Numerical analysis of reaction-diffusion effects on species mixing rates in turbulent premixed methane-air combustion

Richardson, E.S., Sankaran, R., Grout, R.W. and Chen, J.H. (2010) Numerical analysis of reaction-diffusion effects on species mixing rates in turbulent premixed methane-air combustion. Combustion and Flame, 157, (3), 506-515. (doi:10.1016/j.combustflame.2009.11.007).


[img] PDF - Author's Original
Download (294Kb)


The scalar mixing time scale, a key quantity in many turbulent combustion models, is investigated for reactive scalars in premixed combustion. Direct numerical simulations (DNS) of three-dimensional, turbulent Bunsen ?ames with reduced methane-air chemistry have been analyzed in the thin reaction zones regime. Previous conclusions from single step chemistry DNS studies are con?rmed regarding the role of dilatation and turbulence-chemistry interactions on the progress variable dissipation rate. Compared to the progress variable, the mixing rates of intermediate species is found to be several times greater. The variation of species mixing rates are explained with reference to the structure of one-dimensional premixed laminar ?ames. According to this analysis, mixing rates are governed by the strong gradients which are imposed by ?amelet structures at high Damk¨ohler numbers. This suggests a modeling approach to estimate the mixing rate of individual species which can be applied, for example, in transported probability density function simulations. Flame turbulence interactions which modify the ?amelet based representation are analyzed.

Item Type: Article
Digital Object Identifier (DOI): doi:10.1016/j.combustflame.2009.11.007
ISSNs: 0010-2180
Subjects: T Technology > TA Engineering (General). Civil engineering (General)
Divisions : University Structure - Pre August 2011 > School of Engineering Sciences
Faculty of Engineering and the Environment
ePrint ID: 172577
Accepted Date and Publication Date:
March 2010Published
Date Deposited: 28 Jan 2011 09:06
Last Modified: 31 Mar 2016 13:32
Sandia National Laboratories
Funded by: U.S. Department of Energy (DE-AC04-94-AL85000)
1999 to 2014

Actions (login required)

View Item View Item

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics