The prediction of solid solubility of alloys: developments and applications of Hume-Rothery’s rules 
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Abstract: 

In the 1920s, Hume-Rothery helped to make the art of metallurgy into a science by the discovery of rules for the prediction of solubility in alloys. Their simplicity and generality made them become one of the most important rules in materials science. In the few decades after Hume-Rothery’s discovery, many researchers have tried to make “corrections” to H-R rules aiming to make them work better in general alloy systems. Those researches included explanations of the rules using quantum and electron theories and new combinations of the factors to give better mapping. In this paper, we review most of these contributions and introduce recent progress in solubility prediction using artificial neural networks.
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1.0
Introduction

The most widely accepted view of scientific method is based on the creative emergence of hypotheses or conjectures [1] which gradually become well-trenched in the form of established theories as more supporting experimental evidence is sought and found. A contrasting model for scientific discovery is attributed to Francis Bacon (1561-1626) in which large amounts of data are first collected, assembled into tables, surveyed and from which theories are devised [2]. A central debate in the history and philosophy of science focuses on these contrasting explanations of scientific method and is concisely articulated by Gillies in his analysis of  artificial intelligence [3]. Hume-Rothery’s rules, occupying a central space at the heart of metallurgy, are  in the Baconian tradition. In the 1920’s, after surveying the available solubility data, Hume-Rothery distinguished the factors that influence compound formation and control alloying behaviour. There exists a connection between solubility, atomic size, crystal structure and a particular concentration of valence electrons in an alloy [4, 5]. Hume-Rothery added other ideas, developing concepts which are now known collectively as Hume-Rothery’s rules [6-8]. From these and his other works, Hume-Rothery became the person whose work can justifiably be lauded for making the art of metallurgy into a science [9].

Following this hugely significant work by Hume-Rothery and his colleagues on the prediction of solid solubility in alloys, many researchers, such as Darken and Gurry [10], Chelikowsky [11], Alonso and Simozar [12], Alonso et al. [13] and Zhang and Liao [14, 15] all contributed in different ways to the prediction of solid solubility in terms of a soluble/insoluble criterion. There are already detailed reviews of Hume-Rothery’s rules, such as the work by Massalski and King [16], Massalski and Mizutani [17], Massalski [4, 18] and as described in biographical sketches about Hume-Rothery [19]. Researches on H-R rules blossomed in the 1930s-1980s but the prediction of solubility was gradually superseded by calculation of phase diagrams (CALPHAD). However, the simplicity and generality of H-R rules still make them one of the most important cornerstones in materials science. Watson and Weinert in 2000 [20] mentioned most of these rules are still useful today as in Hume-Rothery’s time, and discussed the applications to the transition and noble alloys, both with each other and with main group elements. Parthé [21] discussed application of 8-N and valence electron rules for the Zintl phases (which are defined as “semimetallic or even metallic compounds where the underlying ionic-covalent bonds play such an important role that chemically based valence rules can be used to account for stoichiometry and observed structural features”) and their extension. Recently these rules have also been used in nanocrystal growth and compound forming tendency [22] as well as thermodynamically stability of ordered structures in III/V semiconductor alloys [23]. In this review, the authors aim to address some recent progress on the development and application of H-R rules.

As cautioned by Pettifor [19], because different rules were expressed or stressed by Hume-Rothery at different times, it is sometimes difficult to define  what constitutes ‘Hume-Rothery Rules’ and this confusion is extant. There is general agreement that, in order of importance, the atomic size factor is first, followed by the electro- negativity effect.  The importance of the electron concentration (e/a ratio) in determining solid solubility boundaries is recognised in some cases but other factors are rarely discussed in sufficient detail. Surveying metallurgical and physical science publications in general, different sources express Hume-Rothery’s ideas using  terms such as: effects, principles, factors or parameters [4]. 

2.0
Early Formation and Revision of Hume-Rothery’s Rules

In 1925, after taking his PhD under Sir Harold Carpenter at the Royal School of Mines, Hume-Rothery returned to Oxford and worked on intermetallic compounds, metallography and chemistry, extending his ideas on the formation of compounds.

He examined phase diagrams of the noble and related metals (i.e. Cu, Ag and Au), especially those alloyed with the B-subgroup elements (these include Li, Be, B, C, N, O, F, Na, Mg, Al, Si, P, S, Cl, Zn, Ga, Ge, As, Se, Br, Cd, In, Sn, Sb, Te, I, Hg, Tl, Pb, Bi). This field became fertile in the period of 1925-1926 and at the end of 1925, Hume-Rothery submitted his first and classical paper on the topic of compound formation in several alloy systems; this paper was published in 1926 [5]. In it, Hume-Rothery predict the β phase of Cu3Al would have the bcc structure because it satisfied an electron per atom ratio of 3/2, and this was confirmed one month later through experiment by Westgren and Phragmén [24]. 

It should be mentioned that the electron per atom ratio 3/2, prominent at that time in Hume-Rothery’s ideas, can be explained from the electron-lattice theory of Lindemann which promoted Hume-Rothery’s concept of electron concentration as a factor influencing structural stability. However, in 1966, Hume-Rothery wrote: “The electron-lattice theory is now admitted to be an incorrect approach, and it remains an example of the way in which a theory may be of value, even though it turns out to be quite wrong” [25].

In the 1930s, Hume-Rothery shifted his attention to characterisation of atomic size by nearest neighbour distance instead of volume [26]. Two of the Hume-Rothery rules controlling solid solubility were discovered: 1) the first Hume-Rothery rule, the atomic size factor, said that if the atomic diameters of the solvent and solute differ by more than about 14-15% then the primary solid solubility will be very restricted; 2) the second rule emphasised the importance of the electron concentration (or electron per atom ratio) in determining the phase boundary. Both of these rules are presented in his classical paper in 1934 [6].

Although Hume-Rothery at that time had found two important guidelines which decided the formation of primary solid solutions, he was unclear how to classify intermetallic compounds. In 1937, after studied the silver rich antimony-silver alloy system with Reynolds [7], Hume-Rothery became aware of a third factor restricting solid solubility, that is, electrochemical factor; maximum solid solubility reduced as the electronegativity difference between solute and solvent increased because of the competition to form intermetallic compounds. 

The relative valence rule was mentioned in the 1934 paper, and the importance of this rule was stressed by Hume-Rothery in early editions of his famous book The Structure of Metals and Alloys [27]. However, in his later versions of this book, it is stated ‘more detailed examination has not confirmed this and, in its general form, the supposed principle must now be discarded’ [28, 29].

3.0
Further development and application of Hume-Rothery’s Rules

The development of Hume-Rothery’s Rules can be classified into two categories: The first is the development within each rule, and the second is the development of anamorphoses or alternatives of these rules as a whole in order to get more powerful and precise predictions. In the first category, researchers, 1) provided explanations of specific rule(s) from elementary electron theory, 2) pointed out the weakness and deficiency of individual rules. In the second category, researchers have attempted to extend the rule(s) or its/their alternatives to wider applications. In what follows, the discussion progresses along these two paths.

3.1
Development and application of each rule

3.1.1
Atomic Size Factor

The atomic size factor rule is usually presented in the following way [6]: “if the atomic diameters of the solute and solvent differ by more than 14%, the solubility is likely to be restricted because the lattice distortion is too great for substitutional solubility.” When the size factor is unfavourable, the primary solid solubility will be restricted; when the size factor is favourable, other factors limit the extent of solid solubility and it is of secondary importance. Waber et al. [30] applied the size factor alone to 1423 terminal solid solutions and within 90.31% (559/619) of the systems where low solid solubility was predicted, low solid solubility was indeed observed. On the other hand, it was less easy to predict extensive solid solubility when there was a small size difference; it achieved only a 50 % (403/804) success rate. The size factor rule has been explained by using elementary electron theory. It can be shown that [31-34], if a misfitting solute atom is regarded as an elastic sphere which is then compressed or expanded into a hole of the wrong size in the solute lattice, which can be treated as an isotropic elastic continuum, the ensuing total strain energy E in both the matrix and solute can be estimated as 
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where μ is the shear modulus and r0 and (1+ε)r0 are the unstrained radii of the solvent and solute atoms. Taking ε as 0.14 (as the size factor rule declares) or 0.15, and 
[image: image2.wmf]3

0

r

m

=0.7 eV, this gives 
[image: image3.wmf]T

k

E

B

4

»

 at 1000 K. Darken and Gurry [10] proved that at temperature T, the primary solid solubility would be restricted to below about 1 at.% when the energy of solution exceeds 4kBT per atom, where kB is Boltzmann’s constant. Although elastic theory cannot be applied strictly at the atomic level, this gives a simple explanation of Hume-Rothery’s size factor rule.

