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A New Approach to Calculate and Forecast Dynamic
Conditional Correlation –The Use of a Multivariate

Heteroskedastic Mixture Model
________________________________________
Much research in finance has been directed towards forecasting time varying volatility of

unidimensional macroeconomic variables such as stock index, exchange rate and interest

rate. However, comparatively little is devoted to modelling time varying correlation. In this

research, we extend the current literature on correlation modelling by reviewing existing

time-series tools, performing empirical analysis and developing two new conditional

heteroscedastic models based on mixture techniques. Specifically, Engle’s standard DCC is

augmented with an asymmetric factor and then modified so that disturbances (conditional

returns) can be modelled using multivariate Gaussian mixture distribution and multivariate

T mixture distribution. A key motivation of proposing mixture models is to account for the

bi-modality observed in unconditional distribution of realized correlation. Besides, the

ultimate purpose of incorporating this assumption to a multivariate GARCH is to account

for a variety of stylized features frequently presented in financial returns such as volatility

clustering, correlation clustering, leverage effect, fat tails, skewness and leptokurtosis.

Since the model flexibility given this assumption can be greatly enhanced, after a thorough

comparison we find significant evidence of outperformance of our models over other

alternative models from a range of perspectives. Besides, in this research we also study a

new type of correlation model using multivariate skew-t as basis for quantifying the density

values of conditional returns. Note that, the ADCC skew-t and AGDCC skew-t model

analyzed in this research are both new to the financial literature.
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Chapter 1

Introduction
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1.1 Research problem and Research aim
In finance, many time series of asset returns are characterized by serial dependence. It is due to

the evidence documented in the literature that supports the findings of a positive

autocorrelation in the variation of their conditional second moment. About three decades ago,

researchers started to realize that volatility, just like return, can also be modelled as a time

varying variable and its process tends to show persistent patterns. Since then, countless effort

was put into exploiting traditional time series tools to modelling its dynamics and this trend

has continued to the present day, although most attention previously paid to the univariate

returns, has recently shifted to the multivariate context. For example, in the 1970s the main

time series tool for modelling conditional return was the Auto-Regressive-Moving-Average

(ARMA) model. Later, this technique was developed by Engle (1982) and generalized by

Bollerslev (1986) to propose the famous GARCH framework, whose variants and extensions

even today still dominate most of the literature on volatility forecasting.

Recently, benefiting from the reinforcement of globalization and advances in technology,

much evidence shows that, not only volatility, co-movements of returns in different markets

and of different asset classes are also becoming more and more significant, and univariate

volatility is not only serially dependent on its own lagged term, but also correlated with others

over time. Given this feature, the necessity of modelling covariance, as well as correlation,

both to be time-varying is then highlighted. As Bauwens and Laurent (2002) illustrate,

“…recognizing this commonality through a multivariate model can lead to obvious gain in

efficiency and more relevant financial decision-making than working with separate univariate

models…” Based on this motivation, a number of multivariate models are then proposed in the

literature to capture the correlation dynamics. Among those most widespread tools, it is the

Engle’s (2002) DCC that successfully attracted most of the attention.

Since correlation in various financial applications is now an indispensible input and its

importance nowadays is even more clearly recognized, the main aim of this research is then to

examine, based on Engle’s work, the efficiency of existing tools for modelling its dynamics

and develop some new ones which can allow for more flexibility (either distributional or

economical) so that hopefully a model capable of producing more accurate forecasts of the

future correlation can be found. Implicitly, this research is motivated by questions like, ‘in a

financial market what really is a good estimate to depict association between returns?’, or, in a

similar vein, ‘how can we develop an appropriate correlation model which can generate
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forecast both efficiently and accurately enough to predict the future correlation?’, and ‘how

can these generated correlations be applied in the real world to generate economical benefits?’

1.2 Economic Contents
Since correlation has become the objective of this research, it is necessary to note some

economic contents of this statistic and understand why it is important to generate accurate

forecast of it. In finance, although in countless studies it has been proved that calculating this

coefficient is not only necessary but also indispensable, its usefulness is frequently highlighted

in only four major areas. These are portfolio selection, risk management, asset pricing and

propriety trading.

First, concerning the asset allocation, correlation is a major input of Markowitz (1952)’s

portfolio selection model to compute the portfolio variance on the aggregation level. Many

hedge fund traders and investment managers use this coefficient to access the ‘risk-return

profile’ of different assets included in a large opportunity set and decide which one to pick and

the optimal weight to invest so that the overall holding risk of portfolio can be minimized and

the corresponding return maximized.

Similarly, in risk management, to generate the next day’s VaR one needs an accurate forecast

of the entire covariance matrix. Nowadays, since a realized portfolio may contain hundreds or

even thousands of assets including equities, derivatives and synthetic instruments, there is then

an urgent need to find a flexible and cheap method for calculating large correlation (or

covariance) matrices, to a given accuracy.

Besides, this coefficient can also be applied occasionally for pricing and hedging purposes. For

instance, some exotic structures whose payoff depends on more than one underlying factor

(e.g., interest rate spread or equity basket options) need correlation as an input to determine

their fair prices. Meanwhile, if one wants to hedge these products, this association measure

would also become indispensible. In even broader terms, this coefficient has been proved

crucial not only for pricing some specific products but also for a range of assets. This is

because even the fundamental asset pricing model such as Capital Asset Pricing Model

(CAPM) needs this statistic as input to determine the unsystematic risk of a single asset

relative to the whole market (see Sharpe, 1964).
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In addition, due to the recent recognition of dynamic property for correlation, this coefficient is

also considered as a risk factor, just like the time-varying volatility. Theoretically, in a

derivative market where all other risks apart from this factor can be ‘perfectly’ hedged, an

experienced trader can, by exploiting the difference of market expectation on this particular

variable, make riskless profits. As a result, a new trading strategy called ‘correlation trading’ is

then formed and recently (especially during the credit crunch) it has successfully attracted a lot

of researchers’ and practitioners’ interests. Typically, when market risk (price changes of a

traded asset) is the primary source of extracting return (or the sole factor to be hedged),

strategies of trading correlation are analogous to those developed for trading volatility in

equity markets. However, when credit risk (default of a credit product) is managed and

exploited, a different class of trading method then needs to be used. Here, concerning this

feature, since it is not like others which have been thoroughly reviewed and highlighted in the

financial literature, an illustration is provided below to fill the gap.

Correlation trading
Generally speaking, there are two types of correlation trading strategies in financial market;

equity-type ones and credit-type ones. As for the first, a correlation forecast, once generated, is

often not directly inserted to a pricing model to exploit the price difference of a specific

product but rather put through a filtering mechanism to calculate an intermediate quantity

(variance-covariance matrix) so that, in the multivariate context, common volatility trading

strategy can be performed. For example, we can use a correlation forecast of two currency

pairs to determine the volatility forecast of their cross-products. Then, by inserting this

volatility forecast into a standard currency option-pricing model, a forecast of the future prices

of an ATM currency straddles can be derived. This price, after being compared with realized

market prices, can be utilized to determine the opportunity of profitability (See Chong, 2004,

for overpricing and underpricing of currency options). However, in the credit market, since

correlation, for a variety of instruments, is a major input for the pricing formulas, profits then

can be made directly from the mispricing of these products. This strategy, compared to the

previous one, reflects the true virtue of trading ‘correlation’ expectation in the market. To see

the details of how to perform these strategies, in the following passage we divide our

discussions into two subsections.

a. Correlation trading in equity market
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First, concerning the strategies adopted in equity market, as illustrated earlier, since they are

inherently close to the volatility trading strategies, a proper understanding of the latter is

beneficial to understand our current aim.

Volatility trading, as can be directly inferred from its name, is to trade the difference between

market expectation and user’s expectation on future volatility of a specific asset. Just like

trading equity directly, the simplest way of trading volatility is to develop a linear ‘contract’

where the underlying instrument solely depends on the volatility of the target asset (or let us

say that the payoff of this contract is an explicit function of volatility) so that profits can be

made directly from trading this contract; e.g., buy the contract when we expect the volatility to

rise and sell it when we expect it to fall.

In theoretical analysis, validity of this innovation has already been discussed. Brenner and

Galai (1993) proposed a so-called realized volatility index and gave the futures and options

written on it. Fleming, Osdiek and Whaley (1993) described the construction of an implied

volatility index (VIX) whose derivative contracts are provided in Whaley (1993). In empirical

applications, as a response to the immense demand, nowadays realized contracts of these

volatility indices have also been introduced and listed in exchanges. For example, OMLX, a

London-based subsidiary of Swedish exchange OM, launched the volatility futures in 1997,

and Deutsche Terminborse (DTB) launched the VIX future contract in 2002.

Here, apart from utilizing an explicit contract, volatility can also be traded by combining a

static position in a derivative product (option) and a dynamic (time-varying) position on the

same underlying. For example, a common hedge fund trading strategy is to exploit the

mispricing of convertible bonds listed in a financial exchange (or OTC). The strategy of

holding a convertible and simultaneously delta-hedging the position is usually called

convertible arbitrage. And the purpose is to find the risk-free profit from the mispricing of

calls or puts that were embedded in the target convertibles due to the divergence of market

expectation on volatility. Here, it is important to note that the hedging error (profit/loss) of this

strategy is not totally determined by the gamma (second derivative of option prices to volatility)

but theta (first derivative of option prices relative to time) as well. Thus, even if a profit is

made, the result does not, as a whole, correspond to the forecast of volatility. To pursue a more

‘purified’ trade, one then needs a more volatility-specific contract (e.g., volatility swap). For

example, Neuberger (1990) showed that by delta-hedging a contract paying log of the prices

resultant hedging errors would accumulate to only the difference between realized volatility

and fixed variance used in the delta hedge. That is, for this contract
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2 2/ ( )
T

h tT
P L dt


             (1.1)

, the holding period is now from T  to T  . 2
h here denotes the implied volatility of target

contract at T . Similarly, Dupire (1993) proved that a calendar spread of two log contracts

would also serve the same purpose, as the payoff would equal to the variance difference

between two maturities.

So far, the above trading methods are all exploiting the divergence of market expectation on

future volatility, nothing has been said about how to use correlation as input to implement

these strategies. Clearly, to achieve this goal, a bridge between volatility and correlation needs

to be built in the first place. Often, this can be done by finding a triangular relationship

between multiple-assets so that portfolio theory can be utilized. For example, in a three-

currency trio, any currency pair can be regarded as an authentic portfolio comprising the other

two. Thus, their univariate volatility and cross-correlation are related to each other and can be

calculated interchangeably after a proper transformation of portfolio variance equation. Since

volatility can be calculated using correlation as input, aforementioned strategies then can be

adopted. For more details on this issue, in Chapter 5 we review some literature concerning

trading correlation in equity market. To see its applications in the foreign exchange market,

another example is given in the same Chapter.

b. Correlation trading in the credit market
Unlike the volatility trading strategies which have been repeatedly tested and implemented in

equity markets for decades, in credit market, strategies of trading correlation are developed

only very recently and the industry-standard model for pricing its base asset (CDO) was

proposed only after we stepped into the 21st century. Although these products’ appearance in

the financial world is quite late, interests generated on trading them are massive, probably due

to the rapid development of credit derivative markets in recent years.

In the credit market, a common way to trade correlation is to through a portfolio-based

contract whose price is an explicit function of default correlation between individual credits

included in this portfolio. Typical products of this type are synthetic CDO, Nth to default

basket (NTD), CDO2 and CDS index such as iBoxx. Here, we present an example using

synthetic CDO. Depending on the level of default risk that expected cash flows of a CDO can

bear, usually this product can be divided into three tranches: senior, mezzanine and equity.

Senior tranche (credit) qualifies for an Aaa (Moody’s rating) because defaults must wipe out
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both mezzanine and equity tranches before investors suffer any loss. The mezzanine layer,

which has only the equity shield against losses, often carries a Baa rating while the unrated

equity tranche then bears the risk of first dollar loss. Given these specifications, traders are

now able to bet directly on the expectation of future realized default correlation by either

longing or shorting a CDO that includes the target credit (for example by buying or selling a

specific single tranche of a synthetic CDO) as a component. However, it should be noted that

in the real terms delta-hedging and gamma-hedging are still indispensible when such products

are traded, or the profit/loss could be affected by other contaminating factors.1

Consider now a credit exposure which has been properly dynamic-hedged and an expectation

of future correlation generated, in order to realize this expectation, one can either long the

equity tranche or short the senior tranche to long the ‘correlation’, or alternatively, for shorting

‘correlation’, one can either short the equity tranche or long the senior tranche. Now, we use

an example to illustrate this strategy. In 2005, Standard and Poor and Moody’s both dropped

their ratings on the debt of General Motors and Ford below investment grade. At that time, a

potentially profitable correlation bet would then be to long the equity tranche of a CDO and

short the senior or mezzanine tranche. This is because, if the defaults stayed low, the return on

the equity tranche would outstrip losses on the senior or mezzanine tranche. However, if

defaults pick up, gains on the short position of senior or mezzanine would then at least offset

losses on the equity tranche. Forming such a strategy implies that the market is now expecting

the default correlation in a CDO to rise due to the simultaneous downgrade of two giant auto-

manufactory firms (See FTSE Global Market, 2005).

1.3 Research scope
Now, we illustrate the scope of this research. Since the main task of this thesis is now to

analysis various aspects of correlation in equity and foreign exchange market and we intend to

achieve this goal by extending Engle’s work to propose a more generalized framework than

existing multivariate GARCH models for forecasting future correlation, the following strategy

is adopted. First, based on Engle (2002), we let the dynamic covariance between two different

assets follow a standard DCC-style evolving process. Then, an asymmetric factor, similar to

1Hedging the exposure of a credit derivative needs to adopt a similar procedure (entering into an identical
offsetting position) that used in the equity derivative market. Say that a dealer has a long (short) position on a
single tranche of a CDO, that is, he sold (bought) a protection. To hedge the marked-to-market risk resulted
from a potential movement of credit spread on a single credit, he needs to buy (sell) the protection on this
particular name that is included in an identical tranche. Here, delta of a credit is the amount of protection the
dealer buys (sells) on that name to hedge the linear spread risk. Only small movements in the credit spread can
be immune after dynamic delta-hedging. To protect the curvature of marked to market risk; one also needs to
perform gamma hedging so as to isolate the spread convexity risk.



- 8 -

the one used to model leverage effect in the volatility process, is incorporated to the target

dynamics. Here, we consider enhancing the flexibility of correlation models using mixture

distributions. The proposed model is then defined as ADCC-MGM if returns are assumed

following multivariate Gaussian mixture (MGM) distribution.2 Besides, to allow for extreme

events, we also consider the case where innovations are multivariate T mixture (MTM)

distributed. Thus, an even more generalized framework can be constructed. That is ADCC-

MTM. It should be noted that investigations into these conditional heteroskedastic mixture

models are very rare in financial literature. To our best knowledge, the only research

performed so far is by Bauwen, Hafner and Rombouts (2006).

As just mentioned, in fitting correlation dynamics, we use mixture models and it is mainly due

to the flexibility concerns as a variety of stylized features can be steadily captured. However,

at this stage it is also necessary to note another motivation of making this assumption. That is,

unconditional distribution of realized correlation tends to show ‘multi-modality’. As for this

feature, a detailed illustration with evidence will be given in Chapter 5. However, for now our

emphasis is only on the generality of our new models. Indeed, ADCC-MGM and ADCC-

MTM are so generalized that they can nest a variety of conditional correlation models. More

importantly, they can be used to answer some unique questions like ‘Is the broad market now

generating diverging (or new) opinions on future correlation, future volatility or future returns’

or ‘Might the co-movement between equity index of say European nations and that of the US

change to another regime after the credit crunch?’. Besides, in more general terms, these

mixture models can also be used to analyze linear interdependence, contagion issues and

spillover effects.

Concerning their inferences, estimation of a multivariate GARCH is often performed by

maximizing a log-likelihood function assuming Gaussian innovations because consistency of

the resultant estimators can be ensured provided that conditional mean and variance are

correctly specified (See Lee and Hansen, 1994, for convergence of QML in univariate setting

and Jeantheau, 1998, for the multivariate case). However, here, to allow for more generality

we adopt a Bayesian approach. 3 Specifically, a Monte Carlo Markov Chain (MCMC)

technique, namely the Griddy Gibbs sampler, is chosen to calculate the mixture models’

inferences where each parameter of ADCC-MGM and ADCC-MTM is approximated using

2 For asymmetric correlation, we mean that the correlations between different return series may appear to be
dependent on the prevailing direction of the market. That is, one can expect to observe a higher correlation
during the market crashes than in normal circumstances.
3  Parameter uncertainty in Bayesian inference is allowed because parameter values in this paradigm are
illustrated through a distributional form. More details on this issue will be illustrated in Chapter 5.



- 9 -

values of a series of random draws simulated from a specific kernel. The reason for choosing

this numerical algorithm is to allow for the parameter uncertainty. Since estimated parameter

values can now be illustrated through a density form, we can use this algorithm to obtain

distributional characteristics of future correlation, future volatility and even future returns.

However, in the classical inferential framework, even with a data-augmentation enhanced EM

algorithm this task is still impossible.

Apart from the mixture models, in this research we also study a variety of alternative DCCs

and examine their model performances from a range of perspectives including portfolio

optimization and risk management. Here, concerning these competitors, it is especially worth

noting two models, which we propose by combining the generality of AGDCC of Cappoiello

et al. (2004) in capturing the covariance dynamics and flexibility of multivariate skew-t of

Bauwens and Laurent (2002) in accounting for skewness, fat tails and high peakedness of a

conditional distribution. As with mixtures, these models can substantially increase the

flexibility of a standard DCC and, to our best knowledge, are also the first time studied and

estimated in empirical research.

1.4 Structure of the thesis
Based on the goal and scope illustrated above, this thesis is now divided into three major parts.

In the first part, we review various correlation measures and dynamic models developed to

capture their evolving process and some inferential methods for estimating these models. Then,

an empirical analysis is performed with emphasis put onto using existing time series tools and

a market-implied information source for forecasting future correlation. Finally, we also initiate

our own way for estimating correlation between different assets by exploiting a parametric and

a semi-parametric (mixture models) technique. Clearly, some of the above issues are

intrinsically related to each other. Therefore, overlapping illustration is unavoidable. However,

we have tried to minimize this as much as possible.

The rest of this thesis is organized as follows.

In Chapter 2, to obtain a thorough knowledge of correlation coefficient, the target of this

research, we start the description of it from the beginning. First, issues like its conception,

assumptions and empirical potentials are stated. Then, two time series models and one

stochastic model, all in their multivariate versions, for modelling correlation dynamics, are

presented. Besides this, we also give a short summary of various stylized features shown in
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asset returns, and three methods to deal with them, so that the motivation and tools of

extending existing models can be obtained. Meanwhile, some introductory illustrations on the

inferential methods for estimating GARCH models are also provided.

In Chapter 3, since mixtures are now to become an integral part of this thesis, we review the

formation, development history of this type of model and present some of its implementational

issues and estimation methods. Meanwhile, since inference is to be calculated using a

Bayesian method and this approach is intimately tied to the stochastic simulation techniques,

we review some MCMC tools in Chapter 4 with emphasis specifically put onto the Griddy

Gibbs sampler. Note that, these two Chapters serve the similar purpose as Chapter 2 since

majority of the contents are devoted to reviewing existing methodologies.

In Chapter 5, we use foreign exchange market as an example to perform empirical analysis of

forecasting performance of a variety of existing correlation models. After analysis, an

interesting finding is worth mentioning here. That is, unconditional distribution of realized

correlation shows bimodality. This feature has important implication in finance because it

provides a way to reveal the divergence of market views on future correlation. Given this

rationale, a spontaneously solution to enhance the traditional correlation dynamics is then to

incorporate its original structure to a new mixture model. And this step is taken in the next

chapter.

In Chapter 6, we combine the aforementioned feature (bimodality in bivariate distribution),

with some new ones (excess kurtosis, skewness, asymmetric correlation) to add to a standard

DCC to form a so-called ADCC-MGM model and ADCC-MTM model. After presenting the

specifications, we show how to estimate these models from a Bayesian’s perspective.

Specifically, for each parameter we start by giving a prior assumption for each of its marginal

densities (mostly assumed uniform) and then obtain their posterior sampling kernels. A

specific sampling sequence is given for each model and we also show how to generate

correlation forecasts, return forecast, minimized variance and VaR based on them.

In Chapter 7, we report the posterior simulation results and forecasting performances of

mixture models using two sets of simulated data and three sets of empirical data. Besides this,

model performances of a variety of other DCC variants, including ADCC-skew-t and AGDCC-

skew-t, are also analyzed and compared to one another.
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Finally, in Chapter 8 we provide the conclusion of this thesis with implications shown and

directions for future studies presented.

1.5 Summary
In this Chapter, we introduce the main scope of this research. It includes presenting the

motivation, economic contents, aim and structure of the whole thesis. Specifically, we are

interested in analyzing the correlation dynamics presented in various financial assets. And our

main aim is to device a new system, which is based on the current time-series modelling

structure, for forecasting future correlation (or covariance) both accurately and efficiently. To

achieve this goal, we implement two strategies. One is to utilizing the mixture modelling

technique to incorporate a pre-specified distributional assumption to an enhanced DCC. The

other is to combine a skewed version of standard distribution to another existing correlation

model so as to form a new dynamics. Concerning the inference, we use maximum likelihood

as well as a Bayesian approach to calculate (or approximate) the parameter values. And it is

confirmed that, after enhancing the model sophistication, forecasting performance of standard

DCC model does improve a lot.
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Chapter 2

Literature review (part one)
- Correlation and its associated models

Introduction
The main task of this Chapter is to illustrate some preliminary issues concerning the

correlation coefficient. Specifically, we will introduce its conception, assumptions and review

some recent developments on its associated models (two time series and one stochastic) and

their empirical applications in different financial markets. Besides this, we also present a brief

overview of various inferential methods for estimating GARCH models to highlight the

difference between maximum likelihood and the Bayesian approach that will both be

implemented in our later empirical analysis.
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2.1 Conception and assumptions
2.1.1 Conception
In statistics, correlation is defined as a quantity depicting the linear relationship between two

or more random variables. Since it can tell how much one is proportional to another, in a

variety of multivariate analyses this statistic is found useful.4 If, for example, (X,Y)T are two

relating variables with non-zero finite variance, their correlation ( , )X Y can be computed

using

( , )( , )
( ) ( )

Cov X YX Y
Var X Var Y

         (2.1)

where Var(X) Var(Y) represent the sample variance, Cov(X,Y)=E(XY)-E(X)E(Y) denotes the

sample covariance. Under strictly increasing linear transformation, it satisfies

( , ) ( ) ( , )X Y sign X Y         for any real numbers , ,    and  .

2.1.2 Assumptions
In equation (2.1), for the estimated correlation to be valid, usually three conditions need to be

satisfied. First, causality between variables of interest needs to be tested and confirmed to

ensure there is a realistic relationship between them. This step is essential because two

variables, even without any inherent linkage, could still lead to non-zero correlation due to the

pure coincidence. Second, to generate a valid correlation, it is required that underlying

observations of two variables follow normal distribution not only individually but also jointly.5

In finance, although one can argue from theoretical perspectives that, according to the Law of

large number, multivariate Gaussian is a valid assumption for conditional distribution of asset

returns, their unconditional distributions are frequently found to be non-Gaussian. Thirdly, it is

important to stress that correlation coefficient can only be used to capture the linear

dependence. Concerning this issue, consider now an example: If one is asked to calculate the

correlation between X and |X|, instinctively, an immediate answer might be that these two

variables have a non-zero correlation. Indeed, they are dependent on different domains, but, as

a whole, are actually yielding zero correlation. Through this comparison, it is clear that

correlation is actually a narrow-ranged dependence measure in statistics to depict relationships,

and it is only defined on a linear space. Correct interpretation of this feature is important

4  Proportional here means linearly related; that is, how much can the relationship be approximated by a
straight line?
5 The process of checking univariate normality is very easy. For example, one can rely on either Kolmogorov-
Smirnov test or Shapiro-Wilk normality test to test the hypothesis. However, for multivariate normality, its
associated test statistic is then far more difficult to calculate. Usually, we can, by performing visual analysis of
the sample data, shed some light on this issue. For example, if the scatter-plot of bivariate data presents clear
evidence of elliptical contour, then this data is very likely to be multivariate Gaussian distributed.
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because, for many financial variables, their true co-movement is actually non-linear. Consider

the typical volatility smile presented in the prices of an equity option for instance. Implied

volatility is negatively correlated to the strike prices through a concave function. That is,

implied volatility decreases rapidly when the strike price is relatively low, but much more

slowly when strike goes high. Since the gradient of each point on this curve is different, we

cannot rely on the simple linear analysis (correlation/a regression line) to properly depict the

relationship between these two variables.

Typical volatility smile of an ATM equity option

Given the above assumptions, it is not difficult to note that the validity of using correlation in

the real financial world is very easy to challenge. Actually, this is indeed the case, but not for

all situations. For example, in credit market, returns of most instruments such as bonds, CDS

and CDO apparently do not fit a normal distribution. They are inherently skewed because

creditors usually have a strong probability of making a relatively modest profit on the interest

of debt and a small chance of losing a large part of the initial outlay. In terms of a probability

curve, these characteristics are translated into a thick left tail and an upside limit. However, in

foreign exchange and equity markets, while the exact Gaussian is also seldom observed,

massive evidence confirms that non-normality of conditional return is often caused by fat tails

instead of excess skewness. For instance, for currency returns, little evidence can be found to

support the significant asymmetry in their conditional (or unconditional) distribution and

density of their returns usually presents an apparent bell shape. Given this feature, it is then

fair to say that using linear correlation in these markets is theoretically more valid than in

credit market.6 To obtain a clearer view of the structural difference of probability density of

credit return and FX/equity return, see below.

6  For example, like Riskmetrix, ‘Creditmetrix’ is also a JP-Morgan-based institution which provides the
industrial solution for credit research, analysis and trading. In their original model, they use the correlation
between assets returns rather than the credit returns (a linear function of the credit spread) to calculate the
default correlation of two or more credit instruments “…This is probably because asset returns are more
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Probability density of asset returns (equity/credit)

As will be shown in later Chapters, since all of the empirical data used in this research are

selected from either foreign exchange market or equity market and are, in most cases, assumed

to be Gaussian distributed, correlation for our cases is then reckoned a valid statistic to

compute. However, bear in mind that, theoretically, more prudent dependence measures (such

as ranking statistic of Spearman’s rho, Kendall’s Tau and other copular variants) are also

widely available in the literature. A full explanation of these alternative measures is beyond

the scope of this research, we thus only provide a brief illustration of their mechanisms and

characteristics in Appendix I.

2.2 Multivariate Correlation models
Above, we have described some introductory issues concerning the correlation coefficient. In

the following, we illustrate three multivariate tools for modeling its dynamics. Since volatility

and correlation are two inherently-related variables and a substantial amount of literature has

already been dedicated for estimating univariate volatility, emphasis of this section are put

onto illustrating those models using multivariate extensions of univariate volatility techniques

for quantifying the correlation’s evolving process.

Specifically, to incorporate the dynamic property, in the subsequent sections we gradually

relax the assumptions (a constant covariance matrix and a constant correlation) implied in

equation (2.1). That is, first, we let the evolving process of covariance (not correlation), as a

whole, be generated from a specific dynamic mechanism. Thus, correlation is allowed to be

time-varying. However, this is because covariance is now dynamic (EWMA, VECH, BEKK

and SV). Then, we relax this assumption by modelling the variance process of each time series

closely related to the equity returns which tend to be more normally distributed…”, See McGinty and
Beinstein (2004).
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in multivariate data separately and allow correlation itself to evolve dynamically. In this case,

again, correlation is time-varying, but now due to its own dynamics (DCC and its variants).

2.2.1 Exponential Weighted Moving Average (EWMA)
Now, we illustrate EWMA model. The EWMA model is a common risk management tool

initially developed by JP Morgan’s risk management team to estimate time-varying volatility

and covariance. Consider now a series of pseudo asset returns tr  or N dimensional tR , this

method computes univariate volatility by
2 2 2

1 1(1 )t t tr      (2.2)

and multivariate covariance using
'

1 1 1(1 )t t t tR R        (2.3)

where variance/covariance of the next day is computed by using squared return and

variance/covariance observed today. Here, if (2.2) and (2.3) are initialized by setting 0  and

0  equal to the sample variance/covariance, one can easily obtain a recursion function for

calculating in-sampling volatilities. That is,

2
1

0
(1 ) j

t t j
j

r  


 


     or '
1 1

0
(1 ) j

t t j t j
j

R R 


   


   (2.4)

In so doing, current smoothed values are then the exponentially weighted moving average of

past squared returns. Hence, EWMA is also called exponential smoother.

Conditional variance for its k-day ahead aggregated return is 1tk  , which means this model

now assumes a flat-term structure for future volatility and will perform like a random walk in

generating time-varying variance/covariance. However, note that most of the empirical

findings in financial literature suggest that volatility is unlikely to follow random walk and it is

undesirable to have a flat-term structure for forecasting purposes because all

variance/covariance forecasts, once generated, will be the same for all forecast horizons of

interest. Plus that volatility dynamics are now driven by a no-need-to-estimate parameter 
(no empirical fitting is needed), this method is then criticized by some researchers as being an

insufficiently prudent approach for calculating volatility, and using industrial standard 0.94 for

  is not only arbitrary but also inefficient, though very easy.7

7 In Riskmetric, decay factor λ is set to be a constant. 0.94 for daily data and 0.97 for weekly data.
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However, it does not mean that, in covariance modelling, using this approach then cannot

generate any significant benefits. At least, the positive definitiveness of covariance matrix can

be inherently guaranteed since squared return and covariance in equation (2.3) are both insured

to be positive semi-definitive. In addition, EWMA is also very easy to implement. For more

details on this model, see the methodology section in Chapter 5.

2.2.2 GARCH series models
Since the temporal aggregation assumed in EWMA is implausible, there is then a motivation

to propose a more flexible structure for modelling variance/covariance dynamics. In the

univariate context, Bollerslev (1986), based on Engle’s (1982) work, introduced a generalized

version of ARCH model by combining the parsimony in parameters and flexibility in lag

structure of conditional variance. The GARCH series model he proposed offers a convenient

framework for modeling some key dynamic features of asset returns including volatility

clustering, mean-reversion and long memory. Since covariance modeling through a

multivariate GARCH is usually based on techniques developed in the univariate analysis, we

briefly review some univariate GARCH literature in the following section before correlation

modelling through a multivariate GARCH is highlighted and illustrated.

a. Variance modelling via univariate GARCH
First, we present the most parsimonious form of univariate volatility evolving process

suggested in Bollerslev (1986). That is a GARCH (1,1),
2 2 2

1 1t t tr                   (2.5)

After repeated substitution, one can derive a seemingly EWMA type of dynamics from (2.5) as

the current volatility is again an exponentially weighted moving average of past square returns.

2 2
1

01
j

t t
j

r  







 
               (2.6)

However, note that there are crucial differences between these two approaches. In the GARCH

model, parameters are estimated by a rigorous inferential method, unlike EWMA in which the

parameters are set in an ad-hoc fashion. Besides, volatility stationarity is guaranteed since an

expansion of (2.6) would eventually lead dynamics to converge to a constant long-run value

( /1    ). However, for EWMA, only a random walk with noises is assumed (see Harvey,

1989). Moreover, by using GARCH model one can at least obtain a volatility term-structure

more realistically than the flat shape assumed in EWMA and higher-order specification can

also be more easily incorporated.
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Given so many advantages, numerous variants of GARCH model are then proposed in the

literature and these new developments usually go into two directions. One is to increase the

flexibility by changing the assumption of conditional return distribution so that extreme events

in financial markets can be more easily captured than in the normal (Gaussian) environment.

For example, Engle and Bollerslev (1986), in their treatment of asset return, used the t

distribution to replace Gaussian to account for the excess-kurtosis (fat tails). Lee and Tse

(1991) used Hermite polynomials to enhance a symmetric distribution and propose a so-called

Gram-Charlier expansion method. Liu and Brorsen (1995) tested asymmetric stable density;

Knight, Satchel and Tran (1995) implemented the double gamma distribution; Harvey and

Siddique (1999) considered the use of a non-central student t distribution. (See also Brannas

and Nordman, 2001, for a recent example of using log-generalized gamma distribution and a

Pearson IV distribution with a univariate GARCH). Second, this type of model is also

frequently extended in response to the leverage effect in volatility. That is, in financial markets,

especially in equity markets, negative returns usually boost volatility by more than a positive

return of the same absolute magnitude. To account for this effect, Nelson (1991) proposed the

exponential GARCH (EGARCH) by adding natural logarithm to conditional variance. Glosten,

Jagannathan and Runkel (1993) modified the variance equation by inserting a new lag-term to

variance equation so that conditional volatility follows one process when innovations are

positive and another otherwise. Furthermore, generalizations of their model (GJR) are also

proposed in the literature. For instance, in Hagerud (1996) and Gonzalez-Rivera (1996), the

authors added a logistic smooth transition function to volatility evolving process so that GJR

can be obtained as a special case. Similar methods of using Taylor expansion or putting

emphasis on conditional standard deviation instead of variance to account for the leverage

effects were also suggested (see Sentana, 1995, for Quadratic ARCH and Zakoian, 1994, for

Threshold GARCH). However, here, as far as the flexibility is concerned, it is then worth

mentioning Ding, Granger and Engle’s (1993) Asymmetric power ARCH, because their model

is so generalized that all asymmetric GARCH models mentioned above can be nested.

b. Covariance/Correlation modelling via MGARCH
It is not difficult to note that the aforementioned GARCH literature focus on only univariate

volatility. However, if the task is to model the volatility dynamic of a portfolio containing

multiple assets, it is then necessary we could extend univariate GARCH techniques to

multivariate versions for analysis.

Here, to propose a multivariate GARCH (MGARCH), usually two things need to be noted.

One is to ensure the positive definitiveness of resultant covariance. The other is to keep the
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proposed model as parsimonious as possible. Concerning the second issue, it is important

because computational cost is often a major concern for MGARCH models (i.e., our proposed

correlation mixture models). Thus, it is often desirable we can device a function parsimonious

enough for every covariance/correlation evolving process and tune the numerical algorithm

before inference is actually calculated. In order to achieve this task, usually we can by

performing a proper trimming in the parameter matrix to reduce the model dimensionality so

that overall estimation cost can be alleviated to an acceptable level.

In the following, we briefly review several typical MGARCH models. As stated earlier,

although the development of GARCH from univariate to multivariate has intrinsically allowed

the calculation of correlation as an inner product of variance-covariance matrix, this statistic

itself, in most of the early researches, was often assumed to be either fixed or following a

stable deterministic process. For example, Bollserlev (1990), in his multivariate GARCH, once

modelled the correlation using a constant. However, most empirical studies that attempted to

verify his findings have failed to confirm the validity of this assumption. In fact, a large

number of researchers find it quite reasonable to attest that correlations usually increase in

periods of high volatility and that both magnitude and persistence of this statistic is affected by

volatility, suggesting that this coefficient is more likely a time-varying variable.

To account for this feature, financial researchers then start to propose various generalizations

of univariate GARCH. For example, Bollserlev et al., (1988) and Engle and Kroner (1995)

proposed solutions like VECH and BEKK which assume covariance to evolve according to

 VECH: '
1 1 1( ) ( ) ( ) ( )t t t tvec vec C Avec R R Bvec               (2.7)

and

              BEKK: ' ' ' '
1 1 1t t t tCC AR R A B B        (2.8)

where vec(.) is a column operator converting upper triangular elements of a N dimensional

symmetric matrix into a N(N+1)/2×1 column vector and A, B are N(N+1)/2 squared

symmetric matrix. Indeed, in above equations, correlation is now allowed to change over time.

However, it is worth noting that its time-varying property was given only because the

covariance matrix, as a whole, is now assumed to evolve dynamically. Besides,

implementation of these models often involves various difficulties such as the curse of

dimensionality and negative-definiteness. For example, VECH model is frequently associated

with a very large parameter vector (21 parameters need to be estimated for calculating

correlation in a bivariate case) with no guarantee of positive definitiveness for its resultant

covariance. In the case of BEKK, although it can partially resolve the VECH’s problem
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(positive definitiveness) by introducing a different parameterization, non-linear constraints

usually have to be imposed in order to ensure the covariance stationarity. Taken together,

empirical potentials of these MGARCH models are then rather limited. And it is not until

recently a significant breakthrough was observed in this streamline of literature.

Engle (2002) generalized the CCC model of Bollserlev (1990) to put forward the Dynamic

Conditional Correlation (DCC) model in which the variance-covariance matrix can be

decomposed into two separate functions for modelling. One corresponds to univariate

volatility; the other corresponds to time-varying correlation. Note that this separation is a

crucial step to differentiate DCC from other MGARCH models because a decentralized

estimation procedure which can resolve the large system problem is now provided (DCC can

be used to analyze a large portfolio). For example, in other forms of MGARCH models,

estimation is usually performed by maximizing the log-likelihood function with respect to the

whole parameter set including those governing the univariate volatility process and those

governing the covariance evolving process. However, for DCC, an appropriate univariate

GARCH is fitted to each asset return in the first place (models will be different from asset to

asset). Then, these returns, after being standardized by the estimated GARCH volatility, are

fitted to another GARCH so that evolving process of an arbitrary covariance matrix can be

modelled and finally correlation matrix after transformation can be obtained. Given this

feature, a multivariate problem is then successfully decomposed to a series of univariate

problems and it is reasonable to expect a substantially lower estimation cost. Besides, the

correlation’s dynamic property is now given without the help of any intermediate product

(covariance).

Given these advantages, non-linear generalizations of standard DCC were then brought into

light by various authors. For example, to allow for asymmetric response of conditional

correlation to past shocks, Sheppard (2002) introduced ADCC by incorporating two factors.

One is an asset-specific correlation news impact curve; the other is an asymmetric factor. To

ensure the positive definitiveness, Cappoiello, Engle and Sheppard (2003) introduced the

structure breaks and a BEKK-type parameterization. A similar property in Hafner and Franses

(2003) is guaranteed by squaring the values of all correlation parameters. Besides these, here it

is also worth mentioning Cajigas and Urga’s (2005) AGDCC model in which asset returns are

assumed to be asymmetric Laplace distributed. Note that their model is so generalized that all

DCC variants mentioned above can be nested. Recently, new developments and refinements of

standard DCC are still being proposed in the literature. For instance, to allow for the

multivariate thresholds, Andrino and Trojani (2005) proposed the tree-structured DCC. To
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perform the sectorial asset allocation, Billio, Caporin and Gobbo (2006) introduced a block-

diagonal structure to relax the common dynamics. And, by exploiting the Engle and Lee’s

(1999) idea of using different component specifications to quantify short- and long- sources

that affect volatility dynamics, Colacito, Engle and Ghysels (2009) introduced the DCC-

MADIS model. To see more details on these newly invented DCC variants, an illustration is

provided in Appendix II.

2.2.3 Multivariate stochastic volatility models
Thus far, our discussion has explicitly focused on using time series models to capture the co-

movement between multiple assets based on the assumption that covariance (or correlation

directly) follows autoregressive processes. However, these time varying co-movements can

also be captured using unobserved component models which assume the covariance (or

correlation) to vary stochastically.

In the univariate context, stochastic volatility (SV) model introduced and popularized by

Harvey, Ruiz and Shephard (1994) and Jacquier, Polson and Rossi (1994) has already been

confirmed as a success in explaining the jump-diffusion process of volatility. Through either

quasi-maximum likelihood or a Bayesian approach, its inference can be easily calculated.

However, in the multivariate settings, as in the case of GARCH, it is then very difficult to

generalize SV to allow for time-varying correlation.

As Bos and Gould (2007, p2) illustrate, “…each possible choice for the parameterisation

implies a certain restriction in either the space of the possible covariance or correlations. Also,

allowing e.g. all correlations to evolve dynamically over time, can lead to a high number of

parameters, even for a relatively low number of assets …”

To the author’s knowledge, very few pieces of literature are devoted to this topic and the only

known contribution of studying multivariate SV with stochastic correlation is made by Yu and

Meyer (2006). In their model, univariate return of each asset in a portfolio is assumed to have

a SV type variance whilst correlation is modelled independently by a transformed random

walk. 8  Concerning their inference, in the article by Harvey, Ruiz and Shephard (1994)

multivariate SV model with constant correlation is estimated by quasi-maximum likelihood

(QML) after the model is linearised so that standard Kalman filtering techniques can be

8 Yu and Meyer (2006) used a rescaled sigmoid function to transform a random walk process to calculate
correlation so that the resulting value is bounded in (-1, 1). If qt now represents this random walk process,
stochastic correlation is then modelled by ( 1) /( 1)t tq q

t e e    , where qt =qt+ηt; ηt ~N (o,δt)



- 22 -

adopted. However, while stochastic correlation is introduced, a more generalized way to deal

with the non-linear state space model called ‘Single Source of Error’ (SSOE) then needs to be

adopted (see Ord, Snyder, Koehler, Hyndman and Leeds, 2005, for details).

2.3 Inferential methods for GARCH models
Above, we have described three ways of proposing dynamic correlation models. Two are using

time-series structures. The remaining is exploiting the stochastic theorem. Letting aside the

flexibility, since in the real terms computational cost of estimating a state space model is

frequently found substantially higher than fitting a time series model, it is then preferred we

can use the first way to give arise to a new DCC. And it spontaneously becomes the target of

this research. In this section, to meet this need, we provide an introductory description of some

inferential methods for estimating MGARCH models after they are proposed. More detailed

illustration on this topic can also be found in section 3.6 and Chapter 4.

Given a distributional assumption, inference of GARCH models is usually calculated by

maximum likelihood (ML) or quasi-maximum likelihood (QML) through numerical

approximation on the target log-likelihood derivatives. A specific optimization tool such as

Newton-Raphson will be applied iteratively to search for a global optimum (if possible) for the

parameter of interest until the convergence of the resulting estimator. To perform this task, it is

often required that first-order derivatives of log-likelihood function (Gradient), as well as

second-order derivates (Hessian), for each parameter can be found. Although the gradient

function, given an analytical density form, is easy to generate, empirically, numerical

differentiation of Hessian matrix especially for a MGARCH model is troublesome. To

alleviate this difficulty, a popular method is then to exploit a result from Berndt et al (1974)’s

studies on the system of simultaneous equations to replace the exact Hessian with an

(asymptotically equivalent) matrix of outer products (OP) of Gradients. Often, to achieve the

convergence, this method called BHHH requires a larger number of iterations than Newton-

Raphson, but a much simpler calculation at each step. Fiorentini et al, (1996) took a further

step to circumvent the non-trivial numerical approximation by obtaining a closed-form

approximation of Gradient and Hessian for each parameter in a univariate GARCH. However,

in order to locate the global maximum for the log-likelihood function, a mixed-gradient

algorithm, which combines the estimated information matrix with the exact Hessian, is then

needed. Among other works, here it is worth noting the asymptotic quasi-maximum likelihood

(QML) estimator of Lee and Hensen (1994). In the univariate context and under lower-lever

conditions, these authors proved that consistency of QML estimator can be ensured even if
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unconditional return is found not Gaussian-distributed (provided that conditional mean and

conditional variance are now correctly specified). Similar evidence for MGARCH models is

also provided (see Jeantheau, 1998 for consistency and Gourieroux, 1997 for asymptotic

normality).

Apart from the classical inferential method (ML), inference of MGARCH models can also be

studied using a MCMC algorithm. This stochastic simulation technique is usually performed

in a Bayesian framework. Unlike ML, its aim is not to find a point estimator that can globally

maximizing the log-likelihood function, but to reproduce the joint distribution of the whole

parameter set. Since quantification of the resultant estimator is now given through a

distributional form, parameter uncertainty attached to the model response is allowed. Besides,

efficiency of the estimator is also ensured, but now by Law of large Number and Central Limit

theorem.9

As Geweke (2005 p23) puts it, “…Bayesian approach provides not only a more fluent

communication between the investigator and potential results but greatly expands the choices

of the models by considering uncertainty of parameters…”

Given the capability of solving high-dimensional problems, the Bayesian method is, however,

much less frequently applied in statistical literature to estimate quantitative models compared

to ML. This is mainly due to the high computational cost associated with its implementation.

For example, in the early days although a Bayesian statistician can steadily resolve a complex

estimation task by either sampling a high-dimensional density directly or transforming this

task into a series of unidimensional jobs, the appearance of a posterior density that was

difficult to manipulate analytically was very common. Given this problem, one then had to use

numerical approximation techniques rather than direct sampling to generate each new draws.

In this case, calculating a high-dimensional integral was then often required and this task, for a

non-analytical sampling kernel, was especially troublesome. 10  However, thanks to the

innovations in stochastic simulation techniques and modern computational facilities, this

problem was resolved after the monographs by Metropolis et al., (1953); Hastings (1970);

Geman and Geman (1984) and Gelfand and Smith (1990). Since the introduction of their

MCMC techniques, simulation of a non-analytical function no longer needs to rely on a series

of independent draws from the density of interest, but can use the realization of a specific

9 In the simulation framework, Law of large number supplies the result that the more simulated values, the
better the approximation. Central limit theorem offers a measure for the approximation error.
10 Empirically, the joint posterior density (the kernel to be simulated) is usually high-dimensional. This is
because, even for a very simple model, it usually contains more than two parameters.
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Markov Chain, a series of dependent points, to approximate the target distribution. Given this

relaxation of the assumption, the extent and potentials of the Bayesian approach in statistical

learning are then considerably widened.

As cited from McLachlan and Peel (2000 p53), “…with the advent of inexpensive, high speed

computers and the simultaneous rapid development in posterior simulation technique such as

the Markov Chain Monte Carlo (MCMC) methods for enabling Bayesian estimation to be

undertaken, practitioners are now increasingly turning to Bayesian methods for the analysis of

complicated statistical model…”

Concerning its use in conditional heteroskedastic models, several attempts have been made in

the literature and massive evidence were found confirming the informativeness of resultant

Bayesian inferences. For example, Geweke (1989) used the importance sampling technique of

Hammersley and Handscomb (1964) to estimate a univariate GARCH with Gaussian

innovation. A similar attempt using student t for modelling conditional return is considered in

Kleibergen and Van Dijk (1993). Besides, in the univariate context the Metropolis-Hasting

algorithm is applied in Geweke (1993) to simulate posterior draws for IGARCH, while a

Griddy-Gibbs sampler of Ritter and Tanner (1992) is used in Bauwens and Lubrano (1998) to

estimate a MGARCH. Here, it is especially worth noting the work of Bauwens et al., (1998)

where, in the multivariate context, the authors conducted a thorough comparison of posterior

results generated from three different MCMC techniques for estimating GARCH models. One

is importance sampling; the other two are Metropolis Hastings (MH) algorithm and Gibbs

sampler respectively. After several experiments, the authors found the importance sampler

could provide an accurate estimate of the conditional moments, but was less precise in

approximating marginal densities. Training of MH on GARCH often failed to explore enough

of the tail behaviours. Only the Griddy-Gibbs sampler can produce most of the posterior

characteristics accurately using a moderate number of random draw, although robustness of

their resultant estimators does not come free. However, implementation of this algorithm is

usually associated with massive computational time (See Chapter 4 for a more detailed

explanation of this algorithm and other MCMC techniques).

Besides, MCMC algorithms are also found having a lot of potential in estimating state space

models (or latent factor models). In particular, much research in this area has been performed

to analyze stochastic volatility (SV) models. For example, Chib et al., (2002) used Bayesian

approach to estimate a high dimensional SV. Cappuccio, Lubian and Raggi (2004) provided

recent evidence of using three different MCMC techniques suggested in Jaquier et al., (1994,
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1999) and Tierney and Mira (1999) to calculate the inference for a standard SV model where

conditional innovations are assumed to be skew-GED distributed.

Apart from the typical forms of heterogeneity that have been thoroughly analyzed in the

literature (like standard GARCH and univariate SV), recently there is another growing body of

works which favour mixing exotic stochastic processes with simpler ones. For example, by

mixing a standard autoregressive process, such as GARCH, with a flexible distributional

assumption, one can propose a generalized volatility/correlation model so that the

heteroskedastic, leptokurtic and heavy-tailed features of the financial time series can be

simultaneously accounted. Taking the mixture distribution for instance, it is then natural to

consider its use in conjunction with a MGARCH. This attempt in the literature has already

been made and will be reviewed in the next Chapter. As for our purposes here, we only want to

stress the fact that inferences of this type of models is often calculated by Bayesian approach

since estimation of a large parameter set and a complicated likelihood function are now

concurrently required. For instance, Ausín and Paleano (2005) used a variant of Gibbs sampler

to estimate a univariate GARCH with Gaussian mixture distributed errors. The authors

introduced a contaminating factor to link the variance of two component distributions so that

probability of extreme events, which is determined by a high-variance Gaussian, can relate to

the probability of normal events that are controlled by another low-variance Gaussian. A more

generalized covariance evolving process assuming mixture distributed innovations is studied in

Bauwens, Hafner and Rombouts (2006), where a diagonal VECH model this time is used.

2.4 Summary
In this Chapter, we provide some introductory descriptions of the correlation. First, some basic

issues on this statistic including its conception and assumption are illustrated. Then, three

types of models for capturing its dynamic property are presented. Among them, two are using

time series tools. One is exploiting the stochastic theorem. Since the aim of this research is to

propose a new DCC type model based on the Engle (2002)’s work, we describe the virtue of

two inferential methods for estimating MGARCH models once they are proposed. Concerning

the details of the motivation of proposing these new developments and Bayesian methods of

estimating them, we illustrate and review them in the next two Chapters.
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Chapter 3

Literature reviews (part two)
-Finite Mixture model and its estimation techniques

Introduction
The main purpose of this chapter is to review various aspects of the finite mixture model. This

model is an integral part of this thesis and it lays the foundation for the conditional

heteroskedastic correlation mixture models to be proposed in chapter 6. In the first section, we

review some typical methods for tackling non-Gaussian features exhibited in the financial

time-series and give arise to the motivation of using mixture model in this thesis to enhance

the distributional characteristics to be assumed in our correlation evolving process. Then, in

the next two sections, we respectively illustrate the main probabilistic properties, development

history, mixing strategies and some implementational issues of this type of model and give two

examples of it, namely, the multivariate Gaussian mixture (MGM) and multivariate T mixture

(MTM). Finally, various techniques for estimating them are also briefly discussed. Specifically,

we start by describing some introductory optimization tools proposed in the early days. Then, a

comprehensive overview of iteration-based algorithms for fitting mixture models is provided.

For those techniques developed after the 1970s, emphasis is put onto the classical-inference

based EM algorithm and Bayesian-inference based Monte Carlo sampling methods.
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3.1 Methods to tackle non-Gaussian features
As can be recalled from the last chapter, we have mentioned a current trend for proposing

generalized correlation model is to mixing a standard autoregressive process (like a GARCH)

with a flexible and plausible distributional assumption. Since our research work is partially

based on this virtue, it is then beneficial to know the contributions that have already been made

on this streamline of the literature. Here, to review these works, we start by illustrating some

stylized features that are frequently exhibited in financial returns because these features

provide the exact motivation of extending existing correlation models. And methods for

tackling them can be directly transformed as a tool for developing new DCC variants.

First, a well-known feature of financial returns is their heavy-tailed distribution. In many

foundational theories of mathematical finance, e g, option-pricing model of Black and Scholes

(1973), portfolio theory of Markowitz (1952) and CAPM (APT) asset-pricing model, returns

are unanimously assumed to be multivariate Gaussian distributed. Although, as a reasonable

first approximation to the reality, it can give arise to a lot of tractable forms, empirically this

conjecture is often found severely underestimating the probability of extreme events. In

particular, during the aftermath of 1987’s market crash and 2007’s credit crunch, the

deficiency of using Gaussian as a valid assumption for risk models is then clearly recognized.

Besides, it is widely-accepted that high-frequency returns could also show asymmetry and

high peakedness. However, an interesting finding is that these features could vary

systematically from market to market. For example, FX returns are usually found high-peaked

but approximately symmetric around zero whilst in equity market pronounced evidence of

negative skewness is then discovered.

Given these features, to account for them is always very important for any financial models

because their appearances are often directly related to the theoretical validity of the model

inferences. In order to tackle them, usually we have three choices. One is to assume a proper

stochastic process other than the general diffusion (with time-varying volatility and possibly

mean-reverting) for conditional returns. Second is to fit a given parameter function or apply a

so-called expansion method to reconstitute the conditional distribution being modelled. Finally,

we can also use a semi-parametric technique (mixture modelling technique). In the following,

we respectively describe these solutions.

a. Using a stochastic process to capture the stylized features
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First, since unconditional returns are usually found non-Gaussian, many researchers then argue

we could move beyond the traditional lognormal assumption by assuming a more appropriate

stochastic process for price dynamics. In the literature, there are several works, which extend

the traditional geometric Brownian motion, worth noting here. They are the pure jump process

of Cox and Ross (1976), jump-diffusion developed by Merton (1976), and Lévy process

suggested in Benhamou (2000). Using any of these processes for modelling conditional return

can yield leptokurtosis and fatter tails than Gaussian in resultant distribution.

Take jump-diffusion as an example. This stochastic process models return using a Poisson

mixture of Gaussian distribution so that total changes in asset price can be decomposed into

‘normal’ and ‘abnormal’ components.11 The ‘normal’ component is modelled by a general

diffusion process (Geometric Brownian motion) which is set up to capture the stock price

dynamics without spikes. Discontinuous ‘abnormal’ component is given by a Poisson process

which is applied only when a more-than-marginal change is observed. To define the Poisson

component, usually three parameters are needed. They are frequency of a jump, its expected

size, and the possible standard deviation of this jump within a short period of time. To

calibrate the model, Beckers (1981) employed the method of cumulants; Ball and Torous

(1983) studied the maximum likelihood; Henson and Westman (2002) applied the un-weighted

least square.

Concerning the pure jump, it is a special case of jump-diffusion when the diffusion component

in the later process is set to be constant. As for the Lévy process, its generating mechanism is

the most flexible of the three. Since both continuous diffusion and discontinuous jumps can be

included, this process provides the most generalized method at hand for modelling asset

returns stochastically. For its applications in finance, see Benhamou (2000) for its

implementation in option pricing and Gander and Stephens (2005) for its uses in stochastic

volatility modelling.

b. Using expansion method or a parametric function

11  Here, it is important to make a clear distinction between Poisson mixture of Gaussian and the finite
Gaussian mixture, to be illustrated in later chapters of this thesis, since they are inherently related to each other.
The Poisson mixture of Gaussian, according to Beckers (1981), models the density function p(x) of daily asset

returns using
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densities are very close to each other. For example, for small value of  , Poisson mixture and Bernoulli
mixture are practically indistinguishable. This is because the sum of a series of i.i.d. Bernoulli variables will
statistically approximate a binomial distribution, which will converge to the Poisson process if the number of
these i.i.d variables included is now very large.
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Above, we have just illustrated a method of capturing stylized features of financial returns

through a direct modification of the stochastic process. However, since most of the modelling

task is only to account for the non-Gaussian features in a distributional form, using this

assumption to change the virtue of overall return dynamics is, then, clearly too restrictive.

Here, a more straightforward and cheaper solution is to fit a given parametric or non-

parametric function to conditional returns.

For example, if target returns only present features showing small deviations from Gaussian,

we can apply a so-called cumulant expansion method (Edgeworth series or Gram-Charlier

series). The virtue of this method is to augment a base density (say Gaussian) with an infinite

sum of its cumulants (a series of Hermite polynomials) so that the base density can be

reconstituted, showing small deviation in tail behaviours. This approach has been empirically

proved useful in modelling weakly non-linear growth of fluctuations. However, a serious

shortcoming is that its augmented p.d.f (probability density function) may sometimes be ill-

defined. For example, it could assign non-zero probability to negative densities. Although the

positive definitiveness of the resultant covariance matrix still can be ensured if, for example,

one expands a symmetric distribution like Gamma using a series of Laguerre polynomials,

empirical use of these methods in modelling financial returns is rare because characteristics of

non-Gaussians presented in unconditional return distribution are usually significant (in the

form of a much fatter tail and leptokurtosis).

To account for more leptokurtosis, countless researchers then start to use a parametric function,

more generalized than those standard ones (Gaussian), for modelling return dynamics.

Concerning this task, in literature there is a wide class of distributions one can choose. Apart

from the elementary examples that have been repeatedly investigated, such as Beta, Gamma,

Student t, Laplace and Lognormal, analyzing generalized forms of these simple distributions

has also attracted a lot of interests. For example, Bookstaber and McDonald (1987) proposed

the Generalized Beta distribution of the second kind (GB2) whose density presents a

lognormal-style distribution shape. Karian, Dudewicz and McDonald (1996) introduced the

Generalized Lambda distribution whose density also allows for a variety of shapes. Other

potentially interesting ones include Generalized Exponential distribution of Nelson (1991),

Asymmetric Exponential distribution of Fernández, Osiewalski and Steel (1995), Double

Weibull distribution proposed by Mittnik and Rachev (1993), Double Exponential distribution

suggested in Granger and Ding (1995) and Hyperbolic distribution given by Kuechler,

Neumann, Soerensen and Streller (1999) (see also Engle and Gonzalez-Rivera, 1991; Hafner

and Rombouts, 2004 for a non-parametric extension).
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As can be easily noted, most of the densities mentioned above were proposed more than a

decade ago and can be applied only in a univariate model; nowadays, however, since, in the

financial context, more attention has been paid to the multivariate problems (i.e., using

MGARCH models to fitting time-varying covariance matrix) there is an urgent need to

introduce higher moments directly into a multivariate distribution. For example, by exploiting

a result from Azzalini (1985), Bauwens and Laurent (2002) introduced the Multivariate Skew-

Student t distribution. A generalization of the Multivariate Elliptical distribution is proposed in

Branco and Dey (2001). Among others, here it is worth noting the Asymmetric Multivariate

Laplace (AML) distribution of Kotz, Kozubowski and Podgorski (2003) because higher

moments (both skewness and kurtosis) of their density are now incorporated by only one

additional parameter. Since most of the modern financial models themselves are often

associated with a very complicated specification, parsimony of this density is then clearly an

advantage over other alternatives (see Hanson and Zhu, 2004; Sepp, 2004; Heyde and Kou,

2004; Cajigas and Uever, Urga, 2005; and Komunjer, 2005 for its applications). 12 Besides, if

the flexibility is the only concern, it is then worth mentioning the Generalised Hyperbolic (GH)

distribution of Barndorff-Nielsen (1977) (see Bibby and Sørensen, 2003; Barndorff-Nielsen

and Sheppard, 2001 for an overview of its development). Note that, this density is so

generalized that even AML is a limiting case of it. However, as a price to pay, its associated

estimation cost is also massive. Thus, it is not surprising that this model is seldom applied in

empirical analysis. However, several papers contributing to its developments are still worth

mentioning here. For example, Mencia and Sentana (2004) analysed a GH distribution in a

multivariate conditionally heteroskedastic dynamic regression model. Schoutens (2003)

developed its use in the Lévy and Ornstein-Uhlenbck (OU) process. For a complementary

review of other multivariate asymmetric distributions, see also chapter 7.

c. Using a mixture modeling technique
In addition to a single parametric or non-parametric function, in fitting multivariate returns

some empirical studies have also confirmed the effectiveness of using a finite mixture

distribution. The investigation of this distribution has a long history in statistics and its use can

generate a lot of appealing characteristics. For example, as illustrated in McLachlan and Peel

(2000 p46), “…by adding up a sufficient number of component distributions any multivariate

12 The recent models used to account for the high moments (3rd and 4th moments) usually include at least two
additional parameters. One is to capture the skewness, the other is to capture the leptokurtosis. However, in
AML only one parameter is enough to capture both these two high moments. Therefore, its specification is
parsimonious.
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distribution can be approximated to arbitrary accuracy, moreover, an exact ‘copy’ of the

original can also be expected if an infinite mixture of different contributions is used…” Since

many stylized features such as multi-modality, skewness, excess kurtosis and heavy tails can

be simultaneously included, using this method for modeling conditional returns then seems an

ideal solution to increase the flexibility of a standard DCC although the specifications they

give could be very complicated.

