that was similar to those of Sinharay
and Stern (2005) who used a different default prior distribution.
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Chapter 4

Approximating the Marginal
Likelihood for GLMMs

4.1 Introduction

In this Chapter, we discuss the methods of bridge sampling and nested sampling for approx-
imating the marginal likelihood for the particular application to GLMMs. We assume that
the number of models, |M |, is small enough that using computationally intensive methods
for approximating the marginal likelihood of each model m ∈ M , such as bridge sampling
and nested sampling is practical, or that we have used some other method (see Chapter 5)
to identify a smaller subset, M∗ ⊂M , of models with high posterior model probability such
that |M∗| < |M | is manageable.

4.2 Bridge Sampling

4.2.1 Introduction

In Section 2.2.5 we gave the optimal, iterative bridge sampling approximation to the unknown
integral I =

∫
Θ
g(θ)dθ of Meng and Wong (1996) in (2.26) as

Î
(t+1)
BS,O =

1
nH

∑nH
i=1

lHi

nΠlHi+nH Î
(t)
BS,O

1
nΠ

∑nΠ

i=1
1

nΠlΠi+nH Î
(t)
BS,O

, (4.1)

where lki = g(θki )/h(θki ) for k = H,Π, and {θH1 , ...,θHnH} and {θΠ
1 , ...,θ

Π
nΠ
} are samples

generated from H and Π, respectively. Here Π has pdf π(θ) = g(θ)/I and H has pdf h(θ).
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4.2.2 Bridge Sampling in Practice

To implement (4.1) in practice, we need to specify the allocation of sample sizes, nH
nH+nΠ

, the

initial value, Î
(0)
BS,O, and the probability distribution, H.

Initial Value, Î
(0)
BS,O

If we choose Î
(0)
BS,O = 0, then the first value in the iterative scheme, Î

(1)
BS,O, corresponds to

the reciprocal importance sampling approximation. Similarly, if Î
(0)
BS,O = ∞, then Î

(1)
BS,O

corresponds to the importance sampling approximation. Both of these options seem sensible,
and in practice the iterative scheme (4.1) converges very quickly for any sensible starting

value, Î
(0)
BS,O.

Probability Distribution, H

Specifying the probability distribution, H, is the most important issue in the practical im-
plementation of bridge sampling. Meng and Schilling (2002) point out how var(ÎBS,O), given
in (2.25), depends on the Hellinger distance, H(H,Π) ∈ [0, 1], between H and Π defined as

H(H,Π) =
1

2

∫
Θ

(√
h(θ)−

√
π(θ)

)2

dθ,

= 1−
∫

Θ

√
h(θ)π(θ)dθ,

= 1− B(H,Π),

where B(H,Π) =
∫

Θ

√
h(θ)π(θ)dθ ∈ [0, 1] is the Bhattacharyya measure of affinity between

H and Π. The Hellinger distance is minimised, and, equivalently, the Bhattacharyya measure
is maximised, when h(θ) = π(θ), so we require H to ‘mimic’ Π as closely as possible. This
is a direct analogy of how importance sampling, rejection sampling and the independence
sampler all perform best when the sampling distributions H, S, and S, respectively, all
‘mimic’ the target distribution.

Suppose θ ∈ Rk. DiCiccio et al. (1997) suggest taking H to be a normal approximation to Π.
If θ does not lie in Rk then we can take some other probability distribution approximation
to Π. Indeed, Congdon (2003) suggests splitting the model parameters into sets of regression
parameters, variance components, dispersion parameters, etc.

A different approach is warp bridge sampling (Meng and Schilling (2002)) where H ≡ N(0, Ik)
(or H ≡ tν(0, Ik)) and Π is transformed or ‘warped’ to Π̃ so that its properties approximately
match those of H. Here tν(0, Ik) denotes the k-variate t distribution with ν degrees of

69



freedom, mean 0 and variance matrix Ik. It has pdf

h(θ) =
Γ
(
ν+k

2

)
(π(ν − 2))

k
2 Γ
(
ν
2

) [1 +
θTθ

ν − 2

]− ν+k
2

,

for ν > 2. If the location of Π matches that of H then this is known as Warp I bridge
sampling, if the location and spread match then it is known as Warp II bridge sampling, and
if the location, spread and skewness match then it is known as Warp III bridge sampling. If
H ≡ N(0, Ik), then Warp II bridge sampling can be seen as being equivalent to the approach
of DiCiccio et al. (1997). Sinharay and Stern (2005) found that Warp III bridge sampling
provided the most accurate approximations to the marginal likelihood from all of the methods
they assessed (see Section 2.2.7).

Suppose θ ∼ Π, where the location and spread of Π are µ and Σ = SST . We warp Π to Π̃
using the following stochastic transformation

bS−1(θ − µ),

where b is Bernoulli
(

1
2

)
on the sample space {−1, 1}. Now the pdf of Π̃ is

π̃(θ) =
1

2
|S| [π(µ− Sθ) + π(µ+ Sθ)] ,

=
1
2
|S| [g(µ− Sθ) + g(µ+ Sθ)]∫

Θ
g(θ)dθ

,

=
g̃(θ)∫

Θ
g(θ)dθ

,

where g̃(θ) = 1
2
|S| [g(µ− Sθ) + g(µ+ Sθ)]. Note that the normalising constant of g̃(θ) is

the same as g(θ). It can be shown that the location, spread and skewness of Π̃ match those
of H.

Let {θH1 , ...,θHnH} and {θΠ
1 , ...,θ

Π
nΠ
} be samples generated from H ≡ N(0, Ik) (or H ≡

tν(0, Ik)), and Π, respectively, then the Warp III bridge sampling approximation is found
by iterating (4.1) until convergence is achieved, where

lHi = |S|g(µ− SθHi ) + g(µ+ SθHi )

2h(θHi )
, (4.2)

and

lΠi = |S|g(θΠ
i ) + g(2µ− θΠ

i )

2h(S−1(θΠ
i − µ))

. (4.3)

The µ and S can be chosen to maximise the Bhattacharyya measure, B(H, Π̃), between H
and Π̃. This is equivalent to maximising

o(µ,S) =
√
|S|EH

[√
g(µ− Sθ) + g(µ+ Sθ)

h(θ)

]
. (4.4)

70



For most cases (4.4) will be analytically intractable. Meng and Schilling (2002) suggest
generating {θ̃1, ..., θ̃m} from H and maximising the sample average

ô(µ,S) =

√
|S|
m

m∑
i=1

√
g(µ− Sθ̃i) + g(µ+ Sθ̃i)

h(θ̃i)
,

to find µ and S. For high dimensional problems that are typical for GLMMs, maximising
ô(µ,S) will be infeasible. Sinharay and Stern (2005) state that “empirical studies suggest
good estimates of I even for suboptimal choices of warping transformation”. They suggest
taking µ to be the mean or mode, and Σ to be the variance or curvature matrix of Π.

To summarise, we now present the two different approaches to finding a bridge sampling
approximation to I when θ ∈ Rk.

DiCiccio approach

1. Generate {θΠ
1 , ...,θ

Π
nΠ
} from Π.

2. Find approximations to µ and Σ = SST , the mean/mode and variance/curvature
matrix of Π, respectively.

3. Set H ≡ N(µ,Σ) and generate {θH1 , ...,θHnH} from H.

4. Iterate (4.1) until convergence where lki = g(θki )/h(θki ) for k = H,Π.

Warp III bridge sampling approach

1. Generate {θΠ
1 , ...,θ

Π
nΠ
} from Π.

2. Find approximations to µ and Σ = SST , the mean/mode and variance/curvature
matrix of Π, respectively.

3. Set H ≡ N(0, Ik) (or H ≡ tν(0, Ik)) and generate {θH1 , ...,θHnH} from H.

4. Iterate (4.1) until convergence where lki for k = H,Π are given by (4.2) and (4.3).

What is clear from the approaches of DiCiccio et al. (1997) and warp bridge sampling is
that we need to have some information about Π in order to construct H or to warp Π, e.g.
approximations to the mode and curvature, or mean and variance. We feel that finding the
mode and curvature at the mode by maximising log g(θ) and evaluating the Hessian matrix
of log g(θ) at the mode, respectively, will not fully describe Π, especially when Π is the
posterior distribution of a GLMM. We use an approach of Sinharay and Stern (2005) who
generate a preliminary MCMC sample from Π and then use this to set µ to be the sample
mean and Σ = SST to be the sample variance matrix. This approach of using a posterior
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sample to gain information about the posterior distribution is also recommended by Gelfand
and Dey (1994) and Congdon (2003). We investigate this issue of preferring the sample mean
and variance over the mode and curvature in Section 4.6.

A naive approach would be to use the sample statistics from {θΠ
1 , ...,θ

Π
nΠ
}, i.e. the same

sample from Π used in the bridge sampler. This appears to lead to an underestimation of
I. We noted in Section 2.2.5, if H is independent of {θΠ

1 , ...,θ
Π
nΠ
}, then bridge sampling

overestimates I but it appears that if H is dependent on {θΠ
1 , ...,θ

Π
nΠ
}, then bridge sampling

underestimates I.

Consider the following example where Π is the univariate uniform distribution. Here, θ does
not lie in R but this example allows us to show, analytically, that dependence between H
and the sample generated from Π leads to underestimation of I. Suppose nH = nΠ = n, and
that Π is U[0, a], therefore

g(θ) =

{
1, if 0 ≤ θ ≤ a,
0, if otherwise,

and I = a. We generate {θΠ
1 , ..., θ

Π
n } from U[0, a] and set H to be U[0, θ̂Π] where θ̂Π, is some

estimate of a based on {θΠ
1 , ..., θ

Π
n }. Therefore,

h(θ) =

{
1

θ̂Π
, if 0 ≤ θ ≤ θ̂Π,

0, if otherwise.

Now in the bridge sampling approximation (4.1), lHi = θ̂ΠI(θHi ≤ a) and lΠi = θ̂Π

I(θΠ
i ≤θ̂Π)

, so

the optimal, bridge sampling approximation is

ÎBS,O =

1
n

∑n
i=1

θ̂ΠI(θHi ≤a)

θ̂ΠI(θHi ≤a)+I

1
n

∑n
i=1

(
θ̂Π

I(θΠ
i ≤θ̂Π)

+ I
)−1 ,

= θ̂Π

∑n
i=1 I(θHi ≤ a) 1

θ̂Π+I∑n
i=1 I(θΠ

i ≤ θ̂Π) 1

θ̂Π+I

,

= θ̂Π

∑n
i=1 I(θHi ≤ a)∑n
i=1 I(θΠ

i ≤ θ̂Π)
,

where {θH1 , ..., θHn } is a sample generated from H ≡ U[0, θ̂Π]. Note that, the Î
(t)
BS,O that

appear in the numerator and denominator of the bridge sampling approximation cancel for
this problem and ÎBS,O is non-iterative.

We choose two alternatives for θ̂Π: θ̂Π
1 = maxi=1,...,n{θΠ

i }, i.e. the maximum likelihood

estimate of a which is biased, and θ̂Π
2 = n+1

n
maxi=1,...,n{θΠ

i }, i.e. the adjusted maximum
likelihood estimate of a which is unbiased. Denote the bridge sampling approximations to I
that result from the two alternatives, θ̂Π

1 and θ̂Π
2 , as ÎBS,O,1 and ÎBS,O,2, respectively, then

ÎBS,O,1 = θ̂Π
1 ,

and

ÎBS,O,2 =
θ̂Π

2

n

n∑
i=1

I(θHi ≤ a).
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We can use standard results on the distribution of a maximum to show that

E(ÎBS,O,1) =

(
1− 1

n+ 1

)
a.

For E(ÎBS,O,2), first note that

E(ÎBS,O,2) = E
(

E
(
ÎBS,O,2|θΠ

1 , ..., θ
Π
n

))
,

= E
(
θ̂Π

2 P(θHi ≤ a)
)
,

= E
(

min(θ̂Π
2 , a)

)
.

Again, using standard results on the distribution of a maximum and a simple transformation
of variables, we find that θ̂Π

2 has pdf, fθ̂Π
2

(θ) = nn+1θn−1

an(n+1)n
, for 0 ≤ θ ≤ n+1

n
a. Therefore,

E(ÎBS,O,2) = E
(

min(θ̂Π
2 , a)

)
,

=

∫ a

0

θfθ̂Π
2

(θ)dθ + a

∫ n+1
n
a

a

fθ̂Π
2

(θ)dθ,

=

(
1− nn

(n+ 1)n+1

)
a.

Now E(ÎBS,O,j) < a for finite n and j = 1, 2. So, for this problem, a naive use of bridge
sampling leads to an underestimation of I by O( 1

n
).

We can generalise the above result into k dimensions. Suppose Π ≡ U[0, a], where a =
(a1, ..., ak)

T , i.e. Π is uniform on the k-dimensional cuboid, G = [0, a1]× [0, a2]× ...× [0, ak],
defined by the points 0 and a. Therefore,

g(θ) =

{
1, if 0 ∈ G,
0, if otherwise,

and I =
∏k

j=1 aj. We generate {θΠ
1 , ...,θ

Π
n} from Π and set H ≡ U[0, θ̂] where θ̂ =

(θ̂Π(1), ..., θ̂Π(k))T =
(
n+1
n

max{θΠ(1)
i }, ..., n+1

n
max{θΠ(k)

i }
)T

and θ
Π(j)
i is the jth element of

θΠ
i . Therefore,

h(θ) =

{
1∏k

j=1 θ̂
Π(j)

, if θ ∈ A = [0, θ̂Π(1)]× ...× [0, θ̂Π(k)],

0, if otherwise.

It can be shown that

ÎBS,O =
1

n

k∏
j=1

θ̂Π(k)

n∑
i=1

I(θHi ∈ G),

and that

E
(
ÎBS,O

)
=

(
1− nn

(n+ 1)n+1

)k k∏
j=1

aj,

=

(
1− nn

(n+ 1)n+1

)k
I.
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Therefore in k dimensions, naive use of bridge sampling results in an underestimation of I
by O( k

n
).

Obtaining analytical results, as above, for non-trivial cases is difficult so we rely on a simu-
lation study. For the simulation study nH = nΠ = n and we use, for Π, the k-variate normal
distribution, N(0, Ik), with mean 0 and variance matrix Ik. Here

g(θ) = exp

(
−θ

Tθ

2

)
,

and I = (2π)
k
2 . We generate two samples, {θΠ

1 , ...,θ
Π
n} and {θΠ∗

1 , ...,θΠ∗
n }, from Π ≡ N(0, Ik)

and set µ and Σ = SST to be the sample mean and sample variance matrix of {θΠ
1 , ...,θ

Π
n}.

We compute four approximations to I:

1. The Naive DiCiccio Approach, {θΠ
1 , ...,θ

Π
n} is used in the bridge sampler as the sample

from Π and is therefore not independent of H.

2. The Naive Warp III Bridge Sampling Approach, {θΠ
1 , ...,θ

Π
n} is used in the bridge

sampler as the sample from Π and is therefore not independent of the warping trans-
formation. We use H ≡ N(0, Ik).

3. The Non-naive DiCiccio Approach, {θΠ∗
1 , ...,θΠ∗

n } is used in the bridge sampler as the
sample from Π and is therefore independent of H.

4. The Non-naive Warp III Bridge Sampling Approach, {θΠ∗
1 , ...,θΠ∗

n } is used in the bridge
sampler as the sample from Π and is therefore independent of the warping transforma-
tion. We use H ≡ N(0, Ik).

We choose six different values for k, namely 1, 2, 5, 10, 50 and 100. For k = 1, we ap-
proximate I for n ∈ {10, 20, ..., 190, 200}, for k = 2, n ∈ {20, 40, ..., 380, 400}, for k = 5,
n ∈ {50, 100, ..., 950, 1000}, for k = 10, n ∈ {100, 200, ..., 1900, 2000}, for k = 50, n ∈
{500, 1000, ..., 9500, 10000}, and for k = 100, n ∈ {1000, 2000, ..., 19000, 20000}. For each
value of n we repeat the approximation 10000 times, with different samples from Π and H
for each repetition. Figure 4.1 shows the mean of the relative approximation, ÎBS,O/I, over
the 10000 repetitions plotted against n for the six different values of k and the four different
approaches.

Figure 4.1 shows that the naive approaches underestimate I for both the DiCiccio and Warp
III approaches. This underestimation appears to be asymptotically zero. The non-naive
approaches do not lead to any such underestimation. The non-naive approaches should lead
to overestimation of I, which is asymptotically zero, but this overestimation is negligible
when compared to the underestimation caused by the naive approaches. For k > 1, the
results from the simulation study seem to concur with the analytic results, with a k-variate
uniform Π, that the underestimation is O( k

n
).

We can conclude from the simulation study, that we cannot use the same sample to construct
H or to warp Π as we use in the bridge sampler. However, the non-naive DiCiccio and Warp
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Figure 4.1: Mean of the relative approximation over the 10000 repetitions plotted against n for the six
different values of k and the four different approaches.
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Naive DiCiccio Approach
Non−naive DiCiccio Approach

Naive Warp III Bridge Sampling Approach
Non−naive Warp III Bridge Sampling Approach

III bridge sampling approaches require more computational effort since we need to generate
two samples from Π.

Warp III bridge sampling requires no extra sampling effort over the DiCiccio method and
is reported by Sinharay and Stern (2005) to provide more accurate approximations. For
these reasons we focus on the Warp III bridge sampling implementation over the DiCiccio
approach.

We consider the following scenario: we can generate a sample of size N from each of Π and
H, denoted {θΠ

1 , ...,θ
Π
N} and {θH1 , ...,θHN}, respectively. Our present problem is to find how

to allocate the {θΠ
1 , ...,θ

Π
N} to find µ and S as well as to use in the bridge sampler. We

consider two strategies and assess their performance using the mean squared error of the
relative approximation from a simulation study.

Proportion Strategy
We use a proportion, ρ ∈ (0, 1), of the sample from Π with which to warp Π and the
remainder is used in the bridge sampler. We use the whole sample from H in the bridge
sampler. Therefore, nH = N and nΠ = N − dρNe. Denote this approximation to I as Î

(ρ)
BS,O,

for a particular value of ρ. The algorithm for the proportion strategy is
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1. Generate {θΠ
1 , ...,θ

Π
N} from the target distribution Π and {θH1 , ...,θHN} from H.

2. Let nΠ = N − dρNe and nH = N .

3. Let µ and Σ = SST be the sample mean and variance of {θΠ
nΠ+1, ...,θ

Π
N}, respectively.

4. Compute lHi using (4.2) for i = 1, ..., nH and lΠi using (4.3) for i = 1, ..., nΠ.

5. Find Î
(ρ)
BS,O using (4.1).

Split Strategy
We split {θΠ

1 , ...,θ
Π
N} into two unique, equally sized samples denoted by {θΠ(1)

1 , ...,θΠ(1)
nΠ
}

and {θΠ(2)
1 , ...,θΠ(2)

nΠ
} where nΠ = N

2
. We do the same with the sample from H to form

{θH(1)
1 , ...,θH(1)

nΠ
} and {θH(2)

1 , ...,θH(2)
nΠ
} where nH = nΠ = N

2
. The approximation Î

(1)
BS,O is

found by using {θΠ(2)
1 , ...,θΠ(2)

nΠ
} to find µ and S, and using the samples {θΠ(1)

1 , ...,θΠ(1)
nΠ
} and

{θH(1)
1 , ...,θH(1)

nΠ
} in the bridge sampler. Likewise, Î

(2)
BS,O is found by using {θΠ(1)

1 , ...,θΠ(1)
nΠ
} to

find µ and S, and using {θΠ(2)
1 , ...,θΠ(2)

nΠ
} and {θH(2)

1 , ...,θH(2)
nΠ
} in the bridge sampler. The

two approximations are then combined to form Î
(S,A)
BS,O or Î

(S,G)
BS,O , where the A or the G is used

to denote whether Î
(1)
BS,O and Î

(2)
BS,O have been combined using the arithmetic or geometric

mean, respectively.