Mott [33] provided a quantum mechanical basis for elastic theory based the Wigner-Seitz wave function ψ0(r), for an electron in the lowest state in a Wigner-Seitz cell. The wavefunction for an electron in the alloy can be expressed approximately as ψ(r) = u (r) exp (ik · r), with u (r) having the forms of an A atom or a B atom Wigner-Seitz wavefunction ψ0(r) inside the Wigner-Seitz cells of A or B atoms (if A and B are of the same valency) in the alloy, where r is the vectorial position of the electron and k is the wave-vector. For a single solute atom B in a dilute solution, a difference in Wigner-Seitz radius for solute atom, rB, and solvent atom, rA, means the wave function ψ0 for solute atom must be found  from an intermediate radius r; rA < r < rB.  This is a similar problem to finding the bulk modulus of B from Wigner-Seitz theory and the expansion of the hole in the solvent A, from rA to r, is equivalent to a problem in the elasticity of metal A.

The validity of the size factor has been debated since the rule was proposed. Hume-Rothery et al. themselves pointed out [6] that the exact “atomic diameter” of an element is always difficult to define. They defined the atomic diameter as given by the nearest-neighbour distance in a crystal of the pure metal. However, this diameter cannot necessarily be transferred to the alloy because 1) the ‘radius’ of an atom is probably affected by coordination number. Except for the heavy elements, elements of the B sub-groups tend to crystallize with coordination number 8-N, where N is the group to which the element belongs. This is due to the partly covalent nature of the forces in these crystals and, except in Group IV B, results in the atoms having two sets of neighbours at different distances in the crystal. 2) In some structures there are great variations in the closest distance between pairs of atoms at their closest distance of approach, depending on the position and direction in the lattice. 3) On forming a solid solution, the ‘sizes’ of individual atoms may change according to the nature and degree of local displacements. In the case of anisotropic or complex structures or where the coordination numbers are low, the closest distance of approach does not adequately express the size of the atom when in solid solution [18]. Furthermore, atomic spacing increases or decreases as the composition changes and so differences appear between the lattice spacing in alloys and the estimated atomic sizes. 

There are some attempts to derive the atomic size, such as extrapolating the size variance trend of an element in the alloy towards the pure element to give a  hypothetical size [35]. Massalski and King [16] pointed out that in finding the atomic size factor, it is usually the volume per atom that matters, not the distance between nearest neighbours, so they used the change in volume per atom to obtain hypothetical dimensions. 

The atomic dimensions can be calculated by using pseudopotential theory, such as the work done by Hayes et al. [36] on Li-Mg,  Inglesfield [37-39] on Hg, Cd and Mg alloys, Hayes and Young [40] on alkali alloys, Stroud and Ashcroft [41] for Cu-Al, Li-Mg and Cu-Zn, Meyer et al. [42-44] on analyzing the diffusion thermopowers of dilute alkali metal alloys, on calculating the lattice spacings and compressibilities of non-transition element solids and for analyzing residual resistivities in silver and gold and Singh and Young [45] on heats of solution at infinite dilution. They can also be obtained from the free-electron model developed by Brooks [46] and have been used by Magnaterra and Mezzetti [47, 48]. 

The actual individual atomic sizes can also be estimated from static distortions in a solid solution by modulation in diffuse X-ray scattering [49, 50] or from weakening of the interference maxima analogous to thermal effects [51-54]. 

From the analyses cited above, and as Cottrell [55] suggested, the concept of a characteristic size, which suggests hard spheres butted together is doubtful and allocating a single atomic diameter for each element, independent of its environment, and valences of solvent and solute is too simplistic an approach [29]. At present, the importance of the size factor of course extends far beyond primary solubility. Many intermetallic compounds owe their existence to size-factor effects.

3.1.2
Relative Valence Factor

An early discovery by Hume-Rothery was that a metal of lower valence is more likely to dissolve one of higher valence than vice versa. However, more extensive investigation has not confirmed the generality of this rule. An example is that monovalent silver can dissolve about 20% aluminium but trivalent aluminium dissolves about 24% silver. However, for high valence, covalently bonded components, the relative valence factor applies well. For example, copper dissolves about 11% of silicon but silicon dissolves negligible copper [55]. This rule seems to be valid only when monovalent metals copper, silver or gold are alloyed with the B-subgroup elements of the Periodic Table which have higher valences. This is variously attributed to the partial electron filling of the Brillouin zones in noble metals, the interaction of  Fermi surfaces and Brillouin zones in B-subgroup elements [18] and long-range charge oscillations around the impurity atoms [56]. Gschneidner [57] implies that the relative valence effect is limited in applicability; when two high valence elements are alloyed it is not always possible to predict which will form the more extensive solid solution with the other.

Besides, the valencies of transition metals are variable and complex, as analysed by Hume-Rothery et al. [58] and Cockayne and Raynor [59]. Cottrell’s book [55] points out that due to the valency complication caused by partly filled d orbitals, the transition metal alloys generally do not follow the rule. Gschneidner [57] revised the relative valence rule to suggest that the solubility will be low if a metal in which d orbitals strongly influence the valence behaviour is alloyed with a ‘sp metal’. The solubility is likely to be higher in the d metal than the reverse.

3.1.3
Electronegativity factor

The scale for electronegativity as given by Mullikan is based on the equation: 
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where I is the ionization energy, A is electron affinity, and χ is Mullikan electronegativity. Dividing by 2.8, gives approximately Pauling’s empirical scale. Watson and Bennett [60] point out that in the case of transition metals, the partly filled d states at energies near the Fermi energy influence electronegativity. They produced an electronegativity scale for transition metals, which matches Pauling’s scale, and could be scaled by 2.8 to bring it to Mullikan’s scale. 

As discussed by Hume-Rothery [56], stable intermetallic compounds are prone to form as the more electronegative is the solute and the more electropositive is the solvent metal, or vice versa. Due to the lower free energy that can be obtained when the system adopts a mixture of solid solution and compound, solute atom partition to form the stable compound rather than to enter solid solutions.
Further, as stated by Pearson [61], in some binary alloy systems, if one component is very electropositive relative to the other, there would be a strong tendency for them to form compounds of considerable stability in which valence rules are satisfied. This is the strongest effect in determining the constitution of alloys, which dominates all other effects. 
Recently, Li and Xue [62], on the basis of an effective ionic potential that is defined in terms of ionisation energy and ionic radius, calculated the electronegativities of 82 elements in different valence states and with the most common coordination numbers, and pointed out that ‘although electronegativity is often treated as an invariant property of an atom, as in Pauling’s scale, it actually depends on the chemical environment of the atom, e.g. valence state, coordination number and spin state’.

In addition to these efforts to explain each rule using quantum or electronic theory, another category of development has been to map the soluble/insoluble systems in a two dimensional diagram.
3.2
Mapping and derivatives of Hume-Rothery’s Rules 

Although extensive researches have been done to work out the theory behind the H-R rules, it would be very useful if the solubility of the materials can be mapped diagrammatically on a Cartesian system. So researchers can simply calculate the coordinate of the element to predict the solubility using such a diagram.  This direction started from Darken and Gurry [10], followed by Gschneidner [57], Chelikowsky [11], Alonso et al. [12, 13], and Zhang [14, 15] among others. 

3.2.1
Darken-Gurry method 

In 1953, Darken and Gurry [10] proposed a diagrammatic method to describe the solid solubility of fifty alloy systems (DG method). They used the size factor as abscissa and electrochemical factor (electronegativity) as ordinate to plot solubilities of each alloy system and then draw an ellipse (rsolvent ± 15% as minor axis, χsolvent ± 0.4 as prolate axis, where rsolvent and χsolvent are radius and electronegativity of solvent respectively) to separate the soluble elements from the insoluble elements. The result is shown in Figure 1. The solubility is characterized qualitatively as “extensive” or “limited”, inside the ellipse or outside the ellipse, respectively. They applied this method to magnesium, aluminium and silver alloy systems. The electrochemical factor was taken as the difference of 0.4 (| χsolvent - χsolute| <0.4). This method works well for the magnesium alloy systems but not for the silver systems. The reason for unsuccessful classification in silver systems was, at that time, attributed to the use of unapproved electronegativity values of silver but Gschneidner [57] argued that even if approved electronegativity values for silver were used, the classification would still be poor. 

Waber et al. [30] examined the universality of the Hume-Rothery size rule and the DG method for predicting solid solubilities. After analyzed 1455 binary alloy systems, they confirmed Hume-Rothery’s size factor and showed that the electronegativity is an important consideration in the formation of solid solutions. 