Empirically, most financial researchers are inclined to use Gaussian as component to construct

standard mixture models (probably due to its numerically tractable density form). For example,

to our best knowledge, Vlaar and Palm (1993) provided the first attempt to model innovations

of a univariate GARCH to be Gaussian mixture-distributed. Ausin and Galeano (2005), based

on Bai, Russell and Tiao (2003), performed a similar piece of work where a contaminating

factor for modelling variance in different environments is included. In the multivariate context,

Haas, Mittnik, and Paolella (2004), by extending the work of Wong and Li (2000), developed

two distinct ways of proposing mixtures of Gaussian. One is to mix Gaussian distribution. The

other is to mix Gaussian variables. Bauwens, Hafner and Rombouts (2006) provided the most

recent evidence of incorporating this density to a covariance stationary VECH model.

Although it is known that, by mixing different Gaussians, a variety of density shapes can be

easily reproduced; in empirical analysis the number of components included in such a mixture

seldom exceeds two, due to the numerical cost concern. In such cases, to increase the

flexibility, it is then preferred to introduce a more generalized density than Gaussian as

component to construct the mixture. For example, Maclachlan and Peel (2000), in their

research, proposed the t mixture model. Casarin (2003) studied the stable mixture. Haas et al.,

(2005) introduced the Paretian mixture.

3.2 Finite Mixture Model
Above, we have highlighted some advantages of using mixtures for tackling financial return’s

non Gaussian features. Here, a point needs to be stressed is using this distributional form not

only can yield some traditional benefits such as incorporating fat tails, more importantly, it can

also allow for the multi-modality that usually cannot be captured by other methods. As to be

shown in later chapters, unconditional distribution of realized return, volatility and correlation

often present multiple peaks (see chapter 5). It is probably because heterogeneous groups of

market participants are now simultaneously forming their expectation of how future market

will move. Since their opinions are usually different from each other, in a distributional form
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such typical sign showing the divergence of expectation is then reflected through the

multimodality. And it is nature to consider using a finite mixture model to tackle this problem.

Given this motivation, in the following we describe how to build such a model.

First, we give its definition. Finite mixture model (FM), as can be directly inferred from its

name, is a model where probability density of observations is formed by a discrete mixture of

a finite number of single densities. Since its response data is generated by at least two different

dynamic processes, this model provides a flexible, convenient and semi-parametric method for

modelling sophisticated distributions.13

Consider a d-dimensional time series 1{ }T
ty  with T observations, if its probability density

( )y  filtered by the past information set Ft-1 is now given by a mixture of M component and

each component is allowed to have its own distributional form. After data augmentation,14

( )y is then written as

   1 1
| |M

t t m m t mm
y F p y  

          (3.1)

where  |m t mp y   denotes the density function of mth component, m represents its

corresponding parameter set and m  represents the weight parameter that satisfies

 0, 1m m      for all 1m M  .

3.2.1 Development History
Since this model is very flexible in accounting for distributional characteristics, statisticians

have been using it for a long time and the first attempt was made by the famous biometrician

Karl Pearson in his classical 1894 paper where a moment-matching technique is used to fit a

two-component normal mixture. However, after that, it suddenly lost its appeals among

researchers and evaporated from the literature for a fairly long time. And it was not until Rao

(1948) that this topic was reactivated again. This is because, in early days, estimation of all

models had to be done by manual calculation. Indeed, estimating such a sophisticated model

was inevitably a laborious task.

13 The reason why finite mixture (FM) modelling is categorized as a semi-parametric technique is explained in
Jordan and Xu (1995). Briefly, when the density functions of all components can be specified before mixing,
the model is regarded as obtaining a parametric form. However, if the number of components is allowed to
grow, it then leads to a non-parametric model. Here, a niche between both sides is then classified as semi-
parametric.
14 Data augmentation is a technique of introducing component labels to sample data so as to construct the full
information set. Once this approach is adopted, usually one can obtain knowledge such as the fact that a
specific observation is generated by a particular component in the mixture. For a detailed illustration of this
technique, see Chapter 5.
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However, after 1970, due to technological advances and development of some elegant iterative

techniques, the advantage of using finite mixture was then re-addressed. For example, in

classical inferential framework, Day (1969) and Wolfe (1970) formularized the first analytical

maximum likelihood (ML) estimation procedure for Gaussian mixtures. By augmenting the

existing observations with a latent variable, Dempster et al. (1977) made a revolutionary

contribution by introducing a so-called Expectation Maximization (EM) algorithm for fitting

various mixtures (see Aitkin and Aitkin, 1996; Titterington, Smith, Makov, 1985; and

Mclachlan and Basford, 1988, for details). Similarly, in the Bayesian frameworks, the

inferences of these models are also studied and a stochastic simulation technique called

MCMC was developed by Tanner and Wong (1987) and Gelfand and Smith (1990) to perform

the mixture learning.

Nowadays, benefiting from the availability of much cheaper computing facilities, the extent

and potential of mixture model are even more widely extended. Its applications now can be

traced to many different areas for modeling random phenomena. For instance, in statistics,

apart from the traditional use of mixture models in cluster analysis, this technique is now also

applied to survival analysis, discriminant analysis and image construction. For a more detailed

review of these issues, see Everitt (1996), McLachlan and Peel (2000) and Dias (2004).

3.2.2 Standard Mixtures and Hybrid Mixtures
Given equation (3.1), we have two ways to construct a mixture model. One is to choose all

components from the same parametric family to build a so-called standard mixture. Meanwhile,

we can also select components from different distributional groups to form a hybrid mixture.

As far as the flexibility is concerned, the hybrid way is usually considered as a better choice

than its alternative because different styles of distributional characteristics can be

simultaneously included. However, in practice most researchers are still inclined to use

standard mixture for modeling heterogeneity because its associated computational

sophistication is much lower. And among various choices it is those whose components are

formed by distributional variants included in the exponential distribution family that are used

the most in empirical researches (for example, Gaussian mixture). In the following, we

respectively describe these two ways of forming mixtures.

a. Standard Mixtures

First, for constructing standard mixtures, in statistics we have a variety of choices. However,

as far as popularity is concerned, it is then especially worth mentioning the multivariate

Gaussian mixture (MGM) because this model is the one that is most frequently applied by
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different financial researchers. Although its specification is relatively simple, given sufficient

number of components included, its flexibility is usually considered as enough for capturing

the high moments of asset return to a given accuracy. And one can observe a lot of its

applications in empirical researches. For example, in the context of stochastic modeling,

Labidi and An (2000) used MGM to analyze the equity index returns. McNeil, Nyfeler and

Frey (2001) applied it to model credit product returns. In risk management, current version of

RiskMetricsTM employed a two-component MGM to evaluate the market-risk models. A

similar approach to calculate Value at Risk (VaR) is adopted by Venkartaraman (1997).

Besides, this mixture is also used in several cases to resolve the asset allocation problems. For

example, in Buckley et al., (2002) the authors used Gaussian mixture to fit the returns of a

hedge fund portfolio and then generated the optimal investment weights for each asset.

In recent years, increasingly, apart from the above example, attempts are also made to propose

standard mixtures using components other than Gaussian. For example, McLachlan and Peel

(2000) proposed the multivariate T mixture; Kuester, Mittnik and Paolella (2005) studied the

multivariate GED mixture. Haas, Mittnik, Paolella and Steude (2005) introduced the

multivariate stable Paretian mixture. Here, concerning these models, it is necessary to note that

their respective advantages are different, although generality is roughly the same. The first two

are especially good at accounting for tail-behavior, whilst the third outperforms others only

from a theoretical perspective. Specifically, as pointed out by Mandelbrot (1963, p5) and Fama

(1965), since “…stable Paretian is the only valid distribution that can arise as a limiting

distribution for the sums of i.i.d random variates…”, there is then a motivation to use this

distribution as a theoretically valid assumption to propose mixture for modeling return

dynamics, as the logarithm of asset return itself is known to follow additive principle based on

the central limit theorem.15 (See also Mittnik and Rachev, 1993a and b; Rachev, Kim and

Mittnik, 1999; and Rachev, 2003, for more details on stable Paretian).

b. Hybrid Mixtures

Compared to the standard mixture, hybrid mixing is a strategy which can outlines the true

virtue of ‘mixture’; however its empirical applications are not as numerous as its alternative.16

15 Return of a financial asset given the prices at time 0, P0, and at time 1, P1 is generally depicted in the form of
R1 =(P1- P0)/ P0. However for the ease of capturing stylized factor, it is also popularized by various authors
adding a logarithm to the above function. Meanwhile, the difference between returns can be even more
magnified after being multiplied by a constant throughout the sampling period. Thus, in a log-return series, the
return is said to follow the additive principle; for example, the weekly return is the summation of the i.i.d daily
return. The daily return is then the summation of even higher frequency returns if it is empirically available.
16 ‘Mixture’ in the common sense is to make a combination of things with different characteristics. However in
the finance literature, its application seems more concentrated on the mixture of the same distribution but with
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And to our best knowledge, it was not until 1970s this type of model was formally introduced

in the finance context.

DuMouchel (1973) was the first to use a univariate mixture of normal and stable Paretian to

model distribution of common stock prices. He found that the excess kurtosis and fat-tails that

frequently characterize the return distributions could be remarkably well captured by his model.

A similar strategy is adopted in Bones et al (1974), where evidence supporting the superiority

of hybrid mixing was found again. Here, concerning their models, it is necessary to note that

the mixture components were chosen based on the traditional ‘stable’ law; that is, the density

can allow for possibly different behaviors in different segments of sampling data or, in a

similar vein, it is expected that, within different segments, one will only be able to observe

minor changes with small probability. Although this theorem was favored by researchers in

early days such as Mandelbrot (1963) and Fama (1965), recent investigations show that more

coherence to the empirical data can be achieved when sudden breaks or jumps are also taken

into account. For instance, we can apply the ‘geometric stable law’ to asset return so that

stability of a dynamic process is preserved only before the occurrence of an unexpected shock.

Rachev and SenGupta (1993) tested this hypothesis and proposed an alternative to DuMouchel

(1973) by suggesting a combination of Laplace and Weibull distributions. By replacing

Gaussian component with the geometrically stabled Laplace distribution and stable Paretian

with Weibull distribution, they found the significant evidence of outperformance of their

model over DuMouchel (1973)’s.17

Besides this, hybrid mixtures are also analyzed in some recent studies. For example, in Haas,

Mittnik and Paolella (2005), the authors proposed two different ways to construct such models.

One is to exploit a result from Kanji (1985) and Jones and Mclachlan (1990) to combine two

components discretely. The other is built based on the principle that conditional return is a

weighted sum of two differently distributed random variables. Here, to better understand their

difference, we use, as an example, Gaussian and Laplace as components, to see their resultant

density functions. As for the first, since Gaussian and Laplace are now mixed in the

traditionally discrete way, its resultant density after mixing can be easily written as

2 / 2 | |1 1
1 1

1: ( ) [0,1]
22

x xFirst Mixture f x e e  


 
                 (3.2a)

multiple components.
17 Gaussian distribution follows traditional 2-stable law. Laplace, or double exponential distribution, follows 2-
geometric stable law. For a more detailed illustration of this issue, see Robbins (1948), Gnednenko and Fahim
(1969).
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where 1  denotes the proportion of Gaussian-generated observations in all training data and

each observation is generated from either a Gaussian density or a Laplace density.  However,

concerning the second, its density is then given by

   2 2
1 1

1

1 1

/ 2(1 )
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1
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    (3.2b)

where 1 , although still called the weight parameter, now denotes the proportion of Gaussian

variate in the calculation of each observation and   represents the c.d.f of a standard normal

distribution. Obviously, these two functions are now far from similar. One is calculated using

linear combination whilst the other is generated using first derivative of c.d.f.

3.2.3 Implementational Issues
In this section, we give assumptions for constructing finite mixture model and illustrate some

of its implementational issues such as the number of components to be included, identifiability

of each observation and parameter restrictions to be added. All of these issues are important for

ADCC-MGM and ADCC-MTM to be proposed in Chapter 6.

a. Independence assumption

First, it is necessary to mention a theoretical assumption for constructing mixtures. That is, the

response data needs to be assumed at least locally independent. This conjecture is a relating

but weaker assumption than i.i.d. The only difference between them is a conditional argument.

Local independence indicates the statistical irrelevance of different observations conditioned

on a series of component labels. However, such requirement is not needed in the later case (see

Dias, 2004). Since component labels now play the essential part in understanding the inference,

we describe them below.

According to Everitt (1996), a component label is a latent variable that conveys the

information about a particular observation, say 'y , that is generated by which component in the

mixture. If this knowledge is acquired, then, according to local independence each observation

will be provided with a specific label and appear independent of one another and target

likelihood function of the joint density can be written as a multiplication product of all its

marginal densities so that different inferential approaches can be adopted to estimate

parameters.

Here, one of the most intriguing advantages of using this assumption is training data not
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required to be independent before conditioning. Thus, yt could be a totally i.i.d time series or

dependent before conditioning but independent thereafter. As for the second case, mixture

model then burgeons into another popular framework, Hidden Markov Model (HMM) of

Baum and Petrie (1966). Note that, this class of model provides an alternative to finite

mixtures and since its invention has also attracted a lot of interests (see Bye and Schechter,

1986, for latent Markov model, and Chib, 1996, for Markovian mixture model). 18

b. Number of Mixture Components

From equation (3.1), we can easily know that two things usually need to be determined before

constructing a mixture model. The first is to choose the number of component to be included,

then, the distribution functions for each. Concerning the first issue, although a number of

theoretical researches have already been done, a common criterion for choosing M is still not

found. Thus, in majority of the cases this task is still mainly performed by visual analysis. For

instance, if no prior information is available, M is usually chosen by accessing the number of

modes found in histogram plot of sample data. However, a clear drawback of this approach is

the components then need to be fairly wide apart in order to be detected. To obtain a more

objective result, information-based model selection criteria, such as AIC of Akaike (1973) and

BIC of Schwarz (1978), are then needed. As Roeder and Wasserman (1997, p23) argued,

“…When a normal mixture model is used to estimate a density non-parametrically, the density

estimates that use BIC to select the number of components in the mixture is usually

consistent…” However, in the finance context, countless authors confirmed that, often, a two-

component mixture is already flexible enough to capture the stylized characteristics exhibited

in asset returns. Thus, assessment of component number is then usually not a major task. To

see more on this particular issue, a good overview can be found in McLachlan and Peel (2000).

c. Identifiability of mixture component

Besides, for a mixture model, to calculate its inference, one also needs to ensure the

identifiability of each component. That is, before an iterative procedure is adopted, knowledge

of component label for each observation needs to be acquired first. In a hybrid mixture, this

task is very easy because distributional functions of each component are already given

differently, which intrinsically allows the demarcation of group data. However, the problem

does arise when standard mixtures are estimated. Since only one parametric function is to be

18 By assuming that the latent variable follows a Markovian process, usually a first order HMM is flexible
enough to capture all characteristics of a finite mixture model.
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inserted, labels of a component once decided may still switch again. Thus, the task of

identification could become very troublesome in an unconstrained setting.19

In this case, a parameter restriction then usually needs to be imposed to resolve this problem.

For example, Aitkin and Rubin (1985) favored constraining the weight parameter m  to

follow an ascending order 1 2 M     so that each component in a standard Gaussian

mixture can be numerically identified. A similar approach is adopted in Bauwen and Lubrano

(2006), where a descending order is considered. Here, if only two components are allowed,

one can also use 1 0.5   to replace 1 2  (see Galeano and Ausin, 2005 for example).

Besides, in several cases, this attempt is also made through the restriction imposed on the

weight parameters, e.g. to let 1 2 M     so that means of different components can be

identified. However, in the literature, such applications are far less frequently applied than the

previous one because evaluation of mean parameter is usually found more complicated than

weight parameter in either classical or Bayesian inferential framework.

d.  Parameter Restriction

Finally, since mixture model even in its most parsimonious form is very likely to be associated

with a complicated log-likelihood function, it is then usually preferred a proper trimming of

the target parameter set of interest could be considered or certain subjective restrictions

imposed. Although such trimming and restrictions will inevitably lead to loss of generality, the

reduced computational burden is often considered as more valuable for empirical analysis. For

example, Bauwens, Hafner and Rombouts (2006) assumed the mean vector of their training

data to equal zero so that, in a two-component mixture, mean parameters of only one

component needs to be calculated stochastically, whilst the other analytically. In so doing,

sophistication caused by the numerical sampling then can be partially alleviated.

3.3 MGM and MTM
Now, we present the density functions of two standard mixtures to be applied in our latter

correlation modelling. One is Multivariate Gaussian Mixture (MGM). The other is

Multivariate T Mixture (MTM). Here, we choose Gaussian and t as components to construct

19 In this thesis, to confirm the existence of ‘interchanging identifiability’, we perform a posterior sampling
without imposing any restriction on the weight parameters. After experimenting, we find that neglecting this
problem leads to seriously biased results. For example, the posterior draws of weight parameters, m , is
trapped in a very narrow space after a mild number of iterations and their values hardly change thereafter.
Since the parameter space cannot be explored completely, it is then extremely difficult to have a clear
identification of which mixture component really determines the next data.
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mixtures because of their intuitive simplicity, numerical tractability and model flexibility.

a. Multivariate Gaussian Mixture (MGM)
Analysis of the MGM model has a long history in statistics. Using this type of mixture has

many advantages. For example, as McLachlan and Basford (1988, p45) illustrated, “…any

continuous distributions can be approximated arbitrarily well by a finite mixture of Gaussian

distributions with common variance...” To define its specification, one only needs to replace

distribution function  |m t mp y  in equation (3.1) with a Gaussian p.d.f, say  |m t my  .

Then, a d-dimensional M-component MGM can be given as,
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where ,m mt  denotes the mean and time-varying covariance of mth Gaussian component and

mt  here is required to be a d-by-d symmetric, positive definitive matrix.

b. Multivariate T mixture (MTM)
Although, by using a large number of components, one can be assured that the tail behavior of

resultant Gaussian mixture would be very flexible. An immediate cost of performing this

strategy is the substantial increase of sophistication in its inference calculation. Therefore, in

order to account for the extreme events in a more cheap way, we might need to consider using

a more generalized distribution than Gaussian to construct mixture, but not increasing the

numbers of components to be included.

Here, an easy solution is to choose a Multivariate T mixture (MTM). This model can provide a

cheap and robust generalization to Gaussian Mixture. Not only is a heavier tail allowed, MTM

can also obtain MGM as a limiting case whenever its degree of freedom parameter approaches

infinity.20 Since t itself is often considered a scaled mixture of normals, MTM constructed by

using this distribution as component can then be regarded as a ‘Mixture of Mixture’ (see

Tukey, 1960, for using a contaminated Gaussian mixture to construct t, and Huber, 1964, who

used an integration technique to provide its generalization. In Appendix III, we have described

the hierarchical mixture formation of a standard t in more detail).

20 For example, consider a d-variate random variable t t ty   , if the innovation t is now i.i.d multivariate t

distributed according to  0,1vt , yt then follows the same distribution but the variance is /( 2)t v v    for
all v>2. When the degree of freedom parameter   , yt tends to be Gaussian distributed, since
lim /( 2) 1
v

v v


  , and the variance of yt is just equal to t .
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Now, to construct such a model, as before, we only need to substitute  |m t mp y  with a t

density  |m t mt y  . Then, a d-dimensional M-component T mixture model can be easily given

as,
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where mv  is a positive scalar denoting the degree of freedom parameter of mth d-variate

multivariate t component and ( )  is the Gamma function satisfying 1

0
( ) x tx t e dt

     .21

3.4 Mixture Model Estimation Techniques
In this section, we start to illustrate the mixture model estimation techniques. It is a major aim

of this chapter. First, a brief illustration of some simple methods is provided. Then, a

comprehensive overview of iteration-based algorithms is given and we put the emphasis on

classical inference-based techniques and Bayesian inference-based algorithms. As has been

illustrated in chapter one, since we are going to use a MCMC algorithm (Bayesian) to estimate

correlation mixture models we dedicate the next chapter to a detailed illustration of issues

concerning this simulator. However, for now we only provide an overview of alternatives to

this technique and use one of them to estimate ADCC-skew t and AGDCC-skew t, also

proposed in this research. For a similar review, see Titterington et al., (1985), Everitt and

Merette (1990), McLachlan and Peel (2000) and Dias (2004).

3.4.1 Simple Methods
In a mixture model, given that the number of components is known, there are a lot of

techniques that can be used to estimate its parameters. Among various alternatives, early

methods such as graphical analysis, method of moments and minimum distance are easy to

implement although their resulting estimators sometimes are found inefficient.

21 For any positive integer x inserted to a Gamma function, we can use ( ) ( 1)!x x    to calculate its resultant
value. However, if x is very large, sometimes an approximation function (Stirling) then needs to be used.
That is, 2

1/ 2 31 1
12 288

( ) 2 (1 | | )x x
x x

x e x x       
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In Section 3.1 we have stated that the first attempt to fit the mixture model was made by the

famous statistician Pearson. In his classic 1894 paper, five parameters in a heteroskedastic

Gaussian mixture model were calculated by solving a ninth degree polynomial using method

of moment. Undoubtedly, finding the roots for a nonic by manual computation in 1894

required a lot of effort. Although its estimation procedure is sophisticated, in the last century

using these methods has still attracted some interests. For example, Quandt and Ramsey (1978)

used moment generating function to calculate inference of a two-component mixture model

(for similar works, see also Lindsay and Basak, 1993, and Furman and Lindsay, 1994). A more

popular way is to adopt a so-called minimum distance strategy. The virtue of this technique is

to calculate the parameter value so that the distance between empirical distribution and the

proposed mixture is minimized. Since its resultant inference would be very sensitive to the

method chosen for computing the distance, it is often beneficial to use a variety of measures.

For example, Choi and Bulgren (1968) examined the Wolfowitz distance; Yankowitz (1969)

studied Levy distance; Macdonald (1971) used Cramer-von Mises distance. For a more

comprehensive review of the characteristics of these distance measures, see Titterington et al.

(1985).

3.4.2 Classical-inference based iterative methods
Compared to the simple methods, if the task is to estimate a model having complex

specifications, a better choice is to adopt an iteration-based inferential approach because this

type of method is capable of producing statistically more efficient estimators. 22  If the

convergence of parameter values can be confirmed, seldom, substantial approximation errors

will be generated. However, as a price to pay, intensive computational work then becomes

inevitable. Thus, it is worth mentioning it is the recent advent of high-speed computing

facilities that really accelerates the development of these algorithms in the mixture model

context. In the following, since the focus of this thesis is on mainly Bayesian inference, we

only briefly illustrate several typical classical inferential methods.

3.4.2.1 Maximum Likelihood (ML)
First, for estimating mixture distribution, we start the illustration of classical-inference based

methods with maximum likelihood or ML. The aim and estimation procedure of this approach

is given below. Consider a mixture distributed random variable y with totally T observations;

22 The reason why iteration-based method can produce a more practical and efficient estimation procedure than
the simple methods is because an analytical solution for the parameter estimation is generally difficult to find
in a mixture distribution. As cited in Titterington (1996),‘…the main reason for the huge amount of literature
on estimation methodology for mixtures lays in the fact that explicit formula for the parameter estimates are
typically unavailable….’.
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the objective of ML is to find an estimator for parameter  , say ̂ , that, in regular conditions,

can maximize the likelihood function ( | )L y   or the log-likelihood function ( | )y  .23

Use the mixture distribution defined in equation (3.1) for example, since ( | )y   is given by
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                               (3.7)

the task of ML is then to find a ̂  that can satisfy ˆ arg max ( | )y   , or equivalently,

solve the function ( | ) / 0y    . The asymptotic covariance matrix of this estimator is

defined as the inverse of the observed Fisher information matrix, 1( | )I y  , where

2
ˆ( | ) ( | ) / |TI y y          , and ̂  is considered as a valid estimator (MLE) if it can

globally maximize equation (3.7). Here, since ̂  generally does not have an explicit solution,

maximization step is usually performed by adopting an iterative procedure such as Newton-

Raphson algorithm. Besides, when some parameter restrictions also need to be imposed, a non-

linear sequential routine is then required to augment the process (see FSQP algorithm of

Lawrence and Tits, 2001, for example).

As for the consistency, efficiency and asymptotical normality of the target estimator, Wald

(1949) confirmed all these properties in his research. However, it is also important to note

several exceptions here. For example, in some cases we may find ( | )y   is unbounded over

the parameter space, thus it is impossible to find a single global maximum for equation (3.7).

Hence one may need to look for a new local maximum that can also satisfy the same regularity

conditions. However, the difficulty remains if multiple local maximums are coexisting. In this

case, a proper selection among alternatives then could become another difficult task since

additive separability of parameters has already been destroyed in a standard mixture models.

To generate such an estimator, a proper initial value obtained from the prior investigations or

graphical analysis on the training data is then indispensable.

Concerning the empirical evidence of applying ML to fitting mixture distribution, Rao (1948)

made the first attempt to use Fisher method of scoring to estimate a two-component normal

mixture with equal variances. Later, his iterative procedure was studied in Hasselblad (1966),

23 Likelihood function ( | )L y  in equation (3.1) is obtained as the probability density of observed data. It is
considered as a function of model parameters . Since log-likelihood function ( | )y  is a monotonic function
of ( | )L y  , the estimator ̂  that maximizes the ( | )y   thus will be the same as the one that maximizes

( | )L y  .
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Day (1969) and Wolfe (1970), where an explicit formula for parameter estimators is derived

and applications are extended to mixture of all variants in the exponential distribution family.

Recently, Lindsay and Roeder (1992) and Bohning (1999) discussed the use of a non-

parametric extension of ML to estimate mixture distribution. Although it is now confirmed that

these ML methods are all utilizing a more efficient estimation procedure than early methods, it

was not until the seminal paper of Dempster et al. (1977) that using classical inferential

techniques was really stimulated.24 Not only is the iterative scheme of ML formalized in a

more general context, their EM algorithm also helps establish the convergence of MLE on a

theoretical basis.

3.4.2.2 Expectation Maximization algorithm (EM)
For EM algorithm, in the literature there are a substantial amount of works dedicated to this

topic. As a generic method for computing MLE based on the incomplete information set, this

iterative method has been applied in a variety of statistical problems such as solving mixture

distribution, variance component estimation and factor analysis. Since its contribution to

classical statistics is substantial, we present in the following a detailed description of its

estimation procedure along with some illustrations of its advantages and drawbacks in

applications.

The EM algorithm is a technique strongly rooted in the missing information principle

introduced by Orchard and Woodbury (1972) and subsequently developed by Beale and Little

(1975). Its basic idea is to exploit the reduced complexity of ML after data augmentation. That

is, by augmenting the current observable data with a hidden space, computation of MLE is

then expected to be much easier for the new ‘complete information’. Generally, the observed

data in EM algorithm is called ‘incomplete data’ and the augmented part of these data is

referred to as the ‘missing data’. Here, note that these ‘missing data’ are not always missing in

the real world, most of the time it is just a convenient technical device.

Once the complete information set is formed, the algorithm then works iteratively by

alternating between E-step (Expectation) and M-step (Maximization). Formally, let y and z

denote the observed information and missing data respectively and ( )h  be the current state of

parameter; since log-likelihood function of complete data (y, z) given by

log ( ) log ( , | )cL p y z          (3.8)

24 Early investigations of mixture distribution only use univariate sample data. However, with the advent of
EM algorithm, such investigations are now also available in multivariate context.
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is now unobservable, this method then solves the incomplete-data likelihood ( | )L y and

obtains parameter estimates of the next state by replacing log ( )cL   with its conditional

expectation given y and current fit for  . The E- and M- step in this procedure is given by

E- step: Calculate the conditional expectation of an auxiliary Q-function
( ) ( )
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         (3.9)

M-step: Update the parameter set to ( 1)h   by maximizing Q ( )( | )h 

( 1) ( )arg max ( | )h hQ            (3.10)

To ensure the monotonicity of this algorithm, it is often required in M step
( 1) ( ) ( )( | ) ( | )h h hQ Q     . Then, the whole iterations can proceed until the convergence is

suggested by certain stopping criterion, i.e. ( 1) ( )|| ||h h      where 0  .

Here, before proceeding, it is necessary to note several advantages of the EM. Apart from its

ease of implementation and numerical stability that are frequently documented in textbooks,

another important aspect of this algorithm is that it can be used to input the missing values

(obtained in the E- step). Besides, under regularity conditions, the global convergence of this

algorithm can be ensured. However, using this inferential method can also generate drawbacks.

For example, unlike ML, using the EM algorithm cannot provide an estimator for observed

Fisher information matrix as a by-product in maximization step. Thus, we cannot generate an

automatic estimate of standard error for ̂ . Besides, in some cases EM may converge very

slowly due to the lack of an analytical solution in either E- steps or M- steps. In this case, it is

then preferred to use a simulation-based approach to enhance the algorithm. For example,

Tanner and Wei (1990) introduced the Monte Carlo EM (MCEM) algorithm. Nielsen (2000)

suggested using the stochastic EM (SEM).

As for its implementations, many classical papers and textbooks have illustrated an example

(see Titterington et al. 1985 and McLachlan and Krishnan, 1997). Here, to obtain a practical

view, we give the details (algorithm and codes) of how to use EM to estimate an M-component

standard Gaussian mixture in Appendix IV. For more applications of this algorithm, see also

Rachev and SenGupta (1993) for using GEM, a variant of EM, to estimate a hybrid mixture of

Laplace and Weibull distribution, and Liu (1997), McLachlan and Peel (1998) and Lee et al.

(2004) for using ECM to calculate the inference of a multivariate t mixture.
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3.4.3 Simulation-based Bayesian approach
Above, we briefly illustrate two classical-inference based estimation techniques. Now, we

describe how to use another rational method, a Bayesian approach, to learn unobservable

parameters  in a mixture model.  The main aim of Bayesian inference is to simulate a series

of random draws from a sampling kernel that corresponds to   so that the true parameter

value can be approximated using empirical summaries of these simulated values after initial

draws are discarded. For financial models, since   is often a parameter set containing many

different elements, a high-dimensional integration technique is usually required for sampling

purpose. Besides, in some cases, since these kernels may not have an analytical form,

numerical approximation is also needed. Due to these difficulties, in early days using this

method to estimate a sophisticated model was then found very difficult. However, after 1990

situation improved a lot, benefiting from the fast development of MCMC algorithms and the

advent of modern high-speed computers. Recently, numerous researchers have successfully

opened new interest in this inferential method and it is frequently applied in countless

researches to estimate mixture models.

In order to obtain a brief idea of the development history of this method, it is necessary to note

several monographs that have made the crucial contributions to its build-up and extensions.

The origin of the Bayesian inference can be traced back to Thomas Bayes’s essay, published in

1763. Initial development of this method was far from easy and its theoretical foundation was

continuously challenged by numerous frequentists. For example, the founder of likelihood

inference, Fisher, was particularly hostile to the use of Bayesian methods and often critical. In

the middle of the last century, in response to the obvious deficiencies in classical inference,

scholars such as Jeffreys (1961), Good (1950), and Lindley (1961) opened new interest in

Bayesian methods. Unfortunately, the solutions provided by these authors, although good,

could not be used to solve mathematical forms that were analytically intractable. To resolve

this difficulty, a new revolutionary simulating technique, Markov chain Monte Carlo (MCMC),

was then created. Starting from the fundamental work of Metropolis et al, (1953) and Hastings

(1970), MCMC algorithm, since its introduction, has attracted a lot of interests and obtained

massive empirical potentials. Important works concerning this sampling technique include

Geman and Geman (1984), Gelfand and Smith (1990), Gilks et al. (1996), Robert and Casella

(1999) and Carlin and Louis (2000).

Since the main purpose of this thesis is to calculate the Bayesian inference, in the following,

several typical simulation techniques for conducting this inference are described in detail. Here,
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we divide these techniques into two categories. First, for those which can only be used to

generate i.i.d draws, they are described in the traditional Monte Carlo framework and

illustration is provided in the following sub-sections. Second, if resultant draws are forming

Markov chains, algorithms are categorized into MCMC framework and we describe them in

the next chapter. Before proceeding, some preliminary issues about the Bayesian inference are

illustrated.

3.4.3.1 Preliminary issues on Bayesian inference

a. Bayesian vs. Frequentist

To understand the Bayesian method, it is always necessary to start with its difference from

classically inferential approaches. Theoretically, there are many ways in which we can

highlight these differences. For example, the probability statement in these two inferential

paradigms is interpreted differently. From a frequentist’s point of view, probability is regarded

as an objective measure, a limiting relative frequency that represents the long-run behavior of

a non-deterministic outcome. 25  However, according to Bayesian statisticians, it is then

considered as a subjective quantity which heavily depends on the researcher who is assessing it.

For example, while calculating the Bayesian inference, one always needs to assume a prior

distribution for the parameter of interest before posterior simulation can be performed. Besides,

difference between Bayesian and non-Bayesian can also be addressed by how they interpret

the nature of parameters. In classic inference, parameter of a model is considered as a fixed,

deterministic quantity. However, from a Bayesian’s viewpoint, this unobservable quantity then

becomes a variable. Although some possible values may still be suggested, usually a

probability distribution will be associated to encode the uncertainty of parameters.

b. Advantages and assumptions

According to the illustration above, one may have already noted an important advantage of

Bayesian methods over its competitor. That is, the parameter uncertainty is allowed. Unlike

ML, Bayesian inference can use empirical summaries of a series of random draws to

approximate the statistical characteristics of the true parameter value. Since the posterior result

is depicted in a distributional form, more inferential information can be incorporated compared

to that generated by using classical inference, where only a point estimator is often derived.

Although it is not guaranteed that this distributional information can always make a substantial

25 Laplace (1814) proposed the earliest version of this definition. Later, Neyman and Pearson formalized his
idea and introduced extension. Although their interpretations provide an intuitively simple way to think of
probability, to obtain an estimate of it, imposition of an assumption is necessary. That is, one can generate an
infinite series of trials, replications, or experiments on the event of interest using the same search design.
However, practically, as Kendall (1949) and Placket (1966, p26) put it, “…Frequently, it is however not
possible to obtain a large number of outcomes from exactly the same event-generating systems…”
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contribution, it does become valuable when non-standard posterior densities are observed. For

example, when the posterior density presents significant asymmetry or multi-modality, we

cannot then rely on the classical inferential method to recognize the risk of parameter

uncertainty, which may cause serious underestimation and overestimation of the forecasts

calculated from the model. Besides, since all scientific models are proposed according to the

modeller’s own understanding of the ‘truth’, Bayesians’ paradigm provides the most overt

presentation of model assumption because its probability statement is also based on a

subjective measure (assuming a prior distribution). For a more detailed account of these

advantages, see also Berger (1986), Efron (1986) and Gill (2002).

To conduct this inference, here it is worth noting some assumptions. First, when posterior

sampling is performed, it is required that sampling kernels are all parametric functions.

Although the analysis of non-parametric Bayesian modeling is also growing rapidly nowadays,

we only review and apply the likelihood-based Bayesian method in this thesis. Second, since

unknown parameters are all treated as having distributional qualities rather than being fixed, it

is assumed that we can specify a proper prior distribution for these parameters. In case

choosing a prior density is difficult due to the lack of relevant information, a distribution

showing equal weighting is then used. Finally, sample data are assumed to be locally

independent.

3.4.3.2 Posterior Updating Scheme
Now, we start to illustrate the details of posterior sampling scheme. First, consider a model

with observations y distributed according to a parametric probability density p(y| ) where 

denotes the parameter set of interest. 26  Since the goal of inference is now to derive a

probability statement of p( | y) by exploiting the information in p(y| ),  it is then required

we apply the Bayes Theorem as an information processor so that

( , )( | )
( )

p yp y
p y
  (3.12)

Here, since the marginal density p(y) can be retrieved by integrating out   from the joint

density of p( ) and p(y| ), that is  ( ) ( | )p y p p y d    , (3.12) can be rewritten as

26 In some literature, model specification which was cast in the form of a conditional argument on a probability
distribution can also be written as p (y| ,H) where H denotes modeller’s background state of the information,
which encompasses all hypotheses and existing knowledge before collecting data. Since this additional
conditioning on H is required throughout the Bayesian theorem, to ease the expression, we omit its presence in
the notations.
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( ) ( | )( | )
( ) ( | )
p p yp y

p p y d
 
  




(3.13)

In the above equation, note that p (y) does not depend on   suggesting that it provides no

relevant inferential information about the likely value of  . Thus, by terming this quantity a

normalizing constant and eliminating it, we derive a compact and succinct form of p ( | y)27

     | |p y p p y                  (3.14)

where p( ) is a probabilistic form of prior information assumed by modellers on  , called

prior density. p( | y) is called posterior density because the updated information is derived

only after all training data have been learned.

According to (3.14) it is now clear that the posterior density is proportional to the

unnormalized post-data inference. If either p( ) or p(y| ) is widely dispersed relative to the

other, it will then have less of an impact on the final probability statement. This natural

weighting scheme reflects the relative levels of uncertainty in these two densities. Empirically,

since p( ) only encompasses the modeller’s subjective knowledge, it is the p(y| ) that

frequently plays the critical role in determining the shape of posterior density. The influence of

this function on the posterior information becomes greater as the number of new observations

increases. That is because the more observations involved in updating, the less influence

exerted by our own conviction p( ).

Since, in Bayesian statistics, the likelihood function L( | y) and p(y| ) is interchangeable,

that is L( | y)≡p(y| ), p( | y) can also be interpreted as a quantity jointly determined by the

prior density and likelihood function. Thus, the equation (3.14) can also be rewritten as,28

Posterior density  Prior density  Likelihood function       (3.15)

a. Prior distribution

Above, we have given two factors that simultaneously determine the posterior sampling

scheme. Now, in this subsection, we describe the importance of assuming a proper prior

density. Here, p( ) is termed as a prior density because its distributional form is given before

each sample is incorporated to updating. If sufficient prior knowledge is available, this density

can be defined on a very small domain with a parametric form. However, in most cases, only

27   here denotes ‘proportional to’
28 Under mild conditions, Gelman et al. (1995) proved that the posterior density derived from (4.15) can
convey ‘more precise and sharper’ information than the modeller’s prior knowledge on .



- 49 -

very limited information is obtainable at the early stages of estimation. Thus, we often need to

rely on a vague probabilistic statement for p( ). For example, we can let the priors be

uniformly distributed. Briefly, it is a non-informative density giving equal or nearly equal

weight to all possible values in target space  . Besides, we can also use reference prior,

diffuse prior and many others for the same purpose.29 It is necessary to note that, once such

priors are assumed, its density value is usually a constant which can be eliminated in the

posterior density. Thus, all that relates to the posterior information is only the likelihood

function, and the result of Bayesian inference is very close to those generated by applying

classically inferential techniques.

Meanwhile, there are also other things that need to be noted when specifying a proper prior. In

equation (3.14), we illustrated an example of generating posterior result for a one-parameter

model. However, it is common that parameter set of interest may contain multiple elements. In

this case, joint prior density of   is then often handled in a way that all its marginals are

assumed to be independent of one another so that prior information of one parameter will not

contribute the posterior updating process of another. And p( ) is simply the multiplication of

all individual priors. On the left-hand side of equation (3.14), since the goal of inference is

now to generate posterior draws for all elements in  , only marginal density of p( | y) will

be analyzed. In the following, we describe how to derive this joint posterior density and

evaluate these marginal densities.

b. Posterior simulation

In a multi-parameter model, since the posterior p( | y) is a joint density, sampling kernels to

be evaluated are then marginals that correspond to each element in  . Theoretically, if the

state space is finite, these marginal densities can be assessed by integrating out all elements

other than that of the interest from the joint density. For example, if 1 is the one of interest,

its marginal can be defined as

1 1

1

( | ) ( | )

( ) ( | )

p y p y d

p p y d

  

  












              (3.16)

29 Reference prior is proposed in Bernardo (1979). Diffuse prior is suggested by a symmetric distribution with
a very large variance. Berger (1985) discerned the location parameter from the precision parameter and
presented 10 different ways to propose prior for hyper-parameters. For example, for a standard normal
distribution, he suggested that a ζ-1 shaped prior for the precision parameter ζ, which is the inverse of
scale parameterσin N(μ,σ) is appropriate.
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where 1  indexed all parameters except 1  in the whole set of  . Meanwhile, we can also

use

1 1

1

( | ) ( , | )

( | ) ( | , )

p y p y d

p y p y d

   

   








         (3.17)

to obtain the same result. The virtue of the second method is to apply numerical integration

directly to the whole parameter set  . However, since the first is more closely related to the

MCMC algorithms to be illustrated in the next chapter, we apply it to depict the posterior

sampling scheme.

Given the above equations, now it may seem very straightforward that the numerical

integration is actually a plausible method to evaluate the posterior density once each marginal

is properly defined. However, in practice using this technique is not only difficult but also

costly. This is because target posteriors are often given non-analytically. Besides, the integrals

included in them are most of the time defined as high-dimensional (since the models now have

more than one parameter). Thus, even if an integration solution is proposed, it is often

problem-specific. For example, Woznikowaski (1991) developed an analytical method to

calculate the high-dimensional integration. Since the technique he introduced requires the

target function to be drawn from a particular distribution, his method is then not suitable for

the general Bayesian learning.

To circumvent this difficulty, a feasible way is to evaluate the posterior by applying a

simulation technique to a sampling kernel that corresponds to the target density so that a series

of random draws, whose limiting distribution approximates the density of interest, can be

generated. Take the updating process suggested in (3.16) for example. The task of evaluating

1( | )p y  now can be translated to simulating a series of random draws of 1  so that their

stationary distribution can approximate p( 1 | y). And it can be performed by firstly drawing a

random sample, say mth value of  , from

φ (m)~p(φ | y)            (3.18)

and then inserting ( )m  to (3.17) to obtain a ( )
1

m  which follows

φ1
(m)~p(φ1 | φ(m),y)  (3.19)

Geweke (1989) argued that one can use the importance sampling technique of Hammersley

and Handscomb (1964) with a standard optimisation method to generate a random sample for

(3.18); however, a proper tuning is usually required when this approach is adopted. In the

following year, Gelfand and Smith (1990) applied an image reconstruction technique
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suggested in Geman and Geman (1984) to perform the same task. They generate ( )m  by using

the kernel updated by parameter values of last state, so that this new value is drawn from
( ) ( 1)~ ( | , )m mp y    , where ( ) ( | )dm p y  (3.20)

Here, since the posterior results are approximated by a series of random draws and illustrated

in a distributional form, compared to the classically inferential techniques, Bayesian inference

are then able to present more informative results. In the following, we present a detailed

illustration of how to use simulation technique to achieve this inferential task.

3.4.3.3 Monte Carlo Simulation Techniques

In this section, we describe several traditional Monte Carlo techniques of simulating i.i.d

sequence of ( ){ }m whose density can approximate the posterior density of interest or just be

p( | y).

a. Direct sampling

For some kernels, since the inverse of their distribution functions (c.d.f) may have an explicitly

parametric form, we can simulate a sequence of i.i.d samples for the target parameter by

simply applying the direct sampling technique, as, for example, in the so-called conjugate

situation where the posterior density is of the same distributional type as the prior density.

Generating a random sample is easy because the sampling kernel to be evaluated now is only a

modification of the prior density after all coefficients that characterize the conjugate class of

probability distributions are updated (see Box and Cox, 1973, for a practical example using

normal distribution, and Robert and Casella, 1999, for a general theory of conjugation for

exponential distribution family). Although this method is mathematically convenient,

situations like the conjugacy are extremely rare when empirical learning is performed. In all

except several illustrative cases, posterior results usually cannot be generated analytically.

b. Acceptance and Rejection Sampling

From equation (3.15), it is known that posterior density is now jointly determined by two

functions. Even if prior density p( ) is assumed to be uniformly distributed so that its density

values can be absorbed in normalization constant, the chance of posterior density being

complicated by a non-trivial likelihood function is still very high. In common situations where

an analytical sampling kernel cannot be found, one then has to rely on a more sophisticated

simulator to generate new updates for  .
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Here, a typical solution is to apply an acceptance and rejection sampling (ARS) technique.

This method is initially attributed to three pioneers in the simulation area, Von Neumann,

Metropolis and Ulam. Its basic idea, which is not difficult to conceptualize, is to simulate i.i.d

samples from a source density p(s) that is similar to the target density, rather than from p( | y)

itself. Here, note that the sense in which this source density is similar to the posterior is crucial.

Depending on the efficiency of resultant simulators, ARS usually can be divided into

acceptance sampling technique and the importance sampling technique.

b.1 Acceptance Sampling

First, regarding the acceptance sampling, we depict its sampling process using an example.

Suppose we now let ( | ) ( | )Iy c p y   be a sampling kernel of posterior density, and

( | ) ( | )ss c p s    be a sampling kernel of source density p(s); if the bound of these two

kernels r now satisfies the condition sup ( | ) / ( | )r y s       , the mth draw of  is

then generated by applying the following pseudocode.

Acceptance sampling

1. Draw u from a uniform distribution [0, 1]

2. Draw a candidate value *  from ( | )p s

3. If * *( | ) / ( | )u y r s     , go to step 1

4. Otherwise, ( ) *m 

Here, if the source density is correctly specified, one can prove that the samples drawn from

the source density will always show the same distributional characteristics as those generated

by sampling from posterior density, and the efficiency of this simulator is determined by the

frequency of acceptance (See Geweke, 2000).

However, there is a difficulty; in most cases it is very hard to find such a good source density.

Although, in some very special cases, it is certainly possible that we can find a p(s) that can

perfectly match the posterior density (hence r=1 and step 3 in the above loop can be omitted

since all new draws now will be accepted with a fixed probability of one and no rejection will

occur), such cases are very rare in empirical learning. For example, when a non-trivial

likelihood function is incorporated to posterior density, finding an appropriate source density

for p( | y) is then usually a very difficult task (correlation mixture models proposed in this

research are good examples of this).

b.2 Importance sampling
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As have been briefly inferred from the above illustration, if the acceptance and rejection rule

is applied to determine the appropriateness of a new random draw, in all except the ideally

efficient sampling, ( ){ }m  is always a fraction of all simulated values generated from the

source density. Since the rejection is statistically unavoidable, efficiency of the ARS simulator

then sometimes could arise as a concern. For example, in some cases the domain from which

new draws are simulated could be much more disperser than that of interest, thus, it may take

ARS a longer-than-usual time to finally locate a candidate draw which can be accepted. To

improve this efficiency, another technique that also burgeons into standard procedure of ARS

is then often used.

By placing more emphasis on the ‘important’ regions where posterior density is concentrated,

Hammersley and Handscomb (1964) proposed a so-called importance-sampling technique

where simulation is performed in the most relevant areas. Briefly, its basic idea is to

incorporate a time-varying weighting scheme to the simulation process. By allowing the ratio

of posterior density to source density as a function of candidate values, this simulator differs

from acceptance sampling in that the fixed bound r is now replaced by a variable

( ) ( | ) / ( | )y s      . Unlike the boundary condition imposed before, we no longer have

to obtain the exact value of this bound, but just need to make sure ( )    . From this

perspective, it is then very easy to note an advantage of this simulator. Since only the existence

of an upper bound for ( )   needs to be verified, finding a proper source density for

importance sampling is then much easier.

Besides, under this approach, using empirical summary of the candidate draws to approximate

the true parameter values is also very easy. As noted, in acceptance sampling, since the ratio of

posterior density to source density is deterministic (a fixed value r), we use the accepted

samples directly to make this approximation. However, when importance sampling is applied,

these samples need to be adjusted by ( )  before being input. For example, if M candidate

values for  have been generated, mean and variance of true parameter value are then

approximated by

 
( ) ( )

1
( )

1

( )
ˆ( ) ( | )

( )

M m m
i

M m
i

E p y
  

  
 





 


 
( ) ( ) 2

1
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1
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( )

M m m
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   
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 






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
 (3.21)

Here, it should be noted that, although these candidate values are now used to approximate the

distributional characteristics, they do not constitute a random sample from the real posterior

density. This is because ultimately these values are simulated from source density.
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As for the sampling efficiency, clearly, importance simulator now provides a statistically better

solution than acceptance simulator because all candidate values are drawn from the most

relevant area. However, as one of the ARS, it still has the same drawbacks as the others. For

example, simulation result obtained from using this technique is very sensitive to the source

density chosen to approximate the posterior. To propose a reliable source density, although

various criteria have been already discussed, simple methods like moment matching, Laplace

approximations, mixtures, and re-parameterisation are all found insufficiently flexible to

accommodate the general problems. For example, when the target kernel has a complicated

form, finding a good source density for it is then often considered as an impossible task. In

such cases, researchers usually are inclined to try several different distributions for p(s) until

an optimal solution is found. Here, if a poor choice is made, the immediate cost is a very low

acceptance rate. This happens because only a few candidates will be drawn directly from the

high probability region (high mass).30 Compared to the others, the weights ( )   of these

points are often much higher. Thus, the accepted samples for ( | )p y  may be just reduced to

these points. Since the difficulty of finding a proper p(s) is massive in Bayesian statistics, a

proper tuning is usually required when this technique is used.31

As for its implementations, Kloek and Van Dijk (1978) made the first attempt to use

importance simulator to calculate Bayesian inference. A more extensive treatment of this

technique with proofs was provided in Geweke (1989). Recently, several variants of this

sampler are also proposed in the literature. For example, Evans (1991) introduced a so-called

‘adaptive importance sampling’ technique. Dagum et al. (1995) introduced the stopping rule

theorem and Neal (1996) proposed the annealed importance sampling. For a more detailed

summary and overview of these simulators, see Gelman et al (1995), Tanner (1996) and

Robert and Casella (1999)

c. Hybrid sampling

In the last subsection, we presented the advantages and drawbacks of two ARS simulators.

Acceptance sampling is easy to apply but inefficient to perform; importance sampler is a more

efficient simulator whilst its implementation requires the calculation of a weighting function.

Since the only difference between these two techniques is their formation of weighting scheme,

a hybrid approach that yields the relative advantages of both then can be developed.

30 In Metropolis et al (1953), this area refers to the places where high probability of acceptance is concentrated.
31 Tuning here is the attempt to try different distributions for source density p(s). Usually, adopting this
strategy will increase the computational cost of obtaining inferential results.
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To illustrate this approach, consider now that the existence of a theoretical bound for

( | ) / ( | )y s     has be proved whilst its exact value has not yet been determined, to identify

when to use importance simulator and when to use acceptance simulator, an arbitrary bound

for the weighting scheme needs to be assumed in the first place. Say, if this bound is now

given a finite value b, one then perform acceptance simulator to generate new draws whenever

sup ( | ) / ( | ) max( ,1)y s b       is satisfied (this bound is now defined as either b or one).

However, if the random draw * satisfies * *( | ) / ( | ) [ , )y s b      , importance simulator

is then applied.

Since an analytic characterization of posterior density in general Bayesian learning is very

difficult to find, even with a hybrid approach implementation of ARS algorithms may still

encounter various difficulties. For example, the major problem, as has been illustrated already,

is to find a proper source density that could closely approximate the posterior. Sometimes,

even if such a density is given, simulation of new draws might still be trapped in a tiny region

of probability space. That is, most of the new points are drawn from a small area whose

volume is a tiny fraction of the whole. In this case, we would then need a simulator which can

direct the searching of random samples to the most relevant areas as well as can be performed

very efficiently. In particular, the MCMC algorithm to be described in the next chapter is

exactly such a technique. Not only is the source density no longer required, this type of

simulator can also be applied to tackle the problem of non-analytical kernel.

3.8 Summary
In this chapter, we start by illustrating some stylized features presented in the financial time

series and then describe several ways to tackle them. Among these features, we concentrate on

the non-Gaussian characteristics such as heavy tails and leptokurtoses and point out using

mixture distribution is an ideal solution to accommodate them. Since building mixture model

is a main aim of this research, we illustrate the probabilistic properties, development history,

mixing strategies and implementational issues of this type of model and give two examples of

it. Besides, we also describe several techniques that can be used estimate them. Specifically,

for the classical inferential approach, emphasis is put onto the maximum likelihood and EM

algorithm. For Bayesian inference, an introductory illustration of its aim, sampling process and

estimation procedure is provided. However, concerning the details of its simulator, description

is given in the next chapter.
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Chapter 4

Literature review (part three)
-Markov Chain Monte Carlo (MCMC) algorithm

Introduction
In this chapter, we describe the Markov Chain Monte Carlo (MCMC) algorithms. As a naïve

method for performing stochastic simulation, this technique provides a rational solution to

calculating the Bayesian inference by leading the search of candidate values for each

parameter to a high probability region in an efficient manner. In the following sections, we

provide a comprehensive overview of the aim and sampling process of this technique and

discuss several issues concerning its implementations. Specifically, emphases are put onto two

of the most widely used simulators. One is Metropolis-Hasting algorithm of Hasting (1970).

The other is Gibbs sampler of Geman and Geman (1984). Since the task of this thesis is to use

a variant of standard Gibbs sampler to estimate correlation mixture models, for this particular

simulator we illustrate its settings and sampling procedure in details. Besides, several

diagnostic tests for examining the convergence for resultant draws are also reviewed.
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4.1 Development history and Markov Chains
First, it is beneficial to briefly review the development history of MCMC algorithms. The

origin of this technique is attributed to Metropolis (1953) who laid the foundation of using a

sequence of dependent points to investigate the equilibrium properties of large systems of

particles (e.g. molecules in a gas). Later, Hastings (1970) generalized his method to propose

the famous Metropolis-Hasting algorithm. Through these studies, although the bridging

relationship between stochastic simulation and inference calculation was found, it was not

until Geman and Geman’s (1984) and Gelfand and Smith’s (1990) work that implementational

potentials of MCMC were fully recognized in the Bayesian context. This is because an

important solution for alleviating the computational burden for Bayesian inference is finally

raised. Since then, countless researches are dedicated to developing this algorithm and a lot of

variants are proposed in the literature. Among them, key works include tutorial papers by

Casella and George (1992) and Chib and Greenberg (1996), a monograph by Tanner (1996)

and a long survey by Gelman and Rubin (1992), Geyer (1992) and Besag et al. (1995).

Here, before proceeding, it is important to note a major advantage of this technique. That is,

MCMC can provide a more flexible solution than other methods to deal with the general

Bayesian problems. As has been illustrated in the last chapter, if one is to use a standard Monte

Carlo simulator such as direct sampling or ARS to compute the inference, it is required that we

can find either an explicit solution for sampling posterior density or a proper source density

which can closely approximate it. As a comparison, the goal of MCMC is, however, to

construct on state space,  , a Markov chain for the parameter of interest, say, ( ){ }m , so that

its density can converge to the posterior ( | )p y  after an initial transient period is discarded.

For this particular algorithm, since the kernel to be evaluated no longer needs to be analytical,

sampling random draws becomes easier.

Now, since all simulated values are going to form Markov chains, it is important to understand

some properties of this particular stochastic process before we proceed further. In Appendix V,

a detailed illustration of this issue has been provided. However, here only one thing needs to

be re-emphasised. That is the convergence theorem “under regularity conditions any Markov

ergodic chain will converge to a stationary distribution after a sufficiently long run.” Given

this theorem, it then explains why draws, even if not appearing to be i.i.d but only showing

Markovian properties, can still be used to approximate the distributional characteristics of

statistical inference. 32 In the following, we use Metropolis Hasting algorithm and Gibbs

32 The aim of using MCMC to calculate the Bayesian inference is to construct an ergodic Markov chain for
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sampler as examples to illustrate the simulation process of MCMC and the emphasis is put

onto a variant of the later technique, namely the Griddy Gibbs sampler.

4.2 Metropolis Hastings algorithm (MH)
Metropolis Hastings algorithm is an important MCMC technique. Although this simulator is

not to be implemented in this research, we illustrate its aim, sampling process and variants

here due to its similar importance in statistics to the Gibbs sampler. This algorithm is initially

described in Hastings (1970) as a generalization of standard Metropolis algorithm. Its main

purpose is to simulate a sequence of dependent realizations whose stationary distribution can

be used to approximate the posterior density. More precisely, given the current state ( 1)m  , it

generates a Markov chain with the next state ( )m chosen by considering a small change to

( 1)m   and accepting or rejecting this change based on the comparison result of a probability

statement.

4.2.1 Sampling Process
To illustrate its sampling process in more detail, we now consider an example. If the posterior

density is denoted by p( | y) and current state is ( 1)m  , to use MH algorithm to generate a

new draw *  for ( )m , first we give an arbitrary jumping density (or proposal function)

* ( 1)( | , )mq y    and simulate a value, say * , for ( 1)m   to jump to. Then, a transition kernel

that determines whether to accept or reject this new candidate value is defined
* ( 1) * ( 1) * ( 1)( | , ) ( | , ) ( | )m m mp y q y a              (4.1)

so that random feature of ( )m  is jointly determined by jumping density and acceptance

probability * ( 1)( | )ma    . Here, * ( 1)( | )ma     is a probability statement determining

whether ( )m  will jump to the new candidate value or remain at the current state. If the

transition kernel makes a move from ( 1)m   to *  more likely than from *  to ( 1)m  , that is

* ( 1) ( 1) *( | ) ( | )m ma a     , MH algorithm will accept the new candidate * . Otherwise,

( )m will just be equal to the current state ( 1)m  .

Given this criterion, now it is necessary to formalize a proper function for evaluating
* ( 1)( | )ma    . Concerning this task, first we rewrite the equation (4.1) to

sampling kernel of a parameter so that the stationary distribution of this parameter can approximate the
posterior density of interest.
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* ( 1)
* ( 1)

* ( 1)

( | , )( | )
( | , )

m
m

m

p ya
q y
  
 




         (4.2)

and then apply the reversibility property (see Appendix V) of Markov chain to resolve
* ( 1)( | , )mp y   and derive another form of * ( 1)( | )ma     in (4.4). That is

( 1) * ( 1) * ( 1) *( | ) ( | , ) ( | ) ( | , )m m mp y p y p y p y        or

* ( 1) *
* ( 1)

( 1)

( | ) ( | , )( | , )
( | )

m
m

m
p y p yp y

p y
   






 (4.3)

* ( 1) *
* ( 1)

( 1) * ( 1)

( | ) ( | , )( | )
( | ) ( | , )

m
m

m m

p y p ya
p y q y

   
  




           (4.4)

After considering a symmetric sample path and defining a reverse jump for (4.1), we rewrite

the transition kernel from *  to ( 1)m   to

( 1) * ( 1) * ( 1) *( | , ) ( | , ) ( | )m m mp y q y a          (4.5)

Now, by inserting (4.5) into (4.4), a new solution for * ( 1)( | )ma    can be derived

* ( 1) * ( 1) *
* ( 1)

( 1) * ( 1)

( | ) ( | , ) ( | )( | )
( | ) ( | , )

m m
m

m m

p y q y aa
p y q y

     
  

 


            (4.6)

After rearrangement, finally we get
* ( 1) * ( 1) *

* ( 1)
( 1) * ( 1) * ( 1)

( | ) ( | ) ( | , )( | )
( | ) ( | ) ( | , )

m m
m

m m m

a p y q yD
a p y q y
     
    

 


        (4.7)

( )D  here is a function for evaluating whether * ( 1) ( 1) *( | ) ( | )m ma a     . Once this value

is obtained, we can use the result to determine the value of ( )m . To understand more clearly

how this sampling process will work, we provide below its pseudocodes.

Metropolis Hastings algorithm

1. Draw u from a uniform distribution [0, 1]

2. Draw * from * ( 1)( | , )mq y  

3. Calculate the acceptance probability * ( 1)( | )mD    for *

* * ( 1)
* ( 1)

( 1) ( 1) *

( | ) / ( | , )( | ) min ,1
( | ) / ( | , )

m
m

m m

p y q yD
p y q y

   
  




 

 
  

 

4. If * ( 1)( | )mu D    , *  is accepted,  let ( ) *m 

5. Otherwise, *  is rejected, ( ) ( 1)m m   .

4.2.2 Variants of Metropolis Hastings algorithm
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Above, we illustrated the sampling procedure of a standard Metropolis Hasting algorithm. In

the literature, there are also many variants developed based on it. Since, for a Markov chain to

be valid, it is only required that ergodicity condition for ensuring the convergence theorem be

satisfied, variants of MH then can be easily proposed by replacing * ( 1)( | )mq    . In the

following, we describe four typical examples of these variants.