The algorithm for the split strategy is:

1. Generate {θΠ
1 , ...,θ

Π
N} from the target distribution Π and {θH1 , ...,θHN} from H.

2. Let nΠ = nH = N
2

.

3. Let µ and Σ = SST be the sample mean and variance of {θΠ
1 , ...,θ

Π
nΠ
}, respectively.

4. Compute lHi using (4.2) for i = nH + 1, ..., N and lΠi using (4.3) for i = nΠ + 1, ..., N .

5. Let Î
(1)
BS,O be the final value of the following converged iterative scheme

Î
(t+1)
BS,O =

∑N
i=nH+1

lHi

nΠlHi+nH Î
(t)
BS,O∑N

i=nΠ+1
1

nΠlΠi+nH Î
(t)
BS,O

.

6. Let µ and Σ be the sample mean and variance of {θΠ
nΠ+1, ...,θ

Π
N}, respectively.

7. Compute lHi using (4.2) for i = 1, ..., nH and lΠi using (4.3) for i = 1, ..., nΠ.

8. Let Î
(2)
BS,O be the final value of the following converged iterative scheme

Î
(t+1)
BS,O =

∑nH
i=1

lHi

nΠlHi+nH Î
(t)
BS,O∑nΠ

i=1
1

nΠlΠi+nH Î
(t)
BS,O

.
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9. Let Î
(S,A)
BS,O = 1

2

(
Î

(1)
BS,O + Î

(2)
BS,O

)
and Î

(S,G)
BS,O =

√
Î

(1)
BS,OÎ

(2)
BS,O

In the simulation study we will also assess whether to use H ≡ N(0, Ik) or H ≡ tν(0, Ik).
Sinharay and Stern (2005) used ν = 4 and we will do so also. They found that for Warp II
bridge sampling using a t-distribution over a normal distribution for H led to an improvement
in accuracy. However, they concluded that this was not the case for Warp III bridge sampling.
Sinharay and Stern (2005) believed that this was the case due to a t-distribution having more
overlap, and therefore higher Bhattacharyya measure, with the still skewed Π̃, under the Warp
II approach.

We consider four different target distributions:

1. Π1 ≡ N(1k, 2Ik), i.e. the k-variate normal distribution with mean 1k and variance
matrix 2Ik, where 1k denotes the k × 1 vector of ones.

2. Π2 ≡ C(1k), i.e. the k-variate non-central Cauchy distribution with location 1k. This
is a special case of the k-variate non-central t-distribution with mean 1k and one degree
of freedom. This distribution is heavy-tailed.

3. Π3 ≡ L(0, Ik), i.e. the k-variate logistic distribution with mean 0 and scale matrix Ik.
This distribution is formed from k independent logistic distributions with mean 0 and
scale parameter 1. This distribution is heavy-tailed.

4. Π4 ≡ LG(1k, 41k), i.e. the k-variate log gamma distribution with shape parameter 1k
and scale parameter 41k. This distribution is formed from k independent log gamma dis-
tributions with shape parameter 1 and scale parameter 4. This distribution is skewed.

We generate samples from Π and H of size N and calculate Î
(ρ)
BS,O for each ρ in {0.05, ..., 0.95}

as well as Î
(S,A)
BS,O and Î

(S,G)
BS,O . We repeat this 100000 times for H ≡ N(0, Ik) and H ≡ tν(0, Ik).

We choose k = 1, 5 and 10. For k = 1, we use N = 1000 and 10000. For k = 5, N = 2500
and 10000. For k = 10, N = 5000 and 10000.

Figures 4.2, 4.3, 4.4 and 4.5 show the relative mean squared error of Î
(ρ)
BS,O plotted against

ρ for Π1, Π2, Π3 and Π4, respectively, for the different values of k and N . Also shown on
the plots is the relative mean squared error of Î

(S,A)
BS,O . We found no improvement in accuracy

from using the geometric mean over the arithmetic mean in the split strategy approach.

The first conclusion to draw is that typically using N(0, Ik) for H appears to outperform using
t4(0, Ik) with respect to minimising the relative mean squared error for all target distributions
except the Cauchy distribution. Even in these cases, the relative mean squared errors are
very similar when using H ≡ N(0, Ik) compared to H ≡ t4(0, Ik).

The optimal value of ρ with respect to minimising the relative mean squared error is heavily
dependent on Π, H, k and N . When the target distribution is normal and H is also normal
then the optimal ρ is large suggesting we should use the vast majority of the sample from Π to

77



Figure 4.2: Relative MSE of Î(ρ)
BS,O plotted against ρ for the Π1 ≡ N(1k, 2Ik) target distribution with the

relative MSE of Î(S,A)
BS,O .
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find µ and S. In this case, the distributional family of H and Π̃ is identical, so by increasing
the accuracy of the approximations, µ and S, we increase the Bhattacharyya measure towards
1 and therefore decrease the variance of the bridge sampling approximation.

However, when the target distribution is Cauchy and H is normal, the optimal ρ is small
indicating that we need to use the vast majority of the sample from Π in the bridge sampler.
For the logistic and log-gamma target distributions, the optimal ρ appears to lie in the
interval (0.1, 0.3).

It appears that a ρ that is optimal for one type of target distribution can be disastrous for
another type of target distribution.

In practice, posterior distributions are asymptotically normal and are approximately normal
for large sample sizes so it follows that using a large value for ρ could be a sensible approach.
However, as mentioned above this can be disastrous. A conservative choice would be use
ρ = 0.5, as this value seems to perform well for most scenarios.

Alternatively, consider the split strategy with the arithmetic mean. This strategy typically
outperforms the proportion strategy for any ρ except when the target distribution is normal
and in this case it performs close to the proportion strategy with optimal ρ.
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Figure 4.3: Relative MSE of Î(ρ)
BS,O plotted against ρ for the Π2 ≡ C(1k) target distribution with the

relative MSE of Î(S,A)
BS,O .
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Therefore our recommendations are to use N(0, Ik) as H and to use the split strategy with
the arithmetic mean.

Allocation of Sample Sizes

With regards to the allocation of sample sizes, these are set by the strategy we have adopted
from above and the relative ease of generating from the distributions H and Π. We have
assumed that the two distributions, H and Π, are equally easy to generate from, although
this may not be the case in practice. If it is easier to generate from H, then we can use
unequal sample sizes of nk = 1

2
Nk, where Nk is the size of the sample generated from k, for

k = H,Π.
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Figure 4.4: Relative MSE of Î(ρ)
BS,O plotted against ρ for the Π3 ≡ L(0, Ik) target distribution with the

relative MSE of Î(S,A)
BS,O .
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4.2.3 Summary

We summarise this Section by presenting the bridge sampling algorithm that we found best
approximates I with respect to minimising the mean squared error.

1. Generate a sample, {θΠ
1 , ...,θ

Π
NΠ
}, of size NΠ from the target distribution, Π, and a

sample, {θH1 , ...,θHNH}, of size NH from H ≡ N(0, Ik).

2. Let nΠ = 1
2
NΠ and nH = 1

2
NH .

3. Let µ and Σ = SST be the sample mean and variance of {θΠ
1 , ...,θ

Π
nΠ
}, respectively.

4. Compute lHi using (4.2) for i = nH +1, ..., NH and lΠi using (4.3) for i = nΠ +1, ..., NΠ.

5. Let Î
(1)
BS,O be the final value of the following converged iterative scheme

Î
(t+1)
BS,O =

1
nH

∑NH
i=nH+1

lHi

nΠlHi+nH Î
(t)
BS,O

1
nΠ

∑NΠ

i=nΠ+1
1

nΠlΠi+nH Î
(t)
BS,O

.
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Figure 4.5: Relative MSE of Î(ρ)
BS,O plotted against ρ for the Π4 ≡ LG(1k, 41k) target distribution with the

relative MSE of Î(S,A)
BS,O .
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6. Let µ and Σ = SST be the sample mean and variance of {θΠ
nΠ+1, ...,θ

Π
NΠ
}, respectively.

7. Compute lHi using (4.2) for i = 1, ..., nH and lΠi using (4.3) for i = 1, ..., nΠ.

8. Let Î
(2)
BS,O be the final value of the following converged iterative scheme

Î
(t+1)
BS,O =

1
nH

∑nH
i=1

lHi

nΠlHi+nH Î
(t)
BS,O

1
nΠ

∑nΠ

i=1
1

nΠlΠi+nH Î
(t)
BS,O

.

9. Let Î
(S,A)
BS,O = 1

2

(
Î

(1)
BS,O + Î

(2)
BS,O

)
.

4.3 Nested Sampling

4.3.1 Introduction

We introduced the basic idea of nested sampling in Section 2.2.5. A key feature of nested
sampling is the requirement to generate from H|L(θ) > L(θi), i.e. the distribution H
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constrained to the region where L(θ) > L(θi). Exact generation from this constrained
distribution is typically an intractable problem.

Skilling (2006) proposed the use of p MCMC steps at iteration i with H|L(θ) > L(θi) as

the stationary distribution and with one of the N − 1 elements of Θ
(S)
i as the initial value.

Chopin and Robert (2009) point out that if this method is used then their central limit
theorem result is invalid since the stationary distribution changes at each iteration. They go
on to say that nested sampling based on MCMC could be interpreted as an approximation
to ideal nested sampling.

An alternative approach is to generate a sample from H and then to subsample those values
that satisfy L(θ) > L(θi). However, this will become increasingly inefficient as L(θi) becomes
close to its maximum.

In the next Section, we discuss an extension of nested sampling called nested importance
sampling which allows exact generation from the constrained distribution.

4.3.2 Nested Importance Sampling

First, suppose we are interested in evaluating

I1 =

∫
Θ

s(θ)L̃(θ)h(θ)dθ,

for some function, s(θ), and for any positive function, L̃(θ). Chopin and Robert (2009) show
that we can use the following nested sampling approximation

I1,NS =
m∑
i=1

(e−(i−1)/N − e−i/N)L̃(θi)s(θi),

where the θi’s are the same as would be used to approximate I2 =
∫

Θ
L̃(θ)h(θ)dθ, i.e.

at iteration i, θi = arg min{L̃(θi1), ..., L̃(θiN)}, and we are still required to generate from
H|L̃(θ) > L̃(θi).

Now, suppose s(θ) = g(θ)

L̃(θ)h(θ)
= L(θ)

L̃(θ)
, then I1 = I =

∫
Θ
g(θ)dθ and the nested importance

sampling approximation to I is

ÎNIS =
m∑
i=1

(e−(i−1)/N − e−i/N)L(θi).

We have a choice of the function L̃(θ). If we choose L̃(θ) = L(θ), then we have the basic
nested sampling method from Section 2.2.5.

Suppose H ≡ N(µ,Σ) and

L̃(θ) = λ((θ − µ)TΣ−1(θ − µ)),
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where λ() is any decreasing function. In this case, Chopin and Robert (2009) show that
the approximations to the Ψ−1(xi)’s can be error-free. In nested sampling, we approximate
Ψ−1(xi) by L̃(θi) but we can now do this exactly. If Ψ−1(xi) = L̃(θi), then

xi = Ψ
(
L̃(θi)

)
,

= P
(
L̃(θ) > L̃(θi)

)
,

= P
(
(θ − µ)TΣ−1(θ − µ) < (θi − µ)TΣ−1(θi − µ)

)
,

since λ() is a decreasing function. Therefore xi = Fχ2
k

(
(θi − µ)TΣ−1(θi − µ)

)
, where Fχ2

k
()

is the distribution function of the χ2
k distribution. Let qi be the xith quantile of the χ2

k

distribution, then Ψ−1(xi) = L̃(θi) if and only if

qi = (θi − µ)TΣ−1(θi − µ).

This can be achieved if

θi =

√
qiSv
√

vTv
+ µ,

where v ∼ N(0, Ik). We are sampling θi uniformly over the ellipsoid that contains xi of the
mass of H.

Chopin and Robert (2009) suggest setting µ and Σ to be the mode and the negative inverse
of the Hessian matrix of log g(θ) evaluated at the mode, respectively. As is the case for
bridge sampling, we feel that the mode and curvature do not give us sufficient information
about Π. However, as is the case for bridge sampling, we may assume that we have a sample
of size NΠ from Π, and we can set µ and Σ to be the sample mean and variance matrix,
respectively.

The nested importance sampling approximation to I =
∫

Θ
g(θ)dθ is then found using the

following algorithm:

1. Generate a sample of size NΠ from Π. Set µ and Σ = SST to be the mean and variance
matrix of this sample, respectively. Set i = 1 and Î

(1)
NIS = 0. Choose N .

2. Generate v ∼ N(0, Ik) and set

θi =

√
qiSv
√

vTv
+ µ,

where qi is the e−i/N quantile of the χ2
k distribution.

3. Let

Î
(i+1)
NIS = Î

(i)
NIS + (e−(i−1)/N − e−i/N)

g(θi)

h(θi)
,

where h() is the pdf of H ≡ N(µ,Σ).

4. Repeat steps 2. to 3. until ÎNIS has converged.
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The value N is a tuning parameter which when increased will result in an approximation
with greater accuracy but an algorithm that will take longer to converge and thus will have
greater computational expense.

Note that we can choose H ≡ tν(µ,Σ), for ν > 2, and

L̃(θ) = λ

(
1

k
(θ − µ)TΥ−1(θ − µ)

)
,

where λ() is any decreasing function, and Υ = ν−2
ν

Σ. In this case our approximations to the
Ψ−1(xi)’s are error-free if

θi =

√
qikRv√
vTv

+ µ,

where v ∼ N(0, Ik), Υ = RRT , and qi is the xith quantile of the Fk,ν distribution.

The algorithm for the t-distribution nested importance sampling algorithm is:

1. Generate a sample of size NΠ from Π. Set µ and Σ to be the mean and variance
matrix of this sample, respectively. Set i = 1 and Î

(1)
NIS = 0. Choose N and ν > 2. Let

Υ = ν−2
ν

Σ and R be such that Υ = RRT .

2. Generate v ∼ N(0, Ik) and set

θi =

√
qikRv√
vTv

+ µ,

where qi is the e−i/N quantile of the Fk,ν distribution.

3. Let

Î
(i+1)
NIS = Î

(i)
NIS + (e−(i−1)/N − e−i/N)

g(θi)

h(θi)
,

where h() is the pdf of H ≡ tν(µ,Σ).

4. Repeat steps 2. to 3. until ÎNIS has converged.

4.4 Comparison of bridge and nested sampling

In this Section we undertake an empirical comparison of bridge and nested importance sam-
pling. From first appearances, what is required for our implementations of bridge sampling
and nested importance sampling are quite similar. Both methods require a sample of size
NΠ to be generated from Π, and then both methods require a sample from N(0, Ik). For this
reason, we can try to compare the two methods having equated their computational expense.

However, we need to be careful. The main source of computational expense for both methods,
after generating samples from Π and H, is evaluating the function g(). Suppose we have
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generated a sample of size NΠ from Π and after running the nested importance sampling
algorithm, it converges after W iterations. This algorithm will have required a sample of
size W to be generated from N(0, Ik) and W evaluations of g(). Suppose we then use
bridge sampling using the split strategy recommended in Section 4.2 where nΠ = 1

2
NΠ and

nH = 1
2
W , using the same sample of size W from N(0, Ik) that was used in the nested

importance sampling algorithm. This will require a total of 2NΠ + 2W evaluations of g().
Instead, we will compare nested importance sampling with W iterations to bridge sampling
with at most W evaluations of g(). To do this we set nΠ = nH = bW

8
c. We will also use this

empirical study to compare nested importance sampling with H ≡ N(0, Ik) against nested
importance sampling with H ≡ t4(0, Ik), using the same sample of size NΠ from Π.

We consider four different target distributions:

1. Π1 ≡ N(1k, 2Ik), i.e. the k-variate normal distribution with mean 1k and variance
matrix 2Ik.

2. Π2 ≡ L(0, Ik), i.e. the k-variate logistic distribution with mean 0 and scale matrix Ik.

3. Π3 ≡ tν(1k,R = Ik), i.e. the k-variate non-central t distribution with location 1k, scale
matrix Ik and ν degrees of freedom. This distribution has variance ν

ν−2
Ik if ν > 2 and

is undefined if otherwise. Note that as ν →∞, this distribution approaches N(0, Ik).

4. Π4 ≡ LG(α1k, 40001k), i.e. the k-variate log gamma distribution with shape parameter
α1k and scale parameter 41k. Note that this distribution becomes closer to a normal
distribution as α grows large.

We consider two different values for N for nested importance sampling, i.e. N = 100 and
N = 1000, and three different values for k, i.e. k = 1, 5 and 10. We generate a sample of
size NΠ = 100N from Π. We then find the nested importance sampling approximation to
I which uses W iterations (with a maximum of NΠ) and a sample of size W from N(0, Ik).
This is denoted ÎNIS1. We then compute the bridge sampling approximation to I with
nΠ = nH = bW

8
c with at most W evaluations of g(). We acquire our samples of size 2nΠ

from Π and N(0, Ik) by randomly subsampling from within the existing samples from Π
and N(0, Ik). This is denoted by ÎBS1. We also compute the nested importance sampling
approximation with H ≡ t4(0, Ik), denoted ÎNIS2.

In addition we compute the bridge sampling approximation with nΠ = 1
2
NΠ and nH = W

2
,

denoted ÎBS2.

We compare the four different methods using boxplots of the relative approximation, Î/I.
Figures 4.6 and 4.7 show these boxplots for the different methods and the different values of
k and N for Π1 and Π3, respectively. Figures 4.8 to 4.13 show the boxplots for Π2 for the six
different combinations of k and N , respectively. The boxplots of the relative approximation
are plotted against different values of ν > 2. Figures 4.14 to 4.19 show the boxplots for Π4

for the six different combinations of k and N , respectively. The boxplots are plotted against
different values of α on a non-linear scale.
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Figure 4.6: Boxplots of the relative approximation for Π1 ≡ N(1k, 2Ik) for the four methods ÎNIS1, ÎBS1,
ÎNIS2, and ÎBS2.
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ÎNIS1 ÎBS1 ÎNIS2 ÎBS2

0.
99

7
0.

99
9

1.
00

1
1.

00
3

R
el

at
iv

e 
A

pp
ro

xi
m

at
io

n

k = 1, N = 1000
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Figure 4.6 shows that if the target distribution is normal, then nested importance sampling
with H ≡ N(0, Ik) outperforms bridge sampling with the same number of evaluations of g().
For other target distributions, nested importance sampling with H ≡ N(0, Ik) underestimates
I. We see from Figures 4.8 to 4.13 when the target distribution is tν(1k,R = Ik) and from
Figures 4.14 to 4.19 when the target distribution is LG(α1k, 41k), that this underestima-
tion decreases as the target distribution becomes closer to a normal distribution. It is also
apparent that this underestimation tends to zero as N →∞.

On the other hand, nested importance sampling with H ≡ tν(0, Ik) overestimates I when the
target distribution is normal. We see from Figures 4.8 to 4.13 that when the target distri-
bution is t4 then nested importance sampling with H ≡ tν(0, Ik) produces an approximation
to I with no bias. Generally though, as the target distribution becomes closer to a normal
distribution the overestimation of I by nested importance sampling with H ≡ tν(0, Ik) tends
to the amount seen when the target distribution is normal.