(insert figure 1 here)

In 1980, Gschneidner [57] again applied the DG method to create a soluble/insoluble classification by introducing the effect of crystal structure (electronic-crystal structure Darken-Gurry method, ECSDG). From that, he formulated four rules: 1) In the case that both solvent and solute are d-elements, only the size rule governs the extent of the solid solution region. They argue that for the common crystal structures, f.c.c, b.c.c. and h.c.p., there are many low directionality bonds and to a first approximation, it is unnecessary to use the crystal structure criterion.  2). In cases where the solvent is a d-element and the solute is an sp-element, the crystal structure criterion is applied first and if the crystal structures are the same then the size rule is applied to predict whether or not extensive or limited solubility is expected; 3). In the case where both solvent and solute are sp-elements, the crystal structure criterion is applied first, and if this factor is favourable then the size rule is applied to predict the extent of solid solution. If the crystal structure criterion is not satisfied, then little or no solubility is expected; 4). In cases where the solvent is an sp-element and solute is  a d-element, no solid solutions are predicted to form, regardless of either the crystal structure or size factors. Applying the ECSDG rules to ten solvents (Mg, Al, Fe, Ge, Pd, Ag, Cd, La, W and Pb), it is found the improvement in the prediction of extensive solid solubility compared with DG method. 

Recently, Gschneidner and Verkade [63] presented the complete details of their semi-empirical approach (called electronic and crystal structure, size model, ECS2), and pointed out that their method should also be quite good at predicting the extent of another element in a binary compound. In compounds, i) the compatibility of the crystal structure of the solute with either or both of the components of the intermetallic phase is regarded as a critical factor; ii) the valence of the solute compared with the components is also decisive iii) if the above two criteria are favourable, then atomic size factor would be the final decisive issue and because of the less elastic nature of compounds compared with elemental metals, a ±10% limitation on atomic size should be applied. 
3.2.2
Chelikowsky’s method

In the 1970s, two events occurred that led [11] to the view that some of the barriers to understanding solid solubility in intermetallic alloys could be removed. One was that Miedema and collaborators predicted and classified heats of formation for regular intermetallic alloys which is predominantly determined by the electronegativity difference (
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) of pure metals [64-68]. The other was that Kaufmann and co-workers developed ion-implantation techniques and conducted ion-implantation to provide a wide range of new and unique metastable alloy systems, unobtainable by conventional metallurgical procedures [69-71] which led to subsequent efforts to study solid solubility in alloys [72-75]. 

In 1979, Chelikowsky introduced a graphical procedure similar to the Darken-Gurry method to analyse solid solubility in the case of divalent hosts. In his work, a different pair of coordinates were introduced: the electron density at the boundary of bulk atomic cells, 
[image: image7.wmf]WS

n

, and the electronegativity 
[image: image8.wmf]*

f

. As mentioned before, these two coordinates are the fundamental parameters in a successful semi-empirical theory of heats of alloy formation developed by Miedema and co-workers [64-68]. In his new kind of plot, Chelikowsky was able to give more reliable predictions. An example of Chelikowsky plots and a comparison with Darken-Gurry plots are shown in Figure 2. Other results can be found in Chelikowsky’s paper [11].

(insert figure 2 here)

From Figure 2(b) and other results in his paper, most of the metals which are soluble in a given host are bounded by the ellipse and this is so even if the precise location varies from host to host. This higher accuracy of prediction can be interpreted by the relation between the Miedema coordinates and more elementary descriptions of alloy formation, as developed by others [76-90]. Recently, the Miedema parameters were used to predict the formation of quasicrystals [91, 92].

Comparing Chelikowsky’s method with Darken-Gurry’s, both have a coordinate in common – the electronegativity. In Darken-Gurry plots, electronegativity is used in Pauling’s scale, while in Chelikowsky plots the Miedema scale is used. Both scales actually have a good correlation as shown by Miedema et al. [64]. The other co-ordinate is different, atomic size is used in Darken-Gurry plots and electron cell-boundary density is used in Chelikowsky’s method. Although higher accuracy has been established, some exceptions remain. These exceptions suggest that Chelikowsky’s method is still susceptible to some improvement [12].

3.2.3
Alonso’s Method

In the 1980s, from analysis of both Darken-Gurry and Chelikowsky methods, Alonso and Simozar [12] proposed a scheme containing all three coordinates (atomic size, electronegativity, electron cell-boundary density). The suggestion was also proposed by Miedema and De Chatel [93]. By incorporating a size factor in a new graphical method, they improved on the original Miedema coordinate scheme proposed by Chelikowsky. In their analysis, each chemical element is characterized by three parameters: the atomic volume 
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 (the difference of electronegativity and electron density at the boundary of bulk atomic cells) combined into a new parameter, 
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, the heat of formation of an equi-atomic compound, calculated using a semi-empirical formula proposed by Miedema, 
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(Equation 3)

where P and Q are universal constants and R is another constant which deviates from zero only when one of the metals is polyvalent with p electrons [65, 68, 94]. Then, the two parameters 
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 (expressed as Wigner-Seitz radius, RW) are used to construct a two-dimensional map. In this map, the chemical elements insoluble in a given host are neatly separated from the soluble ones by a straight line. The examples and the comparisons with Chelikowsky’s plot are shown in Figures 3(a) and 3(b). In these paper, the relative importance of the three coordinates (atomic size, electronegativity and electron cell-boundary density) is demonstrated; also they explained the success of the schemes of Darken and Gurry and of Chelikowsky by the fact that atomic size and electron cell-boundary density are strongly correlated in given class of metals. Later, Alonso et al. applied this method to the prediction of solid solubility in noble metal, transition metal and sp metal based alloys [13, 95]. Jones has applied this method to the solid solubility of two light metals, magnesium and aluminium [96].

After the heat of formation calculations by Miedema, others succeeded in predicting the heats of formation of different binary alloys from both first-principles and semi-empirical methods [97-108]. During the last twenty years and based on calculated heats of formation of alloys and semi-empirical theories with parameters such as electronegativity difference, atomic diameter and number of covalent bonds, a large number of predicted maximum solid solubilities of alloys, design of alloy systems or formation of compounds have appeared 


[109-129] ADDIN EN.CITE . This indicates these methods still have vitality in the prediction of alloy formation even though near thirty years has passed. 

(insert figure 3 here)

3.2.4
Zhang BW Method

Zhang and co-workers used graphical methods with various parameters/coordinates to predict the formation of amorphous alloys and solid solutions. Several factors affect the formation of amorphous alloys and solid solutions, some acting against each other (equation 7). [15, 130].

In 1983 [131], they applied Miedema’s coordinates to the prediction of binary amorphous alloy formation and found that this method worked quite well. More specifically, they found (1) the ranges of formable and non-formable binary amorphous alloys can be, to a good extent, separated by a straight line, which is 
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where 
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 are the differences of electronegativity and electron density respectivly at the boundary of bulk atomic cells as mentioned before; (2) of the 82 amorphous alloys formed by melt-quenching, the prediction accuracy was 92.7%; (3) of the 54 non-formable amorphous alloys, the prediction accuracy was 66.7%; (4) of the 21 amorphous alloys formed by non-melt quenching, the prediction accuracy was 47.6%. Of the total 157 alloys studied, the overall accuracy was 77.7%. These results compared well with the work done by Shi et al. [132] using bond-parametric diagrams, in which the bond parameters 
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Taking the parameters used in Miedema’s coordinates without the size factor, Zhang [133] combined the two chemical coordinates 
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and using the radius difference of elements 
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as the other coordinate to constructed a two-dimensional map. From this, the definition of conditions for formation of binary amorphous alloys was improved. The separation of the formable and non-formable regions was given by 
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. The prediction accuracy is high: a) of the 82 amorphous alloys formed by melt quenching, the prediction accuracy was 87.8%; b) of the 54 non-formed amorphous alloys, the prediction accuracy was 83.3%; c) of 21 amorphous alloys formed by non-melt quenching, the prediction accuracy was 66.7%. Of the total 157 alloys studied in that work, the overall accuracy was 83.4%. These comparisons are also shown in Table 1. It can be seen that the prediction accuracy for the formation of amorphous alloys is improved when the size factor is added to the original Miedema coordinates criterion.

(insert table 1 here)

 Zhang and co-workers proposed another graphical method, which combined 
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 as an electron factor, then together with a size factor to provide two coordinates for the study of solid solubility, they described the formation of amorphous alloys [134]. The two coordinates are expressed by (1) bond-parametric function 
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 the ratio of atomic valence and covalent radius. The Kernal radius equals approximately the positive ionic radius. 
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 is the Pauling electronegativity. When the coordinate point of a host element is represented in the chart, the closer is the point of a solute element to it, the smaller the differences of the electron factors and of the size factors between the solute element and the host element. Zhang [130] applied this method to 1080 binary and got a prediction accuracy of 93%.