However, before proceeding, it is necessary to note a relationship between this density and

convergence because * ( 1)( | )mq     now determines the (acceptance rate) efficiency of

searching to be performed in the high probability region. Generally, it is desirable that the

acceptance rate of a MH is set as high as possible. Thus, to generate the parameter value of

next state, we do not need to simulate too many new draws and then reject them. However,

Tanner (1996) described a situation where even a chain with a close-to-one acceptance rate

may still converge very slowly. This is because the distance moved between new draws is very

short. Thus, it may take the chain a fairly long time to forget its origin. From these illustrations,

it is not difficult to see that convergence of a Markov chain is actually an empirical issue.

a. Metropolis algorithm

Now, we illustrate one of the simplest MH variants. That is the Metropolis algorithm of

Metropolis et al. (1953).  For this simulator, the authors replaced the reversibility condition

assumed for jumping density * ( 1)( | , )mq y    in equation (4.1) with a fixed symmetric

function so that the transition ( 1) *m   and its reverse * ( 1)m    have the same

probability * ( 1) ( 1) *( | , ) ( | , )m mq y q y      and the acceptance probability ( )D  is set to be

*
* ( 1)

( 1)

( | )( | ) min ,1
( | )

m
m

p yD
p y

 





 
  

 
            (4.8)

Here, it is obvious that, after assuming this symmetric function, Metropolis algorithm now

becomes a limiting case of standard MH. In all cases except when significant asymmetry is

observed in target density, Gleman et al. (1995) proved that the convergence induced by an

ergodic Markov chain will always occur for a symmetric transition function as if the

homogeneity of sampling process is kept changed. Thus, the posterior result generated by

using this simulator, if the convergence of algorithm can be confirmed, is always valid (see

Brooks and Robert, 1998, for proofs).

b. Independence Metropolis chain

Tierney (1994) proposed another MH variant, called Independence Metropolis chain. He let
* ( 1) *( | , ) ( )mq y q    so that sampling a new candidate *  from the jumping density
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* ( 1)( | , )mq y    is independent of the current state ( 1)m  , and the acceptance probability

( )D   is modified to

 *
* ( 1)

( 1)( | ) min ,1
( )

m
m

w
D

w


 





    
  

              (4.9)

where ( ) ( | ) / ( )w p y p   .

Here, since the simulated samples are forming i.i.d sequence and acceptance and rejection of a

new draw is determined by a probability statement, this technique is closely related to the ARS

algorithms described in last chapter. However, note that their interpretations of the decision

rules for *  are slightly different. For example, if a rejection occurs, ARS algorithm explains

it by the simulator now placing low weight on a draw that is unlikely to be relevant to the

density of interest. However, when Independence Metropolis chain is used, this rejection is

then interpreted as the sampler assigning a very low probability of accepting *  as the new

draw for ( )m . As for the flexibility of the algorithm, Independence Metropolis chain is

usually considered the easiest MH algorithm to perform. However, sometimes its convergence

rate could be extremely low.

c. Random walk Metropolis chain

Apart from the above two samplers, a more frequently used MH variant is the Random walk

Metropolis chain. With this simulator, each *  is now drawn from a jumping density defined

to be * ( 1) ( 1) *( | , ) ( )m mq y q       whose domain is close to the current state ( 1)m  , and

the search for new candidates is performed without any preference concerning the direction.

Empirically, researchers usually let this density be hyperspherically multinomially distributed

so that * ( 1) ( 1)( | , ) ( , )m m
kq y N s I      where kI  is a diagonal identical matrix; s is an

adaptive factor used to maintain an acceptable jump. This is because, given this setting, the

new candidate draws *  will be automatically locating around ( 1)m   and the probability of

accepting new draws will decrease along with the span of exploration. Besides, to induce no

directional preference while searching the parameter space, this density is frequently set to be

mutually exclusive so that every direction of the movements can generate the same

probability.33

33 We assume independent multi-normal distribution here.
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d. Forced walk algorithm

In spite of the Random walk chain, many researchers have also documented the use of another

MH variant where directional preference can be included. This sampling technique is called

Forced walk algorithm. Its jumping density is set to be multivariate Gaussian ( 1)( , )m s V   

where V denotes the observed covariance matrix. Since the directional preference of simulation

can now be obtained from the density values of updated Gaussian, a new candidate draw *

for ( )m  can be simulated once the preferences originating from ( 1)m   are all calculated and

averaged.

To use this simulator, it is important to note that a proper tuning for V is usually indispensable.

If this covariance matrix is set too large, the jumping density could be too dispersive relative to

the density of interest. Thus, more candidate draws need to be simulated to obtain one

accepted sample since the probability of rejection will dramatically increase. Conversely, if V

is set too small, the distance moved between different draws will probably become very short.

Therefore, a much larger number of iterations are required to cover the whole parameter space

and the convergence of the chain may become every slow. In practice, usually we can tune this

algorithm by firstly running a series of sub-runs to increase the speed of convergence, and then

periodically updating V according to the previous result so that the next simulation can adapt

to the ‘successful’ searching direction (See Robert, 1996, for illustration of an example).

4.3 Gibbs Sampler
Apart from the MH algorithm, another popular MCMC technique that is also frequently used

to simulate Markov chain is the Gibbs sampler of Geman and Geman (1984). This method was

initially applied in statistical physics to analyze Gibbs distribution on lattices for image

reconstruction. In 1990, Gelfand and Smith successfully demonstrated a much larger scope of

potential for its uses in inference calculation. Since then, new interests has been continuously

generated to develop this simulator. For example, Gibbs sampler combined with the data

augmentation technique of Tanner and Wong (1987) has been proved very successful in

treating latent variables in econometrics. As remarked by Geman and Geman (1984, p24),

‘…this sampling method provides a much simpler way of drawing from a multivariate

probability density based on the densities of parameter subsets conditional on all other

parameters and data...’ In the following, we present a detailed illustration of this simulator’s

sampling process and several of its typical variants. Besides, some initial settings concerning

its implementation are also briefly discussed. For a more comprehensive review, see Casella
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and George (1992). For a good survey, see Smith and Roberts (1993), Tanner (1996), Gilks et

al. (1996) and Robert and Casella (1999).

Here, we first define the aim of this technique. Gibbs sampler, by its definition, is proposed to

perform the high-dimensional stochastic simulation. Its basic idea, which is not difficult to

conceptualised, is that if it is possible to partition the parameter set into several blocks and

specify sampling kernel of each parameter as a density function conditioned on all other

parameters, then, by cycling through these low-dimensional conditional statements, we can

eventually reach the true joint distribution of interest (Gill, 2002). Note that although for Gibbs

sampler the posterior updating may now involve multiple simulations, its conditional densities

usually correspond to only one parameter each. Thus, the simulation task is simply to sample a

series of dependent draws for a set of one-dimensional densities. Even if, in some special cases,

we might be able to define a sampling kernel encompassing several different parameters, it is

generally assumed that these parameters are highly correlated and their joint conditional

density has an analytical form. Thus, as far as the computational cost is concerned, Gibbs

sampler is then usually considered as a much cheaper solution for performing high-

dimensional simulation than numerical integration. Besides, its advantage of conceptual

simplicity and the ease of implementation are also quite obvious.

Now, it is worth noting an important assumption for performing this algorithm. Since the

transition kernel in Gibbs sampler is formed by a set of conditional densities, to facilitate the

simulation process, it is usually assumed that the probability statements of these conditional

densities are articulated enough so that it is possible to draw i.i.d values directly from these

densities. Although this assumption, as has been mentioned repeatedly, is too strong for

general problems, and only in some illustrative cases may one find analytical sampling kernel

for parameters in a financial model, the real contribution of Gibbs sampler is not constrained

by this at all. This is because, even if there are several densities which are analytically

intractable, dimensionalities of these densities are usually quite low; thus, numerical

integration techniques which do not need much computational expense could still be used for

sampling. It is the idea of reducing the dimensionality of the density to be simulated that really

popularizes the application of Gibbs sampler. To see how the joint posterior density of

Bayesian inference can be uniquely defined using a series of unidimensional distribution, we

provide, in the following subsection, an example.

Suppose   now denotes the parameter set of interest and can be partitioned into K blocks, that

is  1 2, , , K     . Here, we let    ( ) 1 2 1 ( ) 1, , , , , ,k k k k K            and ( )k
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be the parameter vector   without the element k,  ( ) ( ) ( ),k k k     . Meanwhile, we also

define the posterior density of k conditioned on recent values of all other parameters to be

( ) ( )( | )k k kp    and assume there exists an analytical sampling kernel ( ) ( )( | )k k kq    which

specifically corresponds to it. Given these settings, task of Gibbs sampler is then to simulate

from this sampling kernel. Note that k  here can be either uni- or multi- dimensional. If we

only consider a single parameter k, ( ) ( )( | )k k kp    is called full conditional distribution, or

just full conditional. Since, in Bayesian statistics, prior density of different parameters are

generally assumed to be independent, this full conditional can be easily obtained after all

parameters that do not relate to k are absorbed in the joint posterior density of .  For

example, if we now consider a two-parameter model whose joint prior density is given by p

( 1 2,  )=p ( 1 )p ( 2 ), to define 1 (1) (1)( | )p    we only need to eliminate all elements that do

not depend on 1  in joint posterior density 1 2( , | )p y   and absorb them in the normalization

constant.

4.3.1 Sampling process of standard Gibbs sampler
Now, we illustrate the sampling process of standard Gibbs sampler. Consider the same

posterior density p( | y)  (the stationary distribution to be approximated) as before. Our task

is now to produce a Markov chain for each element in   that can move toward this density

after cycling through all full conditionals. Provided that the current state is
( 1) ( 1) ( 1) ( 1)

1 2( , ,..., )m m m m
K        and ( ) ( )( | )k k kq    is a simulating kernel of ( ) ( )( | )k k kp  

for k , to generate the next state of the chain ( )m , we proceed as follows:

Gibbs Sampler Algorithm

1. Draw ( )
1

m  from ( 1) ( 1) ( 1)
1 1 2 3( | , ,..., )m m m

Kq      

2. Draw ( )
2

m  from ( ) ( 1) ( 1)
2 2 1 3( | , ,..., )m m m

Kq     

3. Draw ( )
3

m  from ( ) ( ) ( 1) ( 1)
3 3 1 2 4( | , , ..., )m m m m

Kq      

4. 

5.  Draw ( )m
K  from ( ) ( ) ( ) ( 1)

1 2 1( | , ,..., , )m m m m
K K K Kq      



Given the above procedure, now we can easily confirm that this simulator is indeed producing

Markov chains that will converge to the posterior distribution. This is because all necessary

conditions required in the convergence theorem are satisfied. For example, simulation of the

next state is now only conditioned on the values of the current state. The sampling process is
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kept homogeneous with all consecutive probabilities independent of the current length of the

chain. Liu, Wong and Kong (1991a, b) and Schervish and Carlin (1990) presented the

regularity conditions under which a Gibbs sampler will converge. A more general case that

leads to a geometric convergence rate is discussed in Roberts and Polson (1994).34  Here, note

that although we are updating only one parameter at each step, in practice it is applicable and

desirable several parameters can be combined into the same group and updated together. As

Roberts and Sahu (1999, p21) argued, ‘…by blocking highly correlated parameters, the

convergence rate of the Gibbs sampler might be improved…’ Besides, it is also worth

mentioning that the Gibbs sampler is actually a special case of the aforementioned MH

algorithm. To see this proof, consult Appendix VI for the details.

4.3.2 Variants of Gibbs sampler
In this section, we describe two variants of standard Gibbs procedure. One is Completion

Gibbs sampler of Robert and Casella (1999). This other is Slice sampler of Higdon (1998). As

for the Completion Gibbs sampler, if there is a function g that satisfies the condition

( | ) ( , )p y g z dz    and the full conditional distributions of ( , )g z  are very easy to

simulate, Robert and Casella (1999) suggested using this new function as the source for

updating rather than simulating draws directly from the original posterior density.35 Higdon

(1998) proposed another generalization of standard Gibbs sampler by introducing some

auxiliary uniformly distributed random variates. Suppose now the posterior density ( | )p y

can be written as the multiplication of some positive functions, i.e.
1

( | ) ( | )k
ii

p y p y 



and at (m-1)th iteration we can generate a uniform random variable u according to

( 1)~ (0, ( | ))m
i iu U p y  . Then, for the next state, ( )m is simulated from ( ) ~ ( )m mU A ,

where  ; ( | ) , 1,2...,m
i iA a p a y u i k   . Here, since only uniformly distributed random

draws will be simulated, this sampler is usually considered as a computationally very cheap

way to perform the general Bayesian learning. For more details of how to implement this

algorithm, see Damien et al. (1999).

4.3.3 Hybrid Gibbs-MH algorithm
Above, a necessary condition for implementing the Gibbs sampler is we can find either an

analytical form for full conditional or full conditional itself is decomposable. However,

empirically, a common situation is there could be one or more blocks of joint posterior density

34 Converging at a geometric rate means variation distance moved between two samples drawn at consecutive
time points decreases at a geometric rate.
35 z here is an arbitrary variable.
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not satisfying these assumptions; therefore, a more generalized simulator is needed to deal

with these non-conjugate cases. In MCMC framework, Gilks and Wild (1992, 1993) proposed

a solution called adaptive rejection method to simulate draws from a non-analytical log-

concave density. Ritter and Tanner (1992) suggested using grid-based evaluation. Here, before

we proceed to illustrate the Griddy Gibbs sampler, a hybrid approach that combines the MH

algorithm and Gibbs sampler is described firstly because this method provides a naïve solution

for sampling non-trivial densities.

As for this hybrid approach, it is usually called ‘Metropolis within Gibbs method’. Simply put,

it is a simulator where MH algorithm is used to solve the non-conjugate blocks, whilst Gibbs

sampler is used to evaluate the analytically tractable blocks. For example, if we now assume b

is the only block in  whose sampling kernel does not have an analytical expression, we then

use MH algorithm to simulate a candidate value *
( )b  for ( )

( )
m
b  from

* * ( ) ( 1)
( ) ( ) ( ) ( 1)~ ( | , )m m
b b b bq    

    if the current state is ( 1)m   and use Gibbs sampler to simulate all

remaining values in ( )m
b . Here, for *

( )b  its acceptance probability is computed by

 
( ) * ( 1) ( ) ( 1)

( ) ( ) ( 1) ( ) ( 1)* ( ) ( 1)
( ) ( ) ( 1) ( ) ( 1) ( 1) ( ) * ( 1)

( ) ( 1) ( ) ( ) ( ) ( 1)

( , , ) / ( , )
| , min ,1

( , ) / ( | , , )

m m m m
b b b b bm m

b b b m m m m m
b b b b b b

p q
D

p q
    

  
     

 
     

     
     

 
   

 
(4.10)

and we decide whether to accept or reject this new draw after comparing this probability with a

uniformly distributed random variate U. If  * ( ) ( 1)
( ) ( ) ( 1)| ,m m
b b bD    

    is larger than U, then we say

*
( )b  is accepted. Otherwise, this draw will be rejected and ( )

( )
m
b  is traced back to the last state.

That is ( ) ( 1)
( ) ( )

m m
b b   . To see the convergence result of this simulator, Geweke (2005)

illustrated an example using a two-parameter model. For its application in finance, see

Cappuccio, Lubian, Raggi (2004).

4.3.4 Griddy-Gibbs sampler
Not only using a hybrid approach, evaluation of a non-conjugate block can also be resolved by

enhancing the standard Gibbs process with a Monte Carlo numerical integration technique.

Since full conditionals reduced from joint posterior density are usually low-dimensional, using

a deterministic integration rule to evaluate a non-analytical density over a grid of points is then

economically feasible. This approach is initially proposed in Ritter and Tanner (1992) to

estimate a non-linear regression model and a two-parameter Cox model. Briefly, its main aim

is to approximate the c.d.f of a full conditional which is difficult to simulate by using a

piecewise linear function; once the high mass is detected, a new random draw is then
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generated by inserting a uniformly distributed random variable to the inversion of that

approximation. Since implementation of this algorithm is greedy on computational time, it is

then usually called ‘Griddy Gibbs sampler’.

Following the standard sampling procedure described in Section 4.3.1, we now give an

example for this simulator. Given that the current state of posterior simulation is

 ( 1) ( 1) ( 1) ( 1)
1 , ...,m m m m

b K         and b  is a non-conjugate block whose simulating kernel

( 1)
( )( | )m

b b bq   
  does not have an analytical expression, to use Griddy Gibbs sampler to

generate a random draw for this block, we firstly select a grid of points (1) (2) ( )( , , , )b b b G  

for b  and then use the following steps to generate ( )m
b  of the next state.

 Griddy Gibbs sampler

1. Insert the grid points (1) (2) ( )( , , , )b b b G    to the sampling kernel

( 1) ( 1) ( 1) ( 1)
1 1 1( | , , ..., )m m m m

b b b b Kq        
   to calculate the density values of block b. That

is  (1) (2) ( ), , ,q GG q q q  .

2. Compute the c.d.f values of qG  by applying a deterministic integration rule to

( )

(1)

( 1)
( ) ( )( | )b i

b

m
i b b b bq d




  

    where 2,i G   and derive  (2) ( )0, , , GG   

3. Normalize G  through the function '
( ) ( )/i GG     to make cumulative distribution

values of 'G  span over [0, 1].

4. Generate a uniformly distributed random variable ~ [0,1]u U  and insert it to the

inversion of  ' ( 1)
( )| m

b bG   
  . And, after applying the numerical interpolation, we

obtain a new draw for ( )m
b .

Above, if there are any blocks other than b which are also non-conjugate, we can adopt the

same procedure to generate a new sample for their parameters. However, for those where an

analytical sampling solution is obtainable, only direct sampling needs to be performed.

Since Griddy Gibbs sampler is now the only MCMC algorithm to be used for inference

calculation in this thesis, a detailed illustration of several issues concerning its

implementations is provided below. Concretely, we will discuss issues like how to choose a

proper grid of points for parameter of interest, which integration and interpolation technique to

use in simulation, and several advantages of this simulator.
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4.3.4.1 Choice of grid points
First, concerning the selection of grid points, usually we can start by determining a theoretical

bound for the parameter of interest and then draw either equally-spaced or variably-spaced

points from the specified domain to form a grid. Here, for certain parameters, this boundary

information can be obtained from restrictions imposed on them. For example, to ensure the

covariance stationarity of a GARCH process, volatility persistence parameter β is often

constrained to an interval [0, 1]. However, empirically, a more typical solution is to restrict the

value of β to an even narrower space, say [0.5, 1]. This is because a large body of evidence has

confirmed the strong volatility persistence for various finance time series, and in very few

cases is estimated parameter value for β found less than 0.5. Since random draws in the low

mass such as those in the range of [0, 0.5] now can be purposely avoided, an efficient search

can be expected.

Once the upper and lower bounds are determined, the second step is to generate each point

from the given interval. Generally, if no prior information is available, we can simply choose

equally-spaced points from the selected domain to form a uniformly distributed prior.

However, it is always preferable, either through some past experience or an expert’s advice, to

obtain some early knowledge of the posterior so that the grid can put more points (emphasis)

on neighbourhoods of the high mass and fewer points near the low mass. By so doing, the

efficiency of the algorithm can be improved a lot. However, unfortunately, in general Bayesian

learning such prior knowledge is often not available. Hence, in countless cases it is still the

equally-spaced points that are used the most.36

4.3.4.2 Integration rule and Interpolation technique
Apart from the selection of grid points, in the sampling process of the Griddy Gibbs sampler

the deterministic integration rule applied in step 2 and the numerical interpolation technique

used in step 4 are also two factors related to the posterior results. Usually, compared to the task

of choosing grid points, it is much easier to choose these techniques because more objective

election criteria can be adopted. For example, if one is asked to choose a series of good grid

points, the decision is usually made subjectively. We might choose a large number of points to

calculate the integral for a relatively simple function, but much fewer for a complicated one

36 Theoretically, in Gibbs sampler it is also possible to use a variable grid. For example, when the simulation
has just started, the performance of using grid point-based numerical integration to approximate a non-trivial
density function could be quite poor; thus more points are needed to search the area where substantial
volatility is present. However, when the sampler tends to be more stable and the approximation results
improve, to obtain a random sample the number of points needed to be input for evaluation can be greatly
reduced.
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due to the computational cost concern. However, as for selecting a proper integration or

interpolation technique, implications then can be easily obtained from the massive researches

that have been performed in statistical literature.

First, concerning the numerical integration, Davis and Rabinowitz (1975) provided a detailed

survey and comparison of various techniques. When Griddy Gibbs sampler is used, many

authors suggested using a simple method such as trapezoidal rule to calculate the integral over

a fixed grid of points. This is because using more complicated alternatives such as iterative

Simpson algorithm, although good, is very likely to induce high computational cost. Since the

full conditionals to be evaluated are already assumed to be complicated (or non-conjugate)

functions, it is then desirable to use a relatively simple method so as to alleviate the overall

computational cost.

Besides, this concern also applies when interpolation technique is chosen. That is to say, it is

preferable to use simple linear function for interpolation, although high-order polynomials are

also available for implementation. Clearly, to depict the relationship between adjacent points,

using linear function is easier and cheaper. However, when convexity or concavity are present,

quadratic functions are then probably a better choice since minor changes due to the second-

order derivative can also be accounted. Here, although even more sophisticated techniques,

such as splines analysis, for solving multidimensional interpolation are also possible, generally

their implementations are not recommended for common empirical uses.

4.3.4.3 Advantages and implementation issues
Given the sampling process and technical settings illustrated above, it is now necessary to

summarize some advantages of Griddy Gibbs sampler and illustrate why this simulator is

preferable to other alternatives for solving general Bayesian problems. Apart from the

conceptual simplicity which has been briefly discussed at the start of this subsection, one of

the most important advantages of this grid-based simulator is its ease of implementation. As

pointed out by Ritter and Tanner (1992, p172), “…The Griddy Gibbs sampler in its simplest

form generally can be implemented in only 30 to 50 lines of codes without including any

subroutine that computes the posterior…” Thus, for an experienced programmer, the main task

is only to add an enhancement of density function to a highly modular form. Even if a very

complicated full conditional is considered, the cost of coding will not increase substantially.

This algorithm can be easily ‘transplanted’ to solve any statistical functions. However, when

other simulators such as importance sampling or ARS are used, their codes are then often

sample-specific and not re-useable which means that one has to rewrite the program all over

again for each new application.



- 70 -

Besides that, another major advantage of using Griddy Gibbs sampler is it allows us to obtain a

smooth estimation of marginal posterior density. Empirically, it means this algorithm can deal

with a variety of statistical characteristics (or density shapes), e.g. skewness and high-

peakedness. This is mainly because integration is now performed on a grid so that every

direction in posterior density can be explored in detail. Moreover, it is also easy to incorporate

a variance reduction technique into the sampling process so that the variance in estimation of

moments of marginal posterior density can be reduced. This technique in MCMC is called

‘conditioning’. For example, to estimate parameter b, we can use

( ) ( 1)
1

[ | , , ]/( )N n n
bn s

E b y z N s 
 

  instead of ( )
1

/( )N n
n s

b N s
 

 where s is the number of

draws to be sampled for posterior to reach its equilibrium state.

Since the correlation mixture models to be proposed in the next chapter are going to assume a

heteroskedastic (GARCH) specification, here it is also worth noting another implementation

issue of this MCMC algorithm when it is implemented in a heterogeneous environment. As

illustrated before, a necessary condition for performing Griddy Gibbs sampler is that a

parameter set of interest   is separable for each element. However, note that this condition is

not satisfied in all cases. For example, Bauwens and Lubrano (1998) illustrated a case of a

regression model whose innovation is modelled by GARCH-t. Say   now consists of

regression parameter   and GARCH parameter  : this model then can be specified as,
'

~ (0, )
t t t

t v t

y x u
u t

 



where ut follows GARCH process. Here, since '( )t t tu y x   , t is then a function of both 

and  . And simulating GARCH parameter of the next state is not only determined by current

information on   but also by current information on  . To illustrate it more clearly, posterior

sampling kernel of ( | )   according to the sequential sampling procedure of Gibbs sampler is

now

( | ) ~ ( ( , ), )f h         (4.11)

Since ( | )    is no longer a sole function corresponding to   (sampling kernel of   is not

explicitly related to its own), using Gibbs sampler is not appropriate here. This problem

appears because regression parameter and GARCH parameters are now both presented in the

same model. To circumvent this difficulty, we do not consider in our paper any regression

term in the mean equation when correlation mixture model is proposed.
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4.3.5 Data augmentation
As has been shown, the Gibbs sampler and its variants provide an easy way to resolve complex

statistical inferences. However, their empirical potentials can be further developed if

‘incomplete data theorem’ is exploited. Tanner and Wong (1987, 1991) proposed a so-called

data augmentation technique to provide such an improvement (see Carlin et al.1992, and Kim

et al., 1998, for examples). As a special case of Gibbs sampler but unlike Gibbs sampler, this

MCMC algorithm provides a simple method to simulate unknown parameter values by

augmenting the given information (observable data) with a series of latent variables and then

iteratively improving the quality of these augmented quantities. From this aspect, it is clear

that this technique is actually similar to the EM algorithm of Dempster et al. (1977). Both

methods are based on the assumption of the existence of a complete information set. EM is

valid when our task is to find a local maximum for model parameters. However, while the goal

is to describe the complete posterior distribution, data augmentation then becomes a more

appropriate resolution.

To illustrate the use of this simulator more clearly, consider now a typical state space model, a

stochastic volatility model with observations y, unknown volatility h and the parameter set of

interest  . Suppose h and   are now both unobservable and our task is to evaluate the

posterior density p ( | y). To use data augmentation to calculate model inference, one first

needs to define a predictive density p (h| y) as an intermediate information processor. Usually,

this density can be computed by integrating out latent variables from a joint density. If, for

example, there exists a parameter set   in   that is related to the dynamic process of h, then

after writing p (h| y) into the following form

( | ) ( | , ) ( | )p h y p h y p y d  


             (4.12)

a random draw of h can be simulated from the above predictive density. Since h and y now

become observable, we can evaluate p ( | y) by just integrating out h from another joint

density, that is,

   ( | ) | , |
h

p y p h y p h y dh                       (4.13)

where  | ,p h y  according to the Bayes theorem is proportional to ( ) ( , | )p p y h  , and an

iterative algorithm for updating   can then be constructed based on (4.13).

To obtain a more practical view, we provide the pseudo code of generating ( )m  using data

augmentation technique and information at ( 1)m   in the following:
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Data augmentation

1. Generate a set of N values of h from ( 1) ( | )mp y

2. Update the parameter approximation using ( )
1

1( | ) ( | , )Nm
in

p y p y h
N

 


 

3. Simulate a value from ( ) ( | )mp y  for ( )m

Here, a major concern is how to chose N. Generally, the larger the N is, the better the

approximation while the slower the convergence will be. Therefore, before each simulation

starts, one always needs to make a proper choice of this number so that efficiency of the

sampler and validity of posterior results can be soundly balanced. Besides, another feature

worth noting here is that this sampling technique will reduce to standard Gibbs sampler if N is

set to equal one.

4.4 Implementation issues of MCMC simulators
In practice, there are a lot of implementation issues concerning the use of MCMC algorithms.

For example, before sampling starts one needs to choose a proper initial value for each

parameter and a reasonable prior density. As new points are being drawn, appropriate tuning of

the sampler is indispensable and one may also find it necessary to apply a variance reduction

technique. After the sampling process has been iterated for a sufficiently long time, issues like

whether the simulated chain has converged or how many more independent replications need

to run could then also be raised. In the literature, the aforementioned issues have all been

thoroughly studied. In the following, we only selectively discuss some of them that are related

to the use of our Griddy Gibbs sampler. They include the selection of initial values, choosing

burn-in period and some miscellaneous issues (See Neal, 1993, for a good survey of other

implementational issues of MCMC).

4.4.1 Selection of Initial values
When an iterative method, say a Bayesian approach, is used to calculate the model inference,

estimation always starts by selecting a proper initial value for each parameter. In the literature,

a variety of techniques have been provided to perform this prior exploration of posterior

distributions. Typical methods include the simulated tempering of Geyer and Thompson

(1995), simulated annealing of Jennison (1993) and mode hunting of Gelman and Rubin

(1992). All these methods can be utilized to suggest an appropriate initial value.

Generally, if prior information is available, that is, if we know roughly where the high mass

will be located, initial values of a parameter can be easily chosen as just equal to the mode of
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prior density assumed. For example, we can, by either fitting an EM algorithm or a grid search,

find this mode. Gelman and Rubin (1992) illustrated such an example. Besides, similar

findings are also documented in Rubin and Wu (1997, p34) where the authors argued,

“…using EM algorithm and its variants is a wise step for solid computing involving the

simulation of the posterior distribution. It gives a rough picture of the posterior distribution at

a lower cost than the Gibbs sampler….”

However, it is necessary to note that pre-estimation of sample data is not always easy. Using

EM algorithm for example, to calculate its inference for a multi-dimensional problem, is often

a time-consuming job. In such cases, to search for the initial values, one then probably has to

rely on an arbitrary method. For instance, if a relevant domain for a parameter to be simulated

can be determined, we can then select a random point in this domain as the starting value for

 . Although this method is theoretically feasible, using it could sometimes result in a very

slow convergence rate because the algorithm may now be initialized by a point far from the

high mass; thus it will take the chain longer than ‘normal time’ to finally converge. In practice,

it would always be better if we could try different initial values for posterior sampling if the

computational cost of generating multiple chains is not a major concern.  This is because a

diversified map can then be shown. Besides, one can also expect some valuable information

about the non-convergence for the target chain, if these chains can be compared to each

other.37 Gelman and Rubin (1992) proposed a convergence diagnostic test based on this virtue.

They argued the more dispersed the initial values are, the more sensible assessment the result

will be. For a more detailed illustration of this issue, see Section 4.5.2.

4.4.2 Burn-in period
As just illustrated, since posterior sampling using MCMC technique is often initialized by

some arbitrarily-selected starting points; realizations of Markov chain generated in the initial

transition period will then unavoidably contain bias from these starting values and cannot be

used as a valid sample from target distribution. Given this feature, it is then important to

determine how long this transition period (or so-called burn-in period) would be because, even

if the chain is now initialised by the mode of high mass, it may take it some time to forget its

origin, and some further time to fully explore the posterior distribution.

37 Note that the comparison result here can be used to assess the non-convergence but not the convergence of
Markov chain. This is because, even if Markov chains are initialised by different starting values and
congregate in the same region, all of the chains could only be seduced by the same local maxima and mix
around in their own local region. Thus, it does not necessarily construct a representative for the stationary
distribution.
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Concerning this issue, although a variety of theoretical analyses have been performed, a

general consensus has still not been reached. Usually, one still needs to rely on the result of a

specific convergence diagnostic test to obtain some implications. For example, Raftery and

Lewis (1996) proposed such a diagnostic test to address the issue of burn-in period. By setting

up a new chain (not Markovian) parallel to the simulated chain, the authors accessed the

convergence (number of iterations required for a chain to converge) in their research using

quantile information. However, Robert and Casella (1999) argued that the unidimensional

nature of the new chain assumed in their method does not account for the potential correlation

between different primary chains; thus, Raftery and Lewis’s test cannot be used to deal with

the general Bayesian learning. To see more alternatives for accessing convergence, a detailed

illustration is provided in Section 4.5.

4.4.3 Miscellaneous issues
Apart from the general issues just illustrated, here it is also worth noting some miscellaneous

issues concerning MCMC. For example, using MCMC simulator is nothing but coding a

program. Since a lot of conditions such as ergodicity need to be ensured when chains are

generated, the programming codes are required to reflect these virtues. For example, to make

the sampling sequence obtaining local property, the current state needs to be treated as the only

input for simulation of the next state. To maintain the homogeneity, the posterior sampling

process needs to be kept unchanged as the iterations proceed. Positiveness is guaranteed if any

value in the parameter space can be randomly reached in later iterations whatever the initial

values might be.

Given the above settings, although it may seem that using MCMC algorithm is now ready to

produce accurately inferential results, different problems may still sometimes occur. For

example, Gelman (1996) presented a discussion of these problems and listed three factors that

are frequently overlooked. They are inappropriately specified model, error in programming

Markov chains (stationary distribution of the chain may not be the target distribution) and a

low convergence rate. Among them, the potential damage caused by the first factor is usually

considered the most serious. This is because an incorrectly specified model may lead to an

improper posterior density. Since a common result of this bias is that sampling kernels might

not be integrable, even if a ‘good-shaped’ histogram is observed, the resulting posterior

information would be unavoidably spurious. In such cases, the existence of a limiting

distribution for parameter of interest then needs to be proved again. As for the slow

convergence, early recognition of this problem for Markov chain is very difficult. Even for the
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most experienced researchers, anticipating problems like the chain getting stuck in a low mass

for a long period of time is still a nearly impossible task.

4.5 Numerical accuracy and Convergence Diagnostic tests
In this section, we describe several diagnostic tests to be used in our later chapters for

examining the convergence of simulated chains. For a parameter, if a sequence of its simulated

values has been generated, an important thing to know is how well the empirical moments of

these simulated samples can approximate the true parameter value. That is, we need to access

whether the chain has converged and evaluate ( )m   when m, the length of chain, is

sufficiently long.

In the literature, there are a lot of papers dedicated to proposing a valid test for examining the

convergence and these tests are usually divided into two groups. One relies on the existence of

an analytical kernel. The other however utilizes the output values from one or more

replications of simulated chains. Since using the second method can provide a more problem-

independent way to assess convergence, we illustrate several examples of it in the following

subsections. However, before proceeding, it is important to note that the purpose of these tests

is now not to detect the exact state from which a Markov chain starts to converge, but to find

the evidence of failure of non-convergence.

4.5.1 Autocorrelation
Inspecting the sample path is one of the simplest ways to monitor the evolution of a Markov

chain. To assess its convergence, we can rely on simple methods such as calculating its

autocorrelation (or correlation) to see whether the target chain (or multiple chains) has

converged. This statistic can tell how independent a simulated chain is in itself and of others.

In the univariate context, usually the higher the autocorrelation, the slower the target chain

would converge. Similarly, in the multivariate case, the higher the intercorrelation, the slower

the multiple chains would be mixing. Although this test is now very easy to perform,

frequently it needs to be used with other quantitative-based tests to explain the convergence

result, because assessment is now made based solely on visual analysis.

4.5.2 Variance Ratio test
To propose a more objective criterion, Gelman and Rubin (1992) introduced a so-called PSRF

test to examine whether subsamples generated from different starting values of a long chain

are stemming from the same limiting distribution. To test the convergence, the authors used

several independent shorter chains simulated from the same limiting distribution to replace the
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original long chain. They argued that, by so doing, a variety of information concerning the

convergence can then be obtained. For instance, we can use the result of this test to discover

how well the chain is mixing, to what extent the output from individual chains is

indistinguishable and, most importantly, the sensitivity of posterior inference to different

initial values.

As for its virtue, this test is now similar to performing an ANOVA test and its convergence can

be assessed inferentially. Now, suppose that we have simulated m independent sequences of

length 2n for  that begin with different starting values. To perform the test, first we calculate

a quantity called variance between m sequence means using
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where t
i  is the tth realization of the chain generated from using ith set of starting value for  .

Then, using a similar approach, we calculate the mean of m within-sequence variances 2
is

according to
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Once these two estimates are obtained, we now compare the between-sequence variance V

with the within-sequence variance M through an approximating t-distribution with mean

, variance

1 1(1 )nV M V
n m


  


 (4.18)

and degree of freedom
22

( )
Vd

Var V



                                  (4.19)

and compute the potential scale reduction factor (PSRF) using

3 ( / )
1

dPSRF V M
d





 
  (4.20)

Here, if PSRF is very large, it is suggested that the sampling sequence has not yet fully

converged with the stationary distribution and the variance of simulated values can be further
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reduced. However, Gelman and Rubin (1992) argued that a value of 1.2PSRF   is often

enough to claim the convergence.

Recently, based on the empirical interval lengths, Brooks and Gelman (1997) have developed

an alternative variance ratio test. For each chain to be diagnosed, first they take the empirical

100(1 )%  interval (the 100( / 2)%  and 100(1 / 2)%  points) of n simulated draws to

form m within-sequence interval length estimates. Then, from the entire set of observations

that are obtained from all chains, they recalculate the empirical 100(1-α)% interval and

generate a total-sequence interval length estimate. Finally, the new interval-based PSRF

statistic is computed by

int
int

length of total sequence ervalIPSRF
average length of within sequence erval





     (4.21)

Here, note that one of the main advantages of the above PSRF-type tests is their ease of

implementation. Indeed, when sampling kernel is not too complex and the simulation can

proceed without much grid evaluation, using these tests can help monitor the convergence of

Markov chains periodically. Once a satisfying value is observed, the last n simulated values

can then be treated as draws directly from the density of interest. However, when the sampling

kernel becomes complicated, their implementations may then quickly become very

burdensome since multiple chains now need to be simulated concurrently to assess the

convergence.

4.5.3 Partial means test
Besides, since the Markov chain, once converged, is a stationary time series, we can also use

some time series techniques such as spectral analysis to assess the chain’s convergence.

Geweke (1992) developed a so-called Z test based on this virtue. By exploiting the fact that the

means of two subsamples of a stationary time series are the same, the author proposed a

difference of means test on two subsamples which are respectively collected from some early

era of the chain and some non-overlapping late era of the chain.

For instance, consider now the sampling sequence ( ){ ; 1,2, }m m N    with two subsamples:

one is ( ){ ; 1 }m
A Am n     and the other is ( ){ ; }m

B Bm n N     where

1 A Bn n N   . Geweke tested the null hypothesis of equal means by calculating

( ) (0,1)
(0) / (0) /( )

dA B
A B

A B

Z
S n S N n 

  
 

 
  (4.22)
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where A , B  are sample means of  A and B  and (0)AS , (0)BS are their respective

spectral density estimates (see Chatfield, 1996 for details of calculating spectral density

function in a given window). Since this statistic is now to be asymptotically Gaussian

distributed, values that are atypical of standard Gaussian are then interpreted as evidence for

showing non-convergence.

4.6 Summary

As a major Bayesian method, Markov Chain Monte Carlo (MCMC) is the main topic

illustrated in this chapter. Since using this technique can help a researcher to acquire

inferential information on models even having very sophisticated specifications, it is then

frequently applied in a variety of financial studies. Here, we provide a comprehensive

overview of the aim and sampling process of this technique and illustrate two examples of it.

One is the Metropolis Hasting algorithm. The other is Gibbs sampler. The emphasis is put onto

a variant of the latter method, namely the Gribby Gibbs sampler. This simulator is important

because from a Bayesian’s perspective it can successfully reduce a multivariate simulation task

to a series of multiple uni-dimensional jobs and sampling a sophisticated log-likelihood

function becomes feasible. Besides, in this chapter we also describe some implementional

issues concerning the MCMC. We answer questions like “how to choose a proper burning-

period, initial value and prior density for each algorithm?” and “what are the factors that

ultimately will be related to the convergence of simulated chains and how to access this

convergence using different statistical tests”. As for the second question, a detailed review

with evidence is provided in Section 4.5.
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Chapter 5

Correlation forecasting comparison in
currency market
- A revisit of information efficiency derived from
option market

Abstract
From this chapter, we begin to examine the performance of various correlation models using

empirical data. Here, we use the foreign exchange market as an example to compare the

forecasting performance of eleven existing models and special attention is paid to the implied

correlation model whose forecast of the future calculation is generated from option prices

rather than through a time-series tool. Since, in both theoretical and empirical aspects, an

option contract is referred to as a derivative product which can convey forward-looking

information through the embedded market expectation, we exploit this invaluable information

source to utilize implied volatility collected from the OTC market to calculate implied

correlation of two currency trios and compare the results to forecasts generated from a variety

of competing models. After a series of comparison of the forecasting performance, our

findings suggest there is no evidence of a consistently best performer in our forecasting pool.

The relative accuracy of the generated forecasts in approximating realized correlation is very

sensitive to the measures used to evaluate them. Therefore, we conclude that the correlation

forecasting performance of these competing models is actually an empirical issue.
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5.1 Introduction
Just like volatility, correlation is also a major input that needs to be accurately forecasted in

finance. Recall that in Section 1.2 we have mentioned a variety of economic contents of this

statistic and its importance in the daily financial applications such as asset allocation, risk

management and derivative pricing. However, to understand this statistic properly, researchers

went through a long path. For example, in the early days this coefficient was often considered

as a static quantity in financial modelling. Its value is regarded as time-invariant if the sample

period of interest is kept unchanged. However, after 1980s, benefiting from the gradual

recognition of time-varying characteristics for volatility, financial researchers started to use a

similar sampling process to model correlation. During that period, a typical method to capture

the dynamic correlation is to through generalizing a univariate volatility model to a

multivariate version so that time-varying characteristics of correlation can be obtain through an

intermediate. However, it is necessary to note that not all methods developed based on this

virtue can provide a dynamic out-of-sample forecast. For instance, correlations generated from

using historical correlation model and EWMA are then often criticized as backward-looking

because they assume that the future market will present exactly the same pattern as before.

Although the implementation of these models is easy, no empirical fitting is required in their

covariance generating process so that the calculated correlation is not actually dynamic.

Multivariate GARCH provides a solution to this problem. Bollerslev et al. (1988), by

generalizing a univariate GARCH model to multivariate context, provided a typical example

of using historical information to obtain correlation forecast. The VECH model, proposed in

their paper, laid the foundation for calculating time-varying correlation through a multivariate

conditional heteroskedastic framework. It assumed the covariance matrix follows the

autoregressive process (see also BEKK model of Engle and Ng, 1995) so that this matrix, as a

whole, could be modelled as a function of its own lagged term and past innovations. However,

note that, although correlation is now allowed to be time-varying, estimation cost of this model

and its variants usually rises at an exponential rate with the dimensionality (general VECH and

BEKK specifications have a large parameter vector to estimate even for a bivariate case). Thus,

the immediate cost of this implementation is that their empirical potentials are limited to a very

narrow space and often can only be used to solve a system of very small size.

Besides, in the heteroskedastic framework conditional correlation can also be derived by

decomposing the evolving process of covariance matrix into separate parts. Bollerslev (1990)

suggested using different dynamic processes to model the individual volatility of each time
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series in a portfolio and the correlation among them. For example, in his study volatility is

modelled by a series of independent univariate GARCH models whilst correlation is set to be

constant. Meanwhile, a more flexible framework can be built if the correlation evolving

process itself is allowed to be time-varying so that randomness in covariance matrix can be

jointly determined by randomness in the volatility part and randomness in the correlation part.

Recently, Engle (2002) provided such a refinement. Through his DCC model, the author used

another independent GARCH to model correlation dynamics. Several even more generalized

cases are also proposed in the literature. For instance, Sheppard (2002) extended Engle’s work

by introducing an asymmetric variable to the correlation evolving process; Pelletier (2004)

made a contribution by incorporating a three-state regime switching model to Gaussian DCC.

As can be easily noticed, models mentioned above are unanimously utilizing a time series tool

to calculate future correlation. However, this predication can also be made from a mechanism

using option prices as information processor. Its result, compared to others, is usually

considered capable of possessing a more naive view of how the future market will move

because a direct mapping between option price and market-embedded expectation is given.

Usually, to calculate this implied correlation, a triangular relationship between assets of

interest needs to be identified first. Then, all three correlating assets are required to have

option contracts specifically traded on them so that implied volatility data can be obtained.

Although this model has the advantage of ease of implementation, its drawback is also clear in

that implied correlation cannot be easily generalized to any future time unless some

extrapolation techniques are used. This is because, for a given contract used to calculate this

correlation, its maturity is now fixed. Thus, only when the forecast horizon of interest is set

equal to this outstanding maturity will prediction generated from this model be considered

theoretically valid. Besides, since correlation is now calculated using implied volatility as

inputs, careful interpretation of the result, especially from a theoretical aspect, is needed

because, except in some illustrative cases, financial asset returns usually will not be Gaussian-

distributed either individually or jointly; thus, the condition for validating this market-

embedded information itself is unsatisfied.

So far, nothing has been said about the forecasting performance of aforementioned correlation

models. Now, to understand this issue, it is beneficial to start from the similar illustration of

volatility models because volatility and correlation are two latent variables modeled, in most

cases, using similar mechanisms. Thus, the forecast result of one has important implications

for the other. Specifically, according to numerous literature contributing to the modeling of

volatility process, a general consensus has still not yet been reached on a single model that can
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provide consistently the best forecast of the future realized volatility. Implied volatility, which

is frequently confirmed as a conditionally biased estimator, outperforms other historical

information-based forecasts in many empirical results (see Christensen and Prabhala, 1998,

Fleming, 1998 and Blair, Poon and Taylor, 2001 for evidence of equity index option and

Mayhew and Stivers, 2003, for evidence of individual stock options). However, its

performance is not consistent all the time. For example, Kroner, Kneafsey and Claessens (1995)

and Amin and Ng (1997) argued that forecasts generated from GARCH models may contain

valuable information not presented in implied volatilities. Since it is very difficult to find a

single best, many researchers turn to employing a combination of both historical and option

information source to generate forecast. As confirmed by countless evidence, implementation

of this strategy can provide a much-improved performance for volatility forecasting.

Analogously, similar findings are also confirmed when time-varying correlation is predicted.

As mentioned earlier, since the empirical analysis of using implied correlation is very rare in

financial literature, probably due to the difficulties of finding three triangularly related assets,

the main aim of this chapter is then to fill the gap by extending the early works of Camp and

Chang (1997) and Walter and Lopez (2000) to re-address the issue of correlation forecasting in

foreign exchange market. Specifically, we calculate the realized correlation based on Anderson

et al., (2000) and compare the predictive accuracy and information contribution of eleven

competing models.

Here, it is important to note three complements included in this research as contributions to the

existing literature. First, to examine forecasting performance, we choose a variety of currency

pairs, EUR/USD/GBP (or EU/US/UK) and EUR/USD/JPY (or EU/US/JP) for analysis due to

the massive liquidity presented in their respective trading markets. For example, according to

BIS’s 2004 Triennial Central Bank Survey, currency pairs deviating from above trios

altogether have the deepest spot and OTC market in the world. Trading volume of US/EU,

US/UK and US/JP accounts for nearly 60% of daily volume in the global foreign exchange

market (see Appendix VII). Meanwhile, implied volatility data used for calculating implied

correlation is collected from a leading index that incorporates overall market expectation rather

than from a single market participant, as in Camp and Chang (1997). Therefore, it is

reasonable to expect that forecasts generated from such historical data would be theoretically

more informative and efficient in terms of the incremental information they could contribute.

Second, in this research a broad forecasting group with a total of eleven correlation models are

used to predict future realized correlation. It includes implied correlation model, historical

correlation model (with price history respectively set at 7, 22 and 65), EWMA, simplified
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univariate GARCH model (with Gaussian error and GED error), VECH, BEKK, CCC, and

DCC. A combination of these forecasts comprises most of the market expectations extractable

from spot and option market. Finally, in addition to comparing correlation forecasting

performance among different currency pairs, we also launch cross-horizon forecasting

performance comparison in this paper. Such investigation can be used to address issues like

‘whether the forecasting performance of a specific model in the short run will possess a similar

pattern when it is used in the long run’. If the answer is ‘no’, the resulting implication is then

important for risk managers who tend to use the same correlation models to hedge risks on

different maturities. For this reason, we calculate multi-horizon forecasts for each model in

this chapter. And, concretely, forecasting horizons of interest are set to be one week, one

month and three months respectively. Here, note that analysis of the first two horizons is

essential for practical daily risk management. According to the Basle Committee on Banking

Supervision rules (see Basle Committee on Banking Supervision, 1998, 2004), in order for

investors to have a reasonable time to unwind a position, VaR estimates need to be re-

calculated every 10 days (nearly a week). For fund mangers sensitive to market risk, one

month (nearly 20 days) is usually a sufficiently long holding period for them to adjust their

positions for rebalancing risk/return. Therefore, analyzing these two forecast-horizons can

generate important implications for short-term risk management. Similarly, those correlations

calculated for the next three months may then be useful for medium-term asset allocation

strategy. In this paper, to perform cross-horizon forecast comparison, we use GFESM ranking

test of Newbold, Harvey and Leybourne (1999).

Next, we proceed as follows. In Section 5.2 we review some of the literature concerning the

use of implied correlation in different financial markets and various forecast evaluation

methods. The emphasis here is put onto those with an economic loss function. Then,

specifications of eleven competing models and their multi-step ahead correlation forecasting

function are depicted in Section 5.3. In Section 5.4, we present three statistical methods to

examine the optimality and information efficiency of correlation forecast. After illustrating the

data and empirical results in section 5.5 and 5.6 respectively, we conclude in section 5.7.

5. 2 Literature reviews
Since the main attention in this chapter is paid to the implied correlation model, we present

below an overview of the literature concerning the application of this option-driven

information source to different financial markets. Besides this, several works that contribute to

the evaluation of correlation forecasts under different economic loss functions are also
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summarized to highlight the practical use of these forecasts for trading in daily foreign

exchange market and equity market.

a. Using implied correlation in different markets
To our best knowledge, the first paper to study implied correlation in foreign exchange market

was written by Bodurtha and Shen (1994), where the authors matched the option data collected

from PHLX (Philadelphia stock exchange) to calculate correlation of two exchange traded

currency pairs USD/DEM and USD/JPY. By extending the univariate implied volatility

estimation method of Whaley (1982) to bivariate cases, the authors computed implied

correlation and compared the results to three historical information-based forecasts to

determine individual information contributions. Since a high degree of autocorrelation was

found, Stock-Watson’s (1993) OLS procedure was used in their regression test to evaluate

predictive accuracy. The results showed historical information and option-driven information

were both very useful for predicting future correlation.

A similar investigation using exchange-traded option data was performed in Siegel (1997).

Compared to previous studies, a larger sample including two currency trios was used in his

research and missing values in implied volatility were input using monthly average of

unconditional volatility so as to avoid interpolation. The author examined the implied

correlation from a hedger’s perspective. Concretely, Siegel calculated the actual risk reduction

after a standardized exposure was proportionally hedged using ratios (correlations) generated

by different econometric models, and his findings suggested the implied correlation model was

statistically the ‘best’ in terms of the volatility that can be reduced.

In the above cases, a common feature is that implied correlation was calculated from implied

volatility data obtained from a specific exchange. However, it is now well-understood that

OTC markets can provide a more informative source than traditional exchange market to

extract embedded information of option contract. Market sentiment exploited from this source

is also more versatile. Besides this, other credits, such as derivative contract’s constant

maturity and currency option’s exactly at-the-money strikes, also contribute to the

effectiveness of its information. Based on these motivations, Campa and Chang (1997) then re-

addressed the issue of correlation forecasting in currency market using OTC implied volatility

data. After analysis, they found the forecast combination test implied that correlation could

always incrementally improve the performance of other forecasts, and this informative

superiority held even when forecast errors were weighted by realized volatility. A further step

was taken by Walter and Lopez (2000) where a significantly different cross-trio performance
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of implied correlation was documented. For example, in one trio (USD/DEM/JPY) the authors

showed that implied correlation was statistically useful in predicting realized correlation and

the resulting estimate was partially optimal to the information used to generate them although

these forecasts did not fully incorporate the information presented in historical prices.

However, concerning the others (USD/DEM/CHF), the economic benefit of using implied

correlation then diminished a great deal whilst forecasts themselves still remain statistically

optimal. Thus, they concluded that forecasting performance of implied correlation was actually

an empirical issue.

In addition to the three-currency trio, implied correlation can also be calculated in the equity

market (often called implied beta in this case), if a specific condition is met. That is, we can

construct an authentic portfolio whose constituents and the portfolio itself both have traded

option contracts. Siegel (1995) performed such a study using three interactive exchanged

traded options: one equity option, one equity index option and one option to exchange stock

for shares of the market index to calculated implied correlation (beta) of an individual equity

with respect to the whole market index. Skintzi and Refenes (2003) took a step further, by

utilizing portfolio theory to calculate implied correlation of Dow Jones average index relative

to all its constituents. In their research, a new measure of diversification was suggested and

calculated through a so-called average implied correlation index. Note that this result has very

important implications for practical asset allocation because overall market expectation of the

future correlation (or diversification effect) in the US market can now be readily supervised

and fund managers who are inclined to adopt a passive strategy by only tracking the stock

index can simply rely on this benchmark to access their portfolio’s risk-return profile.

b. Correlation forecast evaluation under economic loss functions
As acknowledged by countless practitioners, since the ultimate aim of developing correlation

and volatility models is not just to fit coherently the past data but, more importantly, to

forecast these latent variables so that resulting estimates can be input to a specific mechanism

to generate profits (or test market inefficiency), it is then necessary to assess the target model

not only under a statistical loss function but also under an economic loss function.

Usually, statistical loss function is the most common criterion applied in finance to determine

the optimality of a forecast. However, frequently, the best model picked by using this method

is sensitive to the loss function itself. Thus, it may appear that the chosen model differs along

with the loss function used to evaluate them. To obtain a more practical view, it is then
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necessary to complement the existing statistical evaluation method using more economically-

oriented loss functions. As for volatility forecasting, criteria like the trading profitability

function of Engle et al., (1993) and the probability loss function of Lopez (1999) have already

been proposed and examined in the literature. However, concerning the correlation forecasting,

comparatively little were done, although several works are still worth mentioning. For example,

following the study of Siegel (1997), Brooks and Chong (2001) compared the correlation

forecasting performance of eleven models, including time-series ones and an option-driven

model, by computing optimal hedge ratio. Contrary to most of the findings in similar areas,

they suggested that the option market was a poor information source from which to extract

accurate hedge ratio and only EWMA in their samples prevailed. By extending Engle et al.,

(1993) and Gibson and Boyer (1998), Chong (2004) re-examined the economic losses of

different correlation models under an authentic trading profitability function. Among all the

examples analyzed, univariate EGARCH was found to be the best in terms of wealth that could

be accumulated. The author confirmed the weak form efficiency in currency market after

transaction cost was taken into account. That is, the directional bets taken before transaction

costs were charged can generate positive returns; however, when this cost was accounted,

profits then immediately evaporated. Besides this, a similar investigation, emphasizing the

VaR estimates, can also be found in literature (see Chong, 2005, for more details).

5.3 Correlation Forecasting Models
In this section, we describe eleven correlation models to be used in our later forecast

generation and comparison. To ease the expression, we categorize these models into three

groups. They are historical correlation models, conditional heteroskedastic models and implied

correlation model. Some of them such as EWMA and multivariate GARCH models have

already been briefly illustrated in chapter one.  Now, a detailed description of their

specification and statistical characteristics is provided below.

5.3.1 Historical correlation and EWMA
First, we describe two intuitively simple correlation models. One is the historical correlation

model. The other is the exponential weighted moving average model, called EWMA or

exponential smoother. Both models estimate and forecast correlation by exploiting historical

information. As a result of their simple specifications, they have both gained substantial

popularity in industrial uses.38

38 Since their model specifications are so simple, correlation forecasts generated from them are usually called
simple forecasts.
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a. Historical correlation model
Concerning the first, consider now two currency pairs B/A and C/A. Conditional correlation

forecasts of this model, made at time t with a forecast horizon of T days and a past history of P

days, is calculated by
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where / ,B A tr  and / ,C A tr denote the conditional returns of B/A and C/A at t; /B Ar  and /C Ar

represent their corresponding sample means.

Here, since the forecast horizon T cannot be found in the right hand side of above equation, it

is fair to say that the correlation to be generated would be independent of this horizon and the

resulting forecast would present a flat-term structure. Applied in this chapter, correlation

forecasts for the next week will then be equal to the one for the next one-month and the one for

the next three-months once the length of past price history is determined. Given this feature,

since the only parameter we can tune now is P, it is then preferred that the value of this

variable can be set as long as possible. In this chapter, to make the recent observations the

most relevant information to predict the future, we let the price histories of historical

correlation models have the same length as the forecast horizons of interest. As illustrated

earlier, since forecast horizons are now set at one-week, one-month and three-months, we

respectively consider three historical correlation models here with P equalling 7 days, 22 days

and 65 days. Thus these models are called HISTOR7, HISTOR22 and HISTOR65. While

forecasting, we use rolling window to make sure the length of P is kept fixed as t evolves. For

example, if today is t, correlation forecast generated by HISTOR65 for all future days made

today is then based on the past observations from t-65 to t. Analogously, with the forecasts

made tomorrow t+1 is calculated by using data from t-64 to t+1.

b. EWMA
From equation (5.1), one can easily note that all samples included in the past price history are

given the same importance. However, it is understood that observations taken far from the time

when the forecast is made may have little impact in the whole sample. Thus, theoretically,

these observations are supposed to be assigned less weight than those representing the recent

history.
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To make this amendment, JP Morgan proposed a solution. In the risk management tool

RiskMetrics™ proposed by them, a decay factor   is introduced to equation (5.1) to formulize

the EWMA model. Through this refinement, a time-sensitive structure for modelling

correlation dynamics is then presented with recent observations given greater importance than

all earlier ones. For example, consider now the same currency pairs B/A and C/A as seen

earlier: the correlation forecast with price history P using EWMA is now calculated by
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Here, concerning equation (5.2), it is important to note that, although the allocation of

importance for various observations is resolved, forecasts once generated still present a flat-

term structure because T now once again is eliminated in the right hand side of the correlation

generating process. Thus, for a fixed P, correlation forecasts generated by EWMA would be

the same for all forecast horizons of interest. Besides, as before, there is no empirical fitting

needed in this case (there is no parameter we need to estimate).  Thus, we can simply use

industrial standard to determine the value of decay factor,  = 0.94, and set P equal to 1000 to

ensure a long past-price history.

5.3.2 Conditional Heteroskedastic Models
Above, it has been shown that, for historical correlation models, although in-sample

correlation can be modelled as a time-varying variable, its forecasts (out-of-sample correlation)

are time invariant. Thus, the dynamic property of correlation is not captured due to the flat-

term structure assumed in these models’ mechanisms. In order to more flexibly model the

correlation evolving process, a natural solution is then to utilize multivariate GARCH models.

In the following, we describe the specification and property of three different types of GARCH

models for computing time-varying correlation. To see their recursive functions for generating

multi-step ahead forecast, an illustration is also provided.

5.3.2.1 Multivariate GARCH models

a. Diagonal VECH and Diagonal BEKK
First, in the multivariate context, we describe two typical heteroskedastic models for

estimating time-varying covariance and, accordingly, time-varying correlation. One is VECH,

the other is BEKK. Both models are earliest multivariate GARCH models proposed in
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literature to model covariance as a function of its own lagged terms and past innovations.

Although BEKK is generally considered a refinement of VECH because, by imposing a series

of quadratic terms on parameter values, positive definitiveness of resultant covariance matrix

is ensured, both models are often criticized for their high estimation cost. This is because, for a

portfolio with even a very small number of assets, estimation using these two specifications is

often associated with a very large parameter set. Taking the most generalized form of an N-

dimensional VECH model, for example, one needs to estimate a staggering amount of
2 2( )*( 1) / 2N N N N   parameters. That is, for a bivariate case, 21 parameters need to be

computed simultaneously through either maximizing the log-likelihood or Bayesian

inference.39

To circumvent this numerical difficulty, various strategies are proposed. For example, Engle

and Mezrich (1996), by forcing the model implied unconditional covariance to equal a pre-

calculated sample average, suggested using the ‘variance targeting’ technique. In so doing,

non-linear estimation of the interception parameter is then purposely avoided. More often, in

order to achieve additional parsimony, restrictions on parameters are imposed directly on

variance equation either through trimming the parameter matrix or just changing the whole

parameterization. For instance, in VECH, by letting all parameter matrices be diagonal, the

number of elements that need to be estimated is then reduced to 23( ) / 2N N .40  Although the

goal of reducing the cost is partially achieved, empirically, with o(N2) parameters still needing

to be estimated, this method clearly is not suitable for solving systems of  medium and large

size. Besides, as a price to pay, the flexibility of dynamics being modelled is also downgraded.

Similarly, for BEKK, if this strategy is adopted, a substantial relief of numerical cost is also

expected although the benefit is considered modest.

39 To obtain a clear view of the massive parameters included in the VEC model, consider a bivariate innovation
'
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For the purpose of this Chapter, since our research aim is mainly on implied correlation,

concerning its alternatives, models are then proposed in their most parsimonious forms to

avoid numerical difficulties. Applied to this case, we then respectively choose diagonal VECH

(1, 1) and diagonal BEKK (1, 1) for generating time-varying correlation.  As for the

specifications of these two models, we have presented them in Chapter one. Now, it only

remains for us to stress that, in order to ensure the stationarity, we impose a non-linear

restriction on arch- and garch-parameter of these models so that eigenvalues of their

summation will lie within the unit circle.

b. Conditional Correlation models
Apart from adopting an autoregressive function to model covariance matrix like VECH and

BEKK, one can also use, in the multivariate GARCH framework, methods developed by

Bollerslev (1990) and extended by Engle and Sheppard (2002), to generate conditional

correlation forecasts by separating the covariance matrix into a volatility part and a correlation

part and then using a series of independent dynamic processes to model them.