As expected, bridge sampling using the same number of values generated from Π and H as
nested importance sampling with H ≡ N(0, Ik) outperforms bridge sampling using the same
number of evaluations of g() as nested importance sampling with H ≡ N(0, Ik).

86



Figure 4.7: Boxplots of the relative approximation for Π2 ≡ L(0, Ik) for the four methods ÎNIS1, ÎBS1,
ÎNIS2, and ÎBS2.
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In conclusion, nested importance sampling with H ≡ N(0, Ik) performs very well when the
target distribution is normal. In fact, in this case, it outperforms bridge sampling using the
same number of evaluations of g(). When the target distribution is non-normal, it appears
to underestimate I, although this underestimation decreases as N increases. If the target
distribution is approximately normal than this underestimation may be small enough to
ignore. Posterior distributions are approximately normal for large sample sizes. However, it
would appear that bridge sampling provides a more robust alternative.

We now explore our implementation of nested importance sampling to gain some insight into
the underestimation. Consider a one-dimensional example where the target distribution is

Π ≡ N(0, 1) and H ≡ N(µ, 1). Let g(θ) = 1√
2π

exp
(
− θ2

2

)
and therefore I = 1. The nested

importance sampling approximation is

ÎNIS =
∞∑
i=1

(
exp

(
−i− 1

N

)
− exp

(
− i

N

))
g(θi)

h(θi)
,

where θi =
√
qiv

|v| + µ, v ∼ N(0, 1) and qi is the exp
(
− i
N

)
quantile of the χ2

1 distribution. The
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Figure 4.8: Boxplots of the relative approximation for Π3 ≡ tν(1k,R = Ik) for the four methods ÎNIS1,
ÎBS1, ÎNIS2, and ÎBS2, for k = 1 and N = 100.
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expected value of ÎNIS is

E
(
ÎNIS

)
=

∞∑
i=1

(
exp

(
−i− 1

N

)
− exp

(
− i

N

))
E

(
g(θi)

h(θi)

)
,

=
∞∑
i=1

(
exp

(
−i− 1

N

)
− exp

(
− i

N

))
E

(
E

(
g(θi)

h(θi)

∣∣∣∣µ)) .
Using the fact that

g(θi)

h(θi)
= exp

(
−µ√qi

v

|v|
− µ2

2

)
,

we find that

E

(
g(θi)

h(θi)

∣∣∣∣µ) =
1

2
exp

(
−µ

2

2

)
[exp(µ

√
qi) + exp(−µ√qi)] . (4.5)

If µ is known to be 0, i.e. has been found deterministically then E
(
g(θi)
h(θi)

∣∣∣µ) = 1 and

E
(
ÎNIS

)
= I = 1. Therefore, in this case, nested importance sampling is unbiased. However,

suppose we cannot find µ deterministically and so approximate it stochastically by letting µ
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Figure 4.9: Boxplots of the relative approximation for Π3 ≡ tν(1k,R = Ik) for the four methods ÎNIS1,
ÎBS1, ÎNIS2, and ÎBS2, for k = 1 and N = 1000.
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be the mean of a sample of size NΠ from Π. Note that µ ∼ N
(

0, 1
NΠ

)
and that E

(
g(θi)
h(θi)

∣∣∣µ)
in (4.5) can be written as

E

(
g(θi)

h(θi)

∣∣∣∣µ) =
1

2
exp

(qi
2

)[
exp

(
−1

2
(µ−√qi)2

)
+ exp

(
−1

2
(µ+

√
qi)

2

)]
,

and by using the fact that NΠ(µ−√qi)2 and NΠ(µ+
√
qi)

2 have the same distribution, namely
the non-central χ2

1 distribution with non-centrality parameter qiNΠ, we find that

E
(
ÎNIS

)
=

√
NΠ

NΠ + 1

(
exp

(
1

N

)
− 1

) ∞∑
i=1

exp

(
qi

2(NΠ + 1)
− i

N

)
. (4.6)

Figure 4.20 shows a plot of E(ÎNIS) from (4.6) against N for three different values of NΠ, i.e.
100,1000,10000. This shows that nested importance sampling underestimates I even when
the target distribution, Π, is normal. However, this bias is asymptotically zero with respect
to N and NΠ. This bias is negligible for moderately large values of N and NΠ and this is
why we did not notice any bias for N = 100, 1000 and NΠ = 10000, 100000 in Figure 4.6.

89



Figure 4.10: Boxplots of the relative approximation for Π3 ≡ tν(1k,R = Ik) for the four methods ÎNIS1,
ÎBS1, ÎNIS2, and ÎBS2, for k = 5 and N = 100.
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It would appear that there are two mechanisms that are driving the underestimation of I
by nested importance sampling: 1) non-normality of Π, and 2) approximating µ and Σ for
H ≡ N(µ,Σ) by sample statistics from a sample generated from Π. Chopin and Robert
(2009) found that nested importance sampling with small values of N underestimated I for
non-normal distributions when µ and Σ were found deterministically. In Section 4.6, we find
that nested importance sampling, when µ and Σ are found deterministically, underestimates
I, even for large values of N when the target distribution is the posterior distribution of a
GLMM.

Our conclusion from this Section, is that bridge sampling is the more robust method for
approximating I.
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Figure 4.11: Boxplots of the relative approximation for Π3 ≡ tν(1k,R = Ik) for the four methods ÎNIS1,
ÎBS1, ÎNIS2, and ÎBS2, for k = 5 and N = 1000.
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4.5 Application to GLMMs

In this Section we describe how bridge sampling or nested importance sampling can be applied
to approximating the marginal likelihood of a GLMM. The discussion of the two methods in
the previous Sections relied on the model parameters lying in Rk. It is easy to transform the
parameters of a GLMM so that they lie in Rk. Note that for the parameters of a GLMM,
β ∈ Rp, u ∈ RGq, D ∈ Pq and φ ∈ R+, where Pq denotes the set of all q × q positive-definite
matrices and R+ denotes the set of positive real numbers. We need transformations, t1() and

t2(), such that ν = t1(D) ∈ R 1
2
q(q+1) and ω = t2(φ) ∈ R, where θ = (β,ν, ω)T ∈ Rp+ 1

2
q(q+1)+1.

For t1(), we use the Cholesky decomposition D = ΓΓT , where Γ is a lower triangular matrix
such that

Γ =


eν11

ν12 eν22

...
. . .

ν1q · · · eνqq

 .
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Figure 4.12: Boxplots of the relative approximation for Π3 ≡ tν(1k,R = Ik) for the four methods ÎNIS1,
ÎBS1, ÎNIS2, and ÎBS2, for k = 10 and N = 100.
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If ν = (ν11, ν12, ..., ν1q, ν22, ..., ν2q, ..., νqq)
T ∈ R 1

2
q(q+1), then D is guaranteed to be positive-

definite. Using, for example, Muirhead (1982, Theorem 2.1.9), the Jacobian of this trans-
formation is dD = 2q

∏q
k=1 exp (νkk(q + 2− k)) dν. For t2(), we use the transformation

φ = exp(ω) with Jacobian dφ = exp(ω)dω. If ω ∈ R, then φ ∈ R+.

Now the vector of transformed parameters θ = (β,u,ν, ω)T ∈ Rp+Gq+ 1
2
q(q+1)+1.
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Figure 4.13: Boxplots of the relative approximation for Π3 ≡ tν(1k,R = Ik) for the four methods ÎNIS1,
ÎBS1, ÎNIS2, and ÎBS2, for k = 10 and N = 1000.
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ÎBS2

The marginal likelihood for model m ∈M is

fm(y) =

∫
R+

∫
Pqm

∫
RGqm

∫
Rpm

fm(y|βm,um, φm)

fm(um|Dm)fm(βm,Dm, φm)dβmdumdDmdφm, (4.7)

=

∫
Rpm+Gqm+ 1

2 qm(qm+1)+1
fm(y|βm,um, eωm)fm(um|ΓmΓT

m)fm(βm,ΓmΓT
m, e

ωm),

2qmeωm
qm∏
k=1

eνm,kk(qm+2−k)dβmdumdνmdωm,

=

∫
Rpm+Gqm+ 1

2 qm(qm+1)+1
gm(βm,um,νm, ωm)dβmdumdνmdωm, (4.8)

where

gm(βm,um,νm, ωm) =

fm(y|βm,um, eωm)fm(um|ΓmΓT
m)fm(βm,ΓmΓT

m, e
ωm)2qmeωm

qm∏
k=1

eνm,kk(qm+2−k).
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Figure 4.14: Boxplots of the relative approximation for Π4 ≡ LG(α1k, 41k) for the four methods ÎNIS1,
ÎBS1, ÎNIS2, and ÎBS2, for k = 1 and N = 100.
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To generate a sample from βm,um,νm, ωm|y we generate a sample from βm,um,Dm, φm|y
and then transform. Due to the way WinBUGS works, this is typically more convenient
than trying to generate a sample from βm,um,νm, ωm|y directly. Also, if m is a model of
interest, then a sample from βm,um,Dm, φm|y will be easier to interpret than a sample from
βm,um,νm, ωm|y, for inferential purposes.

The expression (4.7) for the marginal likelihood of a GLMM can be used with any prior
distribution for the parameters, βm, Dm and φm. However in Section 1.2.3, we decomposed
the pdf of the prior distribution as

fm(βm,Dm, φm) = fm(βm|Dm, φm)fm(Dm|φm)fm(φm).

Furthermore, it is computationally advantageous if the prior distribution for βm is indepen-
dent of Dm. The unit information prior distribution for βm, proposed in Chapter 3, has such
a property. In this case, the pdf of the prior distribution can be decomposed as

fm(βm,Dm, φm) = fm(βm|φm)fm(Dm|φm)fm(φm).
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Figure 4.15: Boxplots of the relative approximation for Π4 ≡ LG(α1k, 41k) for the four methods ÎNIS1,
ÎBS1, ÎNIS2, and ÎBS2, for k = 1 and N = 1000.
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Therefore, the expression (4.7) for the marginal likelihood can be simplified as

fm(y) =

∫
R+

∫
Pqm

∫
RGqm

∫
Rpm

fm(y|βm,um, φm)fm(um|Dm)

fm(βm|φm)fm(Dm|φm)fm(φm)dβmdumdDmdφm,

=

∫
R+

∫
RGqm

∫
Rpm

fm(y|βm,um, φm)fm(βm|φm)fm(φm)∫
Pqm

fm(um|Dm)fm(Dm|φm)dDmdβmdumdφm.

If the prior distribution for Dm|φm is the inverse-Wishart distribution, IW(ρm,Rm(φm)), with
shape parameter, ρm, and scale matrix, Rm(φm), which depends on φm, if it is unknown, then
the integral ∫

Pqm
fm(um|Dm)fm(Dm|φm)dDm

is analytically tractable as∫
Pqm

fm(um|Dm)fm(Dm|φm)dDm =
Γqm

(
ρm+G

2

)
Γqm

(
ρm
2

) 1

π
Gqm

2

|Rm(φm)| ρm2
|Rm(φm) +

∑G
i=1 umiuTmi|

ρm+G
2

,
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Figure 4.16: Boxplots of the relative approximation for Π4 ≡ LG(α1k, 41k) for the four methods ÎNIS1,
ÎBS1, ÎNIS2, and ÎBS2, for k = 5 and N = 100.
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where

Γqm(a) = π
1
4
qm(qm−1)

qm∏
k=1

Γ

(
a+

1− k
2

)
,

is the multivariate gamma function. Therefore, the marginal likelihood is

fm(y) =

∫
R+

∫
RGqm

∫
Rpm

Γqm
(
ρm+G

2

)
Γqm

(
ρm
2

)
π
Gqm

2

fm(y|βm,um, φm)fm(βm|φm)

|Rm(φm)| ρm2
|Rm(φm) +

∑G
i=1 umiuTmi|

ρm+G
2

fm(φm)dβmdumdφm.
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Figure 4.17: Boxplots of the relative approximation for Π4 ≡ LG(α1k, 41k) for the four methods ÎNIS1,
ÎBS1, ÎNIS2, and ÎBS2, for k = 5 and N = 1000.
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ÎNIS1

1 2 5 10 20 50 100 500 1000

0.
90

0.
95

1.
00

1.
05

1.
10

1.
15

α

R
el

at
iv

e 
A

pp
ro

xi
m

at
io

n
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Using the transformation ωm = eφm , we find

fm(y) =

∫
R+

∫
RGqm

∫
Rpm

Γqm
(
ρm+G

2

)
Γqm

(
ρm
2

)
π
Gqm

2

fm(y|βm,um, eωm)fm(βm|eωm)

|Rm(eωm)| ρm2
|Rm(eωm) +

∑G
i=1 umiuTmi|

ρm+G
2

fm(eωm)eωmdβmdumdωm,

=

∫
Rpm+Gqm+1

gm(βm,um, ωm)dβmdumdωm,

where

gm(βm,um, ωm) =
Γqm

(
ρm+G

2

)
Γqm

(
ρm
2

)
π
Gqm

2

fm(y|βm,um, eωm)fm(βm|eωm)

|Rm(eωm)| ρm2
|Rm(eωm) +

∑G
i=1 umiuTmi|

ρm+G
2

fm(eωm)eωm .

The unit information prior for Dm proposed in Chapter 3 is an inverse-Wishart prior dis-

tribution with ρm = qm + 2 and Rm(φm) = G
(∑G

i=1 ZmiWi,m,0Zmi

)−1

. Note that Wi,m,0
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Figure 4.18: Boxplots of the relative approximation for Π4 ≡ LG(α1k, 41k) for the four methods ÎNIS1,
ÎBS1, ÎNIS2, and ÎBS2, for k = 10 and N = 100.
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depends on φm, if it is unknown.

The marginal likelihood is now a (pm + Gqm + 1)-dimensional integral which we can ap-
proximate using bridge sampling. The function gm(βm,um, ωm) is the pdf of the marginal
posterior distribution, βm,um, ωm|y. To obtain a sample from this distribution, generate a
sample from βm,um,Dm, φm|y, discard the Dm’s and transform the φm.

We noted in Section 4.4 that nested importance sampling with H ≡ N(µ,Σ) typically un-
derestimates I for non-normal target distributions in a non-negligible way. However, we also
noted that for a normal target distribution, nested importance sampling outperformed bridge
sampling (see Figure 4.6) based on the same number of evaluations of g(). We concluded
that bridge sampling provided a more robust method for approximating I.

We know that posterior distributions are asymptotically normal with respect to the sample
size, n, and approximately normal for a large sample size. It is unclear how ‘normal’ a poste-
rior distribution would have to be for us to favour nested importance over bridge sampling.
We attempt to address this issue in the next Section.
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Figure 4.19: Boxplots of the relative approximation for Π4 ≡ LG(α1k, 41k) for the four methods ÎNIS1,
ÎBS1, ÎNIS2, and ÎBS2, for k = 10 and N = 1000.
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4.5.1 Turtle Data Example

We return to our turtle dataset running example where we have implemented the unit infor-
mation priors of Chapter 3 according to Section 3.3. We generate a sample of size NΠ = 10000
from the posterior distribution of each of the five models using WinBUGS. We then approxi-
mate the marginal likelihood of modelm using nested importance sampling withW iterations.
Subsequently, we approximate the marginal likelihood of model m using bridge sampling with
at most W evaluations of gm(), i.e. nΠ = nH = bW

8
c. We repeat this process 500 times.

We do not know the true value of the marginal likelihood for the five models so we follow
Sinharay and Stern (2005) by approximating the marginal likelihoods using importance sam-
pling with a very high sample size. We use H ≡ N(µ,Σ) where µ and Σ are the mean and
variance matrix, respectively, of a posterior sample of size 100000. We then use a sample size
of ten million in the importance sampler. Table 4.1 shows these approximations to the log of
the marginal likelihoods of each of the five models. If we repeat this process using different
samples from the posterior and H, we arrive at the same approximations to four decimal
places. Therefore, we may assume that, up to this level of accuracy, the values in Table 4.1
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Figure 4.20: Plot of E(ÎNIS) from (4.6) against N for three different values of NΠ.
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Table 4.1: Importance sampling approximations to the log of the marginal likelihood of the five models for
the Turtle Dataset.

Model Log marginal likelihood
m log fm(y)
1 -162.8563
2 -154.2634
3 -159.8786
4 -154.8849
5 -153.9786

are the true marginal likelihoods, fm(y).

Figure 4.21 shows boxplots of the 500 approximations to the relative marginal likelihood,
f̂m(y)/fm(y), using bridge sampling and nested importance sampling for the five models.

Figure 4.21 shows that for models 1 and 2, nested importance sampling outperforms bridge
sampling based on the same number of evaluations of the unnormalised posterior pdf with
respect to minimising the variance of the approximation. However, for models 3, 4 and 5,
we see that nested importance sampling exhibits the same behaviour seen in Section 4.4
of underestimating the normalising constant for non-normal target distributions. This is
probably caused by the non-normality of the posterior distributions of models 3, 4 and 5.
Models 3, 4 and 5 all have group-specific parameters which seems to cause a departure
from normality. This small empirical study confirms our conclusion from Section 4.4 that
bridge sampling provides the most robust method for approximating the marginal likelihood,
especially for the marginal likelihood of a GLMM.
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Figure 4.21: Boxplots of the 500 approximations to the marginal likelihood using nested importance
sampling and bridge sampling for the five models from the Turtle Dataset.
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4.6 Mode and Curvature

In Section 4.2, we stated that we felt that using the mode and curvature at the mode of
Π would not fully describe Π and that using the mean and variance of a sample generated
from Π would be a better choice. We felt that this is especially true when Π is the posterior
distribution of a GLMM. In this Section, we investigate this issue empirically, using the
Turtle Dataset.

For each of the five models in M , we find the posterior mode, θ̃m = (β̃m, ũm)T , of the
transformed posterior distribution by maximising log gm(θm), and the posterior curvature by
∂2 log gm(θm)

∂θm∂θ
T
m

∣∣∣
θm=θ̃m

. We then set µ̃m to be the posterior mode and Σ̃m to be the negative in-

verse of the posterior curvature. We compute the nested importance sampling approximation
to the marginal likelihood of model m using the algorithm on page 83 where µ = µ̃m and
Σ = Σ̃m. Suppose that this requires W iterations to converge, hence requires W evaluations
of gm(). Denote this approximation as Îm,3. We generate a samples of size NΠ = bW

4
c and

NH = bW
4
c from the posterior distribution of model m and N(0, Ik). We set nΠ = nH = NH

2
.
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We compute the bridge sampling approximation to the marginal likelihood using the al-
gorithm of Section 4.2.3. Denote this approximation as Îm,1. We also compute the bridge
sampling approximation using the algorithm on page 71 where µ = µ̃m and Σ = Σ̃m. Denote
this approximation as Îm,2. Similar to in Section 4.4, we configure the bridge sampling ap-
proximations so that they involve no more evaluations of the posterior pdf than are required
for the nested importance sampling approximation. Note that the computational expense of
nested importance sampling is still less than that of the bridge sampling approximation since
nested importance sampling does not require a sample to be generated from the posterior
distribution. We repeat this process 500 times.