Zhang used a modified electron factor 
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(Equation 7)

as ordinate and 
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 as abscissa to search for solid solubilities at room temperature in 2460 binary alloys. In this work the transition metals of the fourth, fifth and sixth long periods and 18 non-transition metals are studied. For each host element, a parabolic curve 
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 can be drawn to separate the soluble elements from the insoluble ones with a criterion of 0.5 at.% solubility at room temperature. The overall reliability of this equation approached 90% for 2460 alloys. Also, it has been found that the values of a for each host metal are proportional to its cohesive energies E, and b values are proportional to 
[image: image40.wmf]3

0

R

E

m

, where μ is the shear modulus of solvent element, and R0 is the atomic radius of the solvent [135].

In 1996, Zhang and Liao [136] applied this method to study the solid solubilities for the binary alloy systems based on 13 rare earth metals, and found the soluble elements can be separated from the insoluble ones by a parabola 
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, where x1 is defined in equation 6 and, y1 is defined in equation 7. Or an elliptical curve 
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where 
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(Equation 9)

For the solid solubilities in 897 binary alloys, the prediction accuracy was 89.2% for the parabolic separation, and 92.8% for the elliptical separation. Also, in the elliptical equation, constants m and n were dependent on the coordinates 
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In 1999, Zhang and Liao [14, 15] summarized different methods used by themselves and others and made a comparison in terms of prediction accuracy. Those results are shown in Table 2. 

(insert table 2 here)

The ECS2 method, as well as Hume-Rothery’s rule and the Darken-Gurry method, are for predicting solid solubility without considering Gibbs energy. These methods are easy to use – needing only the physical parameters (radii, electronegativity, structure) of two elements [63]. The extent of primary solid solubility can be derived by using first principle calculations. Following work done by others [137-143], Shin et al. [144] described the Cu-Si system thermodynamically as an example of higher order systems (i.e. solute elements in compounds) with first-principles calculations of the ε-Cu15Si4 phase and solid solution phases. By considering the enthalpy of mixing and Gibbs energies of individual phases in the Cu-Si binary system, it was found that the existence of intermetallic compounds would strongly affect solubility limits. Predictions of solid solubility of other alloy systems using first principles can be found elsewhere 
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4.0
Solubility prediction using artificial neural networks

Although a large number of researches on solubility prediction have been published in the last century, few of them have attempted to predict the solubility quantitatively. The size factor has been regarded as the most important factor but has never been quantitatively proved. Recently, the authors [167] have used one tool of artificial intelligence, artificial neural networks (ANNs), to simulate the process that Hume-Rothery used to derive the Hume-Rothery’s Rules from experiments. Furthermore, these authors attempted to predict the solubility quantitatively rather than produce a classification of soluble/insoluble by this method.

4.1
Selection of input parameters for ANN examination of solubility
The versatility of the ANN permits various combinations of number and format for input parameters to be adopted easily. All the parameters that Hume-Rothery used were tested even though some of them were neglected later by Hume-Rothery himself. The input parameters for the network include (1) atomic size parameter, (2) valence parameter, (3) electrochemical parameter, i.e. electronegativity and (4) structure parameter of solvent and solute atoms. Three different expressions of these parameters were used to examine which gave the best performance:

1. The raw data that Hume-Rothery used.

2. The original collected values for each parameter of solvent and solute atoms.

3. The functionalized parameters:

i) For the size factor. The difference between the atomic diameters of solvent and solute atoms divided by the diameter of the solvent atoms.

ii) For the valence factor. Original values are used, leaving the neural network to decide the relations between valence of solvents and solutes.

iii) For the electrochemical factor. The difference between that of the solvent and solute atoms.

iv) For the structure parameter. The structures are expressed in three sets of numbers representing primitive cell dimensions, angles and systems. The three sets are (1) unit cell length, (2) axes angles and (3) (simple; base-centred; face-centred; body-centred).

When the original values of input parameters are used, the training performance of the ANN is quite good (with regression coefficient R=0.996) but the prediction of the testing set is poor. When the functionalized values were used as input parameters, both the training and testing set of the ANN gave good performance. Through a search of all combinations of those parameter formats, the best format of input parameters was determined as the functionalized values.

Another uncertainty in the H-R rule is the atomic size difference: some researchers believe the threshold is 14% and others believe it’s 15%. The performance of ANN  using the 15% criterion is slightly higher than that for 14% which implies 15% is a better threshold in the size factor.

Using the same approach and including the 15% criterion, the structure parameter was introduced in terms of whether the structure of solvents and solutes are the same or not (i.e. 1 same, 0 not same). There was no improvement in correlation. This indicates that the structure parameter do not play a very important role in solubility.
4.2
Determination of the output parameters

From Hume-Rothery’s rules, only the possibility of whether a component is soluble or insoluble can be predicted. However, it would be more advantageous to attempt to predict the original value of solubility. The output parameters are expressed in two ways:

1) Follow a specialized criterion: if the solubility of solute metal in solvent metal exceeds 5 at. %, then it is said that this solute metal is soluble in the solvent metal.

2) Original maximum solubility limits of each alloy system are used.

The results of the prediction show the ANN can predict the solubility quantitatively with a small mean modulus error of 1.65 at.%.  Such prediction is shown in Figure 4. x-axis are experimental solubility (at.%) from experiment results and y-axis are predicted solubility (at.%) predicted from ANN. Most of the data points are located close to y=x indicating an accurate prediction. 

4.3 Determination of the relative importance of each rule

It has been recognized that each rule has a different influence on solubility: the most important rule is the atomic size factor, followed next by the electrochemical factor (electronegativity). However, these parameters are not wholly independent of each other; their interplay makes the determination of solubility very difficult. So the determination of the relative importance of each rule is not easy. In this research, the performance of the ANN was evaluated when some of the rules were deliberately omitted. Using the mean error of the testing set as the main criterion for accuracy of the prediction, atomic size has the strongest effect because, when it is omitted, the error is highest. Electronegativity has a stronger influence than valence. When pairs of parameters are omitted, the performance of the prediction became worse. Omission of the structure parameter only had small effect on the performance of the ANN, which implies that the structure parameter does not play a very important role, and indeed Hume-Rothery did not include it in 1934. 

5.0
Summary

During the decades after Hume-Rothery’s Rules were published, the value and reliability of them has been discussed extensively. They have been debated, extended and refined in different ways, as mentioned in the text. Also, as Hume-Rothery and co-workers stated at the time when they first raised these rules: ‘In general, the solubility limit is mainly determined by these factors, and it is their interplay that makes the results so complex’ [6]. However, even though one cannot predict the solid solubility limits accurately using Hume-Rothery’s rules, they are still useful guidelines for judging the solubility of alloy systems or formation of intermetallic compounds.

Massalski [4] suggests that although Hume-Rothery’s rules are important, insufficient documented examples of practical application and predictive capability have been demonstrated so far and this is a real challenge to the future of alloy development and of intermetallic compound formation. At present, it is necessary to accumulate a large amount of work to investigate which rules have been determined and which have not. New investigation tools, such as AI (Artificial Intelligence), can be used to validate those rules and to explore new parameters or rules in the future.

Acknowledgments

The authors are grateful to School of Engineering and Materials Science of Queen Mary, University of London to support this work by providing research studentship to Y.M. Zhang.

References 
[1]
K. R. Popper. Conjectures and Refutations: The Growth of Scientific 
Knowledge. Routledge, Abingdon. UK. 1963. pp. 33-65. 