To calculate this conditional correlation, consider now a d-asset portfolio whose vector of

return and corresponding residuals are respectively denoted by rt (d-dimensional) and t , and

its conditional correlation for two assets, say i and j, is calculated by

1 , ,
1 , ,2 2

1 , 1 ,

( )
( )

( ) ( )
t i t j t

ij t i t j t

t i t t j t

E
R E

E E

 
  

 




 

   (5.3)

where ,i j d  . Here, it is necessary to standardize (or normalize) these residuals (to let the

means of it and jt  equal zero and their variances equal one) so that the denominator of (5.3)

equals one and can be absorbed.

Since ri can also be expressed as
1/ 2

, , ,i t i t i tr   1/ 2
, , ,j t j t j tr   (5.4)

after transformation we can readily obtain
1

t t tD r  (5.5)

where ( )t tD diag   is a diagonal matrix with t on its ith diagonal, denoting the

univariate volatility of ith time series.

Constant Conditional Correlation (CCC)
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In Bollerslev (1990), each element in D is modelled using a univariate GARCH so that its

variance-covariance matrix can be computed by t t tD RD  .41 The CCC model, after (5.5) is

inserted to (5.3), can be specified as,

 1
2 ' 2
, , 1 1 , 1

' 1 1
1

~ 0, ;
(1,1)

( )

t t t t t t

i t i i i t t i i t

t t t t t t

r N D RD
CCC D r r D

R E D D
  

 



  
 



   
   

  
                             (5.6)

Here, to ensure the positive definitive of resultant covariance matrix, Bollerslev (1990) utilized

the full rankness of parameter matrix. Since R is now assumed to be constant, this quantity can

be readily calculated by '
1
( ) /n

i ii
R n 


 once innovations of all returns have been

standardized by computed GARCH volatility. The forecasts, once generated, will again be the

same for all forecast horizon of interest since the correlation is now assumed to be constant.

Dynamic Conditional Correlation (DCC)

In CCC, randomness in the covariance matrix solely depends on the randomness in individual

volatilities. However, a more flexible model can be obtained if condition correlation, just like

univariate volatility, is also allowed to be time-varying and generated from a dynamic process.

Engle and Sheppard (2002) provided such a solution by using another univariate GARCH,

independent of those used for modelling D, to model the correlation evolving process.

Concretely, the authors used standardized residual generated from (5.5) as input to estimate a

univariate GARCH so that an authentic covariance matrix Q can be fitted. Since time-varying

property is purposely incorporated into this new covariance matrix, a simple transformation of

Q can help retrieve the conditional correlation, now also as a time-varying quantity. Given this

virtue, specification of DCC model then can be written as

 

   

1
1

2 ' 2
, , 1 1 , 1

'
1 1 1

1/ 2 1/ 2

| ~ 0, ;

(1,1)
(1 ) ;

t t t t t t t t

i t i i i t t i i t

t t t t

t t t t

r N D R D D r

D r r D
DCC

Q Q Q

R diag Q Q diag Q



  

     




  

  

 

 

  


    



 

  
(5.7)

Here,   denotes the Hadamard product of two identically-sized matrices. Parameterization for

Di,t is set equal to those illustrated in (5.6). However, as for Qt,, since this variable is now

41 For a bivariate time series, the separation of volatility part and correlation part in a variance-covariance
matrix, given a conditional correlation model, can be described as

1, 1,1, 12,

12, 2, 2, 2,

0 01
10 0

t tijt t
t t t

ijt t t t

D RD
  

   

                         



- 92 -

intrinsically related to t , we have a variety of choices for modelling it. For example, an

exponential smoother can be applied so that each element ,ij tq in this authentic matrix can be

calculated using , , 1 , 1 , 1(1 )( )ij t ij i t j t ij tq q         . However, a more frequently-used case,

just as that given in (5.7), is to fit Q using another unidimensional GARCH so that the

resulting structure can be interpreted as a GARCH-in-GARCH. Q in (5.7) then represents the

unconditional (sample) covariance of standardized residuals.

Here, several things need to be stated concerning this model before we proceed further. First,

with regard to its estimation, usually a two-step procedure will be adopted to maximize the

log-likelihood function. That is, we start from estimating the GARCH parameters governing

the volatility evolving process to estimating similar parameters used to model the correlation

process. 42  Although, in the optimization step, the target log-likelihood function will be

separated, consistency and unbiasedness of the resulting maximum likelihood estimators are

asymptotically ensured (See Newey and McFadden, 1994, for evidence). Second, the positive

definitiveness of covariance matrix can be guaranteed by imposing a proper parameterization.

For example, one can use Cholesky decomposition to reparameterize t  (see Tsay 2002). The

advantage of using this approach is that it requires no constraints for the positive definitiveness

of covariance matrix. 43  However, the drawback is that the interpretation of the resultant

parameter after covariance transformation will then become a difficult task. Besides, we can

also, by squaring the parameter vectors like specification proposed in Hafner and Franses

(2003), achieve the same goal.44 Finally, it is also necessary to mention that a significant

success of DCC is its massive reduction of associated parameters for estimation to only N, that

is, the same as the number of assets included in a target portfolio. Thus, fitting a large

covariance matrix becomes economically feasible even for institutional investors who may

42 Log-likelihood function of CCC and DCC can be decomposed into volatility part and correlation part
through the form of ( , ) ( ) ( | )Volatility CorrelationL L L      , where ,   represents the volatility and correlation
parameters respectively. Usually, the univariate volatility log-likelihood function will be maximized first,
followed by the function concerning the correlation parameters.
43 Cholesky decomposition of t  can be written as

1, 12, 1, 12, 1,

12, 2, 12, 1, 2, 12, 1,

1 0 0 1 /
/ 1 0 / 0 1

t t t t t
t

t t t t t t t

    
      
     

             
44  Positive definitiveness of covariance matrix t t t tD R D  can be ensured once positive definitiveness of tR
is ensured. To achieve the goal, we can use either *

, , ,1ij t ij t ij t     or *
, , ,exp( ) 1 exp( ) 1ij t ij t ij t      to

transform the estimated correlation coefficient
,ij t  in

,

,

1
1
ij t

t
ij t

R



 

  
 

so that *
, 1ij t   and positive definitiveness of tR then can be ensured.
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hold hundreds of assets at any one time. Given this clear advantage over other multivariate

GARCH models, like VECH and BEKK, a recent and growing body of work is now dedicated

to proposing DCC variants. For example, Tse et al., (2002) introduced a weighting function to

covariance dynamics. A Markovian regime-switching structure is imposed by Pelletier (2004)

to enhance the correlation dynamics.

5.3.2.2 Simplified univariate GARCH

Indeed, the multivariate model provides a naïve solution to model covariance dynamics so that

time-varying correlation can be extracted from it. However, this is not to say that only a

multivariate structure can be utilized to calculate association measure. Recently, Harris et al.,

(2004) proposed a new method for generating correlation dynamics using only multiple

univariate models. In their method, four univariate GARCH models are estimated to calculate

the time-varying correlation of bivariate return. In the univariate context, although the number

of models to be fitted now increases, their total estimation cost, when compared to that of a

multivariate GARCH, is still lower because the number of parameters increases only on a

linear rate with dimensionality.

Now, consider two standardized residuals 1, 2,,t t   and their corresponding standard deviation

t,1 and 2,t . To calculate time-varying correlation, according to Harris et al., (2004), first, it

is  necessary to construct two new innovations representing the summation and the subtraction

of the original series, , 1, 2,t t t     and , 1, 2,t t t     , and give their conditional variance

equations respectively by tttt ,12
2
,2

2
,1, 2   and 2 2

, 1, 2, 12,2t t t t       . Then, by

adding up ,t  and .t   so that covariance of 1,t  and 2,t  is equal to  2 2
12, , , / 4t t t     ,

time-varying correlation can be readily computed by 12, 1, 2,/t t t   .

Here, to obtain the time-varying estimates for 12,t  and 1, 2,,t t  , we need to fit four times a

standard univariate GARCH respectively to 1, 2, ,, ,t t t    and ,t , since financial return is

often characterized by significant evidence of fat tails. Apart from using a standard GARCH

(with Gaussian error), it is desirable for us to also incorporate this feature into the modelling of

univariate volatility. For this purpose, we then consider the use of a Generalized Error

Distribution (also known as exponential power distribution) with a univariate GARCH. This

density was initially proposed in Subbotin (1923) and later developed by Johnson (see Johnson,

Kotz, and Balakrishnan, 1995, for overview) to account for the leptokurtosis. Since its
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distributional form is so flexible that a variety of standard densities such as Gaussian, Laplace,

Weibull and Pareto can be nested, in many cases it is also applied to various financial

situations (see Nelson, 1991, for its application in fitting stock index return and Hsieh, 1989,

for its application in fitting foreign exchange returns).45

5.3.2.3 GARCH correlation forecasting

Since a prime interest of this chapter is to obtain correlation forecast, it is now necessary to

proceed further to present recursive functions of GARCH models for generating multi-step-

ahead covariance forecasts so that correlation over a future period can be calculated. 46 Here,

to generate these forecasts we use the same rolling window as those illustrated in Section 5.3.1.

Besides, since correlation evolving process, based on heteroskedastic models, is assumed to be

step-dependent, we use the temporal aggregation rule to calculate their horizon forecast.

a. Traditional GARCH forecasting

First, concerning the use of Diagonal-VECH, Diagonal-BEKK and simplified univariate

GARCH models (Normal/GED), since their variance-covariance matrix ,ij t can be written by

'
, 1 1 , 1( )ij t t t ij t           (5.8)

to generate K-step-ahead forecast of ,ij t , we only need to calculate

   
2

1
, , 1

0

K
k K

ij t K ij t
k

    



 



      for 2K  (5.9)

However, to obtain the forecast over the whole horizon T, it is then necessary to aggregate all

K-step-ahead variance-covariance matrix forecasts included in this horizon and then divide the

result by volatility forecast of i and j over the same horizon so that the resulting ,ˆ ( , )i j t T  

can be expressed as

,
,

, ,

ˆ ( , ) ij T
i j t T

i T j T

  



 

                               (5.10)

45 Note that, in spite of fat tails, other stylized features of return distribution such as leverage effect of
innovations will not be examined in this paper. This is because foreign exchange market is usually not
characterized by pronounced asymmetry, which is frequently presented in equity market (See Camp and
Chang, 1997 for evidence).
46 Here, the forecast of interest is the correlation over the next T days, or, say, the horizon T. It is a different
concept from the multi-step-ahead forecast that indicates the correlation of a future specific day such as the
correlation forecast for day t+7 made on day t. Usually, practitioners are only interested in the horizon forecast,
because it meets their needs much better.
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where ,ij T  denotes the aggregated covariance forecast estimated at time t (omitted) for

horizon T and , ,1

T
ij T ij t KK 

   .

b. DCC Correlation Forecasting

If DCC model is used, then there are two approaches available to solve its recursive

forecasting function foreword, through which we can obtain the multi-step-ahead correlation

forecast. First, in equation (5.7), since Q is now modelled by
'

1 1 1(1 )t t t tQ Q Q                 where '
1 1 1[ ]t t tE R     (5.11)

we can make the approximation 1 1 1[ ' ]t t tE Q    directly so that derivation of K-step-ahead

covariance forecast t KQ   is similar to the process assumed in equation (5.9) and t KR  can be

computed analytically by    1/ 2 1/ 2
t K t K t K t KR diag Q Q diag Q 
    . Besides, we can also let

Q R  and  1 1t tE Q R   so that updating of covariance matrix is no longer required in each

step. K-step-ahead correlation forecast can be readily computed by

   
2

1
1

0

(1 )
K

k K
t K t

k
R R R     




 


      for 2K                    (5.12)

Here, note that both approaches can be used to generate correlation forecast of a future date.

However, after testing the prediction bias, Engle and Sheppard (2001) confirmed the second

method could provide a slightly better performance than the first although neither of them can

significantly outperform the other. To exploit this result, we thus use equation (5.12) to

generate multi-step-ahead correlation forecast in this paper.

Here, to calculate ,ˆ ( , )i j t T   , since variance forecasts , ,,i T j T   over the horizon T can be

readily obtained, according to (5.10) we only need to compute

, ,
1 1

T T

ij T ij t K t K t K t K
K K

D R D   
 

                (5.13)

5.2.3 Implied correlation
As seen above, volatility and correlation forecasts are all generated from a time series model

using historical returns as input. However, empirically, it has been repeatedly argued that

option price is also an efficient information source which can be exploited to predict these

latent variables, since a direct mapping is now provided. For example, through either a

stochastic volatility model or the Black Shores model, implied volatility can be computed to
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forecast future realized volatility. 47 Although, at least on a statistical level, we can argue that

these models are not justified due to the stringent conditions assumed, empirically, massive

evidence has been reported on the information superiority of, say, implied volatility over other

competing forecasts. Thus, it is fair to conclude that implied volatility though might produce

biased estimates for realized volatility can still reveal at least to a certain extent the true market

expectation, no matter which model is used here for mapping. Given this feature, it is then

interesting to see whether the implied correlation, calculated from implied volatility, will

possess the same property.

To calculate implied correlation, first it is necessary to ensure that we can identify three assets

that have a triangular relationship and they all have option contracts traded on them.  A typical

example can be illustrated through a three-currency trio. Concretely, consider now a sample

trio A/B/C where B/C can be regarded as a portfolio of B/A and C/A. Given this authentic

portfolio, conditional variance of B/C at time t according to Markweiz’s portfolio theory then

can be calculated by

/ , / , / , ( / , / ), / , / ,2B C t B A t C A t B A C A t B A t C A t        (5.14)

using variance of B/A and C/A at the same time. Since only univariate volatility now needs to

be estimated, implied correlation of B/A and C/A with forecast horizon T then can be readily

computed by

     

   

/ , , / , , / , ,
/ / ,

/ , , / , ,

( , )
2

IV B A t T IV C A t T IV B C t T
IC B A C A t T

IV B C t T IV C A t T

r r
   


 

(5.15)

after unconditional variance   in (5.15) is replaced with implied volatility IV .48 Here, since

forecast horizon has already been implied in outstanding maturities of each option contract, we

do not need to use the recursive function as that required in GARCH models to generate the

multi-step-ahead correlation forecast.

47 Most stochastic volatility (SV) models assume the volatility follows a similar stochastic process as asset
returns. For example, consider a derivative asset f with a price that depends on some security prices S and
instantaneous variance 2V  . Then, a typical SV model can be written as,

dS Sdt Sd
dV Vdt Vdz

  
 

 
 

where the wiener process dz and dw can be either independent or dependent with correlation  . Note here that,
to assume a specific stochastic process for the latent variable to be modelled is a very stringent assumption in
finance. This is because it has restricted the sample paths of the resulting estimates to follow a specific pattern.
However, as a comparison, a more flexible substitute for this assumption is to assume a distribution rather than
a stochastic process for the underlying.
48 Implied volatility here is calculated from Garman-Kohlhagen option pricing model.



- 97 -

However, it is still important to note one thing before we proceed. That is, in equation (5.14)

and equation (5.15) a clear distinction needs to be made as to which set of assets (A/B, A/C) or

(C/A, B/A) construct the authentic portfolio for calculating the variance of B/C. As can be

seen, usually there are two ways simultaneously available to express the same cross-products

in the foreign exchange market. Although the conditional volatility of A/B would be surely

related to the volatility of B/A, in few cases will they be identical.49  Thus, the resulting

correlation derived from B/A and C/A pair is supposed to be different from that calculated

from A/B and A/C pair. In this paper, to circumvent this potential confusion, we let only the

intermediate currency stay at the denominator of the cross-product. Therefore, B/C for our

cases only corresponds to B/A and C/A.

5.4 Realized Correlation and Forecast Evaluation
Now it is necessary to state how to calculate the realized correlation that various forecasts,

once generated, can be compared with and the evaluation methods to access these forecasts.

5.4.1 Realized Correlation
Concerning this topic, it is then beneficial to highlight some similar researches performed for

calculating the realized volatility. Since volatility and correlation are both unobservable in

financial markets, to benchmark their forecasts, some auxiliary assumptions then need to be

made to explaining on how the ex-post values are to be computed.

a. Calculating Realized Volatility

As for volatility, most of the early research work used squared daily returns to approximate the

realized volatility of the same frequency (see Day and Lewis, 1992; Jorion, 1995, for example).
50 This method is intuitively simple to use, although the resulting estimates are often found

noisy. In order to produce a more precise value, Anderson et al., (2000) suggested using the

summation of higher frequency (intra-day) returns so that ‘realized volatility’ can be

approximated by

2* 2
( 1 / )

1

F

t t t f F
f

r r  


                                 (5.16)

49 Consider now an example. Given the price today pt and yesterday pt-1 of B/C, its corresponding return is
then calculated by (pt-pt-1)/pt-1. However, as for C/B, its return is computed by (1/pt-1/pt-1)/(1/pt-1) which after
transformation is equal to (pt-1-pt)/pt. Clearly, the volatility estimates for these two series will not be equal.
50 Consider a random variable rt which satisfies 1/ 2

t t tr   . t represents the time-varying volatility; t denotes
an unspecified stochastic process with mean zero and constant variance. Now, if we add expectation to both
sides of 1/ 2

t t tr   , it is easy to obtain 2( ) ( )t t t tE E R  . Thus, realized volatility can be just approximated by the
squared daily return.
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where F denotes the sampling frequency of intra-day data.

Given equation (5.16), it is natural to expect that this sampling frequency could be set as large

as possible so that more information could be incorporated to calculate each realized volatility

estimate. However, here there is an empirical problem. Usually, we may be short of a

sufficiently long span of such intra-day data if F is set too large. Besides, even if this data is

now available, many intervals with few or no trade can be found, leading to either a missing

observation or a zero return. In this case, market microstructure may then take immediate

effect by introducing unexpected bias, and the improved accuracy just obtained for

approximating realized volatility can be easily offset. In addition, there are other open

questions still being debated on the use of these intra-day data. For example, it might be asked

‘which frequency of data is really high enough to make the approximation of realized volatility

both accurate and cheap enough’? Obviously, this is a decision concerning the trade-off

between accuracy and economic cost. Since no general consensus has been reached on this

particular issue, it is often considered as an empirical question. For instance, Andersen et al.,

(2000) used 5 minutes intraday data to estimate daily realized volatility, while 10 and 30

minutes data are chosen in Granger et al., (2003) and Koopman et al’s (2000) respective works.

b. Calculating Realized Correlation
In literature, two methods can be used to calculate realized correlation. One is to use a

forward-looking historical correlation model (see Walter and Lopez, 2000). Consider now the

same sample pairs B/A and C/A as before; their realized correlation estimated at time t with a

forecast horizon of T days, is calculated by,

 
/ , / / , /

1
/ / ,

2 2
/ , / / , /

1 1

( )( )
,

( ) ( )
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B A t i B A C A t i C A
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RC B A C A t T T T

B A t i B A C A t i C A
i i

r r r r
r r

r r r r


 


 
 

 


 



 
 (5.17)

where /B Ar  and /C Ar  denotes the sample means of the conditional returns.

Besides, based on (5.16) we can also, by exploiting a result from Anderson et al., (2000),

approximate the realized correlation. Since our aim here is to analyze the correlation forecasts

over the next one-week, next one-month and next three-months, for all three horizons we can

use daily observations as the high frequency resource to calculate realized volatility of lower

frequency (weekly, monthly and quarterly). Thus,  / / ,
,RC B A C A t Tr r  can be steadily computed

by
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  / , , / , , / , ,
/ / 1/ 2,

/ , , / , ,

,
2( )

B A t T C A t T B C t T
RC B A C A t T

B C t T C A t T

r r
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
  

  
                               (5.18)

after IV  in (5.15) is replaced with t  in (5.16). ( / ), ,B A t T  here denotes the realized volatility

of B/A estimated at t with forecast horizon T. It can be calculated by firstly taking the daily

return of B/A, squaring them and then summing them over the relevant (one-week, one-month

and three-month) horizons.51

Given equation (5.17) and (5.18), it is easy to note that both equations are now utilizing daily

observations to approximate realized correlation over a future period. However, the theoretical

foundations they are based on are slightly different. The first uses forward-looking historical

correlation model; thus an approximation can be made only after returns of future days are

known today. However, by exploiting the portfolio theory, the second method uses the past

returns to approximate the realized correlation of today. Although both methods assume

innovations are to be multivariate Gaussian-distributed, empirically only the second has been

examined in literature for approximating ‘true correlation’. Therefore, “which one is the

better”, we believe, is still an empirical question worth further study. As Anderson et al., (2000,

p21) pointed out, “…it is not necessarily the case these two measures will give the same model

rankings, let alone the same values of the error measures….” To circumvent the potential bias,

in this paper we only use the second approach to compute realized correlation.

5.4.2 Forecast Evaluation
Once realized correlations have been computed, a major task is then to evaluate forecasts

generated from various models with respect to this benchmark using some specific criteria.

Here, we carry out three statistical assessments. First, partial optimality of individual forecast

is examined for all competing models. Then, cross-pair and cross-horizon forecasting

performance are investigated. Finally, forecast combination is also studied along with the

analysis of incremental information contributed by each correlation model.

a.1 Partial Optimality test

First, we examine the partial optimality of each correlation forecast. Theoretically, if a forecast

is partially optimal, the distance of this forecast to its true value (also called forecast errors)

51 It is important to note that, in the real OTC market, the maturity of option contract is determined by the
realized calendar day. Therefore, these forecast horizons should be empirically different depending on the
exact month we are investigating. However, to ease the computation, we omit this variation and assign all
horizons a fixed time period. Thus, one week equals 7 days, one month and three months respectively
correspond to 22 days and 65 days. Thus, the forecast horizon T in all the above equations is now either 7 or
22 or 65. And the F in (2.16) also has the same values.
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should be unpredictable with respect to the information set used to generate them. 52  To

examine this feature, two methods can usually be adopted. One is to perform Mincer and

Zarnowitz’s (1969) regression test. For example, as applied in this paper, when the realized

correlation of two innovations, say ,( )RC i j t T   , has been calculated, to examine the

optimality of forecasts generated by nth correlation model, we only need to regress

,( )RC i j t T    on ,ˆ ( )n i j t T  

, ,ˆ( ) ( )RC i j t T n i j t T ta                                           (5.19)

and test whether  , (0,1)   . 53 If the null cannot be rejected, it equals to saying nth

correlation model has partially optimally exploited the given information set and there is no

further information extractable from past information set t  to generate a better forecast than

,ˆ ( )n i j t T   .

Besides, we can also use the sign test of Campell and Dufour (1991, 1995) to perform the

same task. The advantage of using this method is that it can release the normality assumption

required in the previous regression test so that optimality can be examined in a distribution-

free environment. Hence we only need to calculate one statistic to test the null. That is

, , ,
1

ˆ( ( ) )
T

n t T n i j t T
t

S I e    


  (5.20)

where , , , ,ˆ ( ) ( )n t T n i j t T RC i j t Te         denotes the forecast error generated by nth correlation

model for forecast horizon T; I equals one if , , ,ˆ ( ) 0n t T n i j t Te      and zero otherwise; and

, , ,ˆ ( )n t T n i j t Te     represents an orthogonal function of forecast error with respect to past

information set since ,ˆ ( )n i j t T   now can be regarded as a reflection of t .54 The motivation

for proposing this test here is that, if, for example, a forecast is optimal, its forecast error

would then be orthogonal to t . Thus, for our cases, if nth correlation model is being

examined, the null that needs to be tested is then either , , , ,ˆcov[ ] 0n t T n t Te    or

, , , ,ˆ[ ] 0t n t T n t TE e   .

52 Information used to generate the correlation forecasts is never based on a whole information set. Only a
subset of the whole has been utilized. This is because all scientific models are exploiting only an incomplete
information set, thus we can only term the resulting optimality of forecasts as partial optimal.
53 To account for the heteroskedasticity and autocorrelation that may appear during the regression, we use
Newey and West’s correction methods to adjust the regression process.
54 Sometimes, this test is also referred to as the rational expectation test in some literature (see Brown and
Maital, 1981, and Diebold and Lopez, 1996, for detailed illustration).
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a.2 Comparison among competing forecasts

In this research, apart from the partial optimality, correlation forecasts generated from different

models are also compared using three statistical loss functions: MFE (mean forecast error),

MAE (mean absolute error) and MSE (mean square error). Specifically, MFE, once calculated,

is used to perform an unbiasedness test by regressing the forecast error on a constant. If the

coefficient of this constant is found to be insignificantly different from zero, then we say the

forecast is unbiased with respect to the true correlation. However, when MAE and MSE are

used, forecast errors are then penalized differently, but symmetrically for each model. Since a

quadratic function is used in MSE, large forecast errors are weighted more heavily compared

to MAE in which only absolute term for forecast error is used.

b. Cross-horizon Comparison (GMSFEM test)

The evaluation method, illustrated above, is usually applied to answer a question like ‘for a

given forecast horizon, is the correlation generated by one model more informative than and

superior to others in approximating realized correlation?’ However, since multiple horizons are

investigated in this paper, it is then also interesting to see whether this superior performance, if

confirmed, is consistent when different forecast horizons are analyzed. To assess the cross-

horizon forecasting performance between different models, Newbold, Harvey and Leybourne

(1999) proposed the Generalized Mean Square Forecast Error Matrix test, or GMSFEM.

Specifically, first we calculate the vector of forecast errors of, say, model A and model B, for

all forecast horizons up to T, that is '
, 1 2( ) ( , ,..., )A A A

t T t t t TE A e e e    and

'
, 1 2( ) ( , ,..., )B B B

t T t t t TE B e e e   . Then, their second moments are respectively computed using

'
, ,[ ( ) ( ) ]AT t t T t TE E A E A   and '

, ,[ ( ) ( ) ].BT t t T t TE E B E B  If either the condition

' '
AT BTd d d d    or ' ( ) 0AT BTd d    is now satisfied for at least one vector

'
1 2( , ,..., ), 0Td d d d d   , then we say the forecast generated by model A dominates model

B across horizon from one step ahead to T step ahead. Simply put, if the eigenvalue of

( )AT BT   is all non-positive with at least one negative, then model A dominates B;

however, if the eigenvalue is all non-negative with at least one positive, then the latter model is

preferred. Indeterminacy will be encountered when both positive and negative appear in the

same set. In this paper, since three forecast horizons are analyzed, the forecasts error to be

examined for nth correlation model is then '
, 1 1 3( ) ( , , )n n n

t T Week Month MonthE n e e e .

c. Encompassing test
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Besides, in this paper, since the correlation forecasts are generated either through a time series

model using historical return as input or through option prices, another interesting topic worth

investigating is ‘whether the combination of these different information sources will lead to an

improved forecasting accuracy’. Here, we use the encompassing test to examine this forecast

combination after information aggregation. To ease the expression, as illustrated already, we

divide different models into three groups: simple historical correlation models, GARCH-type

models and implied correlation model. For the first two groups, only the forecasts which have

demonstrated the highest explanation power in the previous partial optimality test will be

incorporated to the current regression. Thus, this test is formed as

, 1 1 , 2 2 , 3 3 ,ˆ
ˆ ˆ

( ) ( ) ( ) ( )RC i j t T i j t T i j t T i j t T t                     (5.21)

where 1 ,ˆ ( )i j t T   , 2 ,ˆ ( )i j t T    are correlation forecasts of the ‘best’ performing models

selected from simple historical correlation group and GARCH family with maximal R2 in the

partial optimality regression test; 3 ,ˆ ( )i j t T    represents the implied correlation forecast for

realized correlation ,( )RC i j t T   . Here, to examine the encompassing effect, we perform three

hypothesis tests on coefficient of constant and three independent variables. Specifically, first

we test whether 1 2 3( , , , ) (0,0,0,1)     . If this null cannot be rejected, implied correlation

model is then said to be able to forecast encompass GARCH-series model and historical

correlation model.55 Second, we test whether 2 as an individual parameter is insignificantly

different from zero to see the forecasting performance of correlations generated by using

GARCH-series model. Finally, we also examine correlation generated by time series tools as a

group; thus the null to be tested is 1 2 0   .

5.5 Data and Empirical results
5.5.1 Spot returns and option data
In order to examine the forecasting performance of eleven correlation models, in this chapter

we analyze the daily return of two currency trios: EU/US/UK (GBP trio) and EU/US/JP (Yen

trio). A total of six currency pairs are derived from these trios and we collected their data from

DataStream with a span of six years starting from 1999/1/1 to 2005/5/31. After eliminating the

official holidays such as Christmas and Easter, a total of 1621 observations are obtained in our

sample for each pair. Since GARCH model is to be used for forecasting future correlation, we

let the first 1000 observations be the in-sample set to ensure the asymptotic property of its

55 Here, it is important to note that finding no evidence of encompassing is usually not a surprise. This is
because the correct mapping to the ‘true correlation’ is still under investigation; thus we cannot only rely on
the incomplete information to find a single ‘better-than-all-others’ model.



- 103 -

estimation. Therefore, the remaining 621, starting from 2002/11/4, are used to obtain

correlation forecasts.

As for the daily implied volatility data, we collected them from BBA-Reuters FX option

volatility index with quotes for one-week, one-month and three-month respectively. 56

Calculation of these implied volatilities is based on an ATM forward straddle pricing model

and the data is generated from 2001/10/1 to 2005/5/31. After removing the official holidays,

we find some missing data in our resultant sample.57 To fill this information gap, a linear

interpolation technique suggested in Dennis el al. (2005) is then applied.

Here, before proceeding further, another thing needs to be noted. Early researches into similar

area, such as Camp and Chang (1998), Walter and Lopez (2000) and Chong (2001), in their

samples unanimously used the volatility data collected from a single market participant to

calculate implied correlation in FX market. However, as for our cases, the BBA option

volatility is actually an index averaging daily quotes obtained from 12 different market

participants. Since a broader group is now incorporated, it is reasonable to expect that using

this information source can provide a more extensive and integrated market view to accurately

forecast the future correlation.

5.5.2 Empirical Results
5.5.2.1 Summary statistics

a. Implied correlation
Table 5.1 Panel A presents the descriptive statistics of implied correlation for two currency

trios and Figure 1 (panel A and panel B) shows their corresponding time series plots. For pairs

in both trios, it is now evident that implied correlations present different types of dynamics

although, for the same pair, the multi-horizon performances are rather similar.  For instance,

the sample means of implied correlations in EUR/USD/JPY trio, for all three forecast horizons,

are around 0.5, whilst those of EUR/USD/GBP trio range from 0.17 to 0.74. Negative

skewness is observed in most of the cases except for currency pair (USD/EUR and JPY/EUR).

And kurtosis estimates show these correlations have thinner tails than Gaussian. Meanwhile,

for the time series plot, a clear pattern is that implied correlation tends to be more stable as the

forecast horizon becomes longer. For example, standard deviation of implied correlation

56 BBA-Reuters FX Option Volatility Index was officially co-launched by British Bank Association (BBA) and
Reuters on December 31st 1997. The initial motivation of quoting these data is to improve the market
transparency by enhancing the quality and accessibility of independent valuations. Quotes on 13 currency pairs
have been generated on a daily fixing since August 2001.
57 In the out-of-sample set, there are a total of 26 missing data in the implied volatility. As cited from the BBA,
“if there are fewer than 5 rates received by the contributors, then the benchmark will not be published.”
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between EUR/USD and JPY/USD for the next three months, / / . ,3( , )IC EU US JP US t m   ,  is now

less than half of the same statistic calculated for the same correlation over the next week. This

result is as expected because long-term correlation is usually believed to be more persistent

than short-term correlation.

(Insert Table 5.1 Panel A and Figure 1 panel A and Panel B)

b. Realized correlation
Similar statistics are also calculated for realized correlation, and the results are presented in

Table 5.1 Panel B. Here, note that, for the same pair, sample means of most realized

correlations are very close to the means reported for implied correlation, although their

conditional second moments differ a lot. It is clear that realized correlation is now following a

dynamic process much more volatile than implied correlation. For example, s.t.d estimates of,

say, / / ,3( , )EU US JP US t m   has risen from the previous value of 0.05 (for implied correlation) to

the current value of 0.12 (for realized correlation) and this feature becomes even clearer when

short-term correlation such as realized correlations over the next week are analyzed e.g.,

volatility of / / ,1( , )EU US JP US t w    is approximately 0.33.

For different forecast horizons, the same as before, long-term correlation appears more stable

than short-term correlation. Evidence for this argument can be found in Figure 2 where kernel

density plots of various realized correlations are provided. As can be seen, for both trios

although the density shapes of three-month realized correlation when compared to that of the

one-week correlation are now about the same, their evolving processes appear more central to

the means with relatively higher peaks. This result is no surprising because most researches

contributing to understand the correlation evolving process have already found this coefficient

very stable if the time frame for analysis is set sufficient large. Therefore, it is usually expected

that long term correlation would be much easier to forecast than short term correlation and a

large distance between these two estimates may leads to trading opportunity. For example, for

an experienced trader who is specialized in long-short pairs trading, if he only wants to take

advantage of the market inefficiency but not results based on the fundamental changes, a

common strategy is then to long a stock A and simultaneously short another related stock B.

Here, to what extent these two stocks are related to each other can be explained and quantified

using a specific correlation model. However, one thing needs to noted is, to make profit, these

two positions are usually required to be taken at the time when short term correlation is

significantly different from long term correlation or when the price difference of two stocks

reach an abnormal level, suggesting that the pegged relationship between two stocks now may
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have been temporary broken. Since correlation itself tends to show mean-reverting

characteristic, it is then expected that after some period of time short term correlation will

approach the long term correlation again and this price difference will return to the normal

state.

Besides, with respect to their density plots, there is another interesting finding worth noting

here. That is, characteristics of mixture distribution (multi-modality) are observed and it is

especially the case for long term correlation. For example, if we look at the density plot of

correlation forecast over the next three months between USD/EUR and GBP/EUR, it can be

easily seen that two modes are now simultaneously appearing in one conditional distribution

and their values are far apart. This feature has important implications for financial researchers

and fund managers because it reveals the fact that the market is now forming diverged

opinions on how future correlation will move. One group of the investors is now maintaining

their traditional view that the correlation will stay at 0.5, the same as previously, even three

months later. However, another group of people are then expecting this correlation to rise to

0.7. As a researcher, to identify this sign of divergence as soon as possible is very important

and beneficially. Correct interpretation of this feature will leads to more accurate

understanding of the correlation evolving process. Meanwhile, another things needs to be

noted is even if this divergence of market opinion occur, usually this feature is more easily to

be reflected in the plot of long term correlation than the short term correlation. This is because,

if investors are now only asked to forecast the correlation, say, for the next one or two days,

and given that there is no significant evidence of asymmetric information, then it is reasonable

to say that there will not be much difference among their expectations for the future correlation.

Put it in another way, even if investors now do have the diverged expectation, it is very

difficult for this feature to be sufficiently exploited in the short term and flexibly reflected in a

distributional form if our forecast of interest is only the correlation of a few days later.

Therefore, in density of short term correlation, usually one can only observe one peak along

with negative skewness. However, this is not to say this asymmetry (negative skewness) then

cannot be generated from a mixture distribution, because, as has been proved, a proper mixing

strategy could also lead to unimodality. Therefore, it is implied that, by incorporating another

correlation dynamics to the current framework, the realized correlation, especially for those

concerning a long forecast horizon, can be more flexibly modeled and accurately forecast. For

a more detailed illustration of how to develop such a new framework to capture ‘correlation

mixture’, we dedicate all the remaining chapters to this topic. However, for now, we proceed

only by focusing on the task of evaluating various correlation forecasts generated from

existing time series tools and implied correlation model.
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(Insert Table 5.1 Panel B and Figure 2 Panel A and Panel B)

5.5.2.2 Statistical evaluation of forecast error
After eleven correlation models are fitted using empirical data, statistical evaluation results of

their out-of-sample forecasting performance are reported in Table 5.2 panel A and panel B.

Here, for both trios a common finding is the predicative accuracy of these forecasts in

approximating their corresponding realized correlation is now found very sensitive to the

statistical loss function used to evaluate them. Only a historical correlation model can

consistently produce unbiased estimates for realized correlation, although the forecasting

performance of implied correlation, especially in the JPY trio, is also worth mentioning here.

a. Evaluation based on MFE
MFE results show that sophisticated forecasts generated from multivariate GARCH models

and implied correlation model are more inclined to introduce biases than historical correlation

models. The conditional means of their forecast errors are frequently found to be significantly

different from zero. For instance, when the realized correlation / /( )US EU UK EU    is to be

forecast, for all three horizons, forecast errors generated using GARCH models, either

univariate or multivariate, are found to be conditionally biased. Although implied correlations

here can provide a slightly better performance, in half of a total of 18 cases the expectations of

their forecast errors are also confirmed as significantly different from zero.

To provide a plausible explanation for such a massive number of biased estimates, it is

worthwhile to start from their model misspecifications and the stringent conditions assumed in

their mechanisms for generating forecasts (see section 5.3.4). For example, conditional bias of

implied correlation is not surprising because the implied volatility, from which these

correlation forecasts are calculated, is already frequently found to be biased (see Jorion, 1995).

Unjustified assumptions such as constant volatility and normal distribution are usually

penalized as the potential reasons for causing its bias. However, recently, researchers have

suggested other possibilities. For example, after studying the sample selection bias in S&P500

index option, Engle and Rosenberg (2000) attributed the conditional bias found in implied

volatility to the testing procedure. Similarly, Christensen et al., (2001) argued that the

overlapping observations may also be a problem.

Here, an interesting finding is that when some specific correlation such as / /( )EU UK US UK  

becomes the target of forecasting, MFEs of GARCH models tend to be smaller for short-

horizon forecasts, suggesting that this model may be more useful in producing unbiased



- 107 -

forecasts for short-term correlation than for long-term correlation. Although empirical research

on volatility forecasting has already found many analogous results, i.e., the one-step-ahead

GARCH volatility is usually found to be more accurate than multi-step-ahead forecast since

the latter is closer to ‘static’ unconditional volatility; similar evidence on correlation

forecasting is not very consistent.

On average, under MFE it is the simple forecasts generated from either a historical correlation

model or EWMA that can most frequently produce the best. This result is as expected and has

been confirmed by other researchers as well. For example, as Walter and Lopez (2000, p33)

illustrated, “… the simple correlation forecasts always approximate the unconditional

correlation of the series by using a sub-sample of the available data… thus, the small MFE of

their forecasts are not surprising ...”

(Insert Table 5.2 panel A and panel B)

b. Evaluation based on MAE and MSE
When MAE and MSE results are analyzed, a different picture is presented. Sophisticated

forecasts, especially the implied correlation, now present a much closer relationship than other

alternatives to realized correlation. In 16 out of 18 cases, the forecasts derived from the option

prices successfully generate the lowest MSE, and in 13 out of 18 cases they generate the

lowest MAE. Besides, the performance of GARCH-based forecast in approximating realized

correlation has also improved a great deal with more evidence showing only small biases in its

resulting estimates. Moreover, it is noticeable here that MSEs and MAEs tend to be lower for

long-term correlation forecasts than for short-term correlation forecasts. For example, in Panel

A the MSE of / / ,1( )US EU UK EU t w    generated from DCC is 0.1104, whilst the same estimates

for one-month and three-month forecasts are only 0.042 and 0.022. This result suggests that

correlation forecasts tend to be more accurate when they are used in a long forecast horizon,

possibly reflecting the reversion of the dynamics to unconditional correlation.58

(Insert Table 5.2 Panel A and Panel B)

Besides, for comparing predictive accuracy, in this chapter we also perform Diebold Mariano

test to discriminate models which have generated similar MAE values and similar MSE values.

Specifically, since for each correlated pairs we have identified a best model under these two

58 Correlation, just like volatility, is usually modeled as a mean reverting process. In the short run, its evolving
process may present a volatile style along with some jumps. However, in the long run the reversion of its
sample paths to the unconditional mean is usually evident. Sometimes, even if some structural changes are
observed, this reversion pattern will still be sustained with mean adjusted to a new level.
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loss functions, the new test is then performed to examine whether any other models can

provide a statistically equal performance to the best model. Concerning this result, now it can

be easily seen from Table 5.2 that the advantage of implied correlation for forecasting long-

term correlation is actually very evident. In no cases, forecasts generated by other methods in

two trios can provide a statistically equal standing as implied correlation model. However, the

thing does change a little bit when short-term correlation becomes the target of forecasting.

For example, in the JPY trio if we are going to predict the correlation between EU/JP and

US/JP for the next week, the best model is then EWMA and in no case this model can be

statistically outperformed by others under MSE and MAE. Besides, another thing needs to be

noted is multivariate GARCH models sometimes obtain similar prediction power to implied

correlation model. However, its performance is not consistent as forecasts generated from

derivative markets.

5.5.2.3 Forecast Optimality results

a. Partial optimality regression results

Now, we proceed to illustrate the partial optimality regression results for two currency trios in

Table 5.3 Panel A and Panel B. First, concerning the simple historical correlation models, their

forecasting performances in two trios are rather similar. Individual hypothesis (either a=0 or

b=1) and joint hypothesis (a=0 and b=1) for partial optimality are consistently violated.59

EWMA gives on average the best performance among simple forecasts with 12 out of 18

highest R2 derived from it. This result is not surprising because the past price history it

includes is already known to be the longest of all. Although they can produce unbiased

forecasts, historical correlation models perform badly when they are used to explain the

variation in realized correlation. The maximum R2 these models can generate in GBP trio are

less than 0.05.

With regard to the sophisticated forecasts, a mixed picture is presented concerning their

performances in two trios. As for the GARCH models, joint hypothesis of optimality is

rejected in all cases. Of 108 GARCH forecasts examined in GBP trio, only 7 null hypotheses

of individual optimality (either a=0 or b=1) are not rejected. And, interestingly, this evidence

unanimously supports the superiority of CCC model where correlation is modelled as a

constant rather than a dynamic. In the Yen trio, the usefulness of BEKK and DCC models is

confirmed several times although, as before, in the majority of cases null of optimality is again

rejected either individually or jointly. As far as the explanation power is concerned, there is no

59 Simple historical correlation models include His-7, His-22 and His-65, which are historical correlation
models respectively using past 7 day, past 22 days and past 65 days observations as input, and EWMA model.
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evidence to show that GARCH model can provide an improved performance compared to the

simple forecasts just illustrated. However, a slightly better performance can be confirmed

when implied correlations are regressed on realized correlation. For example, in GBP trio half

of the highest R2 is obtained using its forecasts and, in 4 out of 18 cases examined, both

individual and joint hypothesis for partial optimality is accepted. However, we should note that,

in most cases, the explanatory power of this model is still not as high as we expected.

Concerning this issue, two things need to be noted. First, in this research low R2 is very easy to

generate when the task is to forecast short-term correlations. This result is as expected because

the correlation forecasts usually tend to be more accurate for the longer horizons. Second,

correlation estimated on two assets whose liquidity is not strong enough could also lead to low

R2 in forecasting realized correlation. For example, in the GBP trio, EUR/GBP and USD/GBP

are two currency pairs much less traded than EUR/USD in the FX market; thus it is reasonable

to expect that the realized correlation of / /( )EU UK US UK   will be harder to predict than either

/ /( )EU US UK US    or / /( )UK EU US EU   . As can be seen from Table 5.3 Panel A, all models

used to forecast / /( )EU UK US UK    can only generate R2s lower than 0.10. After all, compared

to the similar research studies performed for volatility forecasting, the low explanation power

found in our cases for forecasting realized correlation is not totally surprising. For example,

the R2 for the regression of realized volatility on a constant and implied volatility, according to

Jorion (1995), ranges from only 0.02 to 0.05. And this value also hardly exceeded 0.10 in Guo

(1996) for forecasting USD/JPY volatility.

 (Insert Table 5.3 panel A and B)

b. Sign test result
As a complement to the partial optimality regression, a non-parametric two-sided sign test is

also performed in this paper to examine whether the covariance of forecast error and forecast

itself has zero expected value.60 We report its result in Table 5.4. For both trios, the evidence

of partial optimality is now much more pronounced than previously. Not only are sophisticated

forecasts observed with more cases of accepting the null hypothesis , ,ˆ[ ] 0t t T t TE e   , the

simple forecasts have also shown much improvement in exploiting the past information. For

60 Here, the purpose of this test is to examine whether the forecast error is orthogonal to the past information.
Therefore, the function to be analyzed is , ,ˆt T t Te  , and we examine it by testing whether its expected value is
zero. One thing to note here is that we use median instead of mean to approximate this expected value. This is
because the forecast error generated in this paper frequently presents different degrees of asymmetry, and in
such cases, median is usually regarded as a more reliable statistic than mean to describe the whole distribution
through a single estimate. Thus, the sign test performed here is to examine whether the median of , ,ˆt T t Te   is
zero.
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example, of the 18 cases examined in two trios, only 3 forecasts generated from the HIS-22

model fail to pass the test.61 This result is a little bit surprising because it is significantly

different from those reported in Table 5.4 where none of the simple forecasts is found to be

partially optimal. However, the explanation is not too difficult. For example, we can attribute

this discrepancy to the more stringent conditions required in the regression test to confirm

optimality than those required in the sign tests.

For the GARCH and implied correlation model, the improved performance when compared to

the previous result is also very significant. In 11 out of 18 cases, the forecasts generated from

the option prices are proved to be partially optimal. Besides, the simplified univariate Normal-

GARCH, GED-GARCH and DCC models are also frequently able to fulfil the orthogonal

condition. However, as noted, their performances are not uniform across the currency trios

examined and across the forecast horizons of interest.

(Insert Table 5.4)

5.5.2.4 Encompassing Regression results
In Table 5.5, we report the encompassing regression results for two currency trios. To improve

the forecasting accuracy, we combine the forecasts generated from three different correlation-

modelling groups. They are implied correlation, simple historical correlation and GARCH-

based correlation. To circumvent the potential multicollinearity among forecasts that are

derived from similar modeling structures, in the latter two groups only those which have

demonstrated the highest R2 in the previous partial optimality results are incorporated into the

current regression. Therefore, the realized correlation is now regressed on a constant and three

different forecasts.

(Insert Table 5.5)

Since a forecast combination technique is adopted, R2 improves a lot for both trios, suggesting

that aggregation of historical information and option-driven information can create a more

accurate correlation forecast. The usefulness of implied correlations in forecasting realized

correlations is found not only significant but also consistent. However, when time series

forecasts are analyzed, their cross-trio and cross-horizon performance is not uniform. Although

GARCH-based forecasts, in some cases, are found containing valuable information,

coefficients of their forecasts in regression are either insignificantly different from zero or

negative. Besides, this situation also applies to simple historical correlation when the Yen trio

61 HIS-22 refers to the historical correlation model where the past history (P) equals 22 .
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is investigated. To illustrate these results with more detailed evidences, next we summarize

several typical features found in Table 5.5 and present them in the following.

a. GBP trio
First, for GBP trio, the implied correlation is found contributing to the forecast of realized

correlation on a consistent basis. In all nine cases examined, the coefficients of their forecasts

are all positive and significantly different from zero. Besides, while three special

correlations / / ,1( , )US EU UK EU t w   , / / ,1( , )US EU UK EU t m   and / / ,1( , )EU US UK US t w    are predicted,

implied correlation forecasting encompasses all other historical information-based estimates.

According to the Wald test result presented at the bottom of Panel A, we cannot reject the null

hypothesis that the regression coefficients of time series forecasts are all zero, suggesting that

implied correlation now fully incorporates all information extractable from the time series data.

However, as for the others, correlation forecasts generated from GARCH models or simple

historical correlation models convey important information that is not presented in option

prices.

Here, it is important to note one thing. Among the encompassing evidence we have just

reported, the forecast horizons of interest are all relatively short (two one-week forecasts and

one one-month forecast). Therefore, it is fair to say that the implied correlations maybe more

useful in predicting short-term correlation. For example, as we may usually expect, news such

as immediate interest rate changes and long-term currency reform are empirically much easier

to be predicted and reflected in option prices with short maturity rather than using trend-

focused time series model. This is because the former is more sensitive to the temporary

changes in market expectation, whilst the latter more focuses on the value-tracking given that

the time period analyzed is long enough. However, this is not to say implied correlation can

then always explain the variation of realized correlation very well. As can be seen from Figure

3, Panel A, the dynamics followed by short-term realized correlation such as

/ / ,1( , )EU US UK US t w     are very bumpy and volatile. As a comparison, the implied correlation

used to forecast it seems much more stable. Therefore, we can only draw the conclusion that

the implied correlation in some cases may be a better forecast than historical information-

based estimates for predicting short-term realized correlation. However, how well it really

performs is still an empirical question.
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b. Yen trio
With respect to the Yen trio, GARCH-based forecast now improves a lot in terms of the

information contribution it can make to predict the realized correlation. All coefficients of its

forecasts are significantly different from zero, suggesting that they contain information not

presented in other forecasts. However, we should note here that these coefficients are

sometime found negative, making the explanation a very difficult task. As for those generated

from other historical information-based models, similar findings are also observed. Not only

are coefficients often found non-positive, evidence of insignificance is also found several

times, suggesting that these forecasts conveys no incremental information for forecasting

future realized correlation.

Although the regression results do not create a uniform picture for the usefulness of simple

forecasts, the performance of implied correlation is consistent for both trios. Of the nine cases

reported in Table 5.5, Panel B, only one coefficient of implied correlation fails to reject the

null hypothesis that is significantly different from zero. Although the Wald test results now

suggest no evidence for encompassing, it is not a surprising result here since the information

contribution conveyed by competing GARCH-based forecasts has already improved a lot.

c. Other features
Meanwhile, it is also worth noting some interesting findings presented in Table 5.5. For

example, a typical feature here is to favour the CCC model among GARCH variants. As can

be confirmed from Panel A and Panel B, this model has been selected seven times as the

representative of GARCH models to generate a forecast for realized correlation. Although its

advantage in generating higher explanatory power than other GARCH-variants is only

marginal, on average this model is still statistically the best. Besides, we also find that the

realized correlation can be more accurately predicted in the long term. After forecast

combination, R2 of encompassing regressions increase a great deal compared to those

documented in Table 5.4. Predicting long-term correlation (correlation over the next one

month and next three months) makes it easier to generate a higher quality of fit than predicting

short-term correlation (correlation over the next week). The only exception is for

/ /( )US EU JP EU    where the regression on one-month correlation yields 0.305 R2 whilst three-

month correlation only generates 0.241 R2. To obtain a clearer view, we present in Figure.3,

Panel A and Panel B, the time series plot of realized correlation of / /( )EU US UK US    and

/ /( )EU US EU JP   and various forecasts used to predict them.

(Insert Figure 3 Panel A and Panel B)
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5.5.2.5 GMSFEM Test results

a. Three-horizon comparison
Apart from the cross-trio evaluation, comparing various models’ cross-horizon performance is

also an interest of this paper. To perform this task, we firstly calculate the GMSFEM ranking

statistics for correlation forecasts of all three horizons (one week, one month and three month).

Surprisingly, of all 224 comparisons analyzed, only one case displays the evidence of

consistent cross-horizon performance. Even more surprisingly, this case is not generated by

implied correlation but from the GARCH family. BEKK model in the forecasting of realized

correlation / /( )EU UK US UK    shows a consistent out-performance over GED estimates across

all three horizons of interest. The eigenvalues derived for this comparison are all positive

(0.034163, 0.6837, 13.155). However, as for others, mixed sign results are then generated,

suggesting that there is insufficient evidence to determine the superiority of one over another

consistently.

Although this result is a little bit unexpected, it is not totally inexplicable. For example, as can

be confirmed from Figure 3, short-term realized correlation follows a dynamic process that is

much more volatile than long-term correlation. Given this feature, one then might want to

argue that the best models used to depict these two processes should be intrinsically different.

Since the models that perform well in predicting short-term correlation are now probably not

the ones which perform well in forecasting long-term correlation, the potentially inconsistent

cross-horizon forecasting performance is then not surprising for the correlation dynamics.

b. Two-horizon comparison

In order to launch a further analysis, we combine the correlation forecasts over the next one-

month and the next three-month into a new category and re-perform the GMSFEM test. In

Table 5.6, we report its result. Clearly, the evidence of cross-horizon out-performance is now

much more pronounced. For the two trios examined, there are a total of 39 cases confirming

the domination of one forecast over the other, across two horizons. Simple historical forecasts

are the poorest among all competing forecasts. In no cases forecasts of this group are found

capable of dominating others. However, for GARCH models, significant out-performances are

then consistently found both within and across the forecasting groups. For example, in the

GBP trio DCC forecasts present three cases of out-performance over historical correlation.

When univariate GARCH-Normal and GARCH-GED are examined, they are then dominated

by other multivariate GARCH variants such as BEKK, VECH in / /( )EU UK US UK   . In respect
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of the Yen trio, similar evidence is also documented. Besides, it is especially worth noting the

overwhelming domination of implied correlation over all other historical information-based

forecasts when realized correlation / /( )EU US EU JP    is predicted. Here, the eigenvalues

derived from ten comparisons are all found positive, suggesting that implied correlation is now

favoured under GMSFEM criterion over all its alternatives across two horizons. However,

such significant preference is only observed once in all cases.

(Insert Table 5.6)

5.6 Summary
In this chapter, we examine the forecasting performance of eleven correlation models in

predicting realized correlation. After contributing to the current literature in three aspects, our

findings suggest that the best model to forecast future correlation is very sensitive to the loss

functions used to evaluate them. Implied correlation can convey valuable information on a

consistent basis but its cross-horizon performance is not uniform. GARCH-based forecasts

sometimes contain incremental information not included in the option prices. However, its

advantage of capturing the time-varying characteristics of correlation dynamics is not fully

confirmed in our research because the most favoured model among GARCH variants is

actually the CCC which assumes correlation to be fixed. This is probably because the level and

direction of realized correlation change just too markedly in our samples. After performing the

encompassing test, we find that the combination of historical information source and option-

derived information source can produce a more accurate correlation forecast than any single

technique in terms of improved explanatory power. And it is easier to accurately forecast the

long-term correlation than the short-term correlation.