Figure 4.22: Boxplots of the 500 relative approximations to the marginal likelihood using bridge sampling
when the mode and curvature are available, Î2, and unavailable, Î1, for the five models from the Turtle
Dataset. Î3 is the nested importance sampling approximation to I when the mode and curvature are available
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Figure 4.22 shows boxplots of the relative approximations for each of the five models using
the three different approaches. The true values of the marginal likelihood are given in Table
4.1. Figure 4.22 shows that bridge sampling using the mode and curvature performs better
than bridge sampling using the mean and variance for Models 1 and 2, i.e. the GLMs. But as
we expected, when the target distribution is a posterior distribution of a GLMM, the bridge
sampling approach using the mean and variance outperforms that using the mode and curva-
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ture. In the case of Model 5, this outperformance is quite marked. Using nested importance
sampling using the mode and curvature instead of the mean and variance again appears to
result in underestimation of the marginal likelihood. This underestimation becomes very
large for non-GLMs.

Our conclusion from this Section is that our implementation of bridge sampling presented in
Section 4.2.3 is the “best” method for approximating the marginal likelihood of a GLMM.

4.7 Discussion

In this Chapter we investigated bridge sampling and nested importance sampling as meth-
ods for approximating the unknown normalising constant of a probability distribution and,
in particular, the application of approximating the marginal likelihood of a GLMM. Both
methods rely on having some information (i.e. mean/mode and variance) about the posterior
distribution. We found in Section 4.6 that using a posterior sample to find the mean and
variance was preferable to using the mode and curvature. By using software packages such
as WinBUGS, it is relatively easy to generate a posterior sample from these models and
we use this to gain insight about the posterior (e.g. by using the sample statistics). We
developed bridge sampling and nested importance sampling strategies to approximate the
marginal likelihood using posterior samples and not the posterior mode and curvature.

In Section 4.2 it was shown that if we use the same posterior sample, to gain insight about
the posterior distribution, and in the bridge sampler then this led to an approximation that
would underestimate the true marginal likelihood. This underestimation increased with the
dimension of the problem. We developed a version of Warp III bridge sampling that did not
underestimate the true marginal likelihood. This is presented in Section 4.2.3.

In Section 4.3 we discussed the relatively new method of nested importance sampling and
developed a method that did not require the posterior mode to be found deterministically.

In Sections 4.4 and 4.5 we compared our implementations of bridge sampling and nested
importance sampling based on the same number of evaluations of the unnormalised pdf using
empirical studies. Nested importance sampling performed better than bridge sampling when
the posterior is normal or approximately normal but underestimated the marginal likelihood
for non-normal posteriors in a non-negligible way. We determined that this non-negligible
underestimation is caused by two mechanisms: 1) the non-normality of the posterior, and 2)
approximating µ and Σ using a sample generated from Π.

Since nested importance sampling outperforms bridge sampling when the posterior distri-
bution is approximately normal, a possible strategy once the posterior sample is generated
is to use some statistical test, e.g. the Shapiro-Wilks test, to test whether the posterior is
normal. If, using this test, we determine that the posterior is approximately normal then
we may use nested importance sampling to approximate the marginal likelihood. If the test
shows that there is a departure from the normal distribution then we use bridge sampling.
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However, this is an ad-hoc approach and we have shown that the bias found in the nested
importance sampling approximation to the marginal likelihood of a non-normal posterior
distribution are non-negligible, whereas the bias found in the bridge sampling approximation
to the marginal likelihood is negligible. For this reason, we recommend the use of bridge
sampling for approximating all marginal likelihoods.
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Chapter 5

Reversible Jump MCMC for GLMMs

5.1 Introduction

In Chapter 4, we investigated bridge sampling and nested importance sampling for approx-
imating integrals for the application of evaluating the marginal likelihood, fm(y), of model
m ∈M , where

fm(y) =

∫
Θm

fm(y|θm)fm(θm)dθm.

We now focus specifically on this application for GLMMs. Bridge sampling requires a sample
to be generated from the posterior distribution. Nested importance sampling does not directly
require a posterior sample but we do need some information (i.e. location and spread) about
the posterior with which to implement this method successfully. In fact, all of the Monte Carlo
methods described in 2.2.5, either directly require a posterior sample or some information
about the posterior distribution. For GLMMs which can be of high dimension, we are unsure
whether the mode of the posterior distribution and the curvature of the posterior distribution
at the mode will contain sufficient information. In Chapter 4, we suggested using a posterior
sample to approximate the posterior mean and variance.

Generating a posterior sample from each model m ∈ M and then using bridge sampling
(or any Monte Carlo method) to approximate fm(y) can quickly become impractical as the
number of models, |M |, in M grows large. We will effectively waste a lot of computational
resources on generating posterior samples from models with low or negligible posterior model
probabilities. A suitable approach would be to use some method to identify a subset, M∗ ⊂
M , of models that have high posterior model probabilities and then approximate the marginal
likelihoods of the models in M∗ using bridge sampling. A possible method for identifying
M∗ would be MCMC model determination. An MCMC model determination method based
on the parameters βm,um,Dm, φm,m|y is difficult to implement successfully due to the high
dimensional jumps that are involved. For instance, suppose we have two models, m1 and m2,
such that qm2 = qm1 + 1 and pm2 = pm1 . A jump from m1 to m2 is equivalent to adding a
group-specific parameter. The difference in dimension between m1 to m2 without integrating
out the group-specific parameters is G + qm1 + 1. However, the difference in dimensionality
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having integrated out the group-specific parameters is qm1 + 1. It is easier to implement a
reversible jump scheme where the difference in dimensionality is small.

Consider the integrated likelihood function

fm(y|βm,Dm, φm) =

∫
RGq

fm(y|βm,um, φm)fm(um|Dm)dum, (5.1)

and the pdf

fm(βm,Dm, φm|y) =

∫
RGq

fm(βm,um,Dm, φm|y)dum,

∝ fm(y|βm,Dm, φm)fm(βm,Dm, φm).

of the resulting integrated posterior distribution which is just the joint marginal posterior
distribution of βm,Dm, φm|y. The dimension of the integrated posterior distribution is now
either pm + 1

2
qm(qm + 1) + 1 or pm + 1

2
qm(qm + 1), depending on whether φm is unknown or

known, respectively. Since the number of groups, G, is typically the main reason for the high
dimensionality of GLMMs, by using the integrated likelihood and the resulting integrated
posterior we significantly reduce the dimensionality of the model and so make MCMC model
determination easier. However, the integrated likelihood is rarely analytically tractable and
therefore requires approximation. Since we are using MCMC model determination we may
need to evaluate fm(y|βm,Dm, φm) many times. Therefore the approximation will need to
be computationally inexpensive. It also does not need to be of the highest accuracy since we
are only using this method to identify M∗. Cai and Dunson (2006) propose an MCMC model
determination method that uses a computationally inexpensive, deterministic approximation
to the integrated likelihood and a Stochastic Search Variable Selection (SSVS) algorithm. We
propose an alternative to this method that uses a Laplace approximation to the integrated
likelihood and a reversible jump algorithm. The reversible jump algorithm is an adaption of
an existing method proposed by Gill (2007) for model determination amongst GLMs.

In Section 5.2, we describe the method of Cai and Dunson (2006) for approximating the
integrated likelihood and then describe our Laplace approximation. We also conduct a com-
parison of the two competing methods. In Section 5.3, we describe the reversible jump
algorithm of Gill (2007) for GLMs and in Section 5.4, how this can be extended to GLMMs.

We propose this reversible jump algorithm for model determination amongst GLMMs as an
alternative to the SSVS algorithm of Cai and Dunson (2006).

The main disadvantage of the SSVS method of Cai and Dunson (2006) is it does not directly
approximate the posterior model probabilities. Instead it generates a posterior sample from
the most complicated model possible, i.e. all of the available explanatory variables are in-
cluded in X and Z. It generates a sampled value of 0 for a parameter which is associated with
the regression parameter or group-specific parameter for an explanatory variable according
to the posterior probability of that parameter being 0.

Another disadvantage of the SSVS algorithm of Cai and Dunson (2006) is that it is possible
for a group-specific parameter to be non-zero when the associated regression parameter is
zero. This contradicts our assumption in Section 1.2.1 that the columns of Zi are a subset of
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the columns of Xi. However, it may be possible to construct a conditional prior distribution
for the elements of D, so that this is impossible.

5.2 Approximating the Integrated Likelihood

5.2.1 Introduction

In this Section we investigate the issue of approximating the integrated likelihood (5.1) of
a model m ∈ M . We discuss two methods: the Cai & Dunson method of Cai and Dunson
(2006) and the Laplace method. Both rely on a 2nd order Taylor series expansion of the
first stage likelihood, fm(y|βm,um, φm). However, the Cai & Dunson method is based on an
expansion of the untransformed first-stage likelihood function, whereas the Laplace method
is based on an expansion of the log of the first-stage likelihood function. For the remainder
of this Section, we suppress the dependence on the model m by removing the subscript m.

5.2.2 The Cai & Dunson Method

First, we begin by noting that the integrated likelihood function (5.1) can be written

f(y|β,D, φ) = E (f(y|β,u, φ)) , (5.2)

where u ∼ N(0,D∗), i.e. the integrated likelihood is the expectation of the first-stage likeli-
hood with respect to the prior of the group-specific parameters, u.

The 2nd order Taylor series expansion of the first-stage likelihood with respect to u about
the prior mean, u = 0, is

f(y|β,u, φ) ≈ f(y|β,u, φ)|u=0 +
∂f(y|β,u, φ)

∂u

∣∣∣∣
u=0

u +
1

2
uT

∂2f(y|β,u, φ)

∂u∂uT

∣∣∣∣
u=0

u,

= f(y|β,u, φ)|u=0 ×
[
1 +

∂ log f(y|β,u, φ)

∂u

∣∣∣∣
u=0

u

+
1

2
uT
(
∂ log f(y|β,u, φ)

∂u

∂ log f(y|β,u, φ)

∂uT

+DG

(
∂2 log f(y|β,u, φ)

∂u∂uT

))∣∣∣∣
u=0

u

]
,

where DG(A) denotes the diagonal matrix consisting of the diagonal entries of A. The last
equality above follows from

∂f(y|β,u, φ)

∂u
= f(y|β,u, φ)

∂ log f(y|β,u, φ)

∂u
,
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and

∂2f(y|β,u, φ)

∂u∂uT
= f(y|β,u, φ)

[
∂f(y|β,u, φ)

∂u

∂f(y|β,u, φ)

∂uT
+ DG

(
∂2 log f(y|β,u, φ)

∂u∂uT

)]
.

By changing the variable of differentiation from the group-specific parameters, u, to the
linear predictor, η = Xβ + Zu, we get

f(y|β,u, φ) ≈ f(y|β,u, φ)|u=0 ×
[
1 +

∂ log f(y|β,u, φ)

∂η

∣∣∣∣
u=0

Zu

+
1

2
uTZT

(
∂ log f(y|β,u, φ)

∂η

∂ log f(y|β,u, φ)

∂ηT

+DG

(
∂2 log f(y|β,u, φ)

∂η∂ηT

))∣∣∣∣
u=0

Zu

]
. (5.3)

We can now approximate the expectation (5.2) by using (5.3) and noting that the expectation
of a quadratic form, uTRu, where u ∼ N(0,D∗) is E(uTRu) = tr(RD∗), to find the Cai &
Dunson approximation to the integrated likelihood:

f̂CD(y|β,D, φ) = f(y|β,u, φ)|u=0 ×
[
1 +

1

2
tr

(
ZT

(
∂ log f(y|β,u, φ)

∂η

∂ log f(y|β,u, φ)

∂ηT

+DG

(
∂2 log f(y|β,u, φ)

∂η∂ηT

))∣∣∣∣
u=0

ZD∗
)]

. (5.4)

Cai and Dunson (2006) show that the approximation (5.4) may be expressed as

f̂CD(y|β,D, φ) = f(y|β,u, φ)|u=0×

[
1 +

1

2φ

(
q∑

k=1

Dkk

G∑
i=1

B
(1)
i,k + 2

q−1∑
k=1

q∑
j=k+1

Djk

G∑
i=1

B
(2)
i,j,k

)]
,

(5.5)

where B
(1)
i,k and B

(2)
i,j,k are functions of β and y.

Consider the case when q = 1, where D = τ 2 is scalar, then

f̂CD(y|β, τ 2, φ) = f(y|β,u, φ)|u=0 ×

[
1 +

τ 2

2φ

G∑
i=1

B
(1)
i

]
. (5.6)

From (5.6) we see that when q = 1, f̂CD(y|β, τ 2, φ) is a linearly monotonic function of τ 2. It

is increasing if
∑G

i=1B
(1)
i > 0, and decreasing if

∑G
i=1B

(1)
i < 0.

More generally, f̂CD(y|β,D, φ) is a monotonic function of Djk, for j, k = 1, ..., q. It is

an increasing function of Dkk if
∑G

i=1 B
(1)
i,k > 0, decreasing if

∑G
i=1 B

(1)
i,k < 0, and it is an

increasing function of Djk if
∑G

i=1B
(2)
i,j,k > 0, decreasing if

∑G
i=1B

(2)
i,j,k < 0.

In fact, if
∑G

i=1B
(1)
i,k < 0 or

∑G
i=1 B

(2)
i,j,k < 0 then f̂CD(y|β,D, φ) can be negative.

If
∑G

i=1B
(1)
i,k > 0 or

∑G
i=1B

(2)
i,j,k > 0, then f̂CD(y|β,D, φ) is a monotonically increasing func-

tion of elements of D. This can pose a particular problem for the reversible jump algorithm
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we present in Section 5.4 since we will need to maximise the approximation to the integrated
posterior pdf, f̂CD(β,D, φ|y) ∝ f̂CD(y|β,D, φ)f(β,D, φ), and this may not be possible with
finite elements of D unless the prior for D is sufficiently informative. We consider this
problem. Assume that the dispersion parameter, φ, is known to be one, and that the prior
distribution of β and D are independent. The marginal likelihood is approximated by

f̂(y) =

∫
Rp

∫
Pq
f̂CD(y|β,D)f(β)f(D)dDdβ,

=

∫
Rp

∫
Pq
f(y|β,u)|u=0 ×[

1 +
1

2

(
q∑

k=1

Dkk

G∑
i=1

B
(1)
i,k + 2

q−1∑
k=1

q∑
j=k+1

Djk

G∑
i=1

B
(2)
i,j,k

)]
f(β)f(D)dDdβ,

=

∫
Rp
f(y|β,u)|u=0f(β)dβ +

1

2

q∑
k=1

E(Dkk)

∫
Rp

G∑
i=1

B
(1)
i,k f(y|β,u)|u=0f(β)dβ

+

q−1∑
k=1

q∑
j=k+1

E(Djk)

∫
Rp

G∑
i=1

B
(2)
i,j,kf(y|β,u)|u=0f(β)dβ.

Assuming that the integrals
∫

Rp f(y|β,u)|u=0f(β)dβ,
∫

Rp
∑G

i=1B
(1)
i,k f(y|β,u)|u=0f(β)dβ,

and
∫

Rp
∑G

i=1B
(2)
i,j,kf(y|β,u)|u=0f(β)dβ exist, the approximation to the marginal likelihood

does not exist if the prior mean, E(D), of D does not exist. Therefore, a necessary condition
for f̂(y) to exist, is that the prior mean of D exists. The prior mean of the unit information
prior distribution for D, proposed in Chapter 3, exists meaning we may use the Cai & Dunson
approximation in conjunction with our proposed priors. However, we find it worrying that
the integrated likelihood is a monotonic function of the elements of D. In the next Section,
we describe an alternative method for approximating the integrated likelihood and in Section
5.2.4 we undertake a small empirical comparison of the two methods.

5.2.3 The Laplace Method

The Laplace method has been used previously to approximate the integrated likelihood with
a view to finding maximum likelihood estimates of the model parameters (see, for example,

Breslow and Clayton (1993)). Since ui
iid∼ N(0,D) for i = 1, ..., G, then

f(y|β,D, φ) =
G∏
i=1

∫
Rq
f(yi|β,ui, φ)f(ui|D)dui. (5.7)

This changes the problem from approximating a Gq-dimensional integral to approximating
G q-dimensional integrals.

Let g(ui) = f(yi|β,ui, φ)f(ui|D) denote the ith integrand in (5.7). The 2nd order Taylor
series expansion of log g(ui) with respect to ui about the value, ûi, that maximises log g(ui)
is

log g(ui) ≈ log g(ui)|ui=ûi
+

1

2
(ui − ûi)

T ∂2 log g(ui)

∂ui∂uTi

∣∣∣∣
ui=ûi

(ui − ûi). (5.8)
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By exponentiating both sides of (5.8) we get the following approximation to g(ui)

g(ui) ≈ g(ui)|ui=ûi
exp

(
−1

2
(ui − ûi)

TVi(ui − ûi)

)
, (5.9)

where

Vi = − ∂2 log g(ui)

∂ui∂uTi

∣∣∣∣
ui=ûi

,

= − ∂2 log f(yi|β,ui, φ)

∂ui∂uTi

∣∣∣∣
ui=ûi

+ D−1.

Therefore,

f(y|β,D, φ) =
G∏
i=1

∫
Rq
g(ui)|ui=ûi

exp

(
−1

2
(ui − ûi)

TVi(ui − ûi)

)
dui, (5.10)

and we can perform the G integrations in (5.10) exactly. Therefore, the Laplace approxima-
tion to the integrated likelihood is

f̂L(y|β,D, φ) = |D|−
G
2

G∏
i=1

f(yi|β,ui, φ)|ui=ûi
|Vi|−

1
2 exp

(
−1

2
ûTi D−1ûi

)
. (5.11)

Note that we can find ûi using the Newton-Raphson method. The first and second derivatives
for this method are given by

∂ log g(ui)

∂ui
=
∂ log f(yi|β,ui, φ)

∂ui
−D−1ui,

and
∂2 log g(ui)

∂ui∂uTi
=
∂2 log f(yi|β,ui, φ)

∂ui∂uTi
−D−1,

respectively. An alternative to the Newton-Raphson method would be to replace the matrix
of second derivatives by its expected value, resulting in the Fisher scoring method.

5.2.4 Comparison of the Cai & Dunson and Laplace Methods

Initially, we note that the Laplace method will be more computationally expensive than the
Cai & Dunson method. This is because for each i we need to find ûi for i = 1, .., G. As
suggested in Section 5.2.3, we can use the Newton-Raphson method since both the first and
second derivatives of log g(ui) are available. The Laplace method is exact when the first-stage
likelihood is normal and works best when the first-stage likelihood is approximately normal.
It is also true, that if the first-stage likelihood is normal than the Newton-Raphson method
will converge in one iteration and O’Hagan and Forster (2004) state that if the first-stage
likelihood is approximately normal than the Newton-Raphson method will converge rapidly.
We know that the ith contribution to the first-stage likelihood will approach normality as
ni →∞ and is approximately normal for large values of ni.
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In Section 5.2.2, we described how the Cai & Dunson approximation, f̂CD(y|β,D, φ), is a
monotonic function of the elements of D. This leads to the necessary condition that E(D)
need exist for f̂(y) to exist.

We undertake a comparison of the two methods. To do this we return to the Turtle Dataset
example, and, in particular Model 4. Recall that Model 4 has the following linear predictor

ηij = β1 + β2xij + ui,

where ui
iid∼ N(0, σ2) for i = 1, ..., G. The integrated likelihood is

G∏
i=1

∫
R
f(yi|β, ui)f(ui|σ2)dui. (5.12)

The integrals in (5.12) are analytically intractable. However, since these integrals are one-
dimensional we can use Simpson’s rule to approximate f(y|β, σ2) to such a level of accuracy
that the approximation can be regarded as exact. Denote this approximation to the inte-
grated likelihood as f̂S(y|β, σ2). For the Simpson’s rule given by (2.7), we use n = 5000
and we choose large values for a and b of ∓15 as suggested in Section 2.2.2, since ui is un-
bounded. Denote the Cai & Dunson and Laplace approximations to the integrated likelihood
as f̂CD(y|β, σ2) and f̂L(y|β, σ2), respectively.