[2]
F. Bacon, R. L. Ellis, J. Spedding (J. M. Robertson Eds), Novum Organum in 
The Philosophical Works of Francis Bacon. Routledge Abingdon, UK 1905.
[3]
D. Gillies. Artificial Intelligence and Scientific Method, Oxford University 
Press, 1996. pp. 1-16.
[4]
T. B. Massalski. Hume-Rothery rules re-visited. In: Turchi E. A., Shull R. D. 
and Gonis A., eds. Science of Alloys for the 21st Century: A Hume-Rothery 
Symposium Celebration. Warrendale: TMS (The Minerals, Metals & 
Materials Society). 2000. pp. 55-70.
[5]
W. Hume-Rothery. Research on the nature, properties and conditions of 
formation of intermetallic compounds, with special reference to certain 
compounds of tin. J. Inst. Metals. 35, 1926, 295-307.
[6]
W. Hume-Rothery, G. W. Mabbott, and K. M. Channel-Evans. The freezing 
points, melting points, and solid solubility limits of the alloys of silver and 
copper with the elements of the B Sub-Groups. Philos. Trans. R. Soc. London, 
Ser. A. 233, 1934, 1-97.
[7]
P. W. Reynolds and W. Hume-Rothery. The constitution of silver-rich 
antimony-silver alloys. J. Inst. Metals. 60, 1937, 365-374.
[8]
W. Hume-Rothery. Factors affecting the stability of metallic phases. In: P. 
S. Rudman, J. Stringer and R. I. Jaffee, eds. Phase Stability in Metals and 
Alloys. New York: McGraw-Hill, 1967. pp. 3-23.
[9]
P. S. Rudman, J. Stringer and R. I. Jaffee, eds. Phase Stability in Metals and 
Alloys. New York: McGraw-Hill, 1967.
[10]
L. S. Darken and W. R. Gurry. Physical Chemistry of Metals. New York: 
McGraw-Hill, 1953.
[11]
J. R. Chelikowsky. Solid solubilities in divalent alloys. Phys. Rev. B: Condens. 
Matter. 19, 1979, 686-701.
[12]
J. A. Alonso and S. Simozar. Prediction of solid solubility in alloys. Phys. Rev. 
B: Condens. Matter. 22, 1980, 5583-5589.
[13]
J. A. Alonso, J. M. Lopez, S. Simozar and L. A. Girifalco. Prediction of solid 
solubility in alloys - application to noble-metal based alloys. Acta Metall. 30, 
1982, 105-107.
[14]
B. W. Zhang and S. Z. Liao. Progress on the theories of solid solubility of 
alloys (part 1). ShangHai Met. 21, 1999, 3-10.
[15]
B. W. Zhang and S. Z. Liao. Progress on the theories of solid solubility of 
alloys (part2). ShangHai Met. 21, 1999, 3-10.
[16]
T. B. Massalski and H. W. King. Alloy phases of the noble metals. Prog. 
Mater Sci. 10, 1963, 3-78.
[17]
T. B. Massalski and U. Mizutani. Electronic-structure of Hume-Rothery 
phases. Prog. Mater. Sci. 22, 1978, 151-262.
[18]
T. B. Massalski. Structure and stability of alloys. In: R. W. Cahn and P. 
Haasen eds. Physical Metallurgy. New York: North Holland, 1996. pp. 135-
204.
[19]
D. G. Pettifor. William Hume-Rothery: his life and science. In: E. A. Turchi,
R. D. Shull and A. Gonis eds. Science of alloys for the 21st century: a 
Hume-Rothery symposium celebration. Warrendale: TMS (The Minerals, 
Metals & Materials Society), 2000. pp. 9-32.
[20]
R. E. Watson and M. Weinert. The Hume-Rothery "parameters" and bonding 
in the Hume-Rothery and transition-metal alloys. In: E. A. Turchi,
R. D. Shull 
and A. Gonis eds. Science of alloys for the 21st century: a Hume-Rothery 
symposium celebration. Warrendale: TMS (The Minerals, 
Metals& Materials 
Society), 2000. pp. 105-119.

[21]
E. Parthe. From Hume-Rothery's 8-N rule to valence electron rules for zintl 
phases and their extensions. In: E. A. Turchi, R. D. Shull and A. Gonis eds. 
Science of alloys for the 21st century: a Hume-Rothery symposium 
celebration. Warrendale: TMS (The Minerals, Metals & Materials 
Society), 
2000. pp. 71-103.

[22]
Z. H. Zhang, Y. Wang, X. F. Bian and W. M. Wang. Orientation of 
nanocrystals in rapidly solidified Al-based alloys and its correlation to the 
compound-forming tendency of alloys. J. Cryst. Growth. 281, 2005, 646-653.

[23]
G. B. Stringfellow. Ordered structures and metastable alloys grown by 
OMVPE. J. Cryst. Growth. 98, 1989, 108-117.

[24]
A. Westgren and G. Phragmén. X-ray analysis of the Cu-Zn, Ag-Zn and Au-
Zn alloys. Philos. Mag. 50, 1925, 311-341.
[25]
W. Hume-Rothery. Autobiographical sketch of William Hume-Rothery. In: 
P. S. Rudman, J. Stringer, and R. I. Jaffee eds. Phase Stability in Metals and 
Alloys. New York: McGraw-Hill, 1967.
[26]
W. Hume-Rothery. The lattice constants of the elements. London, Edinburg 
and Dublin. Philos. Mag. and J. of Sci. 10, 1930, 217-244.
[27]
W. Hume-Rothery. The Structure of Metals and Alloys. 1st ed. London, UK: 
Institute of Metals, 1936.
[28]
W. Hume-Rothery and G. V. Raynor. The Structure of Metals and Alloys. 4th 
ed. London, UK: Institute of Metals, 1962.
[29]
W. Hume-Rothery, R. E. Smallman and C. W. Haworth. The Structure of 
Metals and Alloys. 5th ed. London: Metals and Metallurgy Trust of the 
Institute of Metals and the Institution of Metallurgists, 1969.
[30]
J. T. Waber, K. A. Gschneidner, A. C. Larson and Y. P. Margaret. Prediction 
of solid solubility in metallic alloys. Trans. Metal. Soc. AIME. 227, 1963, 
717-723.
[31]
J. Friedel. Electronic structure of primary solid solutions in metals. Adv. Phys. 
3, 1954, 446-507.
[32]
J. D. Eshelby. The continuum theory of lattice defects. Solid State Phy. 3, 
1956, 79-144.
[33]
N. F. Mott. The cohesive forces in metals and alloys. Rep. Prog. Phys. 25, 
1962, 218-243.
[34]
A. Cottrell. An Introduction to Metallurgy. 2nd ed. London: Edward Arnold, 
1975. pp. 345-347.
[35]
H. J. Axon and W. Hume-Rothery. The lattice spacings of solid solutions of 
different elements in aluminium. Proc. R. Soc. London, Ser. A. 193, 1948, 1-
24.
[36]
T. M. Hayes, H. Brooks. and A. Bienenstock. Ordering Energy and Effective 
Pairwise Interactions in a Binary Alloy of Simple Metals. Phys. Rev. 175, 
1968, 699-710.
[37]
J. E. Inglesfield. Perturbation theory and alloying behaviour I. Formalism. 
J. 
Phys. C: Solid State Phys. 2, 1969, 1285-1292.
[38]
J. E. Inglesfield. Perturbation theory and alloying behaviour II. The mercury-
magnesium system. J. Phys. C: Solid State Phys. 2, 1969, 1293-1298.
[39]
J. E. Inglesfield. The electrochemical effect in alloys of cadmium, magnesium 
and mercury. Acta Metall. 17, 1969, 1395-1402.
[40]
T. M. Hayes and W. H. Young. Solubility of alkalis in alkalis. Philos. Mag. 21, 
1970, 583-590.
[41]
D. Stroud and N. W. Ashcroft. Phase Stability in Binary-Alloys. J. Phys. F: 
Met. Phys. 1, 1971, 113-124.
[42]
A. Meyer and W. H. Young. Thermoelectricity and Energy-Dependent 
Pseudopotentials. Phys. Rev. 184, 1969, 1003-1006.
[43]
A. Meyer, W. H. Young and T. M. Hayes. Pseudopotentials and residual 
resistivities in silver and gold. Philos. Mag. 23, 1971, 977-986.
[44]
A. Meyer, I. H. Umar and W. H. Young. Lattice Spacings and 
Compressibilities Vs Pauling Radii and Valencies. Phys. Rev. B, 4, 1971, 
3287-3291.
[45]
S. Singh and W. H. Young. Heats of solution for simple binary alloys. J. Phys. 
F: Met. Phys. 2, 1972, 672-682.
[46]
H. Brooks. Binding in metals. Trans. Metal. Soc. AIME. 227, 1963, 546-560.