Meanwhile, it is also worth noting another interesting finding of this paper. The kernel density

estimate of the realized correlation is frequently found to be showing multi-modality,

suggesting that, by adopting a mixture modelling technique, the flexibility of capturing various

characteristics presented in the correlation dynamics can be extended to a further degree. This

application may also contribute to the generation of a more accurate forecast than other

traditional tools in predicting realized correlation. To fully exploit this implication, we now

devote the next part of this thesis to the development of two conditional heteroskedastic

correlation mixture models. We start by presenting some elementary information concerning

the mixture distribution (models) and numerical algorithms which can be used to estimate

them.
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Table 5.1 Summary statistics of implied- and realized- correlation for two currency trios

Panel A: Implied Correlation Panel B. :Realized Correlation
EU/US/UK (GBP trio) EU/US/UK (GBP trio)
Mean Std Skewness Kurtosis Min Max Mean Std Skewness Kurtosis Min Max

ρIC(ξUS/EUξUK/EU)t,1w 0.5124 0.1204 -0.0642 1.9760 0.2485 0.7496 ρRC(ξUS/EUξUK/EU)t,1w 0.4666 0.3096 -0.7194 3.1318 -0.6197 0.9541

ρIC(ξUS/EUξUK.EU)t,1m 0.5174 0.0940 -0.0447 1.9102 0.3056 0.6926 ρRC(ξUS/EUξUK.EU)t,1m 0.4837 0.1822 -0.1973 2.8154 -0.2608 0.8717

ρIC(ξUS/EUξUK/EU)t,3m 0.5352 0.0889 -0.4904 2.3706 0.3253 0.7059 ρRC(ξUS/EUξUK/EU)t,3m 0.4818 0.1207 0.3797 2.7661 0.2082 0.7800

ρIC(ξEU/USξUK/US)t,1w 0.7417 0.0919 -1.0011 3.3921 0.4293 0.8939 ρRC(ξEU/USξUK/US)t,1w 0.7218 0.2093 -1.5360 5.7906 -0.2882 0.9977

ρIC(ξEU/USξUK/US)t,1m 0.7433 0.0671 -1.1077 3.5453 0.5287 0.8555 ρRC(ξEU/USξUK/US)t,1m 0.7308 0.1177 -0.7047 2.9818 0.3226 0.9399

ρIC(ξEU/USξUK/US)t,3m 0.7424 0.0473 -0.9093 3.0645 0.6093 0.8235 ρRC(ξEU/USξUK/US)t,3m 0.7396 0.0794 -0.1603 2.1328 0.5361 0.8816

ρIC(ξEU/UKξUS/UK)t,1w 0.1793 0.1270 -0.2582 3.2272 -0.2312 0.5376 ρRC(ξEU/UKξUS/UK)t,1w 0.1877 0.3693 -0.3556 2.5043 -0.8368 0.8996

ρIC(ξEU/UKξUS/UK)t,1m 0.1784 0.0934 -0.1247 2.8723 -0.0904 0.3983 ρRE(ξEU/UKξUS/UK)t,1m 0.2111 0.2002 -0.1461 2.5875 -0.3321 0.7007

ρIC(ξEU/UKξUS/UK)t,3m 0.1620 0.0916 -0.2057 2.4738 -0.0945 0.3348 ρRC(ξEU/UKξUS/UK)t,3m 0.2186 0.0985 -0.2658 2.3152 -0.0469 0.4334

EU/US/JP (Yen trio) EU/US/JP (Yen trio)
Mean Std Skewness Kurtosis Min Max Mean Std Skewness Kurtosis Min Max

ρIC(ξEU/USξJP/US)t,1w 0.5318 0.1190 -0.6657 2.9687 0.1383 0.7268 ρRC(ξEU/USξJP/US)t,1w 0.4985 0.3292 -0.9967 3.5931 -0.7173 0.9858

ρIC(ξEU/USξJP/US)t,1m 0.5290 0.0810 -0.5750 2.9393 0.2653 0.6759 ρRC(ξEU/USξJP/US)t,1m 0.5180 0.1920 -0.6890 4.0693 -0.2524 0.8831

ρIC(ξEU/USξJP/US)t,3m 0.5313 0.0532 -0.5095 2.8310 0.3744 0.6352 ρRC(ξEU/USξJP/US)t,3m 0.5246 0.1285 -0.5677 3.1021 0.1333 0.7446

ρIC(ξUS/EUξJP/EU)t,1w 0.5028 0.1272 0.3250 2.4708 0.1618 0.8395 ρRC(ξUS/EUξJP/EU)t,1w 0.4784 0.3517 -1.0299 3.8019 -0.8944 0.9869

ρIC(ξUS/EUξJP/EU)t,1m 0.5214 0.0930 0.4129 2.2162 0.3156 0.7687 ρRC(ξUS/EUξJP/EU)t,1m 0.4951 0.2324 -0.7038 3.4955 -0.4030 0.9366

ρIC(ξUS/EUξJP/EU)t,3m 0.5477 0.0628 0.3667 2.3144 0.3637 0.7150 ρRC(ξUS/EUξJP/EU)t,3m 0.5109 0.1592 -0.2915 2.8865 0.0951 0.8600

ρIC(ξUS/JPξEU/JP)t,1w 0.4488 0.1264 -0.5427 2.7281 0.1018 0.7147 ρRC(ξUS/JPξEU/JP)t,1w 0.4236 0.3288 -0.7938 3.5145 -0.8229 0.9582

ρIC(ξUS/JPξEU/JP)t,1m 0.4399 0.0964 -0.5006 2.7538 0.1835 0.6695 ρRC(ξUS/JPξEU/JP)t,1m 0.4420 0.2155 -0.6316 3.0184 -0.2972 0.8626

ρIC(ξUS/JPξEU/JP)t,3m 0.4138 0.0704 -0.5165 2.8215 0.2165 0.5840 ρRC(ξUS/JPξEU/JP)t,3m 0.4441 0.1234 -0.6200 2.9045 0.0507 0.6677

This table presents six summary statistics of out-of-sample implied correlation and out-of-sample realized correlation for two currency trios. The reported statistics include mean,
standard deviation, skewness, kurtosis, minimum value and maximum value. Implied correlation is represented by ρIC(ξA/CξB/C)t,T, while realized correlation is denoted by
ρRC(ξA/CξB/C)t,T. Here, three forecast horizons are analyzed (one-week, one-month and three-month). And the sample starts from Nov 4th 2002 to May 31st 2005 with totally 621
observations.
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Table 5.2 Panel A. Evaluation of correlation forecasts in EU/US/UK trio

under MFE, MAE and MSE

US/EU & UK/EU EU/US & UK/US EU/UK & US/UK
ρ(ξUS/EUξUK/EU)t,1w ρ(ξEU/USξUK/US)t,1w ρ(ξEU/UKξUS/UK)t,1w

MFE MAE MSE MFE MAE MSE MFE MAE MSE
HIS-7 0.009 0.327’ 0.174’ -0.002 0.214’ 0.085’ 0.005 0.434’ 0.284’

HIS-22 -0.009 0.275’ 0.120’ -0.008 0.171’ 0.053’ -0.031 0.336’ 0.177’

HIS-65 -0.011 0.253’ 0.101’ -0.014 0.157’ 0.046’ -0.042 0.307’ 0.147’

EWMA -0.010 0.253’ 0.101’ -0.010 0.162’ 0.047’ -0.029 0.319’ 0.157’

Normal -0.062 ** 0.253’ 0.105’ -0.005 0.164’ 0.047’ -0.011 0.324’ 0.159’

One week GED -0.047 ** 0.246 0.099 0.023 * 0.169’ 0.048’ 0.027 0.321’ 0.156’

CCC -0.172 ** 0.263’ 0.124’ 0.040 ** 0.167’ 0.045 0.082 ** 0.317’ 0.145’

VECH -0.088 ** 0.251’ 0.109’ 0.013 0.162’ 0.045 0.057 ** 0.315’ 0.147’

BEKK -0.095 ** 0.248’ 0.108’ -0.074 ** 0.183’ 0.062’ 0.017 0.312’ 0.147’

DCC -0.097 ** 0.251’ 0.110’ -0.004 0.157 0.043 0.040 0.311’ 0.144’

Implied -0.045 ** 0.237 0.094 -0.020 0.153 0.045 0.008 0.303 0.140

ρ(ξUS/EUξUK/EU)t,1m ρ(ξEU/USξUK/US)t,1m ρ(ξEU/UKξUS/UK)t,1m

HIS-7 0.026 0.279’ 0.127’ 0.008 0.176’ 0.059’ 0.028 0.372’ 0.206’

HIS-22 0.007 0.197’ 0.063’ 0.001 0.117’ 0.023’ -0.008 0.253’ 0.094’

HIS-65 0.005 0.155’ 0.039’ -0.005 0.102’ 0.016’ -0.019 0.188’ 0.052’

EWMA 0.006 0.165’ 0.044’ -0.001 0.107’ 0.018’ -0.005 0.219 0.071’

NORMAL -0.054 ** 0.160’ 0.039’ 0.007 0.103’ 0.016’ 0.014 0.200’ 0.061’

One Month GED -0.042 ** 0.160’ 0.038’ 0.032 ** 0.107’ 0.017’ 0.048 ** 0.201’ 0.063’

CCC -0.156 ** 0.186’ 0.056’ 0.050 ** 0.105’ 0.015’ 0.106 ** 0.187 0.053’

VECH -0.072 ** 0.163’ 0.044’ 0.022 ** 0.102’ 0.015’ 0.080 ** 0.197’ 0.056’

BEKK -0.079 ** 0.159’ 0.042’ -0.065 ** 0.146’ 0.033’ 0.041 ** 0.196’ 0.055’

DCC -0.081 ** 0.160’ 0.043’ 0.006 0.097’ 0.014’ 0.063 ** 0.188 0.051

Implied -0.034 ** 0.143 0.032 -0.012 0.086 0.012 0.033 ** 0.184 0.052

ρ(ξUS/EUξUK/EU)t,3m ρ(ξEU/USξUK/US)t,3m ρ(ξEU/UKξUS/UK)t,3m

HIS-7 0.024 0.266’ 0.115’ 0.016 0.164’ 0.054’ 0.036 * 0.344’ 0.173’

HIS-22 0.006 0.157’ 0.042’ 0.010 0.103’ 0.018’ 0.000 0.182’ 0.050’

HIS-65 0.004 0.118’ 0.025’ 0.004 0.082’ 0.010’ -0.011 0.128’ 0.023’

EWMA 0.004 0.127’ 0.027’ 0.008 0.090’ 0.013’ 0.002 0.142’ 0.033’

NORMAL -0.075 ** 0.116’ 0.021’ 0.020 ** 0.073’ 0.008’ 0.024 ** 0.117’ 0.021’

Three Month GED -0.068 ** 0.122’ 0.023’ 0.040 ** 0.074’ 0.008’ 0.050 ** 0.130’ 0.025’

CCC -0.157 ** 0.168’ 0.037’ 0.058 ** 0.075’ 0.009’ 0.113 ** 0.130’ 0.023’

VECH -0.073 ** 0.123’ 0.025’ 0.031 ** 0.072’ 0.008’ 0.088 ** 0.118’ 0.021’

BEKK -0.081 ** 0.120’ 0.023’ -0.056 ** 0.123’ 0.024’ 0.049 ** 0.115’ 0.020’

DCC -0.083 ** 0.121’ 0.022’ 0.014 ** 0.074’ 0.008’ 0.071 ** 0.110 0.018

Implied -0.054 ** 0.104 0.016 -0.003 0.056 0.004 0.057 ** 0.122’ 0.021’

This panel presents the evaluation results of correlation forecast in GBP trio under three statistical loss functions. The unbiasedness
test is performed by regressing forecast error on a constant with standard errors corrected for heteroskedasticity and autocorrelation
by adopting Newey and West (1987)'s procedure.** and * indicates the resultant error are significantly different from zero at 99%
and 95% level. Underlined numbers are those having the lowest absolute value in the group of forecasts which evaluated by either
MFE, MSE or MAE. It represents the 'best' model under these loss functions. For example, when correlation forecasts of
ρ(ξUS/EUξUK/EU)t,1w is evaluated by MFE(mean forecast error), the best model is then HIS-22. Here, His-22 denotes the historical
correlation models using returns of past 22 days to calculate future correlation. Besides, for comparing predictive accuracy, we also
perform Diebold Mariano test on MSE and MAE results here and use ‘ to represents the cases where the null of equal predictive
accuracy of a forecast is rejected at 5% level, when it is compared to the best performing model in its group.
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Table 5.2 Panel B. Evaluation of correlation forecasts in EU/US/JP trio under
MFE, MAE and MSE

EU/US & JP/US US/EU & JP/EU EU/JP & US/JP
ρ(ξEU/USξJP/US)t,1w ρ(ξUS/EUξJP/EU)t,1w ρ(ξEU/JPξUS/JP)t,1w

MFE MAE MSE MFE MAE MSE MFE MAE MSE
HIS-7 -0.0032 0.3276’ 0.1878’ 0.0078 0.3331 0.1906 0.0064 0.3106 0.1603

HIS-22 -0.021 0.2735’ 0.1279’ -0.0163 0.2667 0.1237 -0.0161 0.2641 0.1108

HIS-65 -0.0233 0.2584’ 0.1119’ -0.0139 0.2671 0.1204 -0.041 ** 0.2637 0.1137

EWMA -0.0218 0.2591’ 0.1142’ -0.0222 0.2511 0.1105 -0.0205 0.244 0.097

Normal 0.0285 * 0.2653’ 0.1076 -0.0031 0.2707 0.1191 -0.038 * 0.2613 0.1106

One week GED 0.0325 * 0.2621 0.1039 -0.0127 0.2653 0.1156 -0.0328 0.2596 0.1078

CCC 0.1702 ** 0.3116’ 0.1307’ -0.1104 ** 0.2625 0.1297 -0.1241 ** 0.269 0.1239

VECH 0.0355 0.2679 0.1076 0.0511 ** 0.307 0.1583 0.0382 0.2925 0.1395

BEKK -0.015 0.2584 0.1091 -0.0524 ** 0.2555 0.1143 -0.0945 ** 0.2528 0.1097

DCC -0.0052 0.2642 0.1132’ -0.059 ** 0.2569 0.1157 -0.0697 ** 0.2487 0.1047

Implied -0.0332 * 0.2487 0.1081 -0.0245 0.2506 0.1049 -0.0253 0.2568 0.1059

ρ(ξEU/USξJP/US)t,1m ρ(ξUS/EUξJP/EU)t,1m ρ(ξEU/JPξUS/JP)t,1m

HIS-7 0.0162 0.2868’ 0.1426’ 0.0246 0.295’ 0.1441’ 0.0249 0.3111’ 0.1532’

HIS-22 -0.0015 0.1972’ 0.064’ 0.0005 0.2096’ 0.0682’ 0.0024 0.2277’ 0.0811’

HIS-65 -0.0038 0.1606’ 0.0396’ 0.0029 0.1931’ 0.0608’ -0.0225 * 0.2099’ 0.0683’

EWMA -0.0023 0.1699’ 0.0473’ -0.0054 0.1817’ 0.0523’ -0.002 0.1986’ 0.0623’

Normal 0.0558 ** 0.1543’ 0.0368’ 0.0133 0.1929’ 0.0549’ -0.0189 * 0.195’ 0.0575’

One Month GED 0.0557 ** 0.1529’ 0.0368’ -0.002 0.1895’ 0.055’ -0.02 * 0.1856’ 0.0537’

CCC 0.1897 ** 0.2228’ 0.0684’ -0.0936 ** 0.178’ 0.0575’ -0.1056 ** 0.1856’ 0.0595’

VECH 0.0551 ** 0.1564 0.0388 0.068 ** 0.2411’ 0.0921’ 0.0568 ** 0.2256’ 0.0862’

BEKK 0.005 0.1524 0.0371 -0.0356 ** 0.1725’ 0.0488’ -0.076 ** 0.1856’ 0.0581’

DCC 0.0173 * 0.1643’ 0.0414’ -0.0424 ** 0.171’ 0.0483’ -0.0514 ** 0.1813’ 0.0548’

Implied -0.011 0.1498 0.0337 -0.0263 ** 0.1544 0.04 0.0021 0.1645 0.0429

ρ(ξEU/USξJP/US)t,3m ρ(ξUS/EUξJP/EU)t,3m ρ(ξEU/JPξUS/JP)t,3m

HIS-7 0.0229 0.2672’ 0.1222’ 0.0404 * 0.2948’ 0.1431’ 0.0269 0.301’ 0.1404’

HIS-22 0.0051 0.1538’ 0.0399’ 0.0163 0.2037’ 0.0622’ 0.0044 0.2134’ 0.0663’

HIS-65 0.0028 0.1162’ 0.0213’ 0.0187 0.1776’ 0.0439’ -0.0204 0.1783’ 0.0473’

EWMA 0.0043 0.1301’ 0.0279’ 0.0104 0.1696’ 0.0438’ 0.0001 0.1833’ 0.048’

Normal 0.0792 ** 0.1183’ 0.0188’ 0.0267 ** 0.1663’ 0.0374’ -0.0124 0.1433’ 0.0298’

Three Month GED 0.0695 ** 0.1172’ 0.0197’ -0.0011 0.1607’ 0.0359’ -0.0266 ** 0.1416’ 0.0303’

CCC 0.1963 ** 0.2003’ 0.0518’ -0.0778 ** 0.1294’ 0.0274’ -0.1035 ** 0.1272’ 0.03’

VECH 0.0618 ** 0.1136’ 0.0191’ 0.0838 ** 0.2305’ 0.0859’ 0.0589 ** 0.1817’ 0.0533’

BEKK 0.0118 0.1058’ 0.0177’ -0.0197 ** 0.1409’ 0.0293’ -0.0739 ** 0.1462’ 0.0347’

DCC 0.024 ** 0.1142’ 0.0209’ -0.0266 ** 0.134’ 0.027’ -0.0493 ** 0.1426’ 0.0318’

Implied -0.0066 0.0952 0.014 -0.0368 ** 0.1146 0.0228 0.0303 ** 0.1085 0.0163

This panel presents the evaluation results of correlation forecast in JPY trio under three statistical loss functions. The unbiasedness
test is performed by regressing forecast error on a constant with standard errors corrected for heteroskedasticity and autocorrelation
by adopting Newey and West (1987)'s procedure.** and * indicates the resultant error are significantly different from zero at 99%
and 95% level. Underlined numbers are those having the lowest absolute value in the group of forecasts which evaluated by either
MFE, MSE or MAE. It represents the 'best' model under these loss functions. For example, For example, when correlation forecasts
of ρ(ξEU/USξJP/US)t,1w   is evaluated by MFE(mean forecast error), the best model is then HIS-7. Here, His-7 denotes the
historical correlation models using returns of past 7 days to calculate future correlation. Besides, for comparing predictive accuracy,
we also perform Diebold Mariano test on MSE and MAE results here and use ‘ to represents the cases where the null of equal
predictive accuracy of a forecast is rejected at 5% level, when it is compared to the best performing model in its group.
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Table 5.3 Panel A. Partial optimal regression results of EU/US/UK trio for

three forecast horizons

US/EU & UK/EU EU/US & UK/US EU/UK & US/UK
ρ(ξUS/EUξUK/EU)t,1w ρ(ξEU/USξUK/US)t,1w ρ(ξEU/UKξUS/UK)t,1w

a b R2 a b R2 a b R2

HIS-7 0.3971 ** 0.1517 " 0.0256 0.6583 ** 0.0878 " 0.0072 0.1801 ** 0.0414 " 0.0004

HIS-22 0.3802 ** 0.1814 " 0.0113 0.5794 ** 0.1951 " 0.011 0.181 ** 0.0307 " 0.0063

HIS-65 0.3142 ** 0.3186 " 0.0142 0.4577 ** 0.3591 " 0.0148 0.1741 ** 0.0593 " 0.0054

EWMA 0.2819 ** 0.3867 " 0.0347 0.4601 ** 0.3579 " 0.0251 0.1728 ** 0.0689 " 0.0045

Normal 0.3654 ** 0.1913 " 0.0109 0.6814 ** 0.2056 " 0.0106 0.2678 ** 0.4035 " 0.0134

One week GED 0.2311 ** 0.4581 " 0.034 0.551 ** 0.2445 " 0.0176 0.1887 ** -0.0062 " 0.0102

CCC -0.0426 0.7966 ‘ 0.0097 0.2076 0.7547 0.0224 0.5783 ** 0.7342 " 0.0183

VECH 0.3718 ** 0.1709 " 0.011 0.4944 ** 0.3206 " 0.0108 0.2948 ** 0.8184 " 0.0131

BEKK 0.2993 ** 0.2975 " 0.017 0.9445 ** 0.2799 " 0.0128 0.2487 ** 0.358 " 0.0104

DCC 0.3163 ** 0.2663 " 0.0168 0.2762 * 0.6144 " 0.0268 0.3251 ** 0.928 " 0.0119

Implied 0.1423 * 0.6328 " 0.059 0.378 ** 0.4636 " 0.0399 0.1212 ** 0.3706 " 0.0146

ρ(ξUS/EUξUK/EU)t,1m ρ(ξEU/USξUK/US)t,1m ρ(ξEU/UKξUS/UK)t,1m

HIS-7 0.4423 ** 0.0904 " 0.0263 0.6964 ** 0.0476 " 0.0066 0.2134 ** 0.0128 " 0.001

HIS-22 0.4313 ** 0.11 " 0.0121 0.5957 ** 0.1852 " 0.0345 0.2416 ** 0.1392 " 0.0188

HIS-65 0.3363 ** 0.3084 " 0.0411 0.4987 ** 0.3156 " 0.0385 0.2224 ** 0.0494 " 0.0105

EWMA 0.3552 ** 0.2691 " 0.0492 0.5204 ** 0.2878 " 0.0529 0.2476 ** 0.1687 " 0.0149

Normal 0.3236 ** 0.2978 " 0.0191 0.5632 ** 0.2314 " 0.012 0.282 ** 0.3589 " 0.0364

One month GED 0.3122 ** 0.3266 " 0.0231 0.4938 ** 0.3395 " 0.0461 0.223 ** -0.073 " 0.0115

CCC -0.165 0.8321 0.0754 0.1222 0.7333 0.0606 0.6205 ** 0.7943 " 0.0729

VECH 0.2873 ** 0.3508 " 0.0233 0.4546 ** 0.3897 " 0.0986 0.3432 ** 1.0109 " 0.0751

BEKK 0.2665 ** 0.3863 " 0.0402 0.3861 ** 0.4466 " 0.1143 0.3085 ** 0.5737 " 0.0496

DCC 0.2756 ** 0.3687 " 0.0447 0.3804 ** 0.4832 " 0.0949 0.3832 ** 1.1636 " 0.071

Implied 0.1719 ** 0.6025 " 0.0967 0.2268 ** 0.6781 " 0.1483 0.2351 ** 0.2446 " 0.0233

ρ(ξUS/EUξUK/EU)t,3m ρ(ξEU/USξUK/US)t,3m ρ(ξEU/UKξUS/UK)t,3m

HIS-7 0.4557 ** 0.057 " 0.0237 0.7163 ** 0.0322 " 0.0067 0.219 ** -0.002 " 0.0016

HIS-22 0.4145 ** 0.1414 " 0.0501 0.6701 ** 0.0952 " 0.0193 0.2129 ** 0.0258 " 0.0129

HIS-65 0.403 ** 0.1647 " 0.0262 0.5966 ** 0.1946 " 0.0318 0.2523 ** 0.1467 " 0.0209

EWMA 0.3696 ** 0.2349 " 0.0867 0.6331 ** 0.1458 " 0.0291 0.2177 ** 0.0043 " 0.0157

Normal 0.2605 ** 0.3976 " 0.0556 0.4921 ** 0.3442 " 0.0485 0.2268 ** 0.0422 " 0.0254

Three Month GED 0.3785 ** 0.1878 " 0.0815 0.3938 ** 0.4952 " 0.1623 0.2109 ** 0.0456 " 0.0151

CCC -0.3271 ** 0.8942 ‘ 0.2005 0.042 0.7024 0.1776 0.3946 ** 0.8341 " 0.0553

VECH 0.2849 ** 0.3516 " 0.1553 0.4331 ** 0.4325 " 0.1141 0.2391 ** 0.1567 " 0.046

BEKK 0.252 ** 0.4087 " 0.1052 0.3636 ** 0.4073 " 0.21 0.2394 ** 0.1228 " 0.0391

DCC 0.2232 ** 0.4581 " 0.1616 0.632 ** 0.3484 " 0.1034 0.2605 ** 0.2835 " 0.0162

Implied 0.1708 ** 0.5811 " 0.18 0.0228 0.9656 0.326 # 0.2148 ** 0.3233 " 0.0415

This panel presents the partial optimal results of realized correlation in GBP trio regressed by the forecasts generated
from 11 correlation models. Here, a denotes the coefficient of constant in the regression; b denotes the coefficient of
the dependent variable. R2 represents the goodness-of-fit. ** indicates the hypothesis of zero constant in the
regression (a=0) is rejected at 99% level. * represents rejection at 95% level. “ indicates the hypothesis of
coefficient of independent variable equaling to one (b=1) is rejected at 99% level.  '  represents rejection at 95% level.
# indicates the joint hypotheses test of both a=0 and b=1 cannot be rejected at 99% level after regression. The
underlined number indicates the model that has the highest explanation power.
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Table 5.3 Panel B. Partial optimal regression results of EU/US/JP trio for

three forecast horizons

EU/US & JP/US US/EU & JP/EU EU/JP & US/JP
ρ(ξEU/USξJP/US)t,1w ρ(ξUS/EUξJP/EU)t,1w ρ(ξEU/JPξUS/JP)t,1w

a b R2 a b R2 a b R2

HIS-7 0.4127 ** 0.171 " 0.0312 0.3556 ** 0.2608 " 0.0757 0.3029 ** 0.2892 " 0.0946

HIS-22 0.3702 ** 0.247 " 0.0199 0.231 ** 0.5 " 0.1112 0.2156 ** 0.4728 " 0.0966

HIS-65 0.2896 ** 0.4004 " 0.0222 0.2047 ** 0.5559 " 0.0722 0.2454 ** 0.3836 " 0.0223

EWMA 0.2929 ** 0.3952 " 0.0366 0.1369 ** 0.6821 " 0.1378 0.1141 ** 0.6968 " 0.1288

Normal 0.2229 ** 0.5865 ‘ 0.0247 0.1832 ** 0.6131 " 0.0572 0.2256 ** 0.429 " 0.0126

One week GED 0.1093 0.8353 0.0494 0.1473 ** 0.6742 " 0.0836 0.164 * 0.5688 " 0.0244

CCC 0.2024 ** 0.9019 0.0591 0.1487 ** 0.601 " 0.086 0.214 * 0.3827 ‘ 0.0173

VECH 0.2058 * 0.6322 ‘ 0.0243 0.386 ** 0.3621 " 0.0199 0.3902 ** 0.4934 " 0.025

BEKK 0.2599 ** 0.4648 " 0.0181 -0.0559 1.0066 0.0952 -0.0682 0.9492 0.0654

DCC 0.359 ** 0.2786 " 0.0261 -0.0641 1.0094 0.0898 -0.0625 0.9854 0.0759

Implied 0.2107 ** 0.5413 " 0.0367 -0.0723 1.0951 0.1553# 0.1611 ** 0.5847 " 0.0489

ρ(ξEU/USξJP/US)t,1m ρ(ξUS/EUξJP/EU)t,1m ρ(ξEU/JPξUS/JP)t,1m

HIS-7 a b R2 a b R2 a b R2

HIS-22 0.4858 ** 0.0641 " 0.0119 0.4103 ** 0.1804 " 0.083 0.4121 ** 0.0717 " 0.0122

HIS-65 0.4434 ** 0.1436 " 0.0198 0.3114 ** 0.3714 " 0.1408 0.3832 ** 0.1334 " 0.0167

EWMA 0.3019 ** 0.4142 " 0.0732 0.3062 ** 0.3838 " 0.0789 0.4931 ** -0.101 " 0.0104

Normal 0.3614 ** 0.3008 " 0.0633 0.2334 ** 0.5229 " 0.186 0.342 ** 0.2253 " 0.0301

One month GED 0.184 ** 0.7225 " 0.0995 0.2643 ** 0.4791 " 0.0782 0.5211 ** -0.1715 " 0.0324

CCC 0.1812 ** 0.6584 " 0.0972 0.2587 ** 0.4756 " 0.0913 0.3952 ** 0.1015 " 0.0105

VECH 0.2638 ** 0.7043 ‘ 0.1291 -1.084 ** 0.5315 " 0.1578 0.3852 ** 0.1038 " 0.0181

BEKK 0.2506 ** 0.5777 " 0.062 0.4075 ** 0.5032 " 0.1028 0.4436 ** 0.1406 " 0.0143

DCC 0.2668 ** 0.4897 " 0.0625 0.0835 0.7757 ‘ 0.1291 0.3744 ** 0.1306 " 0.0203

Implied 0.3618 ** 0.3119 " 0.0287 0.045 0.8374 0.1423 0.3645 ** 0.1571 " 0.0273

0.124 * 0.7448 ‘ 0.0971 -0.2093 ** 1.3511 " 0.2904 0.1387 ** 0.6895 " 0.0935

HIS-7 ρ(ξEU/USξJP/US)t,3m ρ(ξUS/EUξJP/EU)t,3m ρ(ξEU/JPξUS/JP)t,3m

HIS-22 a b R2 a b R2 a b R2

HIS-65 0.4918 ** 0.0654 " 0.0299 0.4707 ** 0.0854 " 0.0388 0.445 ** 0.0208 " 0.018

EWMA 0.4245 ** 0.1927 " 0.0843 0.4265 ** 0.1707 " 0.0625 0.4612 ** -0.1389 " 0.0341

Normal 0.3421 ** 0.3498 " 0.1177 0.4174 ** 0.1899 " 0.0404 0.6312 ** 0.4028 " 0.1858

Three Month GED 0.3767 ** 0.2843 " 0.128 0.3852 ** 0.2511 " 0.0906 0.4734 ** 0.1659 " 0.0668

CCC 0.1453 ** 0.8517 ‘ 0.2439 0.4216 ** 0.1845 " 0.0227 0.6438 ** 0.1275 " 0.0957

VECH 0.2362 ** 0.6338 " 0.1472 0.3879 ** 0.2403 " 0.0448 0.5837 ** 0.2966 " 0.0507

BEKK 0.2937 ** 0.7033 " 0.2408 -0.7607 ** 0.7912 " 0.1886 0.6242 ** 0.3289 " 0.0159

DCC 0.2529 ** 0.587 " 0.1451 0.4984 ** 0.2932 " 0.0846 0.4345 ** 0.2502 " 0.0704

Implied 0.2954 ** 0.4471 " 0.1182 0.3269 ** 0.3682 " 0.054 0.6399 ** 0.378 " 0.0738

0.358 ** 0.3329 " 0.0755 0.2658 ** 0.416 " 0.0893 0.6143 ** 0.345 " 0.0642

0.0213 0.9474 0.1522# -0.0344 0.9756 0.1525 0.2447 ** 0.4819 " 0.1141

This panel presents the partial optimal results of realized correlation in JPY trio regressed by the forecasts generated
from 11 correlation models. Here, a denotes the coefficient of constant in the regression; b denotes the coefficient of
the dependent variable. R2 represents the goodness-of-fit. ** indicates the hypothesis of zero constant in the
regression (a=0) is rejected at 99% level.   * represents rejection of null at 95% level. " indicates the hypothesis of
coefficient of independent variable equaling to one (b=1) is rejected at 99% level.  ' represents rejection at 95% level.
# indicates the joint hypotheses test of both a=0 and b=1 cannot be rejected at 99% level after regression. The
underlined number indicates the model that has the highest explanation power.
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Table 5.4 Sign test result of correlation forecasts with respect to their

corresponding information set

EU/US/UK Trio
ρ(ξUS/EUξUK/EU) ρ(ξEU/USξUK/US) ρ(ξEU/UKξUS/UK)

1 w 1 m 3 m 1 w 1 m 3 m 1 w 1 m 3 m

HIS-7 0.0000 0.0000 0.0000 0.0649 * 0.0003 0.0649 * 0.0000 0.0000 0.0000

HIS-22 0.2282 * 0.5208 * 0.2286 * 0.0102 ** 0.7482 * 0.0102 ** 0.0000 0.0000 0.0000

HIS-65 0.1486 * 0.1725 * 0.1486 * 0.0000 0.0030 0.0000 0.4222 * 0.5743 * 0.4222

EWMA 0.0448 ** 0.6301 * 0.6301 * 0.0002 0.0448 0.0448 ** 0.0013 0.0246 ** 0.0246

Normal 0.7482 * 0.0000 0.0000 0.0000 0.0010 0.0010 0.9760 * 0.9780 * 0.3355

GED 0.9760 * 0.0007 0.0007 0.0000 0.0000 0.0000 0.5208 * 0.0246 ** 0.8097

CCC 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

VECH 0.0199 ** 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

BEKK 0.0161 ** 0.0000 0.0000 0.0246 0.0199 ** 0.0199 0.1273 * 0.0003 0.0003

DCC 0.0013 ** 0.0000 0.0000 0.0000 0.0002 0.0002 0.0013 0.0000 0.0000

Implied 0.9360 * 0.0000 0.0000 0.0001 0.4222 * 0.4222 * 0.5208 * 0.0919 * 0.3773

EU/US/JP Trio
ρ(ξEU/USξJP/US) ρ(ξUS/EUξJP/EU) ρ(ξEU/JPξUS/JP)

1 w 1 m 3 m 1 w 1 m 3 m 1 w 1 m 3 m

HIS-7 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

HIS-22 0.1486 * 0.0102 ** 0.1486 * 0.1085 * 0.0302 ** 0.1085 * 0.8097 * 0.5743 * 0.8097

HIS-65 0.0002 0.0246 ** 0.0002 0.0023 0.0000 0.0023 0.2968 * 0.1725 * 0.2968

EWMA 0.0064 0.5743 * 0.5743 * 0.0030 0.4701 * 0.4701 * 0.2612 * 0.9360 * 0.9360

Normal 0.0000 0.0000 0.0000 0.0010 0.0000 0.0000 0.5743 * 0.0541 * 0.0541

GED 0.0000 0.0000 0.0000 0.0081 0.0161 0.0161 0.1486 * 0.7482 * 0.7482

CCC 0.0000 0.0000 0.0000 0.1486 * 0.0000 0.0000 0.0000 0.0000 0.0000

VECH 0.0000 0.0000 0.0000 0.0007 0.0628 0.0128 ** 0.0246 ** 0.0030 0.0030

BEKK 0.0000 0.0081 0.0081 0.0775 * 0.8097 * 0.8097 * 0.0199 ** 0.0000 0.0000

DCC 0.0000 0.0000 0.0000 0.5743 * 0.5208 * 0.5408 * 0.2612 * 0.0128 ** 0.0128

Implied 0.0001 0.8725 * 0.8725 * 0.0001 0.8725 * 0.8925 * 0.2612 * 0.0007 0.0007

This table presents the p-value of sign test performed to examine the partial optimality of the

correlation forecast with respect to their corresponding information set. ** here represents the hypothesis of zero

median cannot be rejected at 99 confidence level. It is an indication of partial optimality for forecast being

analyzed. * indicates the hypothesis of zero median cannot be rejected at 95 confidence level. 1 w, 1 m and 3 m

represents one week, one month and three month forecast horizons respectively. 0.000 denotes a very small

value.
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Table 5.5 Encompassing Regression result for two currency trios and three
forecast horizons

Panel A EU/US/UK Trio
ρ(ξUS/EUξUK/EU) ρ(ξEU/USξUK/US) ρ(ξEU/UKξUS/UK)

1 w 1 m 3 m 1 w 1 m 3 m 1 w 1 m 3 m

Constant 0.16 0.14 -0.3 ** 0.35 * 0.59 ** 0.34 ** 0.59 ** 0.36 ** 0.48 **

HIS-7 - - - - - - - - -

HIS-22 - - - - - - 0.30 - -

HIS-65 - - - - - -0..30 ** - - - -0.20 **

EWMA 0.13 0.05 0.02 0.19 0.11 - - 0.18 ** -

Normal - - - - - - - - -

GED -0.10 - - - - - - - -

CCC - 0.05 0.87 ** - - - - - - 0.51 **

VECH - - - - - - - - - -

BEKK - - - - - -0.30 ** -0.30 ** - 0.33 ** -

DCC - - - -0.10 - - -0.6 ** - -

Implied 0.55 ** 0.53 ** 0.33 ** 0.38 ** 0.42 ** 1.14 ** 0.66 ** 0.22 * 0.18 **

R2 0.06 0.10 0.25 0.05 0.19 0.46 0.04 0.10 0.12

CHSQ (GARCH =0) -0.3 0.31 7.46 ** -0.2 5.73 ** 8.65 ** 3.32 * 7.18 ** -7.9 **

CHSQ (Implied = 0) 4.89 ** 3.78 * 4.98 ** 3.5 * 4.77 ** 16.5 ** 3.19 * 2.37 * 4.01 *

CHSQ (Others  = 0) 0.66 0.55 56.9 ** 2.83 33.1 ** 145 ** 38.6 ** 65.5 ** 81.9 **

Panal B EU/US/JP Trio
ρ(ξEU/USξJP/US) ρ(ξUS/EUξJP/EU) ρ(ξEU/JPξUS/JP)

1 w 1 m 3 m 1 w 1 m 3 m 1 w 1 m 3 m

Constant -0.00 -0.10 0.04 0.34 ** -0.70 ** -0.80 ** 0.29 ** 0.35 ** 0.35 **

HIS-7 - - - - - - - - -

HIS-22 - - - - - - - - -

HIS-65 - -0.00 - - - - - - -0.60 **

EWMA -0.00 - -0.00 1.09 ** -0.00 -0.10 0.94 ** 0.20 ** -

Normal - - 0..75 ** - - - - -0.70 ** -0.20 **

GED - - - - - - - - -

CCC 0.83 ** 0.72 ** - - 0.95 ** 1.75 ** - - -

VECH - - - - - - - - -

BEKK - - - -1.60 ** - - - - -

DCC - - - - - - -0.6 * - -

Implied 0.47 ** 0.67 ** 0.3 * 0.84 ** 1.17 ** 0.56 ** 0.04 0.71 ** 1.08 **

R2 0.09 0.21 0.25 0.19 0.31 0.24 0.14 0.15 0.48

CHSQ (GARCH =0) 5.17 ** 8.38 ** 7.8 ** -4.3 * 3.38 * 8.4 ** -2.1 -6 ** -3.4 *

CHSQ (Implied = 0) 3.3 * 6.79 ** 2.69 5.28 ** 8.6 ** 3.93 * 0.03 6.99 ** 18.7 **

CHSQ (Others  = 0) 32.2 ** 91.6 ** 83.2 ** 29.1 ** 34.1 ** 67.4 ** 74.6 ** 49.6 ** 316 **

This table presents the encompassing result. Realized correlations in two trios are respectively regressed on a

constant and three correlation forecasts generated from implied correlation model, one GARCH models and one

historical correlation models. For the latter two, the models which have shown highest R2 in previous partial

optimality regressions are selected as a representative here. The standard errors in regression are corrected for

heteroskedasticity and autocorrelation using Newey and West (1987) procedure. The bottom rows of the panel

contain the Wald test results for the null hypothesis in parentheses. CHSQ(GARCH = 0) tests the null that

coefficient of GARCH-based forecast in regression equals zero; CHSQ (Other = 0) tests the null that

coefficients of forecasts generated using time series tools (GARCH and historical correlation) in regression are

both equal to zero. Here, ** indicates statistical significance at 99 percent level; * indicates the statistical

significance at 95 percent level. 1 w, 1 m and 3 m represents one-week, one-month and three-month forecast

horizon respectively.
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Table 5.6 Panel A. GMSFEM test (cross horizon forecast ranking) results

for EU/US/UK trio
ρ(ξUS/EUξUK/EU)

HISTOR7 HISTOR22 HISTOR65 EWMA NORMAL GED CCC VECH BEKK DCC

HIS-22 -0.1 86

HIS-65 -0 111 25 -0.2

EWMA -0 106 21 -0.1 -4.7 0.2

Normal -0.3 113 27 -0.3 -0.7 2.6 -0.3 6.7

GED -0.4 113 28 -0.5 -0.4 2.3 7 -0.4 1.1 -0.9

CCC -0.1 93 7.6 -0.1 -18 0.1 -13 0 -19 0.3 -20 0.5

VECH -0.1 107 22 -0 -4 0.5 -0.2 1.3 -5.6 0.3 -6.1 0.6 14 -0

BEKK -0 110 25 -0 -1.6 1.1 -0.1 4.2 -2.6 0.3 -3.2 0.8 17 -0 3.1 0

DCC -0.1 110 24 0 -2.4 1.4 -0.3 3.9 -3.2 0.4 -4 1.1 -0 17 -0.1 2.7 -0.8 0.3

Implied -1 121 35 -1 -1 10 15 -0.9 8.1 -0.7 -0.6 7.9 28 -0.9 14 -0.9 11 -1 11 -1

ρ(ξEU/USξUK/US)
HISTOR7 HISTOR22 HISTOR65 EWMA NORMAL GED CCC VECH BEKK DCC

HIS-22 44 -0

HIS-65 0 54 -0 9.6

EWMA 51 0 0 6.6 0.1 -3.1

Normal -0.1 56 -0.2 11 -0.3 1.8 -0.4 4.8

GED -0.2 55 -0.3 10 -0.6 1.2 -0.5 4.1 -0.9 0

CCC -0 55 -0 11 -0.1 1 -0.1 4.1 0.3 -0.8 0.8 -0.3

VECH -0 56 -0.1 12 -0.1 2.1 -0.1 5.2 0.7 -0.1 1.6 0 -0 1.1

BEKK -0 35 -10 0.2 -19 0.1 -17 0.1 -21 0.1 -20 0.2 -21 0 -22 0

DCC 0 56 -0 12 2.3 0 -0 5.3 1.2 -0.3 2 -0.2 1.3 -0.1 0.5 -0.3 22 -0.1

Implied -0.3 60 -0.3 16 -0.3 5.9 -0.4 9 4.3 -0.1 5.2 -0.1 -0.3 4.9 -0.3 3.8 26 -0.2 -0.4 3.7

ρ(ξEU/UKξUS/UK)
HISTOR7 HISTOR22 HISTOR65 EWMA NORMAL GED CCC VECH BEKK DCC

HIS-22 -0.1 146

HIS-65 189 -0 44 -0.6

EWMA -0 171 25 -0.1 -19 0.5

Normal -0.5 185 39 -0.5 -6 1.5 -0.4 14

GED -0.4 181 35 -0.6 -8.8 0.4 10 -0.4 0.1 -3.9

CCC 188 -0 42 -0.5 -1.2 0.1 17 -0.4 4.9 -1.5 7.6 -0.3

VECH 0 188 42 -0.2 -2.7 1.1 17 -0.1 3.4 -0.3 6.6 0.3 -1.6 1.3

BEKK 0 189 43 -0.2 -2.2 1.9 18 -0 4.2 0.1 7.7 0.4 -1.4 2.2 -0.1 1.3

DCC 193 0 46 -0.3 -0.5 3.8 22 -0.1 7.8 -0.1 11 0.3 -0.3 4.7 4.8 0 3.7 -0.1

Implied 191 -0.7 45 -1.1 -1 1.9 20 -1 6.6 -1.1 9.9 -0.6 -0.8 2.9 3.4 -0.9 2.4 -1.2 0.5 -1.9

This table presents the GMSFEM test results for medium-term correlation forecasts. Here, by medium-term, we

mean the correlation forecast over the next 'one-month' and correlation forecast over the next 'three month'. To

determine whether a model forecast outperforms another for both horizons, we calculate the forecast error of

various models first, and then use the distance between the autocovariance of these resulting forecast error to

form a function to be evaluated.  Above, we present the eigenvalues calculated from this function with column

against row. The column model will dominate the corresponding row model if two eigenvalues in the same set

are both non-positive and at least one is negative. Vice verse, row model dominates when two eigen-values are

both nonnegative and at least one is positive. Indeterminacy comes when mixed sign is presented
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Table 5.6 Panel B. GMSFEM test (cross horizon forecast ranking) results

for EU/US/JP trio

ρ(ξEU/USξJP/US)

HISTOR7 HISTOR22 HISTOR65 EWMA NORMAL GED CCC VECH BEKK DCC

HIS-22 -0 100

HIS-65 127 0 27 -0.1

EWMA 118 0 18 -0.1 -8.9 0

Normal 130 -0.2 30 -0.3 3.5 -0.2 12 -0.2

GED 129 -0 30 -0.2 2.8 -0.1 12 -0.1 0.2 -0.8

CCC 90 -0 0.5 -11 0 -37 0 -28 0.2 -40 0 -40

VECH 128 0 29 -0.1 -0.1 2 0 11 -1.7 0.4 -1.4 0.5 -0 39

BEKK 130 0 31 -0.1 -0 3.9 13 0 -0.2 0.7 -0.3 1.4 -0 41 1.9 0

DCC 0 126 26 -0 -1.3 0.4 -0 8 -4.5 0.3 -4 0.3 -0 36 -2.8 0 -4.7 0

Implied 135 -0.3 35 -0.4 -0.4 8.5 -0.3 17 -0.2 5.1 -0.4 5.8 -0.4 45 -0.3 6.6 -0.3 4.7 9.4 -0.3

ρ(ξUS/EUξJP/EU)
HISTOR7 HISTOR22 HISTOR65 EWMA NORMAL GED CCC VECH BEKK DCC

HIS-22 -0 97

HIS-65 -0.2 114 -0.7 17

EWMA -0.1 119 -0 21 6.4 -1.1

Normal -0 121 -0.3 24 0.2 7.5 -1.8 4.1

GED 0 122 -0.4 25 0.2 8.4 -2 5.2 -0.2 1.1

CCC -0.7 126 -1.9 30 -1.2 14 -4.1 11 -2.3 7 -2.2 5.9

VECH -0 68 -30 0 0.3 -46 0 -51 0.1 -53 0 -54 0.9 -59

BEKK -0.2 130 -0.5 33 -0 17 -0.9 12 -0.2 9.1 -0.3 8.2 6 -1.8 -0.3 62

DCC -0.3 132 -0.6 35 -0.1 18 -1.1 14 -0.3 11 -0.3 10 7 -1.1 -0.3 64 -0.2 1.9

Implied 0.4 139 0.3 42 0.6 26 0.2 21 18 0.4 17 0.3 14 0.6 0.4 71 9 0.5 7.5 0.3

ρ(ξEU/JPξUS/JP)
HISTOR7 HISTOR22 HISTOR65 EWMA NORMAL GED CCC VECH BEKK DCC

HIS-22 -0 91

HIS-65 -0.1 111 -0.2 20

EWMA 0 114 23 -0 4.3 -1

Normal -0.3 128 -0.6 38 -0.4 18 -1.3 16

GED 0.1 130 -0 39 0.1 20 -0.3 17 2.6 -0.5

CCC -0.2 127 -0.6 37 -0.4 17 -1.5 15 -1.6 0.3 -4.1 0.7

VECH -0.4 96 -3.6 8.8 -16 0.9 -20 1.7 -32 0.2 -34 0.1 -31 0.1

BEKK -0.1 125 -0.2 34 -0 14 -0.7 12 0.6 -4 -0.2 -5.3 1.2 -3.2 29 -0.3

DCC -0.1 129 -0.2 38 -0 18 -0.5 15 1.7 -1.2 -0.1 -1.5 3.1 -1.3 33 -0.3 3.9 -0

Implied -0.5 146 -0.6 55 -0.4 35 -0.8 33 18 -0.2 -0.6 16 19 -0.4 50 -0.4 -0.4 21 -0.4 17

This table presents the GMSFEM test results for medium-term correlation forecasts. Here, by medium-term, we

mean the correlation forecast over the next 'one-month' and correlation forecast over the next 'three month'. To

determine whether a model forecast outperforms another for both horizons, we calculate the forecast error of

various models first, and then use the distance between the autocovariance of these resulting forecast error to

form a function to be evaluated.  Above, we present the eigenvalues calculated from this function with column

against row. The column model will dominate the corresponding row model if two eigenvalues in the same set

are both non-positive and at least one is negative. Vice verse, row model dominates when two eigen-values are

both nonnegative and at least one is positive. Indeterminacy comes when mixed sign is presented.
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Chapter 6

ADCC-MGM model and ADCC-MTM
model

Introduction

In this chapter, we propose two new correlation mixture models, namely the ADCC-MGM

model and ADCC-MTM model. The whole chapter is composed of five sections. In the

first section, we present the motivation for proposing these two models for fitting

correlation dynamics in financial time series and give the model specifications. In the

second part, since statistical inferences are to be calculated using Griddy Gibbs sampler, a

brief illustration of some preliminary settings for this simulator is provided. Then, the

posterior sampling sequence of each model is respectively given in section three and four

along with the simulating kernels for each parameter. Finally, in the last section, we also

illustrate four methods of evaluating the performance of our models by carrying out in-

sample analysis and calculating out-of-sample forecasts.
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6.1 ADCC-MGM model and ADCC-MTM model

Research into time series models of dynamic correlation have exploded in recent years.

While many models have been proposed for capturing the time-varying characteristics of

this association measure, less attention has been paid to explaining the heavy tail and high

kurtosis of return distributions concurrently. Since it is expected that a better prediction of

future correlation can be generated when asymmetries and non-linearity in the response of

covariance to past returns are taken into account, based on this motivation we propose two

new correlation models in this chapter. Specifically, to ease the exposition, we use the

most parsimonious form of Hafner and Franses’s (2003) ADCC structure to model the

correlation evolving process and assume the filtered returns of financial assets to follow a

standard mixture of two symmetric distributions. Here, for each component, we allow

them to have unique time-varying covariance matrixes so that correlation dynamics can be

jointly determined by innovations showing different statistical characteristics, and the

correlation process modelled by ADCC can allow for asymmetric feedback on good news

and bad news.

Since using traditionally distributional assumptions, such as Gaussian and T, for modelling

asset returns can ease the calibration, in this thesis we use these densities as components to

propose mixtures. 62  Thus, dynamic correlation models given such assumptions are

respectively called ADCC-MGM and ADCC-MTM. Besides, since it is known that

estimation of mixture models is usually associated with a very complicated log-likelihood

function, we adopt the MCMC Bayesian approach to calculate their inferences. To see the

details of how to implement this approach and generate posterior draws for each parameter,

we dedicate the next section to this topic. However, for now it is warranted to present these

two models’ specifications first.

Consider a d-dimensional return process yt now and an unknown multivariate distribution

 from which yt is generated, we let the mean of  be time-varying and denoted by t

62 Two main advantages of using Gaussian and T for modelling asset returns are their numerical flexibility
and analytical tractability in inference calculation.
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and its covariance matrix by t . The dynamic process of yt is defined by

1| ~ ( , )t t t ty F     and 1/ 2
1t t ty       where d

t R   is an i.i.d random vector

(process) independent of Ft-1 and 1( | , )t t tE y F   ; 1/ 2 1/ 2 '
1( | , ) ( )t t t t tVar y F       . Here,

since t  can be written as a multiplication product of individual standard deviations and

time-varying correlation, the covariance evolving process of ADCC mixture model then

can be defined as
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        (6.1)

where Dt represents the individual volatility calculated by a univariate heteroskedastic

model with p ARCH lag and q GARCH lag; it is a d d diagonal matrix with it on its

ith diagonal. Rt, which is a function of an authentic variable Qt, denotes the time-varying

correlation matrix. It is modelled by another heteroskedastic GARCH(g,h) process with

asymmetric response of correlation to the negative shocks now taken into account. t

denotes the coefficient of this asymmetric effect. It is a variable that takes the value one

when 0t  , and zero otherwise. In the matrix form, it can also be written as

[ 0]t t tI     .63 Besides, to allow for covariance targeting we also let '[ ]t tQ E  

and '[ ]t tN E  .

Here, two things need to be noted before proceeding. First, to ensure the parsimony of the

proposed mixture model, we set the lagged terms (p,q,g,h) in above GARCH processes all

equal to one. Second, coefficients of Qt-1 and standardized past innovations 1t   are all set

to be squared products so as to ensure the positive definitiveness of resultant covariance

63   here denotes the Hadamard matrix operator, It means elementwise multiplication.
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matrix. As for the second setting, in other versions of ADCCs these parameters are often

assumed to be either scalar or diagonal matrices. For example, in Sheppard (2002) the

asymmetry correlation is captured by using parameters modelled as diagonal matrices.

Indeed, through the inclusion of additional elements, a very general evolving process for

dynamic correlation is proposed. However, the estimation cost of his model, compared to

ours, is much higher. Since the MCMC algorithm to be used in the later part of this thesis

is already known as a computationally demanding technique, it is then preferred to use a

relatively simple model when this Bayesian approach is adopted. 64  For example,

concerning the mixture models proposed above, the parameter set of interest now contains

a lot of elements. Therefore, there is motivation to perform some trimming in this set

before the estimation starts. Although it is certain that, after applying this strategy, some

flexibility of the mixture models would be inevitably scarified, these losses seldom alter

the correlation evolving processes fundamentally. Besides, the high computational cost of

performing MCMC also explains why, with the availability of even more generalized

choices in literature for modeling correlation process, such as AGDCC of Cajigas and

Urga (2005), we still prefer to use the most parsimonious form of Hafner and Franses’s

(2003) ADCC here. For instance, in ADCC (1,1,1,1) model, there are only three

parameters determining the correlation evolving processes. Thus, only three new draws

need to be simulated in each iteration of posterior sampling. However, if a bivariate

AGDCC (1,1,1,1) is trained, this number then increases to six, which implies a doubling of

our estimation costs. Therefore, without losing much generality, we only consider using

the simplest version of ADCC here to ensure the efficiency of MCMC simulator.

Besides, assuming a proper specification for   is also essential when proposing mixture

models. In this thesis, since   is now assumed to be M-component mixture-distributed

and no hybrid mixing is allowed, equation (6.1) is then considered as specifying a ADCC-

MGM if all components are multivariate Gaussian distributed, and ADCC-MTM if all are

64  High computational cost of calculating Bayesian inference could be due to various reasons. For
example, it maybe due to the inclusion of a large parameter set when a complex model is assumed.
Meanwhile, another possibility is sampling kernels of hyper-parameters not having analytical forms so
that sophisticated simulation techniques need to be applied to generate their posterior draws.
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multivariate T distributed. Given that parameter set of mth component in   is now denoted

by m , these two models’ specifications can then be respectively defined as,

   
 
 

1 1
| , 1,2,

, ~ ( , ),
, ~ ( , , ),
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t t m m t mm

m t m t

m t m t

y F p y m M

p y Nif then ADCC MGM
p y tif then ADCC MTM

 

 
  

 
  

 
 

 
      (6.2)

As for the training data yt, we assume it to be i.i.d now in accordance with the convention.

Although this assumption is stronger than the local independence that is frequently used in

theoretical analysis of mixture models, it will not affect the validity of our inferential

results. Besides, since the sampling technique (Griddy Gibbs sampler) to be used for later

posterior simulation is a computation-intensive algorithm, to circumvent the ‘curse of

dimensionality’ we only consider bivariate experimental data here and include only two

component distributions for each mixture.65 Thus, the proposed models, given all these

settings, are respectively called bivariate two-component ADCC-MGM model and

bivariate two-component ADCC-MTM model.

6.2 Sampling Procedure and Preliminary settings

In this section, we show how to calculate the Bayesian inference for above two correlation

models. Since MCMC algorithm is to be used for estimation, some preliminary settings

concerning the implementation of this sampling technique need to be stated first. Then, for

each model we start the illustration of their posterior simulation procedure by firstly

specifying a proper prior density for each parameter, and then deriving their joint and

marginal sampling kernels respectively. For those whose kernel has an analytical form, we

show how to generate its conjugate posterior density and perform direct sampling to

simulate i.i.d draws. However, for others, where non-conjugacy is presented, a numerical

integration-based Griddy Gibbs sampler is then used and a brief discussion concerning the

choice of grid for this sampler is provided.

6.2.1 Component Label

65 As confirmed in McLachlan and Peel (2000), a two-component mixture distribution is generally
flexible enough to capture the stylized factors exhibited in financial time series.
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In equation (6.1), since training data yt is now assumed to be generated from a mixture

distribution, it is essential to introduce a latent variable zt for conducting Bayesian

inference so that the current information can be augmented and complete information set

can be formed. This technique of introducing component latent variable is very common

when the task is to solve missing data problems and estimate mixture distribution. A brief

discussion of its uses has already been given in Section 3.4.2 and Section 4.3.5 (see EM

algorithm of Dempster et al., 1977, and Data augmentation of Tanner and Wong, 1991, for

details). Now, for the purposes of this thesis, we use a dichotomous quantity to form zt=(z1,

z2,, … zt) so that zt=m is equal to saying it is the mth component that generates yt. Given this

information, joint posterior density of mixture models then can be defined.

6.2.2 Joint Posterior density

Here, consider an example. If, for a specific observation, say y’, its component label z’ is

now known to be equal to 1, density value of this observation then can be calculated by

 
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provided that   is assumed to be MGM distributed. The likelihood function of the whole

mixture model can be defined after all observations have been labelled
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(6.4)

Here, ( | , )mp y z denotes the density function of mth mixture component conditioned on

the complete information set (y, z). Since it is known that, according to Bayesian inference,

Posterior distribution   Prior distribution   likelihood function     (6.5)

joint posterior density of   can be defined

( | , ) ( ) ( | , )y z p l y z           (6.6)

if prior distributions of all parameters, ( )p  , have also been properly assumed.
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Concerning  , in ADCC-MGM model this parameter set in its simplest form now can be

given by

{ , , , , , , , , }z            (6.7)

where  denotes the weight parameter,   denotes the mean parameter, , ,    represent

the univariate GARCH parameters used to model individual volatility, and ,  and   are

ARCH, GARCH and asymmetric parameters controlling the correlation evolving process.

Note that z here is not actually a parameter. But this variable is also included in equation

(6.7) because of its unoberservablity and the property of also requiring simulation to obtain

new updates when Bayesian inference is calculated. In addition, if modelling of individual

volatility and modelling of time-varying correlation is allowed to be demarcated, we can

also obtain an even more simplified version of (6.7). That is

{ , , , , }z            (6.8)

where { , , }     and { , , }    .

6.2.3 Parameter set of interest 

Given equation (6.7) and (6.8), it is now clear that   is actually a large set containing

multiple elements. Take the bivariate two-component ADCC-MGM for example: there are

a total of 21 elements included in   which means that, in each iteration of posterior

simulation, a total of 21 new draws of  1 2 21, , ,     where   need to be

simulated.66  Although it is true that these elements can be categorized into just eight

different groups and, for those of the same type, their sampling kernels are actually the

same, the economic cost of sampling draws for so many (analytical and non-analytical)

densities could still be easily accumulated and exceed a staggeringly high level very

quickly. Thus, a proper trimming of this parameter set is usually desirable.

To perform this task, we impose some parameter restrictions here. For example, in this

thesis we respectively let 2 1 2 1( / )      and 1 2  .67 The first constraint is imposed

66 In Chapter 7, we will illustrate a specific method to index different element in .
67 Since we are now considering a two-component mixture model here, mean parameter of the whole
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to ensure that the weighted average of means in mixture distribution equals zero so that the

means of second component distribution can be calculated analytically once the mean of

first component is obtained. Using the second restriction is to avoid the label-switching

problem. Since each mixture is now allowed to have only two components, we do not need

to sample 2  in each loop. Its value can be readily computed by 2 11    once an

updated value for 1  is obtained.

6.2.4 Settings for Griddy Gibbs sampler

In equation (6.5), we have defined the posterior simulation kernel for  . Now, it is

important to choose a ‘right’ sampling technique. Specifically, in this research, if a

resultant kernel belongs to a known distributional type, that is, its density function is

analytical, we simulate random draws for this kernel using direct sampling technique.

However, for most others not having such forms, Griddy-Gibbs sampler is then used. As

for this MCMC simulator, in Section 4.3.4 a detailed illustration has already been given.

However, here some necessary settings concerning its implementation are still worth

mentioning.

a. Determination of the grid points

First, to use Griddy Gibbs sampler, we need to determine the number of points to be input

and values of points to be accessed. Concerning the first issue, although it is certain that

the more points included the less bias will be introduced to the numerical evaluation of

c.d.f, the computational cost of implementing a massive-point grid is usually very high for

multi-dimensional problems. Empirically, how many points are really enough to run

Griddy Gibbs sampler both efficiently and accurately is still an open question. Bauwens

and Lumbrano (1998) chose 33 points after making a performance comparison with the

results generated from using 17-point grid and those using 65-point grid. Galeano and

Ausin (2005) argued that a 40-point grid was enough for their research purposes. Here,

mixture,  , can be decomposed into two parts 1  and 2 . Since the training data is now assumed to be
bivariate, both 1  and 2  are (2 1) vectors and their combination is a (2 2)  matrix. Here, 1  denotes
the mean vector of the first component distribution which has two elements corresponding to each
dimension in the bivariate data respectively.



- 138 -

although various criteria are adopted, it is important to note that most of the previous

research conducted on this issue investigated only univariate models, and the number of

parameters in these models did not exceed ten. However, in our case, not only does the

parameter set now contain more than twenty elements, the updating scheme is also

complicated by ADCC specification. Thus, an immediate drawback of this sophistication

is the difficulty of evaluating any problems related to the grid points in simulation. For

example, calculating the Bayesian inference for ADCC-MGM using a 4000-observation

sample on a modern Intel P4 processor needs at least 7 minutes per iteration if we choose

the 40-point grid for evaluating integral. To achieve the convergence (usually, at least

2000 iterations after imposing some ideal conditions), it will take more than 9 days, or

even weeks. Such a long calibration process is obviously too expensive for industrial uses

of correlation models for daily valuation and risk management purpose. To circumvent this

difficulty, we thus abandon the traditional strategy of including a large quantity of points

in each grid and turn to find experimental data that could be trained properly so that

simulated Markov chains, once generated, can have a quick convergence.68

As for the determination of values for these points, we choose the fixed grid of equidistant

points for each parameter so that a smooth estimation of the marginal posterior density can

be achieved.69 Concretely, we set an upper and lower bound for each parameter and choose

30 equally-spaced points within the interval constructed by these bounds. For a more

detailed illustration of these settings, see Section 6.3 and Section 6.4 for their applications

in ADCC-MGM and ADCC-MTM models respectively.

b. Integration rule and Interpolation technique

With respect to the integration technique, we use trapezoidal method in this thesis. Say that,

for a parameter  , if its grid points i and corresponding density values

( ) ( 1)( | , , )n ny z   
  now have all been generated, we divide the area under

68 In this research, we include 30 points in each grid.
69 Here, we can also choose a variable grid which can be modified to have more points on masses where
posterior distribution is concentrated.
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( ) ( 1)( | , , )n ny z   
  into S strips, each with width h=(upperbound - lowerbound)/S, and

approximate the shape of each strip using a trapezium rule and sum these results up. By so

doing, the sampling kernel is then evaluated on a finite number of integrands and c.d.f of

this kernel can be calculated by,

       1 11
/ 2 * 1 | , | ,S

i s
h s h y z sh y z   


         (6.9)

Here, although we can also use other methods such as adaptive Simpson and Lobotto

quadratures to perform the same task, these methods work in a similar way to the

trapezoidal rule except that the integrand is approximated using a quadratic function rather

than a straight line within each subinterval. Since the computational cost is now a major

issue, we thus adopt only the simplest method for discrete integration. Besides, for the

same reason, when interpolation between two adjacent points is required, we fit only linear

function.

6.3 Posterior simulation of ADCC-MGM model

Now, we describe the posterior sampling procedure for bivariate two-component ADCC-

MGM model. First, after replacing the distribution function ( | , )p y z  in equation (6.2)

with a Gaussian density, we obtain the joint posterior density of ADCC-MGM. That is,
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6.3.1 Prior density assumption

Next, we assume a proper prior density for each element in   so as to obtain their

marginal posteriors. Here, although a clever choice might be made, one usually finds it

very difficult to derive an analytical solution for sampling a specific parameter. For

example, in this research sampling kernels of most parameters do not have an analytical

form. This is because joint posterior is now a very complicated function due to the

incorporation of both mixture models and ADCC specification. Given such sophistication,
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it does not seem very practical to expect much prior information before sampling is really

performed. In such cases, a natural solution is then to assume uninformative priors (see

Geweke, 1992, Van Dijk, 1993, and many others for examples). The advantage of making

this choice is that the density value of these priors is constant (or approximately constant)

which can be omitted when calculating the marginal posteriors from equation (6.10).

Therefore, except for the mean parameter   and weight parameter  , whose sampling

kernels have analytical forms, prior densities of all other elements in  are all assumed to

be uniformly distributed. In addition, we assume these densities to be independent of one

another so that their joint density can be written as

( ) ( ) ( ) ( ) ( )p p p p p                 (6.11)

6.3.2 Joint posterior density of   and 

Here, as for the elements in volatility parameter set   and correlation parameter set  ,

since their joint prior is now approximately constant,

( , ) ( ) ( )p p p C            (6.12)

To obtain their joint posterior, one only needs to rewrite the function (6.10) by absorbing

( , )p    and eliminating all elements not related to  and  .70 That is
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  (6.13)

Note that  , | ,y z   is now a function of both mean parameters   and covariance

matrix  . However, in Engle’s standard DCC, t  can also be decomposed into two parts

if a so-called ‘parameter separation method’ is adopted. Briefly, the idea is to separate

volatility parameters and correlation parameters into different likelihood functions and

70  Normalized constant can be absorbed in posterior kernel because it will not affect the updated
information.
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estimate them separately.71 Since the conditional heteroskedasticity of innovations can be

modelled by mt mt mt mtD R D  , another version of (6.13) can be obtained after

normalization constant / 2(2 ) d   is eliminated. That is,

       
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 




 (6.14)

Besides, since the demeaned return in (6.14) can be written as  1
mt t m mtD y     , an

even more simplified posterior for   and   can be derived. That is,
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 (6.15)

Above, we have presented two alternative kernels for sampling  and  . Now, it is

necessary to make a choice between them. Note that, although the decomposition of

covariance matrix can provide a computationally cheaper way for estimating DCC models

using classical inferential method (ML), it does not help to ease the burden when Bayesian

inference is calculated. This is because, when  is decomposed, sampling volatility

parameters and sampling correlation parameters both require computing two different

functions. Since the generation of Markov chain is based on a homogeneous loop, this

computation needs to be performed every time the integral is evaluated. However, when

equation (6.13) is adopted, the function needing to be updated is only   on each loop

because all elements in   and  are now encompassed, thus, as far as the computational

cost is concerned, using this method is relatively cheaper. However, one disadvantage is

the effectiveness of the searching for random draws in these two sets’ high-probability

region then might be somewhat affected because intercorrelation between their generated

71 Newey and MacFadden (1994) provided the theoretical proof for the robustness of two-stage GMM
estimator. By exploiting their result, Engle (1999) derived the consistency and asymptotic normality for
his two-stage DCC estimators.
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chains is neglected. Usually, since this influence will not affect the unbiasedness of the

resultant chain, in the research we use equation (6.13) to simulate   and  .