Consider the profile likelihood which is defined as

f(σ2) = f(y|β, σ2)
∣∣
β=β̂(σ2)

,

where β̂(σ2) = arg max f(y|β, σ2) is the value that maximises f(y|β, σ2) when σ2 is assumed
fixed.

Figure 5.1 shows plots of the approximate log profile likelihood where the three different
approximation methods have been used to approximate the integrated likelihood function.
We regard the Simpson’s rule approximation as exact and consider the Cai & Dunson and
Laplace approximations. Both of the methods produce approximations that become closer
to the true value as σ2 → 0. This is obvious for the Cai & Dunson method since the
Taylor series expansion is taken about ui = 0 which is guaranteed when σ2 = 0. For the
Laplace method, as σ2 → 0 the prior distribution for ui becomes more informative and begins
to dominate the ith contribution to the first-stage likelihood, f(yi|β, σ2). This results in
g(ui) = f(yi|β, ui)f(ui|σ2) becoming increasingly normal and the Laplace method becoming
more accurate.

For larger values of σ2, the Laplace method provides a reasonable approximation to the
true profile likelihood. We can also see that the Cai & Dunson approximation produces an
increasing profile likelihood function due to the property we discussed in Section 5.2.2.

Cai and Dunson (2006) compared the accuracy of the Laplace method and the Cai & Dunson
method by approximating the marginal likelihood of a model and comparing those to the
true value. We can assess the accuracy of the two methods by approximating the marginal
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Figure 5.1: Plots of the approximate log profile likelihood against σ2 using the three different approximation
methods.
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likelihood of Model 4. The marginal likelihood is

f(y) =

∫
R2

∫ ∞
0

f(y|β, σ2)f(β, σ2)dσ2dβ. (5.13)

We replace f(y|β, σ2) by either f̂CD(y|β, σ2) or f̂L(y|β, σ2) to give f̂CD(y) or f̂L(y), re-
spectively. We use the unit information prior distribution for the regression parameters, β,
proposed in Chapter 3, i.e.

β ∼ N

(
0,
π

2

(
1 0
0 n

n−1

))
,

where recall that n = 244. We consider two alternatives prior distributions for σ2: the
unit information prior distribution proposed in Chapter 3, i.e. σ2 ∼ IG

(
3
2
, π

4

)
, and σ2 ∼

IG
(
20, π

4

)
.

The prior distribution for σ2 with shape parameter 20 has more mass at small values of σ2

so both approximation methods should work better when the shape parameter is 20 than
when the prior distribution is more diffuse. To approximate f̂CD(y) and f̂L(y), we use the
transformation ν = log σ2 with Jacobian exp(ν) so that

f̂(y) =

∫
R3

f̂(y|β, exp(ν))f(β)f(exp(ν)) exp(ν)dνdβ.
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Table 5.1: Importance sampling approximations to the log of the marginal likelihood, log f4(y), of Model
4 with the prior distributions: σ2 ∼ IG

(
α, π4

)
, where the integrated likelihood has been approximated

deterministically.

Approximation Method Shape Parameter, α
3
2

20
Simpson’s Rule (Exact) -154.8849 -153.1370
Cai & Dunson Method -154.0511 -153.2240

Laplace Method -154.9296 -153.1404

We then find the posterior mode, µ and Hessian matrix, −Σ−1, numerically. Finally we use
importance sampling with H ≡ N(µ,Σ) and a sample size of 100000. To find the ‘true’ value
of f(y) we replace f(y|β, τ 2) by f̂S(y|β, τ 2) and use importance sampling as described above.
Table 5.1 shows the approximations to the marginal likelihood. As expected the accuracy of
both methods increases as the prior distribution becomes less diffuse. The Laplace method
performs well in both scenarios. However, the Cai & Dunson method only performs well
when the prior distribution is concentrated near σ2 = 0, and even in this case, the Laplace
method is more accurate.

As mentioned above, Cai and Dunson (2006) undertook a similar empirical comparison of
the Cai & Dunson and Laplace methods for simulated data. They found that the Cai &
Dunson method produced more accurate approximations to the integrated likelihood than
the Laplace method. It may be that the relative accuracy of the two methods is example-
dependent. Our small comparison suggests that we should favour the Laplace method for
approximating the integrated likelihood.

5.3 Reversible Jump for GLMs

In this Section we describe a reversible jump scheme for model determination amongst GLMs
as proposed by Gill (2007).

We begin by briefly describing a GLM. Let yi be the ith response for i = 1, ..., n and let xi
denote the p×1 vector of regression covariates which correspond to the regression parameters,
β. We assume that Yi is independently distributed from some exponential family distribution
with density

f(yi) = exp

[
yiζi − b(ζi)

a(φ)
+ c(yi, φ)

]
,

where ζi is the canonical parameter, φ is the dispersion parameter and a(), b() and c() are
known functions. Define µi = E(Yi) = b′(ζi) as the mean of Yi. This is related to the ith
component of the linear predictor, ηi, through

g(µi) = ηi = xTi β,
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where g() is the link function and β is a p × 1 vector of regression parameters. Let η =
(η1, ..., ηn)T and X = (xT1 , ...,x

T
n )T . It can be seen that a GLM is a special case of a GLMM

where u ≡ 0, and, equivalently, D ≡ 0.

We assume that the marginal posterior distribution of the dispersion parameter, φm, remains
approximately the same for all models m ∈ M , or at least does so for models with non-
negligible posterior model probability. We justify this assumption as follows. Consider two
models: m1 and m2, and a move from m1 to m2. Suppose the posterior distributions of
φ under m1 and m2 are such that φ tends to be larger under m2, then we would expect
that the modelling of the mean for m1 better describes the data than that for model m2,
and hence, we would not want to move to model m2, and the difference in the distributions
of φ is inconsequential. Now suppose that φ tends to be smaller under m2 then we would
expect that the modelling of the mean for m2 better describes the data than that for m1. In
this case, the superior modelling of the mean makes the posterior model probability of m1

negligible when compared to that of m2 so we make the move regardless of the difference in
the distributions of φ. A similar assumption is made by Papathomas et al. (2009) when they
consider a reversible jump scheme for linear models.

We are considering a move between models m1 ∈M and m2 ∈M . Without loss of generality,
assume that m1 is nested within m2, so that Xm2 = [Xm1|S] and pm2 > pm1 . We only consider
local moves, so that m1 and m2 only differ by a single term, or interaction between terms.

Suppose that the current state of the MCMC chain is (m2,βm2
, φm2) and we are interested

in a move to model m1 so we need to propose values for βm1
and φm1 . This move is termed

a death move, as we are decreasing the dimension of the model.

Let ηm2
= Xm2βm2

be the current linear predictor. A possible proposal would be to set the
proposed linear predictor, ηm1

, to be the orthogonal projection of the current linear predictor
onto the subspace defined by model m2. This projection is orthogonal with respect to an
inner product, W. So,

βm1
=
(
XT
m1

WXm1

)−1
XT
m1

WXm2βm2
. (5.14)

An approach is to set W to be an approximation to the inverse posterior covariance matrix
of the working vector, ỹ, which has ith element

ỹi = ηi + (yi − µi)g′(µi).

It has expected value E(Ỹ) = η and variance var(Ỹ) = W−1 = diag{var(Yi)g
′(µi)

2}. Note
that E(Ỹ) and W depend on the unknown parameters β and φ. However, we prefer W not
to depend on the current model parameters, βm2

and φm2 . This allows the reverse move to be
easily defined. Gill (2007) suggests fitting the most complicated model possible, m∗ ∈M , and
setting β̂m∗ and φ̂m∗ to be the maximum likelihood estimates of βm∗ and φm∗ , respectively.
We then let

Ŵ = diag {var(Yi)g
′(µi)

2}
∣∣−1

β=β̂m∗ ,φ=φ̂m∗
.

An alternative is to set β̂m∗ and φ̂m∗ to be the posterior modes of βm∗ and φm∗ , respectively.
This value of Ŵ is computed initially and remains fixed throughout the algorithm. Therefore
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(5.14) becomes

βm1
=
(
XT
m1

ŴXm1

)−1

XT
m1

ŴXm2βm2
. (5.15)

For the dispersion parameter, we use the assumption that the marginal posterior distribution
of φ remains approximately the same for different models and use the identity transformation,
i.e.

φm1 = φm2 . (5.16)

Recalling that Xm2 = (Xm1|S) and writing βm2
= (β(1)

m2
,β(2)

m2
)T , where β(1)

m2
corresponds to

Xm1 and β(2)
m2

corresponds to S, we see that (5.15) can be rewritten

βm1
= β(1)

m2
+
(
XT
m1

ŴXm1

)−1

XT
m1

ŴSβ(2)
m2
. (5.17)

Note that β(1)
m2

is a pm1 × 1 vector and β(2)
m2

is a (pm2 − pm1)× 1 vector. This death move is
entirely deterministic. For reversibility to hold, the birth move from m1 to m2 must satisfy
(5.16) and (5.17). It is easy to see that (5.17) is satisfied if

β(1)
m2

= βm1
−
(
XT
m1

ŴXm1

)−1

XT
m1

ŴSβ(2)
m2
. (5.18)

Let β(2)
m2

= v, where v is generated from some distribution which we are free to choose.
Therefore (5.16) and (5.17) are satisfied if

(
βm2

φm2

)
=

 β(1)
m2

β(2)
m2

φm2

 =

 Ipm1
−
(
XT
m1

ŴXm1

)−1

XT
m1

ŴS 0

0 Ipm2−pm1
0

0 0 1


 βm1

v
φm2

 .

The transformation is an upper triangular matrix with all diagonal elements equal to one.
Hence, the Jacobian is ∣∣∣∣∣∣∣

Ipm1
−
(
XT
m1

ŴXm1

)−1

XT
m1

ŴS 0

0 Ipm2−pm1
0

0 0 1

∣∣∣∣∣∣∣ = 1.

We are now left with the choice of distribution for v. Gill (2007) suggests setting a multivari-
ate normal distribution for βm2

and then inducing the distribution for v, from this. We set
the mean, µβm2

, and variance, Σβm2
, of the distribution of βm2

to be an approximate max-

imum likelihood estimate of βm2
and an estimate of the inverse Fisher information matrix,

respectively. That is

βm2
∼ N

((
XT
m2

ŴXm2

)−1

XT
m2

Ŵη̂,
(
XT
m2

ŴXm2

)−1
)
,

where η̂ = Xm∗β̂m∗ . Recall that

βm2
=

(
Ipm1

−
(
XT
m1

ŴXm1

)−1

XT
m1

ŴS

0 Ipm2−pm1

)(
βm1

v

)
,
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therefore (
βm1

v

)
=

(
Ipm1

(
XT
m1

ŴXm1

)−1

XT
m1

ŴS

0 Ipm2−pm1

)(
β(1)
m2

β(2)
m2

)
= Mβm2

,

where

M =

(
Ipm1

(
XT
m1

ŴXm1

)−1

XT
m1

ŴS

0 Ipm2−pm1

)
.

Since βm2
has a normal distribution, then so must (βm1

,v)T , since it is an affine transfor-
mation of βm2

. The mean of (βm1
,v)T is µβm1

,v = Mµβm2
and the variance is Σβm1

,v =

MΣβm2
MT . Now

Σβm2
=

(
XT
m2

ŴXm2

)−1

,

=

(
XT
m1

ŴXm1 XT
m1

ŴS

STŴXm1 STŴS

)−1

=

(
Σ

(1,1)
βm2

Σ
(1,2)
βm2

Σ
(1,2)T
βm2

Σ
(2,2)
βm2

)
,

where

Σ
(1,1)
βm2

=
(
XT
m1

ŴXm1

)−1

×
(

Ipm1
+ XT

m1
ŴS

(
STŴ (In −Pm1) S

)−1

STŴXm1

(
XT
m1

ŴXm1

)−1
)
,

Σ
(1,2)
βm2

= −
(
XT
m1

ŴXm1

)−1

XT
m1

ŴS
(
STŴ (In −Pm1) S

)−1

,

Σ
(2,2)
βm2

=
(
STŴ (In −Pm1) S

)−1

,

with Pm1 = Xm1

(
XT
m1

ŴXm1

)−1

XT
m1

Ŵ. Let

Σβm1
,v =

(
Σβm1

Σβm1
,v

Σβm1
,v Σv

)
,
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then

Σβm1
= Σ

(1,1)
βm2

+
(
XT
m1

ŴXm1

)−1

XT
m1

ŴSΣ
(1,2)T
βm1

,v

+Σ
(1,2)
βm1

,vSTŴXm1

(
XT
m1

ŴXm1

)−1

+
(
XT
m1

ŴXm1

)−1

XT
m1

ŴSΣ
(2,2)
βm1

,vSTŴXm1

(
XT
m1

ŴXm1

)−1

,

=
(
XT
m1

ŴXm1

)−1

,

Σβm1
,v = Σ

(1,2)
βm2

+
(
XT
m1

ŴXm1

)−1

XT
m1

ŴSΣ
(2,2)
βm2

,

= 0,

Σv = Σ
(2,2)
βm2

,

=
(
STŴ (In −Pm1) S

)−1

.

Therefore, the induced distribution of v is independent of βm1
. All that remains, is to find

the mean, µv, of v. It follows that

µβm1
,v = (µβm1

,µv)T ,

= Mµβm2
,

=

(
I
(
XT
m1

ŴXm1

)−1

XT
m1

ŴS

0 I

)(
Σ

(1,1)
βm2

Σ
(1,2)
βm2

Σ
(1,2)T
βm2

Σ
(2,2)
βm2

)(
XT
m1

ST

)
Ŵη̂,

and that

µv =
(
Σ

(1,2)T
βm2

XT
m1

+ Σ
(2,2)
βm2

ST
)

Ŵη̂,

=
(
STŴ (In −Pm1) S

)−1

ST
(

In − ŴXm1

(
XT
m1

ŴXm1

)−1

XT
m1

)
Ŵη̂,

=
(
STŴ (In −Pm1) S

)−1

STŴ (In −Pm1) η̂.

Suppose the current state of the algorithm is (m,βm, φm). In the algorithm, there will be
positive probability of remaining in the same model. O’Hagan and Forster (2004, pg. 299)
describe how any MCMC method can be used to update the parameters βm and φm. The
obvious choice is a Metropolis-Hastings algorithm step and, in particular, Gibbs sampling,
an independence sampler or a random walk. All three methods have their advantages and
disadvantages. We discuss this issue further when we consider within model moves for the
reversible jump scheme for GLMMs in Section 5.4.

We are now in a position to write down the reversible jump algorithm.

1. Fit the most complicated model m∗ ∈ M , to find β̂m∗ and φ̂m∗ , either the maximum
likelihood estimates or posterior modes of βm∗ and φm∗ , respectively.

2. Suppose we are in model m with parameters βm and φm.
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3. Propose a move to a neighbouring model k ∈M with probability πm,k.

4. If the proposal involves remaining in the same model, i.e. k = m, then update the
model parameters βm and φm using any convenient MCMC method. Return to 2.

5. If the proposal is a death move, then partition Xmβm = [Xk|S]
(
β(1)
m ,β(2)

m

)T
. Set

βk = β(1)
m +

(
XT
k ŴXk

)−1

XT
k ŴSβ(2)

m ,

and
φk = φm.

Accept this proposal with probability

min

[
1,
fk(y|βk, φk)fk(βk, φk)f(k)πk,mq(β

(2)
m )

fm(y|βm, φm)fm(βm, φm)f(m)πm,k

]
,

where q() is the pdf of

N

((
STŴ(In −Pk)S

)−1

STŴ(In −Pk)η̂,
(
STŴ(In −Pk)S

)−1
)
.

Otherwise reject the move and remain at (m,βm, φm). Return to 2.

6. If the proposal is a birth move, then generate v from the distribution

N

((
STŴ(In −Pm)S

)−1

STŴ(In −Pm)η̂,
(
STŴ(In −Pm)S

)−1
)
,

which has pdf q(). Set

βk =

(
Ipm −

(
XT
mŴXm

)−1

XT
mŴS

0 Ipk−pm

)(
βm
v

)
,

and
φm = φk.

Accept this proposal with probability

min

[
1,

fk(y|βk, φk)fk(βk, φk)f(k)πk,m
fm(y|βm, φm)fm(βm, φm)f(m)πm,kq(v)

]
,

otherwise reject the move and remain at (m,βm, φm). Return to 2.

5.4 Reversible Jump for GLMMs

In this Section we generalise the reversible jump scheme of Gill (2007) to use for model
determination amongst GLMMs.
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5.4.1 Preliminaries

As described in Section 5.1, the reversible jump scheme for GLMMs will operate over the
integrated posterior distributions of each model, m ∈M . The pdf of the integrated posterior
distribution of m ∈M is

fm(βm,Dm, φm|y) ∝ fm(y|βm,Dm, φm)fm(βm,Dm, φm).

Note that βm ∈ Rpm , Dm ∈ Pqm and φm > 0. Similar to Section 4.2, we want the model
parameters to lie in Rpm+ 1

2
qm(qm+1)+1. We use the same transformations outlined in Section

4.5, so that Dm = ΓmΓT
m where

Γm =


eνm,11

νm,12 eνm,22

...
. . .

νm,1qm · · · eνm,qmqm

 ,

for νm = (νm,11, νm,12, ..., νm,1qm , νm,22, ..., νm,2qm , ..., νqmqm)T ∈ R 1
2
qm(qm+1) and ωm = eφm ∈ R.

The pdf of the transformed integrated posterior distribution is proportional to

gm(βm,νm, ωm) = fm(y|βm,Dm = ΓmΓT
m, ωm = eφm)

×fm(βm,Dm = ΓmΓT
m, ωm = eφm)2qmeωm

qm∏
k=1

eνm,kk(qm+2−k).

We begin by making some definitions and an assumption. Let MZ ⊂M denote the subset of
models with the same group-specific structure, namely those with group-specific covariates Z.
So, for example, M∅ denotes the set of GLMs since they have no group-specific parameters.
Also, M1 denotes the set of GLMMs with group-specific intercepts and Mx1 denotes the set
of GLMMs with group-specific intercept and a group-specific parameter for x1. Note that
the MZ ’s are disjoint, that

M = ∪ZMZ ,

and that the number of group-specific structures is equal to the number of GLMs plus one,
i.e. the number of MZ ’s is |M∅|+ 1.

Define the MZ-saturated model, denoted by m∗Z ∈MZ , as the most complicated model within
MZ , i.e. it has regression parameters for all regression covariates.

Consider the running Turtle Dataset example first presented in Section 1.4. There are two
possible GLMs, so there are three possible group-specific structures, so there exist M∅, M1

and Mx. Models 1 and 2 lie in M∅, Models 3 and 4 lie in M1, and Model 5 lies in Mx. For
each of M∅, M1 and Mx, the MZ-saturated models are Models 2, 4 and 5, respectively.

We assume that the marginal posterior distribution of the transformed variance components,
ν, and the transformed dispersion parameter, ω, remains approximately the same for all
models within each group-specific structure, or at least does so for models with non-negligible
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posterior model probability. This assumption is similar to the assumption we made in Section
5.3.

The reversible jump scheme for GLMMs is based on three different types of move:

1. Within group-specific structure moves,

2. Across group-specific structure moves,

3. Within model moves.

For the within group-specific structure moves, we only add or remove a regression parameter
and retain the same group-specific parameters. The models we consider moving between
only differ by a single term in their regression covariates. We propose the parameters for
the proposed model in an analogous way to Gill (2007). We describe our generalisation in
Section 5.4.2.