[47]
A. Magnaterra and F. Mezzetti. Charge Transfer in Binary Alloys. Nuovo 
Cimento Soc. Ital. Fis., B. B 6, 1971, 206-213.
[48]
A. Magnaterra and F. Mezzetti. Atomic-Size Effect in Binary-Alloys. Nuovo 
Cimento Soc. Ital. Fis., B. B 24, 1974, 135-140.
[49]
B. E. Warren, B. L. Averbach and B. W. Roberts. Atomic size effect in the x-
ray scattering by alloys. J. Appl. Phys. 22, 1951, 1493-1496.
[50]
B. W. Roberts. X-ray measurement of order in CuAu. Acta Metall. 2, 1954, 
597-603.
[51]
K. Huang.  X-ray reflexions from dilute solid solutions. Proc. R. Soc. London, 
Ser. A. 190, 1947, 102-117.
[52]
F. H. Herbstein, B. S. Borie and B. L. Averbach. Local atomic displacements 
in solid solutions. Acta Crystallogr. 9, 1956, 466-471.
[53]
B. S. Borie. X-ray diffraction effects of atomic size in alloys. Acta Crystallogr.
10, 1957, 89-96.
[54]
B. S. Borie. X-ray diffraction effects of atomic size in alloys II. Acta 
Crystallogr. 12, 1959, 280-282.
[55]
A. Cottrell. Concepts in the Electron Theory of Alloys. London: IOM 
Communications, 1998. pp. 27-102.
[56]
W. Hume-Rothery. Elements of Structural Metallurgy. London, UK: Institute 
of Metals, 1961. pp. 105-133.
[57]
K. A. Gschneidner. Jr. L. S. (Larry) Darken's Contributions to the Theory of 
Alloy Formation and Where We are Today. In: Bennett L. H., ed. Theory of 
Alloy Phase Formation. Warrendale: The Metallurgical Society of AIME, 
1980: 1-39.
[58]
W. Hume-Rothery, H. M. Irving and R. J. P. Williams. The valencies of the 
transition elements in the metallic state. Proc. R. Soc. London, Ser. A. 208, 
1951, 431-443.
[59]
B. Cockayne and G. V. Raynor The apparent metallic valencies of transition 
metals in solid solution. Proc. R. Soc. London, Ser. A. 261, 1961, 175-188.
[60]
R. E. Watson and L. H. Bennett. Transition metals: d-band hybridization, 
electronegativities and structural stability of intermetallic compounds. Phys. 
Rev. B. 18, 1978, 6439-6449.
[61]
W. B. Pearson. The Crystal Chemistry and Physics of Metals and Alloys. New 
York ; London: Wiley-Interscience, 1972. p.68.
[62]
K. Y. Li and D. F. Xue. Estimation of electronegativity values of elements in 
different valence states. J. Phys. Chem. A. 110, 2006, 11332-11337.
[63]
K. A. Gschneidner and M. Verkade. Electronic and crystal structures, size 
(ECS2) model for predicting binary solid solutions. Prog. Mater. Sci. 49, 2004, 
411-428.
[64]
A. R. Miedema. Electronegativity Parameter for Transition-Metals - Heat of 
Formation and Charge-Transfer in Alloys. J. Less-Common Met. 32, 1973, 
117-136.
[65]
A. R. Miedema, F. R. Deboer and P. F. Dechatel. Empirical description of 
role 
of electronegativity in alloy formation. J. Phys. F: Met. Phys. 3, 1973, 
1558-1576.
[66]
A. R. Miedema, R. Boom and F. R. Deboer. Heat of formation of solid 
alloys. J. Less-Common Met. 41, 1975, 283-298.
[67]
A. R. Miedema. Heat of formation of solid alloys 2. J. Less-Common Met. 46, 
1976, 67-83.
[68]
A. R. Miedema. Heat of formation of alloys. Philips Tech Rev. 36, 1976, 217-
231.
[69]
E. N. Kaufmann. Lattice location of zinc implanted into beryllium. Phys. Lett. 
A. 61, 1977, 479-480.
[70]
E. N. Kaufmann and R. Vianden. Anomalous displacement in osmium-
substituted beryllium. Phys. Rev. Lett. 38, 1977, 1290-1292.
[71]
E. N. Kaufmann, R. Vianden, J. R. Chelikowsky and J. C. Phillips. Extension 
of Equilibrium Formation Criteria to Metastable Microalloys. Phys. Rev. Lett. 
39, 1977, 1671-1675.
[72]
J. M. Lopez and J. A. Alonso. Semi-empirical study of metastable alloys 
obtained by ion-implantation in metals and semiconductors. Phys. Status 
Solidi A. 72, 1982, 777-781.
[73]
J. A. Alonso and J. M. Lopez. Semi-Empirical Study of Metastable Alloys 
Produced by Ion-Implantation in Metals. Philos. Mag. A. 45, 1982, 713-722.
[74]
B. W. Zhang. A semiempirical approach to the prediction of the amorphous-
alloys formed by ion-beam mixing. Phys. Status Solidi A. 102, 1987, 199-
206.
[75]
B. W. Zhang and Z. S. Tan. Prediction of the formation of binary metal metal 
amorphous-alloys by ion-implantation. J. Mater. Sci. Lett. 7, 1988, 681-682.
[76]
P. F. Dechatel and G. G. Robinson. Formation Energy of Heterovalent Alloys. 
J. Phys. F: Met. Phys. 6, 1976, L174-L176.
[77]
J. R. Chelikowsky and J. C. Phillips. Quantum-defect theory of heats of 
formation and structural transition energies of liquid and solid simple metal-
slloys and compounds. Phys. Rev. B: Condens. Matter. 17, 1978, 2453-2477.
[78]
J. A. Alonso and L. A. Girifalco. Electronegativity scale for metals. Phys. Rev. 
B: Condens. Matter. 19, 1979, 3889-3895.
[79]
J. A. Alonso, D. J. Gonzalez and M. P. Iniguez. Electronegativity parameters 
of the theory of heats of alloy formation. Solid State Commun. 31, 1979, 9-
14.
[80]
J. A. Alonso and L. A. Girifalco. Non-locality and the energy of alloy 
formation. Journal of Physics F-Metal Physics, 8, 1978, 2455-2460.
[81]
C. H. Hodges. Interpretation of Alloying Tendencies of Nontransition Metals. 
J. Phys. F: Met. Phys. 7, 1977, L247-L254.
[82]
C. H. Hodges. Interpretation of alloying tendencies and impurity heats of 
solution. Philos. Mag. B. 38, 1978, 205-220.
[83]
D. G. Pettifor. Theory of the heats of formation of transition-metal alloys. 
Phys. Rev. Lett. 42, 1979, 846-850.
[84]
C. M. Varma. Quantum-theory of the heats of formation of metallic alloys. 
Solid State Commun. 31, 1979, 295-297.
[85]
A. R. Williams, C. D. Gelatt and V. L. Moruzzi. Microscopic basis of 
Miedema empirical-theory of transition-metal compound formation. Phys. Rev. 
Lett. 44, 1980, 429-433.
[86]
J. R. Chelikowsky. Microscopic basis of Miedema theory of alloy formation. 
Phys. Rev. B. 25, 1982, 6506-6508.
[87]
J. M. Lopez and J. A. Alonso. Semiempirical theory of solid solubility in 
transition-metal alloys. Z. Naturforsch., A: Phys. Sci. 40, 1985, 1199-1205.
[88]
D. J. Gonzalez and J. A. Alonso. Charge-transfer in simple metallic alloys. J. 
Phys. 44, 1983, 229-234.
[89]
J. M. Lopez and J. A. Alonso. Semiempirical theory of solid solubility in 
metallic alloys. Phys. Status Solidi A. 76, 1983, 675-682.
[90]
N. A. Gokcen, T. Tanaka and Z. Morita. Atomic theories on energetics of 
alloy formation. J. Chim. Phys. Phys.- Chim. Biol. 90, 1993, 233-248.
[91]
L. L. Wang, W. Q. Huang, H. Q. Deng, X. F. Li, L. M. Tang and L. H. Zhao. 
A method for predicting formation of quasicrystalline alloys. Rare Met. 
Mater. and Eng. 32, 2003, 889-892.
[92]
X. C. Gui, S. Z. Liao, H. W. Xie and B. W. Zhang. Parabola model of 
formation law of quasicrystal based on the fourth transition metals. Rare Met. 
Mater. and Eng. 35, 2006, 1080-1084.
[93]
A. R. Miedema and P. F. De Chatel. A semi-empirical approach to the heat of 
formation problem. In: Bennett L. H., ed. Theory of Alloy Phase Formation. 
New York: The Metallurgical Society of AIME, 1980.
[94]
A. R. Miedema, F. R. Deboer and R. Boom. Model predictions for enthalpy of 
formation of transition-metal alloys. Calphad. 1, 1977, 341-359.
[95]
J. M. Lopez and J. A. Alonso. A Comparison of 2 parametrizations of solid 
solubility in alloys - thermochemical coordinates versus orbital radii 
coordinates. Physica B & C. 113, 1982, 103-112.
[96]
H. Jones. Extent of solid solubility in magnesium and aluminum. Mater. Sci. 
Eng. 57, 1983, L5-L8.
[97]
P. R. Maarleveld, P. B. Kaars, A. W. Weeber and H. Bakker. Application of 
the embedded atom method to the calculation of formation enthalpies and 
lattice-parameters of Pd-Ni alloys. Physica B & C. 142, 1986, 328-331.
[98]
S. H. Wei, A. A. Mbaye, L. G. Ferreira and A. Zunger. 1st-principles 
calculations of the phase-diagrams of noble-metals - Cu-Au, Cu-Ag, and Ag-
Au. Phys. Rev. B: Condens. Matter. 36, 1987, 4163-4185.
[99]
K. Terakura, T. Oguchi, T. Mohri and K. Watanabe. Electronic Theory of the 
Alloy Phase-Stability of Cu-Ag, Cu-Au, and Ag-Au Systems. Phys. Rev. B: 
Condens. Matter. 35, 1987, 2169-2173.
[100]
S. Takizawa, K. Terakura and T. Mohri. Electronic theory for phase-stability 
of 9 AB Binary-Alloys, with a=Ni, Pd, or Pt and B=Cu, Ag, or Au. Phys. Rev. 
B: Condens. Matter. 39, 1989, 5792-5797.
[101]
R. A. Johnson. Alloy models with the embedded-atom method. Phys. Rev. B: 
Condens. Matter. 39, 1989, 12554-12559.
[102]
G. J. Ackland and V. Vitek. Many-body potentials and atomic-scale 
relaxations in noble-metal alloys. Phys. Rev. B: Condens. Matter. 41, 1990, 
10324-10333.
[103]
R. A. Johnson. Phase-stability of fcc alloys with the embedded-atom method. 
Phys. Rev. B: Condens. Matter. 41, 1990, 9717-9720.
[104]
Z. W. Lu, S. H. Wei, A. Zunger, S. Frota-Pessoa and L. G. Ferreira. First-
principles statistical mechanics of structural stability of intermetallic 
compounds. Phys. Rev. B: Condens. Matter. 44, 1991, 512-544.
[105]
G. Bozzolo and J. Ferrante. Heats of formation of bcc binary-alloys. Phys. Rev. 
B: Condens. Matter. 45, 1992, 12191-12197.
[106]
G. Bozzolo, J. Ferrante and J. R. Smith. Method for calculating alloy 
energetics. Phys. Rev. B: Condens. Matter. 45, 1992, 493-496.
[107]
M. H. F. Sluiter and Y. Kawazoe. Prediction of the mixing enthalpy of alloys. 
Europhys. Lett. 57, 2002, 526-532.
[108]
Y. F. Ouyang, H. M. Chen and X. P. Zhong. Enthalpies of formation of Noble 
metal binary alloys bearing Rh or Ir. J. Mater. Sci. Technol. 19, 2003, 243-246.
[109]
S. H. Wei, L. G. Ferreira and A. Zunger. 1st-principles calculation of 
temperature-composition phase-diagrams of semiconductor alloys. Phys. Rev. 
B: Condens. Matter. 41, 1990, 8240-8269.
[110]
T. Mohri, K. Terakura, S. Takizawa and J. M. Sanchez. 1st-principles study of 
short-range order and instabilities in Au-Cu, Au-Ag and Au-Pd alloys. Acta 
Metall. Mater. 39, 1991, 493-501.
[111]
T. Ito, T. Ohno, K. Shiraishi and E. Yamaguchi. Computer-aided materials 