6.3.3 Posterior sampling sequence

Given the joint posterior density defined in equation (6.10), we now devise a fixed

sampling sequence for simulating new updates. Here, we start the posterior sampling of 

from the latent variable z  because only after this information has been obtained can

likelihood function of mixture models be defined and sampling kernels of all other

elements in   be generated. Once z is updated, new draws of weight parameter   and

mean parameter   are then simulated from two analytical functions, and elements in

volatility parameter set   and correlation parameter set   are sampled from a non-

conjugate kernel. Here, to see the details of how to perform Griddy Gibbs sampler for this

correlation mixture model, we present its sampling sequence for generating N-state

Markov chains in the following.

1. Let n=0 be the first state of chain and set the initial value of   to be (0)

2. Draw state variable ( 1)nz   from kernel  ( ) ( ) ( ) ( )| , , , ,n n n nz y    

3. Draw weight parameter ( 1)n   from kernel  ( 1) ( ) ( ) ( )| , , , ,n n n nz y    

4. Draw mean parameters ( 1)n  from kernel  ( 1) ( 1) ( ) ( )| , , , ,n n n nz y     

5. Draw volatility parameters ( 1)n  from kernel  ( 1) ( 1) ( 1) ( )| , , , ,n n n nz y      

6. Draw correlation parameters ( 1)n  from kernel  ( 1) ( 1) ( 1) ( 1)| , , , ,n n n nz y       

7. Let n=n+1 and go to 2  until n=N

Above, we present a fixed sequence for sampling  . However, it is worth noting that this

method is not the only way to generate Markov chains which can satisfy the convergence

theorem. Since the homogeneity condition only requires the sampling sequence, once

simulation starts, does not change, it is then possible for us to devise another way which is

different from above to generate the same posterior result. However, such alternatives,

though available, still need to be initialised by the sampling of component label variable.
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6.3.4 Sampling kernel of each parameter in 

We now illustrate how to derive the sampling kernel for each parameter in  . Before

proceeding, two things need to be noted. First, according to Griddy Gibbs sampler, since,

for any parameter, its sampling kernel is required to be a sole function of this parameter,

all elements (or parameters) not related to this parameter is then eliminated in resultant

posterior density. Second, in some cases, for a single parameter one may find more than

one suitable kernel (i.e. for  ,   and   parameters in our mixture models). This is

because different priors might now be used for generating posteriors, or their sampling

kernels themselves can be further decomposed. In the following, we illustrate the

derivation of each kernel according to the sampling sequence provided in the last

subsection.

a. Sampling z from  | , , , ,z y    

First, given an M-component standard mixture distribution, we sample new updates for z

by calculating the conditional posterior probability of each component in the mixture,

followed by the simulation of a time series whose proportion of observations that belongs

to each component corresponds to previous probability. As stated early, since component

label variable z is not a parameter, we do not need to make any prior distributional

assumption for it. However, as a necessary condition, mutual independence of the random

draws still needs to be ensured when new updates are generated.

To perform its simulation, an example is given below. Assume that the current state of

Markov chain is ( )n  and our purpose is to generate a new update for component label of

the next state z(n+1). First we calculate the conditional probability of yt being generated

from mth Gaussian component by

( 1) ( )

1

( | , , )( | , )
( | , , )

n n m t m m m
t M

m t m m mi

yp z m y
y

    


    




 


            (6.16)

so that this probability corresponding to the first component is
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(6.17)

and that of the second can be computed by ( 1)1 ( 1)n
tp z   . Then, to obtain )1( nz , we

simply simulate a series of random draws from a binomial distribution with its parameter

set to be ( 1)( 1)n
tp z   to get the updated information on component label.

b. Sampling   from  | , , , ,y z    

Once the updated information on z has been obtained, for all remaining elements in φ, its

sampling kernel can be defined after all elements not related to this parameter are

eliminated in joint posterior density. Take the weight parameter   for example: its kernel

now can be easily written as

  21

( ) ( 1) ( 1)

1

1 1

( | , , ) ( ) ( | , )
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

 

          (6.18)

where T1, T2 denotes the number of observations generated by the first and the second

Gaussian component in the mixture.

At first glance, one might have found that density function of (6.18) actually looks very

similar to a binomial distribution. Thus, an important result concerning the use of this

density in Bayesian inference can be exploited. Concretely, according to a famous

Bayesian theorem that Dirichlet is conjugate to the multinomial observations, if the prior

density ( )p   is now assumed to be Dirichlet distributed, its posterior ( ) ( 1)( | , , )n nz y   


then will also be distributing like a Dirichlet.

To illustrate this result through an example, we now let 1 2( ) ~ ( , )p Dir a a , that is
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Thus, its corresponding posterior is just

 
2

2 2
1( 1) ( ) ( 1) 1

2
1 1

1

( )
| , ,

( )
m mm Tn n n m

m m
m mmm

z y 



    


  


 








  


        (6.20)

after (6.19) is inserted into (6.18). And this density can be further simplified to
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     (6.21)

after all normalization constants are eliminated. It is clear that the posterior density now

corresponds to another Dirichlet distribution, that is Dir(a1+T1, a2+T2).

Here, since T1 and T2 can be obtained after all component labels have been updated, we

can easily generate a new update for ( 1)n
m
 once its prior distribution ( )p  has been

properly specified. In the following, we selectively pick four Dirichlet densities as

candidates for ( )p  and present their density shapes

Density estimates of Dir(u, u)

According to the above graphs, it is obvious Dir(1,1) is the only Dirichlet that can give

equal weights to all values on the parameter space. Since, in empirical Bayesian learning,

it is difficult to obtain early knowledge on posterior density shape of a parameter, using

this uninformative prior is thus proper for our simulation purpose.
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As for the sampling of posterior, which is now set to be Dir(1+T1, 1+T2), we follow the

traditional procedure suggested in Wilks (1962). Simply put, after simulating two

independent Gamma variables cm=(c1, c2), one from Gamma(1+T1, 1) and one from

Gamma(1+T2, 1), we obtain a new update for ( 1)n
m
  using

( 1)
2

1

n m
m

mm

c
c

 






                      (6.22)

c. Sampling   from  | , , , ,y z    

Now, we illustrate the sampling of mean parameter. Coincidently, this task can also be

performed in an analytical way and we can exploit a famous Bayesian conjugate result

here. That is, the posterior density of the mean of a Gaussian distribution after assuming a

Gaussian prior will also be Gaussian disturbed. Recall that, in preliminary settings, we

have imposed a restriction, that is 2 1 2 1( / )     . Thus, simulation of the whole mean

parameters for mixture models can be resolved by only sampling the means of the first

component 1  and then obtaining those of the second 2  through the updated  .

Here, to simulate 1 , first we assume an arbitrary Gaussian prior  1 1* 1*( ) ~ ,p     .

Then, its corresponding posterior density is obtained

 
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        (6.23)

after all elements not related to 1  are eliminated. Note that 1t  here denotes the time-

varying conditional covariance generated by observations belonging to the first mixture

component; 1 1* 1*( , , )tf    and 1 1*( , )t    represent the mean and covariance matrix of a

new multivariate Gaussian.

To see the proof of how to obtain this density, first we expand the function (6.23) to
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and then absorb the terms that do not depend on 1  into the constant of proportionality so

that the resulting posterior can be integrated to one. Thus, the sampling kernel becomes
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After eliminating 1 2
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Here, note that, after transformation, (6.27) can be written as the addition of a bivariate

Gaussian density  1 1* 1* 1 1*( , , ), ( , )t tf       and terms that do not depend on 1  where
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For those that will not affect the posterior information of 1 , again, we simply eliminate

them from the posterior density. Thus, the remaining terms, the simulating kernel of

interest, is just a bivariate Gaussian density.
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According to the conjugacy result just described, simulating a new random draw for mean

parameters of the first component now needs at least three elements: the updated time-

varying covariance matrix 1t , mean parameter 1*  of 1( )p  and covariance matrix 1*

of 1( )p  . Here, to choose a proper prior, researchers usually like to pick a very large

value for 1*  so that the resulting density can stretch widely over the parameter space and

it is equal to assuming an uninformative prior. Since, in this paper, we are short of enough

prior information on 1 , using this assumption is thus proper for our simulation purpose.

However, note that, in Bauwens, Hafner and Rombouts (2006), the authors have suggested

another analytical way of sampling means in mixture distribution. Besides, some

numerical methods are also sometimes used to perform the same task (see Galeano and

Ausin, 2005 for details).

Sampling of volatility parameters and correlation parameters

Now, we return to the discussion of posterior simulation of volatility parameter set  and

correlation parameter set  . As illustrated at the beginning of this chapter, since

covariance matrix-based sampling kernel has been chosen to simulate draws for elements

in these two parameter sets, their joint posterior, which has been shown in (6.13), is then

just equal to the likelihood function of standard Gaussian mixture because all their priors

are now assumed to be independently and uniformly distributed.

In the following, we describe how to derive and simulate marginals for this joint posterior

density. Since the resulting marginals are now to be non-analytical and need to be

evaluated using grid-based simulation method, we define a proper upper and lower bound

for each grid and make a fine tuning to their bounds so that the search for new draws can

be directed to the most relevant areas.

d. Sampling  from  | , , , ,y z    

First, we show how to sample draws for elements in volatility parameter set  , ,    .

We assume the prior of ARCH parameter   and GARCH parameter   to be
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independently and uniformly distributed on [0, 1] and grid points of intercept parameter

 equally spanning on a positive domain from zero to 2ˆ
y . 72  Then, to ensure the

stationarity of covariance process, the summation of the ARCH and GARCH parameters

of the same state is constrained to be less than one. Thus, adding up these conditions, the

four restrictions to be imposed are

    2ˆ0,1 , 0,1 , [0, ], 1y                  (6.29)

Here, since the joint posterior density (6.13) has been given, we can easily derive the

sampling kernels for ( 1)( | )n    , ( 1)( | )n     and ( !)( | )n     respectively. For example,

after absorbing the normalization constant / 2(2 ) d   and discarding the unrelated

parameter  , ( 1)( | )n     can be specified as a multiplication product of likelihood

function of two unrelated component densities. That is,
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  (6.30)

Besides, if the decomposition of covariance matrix is allowed, an alternative kernel for

sampling  can also be derived. That is
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  (6.31)

Here, note that, although (6.31) provides an alternative way to generate new updates for  ,

we do not use it in our simulation due to the computational cost concerns. This kernel is

presented here only for the completeness of analysis. For a more detailed illustration of the

reason for abandoning its use, see Section 6.2.2.

72 2ˆ
y  here denotes the unconditional variance of training data yt, it is set here as the upper bound of  .
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e. Sampling  from  | , , , ,y z    

As for the sampling of correlation parameters  , ,    , the same strategy as that used

for sampling volatility parameters is adopted here. Prior densities of all elements in  are

assumed to be uniformly and independently distributed and we impose the restrictions

      2 2 20,1 , 0,1 , 0,1 , 1                   (6.32)

so that random draws of these correlation parameters can be drawn from the most relevant

space and resulting covariance process is stationary.

To derive each marginal posterior, if the covariance matrix is now the only function that

needs to be updated, ( 1)( | )n    , ( 1)( | )n     and ( !)( | )n     can be written as
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However, if the decomposition technique is allowed, ( 1)n   then becomes

1/2( 1) ' 1

:
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 (6.34)

after all terms not depending on Rmt are eliminated.

6.4 Posterior simulation of ADCC-MTM model

Apart from the Gaussian mixture, a more flexible way to account for the skewness and

leptokurtosis that are frequently presented in the financial time series using a finite mixture

model, given a limited number of components, is to utilize a multivariate T mixture. In

(6.1) and (6.2), we have already presented the specification of ADCC-MTM. Now, to

calculate its inference, we illustrate its posterior sampling procedure bleow.
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6.4.1 Joint posterior density

Consider a series of d-dimensional M-component multivariate T mixture distributed

observations yt whose density is
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(6.35)

where , ,m m m   are mean, covariance and degree of freedom parameters of mth T

component.73 Since yt is now assumed to be generated from a bivariate two-component

mixture distribution, d and M are both set equal to two and we obtain

2
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Here, concerning the above function, one thing needs to be noted before we proceed

further to derive the likelihood function of the whole mixture model and joint posterior

density for parameter set of interest. Since it is known that, for any gamma function (.) ,

it satisfies ( ) ( )x x x   , (6.36) then can be rewritten to
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The likelihood function of t mixture can be derived after all current information on

component label variable is obtained. That is,

73  In some textbooks,   / 2d
mv  presented in the denominator of equation (6.35) is written as
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. This setting is imposed to

ensure the value of degree of freedom parameter larger than two.
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   (6.38)

Besides, if the decomposition of covariance matrix is allowed, we can also derive another

form of (6.38) after mt  is replaced by mt mt mtD R D
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and
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if  1
mt t mD y    is replaced by mt .

The joint posterior density of  can be defined after all priors have been properly

specified.
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              (6.41)

Note that, in (6.41), parameter set of interest   now contains a total of 23 elements. That

is  , , , , , ; 1,2m m m m mz m       where   and  still represent two subsets

corresponding to the volatility parameters and correlation parameters respectively.
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6.4.2 Prior distributions assumption

In this section, we give the prior distributional assumption for each parameter in ADCC-

MTM. As for this issue, most of the settings used in the previous sampling of ADCC-

MGM are retained here. For example, the weight parameter   is still associated with a

Dirichlet prior so that its posterior can be simulated analytically. The priors of   and 

are set to be uniformly distributed since no information is obtainable at the initial stage on

the density shape and likely values of their posterior draws. Meanwhile, several changes

also need to be mentioned. For instance, the prior of   is no longer assumed to be

Gaussian but uniformly distributed due to the appearance of a non-analytical kernel. As for

the degree of freedom parameter, extra care then needs to be taken when its prior is

assumed. When we consider the behaviour of likelihood function in equation (6.38) with

respect to  , , and  , their posteriors are reasonable (integrable) if every covariance

mt  is kept strictly positive. However, sufficient prior information is needed on v to force

its posterior to approach zero quickly enough at the tails in order to be integrable.

Concerning this issue, although various priors might now be used, many empirical results

show that the density shape of this parameter usually does not have a consistent style. Thus,

in this research we use an uninformative density on a finite domain as its prior.

6.4.3 Posterior sampling sequence

Next, we describe the posterior sampling sequence for ADCC-MTM. To perform the

simulation for  , we start by augmenting the existing observations yt with a latent variable

zt to form a complete information set and then simulating all parameters according to a

fixed sequence to ensure the homogeneity of resulting chains. Here, the only difference

between this sequence and that of ADCC-MGM is the addition of a sampling kernel for

degree of freedom parameter at the end of each loop. That is,

1. Let n=0 be the first state of Markov chain and set initial value to be (0)

2. Draw component label variable ( 1)nz   from kernel ( ) ( ) ( ) ( ) ( )( | , , , , , )n n n n nz y     

3. Draw probability measure ( 1)n   from kernel ( 1) ( ) ( ) ( ) ( )( | , , , , , )n n n n nz y     
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4. Draw mean parameters ( 1)n   from kernel ( 1) ( 1) ( ) ( ) ( )( | , , , , , )n n n n nz y      

5. Draw volatility parameters ( 1)n  from kernel ( 1) ( 1) ( 1) ( ) ( )( | , , , , , )n n n n nz y       

6. Draw correlation parameters ( 1)n  from kernel ( 1) ( 1) ( 1) ( 1) ( )( | , , , , , )n n n n nz y        

7. Draw degree of freedom parameter ( 1)n   from ( 1) ( 1) ( 1) ( 1) ( 1)( | , , , , , )n n n n nv z y        

8. Le t n=n+1 and go to 2 until n=N

6.4.4 Sampling kernel of each parameter in 

In the following, we illustrate the derivation of simulating kernels for each element in 

according to the sampling sequence given above.

a. Sampling z  from ( | , , , , , )z y     

First, as for the sampling of component label variable, we follow the same procedure as

that illustrated in the last section. Provided that the current state is ( )n , we start by

calculating the conditional posterior probability of yt generated by mth T mixture

component at (n+1)th iteration using
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Thus, for the first mixture component, its conditional probability is
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 (6.43)

and that of second is ( 1)1 ( 1)n
tp z   . Here, once these two proportional measures have

both been updated, we simulate ( 1)nz   by sampling a new series from a binomial

distribution.74

b. Sampling   from ( | , , , , , )y z     

74 Here, the length of this new series is equal to that of yt. and parameter of binomial distribution is set to
be ( 1)( 1)n

tp z   .
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With respect to the weight parameter  , its simulation process is now similar to the

previous one. After assuming a Dir(1, 1) prior for  , we obtain an analytical density for

( | )   . That is, Dir(1+ T1,1+ T2), or
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          (6.44)

where a1= a2=1; T1, T2 denotes the number of observations generated by the first and

second T component in the mixture.

c. Sampling  from ( | , , , , , )y z     

However, when mean parameters are simulated, a different strategy is then adopted. Since

the mixture component (multivariate T distribution) now no longer belongs to any

exponential distribution family, we cannot use the same conjugate solutions as those

documented for sampling ADCC-MGM.75 But the parameter restrictions imposed before

are kept unchanged. For example, the means of two components are still constrained to

have a weighted average value equalling zero. That is, in the matrix form we

let 0T   .76 Thus, simulation of the whole matrix of mixture model’s mean parameters

can be resolved by only sampling the mean of the first component and then deriving those

of the second analytically.

Since no prior information is available for sampling  , we use a uniform distribution as its

prior. Thus, given the joint posterior density (6.38), its sampling kernel can be derived

after all terms not related to   are eliminated.
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  (6.45)

75 The conjugate Gaussian prior for the mean parameter is only feasible for the variants in the exponential
distribution family such as normal, Laplace, multinomial etc. Since Student t distribution is more often
categorized as a scaled mixture of normal, it does not belong to the exponential distribution class and thus
does not possess the conjugacy for mean.
76 In a two-component mixture distribution, this restriction is the same as 2 1 2 1( / )    
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Besides, to ensure that the resulting density values are large enough to contribute the

integral, we set the high-probability region of this parameter to be

ˆ
ˆ

( 4 / , 4 / )y yy T y T   .

d. Sampling   and  from ( ; | , , , , )y z     

To generate the sampling kernels for volatility parameters and correlation parameters, just

as before, we do not decompose covariance matrix mt  into mtD  and mtR . Thus, in each

iteration of posterior simulation, only one function needs to be updated. Given that all

priors of   and  are now assumed to be independently and uniformly distributed,

( | , , , , , )v y z      and ( | , , , , , )v y z      then have the same density form. That is,
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 (6.46)

Besides, to ensure that the new updates are located in the most relevant high mass, the

same restrictions provided in (6.29) and (6.32) are also used here.

e. Sampling  from ( | , , , , , )y z     

Finally, we discuss the derivation of sampling kernel for degree of freedom parameter. To

generate its posterior, some reviews concerning the selection of a proper prior for this

parameter need to be presented first. Kleibergen and Van Dijk (1993) calculated the

Bayesian inference of a Student-t GARCH model by using an unrestricted uniform

distribution as  ’s prior. A similar decision is made in Lin, Lee and Ni (2004), where a

fixed interval is imposed onto its space. However, in Geweke (1993), the author

challenged the appropriateness of using uninformative density as an appropriate prior for

degree of freedom parameter and argued that the posterior density, given such ambiguous

information, might be not integrable if Gibbs sampler is the target simulator. Here, it is

necessary to note that his arguments do not contradict the previous results. In Kleibergen
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and Van Dijk (1993), integration of posterior is actually performed by using importance

sampling technique. Although a truncated density shape is presented, it will not bias the

integration results since high mass is still located in the untruncated space. To find a more

proper substitute, Geweke (1993) himself assumed an exponential prior. That

is ( ) exp( )p     . He found that, as long as the posterior draws for   are not drawn

from [0, 2], the variance of T-distributed innovations will not approach infinity and their

empirical moments exists. Thus, parameter space for  in his paper is set to be [2, +∞].

Besides, Mendoza-Blanco and Xin (1997) have also proved the appropriateness of using

exponential priors. To see other ways of proposing priors for this parameter, Bauwens and

Lubrano (1998) provided a detailed illustration.77

As for the purpose of this research, following Lin, Lee and Ni (2004), we now assume

( )p  to be uniformly distributed in a finite space from two to one hundred. That

is ( ) ~ [2,100]p U . Thus, given the joint posterior density (6.41), we can easily derive the

sampling kernel for 

 

1 2

' 1 2

{ }

' 1 ' 12 2
1 1 1 2 2 2

: 1 : 21 2

( ) ( )| , , , , , 1

( ) ( ) ( ) ( )1 1

m

t

t t

v d
T

t m mt t m

t z m m

v d v d
T T

t t t t t t

t z t z

y yv y z
v

y y y y

 
    

   
 




 

 
  

 

   
  

 

        
      

   



 

 (6.47)

after all elements not related to this parameter are eliminated.

Here, it is important to note two things before proceeding. First, compared to the ADCC-

MGM model, ADCC-MTM now contains a larger parameter set with more elements

needing to be simulated but less analytical solutions available. Thus, the computational

burden for calculating its inference using Bayesian method is much heavier. Second, apart

from the sampling procedures we have just described, there are also other ways available

for sampling parameters in ADCC-MTM. For example, by utilizing the hierarchical form

of multivariate T, one can devise a hybrid method to estimate this mixture model. Since

77 In Bauwens and Lubrano (1998), they argued that, in order to make posterior of v integrable, the prior

distribution assumed should force the posterior tending to zero quickly enough at both tails. Thus, a

proper prior should be at least 1( )d    where d is the dimensionality of the training data.



- 158 -

degree of freedom parameter can be absorbed if such a hierarchical structure is assumed, a

new parameter denoting the missing weight vector of the training data then needs to be

introduced to the likelihood function (or joint posterior density). McLachlan and Peel

(2000) described a so-called ECM estimation procedure for T mixture models when they

are specified in a hierarchical way; a similar investigation through Bayesian inference is

illustrated in Lin, Lee and Ni (2004). (See Appendix III for a more detailed description of

hierarchical form of student T distribution)

6.5 In-Sample and Out-of-Sample analysis

Once the inferences have been calculated, assessing ADCC mixture models’ performance

in approximating in-sample correlation and forecasting out-of-sample correlation are also

two topics of interest in this research. To perform these analyses, we calculate four

quantities as follows. First, given the training data yt and simulated N-state Markov chains

{ }n , we generate the in-sample correlation at each time point as the posterior mean of

conditional correlation calculated by inputting nth simulated parameter values to the target

models. Then, in a similar way, out-of-sample correlation forecasts, return forecast and

next day’s VaR of two mixture models are also generated.

6.5.1 In-Sample correlation estimation

First, for the in-sample analysis, since the true parameter value ̂ is now approximated by

the empirical summary of a series of random draws, we can easily obtain a sample from

the posterior distribution of conditional correlation by calculating ( )n
tR  for each ( )n

simulated. For example, provided that we have run posterior simulation of mixture models

for N times and obtained a total of N draws for each parameter, then, if we assume all

Markov chains have converged after S iterations, the average values of ( )n
tR  for

[ 1, ]n S N   can be used to compute the posterior mean of in-sample correlation.78 That

78 Note that the calculation of posterior mean of in-sample correlation above is not based on the
simulation from a sampling kernel, but by putting all updated parameter values of the same state to a
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is,

  ( ) ( )
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1| , ~ | ,
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n n
t t

n S
E R y E R y

N S
 

 

    (6.48)

6.5.2 Out-of-Sample correlation forecasting

Besides, to calculate the future correlation, we can adopt a similar approach. As Engle

(2001) puts it, “volatility models are created to forecast volatility”; accordingly, correlation

models are also invented for the same purpose. Since the intent of proposing ADCC-MGM

and ADCC-MTM is actually to increase the model flexibility of capturing the stylized

characteristics exhibited in financial data, it is then important to see whether this increased

sophistication can improve the accuracy of dynamic correlation forecasts.

Here, since the conditional correlation is now modelled by ADCC of Hafner and Franses

(2003), only one-step-ahead correlation forecast can be generated. This is because, if we

want to obtain multi-step-ahead forecast, say RT+2 , based on the information currently

available at T, the exact value of yT+1 then needs to be known so as to determine the value

of 1T   to be input to the forecasting function. For example, if the current task is to

forecast RT+2, an essential variable that needs to be calculated is 2TQ   which is a function

of '
1 1T T   , 1TQ   and '

1 1T T   . Here, although we can make the approximations through

either '
1 1 1( )T T TE Q     or E[QT+1]≈E[RT+1] in equation (6.1) to obtain a recursive

function for forecasting (see Sheppard and Engle, 2001, for details), the expected value of

'
1 1( )T TE    , which depends on yT+1, is not obtainable at time T. Thus, we can only

generate one-step-ahead correlation forecast (RT+1) here.

Now, consider a series of converged Markov chain { }n ; after replacing Q  in (6.1) with

R  and '
1 1t t   , Qt-1 with RT, we can easily generate the predictive distribution of one-step-

covariance model. Although this result is called ‘posterior’, one needs to make clear its difference from

the simulated parameter values that are generated by applying a simulation technique.
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ahead correlation forecasts by calculating ( )
1

n
TR   for all n in [ 1, ]S N . Its expected value is

just equal to the conditional mean of these samples. That is,
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 (6.49)

6.5.3 Next day’s return forecast and VaR estimation

Besides, in a similar way we can also estimate the predictive density of next day’s return

yT+1. According to equation (6.1) and (6.2), since distributional assumptions for training

data have already been given (That is, the density of next day’s return yT+1 would be a

bivariate two-component Gaussian mixture with mean [ ]E   covariance 1[ | , ]TE y   if

yt is now modelled by ADCC-MGM and a bivariate two-component T mixture if ADCC-

MTM model is fitted),

1 1( | ) ( | , ) ( | )T Tp y y p y y p y d


                  (6.50)

to obtain the predictive density, we then only needs to calculate the one-step-ahead

covariance forecast 1T  . Now, given that 1 1 1 1[ | , ] [ | , ]T T T TE y E D R D y       and

1TR   can be generated from (6.49), the remaining task is just to forecast 1TD  .

Here, if the posterior sampling sequence of a ADCC-mixture model has been iterated N

times and associated burn-in period is set to be S, the posterior mean of one-step-ahead

volatility forecast ( )
1

n
TD   can be calculated by

  ( ) ( )
1 1

1

( ) ( ) ( ) ' ( ) ( )
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       (6.51)

Its corresponding predictive return density yT+1 can be derived as the mean of a series of

either MGM or MTM distributed random variables whose mean and covariance are

evaluated by inputting all equilibrium draws to corresponding correlation mixture models.
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In Ausin and Galeano (2005), the authors presented a way to compute the predictive mean

and variance for (6.50). However, to generate its VaR estimates, quantile information of

this density is also required.79 Over the last decade, VaR has become the major risk

management tool in financial industry. As proposed in 1995 by the Basle Committee,

banks are now required to calculate the capital requirements for their trading books based

on this measure and a large amount of literature are then devoted to producing better point

estimates for this quantity to cover the potential maximum loss of next day, next month or

an even longer period. For example, one can use either a parametric method (quasi-

maximum likelihood and bootstrap resampling) or a non-parametric historical simulation

approach to generate a VaR estimate. However, it is certain that it would be better if the

distribution of this quantity is also known. Thus, its variability can be quantified and its

precision is obtainable. Here, since, in Bayesian inference, parameters are now

characterized by Markov chains, uncertainty in VaR (uncertainty of future returns) then can

be described in a distributional form.

Applied into our cases, since it is known that the probability of a future volatility larger

than a given threshold can be estimated by the proportion of observations in the sample

larger than this threshold, given a specific ( )n  (or say ( )
1

n
T  ), if we now replicate P times

the simulation of a sample from a mixture distribution with mean [ ]E   and covariance

( )
1[ ]n

TE  , then we can obtain samples ( , )
1

n p
Ty   for p=1,…,P, which allow us to construct a

predictive interval for yT+1 and finally generate next day’s VaR. To illustrate this simulation

procedure more clearly, consider now a task of calculating the next day’s % VaR for an

initial outlay A given that all MCMC posterior draws have been generated. First, for each

replication p=1,…P, we obtain an estimate for VaR(p) using

( ) ( )p pVaR A I                 (6.53)

79 VaR is the maximum potential loss associated with an unfavourable movement in market prices during
a given time period with certain probability.
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where ( )pI  is the empirical  -quantile of the samples, (1, ) (2, ) ( , )
1 1 1,p p N p

T T Ty y y   . Then, by

iterating this process P times, we construct a predictive distribution for VaR and use

conditional mean, median or mode of generated samples VaR(p)  to approximate the true

VaR.

6.5.4 Comparison with other correlation models

Apart from the in-sample and out-of-sample analysis, another important aspect of this

chapter is model comparison and our aim is to see whether the ADCC mixture models

proposed in this thesis can provide a better fit to observed data than other correlation

models. Here, we consider four competitors for ADCC-MGM and ADCC-MTM.

Specifically, they are CCC of Bollerslev (1990), DCC of Engle (1999), scalar ADCC of

Hafner and Franses (2003) and diagonal AGDCC of Capiello et al., (2004).  For these

models’ specifications and characteristics, in Appendix II a detailed illustration has already

been given.

As for their comparison criterion, here we consider using an economic loss function.

Following Hafner and Franses (2003), we employ a so-called minimum variance criterion

as a specification test. The main purpose is to construct an arbitrary portfolio using each

time series (each asset) included in the bivariate training data yt. and then compare the

variance of this portfolio after each asset is proportionally weighted. Here, we purposely

constrain the average return of this portfolio close to a pre-specified value so that

outperformance of a correlation model can be confirmed if it can generate the lowest

variance among all alternatives. 80

80 In asset allocation problems, to discriminate the performance of different correlation (or volatility)
models, usually there are three approaches. One is to constrain the portfolio return to a target level so that
the outperformance of a model over its competitors can be confirmed if it can generate the lowest variance.
Besides, we can through constraining the portfolio variance and locating the one which can generate the
highest return to find the best. Meanwhile, if sufficient flexibility is allowed, in an unconstrained
environment we can also freely compute the portfolio variance and return as models suggest and locate
the optimal choice after comparing their Sharpe ratios. Note that the first two methods are suggesting a
constrained optimal whilst a more balanced view is provided in the third approach. However, in terms of
the stability of comparison results, it is then usually considered that the first two methods, especially the
one constraining the portfolio return, can perform better than the third.
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Concretely, if we now use ( )t i  to represent the time-varying covariance matrix generated

by ith correlation model at time t. The weight vector for each constituent included in this

portfolio is then calculated by

1
( )

( ) ' 1
( )

t i
t i

t i

l
w

l l









(6.54)

where l is a (2 1)  vector of ones. And the variance of target portfolio is computed by

'
( ) ( ) ( ) ( )t i t i t i t iV w w  . Here, one thing needs to be noted concerning the above portfolio is

short selling is actually allowed. Therefore the weight vector is not constrained to be

strictly positive definitive. Given these settings, consider a model, say i, if its portfolio

variance ( )t iV  is now the smallest among all tV  obtainable from competing models, then

we can say this model is the best-specified.

6.6 Summary

In this chapter, we introduce two new dynamic correlation models based on the mixture

modelling techniques. By incorporating a variety of statistical characteristics, these two

models are capable to account for multiple features frequently presented in financial time

series such as fat tails, leptokurtosis, leverage effect and correlation targeting. And we

describe how to calculate their inferences through a Bayesian approach. Specifically, for

the inferential procedure, we use Griddy Gibbs sampler as the target simulator to sample

draws for each parameter and use empirical summary of simulated Markov chains to

approximate the exact inference. Besides, we also illustrate several ways of evaluating our

models. For example, for the in-sample analysis, we calculate the dynamic correlation at

each time point as the posterior mean of conditional correlation generated by inputting

simulated parameter values to target models. For out-of-sample analysis, we derive next-

day’s correlation forecast, return forecast and VaR forecast.
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Chapter 7

Simulation results and Empirical results

Introduction

In this chapter, we present the posterior results of ADCC-MGM and ADCC-MTM fitted to

two simulated data and three empirical data. The whole chapter comprises four sections. In

the first section, we describe the inferential results of two simulation studies. That is, we

respectively simulate a series of multivariate Gaussian mixture distributed samples and a

series of multivariate T mixture distributed samples both with ADCC-covariance evolving

process incorporated, and then estimate them using posterior sampling procedure

illustrated in the last chapter. After simulation, not only unconditional moments of

posterior draws for each parameter are calculated, their kernel densities and convergence

are also plotted and assessed. In the second section, to monitor the consistency and

flexibility of our models, we consider three empirical applications where assets of different

classes and assets in different markets are utilized. Their posterior results are illustrated in

a similar way as previously. In the third section, we estimate in-sample correlation and

forecast future correlation using two mixture models and apply the results into asset

allocation and VaR calculation. Besides this, their performance is also compared to a

variety of alternative conditional correlation models including ADCC, AGDCC and their

variants. Finally, in the last section we summarize all major findings documented in this

chapter.
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7.1 Simulation studies

7.1.1 Simulated data

First, we describe two data-generating processes DGP1 and DGP2. The first corresponds

to bivariate two-component ADCC-MGM model; the second corresponds to bivariate two-

component ADCC-MTM model. For each process, we simulate 2000 observations and let

the unconditional correlation of simulated data (bivariate) equal 0.8.

According to equation (6.1), since massive parameters are now incorporated to  , a

proper method for indexing them needs to be illustrated before we proceed. For example,

for certain parameters like , , ,    , it is preferred a (2 2)  matrix now can be used to

express their values since these parameters contain elements corresponding to different

components in the mixture and different series in the sample data simultaneously.  Using

 for instance, this parameter is defined by

1 2

1 2

a a

b b

 


 
 

  
 

                                                         (7.1)

where 1, 2 denotes the first and second component distribution included in the mixture and

a, b respectively correspond to first and second series of bivariate data. Here, 1b

represents the mean parameter used to model the second series of sample data which is

generated by the first component distribution in the mixture. However, for others such as

, , ,     and v, configuration of 1 2[ , ]    is used because these parameters no longer

contain elements corresponding to each series in the resultant data.

Now, in order to simulate a series of random sample from DGP1, we start by sampling two

series of bivariate MGM-distributed random variables with ADCC-generated covariance

separately incorporated into them using parameter values given below,

Mean parameters

1 2

1 2

0.001 0.002
0.010 0.023

a a

b b

 


 
   

      

Volatility Parameters θ
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1 2

1 2

0.005 0.005
0.050 0.004

a a

b b

 


 
   

    
  

1 2

1 2

0.03 0.09
0.04 0.05

a a

b b

 


 
   

    
  

1 2

1 2

0.90 0.60
0.95 0.75

a a

b b

 


 
   

    
  

Correlation Parameters ψ

   1 2, 0.10 0.15    ;    1 2, 0.80 0.60    ;    1 2, 0.30 0.25   

and then proportionally mixing them using

Weight parameters

   1 2, 0.7 0.3   

so that a single series of bivariate two-component mixture-distributed innovations with

ADCC covariance can be obtained.

Here, it should be noted that we have purposely let the first mixture component follow a

stable process with high probability and let the second be weak-stationary and low

probability. This is because the financial market is often characterized by tranquil periods,

suggesting a strong covariance stationary process. Since this feature is very common, it is

then reasonable to associate it with a high probability. As a comparison, any structural

changes that could lead to a substantial increase of the volatility are then much less

frequently observed in markets and covariance in such periods is usually modelled by a

weakly stationary process.

For simulation from DGP2, apart from retaining all settings just illustrated for DGP1, we

also introduce the initial values for

Degree of freedom parameters

   1 2 10 7   

and let ( , , , , , , , , )          , since multivariate T mixture distribution is to be

assumed for modelling conditional returns.

7.1.2 Summary Statistics

Once all simulated data have been obtained, we illustrate their statistical characteristics

below.

DGP1
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First, for data simulated using DGP1, we report their first four unconditional moments and

perform two hypothesis tests to examine their normality in both univariate and bivariate

context.

<Insert Table 7.1 Panel A >

From Table 7.1, it can be easily seen that the first time series, individually, is a less volatile

process than the second, with thinner tails observed on both sides. Both series now present

a symmetric density shape (skewness≈0) while their normality results are different. After

performing the Shapiro-Francia test, we found evidence of univariate normality for the

first time series, with a p-value 0.4121. However, concerning the second, the null

hypothesis is then rejected with calculated kurtosis generating a value exceeding 3.92. To

evaluate multivariate normality, in this research we exploit a result from Doornik and

Hensen (1994). Since the reported p-value of their test for DGP1 is 0.1143, statistically

speaking, the null of multivariate normality cannot be rejected for any significance level

stricter than 90%. Overall, since unconditional correlation calculated for this simulated

bivariate data is also around 0.8, it is then fair to say that the first simulation provides a

good refection of DGP1 in the sense that designated distributional characteristics are

mostly captured. Graphical evidences for this argument are provided in Figure 7.1 where

kernel density, contour plot and scatter plot of resultant data is presented.

Figure 7.1 Kernel density estimate plots, contour plots and scatter plots
Panel A. Bivariate data simulated using DGP1

Concerning the bivariate kernel density plot (right on the top row), we now use initial

values given in DGP1 to calculate the unconditional variance (a fixed value) of two
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mixture components and then combine them with means to calculate the density estimates

of two Gaussians.81 It is known that, if the modes of two components were sufficiently far

apart, one would expect their resulting mixture to resemble two Gaussian densities side by

side, that is, a bimodal density. However, in Figure 7.1 only one mode can be observed. It

then reveals the fact that means of two components (Gaussian distribution) are now set to

be very close to each other and both near zero. Thus, the overlap between these

components would tend to obscure the distinction between them. However, clear evidence

for mixture can still be observed if we look at their contour plot. From the left graph of the

top row, it can be easily seen that two symmetric densities are now combined on different

domains so that density shape of their mixture does not appear to be round. Besides, from

the same graph it is implied that the proportion of this mixture is unequal. As for this case,

the one having flat tails is now given more weights than the one showing heavy tails.

DGP2

As for the training data obtained from DGP2, we perform the same standard analysis on its

distributional characteristics as previously and, in Table 7.1, Panel B reports its results. As

expected, means of both series are still central around zero and their unconditional

correlation is close to the corresponding theoretical value. However, standard deviation is

now found to be slightly larger than those reported in the previous cases and values of

simulated data become more dispersed. For example, in the bivariate data generated from

DGP1, the most volatile series is the second, whose values range from -0.87 to 1.02.

However, when data corresponding to DGP2 is analyzed, minimum and maximum values

of the same series are respectively -1.56 and 1.20. Given this feature, it is then implied that

more tail behaviour is now incorporated into the current density and this finding can also

be confirmed using increased values of kurtosis estimates for both series. Concerning their

normality test, as can be seen, null hypotheses defined in the univariate context and

multivariate context are now both firmly rejected with a close-to-zero probability value.

This result is as expected because the components of the mixture are now both assumed to

81 We use Gaussian kernel here with bandwidth computed by rule of thumb.
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be multivariate t-distributed which, only when its degree of freedom parameter is set to be

infinity, will tend to show Gaussian features.

<Insert Table 7.1 Panel B>

To obtain a more comprehensive view of the aforementioned characteristics, we present, in

Figure 7.1 Panel B, the bivariate kernel density plot and contour plot of data simulated

using DGP2. As can be seen, the resulting mixture still appears to be unimodal with a

seemingly symmetric shape in the centre but a far-from-symmetric shape around the edges.

Features of high peakedness and fat tails are evident due to the inclusion of multivariate t.

Tails in the positive domain are slightly heavier than those in the negative domain. And,

occasionally, some extreme events can be observed.

Figure 7.1 Kernel density estimate plots, contour plots and scatter plots
Panel B. Bivariate data simulated using DGP2

7.1.3 Estimation results

Next, we present the posterior estimation results for the two simulated data just obtained.

First, for those generated using DGP1, we apply the sampling sequence illustrated in

Section 6.3 to calculate its inference since the target model is assumed to be ADCC-MGM.

However, while those obtained from DGP2 are estimated, procedure illustrated in Section

6.4 for fitting ADCC-MTM is then utilized. Here, for both cases, we use Griddy Gibbs

sampler to run a total of 15000 simulations and discard the first 10000 for warming-up.

Thus, posterior parameter value is approximated using the remaining 5000 draws in the
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simulated chains and, for these draws, we calculate their location measures (mean, median

and mode) as well as dispersion measures (s.t.d, max and min) to obtain an idea of the

central value and variability of each parameter of interest.

DGP1

In Table 7.2 Panel A, we first present the summary statistics of chains simulated for

ADCC-MGM parameters and, in Figure 7.2 Panel A, give their histogram plots. In most

cases, we find posterior location estimators now approximate their corresponding true

parameter values reasonably well and, statistically, convergence of most parameters can be

confirmed (See Table 7.3 for convergence result). For example, posterior mean, median

and mode of weight parameter 1 (0.6864, 0.6855 and 0.6910) are all very close to their

corresponding theoretical values set in DGP1 (0.7) in the sense that theoretical value is

located in a reasonable confidence interval.82 Z-test results (0.9231) confirm that the first

1500 and the last 1500 samples included in the equilibrium state of 1  have equal medians,

suggesting that posterior draws have all statistically converged. Besides, since location

measures (mean, median and mode) themselves are now very close to one another, it is

then reasonable to expect a symmetric density shape for 1 . Note that in Bayesian

inference this feature is especially desirable because it proves the high mass of target

parameter has been sufficiently explored around the most likely values.

Figure 7.2 Histogram plots of posterior draws of mixture models’ parameters
Panel A. ADCC-MGM estimated on simulated data obtained using DGP1

82 Here, we use confidence interval to depict the closeness between true parameter value and simulated
values. For example, in a normal distribution, such confidence intervals, say, 3   are often used to
depict the 99% of probability events around the mean. Applied in this case, if the theoretical value of a
parameter is located within 3  , then we say the posterior moments approximate this value
reasonably well.
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<Insert Table 7.2 Panel A and Table 7.3>

However, as can be seen, in all except some special cases (such as 1 2 1, ,a a   ), this bell-

shape is seldom observed in Figure 7.2. Often, posterior density is characterized by either

significant evidence of excess skewness or sometimes multi-modality. In such cases, to

identify a good estimator, great care then needs to be exercised. Here, if asymmetry is the

only factor to be accounted, we can use either posterior median or mode as a better

estimator than mean for approximating true parameter value. This is because these

empirical moments in the case of asymmetry can provide a more reliable representative of

the whole density than the mean as a single statistic. For instance, in the posterior density

of 1  , since negative skewness is observed, it is then reasonable to expect posterior mode

(0.9310) to be a more proper estimator than mean (0.7299) for approximating theoretical

value (0.9). However, when multi-modality is present, the necessity of rechecking the

convergence result is then highlighted. For example, in the case of 2a , posterior density

presents a seemingly flat shape in the range of [0, 0.5] and then gradually decreases its

density values from 0.5 to 1. If we now look at its results from Z-test, PSRF test and

IPSRF test, the null hypothesis of statistical convergence cannot be rejected on any

significance level, suggesting that its posterior moments are already sound enough to be



- 172 -

used for approximation (See Table 7.3). However, the problem is that, given a

numerically-confirmed converged Markov chain, its posterior moments (mean: 0.29;

median: 0.28; mode: 0.32) are still far from the theoretical value (0.6) they are supposed to

be close to. Since, from the reported maximum and minimum values, one can know that

the search for new updates for 2a  has already been directed to a relevant area [0.0001

0.9230], this problem then cannot be simply explained by the improper choice of either

grid points or integration (interpolation) techniques because, given a correctly specified

sampling kernel, only mild difference would be generated if these points and techniques

are chosen differently.83 Thus, doubts are spontaneously cast onto the effectiveness of our

simulated data and simulation procedure. For example, one may want to question ‘whether

the coding of our posterior sampling sequence is problematic or sufficient enough’ or

‘whether the simulated data used in our sample is a good reflection of DGP1.’ Concerning

the first hypothesis, it is firmly rejected if we look further into the estimation result of

empirical investigation where sound posterior results are found throughout the cases.

However, as for the second, its possibility cannot be simply ruled out, although desirable

distributional characteristics have been documented in the last subsection. This poor

posterior performance is especially the case for  in volatility parameters. As can be seen

from Table 7.2, posterior moments of these parameters are all around 0.2-0.4, whilst their

corresponding true values actually range from 0.60 to 0.95. Moreover, in one case ( 1a ),

convergence of the resultant chain is rejected if we reset the significance level to 95%.

Although a large gap is now observed, it is necessary to note that  is the only exception

here; for all others parameters, such as ( , , )    ,   and, needless-to-say, the weight

parameter  , their posterior moments are then good estimators for approximating true

values using confidence intervals, and one can find a clear peak in their posterior

distributions to represent the whole posterior density.

83 For example, when we use Taylor method to expand a function f(x) around zero, the only difference
between first order approximation f(0)+C1 f ’(0)x+o(xn)and second order approximation f(0)+C1
f ’(0)x+C2 f ’’(0)x2+ o(xn) is only a function of x2, say g(x2). Since integration and interpolation techniques
applied in this paper are both based on the first order approximation, its difference from other alternatives
is then a high-order function.
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Besides, concerning DGP1, there is also another interesting finding worth mentioning here.

That is, simulated draws of parameters belonging to the second component often present a

more volatile process than those of the first. For example, if  and  are now of interest,

s.t.d of posterior values simulated for 2a  and 2b  (0.063 and 0.031) are larger than those

simulated for 1a  and 1b  (0.020 and 0.023), and the chain simulated for 2  (s.t.d:

0.1366) is more volatile than that generated for 1  (s.t.d: 0.059).  This result is as expected

because likelihood curvature is indeed much smaller for the second component. For

example, in this simulation study only 2000×0.3=600 observations are expected to be

generated from the second Gaussian-component. Compared to the first (with 1400

observations), since sample size is now much smaller, the appearance of the same

probability event would then be less frequent and it is natural to expect a more dispersed

posterior distribution for its associated parameters, suggesting a higher standard deviation.

In this research, since the first mixture component is always assumed to have a higher

proportion than the second so as to ease the label-switching problem, similar results are

documented throughout this chapter.

DGP2

Now, we turn to analyze the MCMC outputs of the second simulation study where ADCC-

MTM model is fitted. Respectively, in Table 7.2 Panel B and Table 7.3 we report summary

statistics and convergence results for each parameter and in Figure 7.2 Panel B present

their histogram plots. At first glance, it is easy to see that, for most parameters, their

posterior values reported now are very close to those illustrated previously. This is because

initial values in two simulations (DGP1 and DGP2) are mostly set as equal. However, if a

detailed comparison is launched, several changes are still not difficult to be found.

<Insert Table 7.2 Panel B and Table 7.3>

Figure 7.2 Histogram plots of posterior draws of mixture models’ parameters
Panel B. ADCC-MTM estimated on simulated data obtained using DGP2
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For instance, a notable difference between ADCC-MGM and ADCC-MTM is the

inclusion of a degree of freedom parameter. Concerning  , posterior moments of its two

elements in different component distributions now both approximate their corresponding

theoretical values reasonably well. For 1 , the best estimator for approximation is

posterior mean (9.7546). However, for 2  , posterior median (6.8628) then emerges as a

better location measure. Indeed, in terms of the absolute value, s.t.d of this parameter is

now the largest of all. However, their resultant Markov chains are not the most volatile

ones. For example, if we compare the posterior samples of 2 with 1 , relative volatility

of 2  is 0.88 while that of 1  is only 0.67.84

As for volatility parameters, their posterior results now improve a lot. Using empirical

summary of 1a  for example, mean, median and mode of this parameter are now

respectively 0.38, 0.35 and 0.34, much larger than the same estimators calculated in the

previous case. Besides, as a reflection of DPG2, larger parameter values are now generated

for parameters of the first component (like 1a and 1b ) than those of the second (like

84 Relative volatility measure is the value of s.t.d estimate divided by mean, that is, . . /s t d  .



- 175 -

2a and 2b ), suggesting that our configuration designed for DGP2 has been realized.

That is, the first component is now associated with a stronger covariance stationary

process than the second to represent the ‘common’ market behaviour.

Besides, here it is also necessary to note something about the correlation parameters

( , , )    . As can be seen from Table 7.2 Panel B, their posterior results now change a

lot compared to those documented in the previous study. Although, for some elements, the

distance between posterior mean and its corresponding true value is drastically shortened,

i.e. 2 , this improved performance cannot be applied to all. On the contrary, in some cases

some evidence of deterioration is even found. For example, posterior mean of 1 obtained

in ADCC-MGM (0.7299) can provide a close approximation to its theoretical counterpart

(0.80) if one standard deviation (0.2088) confidence interval is imposed. However, the

same estimator reported now (0.325), even if augmented with two standard deviations

(0.227), still cannot approach the target value closely enough. Given such a large gap, it is

then fair to say that the resultant Markov chain fails to provide sufficient information for

posterior approximation and, unavoidably, doubts then need to be cast again on the validity

of our simulated data. Concerning this issue, a more detailed explanation is to be provided

in Section 7.2 and 7.4.

7.1.4 Individual Convergence speed

Above, convergence diagnostic results for two simulation studies have been shown

through the implementation of three hypothesis tests. Although most of the chains are now

confirmed as statistically converged, nothing has been said about their individual

converging speed. Here, with respect to this issue, a brief illustration is provided below.

First, for some particular parameters, we compare their posterior densities with different

numbers of equilibrium draws to see how their convergence improves as simulation

proceeds. Here, for the first simulation results, we plot in Figure 7.3 Panel A kernel density

estimates of a variety of its chains with 2000 equilibrium draws (after 10000 burn-in draws
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are discarded) and compare them with those plotted with 5000 draws. Then, in the same

figure, a similar graph for ADCC-MTM parameters is also drawn.

Figure 7.3 Posterior density comparisons of correlation mixture models’ parameters
after 2000 draws and after 5000 draws

Panel A. ADCC-MGM parameters

Panel B. ADCC-MTM parameters

Solid line denotes the posterior density after 2000 draws; dotted line denotes the density after 5000 draws. (Both chains

are derived after initial 10000 warming-up draws are discarded)

As can be seen, in most cases, posterior densities plotted using dotted line and solid line

are now overlapped, suggesting that the extra 3000 draws simulated do not contribute

much information to purify the posterior distributions of interest, and an early

distributional convergence has already been achieved. Given this feature, we then use
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ADCC-MTM, for example, to calculate the correlation for all its resultant chains and

present the result in Table 7.4.

<Insert Table 7.4 >

The purpose of calculating this statistic is to assess the individual converging speed based

on the virtue that, the more one parameter appears to be correlated to the others, the lower

the chance its realizations would be independent and the slower would its chain tend to

converge. On the contrary, if a chain seems to be independent of all others, the probability

of its obtaining a fast convergence will then be relatively high.85

Applied to our cases, from last chapter, since it is already known that sampling kernels of

,  and  are independent of one another, their resultant chains are then very unlikely to

converge slowly. And this is especially the case for  because its simulating kernel has an

analytical form. Since the simulated draws, for this particular parameter, are now to be i.i.d,

its convergence is then expected to be very fast. However, concerning the others, such as

volatility parameters and correlation parameters, the appearance of a much slower

convergence speed, due to the strong intercorrelation found in their resultant chains, is then

not surprising. For example, the correlation between 1a  and 1a is as high as -0.95 and

that of 2a  and 2a  also reaches -0.59. Given a large number of such highly-correlated

chains, generating new updates for one will then inevitably be affected by the correlated

simulated values of another.

7.2 Empirical investigation

Above, in simulation studies, we have documented an interesting finding, that is, for some

parameters, their posterior performance of using empirical moments to approximate the

target theoretical value is not uniform. To explain this phenomenon, we cast doubts on the

validity of our simulated data while confirming the correctness of our estimation procedure.

85 Here, as a natural result of Markovian property, autocorrelation within a chain is also a factor that could
relate to the individual convergence rate. However, since dependence of adjacent points in equilibrium
state gradually decreases after a sufficiently long run of burn-in iterations, we thus do not consider it here.
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In the following, to provide the proof for this argument, three empirical studies were

carried out.

First, in this research, since the motivation for proposing mixture models is due to the bi-

modality observed in kernel density plot of realized correlation in the foreign exchange

market, we model the bivariate daily return of USD/GBP (US/UK) and EUR/JPY (EU/JP)

using samples from 01/01/1999 to 22/06/2005.86 A total of 1689 daily observations are

obtained. Second, following Engle and Colacito (2003), we investigate dynamic

correlation between US bond index and US stock index. Daily prices of S&P 500 index

and US 10-yr bond are respectively collected from DataStream using code ‘ISPCS00’ and

‘CTYCS00’, and we select the sample from 03/01/1995 to 04/07/2006 with 3000

observations included. Finally, the third empirical analysis is performed to study the co-

movement between UK stock index and US stock index. We choose 1000 daily

observations for FTSE100 and S&P500 starting from 29/08/2003 to 30/06/2007.

For each sample, we now estimate it using both ADCC-MGM and ADCC-MTM and

generate 15000 run Markov chains with initial 10000 draws deleted as burn-in points.

Therefore, there are in total six posterior sampling procedures to be followed and model

performance is now examined not only in a portfolio with assets of different classes (stock

index, bond, currency) but also with assets in different markets (US, UK).

7.2.2 Summary statistics

As always, first we briefly summarize some statistical characteristics of these samples.

Specifically, in Table 7.5 we present their descriptive statistics and the results of three

normality tests (two univariate and one multivariate), and then, in Figure 7.4, we plot their

sample paths and kernel densities.

<Insert Table 7.5 >

86 Undoubtedly, using these pairs may be of little economic sense. But they are included mainly due to the
significant evidences of bi-modality observed in unconditional distribution of their realized correlation.
Besides, it is also because of their negative correlation. Since the other two samples used in this research
now present either positive or near-zero correlation, these data are included mainly for the completeness
concerns because our purpose is to examine proposed models in different correlation scenarios.
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According to the results, it can be clearly seen that three different scenarios are now

considered here, with US and UK stock indexes showing positive correlation, exchange

rate data showing negative correlation and stock and bond data showing near-zero

correlation. Concerning the first case, it is an expected result because equity markets in

most developed countries are already known to be positively correlated to one another.

Negative correlation between US/UK and EU/JP is also unsurprising because, during the

sample period we choose, the spot rate of US/UK experienced a steady appreciation as

EU/JP was heading for a sharp devaluation. Here, the only thing worth noting is the -0.083

correlation found between S&P500 and US bond future. Although, by their different

market natures, it is reasonable to expect a low correlation, in interpretation great care

needs to be exercised. Recall that, in Chapter two, it has already been stated that

correlation is an association measure only defined on linear space. Therefore, even if given

this near-zero correlation, it is still too early to say that there is no underlying dependence

structure between these two financial assets.87

As for their statistical characteristics, historical returns of most samples now follow stable

processes with standard deviations only in one case observed exceeding 0.01. Most of the

kernel densities present a seemingly symmetric shape with negative skewness. The only

exception here is for EU/JP return where a positive skewness of 0.0135 is reported.

Concerning the normality test, overwhelming evidences have been found showing the

rejection of Gaussian in either univariate context or multivariate context. Only in one case,

(S&P500 used in the second sample data), does the p-value of Shapiro-Francia normality

test generate a value exceeding 0.042, suggesting that, for this particular time series,

univariate Gaussian cannot be rejected at 99% level but will still not be accepted once we

relax the significance level to 95%.  Finally, in all cases fat tails and high peakedness are

confirmed with no sample showing calculated kurtosis being able to generate a value of

less than three.

87 On the contrary, in many different ways bond market could be said to be correlated to equity market.
For example, when expectation of an interest rate rise goes up, bond price will dive immediately. At the
same time, equity prices in this scenario are also expected to fall due to the concurrent fear of stricter
monetary policy to be imposed.
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Figure 7.4 Plot of historical returns and kernel densities of three empirical data

Panel A: Exchange rate Panel B: Stock and Bond

Panel C: Stock Index and Stock Index

7.2.3 Estimation results

a. starting value setting

Now, we start to illustrate the posterior results of ADCC-MGM and ADCC-MTM fitted to

these empirical data. Before proceeding, some illustrations on the initial values to be set

for each parameter need to be provided as MCMC outputs are often found sensitive to

these prior information (either distribution or value) assumed. Specifically, in this research

we use techniques such as mode-finding or fitting a relevant model to search for the proper

starting values.  As for weight parameter, since it is assumed that first component can

always obtain a higher proportion, we retain the same setting for   in simulation study so

that sampling of 1  starts by using 0.7 as the origin for resultant chain. Concerning mean

parameters, in order to minimize the potential bias, simulation of target chain is initiated

by using unconditional mean of sample data as the first state. With respect to volatility and

correlation parameters, a more numerically-efficient searching method is then adopted.
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That is, first we fit a standard ADCC (1,1,1,1) model to each sample so that initial values

of   and   for the first mixture component can be obtained. Then, after a mild

modification, those for the second are given. Here, note that this modification is now made

by mildly decreasing the parameter values calculated for the first component. This is

because we are now inclined to give the first component stronger volatility persistence and

stronger correlation persistence so that, overall, its covariance process would appear to be

more persistent and stationary than the second. In so doing, a tranquil period frequently

observed in financial markets can then be modelled. Moreover, when ADCC-MTM is used,

we also fit a bivariate T distribution to the sample data so that the initial value of degree of

freedom parameter can also be obtained.

b. foreign exchange rate result

Next, we report posterior estimation results of fitting foreign exchange data. Posterior

moments of their parameters are given in Table 7.6 Panel A and Panel B and their

corresponding histograms plotted in Figure 7.5 Panel A and Panel B.

<Insert Table 7.6 >

After a brief comparison, we find that, for most parameters, their resultant posterior

moments in two models are now very close to each other. This result is as expected

because correlation mixture models proposed in this paper are already known to be closely

related. Not only are their mechanisms of generating correlation dynamics based on the

same specification, density assumption (multivariate Gaussian mixture) given in ADCC-

MGM is also a limiting case of that (multivariate T mixture) assumed in ADCC-MTM.88

Given that training data is also used in the same way, it is then reasonable to generate

similar results for the same parameters. For example, the posterior mean, median and

mode of weight parameter in estimated ADCC-MGM are respectively 0.667, 0.639 and

0.566. The same statistics in ADCC-MTM are reported to be 0.694, 0.671 and 0.542.

Besides, if their kernel densities are analyzed, a similar degree of positive skewness can

also be observed, suggesting that posterior mode is now a better location estimator than

mean to approximate the true parameter value.

88 MGM is a limiting case of MTM when the degree of freedom parameter v in MTM approaches infinity.
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Figure 7.5 Histogram plots of parameters in empirical fitting of exchange rate data

                Panel A. ADCC-MGM      Panel B. ADCC-MTM

In addition, this asymmetry can also be found in a variety of other cases. Here, it is

especially worth noting  (the parameter governing the correlation persistence) and  .

For example, contrary to most findings that posterior draws smoothly disperse over a wide

space, posterior density of 1  concentrates only on a tiny region with most probability

events occurring around 1 1  . Thus, in approximation, posterior modes (0.9308 for

ADCC-MGM and 0.9310 for ADCC-MTM) once again outperform means (0.4914 for

ADCC-MGM and 0.4854 for ADCC-MTM). However, concerning 2 , its density shapes

is then much flatter. Since the convergence of all chains have be statistically confirmed,

for this particular parameter, using posterior mean as a representative of the whole density

is more proper. As for degree of freedom parameter, similar asymmetry is also found in its

two elements. Skewness estimated for 1  is 2.1329, much larger than that calculated for

2  (0.5552). An interesting finding here is their posterior modes are now nearly the same.

Given that weight parameters calculated in the above case are also roughly the same

1( 0.5)  , the appeal of using two-component mixture models to quantify the correlation
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between currency-pairs is then almost lost. 89 This is because, what is assumed for

correlation models are now two equally-weighted Gaussian samples or two equally-

weighted T samples with same tail behaviours. Provided that the means of two component

distributions are also not far from each other, this is then equal to assuming just one-

component ADCC-Gaussian or one component ADCC-T.