For the across group-specific structure moves, opposite to the within group-specific structure
moves, we only add or remove group-specific parameters and retain the same regression
parameters. The models we consider moving between only differ by a single term in the
group-specific covariates. To make these type of moves, we use an independence sampler and
we describe how to form the proposal distribution in Section 5.4.3.

For the within model moves, we have several options as we discussed for the corresponding
moves for GLMs. In Section 5.4.4, we discuss the advantages and disadvantages of some
options and make our recommendations.

Define θm = (βm,νm, ωm)T ∈ Rpm+ 1
2
qm(qm+1). When we describe the types of move in detail,

it will become apparent that we need, for each of the MZ-saturated models, posterior modes
of θm∗Z which are denoted θ̂m∗Z = (β̂m∗Z , ν̂m

∗
Z
, ω̂m∗Z )T . In addition, we also require, for each of

the MZ-saturated models, an approximation to the Hessian matrix of log gm∗Z (θm∗Z ) evaluated

at θ̂m∗Z , i.e.

∂ log fm∗Z (θm∗Z |y)

∂θm∗Z∂θ
T
m∗Z

∣∣∣∣∣
θm∗Z

=θ̂m∗Z

,

and we define

Σ̂m∗Z
= −

 ∂ log fm∗Z (θm∗Z |y)

∂θm∗Z∂θ
T
m∗Z

∣∣∣∣∣
θm∗Z

=θ̂m∗Z

−1

,

=

 Σ̂
β

m∗Z
Σ̂
β,ν,ω

m∗Z(
Σ̂
β,ν,ω

m∗Z

)T
Σ̂
ν,ω

m∗Z

 , (5.19)

where Σ̂
β

m∗Z
is a pm∗Z × pm∗Z matrix, Σ̂

ν,ω

m∗Z
is a

(
1
2
qm∗Z (qm∗Z + 1) + 1

)
×
(

1
2
qm∗Z (qm∗Z + 1) + 1

)
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matrix. Let D̂∗m∗Z = IG ⊗ D̂m∗Z
= IG ⊗ Γ̂m∗Z

Γ̂
T

m∗Z
, where

Γ̂m∗Z
=


eν11

ν12 eν22

...
. . .

ν1qm∗Z
· · · e

νqm∗Z
qm∗Z


∣∣∣∣∣∣∣∣∣
νm∗Z

=ν̂m∗Z

.

Finally define η̂m∗Z = Xm∗Z
β̂m∗Z .

5.4.2 Within group-specific structure moves

Suppose we are considering a move between models m1 ∈ MZ and m2 ∈ MZ . Again, we
assume that Xm2 = [Xm1|S], and that pm2 > pm1 . Since we are considering a within group-
specific structure move, qm2 = qm1 . We only consider local moves so m1 and m2 differ only
by a single term in the regression covariates.

Suppose that the current state of the MCMC chain is (m2,βm2
,νm2 , ωm2) and we are con-

sidering the death move to model m1, so we need to propose values for βm1
, νm1 and ωm1 .

Let ηm2
= Xm2βm2

be the current linear predictor. Similar to the algorithm of Gill (2007), we
set the proposed linear predictor, ηm1

, to be the orthogonal (with respect to W) projection
of the current linear predictor onto the subspace defined by m2, i.e. according to (5.14).

We need to consider what value to use for W. Gill (2007) uses an approximation to the
inverse posterior covariance matrix of the working vector. We use an analogous expression
for the working vector, ỹ, of a GLMM with components

ỹij = ηij + (yij − µij)g′(µij).

The working vector has expectation E(Ỹ) = E(E(Ỹ|u)) = Xβ and variance

var(Ỹ) = W−1,

= E(var(Ỹ|u)) + var(E(Ỹ|u)),

= V + ZD∗ZT ,

where V = diag{var(Yij)g
′(µij)

2}. Again, we do not want W to depend on the current
model parameters so, similar to Gill (2007), we use the posterior modes of the MZ-saturated
models. So we replace W by Ŵm∗Z

where

Ŵm∗Z
=
[
V̂m∗Z

+ Zm∗Z
D̂∗m∗ZZT

m∗Z

]−1

,

and
V̂m∗Z

= diag{var(Yij)g
′(µij)

2}
∣∣
β=β̂m∗Z

,ω=ω̂m∗Z
.
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Note that Zm∗Z
= Zm1 = Zm2 . If MZ = M∅, then Ŵm∗Z

is identical to the Ŵ used in the

algorithm of Gill (2007) since Zm∗∅
= 0. The non-diagonal nature of Ŵm∗Z

accounts for the
correlation between the responses yij for j = 1, ..., ni, in proposing βm1

. Now

βm1
=
(
XT
m1

Ŵm∗Z
Xm1

)−1

XT
m1

Ŵm∗Z
Xm2βm2

, (5.20)

and we use the assumption that the posterior distributions of ν and ω remains approximately
the same and so use the identity transformation for νm1 and ωm1 , i.e.

νm1 = νm2 , (5.21)

and
ωm1 = ωm2 . (5.22)

Writing βm2
= (β(1)

m2
,β(2)

m2
)T , where β(1)

m2
corresponds to Xm1 and β(2)

m2
corresponds to S, (5.20)

can be rewritten

βm1
= β(1)

m2
+
(
XT
m1

Ŵm∗Z
Xm1

)−1

XT
m1

Ŵm∗Z
Sβ(2)

m2
. (5.23)

For the reverse birth move from m1 to m2, (5.23) must be satisfied, and is if

β(1)
m2

= βm1
−
(
XT
m1

Ŵm∗Z
Xm1

)−1

XT
m1

Ŵm∗Z
Sβ(2)

m2
.

If we generate v from some distribution then (5.23), (5.21) and (5.22) are satisfied if
β(1)
m2

β(2)
m2

νm2

ωm2

 =


Ipm1

−
(
XT
m1

Ŵm∗Z
Xm1

)−1

XT
m1

Ŵm∗Z
S 0 0

0 Ipm2−pm1
0 0

0 0 I 1
2
qm1 (qm1+1) 0

0 0 0 1



βm1

v
νm1

ωm1

 .

The transformation is an upper triangular matrix with all diagonal elements equal to one,
so the Jacobian is equal to one. Again, we are left the choice of distribution of v and
analogous with Gill (2007) we choose the normal distribution for βm2

with mean equal to
an approximation to the maximum likelihood estimate of βm2

and variance equal to an
approximation to the variance matrix of the maximum likelihood estimate of βm2

, i.e.

βm2
∼ N

((
XT
m1

Ŵm∗Z
Xm1

)−1

XT
m1

Ŵm∗Z
η̂m∗Z ,

(
XT
m1

Ŵm∗Z
Xm1

)−1
)
,

From this, as in Section 5.3, we induce the distribution of v and find it is normal with mean

µv =
(
STŴm∗Z

(In −Pm1,Z)S
)−1

STŴm∗Z
(In −Pm1,Z)η̂m∗Z ,

and variance matrix

Σv =
(
STŴm∗Z

(In −Pm1,Z)S
)−1

,

where Pm1,Z = Xm1

(
XT
m1

Ŵm∗Z
Xm1

)−1

XT
m1

Ŵm∗Z
.
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5.4.3 Across group-specific structure moves

Suppose we are interested in moving between models m1 ∈MZ1 and m2 ∈MZ2 . Since we only
consider local moves, Xm1 = Xm2 and Zim2 = (Zim1 |S) or Zim1 = (Zim2|S) for i = 1, ..., G.

As mentioned above, we use the independence sampler and now describe how to form the
proposal distributions for a general m1 ∈MZ1 .

Consider the most complicated model, m∗Z1
, in MZ1 . We can approximate the posterior

distribution θm∗Z1
|y by N

(
θ̂m∗Z1

, Σ̂m∗Z1

)
. If m1 = m∗Z1

then we can just use this distribution

as our proposal distribution. For all the remaining models in MZ1 , we can use θ̂m∗Z1
and Σ̂m∗Z1

to form proposal distributions. We assumed that for all models m1 ∈ MZ1 , the marginal
posterior distribution of νm1 and ωm1 remains approximately the same, so the proposal
distribution for (νm1 , ωm1)T is(

νm1

ωm1

)
∼ N

((
ν̂m∗Z1

ω̂m∗Z1

)
, Σ̂

ν,ωm∗Z1

)
.

We make the proposal distribution of βm1
independent of the distribution of (νm1 , ωm1)T ,

and also normal with mean µm1
=
(
XT
m1

Ŵm∗Z
Xm1

)−1

XT
m1

Ŵm∗Z
η̂m∗Z and variance Σm1 =(

XT
m1

Ŵm∗Z
Xm1

)−1

. Therefore, the complete proposal distribution for a move from m2 ∈MZ2

to m1 ∈MZ1 is  βm1

νm1

ωm1

 ∼ N

 µm1

ν̂m∗Z1

ω̂m∗Z1

 ,

(
Σm1 0

0 Σ̂
ν,ωm∗Z1

) .

These independence sampler moves could actually be used to move to any model in M . The
reason we restrict the moves to be local moves to neighbouring models which only result in
an addition or removal of a group-specific parameter, is to make the algorithm more efficient.
Reversible jump moves that are a transformation of the current model parameters are viewed
as being more efficient than an independence sampler since they use information from the
current model parameters to propose new parameters. However, we can also increase the
efficiency of the algorithm by assuming that a model with high posterior model probability
will be neighboured by models, also with high posterior model probability. Therefore, by only
proposing local moves to neighbouring models we increase the efficiency of the algorithm.

5.4.4 Within model moves

We can use any MCMC method to update the parameters within the model. The obvious
choices are a scan of a Gibbs sampling algorithm, or a step of an independence sampler or a
random walk algorithm. Suppose the current state of the MCMC chain is (m,βm,νm, ωm),
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where m ∈MZ . We now describe how we can use each of the Metropolis-Hastings samplers
mentioned above.

An independence sampler could use the same proposal distribution as a move across group-
specific structures, i.e. βm

νm
ωm

 ∼ N

 µm
ν̂m∗Z
ω̂m∗Z

 ,

(
Σm 0

0 Σ̂
ν,ω

m∗Z

) .

A random walk algorithm could have proposal (βm,νm, ωm)T + ε where

ε ∼ N

(
0, km

(
Σm 0

0 Σ̂
ν,ω

m∗Z

))
.

where km is a tuning parameter chosen so that the acceptance rates are between 0.1 and 0.4,
providing an algorithm which is close to optimal (see page 24). Gibbs sampling would update
the elements of (βm,νm, ωm)T one at a time, or we could use block updates. Typically, there
exists no conditional conjugacy so we will have to use adaptive rejection sampling or ARMS.
Also there exist no conditional independencies. For these reasons, Gibbs sampling is the most
computationally expensive of the three methods mentioned. The independence sampler and
the random walk algorithm both only require one evaluation of gm(θm) per within model
move. The random walk algorithm may require tuning to get it close to optimal, whereas
the independence sampler does not require any such tuning. However, the random walk
algorithm uses information from the current state thus making sampling more efficient. In
practice, we found both methods were mobile and seemed to work well.

5.4.5 The Algorithm

We now present the reversible jump algorithm for GLMMs in its entirety.

1. For each MZ-saturated model, m∗Z , find the posterior modes, θ̂m∗Z = (β̂m∗Z , ν̂m
∗
Z
, ω̂m∗Z )T ,

of θm∗Z = (βm∗Z ,νm
∗
Z
, ωm∗Z )T by maximising log gm∗Z (θm∗Z ), and, also, find an approxi-

mation to
∂2 log gm∗Z (θm∗Z )

∂θm∗Zθ
T
m∗Z

∣∣∣∣∣
θm∗Z

=θ̂m∗Z

,

to find

Σ̂m∗Z
= −

 ∂2 log gm∗Z (θm∗Z )

∂θm∗Zθ
T
m∗Z

∣∣∣∣∣
θm∗Z

=θ̂m∗Z

−1

,

where Σ̂m∗Z
is partitioned as in (5.19).

2. Suppose we are in model m ∈MZm with current parameters βm, νm and ωm.
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3. Propose a model k ∈M with probability πm,k.

4. If the proposal involves remaining in the same model, i.e. k = m, then update the
model using any MCMC method. In Section 5.4.4, we recommended either a step of a
random walk algorithm or an independence sampler.

5. If the proposal is an across group-specific structure move, so that k ∈ MZk 6= MZm .
Generate proposal parameters (βk,νk, ωk)

T from βk
νk
ωk

 ∼ N


 µk
ν̂m∗Zk
ω̂m∗Zk

 ,

(
Σk 0

0 Σ̂
ν,ω

m∗Zk

) ,

where the pdf of this distribution is qm,k(). Let qk,m() be the pdf of

N

 µm
ν̂m∗Zm
ω̂m∗Zm

 ,

(
Σm 0

0 Σ̂
ν,ω

m∗Zm

) .

Accept this proposal with probability

min

[
1,

gk(βk,νk, ωk)f(k)qk,m(βm,νm, ωm)πk,m
gm(βm,νm, ωm)f(m)qm,k(βk,νk, ωk)πm,k

]
,

else reject the move and remain at (m,βm,νm, ωm). Return to 2.

6. If the proposal is a within group-specific structure death move, so that k ∈MZm , then
partition Xmβm = [Xk|S](β(1)

m ,β(1)
m )T . Set

βk = β(1)
m + (XT

k Ŵm∗Zm
Xk)

−1XT
k Ŵm∗Zm

Sβ(2)
m ,

νk = νm,

ωk = ωm.

Accept this proposal with probability

min

[
1,
gk(βk,νk, ωk)f(k)πk,mq(β

(2)
m )

gm(βm,νm, ωm)f(m)πm,k

]
,

where q() is the pdf of

N

((
STŴm∗Zm

(In −Pk,Zm)S
)−1

STŴm∗Zm
(In −Pk,Zm)η̂m∗Zm

,
(
STŴm∗Zm

(In −Pk,Zm)S
)−1
)
.

Else reject the move and remain at (m,βm,νm, ωm). Return to 2.

7. If the proposal is a within group-specific structure birth move, so that k ∈ MZm , then
generate v from the distribution

N

((
STŴm∗Zm

(In −Pm,Zm)S
)−1

STŴm∗Zm
(In −Pm,Zm)η̂m∗Zm

,
(
STŴm∗Zm

(In −Pm,Zm)S
)−1
)
,
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which has pdf v. Set

βk =

(
Ipm −

(
XT
mŴm∗Zm

Xm

)−1

XT
mŴm∗Zm

S

0 Ipk−p+m

)(
βm
v

)
,

νk = νm,

ωk = ωm.

Accept this proposal with probability

min

[
1,

gk(βk,νk, ωk)f(k)πk,m
gm(βm,νm, ωm)f(m)πm,kq(v)

]
,

else reject the move and remain at (m,βm,νm, ωm). Return to 2.

5.4.6 Turtle Data Example

We can apply the reversible jump scheme for GLMMs to the five models that are possible
for the Turtle Dataset running example. We apply the unit information priors of Chapter
3 to the model parameters. Note that using the reversible jump algorithm for this dataset
in practice would be unnecessary since the number of models is small enough to use the
marginal likelihood approach with, for example, bridge sampling. Figure 5.2 shows the types
of move possible amongst the five models.

Figure 5.2: The types of move possible for the Turtle Dataset.

Model 1 Model 2

Model 3 Model 4

Model 5

Across group−specific structure moves
Within group−specific structure moves

We choose uniform proposal probabilities, πm,k, that include the probability of remaining in
the same model. Table 5.2 shows the proposal probabilities, πm,k.

We need to find the posterior modes of the MZ-saturated models, i.e. of Model 2, Model 4
and Model 5. Table 5.3 shows the posterior modes of these three models.
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Table 5.2: Proposal probabilities, πm,k.

m
k 1 2 3 4 5
1 1

3
1
3

1
3

0 0
2 1

3
1
3

0 1
4

0
3 1

3
0 1

3
1
4

0
4 0 1

3
1
3

1
4

1
2

5 0 0 0 1
4

1
2

Table 5.3: Posterior modes of the MZ -saturated models, to 4 decimal places.

Model 2 Model 4 Model 5
β1 = −0.3683 β1 = −0.3758 β1 = −0.4171
β2 = 0.4084 β2 = 0.4138 β2 = 0.4451

ν11 = −0.7630 ν11 = −0.7372
ν12 = −0.0038
ν22 = −0.6965

We run the reversible jump algorithm for a total of 10000 iterations with a burn-in phase
of 1000 iterations. Table 5.4 shows the posterior model probabilities as approximated by
this algorithm. Also in Table 5.4, are the posterior model probabilities which are found
using the marginal likelihoods that we approximated using importance sampling and were
regarded as exact. The log of these approximated marginal likelihoods are displayed in Table
4.1. The posterior model probabilities as approximated by the reversible jump algorithm
are very close to their exact values. This indicates that the Laplace approximation to the
integrated approximation works well in this example. This may be due to the values of
the variance components being small. Table 5.3 shows that the posterior modes of the
transformed variance components for Models 4 and 5 are all quite small and we know that
the Laplace approximation works well when the variance components are small.

Table 5.4: Approximated Posterior Probabilities of the Five Models from the Turtles Dataset.

Model, m Posterior Model Probabilities, f(m|y)
Reversible Jump Marginal Likelihood Approach

with importance sampling
1 0.0000 0.0001
2 0.3648 0.3484
3 0.0023 0.0013
4 0.1870 0.1871
5 0.4459 0.4632
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5.5 Discussion

In this Chapter, we proposed a reversible jump algorithm for model determination amongst
GLMMs by generalising a reversible jump algorithm for GLMs proposed by Gill (2007).

The reversible jump algorithm operated on the marginal posterior distribution of the param-
eters βm, Dm and φm by integrating out the group-specific parameters, um. Using an MCMC
model determination method over these marginal parameters was also used by Cai and Dun-
son (2006) incorporating an SSVS algorithm. The integrated likelihood is rarely analytically
tractable so we needed to have a computationally inexpensive method for approximating it.
We explored two competing methods: the Cai & Dunson method and the Laplace method.
We found that both methods are more accurate when the variance components are small.
Using an empirical assessment we found the Laplace method to be more accurate than the
Cai & Dunson method. However, Cai and Dunson (2006) found the opposite, which indicated
that the accuracy is example-dependent, which includes what prior is used.

We showed that the Cai & Dunson approximation to the integrated likelihood is a monotonic
function of the elements of D and that for the resulting approximate posterior distribution to
be proper, the prior mean of D must exist. Therefore, our chosen method for approximating
the integrated likelihood was the Laplace method. However, the reversible jump algorithm
described in this Chapter could be used with any diffuse priors. If a user wanted to specify
another default prior for D such that the prior mean existed then the Cai & Dunson method
could be used. The advantage of doing this is that the Cai & Dunson method is computa-
tionally less expensive than the Laplace method. In the Laplace method, we need to find the
value, ûi, of ui that maximises f(yi|β,ui, φ)f(ui|D), for all i = 1, ..., G.

We described the algorithm of Gill (2007) for MCMC model determination amongst GLMs
and then generalised it in Section 5.4 to GLMMs. To implement the algorithm we needed
to maximise a number of approximate integrated posterior distributions. This is the main
disadvantage of the method since it requires some prior computational expense. The number
of integrated posterior distributions to maximise is equal to one more than the number of
GLMs. The posterior modes and Hessian matrices evaluated at the posterior modes are used
to form the proposal distributions for every model m ∈ M . The proposal distributions are
used in an independence sampler for making across group-specific structure moves. Note that
we could use an independence sampler to make all moves but, as noted in Chapter 2, this
is an inefficient method and by incorporating moves that use information from the current
state we increase the efficiency of sampling.