design for semiconductors. Adv. Mater. 5, 1993, 198-206.
[112]
P. P. Singh, A. Gonis and P. E. A. Turchi. Toward a unified approach to the 
study of metallic alloys - application to the phase-stability of Ni-Pt. Phys. Rev. 
Lett. 71, 1993, 1605-1608.
[113]
P. E. A. Turchi, L. Reinhard and G. M. Stocks. 1st-principles study of stability 
and local order in bcc-based Fe-Cr and Fe-V alloys. Phys. Rev. B: Condens. 
Matter. 50, 1994, 15542-15558.
[114]
Z. W. Lu, B. M. Klein and A. Zunger. Atomic short-range order and alloy 
ordering tendency in the Ag-Au system. Modell. Simul. Mater. Sci. Eng. 3, 
1995, 753-770.
[115]
A. Pasturel, C. Colinet, D. N. Manh, A. T. Paxton and M. vanSchilfgaarde. 
Electronic structure and phase stability study in the Ni-Ti system. Phys. Rev. 
B: Condens. Matter. 52, 1995, 15176-15190.
[116]
C. Colinet, A. Pasturel, D. N. Manh, D. G. Pettifor and P. Miodownik. Phase-
stability study of the Al-Nb system. Phys. Rev. B: Condens. Matter. 56, 1997, 
552-565.
[117]
N. C. Bacalis, G. F. Anagnostopoulos, N. I. Papanicolaou and D. A. 
Papaconstantopoulos. Electronic structure of ordered and disordered Cu-Ag 
alloys. Phys. Rev. B: Condens. Matter. 55, 1997, 2144-2149.
[118]
V. Ozolins, C. Wolverton and A. Zunger. Cu-Au, Ag-Au, Cu-Ag, and Ni-Au 
intermetallics: First-principles study of temperature-composition phase 
diagrams and structures. Phys. Rev. B: Condens. Matter. 57, 1998, 6427-6443.
[119]
G. Bozzolo, R. D. Noebe, J. Ferrante and C. Amador. An introduction to the 
BFS method and its use to model binary NiAl alloys. J. Comput. Aided Mater. 
Des. 6, 1999, 1-32.
[120]
L. K. Teles, J. Furthmuller, L. M. R. Scolfaro, J. R. Leite and F. Bechstedt. 
First-principles calculations of the thermodynamic and structural properties of 
strained InxGa1-xN and AlxGa1-xN alloys. Phys. Rev. B: Condens. Matter. 62, 
2000, 2475-2485.
[121]
S. S. Fang, G. W. Lin, J. L. Zhang and Z. Q. Zhou. The maximum solid 
solubility of the transition metals in palladium. Int. J. Hydrogen Energy. 27, 
2002, 329-332.
[122]
Z. Q. Zhou, S. S. Fang and F. Feng. Rules for maximum solid solubility of 
transition metals in Ti, Zr and Hf solvents. Trans. Nonferrous Met. Soc. China. 
13, 2003, 864-868.
[123]
Z. Q. Zhou, S. S. Fang and F. Feng. Comparison between methods for 
predicting maximum solid solubility of transition metals in solvent metal. 
Trans. Nonferrous Met. Soc. China. 13, 2003, 1185-1189.
[124]
S. Q. Wang, M. Schneider, H. Q. Ye and G. Gottstein. First-principles study of 
the formation of Guinier-Preston zones in Al-Cu alloys. Scr. Mater. 51, 2004, 
665-669.
[125]
V. G. Deibuk, S. G. Dremlyuzhenko and S. E. Ostapov. Thermodynamic 
stability of bulk and epitaxial CdHgTe, ZnHgTe, and MnHgTe alloys. 
Semiconductors. 39, 2005, 1111-1116.
[126]
J. L. Zhang, S. S. Fang, Z. Q. Zhou, G. W. Lin, J. S. Ge and F. Feng. 
Maximum solid solubility of transition metals in vanadium solvent. 
Trans. Nonferrous Met. Soc. China. 15, 2005, 1085-1088.
[127]
T. Abe, B. Sundman and H. Onodera. Thermodynamic assessment of the Cu-
Pt system. International Symposium on User Aspects of Phase Diagrams, 
Material Solutions Conference and Exposition; 2004 Oct 18-20; Columbus, 
OH: ASM International; 2004. pp. 5-13.
[128]
K. Hatano, K. Nakamura, T. Akiyama and T. Ito. Theoretical study of alloy 
phase stability in zincblende Ga1-xMnxAs. J. Cryst. Growth. 301, 2007, 631-
633.
[129]
J. Z. Liu and A. Zunger. Thermodynamic states and phase diagrams for bulk-
incoherent, bulk-coherent, and epitaxially-coherent semiconductor alloys: 
Application to cubic (Ga,In)N. Phys. Rev. B: Condens. Matter. 77, 2008, 
205201(1)-205201(12).
[130]
B. W. Zhang. An Approach to the Solid Solubilities of Binary Non-Transition 
Metal Based Alloys. Scr. Metall. 21, 1987, 1207-1211.
[131]
B. W. Zhang. Application of Miedema coordinates to the formation of binary 
amorphous-alloys. Physica B & C. 121, 1983, 405-408.
[132]
T. Shi, L. Zheng and N. Chen. Conditions for the formation of binary 
amorphous alloys. Acta Metall Sin. 15, 1979, 94-97.
[133]
B. W. Zhang. Description of the formation of binary amorphous-alloys by 
chemical coordinates. Physica B & C. 132, 1985, 319-322.
[134]
B. W. Zhang. The effect of size factor in the formation of amorphous alloys. 
Acta Metall Sin. 17, 1981, 285-292.
[135]
B. W. Zhang. Semi-empirical theory of solid solubility in binary-alloys. Z. 
MetaIlkd. 76, 1985, 264-270.
[136]
B. W. Zhang and S. Z. Liao. Theory of solid solubility for rare earth metal 
based alloys. Z. Phys. B: Condens. Matter. 99, 1996, 235-243.
[137]
R. W. Olesinski and G. J. Abbaschian. The Cu-Si (Copper-Silicon) system. J. 
Phase Equilib. 7, 1986, 170-178.
[138]
A. Zunger, S. H. Wei, L. G. Ferreira and J. E. Bernard. Special quasirandom 
structures. Phys. Rev. Lett. 65, 1990, 353-356.
[139]
I. Ansara, A. T. Dinsdale and M. H. Rand. Thermochemical database for light 
metal alloys. In: I. Ansara, ed. Definition of Thermochemical and 
Thermophysical Properties to Provide a Database for the Development of New 
Light Alloys, 1998.
[140]
S. G. Fries and T. Jantzen. Compilation of 'CALPHAD' formation enthalpy 
data - Binary intermetallic compounds in the COST507 Gibbsian database. 
Thermochim. Acta. 314, 1998, 23-33.
[141]
X. Y. Yan and Y. A. Chang. A thermodynamic analysis of the Cu-Si system. J. 
Alloys Compd. 308, 2000, 221-229.
[142]
C. Wolverton, X. Y. Yan, R. Vijayaraghavan and V. Ozolins. Incorporating 
first-principles energetics in computational thermodynamics approaches. Acta 
Mater. 50, 2002, 2187-2197.
[143]
C. Colinet. Ab-initio calculation of enthalpies of formation of intermetallic 
compounds and enthalpies of mixing of solid solutions. Intermetallics. 11, 
2003, 1095-1102.
[144]
D. Shin, J. E. Saal and Z. K. Liu. Thermodynamic modeling of the Cu-Si 
system. Calphad. 32, 2008, 520-526.
[145]
D. L. Fuks, V. E. Panin and M. F. Zhorovkov. Calculation of solubility limits 
in solid-state by pseudopotential method. Fiz. Met. Metalloved. 39, 1975, 884-
887.
[146]
A. L. Udovskii and O. S. Ivanov. Calculation of limited solubility curves and 
excess free-energy of silver-copper solid-solutions. Zh. Fiz. Khim. 51, 1977, 
796-799.
[147]
A. Martin and J. Carstensen. Extended solubility approach - solubility 
parameters for crystalline solid compounds. J. Pharm. Sci. 70, 1981, 170-172.
[148]
S. Yamamoto, T. Wakabayashi and H. Kobayashi. Calculation of solid 
solubility and compound formability of Al-alloys by extended Huckel-method. 
J. Jpn. Inst. Met. 57, 1993, 1367-1373.
[149]
W. Z. Luo and M. E. Schlesinger. Thermodynamics of the iron-carbon-zinc 
system. Metall. Mater. Trans. B. 25, 1994, 569-578.
[150]
B. Hallemans P. Wollants and J. R. Roos. Thermodynamic reassessment and 
calculation of the Fe-B phase-diagram. Z. MetaIlkd. 85, 1994, 676-682.
[151]
H. Duschanek, P. Rogl and H. L. Lukas. A critical assessment and 
thermodynamic calculation of the boron-carbon-titanium [B-C-Ti] ternary 
system. J. Phase Equilib. 16, 1995, 46-60.
[152]
M. H. F. Sluiter, Y. Watanabe, D. deFontaine and Y. Kawazoe. First-
principles calculation of the pressure dependence of phase equilibria in the Al-
Li system. Phys. B: Condens. Matter. 53, 1996, 6137-6151.
[153]
H. Flandorfer, J. Grobner, A. Stamou, N. Hassiotis, A. Saccone, P. Rogl, R. 
Wouters, H. Seifert, D. Maccio, R. Ferro, G. Haidemenopoulos, L. Delaey and 
G. Effenberg. Experimental investigation and thermodynamic calculation of 
the ternary system Mn-Y-Zr. Z. MetaIlkd. 88, 1997, 529-538.
[154]
X. Y. Ding, P. Fan and W. Z. Wang. Thermodynamic calculation for alloy 
systems. Metall. Mater. Trans. B. 30, 1999, 271-277.
[155]
J. Grobner, R. Schmid-Fetzer, A. Pisch, G. Cacciamani, P. Riani, N. Parodi, G. 
Borzone, A. Saccone and R. Ferro. Experimental investigations and 
thermodynamic calculation in the Al-Mg-Sc system. Z. MetaIlkd. 90, 1999, 
872-880.
[156]
G. Ghosh, A. van de Walle, M. Asta and G. B. Olson. Phase stability of the 
Hf-Nb system: From first-principles to CALPHAD. Calphad. 26, 2002, 491-
511.
[157]
F. Fang, M. Q. Zeng, X. Z. Che and M. Zhu. Embedded atom potential 
calculation of the Al-Pb immiscible alloy system. J. Alloys Compd. 340, 2002, 
252-255.
[158]
Y. Song, Z. X. Guo and R. Yang. First principles studies of TiAl-based alloys. 
J. Light Met. 2, 2002, 115-123.
[159]
L. Stuparevic and D. Zivkovic. Phase diagram investigation and 
thermodynamic study of Os-B system. J. Therm. Anal. Calorim. 76, 2004, 
975-983.
[160]
A. Van de Walle, Z. Moser and W. Gasior. First-principles calculation of the 
Cu-Li phase diagram. Arch. Metall. Mater. 49, 2004, 535-544.
[161]
T. Tokunaga, H. Ohtani and M. Hasebe. Thermodynamic analysis of the Zr-Be 
system using thermochemical properties based on ab initio calculations. 
Calphad. 30, 2006, 201-208.
[162]
M. H. F. Sluiter, C. Colinet and A. Pasturel. Ab initio calculation of the phase 
stability in Au-Pd and Ag-Pt alloys. Phys. Rev. B: Condens. Matter. 73, 2006, 
174204(1)-174204(17)
[163]
B. Hallstedt and O. Kim. Thermodynamic assessment of the Al-Li system. Int. 
J. Mater. Res. 98, 2007, 961-969.
[164]
G. Ghosh and M. Asta. First-principles calculation of structural energetics of 
Al-TM (TM = Ti, Zr, Hf) intermetallics. Acta Mater. 53, 2005, 3225-3252.
[165]
Z. M. Cao, Y. Takaku, I. Ohnuma, R. Kainuma, H. M. Zhu and K. Ishida. 
Thermodynamic assessment of the Ni-Sb binary system. Rare Met. 27, 2008, 
384-392.
[166]
J. Teyssier, R. Viennois, J. Salamin, E. Giannini and D. van der Marel. 
Experimental and first principle calculation of CoxNi(1-x)Si solid solution 
structural stability. J. Alloys Compd. 465, 2008, 462-467.
[167]
Y. M. Zhang, S. Yang and J. R. G. Evans. Revisiting Hume-rothery's rules 
with artificial neural networks. Acta Mater. 56, 2008, 1094-1105.