Besides this, another interesting finding here is the close-to-zero posterior values reported

for   and  . As will be shown in later sections, since this is a common result (See Table

7.7 and 7.8 for proofs), illustrations of this particular issue are then necessary. First, given

this feature, it is necessary to rule out the possibility of non-convergence of relevant chains

and this can be easily proved by calculated Z-statistics. Then, concerning these small

values, the question of ‘whether we could eliminate them in the target correlation mixture

models’ is naturally raised. Definitively, it would be a potentially beneficial strategy if we

could adopt it. Since Griddy Gibbs sampler is already known as a numerically demanding

algorithm, massive computational work can be saved if six parameters (both   and  ),

which could previously only be updated using non-analytical kernels, are now available for

elimination. More importantly, even without the inclusion of these elements, the

mechanism assumed for covariance (volatility and correlation) process in target model will

not be fundamentally altered. In this research, we have tried fitting ADCC-MGM and

ADCC-MTM again for the same empirical data with these parameters omitted, and similar

results are generated to those just reported while computational expense is substantially

reduced. For example, for ADCC-MGM, now, 28.57% of the original computational work

can be saved in each loop of posterior sampling. This quantity for ADCC-MTM is 26.09%.

Although a much cheaper solution for calculating Bayesian inference is now available, to

retain the origin virtue, here we still report the posterior result using the same style as

previously, with   and   both included.

c. Stock and Bond data

Now, we proceed to illustrate the posterior results of empirical fitting for stock and bond

89
1 denotes the theoretical value for 1
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data. For two mixture models, their posterior parameter values are respectively

documented in Table 7.7 Panel A and Panel B and corresponding histograms plotted in

Figure 7.6 Panel A and Panel B.

<Insert Table 7.7>

Figure 7.6 Histogram plots of parameters in empirical fitting of stock and bond data

Panel A. ADCC-MGM     Panel B. ADCC-MTM

Compared to the previous case, at first glance one can already obtain an idea that a better

fitting result is now generated. Not only resultant parameter values become more sensible

and posterior density presents a desirable shape, the inherent mechanisms we assume for

mixture models are also realized. For example, in both ADCC-MGM and ADCC-MTM

models, the first components now can easily obtain the dominating power in modelling

entire covariance dynamics. Posterior means of weight parameter of this component are

around 0.8. These components are given stronger volatility persistence and stronger

correlation persistence than the second. Take the correlation process for instance.

Coefficient determining the stationarity in the first component is now given by 2 2
1 1 

(0.917), which is a value larger than the one 2 2
2 2   assumed in the second component

(0.826). Thus, it is reasonable to expect that a large change in the target correlation

dynamics is to be followed by another large change.90 The majority of the observations

90  Here, we use 2 2
1 1   instead of

1 1  to depict the correlation stationarity because of the model
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(≈0.8*3000=2400) support this finding. This is then equal to saying that weak stationary

process, governing the sudden changes in correlation dynamics, can only be observed

using 600 samples. Concerning the degree of freedom parameter, again, asymmetric

posterior density is documented for both its elements included in the mixture. However,

slightly different modes are now observed with 1  equalling 5.79 while 2  equals to 5.94.

d. Stock index data

Finally, we report the posterior result of fitting ADCC-MGM and ADCC-MTM to stock

index data. Their parameters are illustrated in Table 7.8 while densities are plotted in

Figure 7.7.

<Insert Table 7.8>

Figure 7.7 Histogram plots of parameters in empirical fitting of stock index data

               Panel A. ADCC-MGM Panel B. ADCC-MTM

Here, for most parameters, it can be easily seen that their posterior results are now found

quite similar to those previously reported. However, three interesting findings are still

documented. First, new concerns have been raised over weight parameter. As can be seen

from its posterior moments, for ADCC-MGM the best location estimator to describe 1 is

posterior mode (0.528) whilst, for ADCC-MTM, the same statistic then increases the

proportion of first component to 0.750. Second, as a response to the roughly equal-mixing

specification assumed in chapter 6.



- 186 -

assumed in ADCC-MGM, correlation process generated in two components now shows a

similar degree of stationarity. For example, parameter value generated for 1  is very

close to 2 . Besides, for ADCC-MTM, different tail behaviours of multivariate T are

finally observed. Posterior mode for 1  is 15.83, whilst that for 2  is only 5.95. Given

these features, it is then natural to draw that conclusion that ADCC-MTM is actually a

correlation model more capable than ADCC-MGM of distinguishing different components

in the resultant mixture. This is because, unlike Gaussian mixture, where the task of

identifying different components can only be performed by imposing a restriction on   or

 , in a multivariate T mixture model it can also be done by giving different values to the

degree of freedom parameter of different components (See Chapter 4 for more details on

label-switching).

7.2.3 Implementational issues

Above, we have illustrated the posterior results of two simulation studies and three

empirical investigations. Now, before proceeding to examine the in-sample and out-of-

sample performance for mixture model, we illustrate some implementational issues that

have been raised in previous sections but not stated completely enough. These issues

included approximation error in integration and computational cost of Griddy Gibbs

sampler.

a. Approximation error

First, as have been mentioned several times in Chapter 6, approximation error is a critical

issue when posterior result of a MCMC algorithm is analysed. Applied to this research,

since sampling kernel of most parameters in correlation mixture models does not have an

analytical form, simulation of new draws then has to rely on the principle of ‘Inverse of

C.D.F’. According to Griddy Gibbs sampler, since the integration now needs to be

calculated by evaluating a number of grid points on a relevant space, potential bias is then

unavoidable and it is not surprising to see some difference between calculated posterior

mean and true parameter value. Although we have chosen as many points as possible after
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balancing the efficiency of algorithm with accuracy of results, in some cases this error is

still a major factor biasing the posterior result. For example, for some parameters, one has

observed that posterior mean of a converged chain fails to approach its corresponding

theoretical value closely enough. However, after being augmented with a reasonable

interval, these approximation results then improve a lot and most theoretical values can be

identified as just located in the high mass.

b. High computational cost

Besides this, as have been stated repeatedly, computational cost is also a major concern

here. To obtain a brief idea of how expensive it actually was in this research, we now set

out two examples. In the first simulation study where training data (DGP1) is estimated by

ADCC-MGM, each loop of posterior sampling involves 600 instances of evaluating

likelihood function and requires 5.6 minutes of computational time.91 Thus, it would take a

modern Intel P4 computer more than 9.7 days for each chain to successfully generate a

moderate number of states.92 However, for estimating ADCC-MTM, the computational

cost is even higher since degree of freedom parameters are now also included. The average

computational time for this mixture model is about 6.5 minutes per iteration and it would

take the same computer nearly 11.28 days to complete the overall calculation of Bayesian

inference.

7.3 Correlation models comparison

Starting from this section, we examine the in-sample and out-of-sample performance of

ADCC-MGM and ADCC-MTM and compare the results with a variety of alternative

DCCs. Here, for competing models, firstly we consider the inclusion of correlation-

targeting technique in some traditional DCC’s dynamics, and then relax this assumption to

see whether any improvements in model capability can be derived. Besides, two new

multivariate asymmetric DCCs are also proposed in this chapter to contribute to the current

literature.

91 We obtain the number 600 because there are a total of 20 parameters in ADCC-MGM that require
Griddy Gibbs sampler to simulate their new updates, and each simulation needs to evaluate 30 grid points.
92 Programming codes of this paper are written in Matlab and are available upon request.
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7.3.1 In-sample and Out-of-sample analysis of Mixture models

First, concerning the in-sample analysis, one thing needs to be noted before proceeding.

That is, this analysis is now performed only on simulated data because true parameter

values of mixture model, only for these data, are obtainable prior to estimation so that

realized correlations can be computed and compared to in-sample correlations. 93

Specifically, for each sample respectively simulated using DGP1 and DGP2 and fitted by

ADCC-MGM and ADCC-MTM, we calculate predictive means of their last 200

conditional correlations and compare the results to realized correlations generated by

applying true parameter values to corresponding mixture models. Since most of the chains,

after burn-in period is eliminated, can now be confirmed as statistically converged, we

obtain a total of 5000 equilibrium draws and for each ( )i  where [1 5000]i   we use

equation (6.2) to generate a conditional correlation estimate. 94 Thus, the predictive mean is

just equal to the sample mean of these estimates.95

Figure 7.8 Realized correlations and Predictive means of the last 200 conditional
correlations estimated on simulated data

Panel A. ADCC-MGM (DGP1) Panel B. ADCC-MTM (DGP2)

Solid line denotes the sample paths of predictive means of the last 200 conditional correlations; dotted line represents

the corresponding realized correlation.

From the above graph, it can be seen that (predictive means of) conditional correlations

93 The same comparison for the empirical samples is not possible due to the lack of high-frequency data.
94 In simulation study, posterior sampling has run a total of 15000 times. Given that burn-in period is now
set at 10000, equilibrium draws then correspond to the last 5000. That is, we can obtain 5000 different
after sampling, and each can be applied to a correlation mixture model, either ADCC-MGM or ADCC-
MTM, to generate the conditional correlation estimate.
95 Although we term this quantity as the predictive mean, it does not mean we are actually forecasting
because conditional correlation estimates generated from different simulated  are now given the in-
sample advantage, i.e., the sampling of is based on the whole 2000 observations rather than 1800.
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now follow a more volatile evolving process than realized correlation although their

pattern of changes in the same time frame is quite similar. This result is as expected

because, in section 7.2, it is already documented that the covariance stationary process

estimated using simulated data is weaker than those assumed in DGP1 and DGP2.

To investigate out-of-sample performance, since parameter uncertainty is now allowed, by

using a similar approach to the one just illustrated we generate the predictive densities of

one-step-ahead correlation forecast, return forecast and VaR forecasts for both simulated

and empirical data. Meanwhile, also provided is the predictive density of minimized

variance of an authentic portfolio.96  In Table 7.9, we report the summary statistics for

these densities.

<Insert Table 7.9>

As can be seen, unconditional moments of correlation forecasts generated by two mixture

models are now quite close to each other. For example, when stock index data is fitted to

compute the next day’s correlation, predictive results obtained using ADCC-MGM are

0.4395 for sample mean, 0.4293 for sample median and 0.4242 for sample mode.

Corresponding statistics calculated by ADCC-MTM are respectively 0.4334, 0.4256 and

0.4111. This result is as expected because target models used for forecasting are already

known to have many closely related characteristics and the only way to differentiate them

is not by the mechanisms of how they generate correlation dynamics, but by their

capability to account for extreme events.

Concerning the hedging performance, according to Table 7.9 ADCC-MTM in most cases is

now found outperforming ADCC-MGM. The portfolio variance this mixture model can

minimize is lower than the one calculated by assuming Gaussian mixture for unconditional

returns and its performance is consistent whilst improvements are often found to be

marginal in magnitude. Besides, from a risk manager’s perspective, the superiority of

ADCC-MTM over ADCC-MGM is also confirmed in the sense that extreme events now

96 This portfolio is constructed using two individual time series included in bivariate data.
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can be more flexibility accounted using T mixture models. For example, when foreign

exchange data is fitted, predictive mean of 99% next day’s VaR calculated using ADCC-

MGM are respectively -0.012 and -0.015, less than those implied by ADCC-MTM (-

0.02807 and -0.02824) where one could even observe a loss of -0.0334 and -0.0342 in the

worst scenario.

Next, to obtain a more concrete idea of how these predictive densities will distribute, we

plot in Figure 7.9 their histograms using results generated from fitting stock and bond data

for example.

Figure 7.9 Histogram plots of predictive densities of one-step-ahead correlation
forecast, minimized variance, next day’s return and VaR calculated for stock and

bond data
Panel A. fitted to ADCC-MGM

Panel A. fitted to ADCC-MTM

Blue bar denotes the histogram statistics calculated for first time series included in bivariate data. Red bar corresponds

to the second time series.

Here, it can be seen that, for most densities, it is now very easy to find a clear mode.

However, only when next day’s return forecast generated by ADCC-MGM is analyzed can

a symmetric density be shown. As for their counterparts obtained using ADCC-MTM,
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outliers in large magnitude then become the dominating force in both tails of T distribution,

suggesting that more capitals (VaR) than normal situations now need to be reserved to deal

with the occurrence of these extreme events.

7.3.2 Fitting results of Traditional DCCs

Apart from the mixture models, a number of alternative DCCs are also fitted in this

research to both simulated and empirical data to compare their performances in recovering

time-varying correlations, generating forecasts and minimizing portfolio variances. The

aim of making these comparisons is to see whether the increased sophistication introduced

by mixture models is economically worthwhile. Specifically, to propose competitors to

ADCC-MGM and ADCC-MTM, here we consider using some traditional MGARCH

variants which assume Gaussian innovations such as Bollerslev’s (1990) CCC, Engle’s

(2002) DCC, Hefner and Frances’s (2003) ADCC and Capillio et al.’s (2004) AGDCC. In

Appendix II, specifications of these correlation models have already been given. Now, we

only use Gauss-Newton procedure to estimate them and illustrate the result.

a. Including Correlation Targeting

Before we proceed further, concerning the last two models, there is something that needs

to be noted. For ADCC and AGDCC, in order to ensure the parsimony, we now

incorporate correlation-targeting technique in their dynamics so that their covariance

evolving processes can be modelled by

2 2 2 2 ' 2 2 '
1 1 1 1 1(1 )t t t t t tQ Q N Q                    (ADCC)            (7.2)

 ' ' ' ' ' ' ' '
1 1 1 1 1t t t t t tQ Q Q Q N Q                         (AGDCC)         (7.3)

where  , and   in (7.2) respectively denote a scalar number whilst the same parameter

in (7.3) represents a (2 2)  diagonal matrix. 97 Besides, we constrain in ADCC

2 2 2| (1 ) | 0Q N       and for AGDCC ' ' '| | 0Q Q Q N          to ensure the

positive definitiveness of the interception term. Since, in equation (7.2) and (7.3), other

elements in Qt are already know to be squared products, once these conditions are satisfied

97 For example, for   in AGDCC model, it is now structured as 11

22

0
0



 
 
 

.
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the resultant covariance matrix will then become positively definitive. In addition, we also

restrict the value of 2 2   in ADCC to less than one and ' '| |   in AGDCC to lie

within the unit cycle so that the stationarity of resultant covariance can also be ensured.

In the following, we report the estimation results of fitting these correlation models. From

Table 7.10 to Table 7.14, one can easily observe that DCC on most occasions now

provides the best fit to simulated and empirical data, and estimated parameter values

generated by using this model are frequently found to be significantly different from zero

and imply strong correlation persistence.

<Insert Table 7.10, 7.11, 7.12, 7.13 and 7.14>

However, here two things need to be noted. First, while fitting the empirical data, although

we have introduced asymmetric news impact to DCC’s specification, insufficient evidence

is found to justify this assumption, suggesting that there is no leverage effect in correlation

dynamics. Second, there is a subtle tendency in this research to favour the CCC model

which assumes correlation to be constant rather than dynamic. Concerning these two issues,

since similar results are to be documented again in a later part of this section, we leave our

discussion until then.

b. Excluding Correlation-Targeting

Above, for estimating asymmetric DCCs, we included correlation-targeting. That is, to

ensure parsimony, we let the conditional covariance converge to a pre-calculated long-

term value. However, in a standard GARCH (see equation 2.5) this value is often

computed by a need-to-estimate parameter to allow for more flexibility. Thus, an

immediate drawback of imposing this targeting assumption is that the resultant correlation

evolving process may be bounded within a small interval and centralized around a fixed

value. Simply put, it will probably just not evolve as dynamically as we expected. To

obtain the visual proof of this argument, see time series plots of dynamic correlation

generated by DCC, ADCC and AGDCC for fitting simulated data (using DGP2) and

foreign exchange rate data, for example.
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Figure 7.10 Time series plot of dynamic correlation generated by fitting DCC, ADCC
and AGDCC to second simulated data and FX data with correlation-targeting

included

In the first row of Figure 7.10, we present the sample paths of various correlations

calculated for simulated data, while the second row presents the results generated for

foreign exchange data.  Clearly, only DCC-generated correlations now can present an

identifiable tendency of correlation changes whilst ADCC-generated correlations, at first

glance, seem rather to be following standard mean-reverting processes or just remaining

relatively constant in the second case (we will return to this point later). Concerning

AGDCC correlation, its evolving process is very volatile, suggesting that further filtration

might be needed for purification of information so that its correlation signals can be more

clearly identified and extracted.

Given these features, it is then fair to say that both asymmetric DCCs now fail to produce

the expected dynamics and there is motivation to slightly change their specifications so

that more flexibility can be incorporated. For this purpose, we now consider relaxing the

targeting assumption and introduce new interception parameters directly to the covariance

dynamics. Specifically, by rewriting (7.2) and (7.3) to

2 2 ' 2 2 '
1 1 1 1 1t t t t t tQ Q                   (ADCC)               (7.4)

' ' ' ' '
1 1 1 1 1't t t t t tQ CC Q                      (AGDCC)           (7.5)
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where  denotes a scalar number and C represents a (2 2)  matrix transformed by

vech(.) function of  a column vector with a total of 3 elements, it is now expected that a

less restrictive model will lead calculated correlations to exhibit behaviour more like the

true correlation, although these quantities themselves are unobservable in the real markets.

In equation (7.4), positive definitiveness of covariance matrix is guaranteed by its unique

squared parameter settings. However, for AGDCC, to maintain the same property, it is

then required C’C is kept positive definitive. Since decomposition of covariance matrixes,

if we leave aside the asymmetric factor, can now be written as,

2 2 2 2
, 11 11 , 1 11 , 1

2 2 2 2 2 2 2 2
, , 1 , 1 , 22 22 , 1 22 , 1

2 2 2 2
, , 1 , 1 , , 11 12 11 22 , 1

2 2 2 2
, , , 1 , 1
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(7.6)

this is then equal to saying that both 11c and 12c are required to have the same sign. To

see whether the implementation of this strategy can improve the model performance of

asymmetric DCCs, now we fit these two models to the same empirical data used above

and plot the resultant correlation in the following.

Figure 7.11 Time series plot of dynamic correlation generated by fitting ADCC and
AGDCC to second simulated data and FX data with interception term included

As before, the first row gives the fitting results of simulated data while the second

presents the sample path of time-varying correlation calculated for exchange rate data.
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From the graph, it can be seen that a more dynamic process for correlation can now be

captured through the slight change in parameterization and its evolving process is no

longer wandering around a fixed value (unconditional correlation), but showing upside-

down changes. This decentralizing effect is especially evident for AGDCC model where

a BEKK-type specification is imposed for modelling covariance dynamics. Here, given

this dynamic feature, interpretation of the correlation results becomes much easier. See

the second row and second column of the above chart for example (exchange rate data

fitted by AGDCC model with interception term included): correlation now remains

relatively stable for the initial period and then experiences a gradual change (either going

up or going down) thereafter. This pattern accords with most empirical evidence

documented in financial literature that support the findings of a strongly persistent

correlation evolving process during the tranquil period. For risk managers, a correlation

model, capable of capturing features like this, is especially useful. As has been stated

previously, in finance, understanding the correlation risk correctly and hedging this risk

properly is by no means an easy task. If realized correlation follows a process like that

shown in Figure 7.10, definitively, it will be very difficult for a risk manager to react

correctly to the given information since only mean reverting process is implied.

In addition to AGDCC, a clear sign of correlation changes can also be observed when

correlation-targeting technique is removed from ADCC. For example, when this model is

fitted to exchange rate data (second row, first column of Figure 7.11), a smoothly

evolving process, with correlation steadily increasing its value from -0.3 to -0.1 during

the whole sample period, is observed. Although, in the initial stage, a period of constant

correlation still presents itself, it does not take long before this coefficient finally switches

itself to a dynamic process. Given this evidence, we now fit again all five sample sets of

data using asymmetric DCCs. Their parameter estimation results, together with one-step-

ahead correlation forecasts are presented in Table 7.15 and Table 7.16 respectively.

<Insert Table 7.15 and 7.16>
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First, for ADCC, as can be seen from Table 7.15, except for ς which governs the

correlation persistence, other parameters included in the modelling of covariance

dynamics are now found insignificantly different from zero.98 As for AGDCC, similar

results are also generated although one exception still needs to be noted. That is, when

stock index data is fitted, most of the parameter values are now large enough to reject the

null (parameter equalling zero). And this is the first time we successfully document

evidence for leverage effect in correlation dynamics. That is, in equity markets, when

overall market goes down, more shares tend to move in the same direction than in the

case when the index goes up by the same magnitude. This result is as expected because

asymmetric correlation is a stylized feature in equity market.

c. Comparison of ADCC with AGDCC

If we now summarize the information just provided for two asymmetric DCCs

(comparison of ADCC and AGDCC with correlation-targeting included and excluded),

one may be easily tempted to draw a conclusion that ADCC as a correlation model is,

actually, much less flexible than AGDCC. Indeed, if we look back to Figure 7.10 and

Figure 7.11, ADCC seldom leads its generated correlations to evolve dynamically, and

constant correlation as a result of this model is not rare. Compared to AGDCC, its poorer

performance can now be partially explained by the reduced number of parameters

included in its specification for modelling.99 Meanwhile, as have been implied in equation

(7.6), it maybe also due to the common dynamics assumed for its individual variances

,ii tq , ,ij tq  and joint covariance ,ij tq .100

However, if we take a step further, more encouraging results can be generated. Take the

occasional case where ADCC produces constant correlations for example (see second

98Here, we cannot, based on this feature, say that estimation result of ADCC is then not good. It is because
the standard error, from which t-statistics (the criterion of determining the significance of a parameter
different from zero) are calculated, is now computed using inverse Hessian matrix. And this Hessian
matrix is derived in optimization step of ML rather than through an explicitly analytical form. Thus, the
results could be spurious.
99 For example, in ADCC only three/four elements (targeting included/excluded) are incorporated to
modelling correlation evolving process whilst the similar dynamics in AGDCC need to be estimated using
six/nine parameters.
100 In ADCC, qii,t,, qjj,t and qii,t, are modeled using the same system of parameters.
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row and second column of Figure 7.10). If in (7.2) the positive definitiveness constraint

2 2 2| (1 ) | 0Q N       is now replaced by 2 2 2(1 ) 0Q N      , that is to constrain

all elements, rather than the determinant, in the two-by-two interception matrix to be

positive, dynamic property of the correlation process for ADCC then can be easily re-

obtained (see below).

Figure 7.12 Exchange rate data estimated by ADCC model with correlation-
targeting included and modified positive definitiveness constraint

Besides, compared to previously, its parameter estimation results also improve a lot.

Volatility parameters
ω1 α1 β1 ω2 α2 β2

value 1.12E-06 0.057319 0.89888 1.68E-06 0.083524 0.8899
s.t.d (8.76E-14)** (0.00013)** (0.000315)** (3.76E-13)** (0.00019)** (0.00044)**

Correlation
parameters Logliklihood

η ς ι -12609
value 8.81E-02 0.989 2.59E-02
s.t.d (5.82E-02)** (0.01904)** 0.15265

As can be seen, except for asymmetry factor, all other parameters included in covariance

equations are now found to be positive and significantly different from zero. In addition,

under this new constraint the resultant covariance is kept positive definitive although it is

not required to be so.101 Given this evidence, to obtain a good fitting result, the necessity

of properly tuning the constraints before estimating ADCC is thus highlighted. However,

101 Although it is preferred we can manually control the parameterization in optimization, imposing a
restriction like 2 2 2(1 ) 0Q N       for ADCC is not a sufficient condition to ensure positive
definitiveness because, even with all positive elements, interception term 2 2 2(1 )Q N     could still
have a negative determinant. However, in this particular case the determinant of this matrix is now found
to be positive.
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in terms of the flexibility, undoubtedly, it is still the AGDCC that provides the better

performance.

7.3.3 Asymmetric DCCs with t and skew t innovations

Above, we have examined the model performance of a range of traditional DCC variants.

Now, to increase their flexibility, we consider introducing more sophistication, e.g. to

combine ADCC/AGDCCC with a multivariate fat-tailed distribution. Note that, in this

research such attempt has already been made through the implementation of two mixture

models. However their inferences are studied in a Bayesian framework with massive

computational cost associated. Here, to take another look at ADCCs by enhancing their

tail behaviors. We consider incorporating a multivariate t distribution and one of its

skewed version and use a classically inferential approach to estimate the proposed models.

Similar experiments of combining a fat-tailed and skewed parametric distribution with

dynamic correlation models have already been studied in the literature. For example,

Cajigas and Urga (2005) combined GDCC with an asymmetric Laplace distribution.

Examples of a multivariate elliptical distribution with symmetric DCC are illustrated in

Pelagatti and Rondena (2004).

a. ADCC and AGDCC with multivariate t

For our purposes, first we assume innovations of ADCC/AGDCC to be bivariate t

distributed. Since log-likelihood function of a model with t errors can be written as
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we can easily obtain

 
' 1

1

1 2. | log(2 ) log log log 1
2 2

T
t t t

t t
t

RvL D R
v

 
 





          
   

           (7.8)

after DCC’s unique covariance equation t t t tD R D  and error term 1( )t t ty D   

are inserted to (7.7). Then, volatility parameters   and correlation parameters   can be
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respectively calculated after this log-likelihood function is maximized with respect to Dt

and Rt, using Gauss-Newton approach. That is, for estimating ADCC/AGDCC, we

decompose  . |L   into two functions and maximize them separately. Here, one function

is

   
1

. | log(2 ) log
T

t
t
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

        (7.9)

the other is

 
' 1

1

1. | log ( 2) log 1
2

T
t t t

t
t

RL R v
v

 






         
   

                      (7.10)

Given this information, we now present the fitting result of ADCC-t and AGDCC-t, with

correlation-targeting not included, to five sample data.

<Insert Table 7.17 and 7.18>

As can be seen, model performance, after fat tails are incorporated, now improves a lot

compared to those where only Gaussian innovations are assumed. For example,

calculated portfolio variances become much smaller than those reported in the previous

cases. However, for some particular samples, such as foreign exchange data estimated

using AGDCC-t, the fitting result is still not quite good, with none of its parameters

found capable of generating a different-from-zero value.

a. ADCC and AGDCC with multivariate skew t

Here, apart from the symmetric distribution, to exploit the ADCC mechanism on a further

basis, we also utilize a result documented in Fernandez and Steel (1998) and generalized

by Bauwen and Laurent (2002) to see whether the introduction of a skewness factor to

above t will again improve the fitting and forecasting results of dynamic correlation

models. Concerning this topic, some recent works, contributing to the generalization of a

symmetric distribution to a skewed one, need to be briefly reviewed first.

As we know, it has been a challenge for a while for econometricians to design a

multivariate distribution that is both easy for inferential use and compatible with

skewness and kurtosis of financial returns. Many efforts in this area are put onto

searching for a new parametric function, different from standard ones, to fit the empirical
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data. Typically, one can choose either an asymmetric Laplace distribution, a hyperbolic

distribution or a normal inverse Gaussian. Besides, in some research it is also suggested

that we can use standard ones as base distribution to introduce non-linear dynamics using

additional parameters. For example, in the univariate context Hansen (1994) proposed a

skewed version of student t. By changing the scale of third moments (skewness) at each

side of mode, Fernandez and Steel (1998) developed a similar method to introduce

asymmetry to any continuous and unimodal distributions and the skewed normal

discussed in their paper was soon generalized to other versions (See Lambert and Laurent,

2000, and Jones and Faddy, 2000). In the multivariate context, the first skewed Gaussian

was proposed in Azzalini and Capitanio (1996) where the authors used a combination of a

p.d.f and a c.d.f to form an asymmetric density. Branco and Dey (2000), based on their

works, introduced a general class of multivariate skew-elliptical distribution, Arnold and

Beaver (2000) proposed the multivariate skew Cauchy, Azzalini and Capitanio (2003)

studied the multivariate skew t. Bayesian inference of the same model is calculated in

Lochos, Cancho and Aoki (2008). Recently, skewed versions of these standard

distributions have also been used to form mixture distribution. For example, to handle

highly asymmetric data, Wang, Ng and McLachlan (2009) developed multivariate skew-t

mixtures using EM as an inferential tool. Lin (2009) derived the maximum likelihood

estimator for parameters in multivariate skew normal mixture distribution.

Concerning our research purpose, we now use Bauewen and Laurent’s (2002) skew t to

enhance DCC models. In terms of the generality, this distribution is so flexible that can

nest a variety of alternatives such as normal, student t, Cauchy, skew-normal, skew-

cauchy. Since only bivariate data is to be analyzed, its density function can be defined as

* *1 2
2 2

1 2

( | , ) 4 ( | , )
1 1 vf y t    

 
 

 
(7.10)

where ( | , )vt   denotes the p.d.f of a standard t,  represents the skewness parameter,

* * * '
1 2( , )    where * * iI

i i iy    for i=1,2 and Ii equals one if *
iy is positive and

minus one otherwise. Usually, since empirical data before filtration is not centered on
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zero, standardization is required to transform the raw data first so that (7.10) can be fitted.

Based on this virtue, we now consider using the method suggested in Fernandez and Steel

(1998) to obtain standardized innovation. That is, we calculate *( ). /y y m s  where

mean m and variance s are respectively given by

1( ) 2 12
( )
2

i i
i

v
vm v 
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
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           (7.11)

Thus, in an expanded form, (7.10) can also be defined using
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Here, to understand this asymmetric distribution more clearly, it is necessary to bear in

mind the concept of M-symmetry for a multivariate density. As Bauwen and Laurent

(2002) illustrated, “… a unimodal density g(x) defined on Rk (k dimension) is symmetrical

if and only if for any x, g(x)=g(Qx), for all diagonal matrix Q whose diagonal elements

are equal to 1 or to -1…” . Thus, in a bivariate case it is required that

1 2 1 2 1 2 1 2( , ) ( , ) ( , ) ( , )g x x g x x g x x g x x      

And, in maximum likelihood, four situations then need to be categorized and evaluated

before a realization of xi can be input to log-likelihood function. As for 2 , since it has

been shown in (7.11) that this variable now determines the ratio of probability masses

above and below the mode, skewness then can be defined based on it. For example, if

 is significantly larger (less) than one, target distribution is then said to be skew to the

right (left), and observations have a tendency to generate positive (negative) skewness.

Analogously,  equaling one is an indication of symmetric distribution. (See Lambert

and Laurent, 2000, and Bauwen and Laurent, 2002, for more interpretation of using

log  as an indication of skewness).
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Moreover, since the sign of xi is now an essential factor relating to the calculated

skewness, a proper transformation of the original observations is needed before

estimation. Since raw asset returns y now need to be transformed *y y and

standardized *y   before input to skew t, a potential problem for estimation then

arises. Specifically, in calibrating DCC models, usually we adopt a two-step estimation

procedure to fit the sample data. This method is valid because univariate volatility Dt and

correlation Rt have their own parameters and these parameters will not contaminate the

log-likelihood function specifically given for the other component of covariance matrix.

For example, GARCH parameters used to fit Dt are not related to the inference

concerning any parameters governing Rt. Thus, their log-likelihood function is separable

for estimation. However, in this case where a skewed t is assumed, asset returns then need

to be properly transformed before they can be input to calculating Dt and Rt. Since this

transformation is now determined by a common factor  , decomposition of the log-

likelihood function might be improper. However, it is not equal to saying that the two-

step procedure suggested in Engle (2002) will then produce invalid parameter estimates.

The major concern here is only ‘when to impose this transformation’. As known from

previous chapters, DCC correlation Rt is often modelled using a univariate GARCH

where innovations are asset returns standardized by calculated Dt. Since it is widely

accepted that returns, after being standardized by GARCH volatility, will only show a

lesser degree of fat tails (since GARCH can help capture the volatility clustering) whilst

leaving skewness in most cases unchanged, there is then a motivation to apply the

transformation not in the process of generating Dt but after return is standardized. That is,

in step 1( )t t ty D    . To see the visional proof for this argument, we present below

the comparison of kernel density plot of, say, stock and bond data before and after

standardization by univariate GARCH volatility.

Figure 7.13 Kernel density plot of stock and bond data before and after
standardization by univariate GARCH volatility

a. Before Standardization
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  b. After Standardization

From kurtosis estimates, one can easily confirm the downgrade of high peakedness for

returns after being standardized by GARCH volatilities. However, as for skewness, no

significant change is then observed, suggesting that two-step procedure is still a valid, but

probably not very efficient, way of calculating DCCs’ inference.102

Given this feature, we now illustrate the estimation procedure of ADCC-skew-t and

AGDCC-skew-t in the following. As before, we first define the whole log-likelihood

function for ( , , , )v    . That is,
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   (7.13)

Then, we derive decomposed functions  . |L   and  . |L   respectively corresponding

to volatility parameters and correlation parameters. 103  Here, since degree of freedom

102 Here, it is necessary to bear in mind that parameters calculated from maximizing an un-decomposed
log-likelihood function would be statistically more consistent, optimal and desirable in this particular case.
103 In some textbooks, (v-2) is replaced by v so that ' 'log[ (( 2) / 2) / ( / 2) ] log(0.5)v v v    and this

quantity in estimating  , , . |vL   can be eliminated.
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parameter v, skewness factor  and  . |L  can be defined in one single function, we use

 , , . |vL   to denote it. Thus,
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  (7.15)

can be obtained after t t t tD R D   is input to (7.13) and return is standardized by

1( )t t ty D     and transformed by a function of  . Here, if covariance matrix in (7.13)

is modelled by (7.4), parameter values of ADCC-skew-t can be obtained after (7.14) and

(7.15) are respectively maximized with respect to   and ( , , )   . Those of AGDCC-

skew-t can be calibrated if (7.5) is now utilized.

Next, in Table 7.19 and Table 7.20 we present the fitting results of these models to

simulated and empirical data.

<Insert Table 7.19 and 7.20>

As can be seen, compared to previously, more parameters are now able to generate a

sensible value which is significantly different from zero. Outperformance of skew-t

versions of asymmetric DCC models over the ones assuming either Gaussian innovations

or symmetric t innovations is documented throughout the cases and this outperformance is

usually reflected through a reduced value for portfolio variance in optimization after

skewness in asset return distribution is taken into account. For example, when the second

simulated data is analyzed, minimized variance generated using ADCC-skew t is 0.5671,

much less than those (0.6567 and 0.7892) generated by ADCC-t and ADCC-Gaussian

(reported in Table 7.17 and Table 7.15). Concerning the skewness, although each marginal

is now given a specific coefficient, only in fitting stock index data is significant evidence

for asymmetry (negative skewness) observed.



- 205 -

Now, to obtain a brief idea of how symmetric t and skewed t would really affect the

distributional characteristics of multiple returns being modelled, we use stock index data,

for example, to present mesh plots using these two densities. Parameters ( , ,   ) used to

generate these plots are obtained from Table 7.18 and Table 7.20 respectively. Besides,

also presented is a dotted line, representing (0,0,Z) in 3-D surface, as a reference to the

bivariate symmetry.

Figure 7.14 Mesh plot of multivariate symmetric t- and skew t- distributions

generated from parameter estimation results of stock index data.

As can be seen from the above graph, on the right-hand side where a symmetric t is

presented, the distribution shows clear evidence of symmetry around the reference line.

However, when the left one is analyzed, bivariate density then clearly skews to the

negative observations (peakedness is obtained on the positive domain), which confirms

again most of the empirical findings that negative returns are more likely to be observed in

equity market than positive ones. Concerning the peakedness of these two densities, they

roughly stay at around 0.15, a value much lower than those observed in the simulated data

(Figure 7.1) where the appearance of 0.3 or even 0.4 is not unusual. This is as expected

because, after estimation, stock index data show a much lower degree of higher moments

than those manually assumed in simulated ADCC-MGM data and simulated ADCC-MTM

data. And the left one (multivariate skew t) presented a slightly higher degree of

peakedness than the right one because, in a skewed version, asset returns need to be

contaminated with a function of skewness factor and degree of freedom to reinforce the
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higher moments such as extra kurtosis so that these contaminated returns can be input to a

standard symmetric t with skewness factor again added to tilt the distribution.

7.3.4 Comparison of portfolio variance

Above, while we propose competitors for ADCC mixture models, a range of comparisons

of model performance among these alternatives have already been launched. For example,

we have compared the correlation dynamics with and without targeting techniques

incorporated, ADCC- structure with AGDCC- structure and correlations generated by

mechanism assuming different distributions.  Here, since our main aim is to see whether

the increased sophistication introduced by mixture models is economically worthwhile and

in this thesis we use minimized portfolio variance as the main tool for discriminating

between different models, a summary of this result is then provided below.

<Insert Table 7.21>

From Table 7.21, it can be clearly seen that ADCC mixture models now perform the best

among all DCC variants in terms of being able to generate the lowest portfolio variance.

Averagely speaking, ADCC-MTM, which has the most sophisticated mechanism assumed

for its correlation evolving process in this research, is also the most capable model to

produce a portfolio which can generate the stable profit/loss. For example, if stock and

bond data is used to construct a portfolio, the overall risk (portfolio variance) generated by

using this mixture model is only 0.0009 whilst that generated for ADCC-MGM is 0.0012

and 0.00318 for ADCC-G. Here, note that compared to the asymmetric DCC model with

only one Gaussian component incorporated, this mixture model now successfully reduce

the portfolio variance a substantial amount (nearly 71.9%). Similar evidence can also been

observed when exchange rate data is fitted. However, as for the stock index data and

simulated data, outperformance of mixture model over its competitors is then not evident

any more. Similar values for quantifying the portfolio risk are derived by all types of

correlation models. However, it is fair to say that, generally speaking ADCC mixture

model is still the best performer given that portfolio returns are now all set to be equal.

7.3.5 Comparison of correlations and returns
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a. Comparison of In-Sample correlations

In previous sections, we have analyzed the correlation dynamics under different scenarios.

Now, to obtain a more detailed idea of their relative performance, we plot their sample

paths. First, for ADCC and AGDCC, whose innovations are assumed to be bivariate

Gaussian-distributed, we calculate their dynamic correlations for two simulated and three

empirical data. Then, the same models, combined with multivariate t and multivariate

skew-t, are estimated with correlation dynamics respectively plotted in Figure 7.16 and

7.18. Here, note that, for these models, we use a constant term, instead of targeting, to

model interception parameter. Finally, as a comparison, sample paths of ADCC-MGM-

generated correlation and ADCC-MTM-generated correlation are also presented.

Figure 7.15 Time series plot of dynamic correlation generated from ADCC-Gaussian
and AGDCC-Gaussian model

Figure 7.16 Time series plot of dynamic correlation generated by ADCC-t and
AGDCC-t

Figure 7.17 Time series plot of dynamic correlation generated from ADCC-skew t and
AGDCC-skew t
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Figure 7.18 Time series plot of dynamic correlation generated from ADCC-MGM
and AGDCC-MTM model

From Figure 7.15 to 7.18, the diagrams presented in the first column report the correlations

generated by ADCC model. Analogously, those plotted in the second then correspond to

AGDCC correlation. As can be seen, most of the bivariate relationships considered above

do not fluctuate significantly and a smooth evolving process for correlation is observed

throughout the time. The only exception here is for stock and bond data where the dynamic

property of correlation can be confirmed on a consistent basis in all ADCC and AGDCC

results.

b. Autocorrelation test for standardized return and volatility

Apart from the correlation, in this research we are also interested in seeing whether the

asymmetric DCCs are adequate for capturing the dynamics in conditional returns and

conditional volatilities. For examining these properties, two hypothesis tests are carried out.

First, we perform the Jarque-Bera test to examine univariate normality of innovations after
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they are standardized by 1/ 2 ( )t t ty    . Then, Box-Pierce statistics are calculated with

20 lags on resultant residuals and squared residuals to see whether autocorrelation is

present. Here, for both tests, we set the significance level to 95% and report p-values in

Table 7.22. Similar tests for raw (un-standardized) returns have already been performed

and reported in summary statistics (See Table 7.1 and 7.5 for details).

<Insert Table 7.22>

Clearly, from the table, univariate normality is now firmly rejected in the majority of cases.

This result is as expected because it is coherent with most empirical findings, that is,

GARCH volatility can only account for, to certain degree, extra kurtosis exhibited in

unconditional returns. And there are still some unaccounted factors that need to be taken

care of in the modelling of conditional second or even higher moments. Concerning the

autocorrelation result, it can be seen that randomness of standardized innovations and their

second moments (square of standardized residuals) are now confirmed for both simulated

data. However, for empirical data, a different situation then arises. Strong evidence is

found in standardized exchange rate returns and their volatility to accept the null

hypothesis of zero autocorrelation. However, for US and UK stock indexes it is then

rejected with a close-to-zero p-value, suggesting that a higher order of autoregressive- AR

or moving average- MA lag (larger than two) is now needed to enhance the mean equation

to take extra serial dependence in conditional returns into account. However, such

evidence for conditional volatility is not very prominent.

In the univariate context, since it is now known that, except for stock index data,

asymmetric DCCs perform sufficiently well to strip the serial dependence in conditional

mean (return) and conditional variance (volatility), it is then also interesting to see whether

this performance will hold when multivariate cases are examined. For example, we can test

whether the unconditional correlation calculated from standardized innovations will still

remain at a level similar to those generated from unstandardized ones and whether the

calculated correlation after return, already filtered by a dynamic correlation model, will

still present a strong dynamic property or, in a similar vein, whether our asymmetric DCCs
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used here are good enough to capture all the dynamics implied in the unconditional

correlation’s evolving process.

c. Constant correlation test for standardized return and volatility

For this purpose, we now compare the unconditional correlation of sample data before-

and after- standardization by GARCH volatilities and exploit a result from Engle and

Sheppard (2001) to test the constant correlation hypothesis for the same sample period.

Concerning this test, the null is now set to be H0: tR R  for t  and we test it against H1:

* * *
1 2 n      in * * * *

0 1 1 2 2t t t n t nX X X X           for all n lags

where '( )n
t t tX vech I   , t is standardized residuals and vechn is a vech operator only

selecting elements under the main diagonal (for a similar test for constant correlation, see

also Tse, 2000). Results of this test are documented in Table 7.23.

<Insert Table 7.23>

From the table, strong evidence now can be observed for a consistently good performance

of asymmetric DCCs in modelling correlation dynamics. Before returns are standardized,

unconditional correlation usually stays at a relatively stable level. For example, for

simulated ADCC-MGM data and stock index data, it respectively equals 0.8 and -0.31.

However, after ADCC and AGDCC are fitted with a range of distributional assumptions

such as Gaussian, t and skew t, and returns are standardized by their calculated covariance,

this quantity then immediately approaches zero in all of the cases, suggesting that

correlation dynamics are now sufficiently well captured by given DCC models after

filtration. To obtain a more objective opinion, here we perform Engle’s constant

correlation test. Concerning its results, now, on only several occasions are p-values of its

statistic found below 0.05 (for example, when ADCC-Gaussian is used to fit stock and

bond data, AGDCC-t is used to fit exchange rate and ADCC-skew-t is used to estimate

simulated ADCC-MTM data), suggesting that the null of a constant correlation is rejected

and the dynamics in correlation evolving process are not sufficiently captured and can be

further exploited using the current model. For all others (27 out of 30 samples) dominating
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evidences then confirm the filtering power of asymmetric DCC models on conditional

returns, volatility and correlation.

Moreover, here there is also another important result worth noting. That is, before returns

are standardized, only stock and bond data show clear evidence of dynamic correlation and

these dynamics can be steadily captured after DCC model is put, step-by-step, onto a more

sophisticated level, while others accept the null, suggesting a stable correlation evolving

process. This result has important implications because it finally explains the puzzle

of ’why a dynamic correlation model does not always produce dynamic correlation’, which

is in several occasions presented in the previous sections. Given this result, the non-

dynamic (or sometimes constant) correlation evolving process generated for exchange rate

data, simulated ADCC-MGM data and simulated ADCC-MTM data are then no longer

unexpected.

Now, since this finding clearly contradicts our initial conjecture (correlation is dynamic),

we highlight it in broader terms and reveal the necessity of revisiting the basic motivation

of proposing a dynamic process for modelling correlation. Indeed, massive empirical

evidences have documented that volatility is time-varying and will change dynamically,

and that correlation also follows a similar process. However, the extent to which

correlation might change as dynamically as volatility is still unknown. Although

correlation can be manually modelled as if it follows a dynamic process (just like the cases

discussed in our sample), empirical observations sometimes still support the evidence of a

constant correlation especially when the sample size is not large enough to include any

significant events affecting both assets. Such events for correlation are especially

important because they can lead to the identification of a potential structural change (recall

that, in credit portfolio, a small increase of correlation can result in a significant tilt in

distribution). Thus, for the time being, unless such events are observed, correlation in a

relative term is often considered to be following a stable process. To this end, the presence

of constant correlation in our results then can be partly explained by a pure coincidence or

just a result of relatively small-sized sample data because, if we now re-examine, say, the
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correlation between S&P500 and FTSE100 using 12 years’ data (previous: T=1000; now:

T≈3000), evidence then clearly supports a strong dynamic process.104 The time invariant

correlation is no longer the case in this larger timescale.  Besides, given this finding, it is

also natural to expect that using a jump diffusion process to fit correlation could

potentially yield more desirable results because persistence and structural changes in this

process can be simultaneously accounted.

7.4 Summary

In this chapter we have illustrated the estimation result of two mixture models and

examined their performance from a range of perspectives including asset allocation and

risk management. In simulation studies, we found that, for most parameters, empirical

moments calculated from posterior draws are good estimators to approximate their

corresponding true values. ADCC-MTM outperforms ADCC-MGM in terms of being able

to generate a lower portfolio variance in optimization and a more sensible VaR result.

However, in several cases, undesirable results are also documented. That is, in simulating

some particular volatility parameters and correlation parameters, their generated posterior

moments fail to approach corresponding theoretical values closely enough although

statistical convergence of their resultant chains can be confirmed. Concerning the

empirical investigations, in this research we analyze three different correlation scenarios

(positive, negative and zero) and portfolios with assets of different classes and assets in

different markets. After simulation, we found that, for foreign exchange data, appeals of

modelling unconditional return using two-component mixture is not very significant

because weight parameter and degree of freedom parameter which respectively govern the

proportion of the mixture and tails behaviour of each component is roughly the same.

However, for stock and bond data, a good fitting result is reported. Concerning the

asymmetric factor, only when stock index data are fitted have time-varying correlations

104 Indeed, we hope to choose a very large dataset for empirical analysis. However, it cannot be denied a
balance always has to be made between computational costs and efficiency in estimation. As has been
highlighted already, since a major deficiency of our proposed mixture model is their extremely high
computational cost, it is then preferable to choose a relatively small sample size for analysis. However, to
ensure the asymptotical normality in estimating GARCH using QML, this sample size in the meantime
cannot be allowed too small. Thus, in every case we let our sample include at least 1000 observations.



- 213 -

shown a different response to negative news and positive news. Besides, another major

topic in this chapter is to compare the model performance of mixture models with a variety

of alternative DCCs. Here, it is especially worth noting the ADCC-skew t and AGDCC-

skew t proposed and estimated in our paper. This is because these models are so

generalized that can nest a range of standard conditional correlation models and also for

the first time analyzed in financial literature. Concerning their results, strong evidences are

found that, except for mixture models, they are the best among all alternatives on account

of the flexibility and economic benefits (being able to generate the lowest portfolio

variance among DCC variants). Finally, in this research we also prove that ‘whether the

correlation is a dynamic process’ is actually an empirical problem, depending on the

sample to be analyzed.
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Chapter 8

Conclusion
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8.1 Summary of findings and discussion

In this research, we focus on modelling the time-varying correlation using a variety of

techniques. The whole thesis, in terms of the empirical analyses performed, can be divided

into two parts.

In the first part, after reviewing a large amount of literature on covariance modeling, we

use a variety of existing time series tools including historical correlation models, EWMA

and GARCH variants to forecast the conditional correlation in two currency trios over the

next week, next month and next quarter. Then, these forecasts are compared to implied

correlations generated by using option prices as information processor. Here, for

calculating implied correlation, contrary to most early researchers, who used implied

volatility collected from a particular market participant, we utilize an index provided by

British Bankers Association (BBA). The benefits of choosing this data are massive. Most

importantly, it is because different opinions on how future volatility will move can be

synthesized and we can now, through this index, obtain a thorough market view. After

empirical analyses, we find the ‘best' model to forecast future realized correlations is

actually very sensitive to the loss functions used to evaluate them. Although implied

correlation is able to consistently convey valuable information to accurately forecast the

‘true’ correlation in different trios, its cross-horizon performance is not uniform. Among

the time series tools, simple forecasts calculated from the historical correlation model and

EWMA can frequently produce an unbiased estimator for approximating realized

correlation. However, in terms of the forecasting accuracy, these models are

overwhelmingly outperformed by other competitors. Besides, our findings suggest that

using GARCH models can generate information not obtainable from option prices.

However, its advantage of capturing the time-varying characteristics of correlation is not

fully exploited. For instance, in our sample a subtle tendency is to favour the flat-term-

structure model, i.e., CCC of Bollerslev (1990). From the encompassing test results, we

find the combination of historical information source and option-derived information

source can produce a more accurate correlation forecast than using any single technique.
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Furthermore, the explanatory power of the regression, after applying this strategy, can

substantially arise.

Besides, in the same analysis, some interesting results are also worth mentioning here. For

example, we find that long-term correlation can be more accurately forecasted than short-

term correlation. This result is as expected because the former process usually tends to

show more stable distributional characteristics than the latter one. Meanwhile, in several

occasions, unconditional distribution of realized correlation is found presenting multi-

modality, suggesting that market views may have diverged on ‘how future correlations will

move’. Given this feature, it is then implied that, by adopting a mixture technique,

correlation probably can be more accurately estimated and forecast. To test this hypothesis,

we devote the second part of this thesis specifically to developing two new conditional

heteroskedastic correlation mixture models.

As before, firstly we review a variety of mixture modelling techniques and their associated

inferential methods (both classical and Bayesian) so that the questions of ‘how to construct

our target models and how to estimate them’ can be answered. Then, after assuming the

innovations of multiple returns to be respectively multivariate Gaussian mixture-

distributed and multivariate T mixture-distributed and the correlation evolving process

modelled using ADCC of Hafner and Franses (2003), specifications of ADCC-MGM and

ADCC-MTM are then given. For estimating these models, we use Griddy-Gibbs sampler

of MCMC to calculate their Bayesian inferences. And their model potentials are examined

in two simulation studies as well as through three empirical investigations.

After posterior simulation, we find inferential results generated for simulation studies are

generally good but not quite uniform. For most parameters, their resultant chains are found

to be converged and can produce useful distributional information. Posterior means (or

modes in the case of an asymmetric posterior density) of most chains are very close to

their corresponding theoretical values set in either DGP1 or DGP2. However, in some

cases, non-convergence is also documented, with a large gap observed between calculated

posterior mean and true values. Concerning the empirical investigations, the usefulness of
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ADCC mixture models for estimating correlation dynamics is demonstrated in four out of

six cases. Only when exchange rate data are fitted, using one-component ADCC is found

economically more beneficial. This is because posterior results of these data estimated on a

two-component model now support equal mixing, and tail behaviours of two Gaussian/T

components assumed in the mixture are also found roughly the same. Thus, for this

particular case, by substituting the proposed models with either ADCC-Gaussian or

ADCC-T, we can obtain the same quality of inferential results while saving a substantial

amount of computational costs.

Besides, in this research we also confirm the superiority of our correlation models over a

variety of alternatives such as CCC, DCC, ADCC, AGDCC and their variants. From a

range of perspectives (both statistical and economical), we compare these models’

performances in forecasting future correlation, generating VaR estimates and minimizing

portfolio variance. Among competing models, here it is especially worth noting ADCC-

skew t and AGDCC-skew t, proposed and estimated in this paper, because these models are

so generalized that, except for ADCC-MGM and ADCC-MTM, they can nest all other

conditional correlation models mentioned above. As a response to their parsimonious

specification and great flexibility, they are also found, in the majority of cases, to

outperform their competitors.105 Only when mixture models are included, they become the

second best. Now, as far as the generality and economic benefits of a model are concerned,

unquestionably, in this research it is still the mixture ones that perform the best. Strong

evidences have been found to confirm their superiority, on a consistent basis, over all other

alternatives. And ADCC-MTM can outperform ADCC-MGM in terms of being able to

generate a comparatively even lower portfolio variance in optimization and a more

sensible VaR result on account of the extreme events.

Now, leaving aside temporarily the aforementioned posterior results, it is important to

mention that all correlation dynamics modelled, calculated and forecast above are

theoretically valid only when certain hypotheses are realized. Recall from Chapter two that

105 For ADCC-skew t and AGDCC skew t, high moments of multivariate distributions can be accounted
using only a moderate number of parameters.



- 218 -

these assumptions are respectively, the existence of a realistic causality between assets

being modelled, univariate and jointly multivariate normality for their distributions and

financial variables supposed to be only linearly associated with each other. The first and

third conditions can be easily satisfied if a proper interpretation of the result is given.

However, concerning the second, univariate normality and multivariate normality for most

data used in this research are then firmly rejected. Given this feature, arguably, the validity

of our results is then open to challenge.  However, needless-to-say, in financial literature

invalid results due to the violation of normality is nothing unusual. As has been confirmed

by countless researchers, returns, even after being fitted by a heteroskedastic model which

can capture the volatility clustering and fat tails and standardized by its calculated

volatility, would still not, in most cases, show Gaussian characteristics. Since non-

normality is a matter of common sense for financial data, this challenge to our sample is

not massive, though undoubtedly it exists.

8.2 Contributions and Implications

Concerning our contributions to the current literature, they are threefold. First, on the

theoretical side, we extend the existing framework for (covaraince) correlation modelling

by incorporating advanced distributional techniques so that excess skewness and fat tails

can be more flexibly accounted. Specifically, in the parametric framework we use a

skewed version of symmetric t, and in the semi-parametric framework apply a mixture

modelling techniques. Here, it is especially worth noting the correlation mixture models. A

major advantage of these models, not shared by others, is their capability to allow for

multi-modality. If, say, multiple opinions on ‘how future market will move’ are now

formed among different investment groups and these opinions are sufficiently different

from each other, we can then use mixture models to reveal the heterogeneity of investors

and extract their expectations. Applied to a correlation model, since the changes in market

behavior (due to the involvement of different investors, either geographically or

psychologically) will eventually be transmitted to parameters of covariance equation and

reflected through correlation dynamics, we can then, by plotting the kernel density of

calculated correlation, to obtain an indicator for any potential divergence on market
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expectation. Besides, on the theoretical side, it is also worth noting that not only volatility

and correlation, skewness of asset returns, given a correlation mixture model, is now also

allowed to be time-varying. Since dynamic feedback between different components is

permitted, there is no need to impose a specific evolving process for this conditional

moment. The time-varying property for skewness is inherently given by the mixture

model. 106  Second, on the computational side, in this research we demonstrate Griddy

Gibbs sampler is a valid and easy-to-implement MCMC technique for estimating

parameters of mixture models, although its associated computational cost is massive.

Finally, on the empirical side, we confirm that, compared to a variety of alternatives, both

ADCC-MGM and ADCC-MTM are better time series tools for forecasting future

correlation, generating optimal portfolio and deriving sensible VaR results. Besides, since

parameter uncertainty is allowed, we can also use them to obtain distributional information

of, say, the next day’s returns.

With respect to the implications of this research, two things need to be noted. First, our

initial conjecture of modelling correlation as a dynamic process has been proved as an

empirical issue. Various evidence found in this research supported a constant correlation

between financial returns. However, when the sample size is enlarged, test results then

favour the dynamic correlation again. Given this feature, ‘to what extent correlation is a

dynamic process’ then become a sample-specific question and it needs to be put into a

broader framework for analysis. Second, as for the asymmetric correlation, only when

stock index data are fitted, we have confirmed its existence. Concerning all others,

conditional returns then tend to give similar responses to both positive news and negative

news. This result is not surprising because similar findings have already been documented

by other researchers. For example, Baur (2003) found little evidence for correlation

increasing with jointly negative shocks. This result has important implications for portfolio

selection. Since it is usually expected correlation of various assets will rise when the

overall market is going down and portfolio diversification in this scenario usually loses its

106 Concerning this property, it can be numerically proved by writing conditional skewness as a function
of conditional mean and conditional variance.
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appeals when it is needed the most, theoretically, if this is proved not to be the case one

can then utilize the traditional approach to buy assets having negative correlation with the

one which is currently held, to hedge the overall market risk.

Besides, for portfolio manager, using our correlation mixture model can also bring other

benefits. On one hand, since it has been confirmed that in this research the new proposed

model can provide an economically better performance than the traditional DCC in terms

of being able to generate the lowest portfolio variance, given that the portfolio returns of

all competing models are set to be equal, it is then fair to say the ADCC mixture model is

actually a very suitable tool for calculating the optimal weights of each asset to invest. On

the other hand, since the inference of mixture model is now calculated using Bayesian

method through the implementation of a stochastic simulation technique. Parameter

uncertainty is obtainable after the inference calculation. That is to say one can now know

more about the parameter risk concerning the model when it is applied to the real financial

data. This information is valuable because it cannot be easily obtained through any other

classical inferential approaches such as maximum likelihood or EM algorithm and can

help a portfolio manager to obtain a more objective view on his model’s performance.

Least but not last, as have been mentioned in the start of this section, using ADCC-mixture

model can also help a portfolio manager to gauge the market sentiment more accurately

and make right decisions. Through modelling return distribution using a mixed way, any

modes appearing in this distribution then can be regarded as representing the views of a

group of investor on how the future market will move. Therefore, if the overall market

sentiment does diverge, one can then easily detect this trend through the multi-modality.

8.3 Limitations and suggestions for future study

Apart from the positive contributions, undesirable and unexpected results were also

generated in this research. For example, in the first empirical analysis, cross-horizon

forecasting performance of implied correlation was found to be very confusing. In the Yen

trio, these correlations are reported, in only one case, overwhelmingly dominating all other

time series forecasts across two horizons analyzed. However, in the GBP trio no such
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evidence is reported again and indeterminacy results are documented in the majority of

cases. This result clearly contradicts to those documented in cross-trio forecast comparison.

According to the evidences provided in partial optimal test (See Table 3.3) and

encompassing regression test (See Table 3.5), implied correlations are found, in both trios,

to be able to outperform other forecasts on a consistent basis, and the usefulness of option-

driven information is confirmed in most cases. Here, although we can attribute the non-

uniform cross-horizon performance of implied correlation to the different dynamic

processes being modelled (one short-term correlation and one long-term correlation), a

more plausible explanation needs to be found in further research.

Concerning the second empirical analysis, disadvantages of using correlation mixture

models are evident. Since ADCC-MGM and ADCC-MTM have both assumed a very

complex specification and estimation of their specification needs extremely high numerical

efforts, the empirical potential of these mixture models are then quite limited. As a

response to the stringent demands of practical asset allocation and practical risk

management on parsimony, they then clearly cannot be applied to solve any system of

medium or large size (a portfolio with many assets).