The reversible jump algorithm can be used with any diffuse prior distribution for the regres-
sion parameters. The reason it has to be diffuse is that we centre the proposal distribution
for βm2

, for a within-group move, at an approximate maximum likelihood estimate of βm2
.

We could modify this proposal distribution to account for prior information.

We applied the reversible jump algorithm to the Turtles Dataset and found that it approx-
imated the posterior model probabilities very accurately. We concluded that this was due
to the variance components being small, and therefore, the Laplace method performing well.
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We will apply the reversible jump algorithm to various different examples in Chapter 6.

Recall from Section 5.1 that we are using a reversible jump algorithm to identify M∗ ⊂ M
so that we need not use bridge sampling on all models m ∈ M , and can just use it on the
more manageable number of models in M∗. We now to discuss how to identify M∗.

One possible approach is that we assume we only have computational resources to use bridge
sampling to approximate the marginal likelihood of b models. In this case, we include in M∗,
the models with the b highest approximate posterior model probabilities, f̂(m|y), as found
via the reversible jump algorithm.

Another approach is to identify maxm∈M f̂(m|y) and then include in M∗, all models that have
approximate posterior model probability larger than a specified fraction of maxm∈M f̂(m|y),
i.e.

M∗ =

{
m ∈M |f̂(m|y) ≥ cmax

m∈M
f̂(m|y)

}
, (5.24)

where 0 < c < 1. This definition is used in relation to selecting a set of models to model-
average over by Madigan and Raftery (1994).

The disadvantage of the first definition is that there may only be a small number of models
that have non-negligible posterior model probability and, thus, we include in M∗ models of
negligible posterior model probability. This would not happen using the second definition,
although we may get an M∗ containing more models than we can manage with the marginal
likelihood approach.

We prefer this second approach, with a default value of c = 10. For the Turtle Dataset, we
approximate the posterior model probabilities of the five models using the reversible jump
and these are shown in Table 5.4. Note that Model 5 has the highest approximate posterior
model probability of 0.4632. So with the value of c = 10, we include in M∗, all models with
approximate posterior model probability larger than 0.0463, i.e. we include Models 2, 4 and
5 in M∗.
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Chapter 6

Examples

In this Chapter, we use the default model determination strategy for three examples. We
apply the default prior distributions of Chapter 3 to the model parameters, β and D. In
these examples, the dispersion parameter is known so we need not specify a prior distribution
for φ. We identify M∗ using the reversible jump scheme of Chapter 5. We then approximate
the marginal likelihood of each of the models in M∗ using bridge sampling as implemented
in Chapter 4.

For these examples, we compare our model determination conclusions to those of other meth-
ods or authors, where relevant. When we report the values of BIC, they are found by using
the function glmer in the R package lme4 (see Bates and Maechler (2009)).

6.1 Ship Incident Data

The Ship Incident Data can be found in McCullagh and Nelder (1989, pg. 205) and concerns
the number of damage incidents suffered by cargo ships between 1960 and 1979, that were
caused by waves. The dataset contains data from five different types of ship which we regard
as the groups, i.e. G = 5. There are two other classification factors: year of construction
(1960-64, 1965-69, 1970-74, 1975-79) and year of operation (1960-74, 1975-79).

Let yij and Eij denote the number of damage incidents suffered by and the aggregate months
of service of the ith ship type and the jth unique combination of classification factors, respec-
tively, for i = 1, ..., G = 5 and j = 1, ..., ni. Since there are four different classifications for
year of construction and two for year of operation, ni = 8. However, since a ship constructed
in 1975-79 cannot operate in 1960-74, the aggregate months of service is zero and these rows
can be deleted, resulting in ni = 7. Also, the aggregate months of service for ship type 5,
constructed in 1960-64 and operating in 1975-79 is also zero, so this row can be deleted.
Therefore, ni = 7, for i = 1, ..., 4, n5 = 6, and n =

∑G
i=1 ni = 34.
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We construct indicator variables for the classification factors. For the ith ship type, let

x1ij =

{
1, if the jth entry was operating in 1975-79,
0, otherwise,

for j = 1, ..., ni. Likewise, for the ith ship type, let

x2ij =

{
1, if the jth entry was constructed in 1965-69,
0, otherwise,

x3ij =

{
1, if the jth entry was constructed in 1970-74,
0, otherwise,

x4ij =

{
1, if the jth entry was constructed in 1975-79,
0, otherwise,

for j = 1, ..., ni.

We adhere to the modelling principle, that if there are more than one indicator variables
that relate to a classification factor, then they are either all included or all excluded from
the linear predictor. For example, if x4ij is included in the linear predictor, then so must x2ij

and x3ij.

We assume that yij ∼ Poisson(µij) where µij = Eijλij and log λij = ηij. The link function

is then g(µij) = log
(
µij
Eij

)
, with g′(µij) = 1

µij
. We term Eij, the aggregate months of service

as the exposures. We do not consider interactions between the classification factors, so there
are a total of thirteen models, including four GLMs. Therefore, there are five group-specific
structures.

We apply the prior distributions proposed in Chapter 3 for β and D, and run the reversible
jump algorithm proposed in Chapter 5. The algorithm is run for a total of 10000 iterations
after a burn-in phase of 1000 iterations, and identifies an M∗ containing four models. These
models have linear predictors:

10. ηij = β1 + u1ij + (β2 + u2ij)x1ij + β3x2ij + β4x3ij + β5x4ij; where ui
iid∼ N(0,D),

11. ηij = β1 + u1ij + (β2 + u2i)x2ij + (β3 + u3i)x3ij + (β4 + u4i)x4ij; where

ui = (u1i, u2i, u3i, u4i)
T iid∼ N(0,D),

12. ηij = β1 + u1ij + β2x1ij + (β3 + u3i)x2ij + (β4 + u4i)x3ij + (β5 + u5i)x4ij; where ui =

(u1i, u3i, u4i, u5i)
T iid∼ N(0,D),

13. ηij = β1 + u1ij + (β2 + u2i)x1ij + (β3 + u3i)x2ij + (β4 + u4i)x3ij + (β5 + u5i)x4ij; where

ui = (u1i, u2i, u3i, u4i, u5i)
T iid∼ N(0,D),

Table 6.1 shows the posterior model probabilities of the four models in M∗, as approximated
by the reversible jump algorithm. These four models account for 97.65% of total posterior
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Table 6.1: Approximated Posterior Probabilities (to 3 decimal places) of Models 10, 11, 12 and 13 from
the Ship Incident Data, as approximated by the reversible jump algorithm.

Model Posterior Model Probabilities
m f(m|y,M) f(m|y,M∗)
10 0.058 0.059
11 0.182 0.186
12 0.231 0.237
13 0.506 0.518

Table 6.2: Approximated Log Marginal Likelihoods and Posterior Probabilities (to 3 decimal places) of
Models 10, 11, 12 and 13 from the Ship Incident Data, as approximated by bridge sampling.

Model, m Log Marginal Likelihood, log fm(y) Posterior Model Probabilities, f(m|y)
10 -125.581 0.042
11 -124.389 0.138
12 -123.974 0.209
13 -122.904 0.610

model probability. Table 6.1 also shows the posterior model probability, if we consider only
models in M∗.

We now approximate the marginal likelihood of the four models in M∗ using bridge sampling
as described in Chapter 4. We use a total posterior sample size of 20000. Table 6.2 shows
the log marginal likelihoods and resulting posterior model probabilities, as approximated by
bridge sampling.

The model with the highest posterior model probability is actually the most complicated
model possible, i.e. Model 13. This suggests that the effect that the classification factors
have on the number of damage incidents suffered is different for the different types of ship.
This means that, if we considered ship type to be an additional classification factor, and
used a standard GLM there would exist an interaction between the ship type factor and the
year of construction and year of operation factors. McCullagh and Nelder (1989) conducted
such an analysis using classical statistical methods. They found inconclusive evidence for
this interaction but stated that after fitting the interaction “the deviance reduced from 38.7
with 25 degrees of freedom to 14.6 with 10. This reduction would have some significance if
the Poisson model were appropriate but, with over-dispersion present, the significance of the
approximate F-ratio vanishes completely”. The existence of over-dispersion is what makes a
GLMM an appropriate model for this dataset.
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6.2 Six Cities Data

The Six Cities Data can be found in Fitzmaurice and Laird (1993). It is frequently used to
assess mixed models methodology. It concerns the wheezing status of 537 children over four
years, and is sometimes referred to as the Wheeze Data in the literature.

Let yij denote the wheezing status (0=not wheezing, 1=wheezing) of the ith child at the
jth time point, for i = 1, ..., 537 and j = 1, ..., 4. Also, let z1ij and z2ij denote the child’s
age (in years) and the mother’s smoking status (0=non-smoker, 1=smoker) of child i at time
point j, for i = 1, ..., 537 and j = 1, ..., 4. In this dataset, z2ij = z2ik, for all j, k = 1, ..., 4,
i.e. the mother’s smoking status does not change. Note that this simplification is in no way
necessary for the following model determination approach. Also, z1i1 = 7, z1i2 = 8, z1i3 = 9,
and z1i4 = 10, for all i = 1, ..., 537.

Let x1ij =
z1ij−z̄1√
var(z1ij)

and x2ij =
z2ij−z̄2√
var(z2ij)

denote the standardised versions of the age and

smoking status variables. Let x3ij = x1ijx2ij be the interaction between the age and smoking
status variables.

Suppose yij ∼ Bernoulli(pij) where log
(

pij
1−pij

)
= ηij, i.e. we use the logit link function.

There are a total of nineteen models.

We apply the unit information prior distributions for the regression parameters, β and the
variance components matrix, D, proposed in Chapter 3 and then use the reversible jump
algorithm proposed in Chapter 5. The algorithm is run for a total of 20000 iterations after
a burn-in phase of 1000 iterations. This algorithm identified M∗ to contain six models, with
the following linear predictors:

6. ηij = β1 + u1i; where u1i
iid∼ N(0, σ2),

7. ηij = β1 + β2x1ij + u1i; where u1i
iid∼ N(0, σ2),

8. ηij = β1 + β2x2ij + u1i; where u1i
iid∼ N(0, σ2),

9. ηij = β1 + β2x1ij + β3x2ij + u1i; where u1i
iid∼ N(0, σ2),

11. ηij = (β1 + u1i) + (β2 + u2i)x1ij; where u = (u1i, u2i)
T iid∼ N(0,D),

15. ηij = (β1 + u1i) + β2x1ij + (β3 + u3i)x2ij; where u = (u1i, u3i)
T iid∼ N(0,D).

Table 6.3 shows the posterior model probabilities (to 3 decimal places) of the six models in
M∗, as approximated by the reversible jump algorithm. The models in M∗ account for 95.7%
of total posterior model probability. Also shown in Table 6.3 is the approximate posterior
model probabilities if we just consider models in M∗. These are found by

f̂(m|y,M∗) =
f̂(m|y,M)∑

m∈M∗ f̂(m|y,M)
.
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Table 6.3: Approximated Posterior Probabilities (to 3 decimal places) of the models in M∗ from the Six
Cities Data, as approximated by the reversible jump algorithm.

Model Posterior Model Probabilities
m f(m|y,M) f(m|y,M∗)
6 0.319 0.333
7 0.349 0.365
8 0.066 0.069
9 0.081 0.085
11 0.048 0.050
15 0.094 0.098

Table 6.4: Approximated Log Marginal Likelihoods and Posterior Probabilities, as approximated by bridge
sampling, and BIC values of models in M∗ from the Progabide Data (to 3 decimal places).

Model, m Log Marginal Likelihood, log fm(y) Posterior Model BICm

Probabilities, f(m|y)
6 -808.317 0.347 1614.178
7 -808.200 0.390 1614.984
8 -809.923 0.070 1619.757
9 -809.885 0.072 1620.568
11 -810.294 0.048 1628.188
15 -809.872 0.073 1635.911

We now use bridge sampling to approximate the marginal likelihood of the six models in
M∗. We use a posterior sample size of 50000. Table 6.4 shows the log marginal likelihood
and the resulting posterior model probabilities of models in M∗, as approximated by bridge
sampling.

Models 6 and 7 account for nearly 70% of the posterior model probability in M∗. By studying
the linear predictors of these two models, it suggests that a child’s wheezing status is different
for each child and there is some evidence of an age effect on the wheezing status. We discussed
the disadvantages of BIC for mixed models in Section 2.2.7. Nonetheless, in Table 6.4, we
also give the values of BIC for the models in M∗. We did not compute the BIC values for all
models in M but the BIC values for models in M∗ seem to support our model determination
conclusions, at least for the models with just group-specific intercepts. However, for models
with not just group-specific intercepts, there is less correspondence between our conclusions
and the BIC values.
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Table 6.5: Approximated Posterior Probabilities (to 3 decimal places) of the models in M∗ from the
Progabide Data, as approximated by the reversible jump algorithm.

Model Posterior Model Probabilities
m f(m|y,M) f(m|y,M∗)
35 0.353 0.432
36 0.136 0.166
39 0.070 0.085
50 0.097 0.119
61 0.111 0.135
69 0.052 0.063

6.3 Progabide Data

The Progabide Data can be found in Thall and Vail (1990). It concerns four successive two-
week seizure counts for 59 epileptics. Also recorded are the number of seizures suffered in the
eight week period prior to the study, whether the patient received either the drug Progabide
or a placebo, the age of the patient and the visit number. Let yij denote the number of
seizures suffered by the ith patient in the two weeks prior to visit j, for i = 1, ..., 59 and j =
1, ..., 4. Likewise, denote z1ij, z2ij, z3ij and z4ij as the age, base-line seizure count, treatment
(0=placebo,1=Progabide) and visit number of the ith patient at visit j, respectively, for
i = 1, ..., 59 and j = 1, ..., 4. Note that z4ij = j, and also, note that, z1ij = z1ik, z2ij = z2ik,
z3ij = z3ik, for any j, k = 1, ..., 4.

Let xkij =
xkij−x̄k√
var(xkij)

for k = 1, ..., 4, i.e. the xkij’s are the standardised versions of the zkij’s.

Suppose yij ∼ Poisson(λij), where log λij = ηij. If we do not consider interactions, there are
a total of 97 models, including 16 GLMs. Therefore, there are 17 group-specific structures.

We apply the unit information prior distributions proposed in Chapter 3 and run the re-
versible jump algorithm proposed in Chapter 5. We run the algorithm for a total of 20000
iterations after a burn-in phase of 1000 iterations. If we use the definition of M∗ from (5.24),
then we identify an M∗ containing six models. The approximate posterior model probabili-
ties of these six models are shown in Table 6.5. The models in M∗ account for 79.5% of total
posterior model probability. Also shown in Table 6.5 are the approximate posterior model
probabilities if we just consider models in M∗. The linear predictors for the models in M∗

are:

35. ηij = (β1 + u1i) + β2x2ij + (β3 + u3i)x4ij; where ui = (u1i, u3i)
T ∼ N(0,D),

36. ηij = (β1 + u1i) + β2x2ij + β3x3ij + (β4 + u4i)x4ij; where ui = (u1i, u4i)
T ∼ N(0,D),

39. ηij = (β1 + u1i) + β2x1ij + β3x2ij + (β4 + u4i)x4ij; where ui = (u1i, u4i)
T ∼ N(0,D),
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Table 6.6: Approximated Log Marginal Likelihoods and Posterior Probabilities, as approximated by bridge
sampling, and BIC values of models in M∗ from the Progabide Data (to 3 decimal places).

Model, m Log Marginal Likelihood, log fm(y) Posterior Model BICm

Probabilities, f(m|y)
35 -679.715 0.454 588.462
36 -680.755 0.160 590.771
39 -681.400 0.084 592.035
50 -680.951 0.132 603.954
61 -680.990 0.127 602.018
69 -682.062 0.043 612.292

50. ηij = (β1 + u1i) + β2x2ij + (β3 + u3i)x3ij + (β4 + u4i)x4ij; where ui = (u1i, u3i, u4i)
T ∼

N(0,D),

61. ηij = (β1 + u1i) + (β2 + u2i)x2ij + (β3 + u3i)x4ij; where ui = (u1i, u2i, u4i)
T ∼ N(0,D),

69. ηij = (β1 + u1i) + (β2 + u2i)x2ij + (β3 + u3i)x3ij + (β4 + u4i)x4ij; where
ui = (u1i, u2i, u3i, u4i)

T ∼ N(0,D).

We can now use bridge sampling to approximate the marginal likelihood of each of the models
in M∗. We use bridge sampling with a total posterior sample size of 20000. Table 6.6 shows
the log marginal likelihoods and the resulting posterior model probabilities as approximated
by bridge sampling.

By studying the linear predictors of the six models in M∗, we see that they all contain
regression parameters for the base-line seizure count and the visit number. They also all
contain a group-specific parameter for the visit number. This suggests that the base-line
seizure count and the visit number has an effect on the number of seizures suffered, and that
the effect that the visit number has on the number of seizures suffered is different for each
patient.

It would be impractical to compute the values of BIC for all 97 models in M∗. However,
we give the values of BIC for the models in M∗ in Table 6.6. Similar for the Six Cities
Data, the BIC values seem to support our conclusions for the models with less group-specific
parameters.
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Chapter 7

Discussion

In this thesis, we developed an automatic, default strategy for Bayesian model determination
amongst GLMMs. This strategy addressed the two key issues of default prior specification
and computation.

In Chapter 3, we extended the idea of unit information prior distributions, which have been
previously applied to the regression parameters of linear models and GLMs, to the regression
parameters of GLMMs. We also developed a default prior distribution for the variance
components matrix that relies on a unit information concept.

In Chapter 4, we investigated the method of bridge sampling for approximating the marginal
likelihood on a GLMM. This marginal likelihood approach can only be applied, in a practical
sense, when the number of models, |M |, is small, or when we have identified a subset of
models, M∗ ⊂ M , which have high posterior model probability and such that |M∗| is small
enough so that we can use bridge sampling. In Chapter 5, we proposed a reversible jump
algorithm for identifying M∗.

An important note about the three parts of the strategy, i.e. the default prior distributions,
the bridge sampling and the reversible jump algorithm, is that they are all stand-alone.
This means that a user can use any number of the parts of the strategy. For instance, they
could use the default prior distributions proposed in Chapter 3, but another method for
model determination. A scenario where we may consider doing so is for normally distributed
responses. In this case, we can evaluate the integrated likelihood exactly and the results of
the reversible jump method will be, accordingly, more accurate. In this case, we may feel it
is unnecessary to evaluate the marginal likelihood of each model in M∗.

The default prior distributions proposed in Chapter 3 can be applied to a rich set of mod-
els. Common proposed default priors for mixed models are typically restricted to certain
scenarios, e.g. LMMs or for models that only have group-specific intercepts. One area where
our default prior distributions are restricted is D∗ must be IG ⊗ D, i.e. the group-specific
parameters are exchangeable.
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We did not develop a default prior distribution for the dispersion parameter. If this parameter
is unknown, it will be contained in every model, so we can recommend using a diffuse inverse-
gamma prior distribution. The disadvantage of this is we cannot undertake Bayesian model
determination amongst different response distributions.

A possible criticism of the default prior distributions proposed in this thesis, and unit in-
formation prior distributions in general, is that they depend on the form of the experiment
through the matrix X, and therefore the matrix Z. Our position is that all regression analyses
are conditional on the covariates, so it is acceptable for the prior distribution to be dependent
on the covariates and therefore the matrices X and Z. This property of the prior distribution
depending on the form of the experiment is not just possessed by unit information prior
distributions. Jeffreys prior, for instance, also depends on the form of the experiment.