Table Captions:

Table 1
Comparison of the formation of binary amorphous alloys using different coordinates (redrawn from [129])
Table 2
Comparison of the prediction of solid solubilities by different methods (redrawn from [15])

Tables:

Table 1
	
	
	Pure Miedema’s coordinate criterion
	Miedema’s coordinate plus size factor
	Bond-parametric diagram

	(1) Amorphous alloys by melt quenching
	total
	82
	82
	32

	
	wrong
	6
	10
	3

	
	accuracy (%)
	92.7
	87.8
	90.6

	(2) Non-formable amorphous alloys
	total
	54
	54
	57

	
	wrong
	18
	9
	7

	
	accuracy (%)
	66.7
	83.3
	87.7

	(3) Amorphous alloys by non-melt quenching
	total
	21
	21
	38

	
	wrong
	11
	7
	10

	
	accuracy (%)
	47.6
	66.7
	73.7

	Total accuracy (%)
	(1) + (2)
	82.4
	86
	88.8

	
	(1) + (2) + (3)
	77.7
	83.4
	84.3


Table 2
	
	No. of alloy systems and the prediction accuracy

	
	Total No.
	Prediction accuracy %

	Hume-Rothery’s rule (size factor only)
	1423
	67.6

	D-G Method
	1455
	76.6

	Chelikowsky Method
	192
	82

	Alonso Method
	342
	90

	Zhang BW Method (parabola separation)
	3864
	87.2

	Zhang BW Method (ellipse separation)
	3864
	90.3


Figures captions: 
Figure 1
The electronegativity vs. the metallic radius for a coordination number of 12 (Darken-Gurry) map for Ta as the solvent. (Taken from [59])

Figure 2. 
(a) Darken-Gurry map for Mg as host metal. (b) Chelikowsky method for Mg as host metal (taken from [11])

Figure 3   
(a) Chelikowsky’s plot for the analysis of solid solubility in Fe; (b) Alonso plot for analysis of solid solubility in Fe, the two continuous lines separate the insoluble elements from the rest. (taken from [12])
Figure 4.
Prediction of solubility using 3 functionalized parameters: atomic size, valency and electronegativity. (a) Training set, (b) Testing set, (c) Whole set.
Figures:
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Figure 1
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Figure 2
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Figure 3. 
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