The reversible jump scheme proposed in Chapter 5 is an extension, to GLMMs, of the re-
versible jump scheme proposed by Gill (2007) for GLMs. This scheme can be applied when
any default prior distribution has been proposed for the model parameters, i.e. does not need
to be used in conjunction with the default priors proposed in Chapter 3. A disadvantage of
this implementation of the reversible jump scheme is that we need to find the approximate
posterior mode of the marginal posterior distribution by maximising f̂m∗Z (βm∗Z ,νm

∗
Z
, ωm∗Z |y)

for each MZ-saturated model, m∗Z . In addition, we also need to find the Hessian matrix

of log f̂m∗Z (βm∗Z ,νm
∗
Z
, ωm∗Z |y) evaluated at the posterior mode. As the total number of ex-

planatory variables available increases, the number of MZ-saturated models also increases.
Therefore, our reversible jump scheme can only be applied to a moderately-sized dataset,
where the measure of the size of a dataset is the number of available explanatory variables.
An alternative approach is to only consider models with group-specific intercepts; this still
gives us a rich set of models, but we only need to find the posterior mode and Hessian matrix
for two models.

The reversible jump scheme is only as good as the Laplace approximation to the integrated
likelihood. If the Laplace approximation is poor, our concern is that the reversible jump
algorithm will mis-identify M∗. Hopefully, in this case, when we use bridge sampling to
approximate the marginal likelihood for each of the models in M∗ we will find that the ap-
proximate Bayes factors from the marginal likelihood approach will not correspond to the
Bayes factors from the approximate posterior model probabilities from the reversible jump
algorithm. In this case, we may have to use a computationally more intensive method for ap-
proximating the integrated likelihood, such as Gauss-Hermite quadrature (see Section 2.2.2).
The 1-point Gauss-Hermite quadrature rule is equivalent to the Laplace approximation. Us-
ing a Gauss-Hermite quadrature rule with more points will result in a computationally more
intensive method.

Bridge sampling has previously been used to approximate the marginal likelihood of GLMMs
by Sinharay and Stern (2000) and Sinharay and Stern (2005). In both papers, the integrated
likelihood is evaluated by using Simpson’s rule. This is feasible since only group-specific
intercept models are considered. Bridge sampling is then used to approximate the p+ 1

2
q(q+

1) + 1 dimensional integral. However, we use bridge sampling to approximate the marginal
likelihood by approximating the p+Gq+ 1

2
q(q+1)+1 dimensional integral, i.e. not evaluating

the integrated likelihood. This allows us to consider much more complicated models.
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Our treatment of bridge sampling is completely general and can be applied to any posterior
distribution where it is relatively straightforward to generate a posterior sample.

There is a lot of scope for future work, in extending the work of this thesis.

It would be useful to construct a default prior distribution for the dispersion parameter
so that we could make formal Bayesian model determination choices with respect to the
response distribution. This would have to take account of the fact that, for some response
distributions, the dispersion parameter is known. If would be convenient if the default prior
distribution for an unknown dispersion parameter is an inverse-gamma distribution. Then
this would be the conjugate prior distribution for the linear model.

In this thesis, to apply the unit information concept prior distribution for D, we restricted
ourselves to exchangeable group-specific parameters, i.e. D∗ = IG ⊗D, where D is unstruc-
tured. Firstly, we could allow D to have some structure. For instance, we could allow D to
have the following structure

D = σ2


1 ρ · · · ρq−1

ρ 1 ρq−2

...
...

. . .
...

ρq−1 ρq−2 · · · 1

 , (7.1)

i.e. Djk = σ2ρ|j−k|, for j, k = 1, ..., q. Therefore D depends on two unknown parameters, as
opposed to 1

2
q(q + 1) unknown parameters when D is unstructured. The structure used for

D in (7.1) is commonly used in longitudinal studies with equally-spaced observations where
the correlation between two observations from the same group decreases as the time between
those two observations increases.

Secondly, future work could also look at situations where D∗ is not block-diagonal. For
instance, at present cov(ui,uj) = 0, for i 6= j. However, we could make this covariance
non-zero and, therefore, introduce correlations between the components of u. A well-known
example of a dataset where we might want to use a non block diagonal matrix for D∗ is for
the Scotland Lip Cancer Data which is found in, for example, Breslow and Clayton (1993).
In this dataset, yi is the number of cases of lip cancer observed in the ith Scottish district,
for i = 1, ..., 56, from 1975-80. Let xi and Ei denote the observed percentage of the workforce
who work outside and the expected number of cases of lip cancer, respectively, for the ith
district. Also recorded for the ith district is a set, Ai, of geographically adjacent districts.

For i = 1, ..., 56, we assume yi ∼ Poisson(Eiλi), where

log λi = β1 + β2xi + ui,

where ui is scalar such that u = (u1, ..., u56)T ∼ N(0,D∗). The approach in this thesis would
be to make D∗ a diagonal matrix depending on one parameter, σ2. However, if we take
this approach for this dataset, we are ignoring how the rates of lip cancer of geographically
adjacent districts are likely to be correlated since they experience similar environmental
conditions. This is known as spatial correlation. Sinharay and Stern (2005) consider this
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example and use

D∗ = σ2E−1 + τ 2(I56 − φC)−1E−1,

=
{
σ2I56 + τ 2(I56 − φC)−1

}
E−1,

where E and C are known matrices such that E = diag(Ei) and Cij =
(
Ej
Ei

) 1
2
I [j ∈ Ai], for

i, j = 1, ..., 56. Therefore Cij is non-zero if districts i and j are geographically adjacent and
it follows that D∗ is non-diagonal. In this case, D∗ depends on three parameters: σ2 > 0,
τ 2 > 0 and φ ∈ (0, φMAX) where φMAX is a function of the Ei’s determined so that D∗ is
positive-definite. The parameter φ controls the amount of spatial correlation. It would be
of interest to determine whether there exists spatial correlation. This is equivalent to using
Bayesian model determination amongst the two models: one having exchangeable group-
specific parameters and the other having spatially correlated group-specific parameters as
described above. As mentioned above, the bridge sampling approach described in Chapter
4 could be applied to this problem. We can apply the unit information prior distribution to
the parameters β1 and β2. However, we would need to to define a default prior distribution
for the parameters σ2, τ 2 and φ. As a result, we are almost certain to lose the conditional
conjugacy that we had with exchangeable group-specific parameters and an inverse-gamma
prior distribution.

Most importantly, future work should focus on developing an MCMC model determination
scheme that does not require the posterior modes of multiple models and can therefore
be applied to a larger number of models, i.e. datasets with more available explanatory
variables. An alternative, interesting route to reversible jump would be to attempt to apply
the saturated space approach of Brooks et al. (2003). In this approach, the dimension of
the Markov chain, conditional on model m ∈ M , is always kMAX = supm∈M {km} and has
elements (θm,wm)T where the dimension of the auxiliary model parameters, wm, is kMAX−km.

140



Bibliography

Abramowitz, M. and Stegun, I. (eds.) (1965), Handbook of Mathematical Functions, Dover.

Bates, D. and Maechler, M. (2009), lme4: Linear mixed-effects models using S4 classes, r
package version 0.999375-31.

Berger, J. and Bernardo, J. (1992), “Reference Priors in a Variance Components Problem,”
in Proceedings of the Indo-USA workshop on Bayesian Analysis in Statistics and Econo-
metrics, ed. Goel, P., pp. 35–60.

Berger, J. and Pericchi, L. (1996), “The Intrinsic Bayes Factor for Model Selection and
Prediction,” Journal of the American Statistical Association, 91, 109–122.

Bernardo, J. (1979), “Reference Posterior Distributions for Bayesian Inference,” Journal of
the Royal Statistical Society (Series B), 41, 113–147.

Box, G. and Tiao, G. (1992), Bayesian Inference in Statistical Analysis, Wiley.

Breslow, N. and Clayton, D. (1993), “Approximate Inference in Generalized Linear Mixed
Models,” Journal of the American Statistical Association, 88, 9–25.

Brooks, S., Giudici, P., and Roberts, G. (2003), “Efficient construction of reversible jump
Markov chain Monte Carlo proposal distributions,” Journal of the Royal Statistical Society
(Series B), 65, 3–55.

Browne, W. and Draper, D. (2006), “A comparison of Bayesian and likelihood-based methods
for fitting multilevel methods,” Bayesian Analysis, 1, 473–514.

Burnham, K. and Anderson, D. (1998), Model Selection and Inference: a practical
information-theoretic approach, Springer.

Cai, B. and Dunson, D. (2006), “Bayesian Covariance Selection in Generalized Linear Mixed
Models,” Biometrics, 62, 446–457.

Carlin, B. and Chib, S. (1995), “Bayesian Model Choice via Markov Chain Monte Carlo
Methods,” Journal of the Royal Statistical Society (Series B), 57, 473–484.

Chen, M., Shao, Q., and Ibrahim, J. (2000), Monte Carlo Methods in Bayesian Computation,
Springer.

Chib, S. (1995), “Marginal Likelihood from the Gibbs Output,” Journal of the American
Statistical Association, 90, 1313–1321.

141



Chib, S. and Jeliazkov, I. (2001), “Marginal Likelihood from the Metropolis-Hastings Out-
put,” Journal of the American Statistical Association, 96, 270–281.

Chopin, N. and Robert, C. (2009), “Contemplating Evidence: properties of, and alternatives
to Nested Sampling,” Biometrika, To Appear.

Congdon, P. (2003), Applied Bayesian Modelling, Wiley.

Daniels, M. (1999), “A prior for the variance in hierarchical models,” The Canadian Journal
of Statistics, 27, 567–578.

Dellaportas, P., Forster, J., and Ntzoufras, I. (2002), “On Bayesian model and variable
selection using MCMC,” Statistics and Computing, 12, 27–36.

— (2009), “Specification of prior distributions under model uncertainty,” Tech. rep., Univer-
sity of Southampton.

DiCiccio, T., Kass, R., A., R., and Wasserman, L. (1997), “Computing Bayes Factors By
Combining Simulation and Asymptotic Approximations,” Journal of the American Statis-
tical Association, 92, 903–915.

Evans, M. (2007), “Comments on Nested Sampling by J. Skilling,” in Bayesian Statistics 8,
eds. Bernado, J., Bayarri, M., Berger, J., Dawid, A., Heckerman, D., Smith, A., and West,
M., Oxford, pp. 491–524.

Fisher, R. (1922), “On the Mathematical Foundations of Theoretical Statistics,” Philosophical
Transactions of the Royal Society (Series A), 222, 309–368.

Fitzmaurice, G. and Laird, N. (1993), “A likelihood-based method for analysing longitudinal
binary responses,” Biometrika, 80, 141–151.

Fletcher, R. (2000), Practical Methods of Optimization, Wiley.

Garcia-Donato, G. and Sun, D. (2007), “Objective priors for hypothesis testing in one-way
random effects models,” The Canadian Journal of Statistics, 35, 303–320.

Gelfand, A. and Dey, D. (1994), “Bayesian Model Choice: Asymptotics and Exact Calcula-
tions,” Journal of the Royal Statistical Society (Series B), 56, 501–514.

Gelman, A., Roberts, G., and Gilks, W. (1996), “Efficient Metropolis Jumping Rules,” in
Bayesian Statistics 5, eds. Bernado, J., Berger, J., Dawid, A., and Smith, A., Oxford, pp.
599–607.

Gentle, J. (1998), Random Number Generation and Monte Carlo Methods, Springer.

George, E. and McCulloch, R. (1993), “Variable Selection Via Gibbs Sampling,” Journal of
the American Statistical Association, 88, 881–889.

Gilks, W. (1992), “Derivative-free adaptive rejection sampling for Gibbs sampling,” in
Bayesian Statistics 4, eds. Bernado, J., Berger, J., Dawid, A., and Smith, A., Oxford,
pp. 641–649.

142



Gilks, W., Best, N., and Tan, K. (1995), “Adaptive Rejection Metropolis Sampling within
Gibbs Sampling,” Applied Statistics, 44, 455–472.

Gilks, W. and Wild, P. (1992), “Adaptive Rejection Sampling for Gibbs Sampling,” Applied
Statistics, 41, 337–348.

Gill, R. (2007), “Bayesian Inference for Partially Observed Data,” Ph.D. thesis, University
of Southampton.

Green, P. (1995), “Reversible Jump Markov Chain Monte Carlo Computation and Bayesian
Model Determination,” Biometrika, 82, 711–732.

Gustafson, P., Hossain, S., and MacNab, Y. (2006), “Conservative prior distributions for
variance parameters in hierarchical models,” The Canadian Journal of Statistics, 34, 377–
390.

Han, C. and Carlin, B. (2001), “Markov Chain Monte Carlo Methods for Computing Bayes
Factors: A Comparative Review,” Journal of the American Statistical Association, 96,
1122–1132.

Henderson, H. and Searle, S. (1981), “On Deriving the Inverse of a Sum of Matrices,” SIAM
Review, 23, 53–60.

Ibrahim, J. and Laud, P. (1991), “On Bayesian Analysis of Generalized Linear Models Using
Jeffreys Prior,” Journal of the American Statistical Association, 86, 981–986.

Joe, H. (2008), “Accuracy of Laplace approximation for discrete response mixed models,”
Computational Statistics and Data Analysis, 52, 5066–5074.

Kass, R. and Natarajan, R. (2006), “A Default Conjugate Prior for Variance Components in
Generalized Linear Mixed Models (Comment on Article by Browne and Draper),” Bayesian
Analysis, 1, 535–542.

Kass, R. and Raftery, A. (1995), “Bayes Factors,” Journal of the American Statistical Asso-
ciation, 90, 773–795.

Kass, R. and Wasserman, L. (1995), “A Reference Bayesian Test for Nested Hypotheses and
Its Relationship to the Schwarz Criterion,” Journal of the American Statistical Association,
90, 928–934.

— (1996), “The Selection of Prior Distributions by Formal Rules,” Journal of the American
Statistical Association, 91, 1343–1370.

Lee, Y., Nelder, J., and Pawitan, Y. (2006), Generalized linear models with random effects:
unified analysis via h-likelihood, Chapman and Hall.

Lunn, D., Thomas, A., Best, N., and Spiegelhalter, D. (2000), “WinBUGS-a Bayesian mod-
elling framework: concepts, structure and extensibility,” Statistics and Computing, 10,
325–337.

Madigan, D. and Raftery, A. (1994), “Model Selection and Accounting for Model Uncer-
tainty in Graphical Models using Occam’s Window,” Journal of the American Statistical
Association, 95, 227–237.

143



McCullagh, P. and Nelder, J. (1989), Generalized Linear Models, Chapman and Hall, 2nd ed.

McCulloch, C. and Searle, S. (2001), Generalized, Linear, and Mixed Models, Wiley.

Meng, X. and Schilling, S. (2002), “Warp Bridge Sampling,” Journal of Computational and
Graphical Statistics, 11, 552–586.

Meng, X. and Wong, W. (1996), “Simulating ratios of normalizing constants via a simple
identity: a theoretical exploration,” Statistical Sinica, 6, 831–860.

Mira, A. and Nicholls, G. (2004), “Bridge Estimation of the Probability Density at a Point,”
Statistica Sinica, 14, 603–612.

Muirhead, R. (1982), Aspects of Multivariate Statistical Theory, Wiley.

Natarajan, R. and Kass, R. (2000), “Reference Bayesian Methods for Generalized Linear
Mixed Models,” Journal of the American Statistical Association, 95, 227–237.

Neal, R. (1995), “Suppressing Random Walks in Markov Chain Monte Carlo Using Ordered
Overrelaxation,” Tech. rep., Department of Statistics, University of Toronto.

Nott, D. and Leonte, D. (2004), “Sampling Schemes for Bayesian Variable Selection in Gen-
eralized Linear Models,” Journal of Computational and Graphical Statistics, 13, 362–382.

Ntzoufras, I., Dellaportas, P., and Forster, J. (2003), “Bayesian variable and link determi-
nation for generalised linear models,” Journal of Statistical Planning and Inference, 111,
165–180.

O’Hagan, A. and Forster, J. (2004), Kendall’s Advanced Theory of Statistics, vol. 2B Bayesian
Inference, Arnold, 2nd ed.

Overstall, A. and Forster, J. (2009), “Default Bayesian Model Determination Methods for
Generalised Linear Mixed Models,” Tech. rep., School of Mathematics, University of
Southampton.

Papathomas, M., Dellaportas, P., and Vasdekis, V. (2009), “A general proposal construction
for reversible jump,” Tech. rep., Department of Epidemiology and Public Health, Imperial
College London.

Pauler, D. (1998), “The Schwarz Criterion and Related Methods for Normal Linear Models,”
Biometrika, 85, 13–27.

Pinheiro, J. and Chao, E. (2006), “Efficient Laplacian and adpative Gaussian quadrature
algorithms for multilevel generalised linear mixed models,” Journal of Computational and
Graphical Statistics, 15, 58–81.

R Development Core Team (2009), R: A Language and Environment for Statistical Comput-
ing, R Foundation for Statistical Computing, Vienna, Austria, ISBN 3-900051-07-0.

Robert, C. and Casella, G. (1999), Monte Carlo Statistical Methods, Springer.

Roberts, G. and Rosenthal, J. (2001), “Optimal Scaling for Various Metropolis-Hastings
Algorithms,” Statistical Science, 16, 361–367.

144



Rue, H., Martino, S., and Chopin, N. (2009), “Approximate Bayesian inference for latent
Gaussian models by using integrated nested Laplace approximations,” Journal of the Royal
Statistical Society (Series B), 71, 319–392.

Sinharay, S. and Stern, H. (2000), “Bayes Factors for Variance Components Testing in Gen-
eralised Linear Mixed Models,” in Bayesian methods applied to science policy and official
statistics, ed. George, I., pp. 507–516.

— (2005), “An Empirical Comparison of Methods for Computing Bayes Factors in Gen-
eralised Linear Mixed Models,” Journal of Computational and Graphical Statistics, 14,
415–435.

Skilling, J. (2006), “Nested Sampling for General Bayesian Computation,” Bayesian Analysis,
1, 833–860.

Skrondal, A. and Rabe-Hesketh, S. (2004), Generalized Latent Variable Modeling, Chapman
and Hall.

Smith, A. and Spiegelhalter, D. (1980), “Bayes Factors and Choice Criteria for Linear Mod-
els,” Journal of the Royal Statistical Society (Series B), 42, 213–220.

Spiegelhalter, D., Best, N., Carlin, B., and Van Der Linde, A. (2002), “Bayesian measures of
model complexity and fit,” Journal of the Royal Statistical Society (Series B), 64, 583–639.

Sturtz, S., Ligges, U., and Gelman, A. (2005), “R2WinBUGS: A Package for Running Win-
BUGS from R,” Journal of Statistical Software, 12, 1–16.

Thall, P. and Vail, S. (1990), “Some Covariance Models for Longitudinal Count Data with
Overdispersion,” Biometrics, 46, 657–671.

Tierney, L. and Kadane, J. (1986), “Accurate Approximations for Posterior Moments and
Marginal Densities,” Journal of the American Statistical Association, 81, 82–86.

Zeger, S. and Karim, M. (1991), “Generalized Linear Models with Random Effects: A Gibbs
Sampling Approach,” Journal of the American Statistical Association, 86, 79–86.

Zhao, Y., Staudenmayer, J., Coull, B., and Wand, M. (2006), “General Design Bayesian
Generalized Linear Mixed Models,” Statistical Science, 21, 35–51.

145