However, this does not mean that our mixture models cannot be improved. For example,

we can, by exploiting a result from Anderson et al. (2003) and Andersen et al. (2005),

enhance our models’ parsimony. Since, in their research, it was proved that true volatility

of low frequency can be closely approximated using realized volatility of higher frequency,

based on the DCC modelling virtue we can then use these volatilities to standardized

conditional returns so that resultant innovations can be input to a heteroskedastic model to

re-estimate correlation. In so doing, the GARCH specifications, along with their

parameters previously assumed in ADCC-MGM and ADCC-MTM for fitting univariate

volatility can then be eliminated. Besides, in Chapter 7 we have already reported that, in a

number of cases, mean parameters are also frequently found to be close to zero. Thus, by

eliminating these parameters altogether, numerical difficulties of estimating mixture

models are then expected to be substantially relieved.
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In addition, a new direction of research can also be proposed if mixture model is now

extended using skew-t or asymmetric Laplace as components. If our task here is only to

increase the generality, one may argue that a potential solution is to add another

component to ADCC-MGM or ADCC-MTM, and there is no need to propose a new

mixture. Indeed, given a series of highly asymmetric observations showing multiple modes,

one is very easily tempted to use a multi-component (larger than two) mixture for

modelling financial data. However, Wang, Ng and Mclachlan (2009), in a recent study,

pointed out that “… increased number of pseudo-components could lead to difficulties and

inefficiencies in computations. Also, the contour of the fitted mixture components may be

distorted….” Thus, it is preferable to keep the number of components relatively low (or

unchanged) while using a more flexible density as base distribution to construct the

mixture. Based on this virtue, skew-t, which can allow for both skewness and fat tails in a

multivariate distribution, is then an ideal choice. To author’s knowledge, little work has

been done in this direction. Here, only two papers are worth mentioning. One is a recent

study by Lin (2009), who developed the maximum likelihood estimators for multivariate

skew normal mixture. The other is by Wang, Ng and McLachlan (2009), who proposed the

multivariate skew t mixture using EM as an inferential method.
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Table 7.1 Summary Statistics and hypothesis test results of data simulated
using DGP1 and DGP2

Panel A. Simulated bivariate Two-Component MGM distributed innovations with
ADCC(1,1) covariance incorporated. (Sample size: 2000)

Unconditional correlation: 0.8023

DGP1: (MGM)
Mean 0.0003 0.0014

Median 0.0013 0.0009
Maximum 0.2856 1.0270
Minimum -0.2861 -0.8712

StandardDeviation 0.0900 0.2611
Skewness -0.0213 0.0447
Kurtosis 2.7542 3.9294

Uni-Normality  (p-val) 0.4121 0.0005
Multi-Normality (p-val) 0.1143

This table presents seven descriptive statistics and results of two hypothesis tests for data simulated using

first Data generating process (DGP1) which corresponds to ADCC (1, 1) model with two-Component

Gaussian Mixture distributed disturbances

Panel B. Simulated bivariate Two-Component MTM distributed innovations with
ADCC(1,1) covariance incorporated. (Sample size: 2000)

Unconditional correlation: 0.7943

DGP2: (MTM)
Mean -0.0052 -0.0079

Median -0.0049 -0.0059
Maximum 0.8121 1.2022
Minimum -0.4848 -1.5683

StandardDeviation 0.1086 0.3053
Skewness 0.1270 -0.0334
Kurtosis 5.6068 5.3456

Uni-Normality  (p-val) 0.0005 0.0000
Multi-Normality (p-val) 0.0000

This table presents seven descriptive statistics and results of two hypothesis tests for data simulated using

second Data generating process (DGP2) which corresponds to ADCC (1, 1) model with Two-Component

multivariate T Mixture distributed disturbances
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Table 7.2 Posterior estimation result of simulation studies (sample size: 2000;
number of iterations: 10000 (Burn-in) and 5000 (In equilibrium))

Panel A. ADCC-MGM model estimated on simulated data based on DGP1

Mean Median Mode S.t.d Max Min
π1 0.6864 0.6855 0.6910 0.0329 0.7918 0.5678
μa1 0.0009 0.0010 0.0010 0.0026 0.0081 -0.0077
μb1 0.0052 0.0055 0.0086 0.0079 0.0247 -0.0214
ωa1 0.0056 0.0057 0.0060 0.0012 0.0081 0.0022
ωb1 0.0494 0.0508 0.0529 0.0119 0.0681 0.0071
ωa2 0.0042 0.0042 0.0044 0.0014 0.0077 0.0003
ωb2 0.0035 0.0034 0.0035 0.0018 0.0091 0.0005
αa1 0.0266 0.0231 0.0066 0.0202 0.1325 0.0000
αb1 0.0323 0.0271 0.0064 0.0237 0.1278 0.0000
αa2 0.0774 0.0619 0.0204 0.0631 0.4086 0.0000
αb2 0.0409 0.0333 0.0112 0.0318 0.2236 0.0000
βa1 0.2573 0.2413 0.2448 0.1553 0.6988 0.0003
βb1 0.3959 0.3816 0.3433 0.1452 0.8956 0.0459
βa2 0.2997 0.2853 0.3231 0.1936 0.9230 0.0001
βb2 0.1838 0.1443 0.0428 0.1661 0.8558 0.0000
η1 0.0780 0.0650 0.0165 0.0590 0.3273 0.0001
η2 0.1852 0.1601 0.0306 0.1366 0.6095 0.0001
ζ1 0.7299 0.7884 0.9310 0.2088 0.9799 0.0007
ζ2 0.5782 0.6317 0.7344 0.2444 0.9792 0.0002
ι1 0.3021 0.3070 0.2972 0.1111 0.6586 0.0014
ι2 0.2633 0.2403 0.0451 0.1795 0.9011 0.0001

Panel B. ADCC-MTM model estimated on simulated data based on DGP2

Mean Median Mode S.t.d Max Min
π1 0.6964 0.6964 0.6894 0.0345 0.7897 0.5669
μa1 -0.0050 -0.0050 -0.0058 0.0031 0.0039 -0.0137
μb1 -0.0090 -0.0091 -0.0079 0.0091 0.0145 -0.0353
ωa1 0.0043 0.0043 0.0044 0.0019 0.0096 0.0001
ωb1 0.0401 0.0367 0.0258 0.0211 0.0925 0.0035
ωa2 0.0050 0.0048 0.0044 0.0013 0.0102 0.0013
ωb2 0.0045 0.0042 0.0036 0.0025 0.0124 0.0006
αa1 0.0411 0.0379 0.0081 0.0276 0.1606 0.0001
αb1 0.0374 0.0315 0.0093 0.0270 0.1857 0.0000
αa2 0.1114 0.0912 0.0289 0.0889 0.5732 0.0002
αb2 0.0368 0.0317 0.0092 0.0271 0.1830 0.0000
βa1 0.3842 0.3537 0.3427 0.2369 0.9789 0.0001
βb1 0.4857 0.5180 0.7128 0.2469 0.9497 0.0018
βa2 0.2192 0.2094 0.0361 0.1615 0.7082 0.0007
βb2 0.1559 0.1035 0.0413 0.1593 0.8240 0.0001
η1 0.1903 0.1876 0.1607 0.1065 0.6428 0.0001
η2 0.1136 0.0829 0.0347 0.1041 0.6915 0.0001
ζ1 0.3253 0.2907 0.0486 0.2274 0.9652 0.0004
ζ2 0.5116 0.5279 0.8331 0.2962 0.9800 0.0005
ι1 0.2989 0.3038 0.3384 0.1456 0.7507 0.0011
ι2 0.2004 0.1758 0.0401 0.1513 0.7993 0.0002
ν1 9.7546 9.0451 5.8775 6.4977 97.4777 1.0565
ν2 8.3224 6.8628 5.8985 8.7192 98.5901 1.0200

* ‘a’, ’b’ denotes the first and second series of bivariate sample data; ‘1’, ‘2’ represents the first and second mixture
component included in either MGM or MTM.
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Table 7.3 Convergence diagnostic results of simulation studies (sample size:
2000; number of iterations: 10000 (Burn-in) and 5000 (In equilibrium))

DGP1 DGP2
Z-test PSRF IPSRF Z-test PSRF IPSRF

π1 0.9231 0.9997 1.0028 0.2910 0.9998 0.9941
μa1 0.7580 0.9997 0.9986 0.6442 0.9998 1.0000
μb1 0.5551 0.9997 0.9982 0.6195 0.9997 0.9944
ωa1 0.0499 1.0001 0.9993 0.1791 1.0036 0.9965
ωb1 0.1746 1.0001 1.0000 0.0520 1.0009 1.0003
ωa2 0.7045 1.0001 0.9999 0.7983 1.0008 1.0036
ωb2 0.2962 1.0000 0.9980 0.9637 0.9998 0.9999
αa1 0.8685 0.9997 0.9992 0.5578 1.0000 0.9966
αb1 0.8804 0.9997 1.0006 0.4620 0.9997 1.0021
αa2 0.3406 0.9999 1.0010 0.4349 0.9998 1.0000
αb2 0.0566 1.0007 1.0018 0.7863 0.9997 0.9948
βa1 0.0430 1.0001 1.0009 0.1387 1.0036 0.9906
βb1 0.1661 1.0001 0.9968 0.0264 1.0013 1.0015
βa2 0.8311 1.0005 1.0004 0.9439 1.0014 0.9989
βb2 0.7689 0.9998 0.9991 0.8831 1.0003 1.0075
η1 0.6213 0.9998 1.0005 0.9294 0.9997 1.0000
η2 0.5774 0.9997 0.9994 0.6906 0.9997 1.0028
ζ1 0.6468 0.9997 0.9976 0.6132 0.9997 1.0000
ζ2 0.7423 0.9997 0.9998 0.8621 0.9998 1.0008
ι1 0.7382 0.9998 1.0015 0.7019 0.9997 1.0067
ι2 0.8348 0.9997 1.0002 0.9421 0.9999 0.9994
ν1 0.3542 0.9998 1.0011
ν2 0.8201 0.9998 1.0034

This table reports the convergence diagnostic results of Markov chains simulated from the first and second
simulation study. Specifically, Geweke (1992)’s partial mean test (or called Z-test), Gelman and Rubin
(1992)’s PSRF test and Brooks and Gelman(1997)’s IPSRF test are carried out here. For Z-test, we report p-
value of test statistic and set the significance level to be 95%. Therefore, any values lower than 0.05 is
interpreted as casting doubts on the null ‘Markov chain has converged’. This test is performed here to test
whether the posterior means of first Na draws and last Nb draws of Markov chain are the same.  In this research,
Na and Nb are respectively set as first 1500 and final 1500 of the total 5000 equilibrium draws in Markov
chains. For PSRF and IPSRF, Gelman and Rubin (1992) argued a value close to one is enough to claim
convergence.
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Table 7.4 Posterior correlation matrix of the simulated parameter values of ADCC-MTM

π1 μa1 μb1 ωa1 ωb1 ωa2 ωb2 αa1 αb1 αa2 αb2 βa1 βb1 βa2 βb2 η1 η2 ζ1 ζ2 ι1 ι2 ν1
μa1 0.032
μb1 0.022 0.785
ωa1 0.073 0.054 0.047
ωb1 0.017 0.025 0.016 0.420
ωa2 0.056 -0.042 -0.029 -0.021 0.062
ωb2 -0.029 -0.066 -0.035 0.001 0.034 0.166
αa1 -0.008 -0.031 -0.009 -0.076 -0.072 -0.008 0.006
αb1 -0.074 0.013 0.018 -0.155 -0.008 -0.022 0.031 0.395
αa2 0.146 -0.015 -0.006 0.065 0.056 0.021 0.352 -0.036 -0.043
αb2 -0.074 0.038 0.020 -0.032 -0.059 -0.041 -0.324 -0.005 -0.024 -0.155
βa1 -0.140 -0.043 -0.035 -0.950 -0.388 -0.013 -0.032 -0.046 0.128 -0.065 0.034
βb1 -0.094 -0.027 -0.015 -0.391 -0.964 -0.085 -0.046 0.047 -0.062 -0.069 0.050 0.413
βa2 0.009 0.009 0.009 0.017 -0.047 -0.596 0.345 0.021 0.038 -0.035 0.083 -0.034 0.040
βb2 -0.015 0.029 0.013 0.005 -0.032 0.009 -0.718 -0.010 -0.014 -0.250 -0.043 0.017 0.046 -0.355
η1 0.019 -0.011 0.012 -0.031 0.031 0.027 0.101 0.162 0.379 0.037 -0.076 0.011 -0.058 0.037 -0.084
η2 0.080 0.014 0.020 0.038 0.035 -0.050 -0.031 0.012 0.006 0.128 0.083 -0.036 -0.038 0.054 -0.044 0.011
ζ1 0.001 0.008 0.001 -0.096 -0.061 -0.065 -0.073 0.108 -0.055 -0.007 0.020 0.120 0.092 -0.004 0.037 -0.110 0.017
ζ2 0.034 0.020 0.010 0.015 0.004 0.078 -0.037 -0.005 -0.008 -0.075 0.184 -0.024 -0.011 0.019 -0.026 0.027 0.041 -0.027
ι1 -0.134 0.041 0.043 -0.071 0.031 0.052 0.106 0.174 0.298 -0.032 -0.010 0.090 -0.018 0.031 -0.024 -0.139 -0.020 -0.186 0.016
ι2 0.045 -0.030 -0.018 0.040 0.032 0.164 0.289 0.003 -0.017 0.068 0.070 -0.057 -0.041 0.181 -0.230 0.048 0.047 0.002 -0.017 -0.064

ν1 -0.159 -0.007 0.015 -0.019 -0.029 -0.077 -0.022 -0.011 0.038 -0.024 -0.010 0.149 0.138 -0.024 -0.003 0.051 0.020 0.075 -0.048 0.097 -0.047
ν2 0.077 -0.066 -0.055 -0.013 -0.016 0.225 0.397 -0.031 -0.021 0.218 0.006 -0.031 -0.025 0.145 -0.227 0.067 0.047 -0.066 0.097 0.135 0.210 -0.101

* Big triangle denotes the correlation matrix of posterior values drawn for volatility (ω, α, β) parameters. Small triangle denotes the correlation matrix of posterior values drawn for
correlation parameters (η, ζ, ι).
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Table 7.5 Summary Statistics and hypothesis test results of empirical data

Panel A: Foreign exchange data (US/UK and EU/JP)
Sample size: 1689  Unconditional correlation: -0.3182

  US/UK               EU/JP
Mean 0.0000 0.0000
Median -0.0001 0.0003
Maximum 0.0200 0.0448
Minimum -0.0251 -0.0304
StandardDeviation 0.0050 0.0073
Skewness -0.0551 0.0135
Kurtosis 3.7677 5.0402
Uni-Normality (p-val) 0.0092 0.0081
Multi-Normality (p-val) 0.0000

Panel B: S&P500 and 10y US Bond
Sample size: 3000 Unconditional correlation: -0.0863

S&P500      US Bond
Mean 0.0004 0.0001
Median 0.0002 0.0000
Maximum 0.0573 0.0143
Minimum -0.0687 -0.0282
StandardDeviation 0.0108 0.0038
Skewness -0.0171 -0.5718
Kurtosis 6.5493 6.2270
Uni-Normality (p-val) 0.0425 0.0009
Multi-Normality (p-val) 0.0000

Panel C: S&P500 and FTSE100
Sample size: 1000  Unconditional correlation: 0.4259

 S&P500     FTSE100
Mean 0.0005 0.0004
Median 0.0004 0.0006
Maximum 0.0227 0.0222
Minimum -0.0293 -0.0402
StandardDeviation 0.0067 0.0067
Skewness -0.3360 -0.3370
Kurtosis 4.4311 4.6782
Uni-Normality (p-val) 0.0000 0.0000
Multi-Normality (p-val) 0.0000
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Table 7.6 Posterior estimation result of exchange rate data (sample size:
1689; number of iterations: 10000 (Burn-in) and 5000 (In equilibrium))

Panel A. ADCC-MGM model estimated on exchange rate data

Mean Median Mode S.t.d Max Min
π1 0.66763 0.63396 0.56639 0.12723 0.98930 0.42542
μa1 -0.00017 -0.00018 -0.00019 0.00018 0.00045 -0.00053
μb1 0.00011 0.00014 0.00023 0.00030 0.00073 -0.00071
ωa1 0.00000 0.00000 0.00000 0.00000 0.00003 0.00000
ωb1 0.00001 0.00001 0.00000 0.00001 0.00005 0.00000
ωa2 0.00001 0.00001 0.00001 0.00001 0.00003 0.00000
ωb2 0.00002 0.00001 0.00000 0.00002 0.00005 0.00000
αa1 0.09610 0.09145 0.09111 0.05715 0.36439 0.00002
αb1 0.14116 0.13791 0.11527 0.07480 0.46065 0.00015
αa2 0.10163 0.06466 0.04576 0.10780 0.91424 0.00005
αb2 0.16393 0.12609 0.03829 0.13050 0.76556 0.00001
βa1 0.75720 0.78348 0.76911 0.13582 0.99823 0.08173
βb1 0.73353 0.74894 0.79258 0.11579 0.99662 0.18047
βa2 0.48547 0.49655 0.73559 0.25019 0.98079 0.00002
βb2 0.55495 0.57853 0.63718 0.18793 0.97998 0.00056
η1 0.11129 0.10245 0.01979 0.07573 0.39517 0.00003
η2 0.17305 0.15557 0.03653 0.11895 0.72746 0.00017
ζ1 0.49141 0.47069 0.93089 0.29997 0.97987 0.00022
ζ2 0.45871 0.43057 0.04915 0.28691 0.97947 0.00018
ι1 0.12571 0.10460 0.04605 0.09859 0.92061 0.00002
ι2 0.19058 0.15550 0.04712 0.15448 0.94237 0.00000

Panel B. ADCC-MTM model estimated on exchange rate data

Mean Median Mode S.t.d Max Min
π1 0.69473 0.67187 0.54227 0.13598 0.98985 0.46328
μa1 -0.00014 -0.00015 -0.00019 0.00019 0.00045 -0.00053
μb1 0.00016 0.00018 0.00023 0.00030 0.00073 -0.00071
ωa1 0.00001 0.00000 0.00000 0.00001 0.00003 0.00000
ωb1 0.00001 0.00001 0.00000 0.00001 0.00005 0.00000
ωa2 0.00001 0.00000 0.00000 0.00001 0.00003 0.00000
ωb2 0.00001 0.00001 0.00000 0.00001 0.00005 0.00000
αa1 0.06847 0.06215 0.04398 0.04519 0.29307 0.00002
αb1 0.11398 0.10266 0.06494 0.07439 0.43260 0.00005
αa2 0.07780 0.05813 0.04481 0.07727 0.89616 0.00000
αb2 0.16348 0.12603 0.04582 0.14206 0.91608 0.00002
βa1 0.66496 0.73800 0.84452 0.22471 0.99334 0.00121
βb1 0.68275 0.72461 0.74095 0.18876 0.98778 0.00048
βa2 0.46525 0.44623 0.84789 0.26989 0.99744 0.00044
βb2 0.50143 0.54626 0.64042 0.23888 0.98481 0.00083
η1 0.09092 0.07996 0.01964 0.06581 0.39168 0.00006
η2 0.17171 0.13469 0.04304 0.14381 0.86041 0.00002
ζ1 0.48540 0.45644 0.93100 0.30530 0.97999 0.00022
ζ2 0.45786 0.43512 0.14697 0.29056 0.97958 0.00004
ι1 0.11268 0.09613 0.03008 0.08512 0.59922 0.00013
ι2 0.18292 0.14296 0.04866 0.15824 0.97281 0.00002
ν1 21.46468 11.83584 5.95098 22.88304 99.99257 1.00143
ν2 36.27728 25.13340 5.95147 31.02248 99.99957 1.00157

* ‘a’, ’b’ denotes the first and second series of bivariate sample data; ‘1’, ‘2’ represents the first and second mixture
component included in either MGM or MTM.
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Table 7.7 Posterior estimation result of stock and bond data (sample size:
3000; number of iterations: 10000 (Burn-in) and 5000 (In equilibrium))

Panel A. ADCC-MGM model estimated on stock and bond data

Mean Median Mode S.t.d Max Min
π1 0.80700 0.81881 0.81775 0.08378 0.98987 0.49810
μa1 0.00092 0.00093 0.00099 0.00016 0.00119 -0.00016
μb1 0.00017 0.00018 0.00019 0.00007 0.00034 -0.00010
ωa1 0.00001 0.00001 0.00000 0.00000 0.00003 0.00000
ωb1 0.00000 0.00000 0.00000 0.00000 0.00001 0.00000
ωa2 0.00004 0.00004 0.00003 0.00002 0.00012 0.00000
ωb2 0.00001 0.00001 0.00001 0.00000 0.00002 0.00000
αa1 0.12798 0.12441 0.12398 0.06091 0.35387 0.00019
αb1 0.07849 0.07480 0.06931 0.04540 0.27722 0.00001
αa2 0.24493 0.24403 0.28331 0.09558 0.62930 0.00023
αb2 0.19038 0.19071 0.19137 0.08824 0.54656 0.00011
βa1 0.77376 0.77717 0.77866 0.08082 0.99508 0.37672
βb1 0.71608 0.73939 0.74603 0.13764 0.99432 0.00115
βa2 0.70953 0.71022 0.70173 0.10086 0.99488 0.34343
βb2 0.73905 0.73805 0.73848 0.09042 0.99601 0.42373
η1 0.38367 0.38426 0.39028 0.04928 0.54562 0.20042
η2 0.28313 0.28350 0.26854 0.07514 0.59409 0.00218
ζ1 0.87912 0.88288 0.88259 0.03318 0.96369 0.73198
ζ2 0.86659 0.91791 0.93091 0.16324 0.97986 0.00094
ι1 0.09734 0.06572 0.02192 0.08882 0.43758 0.00005
ι2 0.10539 0.07975 0.03920 0.09268 0.78362 0.00002

Panel B. ADCC-MTM model estimated on stock and bond data

Mean Median Mode S.t.d Max Min
π1 0.81267 0.84556 0.85859 0.11949 0.98998 0.46440
μa1 0.00078 0.00080 0.00084 0.00021 0.00119 -0.00021
μb1 0.00017 0.00017 0.00020 0.00009 0.00034 -0.00021
ωa1 0.00001 0.00001 0.00000 0.00000 0.00004 0.00000
ωb1 0.00000 0.00000 0.00000 0.00000 0.00001 0.00000
ωa2 0.00001 0.00001 0.00001 0.00001 0.00010 0.00000
ωb2 0.00000 0.00000 0.00000 0.00000 0.00002 0.00000
αa1 0.12770 0.12617 0.12810 0.05751 0.36595 0.00003
αb1 0.08249 0.08083 0.09250 0.04633 0.26423 0.00003
αa2 0.07983 0.05632 0.04239 0.08258 0.84726 0.00003
αb2 0.08148 0.05365 0.04951 0.09838 0.98919 0.00005
βa1 0.78487 0.78966 0.80131 0.07820 0.98780 0.24181
βb1 0.75131 0.77503 0.84424 0.13124 0.99199 0.00701
βa2 0.35458 0.30014 0.04862 0.26664 0.97195 0.00003
βb2 0.30622 0.25441 0.04660 0.23925 0.93140 0.00003
η1 0.28956 0.29155 0.29340 0.05435 0.45615 0.09449
η2 0.23313 0.21638 0.23318 0.15227 0.93261 0.00003
ζ1 0.91842 0.92095 0.92186 0.02831 0.97965 0.81452
ζ2 0.60763 0.70024 0.93094 0.30751 0.97993 0.00009
ι1 0.06447 0.04285 0.01983 0.06451 0.39594 0.00004
ι2 0.25179 0.18085 0.04889 0.22446 0.97598 0.00009
ν1 8.74881 8.19857 5.79482 5.71238 96.69125 1.01080
ν2 17.92063 7.57842 5.94400 23.28419 99.87698 1.00016

* ‘a’, ’b’ denotes the first and second series of bivariate sample data; ‘1’, ‘2’ represents the first and second mixture
component included in either MGM or MTM.
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Table 7.8 Posterior estimation result of stock index data (sample size: 1000;
number of iterations: 10000 (Burn-in) and 5000 (In equilibrium))

Panel A. ADCC-MGM model estimated on stock index data

Mean Median Mode S.t.d Max Min
π1 0.61552 0.58935 0.52824 0.09690 0.95197 0.45346
μa1 0.00068 0.00069 0.00073 0.00030 0.00132 -0.00036
μb1 0.00094 0.00098 0.00108 0.00022 0.00126 0.00005
ωa1 0.00001 0.00001 0.00001 0.00001 0.00003 0.00000
ωb1 0.00001 0.00000 0.00000 0.00000 0.00002 0.00000
ωa2 0.00001 0.00001 0.00001 0.00001 0.00005 0.00000
ωb2 0.00003 0.00003 0.00004 0.00001 0.00004 0.00000
αa1 0.09283 0.08798 0.09182 0.05474 0.36727 0.00000
αb1 0.07465 0.06822 0.06894 0.04761 0.27573 0.00001
αa2 0.20181 0.18874 0.16774 0.10056 0.66873 0.00074
αb2 0.07684 0.06079 0.02255 0.06418 0.45043 0.00003
βa1 0.52776 0.57611 0.64683 0.22644 0.99506 0.00012
βb1 0.62850 0.66643 0.73891 0.18600 0.98472 0.00150
βa2 0.68617 0.70829 0.70542 0.13323 0.99539 0.16690
βb2 0.56835 0.56018 0.51088 0.15632 0.96632 0.13825
η1 0.20501 0.20952 0.25321 0.11282 0.56255 0.00012
η2 0.08024 0.06593 0.02472 0.06316 0.49400 0.00002
ζ1 0.41443 0.39252 0.24493 0.25332 0.97938 0.00011
ζ2 0.48850 0.49012 0.63695 0.27664 0.97980 0.00023
ι1 0.13052 0.10453 0.04203 0.10522 0.83934 0.00007
ι2 0.07534 0.06028 0.02928 0.06426 0.58540 0.00002

Panel B. ADCC-MTM model estimated on stock index data

Mean Median Mode S.t.d Max Min
π1 0.70948 0.72626 0.75044 0.10564 0.99000 0.45766
μa1 0.00068 0.00070 0.00072 0.00032 0.00132 -0.00039
μb1 0.00055 0.00054 0.00049 0.00035 0.00126 -0.00044
ωa1 0.00001 0.00001 0.00001 0.00001 0.00003 0.00000
ωb1 0.00001 0.00001 0.00001 0.00001 0.00004 0.00000
ωa2 0.00001 0.00001 0.00001 0.00001 0.00005 0.00000
ωb2 0.00001 0.00000 0.00000 0.00001 0.00004 0.00000
αa1 0.11115 0.10801 0.08536 0.05404 0.34138 0.00003
αb1 0.06365 0.05771 0.04778 0.04131 0.31852 0.00000
αa2 0.11722 0.09825 0.03790 0.09306 0.75642 0.00008
αb2 0.07569 0.06032 0.04722 0.06999 0.94426 0.00000
βa1 0.65050 0.70842 0.74801 0.21244 0.99735 0.00000
βb1 0.59779 0.63521 0.73631 0.19897 0.98142 0.00100
βa2 0.40869 0.39779 0.04846 0.25591 0.96897 0.00001
βb2 0.30938 0.28967 0.04922 0.21528 0.98368 0.00004
η1 0.08685 0.06829 0.02332 0.07424 0.46481 0.00008
η2 0.20578 0.18249 0.03952 0.14900 0.78960 0.00004
ζ1 0.46045 0.45120 0.04909 0.27490 0.97976 0.00010
ζ2 0.42253 0.40235 0.14704 0.26339 0.97910 0.00021
ι1 0.06433 0.04991 0.02776 0.05849 0.55500 0.00001
ι2 0.18637 0.12763 0.04753 0.17606 0.95054 0.00000
ν1 23.30019 15.89370 15.83946 21.12179 99.92278 1.00123
ν2 40.55162 34.58961 5.95334 29.87513 99.95393 1.00594

* ‘a’, ’b’ denotes the first and second series of bivariate sample data; ‘1’, ‘2’ represents the first and second mixture
component included in either MGM or MTM.
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Table 7.9 Summary statistics of predictive densities of correlation forecasts, VaR forecast, return forecast and minimized variance

Estimated using ADCC-MGM Estimated using ADCC-MTM
Simulated Mean Median Mode S.t.d Max. Min Mean Median Mode S.t.d Max. Min
Data ρt+1 0.7751 0.7869 0.7997 0.0422 0.8402 0.5701 0.7573 0.7713 0.7948 0.0380 0.8062 0.5777

minimized δ2 0.4802 0.4558 0.4435 0.0327 3.2181 0.0492 0.5166 0.4539 0.4641 0.0698 11.531 0.0430
yt+1(1st series) 0.0023 0.0022 -0.019 0.0882 0.3329 -0.306 0.0510 0.0385 0.4817 1.9697 103.18 -17.64
yt+1(2rd series) 0.0059 0.0113 -0.057 0.2979 1.1785 -1.068 0.0467 0.0121 5.8371 2.3562 136.39 -17.20

VaR-99% (1st series) -0.203 -0.202 -0.200 0.0103 -0.184 -0.230 -0.334 -0.3347 -0.333 0.0325 -0.226 -0.454
VaR-99% (2rd series) -0.684 -0.685 -0.681 0.0360 -0.616 -0.760 -0.331 -0.3282 -0.321 0.0291 -0.276 -0.405

Exchange rate ρt+1 -0.326 -0.328 -0.327 0.012 -0.226 -0.382 -0.326 -0.327 -0.335 0.009 -0.244 -0.447
US/UK minimized δ2 0.0006 0.0010 0.0006 0.0001 0.0153 0.0000 0.0009 0.0009 0.0008 0.0001 0.0141 0.0000
EU/JP yt+1(1st series) 0.000 0.000 0.000 0.0049 0.0163 -0.020 0.0021 0.0161 -1.108 1.1767 11.615 -11.52

yt+1(2rd series) 0.0002 0.0002 0.0021 0.0058 0.027 -0.029 0.0332 0.0155 0.2680 1.1136 5.6050 -6.255
VaR-99% (1st series) -0.012 -0.012 -0.012 0.0005 -0.011 -0.014 -0.2807 -0.2816 -0.2842 0.0207 -0.244 -0.334
VaR-99% (2rd series) -0.015 -0.014 -0.014 0.0011 -0.013 -0.018 -0.2824 -0.2829 -0.2842 0.0176 -0.253 -0.342

Stock and bond ρt+1 -0.034 -0.044 -0.050 0.050 0.235 -0.145 -0.005 -0.013 -0.002 0.071 0.258 -0.214
S&P500 minimized δ2 0.0012 0.0008 0.0008 0.0002 0.0279 0.0001 0.0009 0.0008 0.0008 0.0001 0.0238 0.0000
10y Bond yt+1(1st series) 0.0009 0.0010 -0.001 0.0072 0.0420 -0.036 -0.013 -0.014 -0.793 1.4187 32.201 -11.79

yt+1(2rd series) 0.0002 0.0003 0.0002 0.0027 0.0171 -0.014 -0.003 0.000 -2.307 1.4714 35.223 -14.82
VaR-99% (1st series) -0.017 -0.017 -0.018 0.0013 -0.014 -0.020 -0.326 -0.3219 -0.317 0.0305 -0.273 -0.399
VaR-99% (2rd series) -0.007 -0.007 -0.007 0.0005 -0.006 -0.008 -0.330 -0.3224 -0.315 0.0374 -0.256 -0.415

Stock index ρt+1 0.4395 0.4293 0.4241 0.0295 0.7034 0.3748 0.4334 0.4256 0.4111 0.0313 0.7194 0.3083
FTSE100 minimized δ2 0.0010 0.0021 0.0017 0.0003 0.0352 0.0002 0.0011 0.0026 0.0029 0.0003 0.0224 0.0000
S&P500 yt+1(1st series) 0.0007 0.0007 -0.001 0.0056 0.0253 -0.023 0.0122 0.0080 -0.038 1.2103 10.164 -18.98

yt+1(2rd series) 0.0007 0.0008 -0.001 0.0057 0.0282 -0.026 0.000 -0.010 -1.150 1.1827 18.913 -7.84
VaR-99% (1st series) -0.013 -0.013 -0.013 0.0009 -0.011 -0.015 -0.2611 -0.261 -0.262 0.0184 -0.226 -0.329
VaR-99% (2rd series) -0.014 -0.014 -0.014 0.0010 -0.013 -0.017 -0.2590 -0.255 -0.245 0.0147 -0.237 -0.295

This Table presents the summary statistics of predictive densities of one-step-ahead correlation forecast, minimized variance of a portfolio constructed using bivariate sample data, next day’s return forecast and next
days VaR forecast at 99% level. For the last two evaluation criteria, statistics are reported for both individual time series.
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Table 7.10 Estimation results of fitting conditional correlation models (with
correlation targeting included) to simulated data of DGP1

Panel A: Parameter estimation results

Volatility parameters

ω1 α1 β1 ω2 α2 β2

value 0.002032 0 0.74988 0.012386 0 0.81852
s.t.d -1.50E-06 6.51E-06 0.023554 8.9E-06 1.65E-05 0.001978
significance ** ** ** **

Correlation parameters
DCC η ς
value 0.016276 0.68358
s.t.d 0.017999 0.30922
significance *
ADCC η ς ι
value 0.12511 0.78794 0.18027
s.t.d 0.068968 0.17291 0.13962
significance * **

AGDCC η11 η22 ς11 ς22 ι11 ι22

value -0.17979 -0.10409 0.82884 0.908 0.24497 0.34566
s.t.d 0.062966 0.044598 0.11034 0.047127 0.097752 0.24804
significance ** ** ** ** ** *

This panel reports the parameter results of four conditional correlation models (CCC, DCC, ADCC and
AGDCC) estimated on simulated ADCC-MGM (Gaussian mixture) data. Since in estimation volatility part
and correlation part of these models’ logliklihood functions are to be optimized separately, we report their
corresponding parameters also using different ways. For volatility parameters, since in above models bivariate
time series are all estimated using same GARCH(1,1), we only report their result once. For CCC model, since
correlation is assumed to be fixed, it does not have any correlation parameters to be reported. Above, ** and *
respectively represent the statistical significance level 1% and 5%.

Panel B: In-sample and Out-of-sample analysis

CCC DCC ADCC AGDCC

LogLikelihood -2825.3 -2825.8 -2826.1 -2827.4

Optimal weights (1.2802, (1.2803, (1.283, (1.2799,
-0.28016) -0.28027) -0.28304) -0.27988)

Minimized portfolio variance 0.5096 0.50933 0.50439 0.50979

One-step-ahead correlation 0.80337 0.77688 0.77439 0.77639

This panel reports the logliklihood of CCC, DCC, ADCC and AGDCC estimated on simulated ADCC-MGM
data. Also presented are optimal weight of each asset and minimized portfolio variance when these models are
used to construct an unconstrained optimal portfolio for given bivariate data where short selling is allowed.
Besides, we also report one-step-ahead correlation forecasts generated by these dynamic models.



- 233 -

Table 7.11 Estimation results of fitting conditional correlation models (with
correlation targeting included) to simulated data of DGP2

Panel A. Parameter results

Volatility parameters
ω1 α1 β1 ω2 α2 β2

value 0.0076356 0.059162 0.29828 0.040792 0.03106 0.5334
s.t.d 6.64E-06 0.0009413 0.043573 0.00018028 0.0003057 0.022555
significance ** ** ** ** ** **

Correlation parameters
DCC η ς
value 0.0052583 0.98586
s.t.d 0.0032101 0.011458
significance ** *
ADCC η ς ι
value 0.21806 0.60002 0
s.t.d 0.049317 0.19576 0.17293
significance ** **
AGDCC η11 η22 ς11 ς22 ι11 ι22

value -0.30901 -0.20011 0.45805 0.81032 0.26045 0.066761
s.t.d 0.06447 0.038426 0.15918 0.059163 0.39742 0.2336
significance ** ** ** **

This panel reports the parameter results of four conditional correlation models (CCC, DCC, ADCC and
AGDCC) estimated on simulated ADCC-MTM (T mixture) data. Since in estimation volatility part and
correlation part of these models’ logliklihood functions are to be optimized separately, we report their
corresponding parameters also using different ways. For volatility parameters, since in above models bivariate
time series are all estimated using same GARCH(1,1), we only report their result once. For CCC model, since
correlation is assumed to be fixed, it does not have any correlation parameters to be reported. Above, ** and *
respectively represent the statistical significance level 1% and 5%.

Panel B. In-sample and Out-of-sample analysis

CCC DCC ADCC AGDCC

LogLikelihood -2109.3 -2112.7 -2112.3 -2115

Optimal weights (1.2789, (1.2802, (1.2791, (1.2788,
-0.27886) -0.28021) -0.27915) -0.27882)

Minimized portfolio variance 0.7801 0.77564 0.77589 0.77515

One-step-ahead correlation 0.79565 0.75986 0.74572 0.70448

This panel reports the logliklihood of CCC, DCC, ADCC and AGDCC estimated on simulated ADCC-MTM
data. Also presented are optimal weight of each asset and minimized portfolio variance when these models are
used to construct an unconstrained optimal portfolio for given bivariate data where short selling is allowed.
Besides, we also report one-step-ahead correlation forecasts generated by these dynamic models.
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Table 7.12 Estimation results of fitting conditional correlation models (with
correlation targeting included) to foreign exchange data

Panel A. Parameter results

Volatility parameters
ω1 α1 β1 ω2 Α2 β2

value 1.16E-06 0.057516 0.89652 1.58E-06 0.089938 0.88657
s.t.d 1.63E-13 0.0001673 0.0005385 2.20E-12 0.0011619 0.0032396
significance ** ** ** ** ** **

Correlation parameters
DCC η ς
value 0.0076061 0.96835
s.t.d 0.0060627 0.026908
significance **
ADCC η ς ι
value -1.69E-06 1 -2.24E-05
s.t.d 0.11122 3.06 0.098457
significance
AGDCC η11 η22 ς11 ς22 ι11 ι22

value 0.071969 -0.067336 0.14603 0.99315 -0.3829 0.33361
s.t.d 0.17998 0.070772 0.14131 0.0037751 0.23456 0.063156
significance ** ** **

This panel reports the parameter results of four conditional correlation models (CCC, DCC, ADCC and
AGDCC) estimated on exchange rate data. Since in estimation volatility part and correlation part of these
models’ logliklihood functions are to be optimized separately, we report their corresponding parameters also
using different ways. For volatility parameters, since in above models bivariate time series are all estimated
using same GARCH(1,1), we only report their result once. For CCC model, since correlation is assumed to be
fixed, it does not have any correlation parameters to be reported. Above, ** and * respectively represent the
statistical significance level 1% and 5%.

Panel B. In-sample and out-of-sample analysis

CCC DCC ADCC AGDCC

LogLikelihood -12420 -12423 -12420 -12423

Optimal weights (0.6322, (0.6325, (0.63258, (0.63283,
0.3678) 0.3675) 0.36742) 0.36717)

Minimized portfolio variance 0.0011051 0.0011022 0.001112 0.001114

One-step-ahead correlation -0.33538 -0.29894 -0.33107 -0.38924

This panel reports the logliklihood of CCC, DCC, ADCC and AGDCC estimated on exchange rate data. Also
presented are optimal weight of each asset and minimized portfolio variance when these models are used to
construct an unconstrained optimal portfolio for given bivariate data where short selling is allowed. Besides,
we also report one-step-ahead correlation forecasts generated by these dynamic models.
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Table 7.13 Estimation results of fitting conditional correlation models (with
correlation targeting included) to stock and bond data

Panel A. Parameter results

Volatility parameters
ω1 α1 β1 ω2 Α2 Β2

value 5.36E-06 0.104 0.77434 1.23E-05 0.059367 0.66185
s.t.d 4.90E-12 0.000667 0.0043416 1.32E-10 0.0006688 0.065029
significance ** ** ** ** ** **

Correlation parameters
DCC η ς
value 0.0055277 0.99167
s.t.d 0.0029946 0.0044185
significance ** **
ADCC η ς ι
value 0.00E+00 0.27992 0.00E+00
s.t.d 0.67629 1.7926 0.75038
significance
AGDCC η11 η22 ς11 ς22 ι11 ι22

value 0.12441 0.59338 0.58538 0.36226 1 0.075441
s.t.d 0.25814 0.49452 2.42 0.27654 5.8121 1.3297
significance

This panel reports the parameter results of four conditional correlation models (CCC, DCC, ADCC and
AGDCC) estimated on stock and bond data. Since in estimation volatility part and correlation part of these
models’ logliklihood functions are to be optimized separately, we report their corresponding parameters also
using different ways. For volatility parameters, since in above models bivariate time series are all estimated
using same GARCH(1,1), we only report their result once. For CCC model, since correlation is assumed to be
fixed, it does not have any correlation parameters to be reported. Above, ** and * respectively represent the
statistical significance level 1% and 5%.

Panel B. In-sample and Out-of-sample analysis

CCC DCC ADCC AGDCC

LogLikelihood -7144.5 -7146.7 -7144.5 -7147.9

Optimal weights (0.51855, (0.51504, (0.51866, (0.51747,
0.48145) 0.48496) 0.48134) 0.48253)

Minimized portfolio variance 0.003039 0.0030308 0.0030455 0.003098

One-step-ahead correlation 0.42282 0.50198 0.42598 0.48386

This panel reports the logliklihood of CCC, DCC, ADCC and AGDCC estimated on stock and bond data.
Also presented are optimal weight of each asset and minimized portfolio variance when these models are used
to construct an unconstrained optimal portfolio for given bivariate data where short selling is allowed. Besides,
we also report one-step-ahead correlation forecasts generated by these dynamic models.
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Table 7.14 Estimation results of fitting conditional correlation models (with
correlation targeting included) to stock index data

Panel A. Parameter results

Volatility parameters
ω1 α1 β1 ω2 α2 Β2

value 6.59E-07 0.060165 0.9357 2.10E-07 0.051779 0.93658
s.t.d 6.11E-14 0.000138 0.0001384 2.72E-15 0.0001032 0.0001023
significance ** ** ** ** ** **

Correlation parameters
DCC η ς
value 0.030176 0.96574
s.t.d 0.0048694 0.0059456
significance ** **
ADCC η ς ι
value 1.74E-01 0.9827 2.76E-02
s.t.d 0.013746 0.0031766 0.19103
significance ** **
AGDCC η11 η22 ς11 ς22 ι11 ι22

value 0.11676 0.24767 0.99764 0.96936 0.068501 0.02111
s.t.d 0.017064 0.039426 0.0027736 0.0057436 0.10377 0.12207
significance ** ** ** **

This panel reports the parameter results of four conditional correlation models (CCC, DCC, ADCC and
AGDCC) estimated on stock index data. Since in estimation volatility part and correlation part of these
models’ logliklihood functions are to be optimized separately, we report their corresponding parameters also
using different ways. For volatility parameters, since in above models bivariate time series are all estimated
using same GARCH(1,1), we only report their result once. For CCC model, since correlation is assumed to be
fixed, it does not have any correlation parameters to be reported. Above, ** and * respectively represent the
statistical significance level 1% and 5%.

Panel B. In-sample and Out-of-sample analysis

CCC DCC ADCC AGDCC

LogLikelihood -22067 -22241 -22241 -22244

Optimal weights (0.15229, (0.13061, (0.1305, (0.12351,
0.84771) 0.86939) 0.8695) 0.87649)

Minimized portfolio variance 0.0012705 0.0011758 0.0011763 0.0011909

One-step-ahead correlation 0.014602 0.23692 0.23852 0.29701

This panel reports the logliklihood of CCC, DCC, ADCC and AGDCC estimated on stock index data. Also
presented are optimal weight of each asset and minimized portfolio variance when these models are used to
construct an unconstrained optimal portfolio for given bivariate data where short selling is allowed. Besides,
we also report one-step-ahead correlation forecasts generated by these dynamic models.
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Table 7.15 Parameter estimation results of ADCC-Gaussian with constant term ω included for five datasets

Correlation parameters
Simulated ω η ς ι LogF ρt+1 variance weights
ADCC-MGM value 2.11E-07 2.11E-07 1 2.11E-07 -2864.5 0.80373 0.5082 (1.2804,

s.t.d 7.56E-01 10.908 0.54184 1.41E+00 -0.28041)
**

Simulated ω η ς ι
ADCC-MTM value 2.11E-07 9.77E-06 0.99305 2.11E-07 -2148.3 0.73216 0.78952 (1.2734,

s.t.d 2.46E-05 0.0001932 0.0039958 5.14E-05 -0.2734)
**

Exchange rate ω η ς ι
US/UK value 0.0006645 3.97E-04 0.99775 2.11E-07 -12609 -0.1114 0.001172 (0.63393,
EU/JP s.t.d 0.033082 0.50388 0.040684 0.9269 0.36607)

**
Stock index ω η ς ι
FTSE100 value 2.11E-07 5.52E-06 0.99851 1.37E-02 -7324.3 0.56152 0.0031808 (0.51552,
S&P500 s.t.d 6.67E-03 1.76E-02 0.0011262 0.0092976 0.48448)

* **
Stock and bond ω η ς ι
S&P500 value 0.023966 1.65E-01 0.98599 2.11E-07 -22433 0.1408 0.0011629 (0.11679,
10y Bond s.t.d 0.27829 1.5183 0.10799 0.31455 0.88321)

**

This panel reports the estimation result of ADCC model on five datasets. Along with the parameter estimates and their corresponding standard errors, also presented are calculated
logliklihood function value, optimal weight of each asset and minimized portfolio variance when these models are used to construct an unconstrained optimal portfolio where short
selling is allowed. Besides, we also report one-step-ahead correlation forecasts generated by this dynamic correlation model.
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Table 7.16 Parameter estimation results of AGDCC-Gaussian model with constant term C included for five datasets

Correlation parameters
Simulated C1 C2 C3 η11 η22 ς11 ς22 ι11 ι22 LogF ρt+1 variance  weights
ADCC-MGM value 0.30887 1.7567 1.2578 0.11815 0.46322 0.85041 0.80263 0.14749 0.75778 -2866.2 0.80244 0.50832 (1.2797,

s.t.d 0.22202 2.4062 1.7049 0.094067 0.64514 0.081374 0.11766 0.15699 1.0457 -0.27974)
significance * * ** **

Simulated
ADCC-MTM value 0.040033 0.035434 2.11E-07 0.068827 0.10742 0.98946 0.99177 1.41E-01 7.99E-02 -2151.4 0.7772 0.77912 (1.2782,

s.t.d 0.14464 0.084234 0.040419 0.079697 0.13834 7.44E-03 3.77E-03 0.149 0.089565 -0.27819)
significance ** **

Exchange rate
US/UK value 2.11E-07 2.11E-07 2.11E-07 0.023326 0.094221 0.99466 0.99775 2.11E-07 0.000141 -12607 -0.10874 0.001136 (0.63389,
EU/JP s.t.d 0.066926 9.75E-02 2.71E-02 0.376884 0.09936 0.068649 0.26094 9.75E-02 2.71E-02 0.36611)

significance ** **
Stock index
FTSE100 value 6.85E-07 0.65732 0.8037 2.11E-07 0.80992 0.004682 0.36374 0.000228 0.58033 -7337.1 0.36775 0.003168 (0.51542,
S&P500 s.t.d 9.79E-06 1.40E-04 7.62E-06 4.33E-06 1.44E-07 0.003366 9.61E-06 3.47E-05 0.00438 0.48458)

significance ** ** ** * ** ** **
Stock and bond
S&P500 value 0.044617 0.007893 2.11E-07 0.5256 0.06624 0.99099 0.97396 6.50E-05 1.81E-06 -22439 0.10944 0.001179 (0.12603,
10y Bond s.t.d 0.066926 0.01184 3.17E-04 0.7884 0.09936 0.486485 0.26094 9.75E-02 2.71E-02 0.87397)

significance ** **

This panel reports the estimation result of AGDCC model on five datasets. Along with the parameter estimates and their corresponding standard errors, also presented are
calculated logliklihood function value, optimal weight of each asset and minimized portfolio variance when these models are used to construct an unconstrained optimal portfolio
where short selling is allowed. Besides, we also report one-step-ahead correlation forecasts generated by this dynamic correlation model.
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Table 7.17 Parameter estimation results of ADCC-t with constant term ω included for five datasets

Correlation parameters
Simulated ω η ς ι v ρt+1 minimized var optimal weight
ADCC-MGM value 0.0044 0.0000 1.0000 0.0000 44.6050 0.8111 0.5019 (1.2839

s.t.d 72.1120 83.5540 16.3740 17.4000 487.0000 -0.28394)

Simulated ω η ς ι v
ADCC-MTM value 0.0295 0.0549 0.9981 0.0000 8.8297 0.8013 0.6567 (1.3276

s.t.d 5.5271 11.0590 1.2162 3.7633 0.9647 -0.32759)
***

Exchange rate ω η ς ι v
US/UK value 0.0000 0.0152 0.9961 0.0000 18.0980 -0.1146 0.00108 (0.6308
EU/JP s.t.d 0.0057 0.0208 0.0019 0.0042 3.5302 0.36924)

*** ***
Stock index ω η ς ι v
FTSE100 value 0.0116 0.0000 0.9989 0.0000 15.3770 0.6126 0.0032 (0.5159
S&P500 s.t.d 0.0059 0.0376 0.0009 0.0158 3.4069 0.48409)

** *** ***
Stock and bond ω η ς ι v
S&P500 value 0.0195 0.1926 0.9811 0.0000 12.2470 0.1149 0.0011 (0.1169
10y Bond s.t.d 0.0169 0.0714 0.0033 0.0740 0.9925 0.88309)

*** *** ***

This panel reports the estimation result of ADCC-t model on five datasets. Along with the parameter estimates and their corresponding standard errors, also presented are optimal
weight of each asset and minimized portfolio variance when these models are used to construct an unconstrained optimal portfolio where short selling is allowed. Besides, we also
report one-step-ahead correlation forecasts generated by this dynamic correlation model.***,** and * respectively represents the significance of parameter, different from zero, at
99%,95% and 90% level. 0.000 here denotes a very small number.
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Table 7.18 Parameter estimation results of AGDCC-t model with constant term C included for five datasets

Correlation parameters
Simulated C1 C2 C3 η11 η22 ς11 ς22 ι11 ι22 v ρt+1 variance  weights
ADCC-MGM value 0.3301 2.0000 0.6824 0.1374 0.4090 0.9150 0.7823 0.2102 0.8434 42.7180 0.8103 0.4949 (1.2873

s.t.d 0.1896 2.1811 1.3183 0.0918 0.5275 0.0374 0.1200 0.1469 1.1387 17.4410 -0.2873)
* * *** *** * ***

Simulated
ADCC-MTM value 0.9565 1.2268 0.7121 0.2510 0.4343 0.6217 0.6871 0.2079 0.0000 8.6092 0.8336 0.6430 (1.3324

s.t.d 0.5547 0.5595 0.3549 0.1609 0.1878 0.1784 0.1121 0.1559 0.0244 0.8547 -0.3324)
** ** ** * ** *** *** ***

Exchange rate
US/UK value 0.0000 1.1125 0.3162 0.0559 2.0000 0.3358 0.9592 0.0000 0.2624 11.9860 0.7193 0.00144 (0.66064
EU/JP s.t.d - - - - - - - - - - 0.33936)

Stock index
FTSE100 value 0.0000 1.5115 1.8096 0.0000 1.7782 0.0002 0.3016 0.2513 1.4300 16.3460 0.3513 0.0032 (0.51582
S&P500 s.t.d 0.0000 0.0003 0.1661 0.0000 0.0012 0.0001 0.0001 0.0011 0.0001 0.0008 0.48418)

*** *** *** ** *** *** *** *** *** ***
Stock and bond
S&P500 value 0.0000 0.0000 0.0000 0.3189 0.1161 0.9841 0.9769 0.0653 0.0251 12.3090 0.1153 0.0012 (0.118
10y Bond s.t.d 0.3871 5.3968 23.2450 0.0927 0.0581 0.4258 7.2284 0.7659 15.5810 1.0926 0.882)

*** **

This panel reports the estimation result of AGDCC-t model on five datasets. Along with the parameter estimates and their corresponding standard errors, also presented are
logliklihood value, optimal weight of each asset and minimized portfolio variance when these models are used to construct an unconstrained optimal portfolio where short selling
is allowed. Besides, we also report one-step-ahead correlation forecasts generated by this dynamic correlation model. ***, ** and * respectively represents the significance of
parameter, different from zero, at 99%,95% and 90% level
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Table 7.19 Parameter estimation results of ADCC-skew-t model with constant term ω included for five datasets

Correlation parameters
Simulated ω η ς ι v ζ1 ζ2 ρt+1 minimized var optimal weight
ADCC-MGM value 0.0000 0.0000 1.0000 0.0066 44.9440 0.9859 0.9947 0.8109 0.5022 (1.2838

s.t.d 0.0496 0.3158 0.0370 0.2715 143.0200 0.1572 0.0854 -0.28378)
*** *** ***

Simulated ω η ς ι v ζ1 ζ2

ADCC-MTM value 0.1692 0.1405 0.9691 0.1120 6.1408 2.2064 2.4523 0.8319 0.5671 (1.3535
s.t.d 6.4389 6.4068 1.0165 1.5793 95.8280 112.8500 132.3800 -0.35353)

Exchange rate ω η ς ι v ζ1 ζ2

US/UK value 0.0000 0.0206 0.9966 0.0000 17.9170 1.0506 0.9261 -0.1527 0.00108 (0.6306
EU/JP s.t.d 0.0032 0.0252 0.0019 0.0074 3.0195 0.0113 0.0243 0.36936)

*** *** *** ***
Stock index ω η ς ι v ζ1 ζ2

FTSE100 value 0.0000 0.0000 0.9994 0.0323 13.8210 0.8204 0.8412 0.6164 0.0033 (0.5162
S&P500 s.t.d 0.0094 0.0291 0.0009 0.0142 2.5294 0.0391 0.0265 0.48379)

*** *** *** *** ***
Stock and bond ω η ς ι v ζ1 ζ2

S&P500 value 0.0203 0.1973 0.9801 0.0000 12.2590 0.9084 0.9734 0.1380 0.0011 (0.1160
10y Bond s.t.d 0.3159 2.9493 0.0359 0.1898 4.9665 0.0419 0.2380 0.884)

*** *** *** ***

This panel reports the estimation result of ADCC-skew-t model on five datasets. Along with the parameter estimates and their corresponding standard errors, also presented are
loglikelihood value, optimal weight of each asset and minimized portfolio variance when these models are used to construct an unconstrained optimal portfolio where short selling
is allowed. Besides, we also report one-step-ahead correlation forecasts generated by this dynamic correlation model. ***, ** and * respectively represents the significance of
parameter, different from zero, at 99%,95% and 90% level.
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Table 7.20 Parameter estimation results of AGDCC-skew-t model with constant term C included for five datasets

Correlation parameters
Simulated C1 C2 C3 η11 η22 ς11 ς22 ι11 ι22 v ζ1 ζ2 ρt+1 variance  weights
ADCC-MGM value 0.1988 0.3155 0.1893 0.0046 0.0031 0.9906 0.9795 0.1388 0.2036 41.1420 0.9848 0.9935 0.8114 0.4947 (1.2879

s.t.d 0.0774 0.1026 0.0350 0.0031 0.0533 0.0053 0.0122 0.0554 0.0594 13.9440 0.0230 0.0175 -0.2879)
** *** ** * *** *** *** *** *** *** ***

Simulated
ADCC-MTM value 0.2397 0.2681 0.1403 0.0744 0.1240 0.8206 0.7238 0.1910 0.5172 8.6184 1.0170 1.0051 0.8397 0.6432 (1.3326

s.t.d 0.3637 0.5744 0.2910 0.1206 0.2723 0.1033 0.0907 0.3371 1.1808 0.7623 0.0218 0.0181 -0.3326)
*** *** *** *** ***

Exchange rate
US/UK value 0.0000 0.0318 0.2060 0.1554 1.0568 0.9748 0.8318 0.2444 0.0000 22.6940 1.0910 0.8899 0.2532 0.00133 (0.6497
EU/JP s.t.d 22.5 7.9 32.8 19.8 35.4 0.9 5.1 13.4 1.0 463.8 1.6 2.6 0.3503)

Stock index
FTSE100 value 0.0097 0.6599 0.9006 0.0033 0.7971 0.1405 0.0000 0.0472 0.3942 16.3030 0.8613 0.8853 0.4759 0.0032 (0.5170
S&P500 s.t.d 0.0724 0.0468 0.0570 0.0245 0.2291 0.0872 0.1165 0.4013 0.0780 1.9671 0.0365 0.0333 0.4829)

*** *** *** * *** *** *** ***
Stock and bond
S&P500 value 0.0315 0.0109 0.0000 0.3323 0.1167 0.9835 0.9773 0.0000 0.0000 12.2450 1.0186 0.9967 0.1331 0.0012 (0.8822
10y Bond s.t.d 0.0519 0.0221 0.0334 0.2984 0.1097 0.0043 0.0063 0.4601 0.1770 1.0926 0.0120 0.0122 0.1178)

*** *** *** *** ***

This panel reports the estimation result of AGDCC-skew-t model on five datasets. Along with the parameter estimates and their corresponding standard errors, also presented are
logliklihood value, optimal weight of each asset and minimized portfolio variance when these models are used to construct an unconstrained optimal portfolio where short selling
is allowed. Besides, we also report one-step-ahead correlation forecasts generated by this dynamic correlation model. ***, ** and * respectively represents the significance of
parameter, different from zero, at 99%,95% and 90% level.
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Table 7.21 Minimized portfolio variance generated by applying various correlation models to two simulated data and three
empirical data

ADCC-G AGDCC-G ADCC-t AGDCC-t ADCC-skew-t AGDCC-skew-t ADCC-MGM ADCC-MTM

DGP1 0.50820 0.50832 0.50190 0.49490 0.50220 0.49490 0.48020 -
DGP2 0.78920 0.77912 0.65670 0.64300 0.56710 0.64320 - 0.51660
Exchange rate data 0.00117 0.00114 0.00108 0.00144 0.00108 0.00133 0.00060 0.00090
Stock and bond data 0.00318 0.00317 0.00320 0.00320 0.00330 0.00320 0.00120 0.00090
Stock index data 0.00116 0.00118 0.00110 0.00120 0.00110 0.00120 0.00100 0.00110

This panel reports the minimized portfolio variance generated by fitting eight different correlation models to two simulated data and three empirical data that analyzed in this
research. Here, ADCC-G and AGDCC-G respectively represent the ADCC model and AGDCC model whose innovations are assumed to (one-component) be Gaussian distributed.
ADCC-t and AGDCC-t assume the innovations to be t distributed whilst the asymmetric DCC structure for modeling correlation dynamics is kept the same as previously. Other
variants of asymmetric DCC are given based on the similar rules where the mechanism for updating correlation is retained but the distributional assumption substituted. For
example, the last two represents the ADCC model respectively associated with two component Gaussian mixture distribution and two component T mixture distribution. Here, one
thing needs to be noted is for the first six models they are estimated by maximum likelihood and portfolio variance is generated by applying point estimate of covariance to
equations illustrated in Section 6.5.4. However, for the last two models, their values are then reported by using posterior mean since Bayesian inferential method is now
implemented.
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Table 7.22 Normality and autocorrelation test results for standardized residuals generated from the fitting of, ADCC-
Gaussian/T model, AGDCC- Gaussian/T model, ADCC-skew-t and AGDCC-skew-t all with constant term ω (or C) included, to
simulated- and empirical- data.

ADCC-Gaussian ADCC-t AGDCC-Gaussian AGDCC-t ADCC-skew-t AGDCC-skew-t

simulated ADCC-MGM χ2 Q(20) Q2(20) χ2 Q(20) Q2(20) χ2 Q(20) Q2(20) χ2 Q(20) Q2(20) χ2 Q(20) Q2(20) χ2 Q(20) Q2(20)
1st series 0.150 0.328 0.565 0.143 0.335 0.546 0.318 0.329 0.998 0.280 0.328 0.864 0.144 0.335 0.547 0.267 0.302 0.548
2rd series 0.000 0.209 0.239 0.000 0.210 0.238 0.000 0.208 0.296 0.000 0.211 0.272 0.000 0.210 0.238 0.000 0.208 0.237
simulated ADCC-MTM
1st series 0.000 0.347 0.930 0.000 0.434 0.864 0.000 0.422 0.920 0.000 0.411 0.996 0.000 0.925 0.102 0.000 0.493 0.802
2rd series 0.000 0.729 0.733 0.000 0.676 0.704 0.000 0.702 0.745 0.000 0.645 0.852 0.000 0.731 0.821 0.000 0.679 0.732
exchange rate data
US/UK 0.000 0.174 0.409 0.000 0.143 0.504 0.000 0.140 0.474 0.000 0.155 0.669 0.000 0.160 0.463 0.000 0.155 0.476
EU/JP 0.000 0.241 0.873 0.000 0.229 0.876 0.000 0.224 0.846 0.000 0.163 0.292 0.000 0.244 0.879 0.000 0.238 0.879
stock index data
S&P500 0.000 0.000 0.470 0.000 0.000 0.500 0.000 0.000 0.122 0.001 0.000 0.176 0.000 0.000 0.477 0.000 0.000 0.148
FTSE100 0.000 0.001 0.635 0.000 0.001 0.500 0.000 0.020 0.532 0.000 0.014 0.490 0.000 0.001 0.655 0.000 0.001 0.885
stock and bond
S&P500 0.000 0.928 0.957 0.000 0.933 0.964 0.000 0.949 0.987 0.000 0.942 0.966 0.000 0.972 0.910 0.000 0.981 0.918
10y Bond 0.000 0.148 0.935 0.000 0.140 0.988 0.000 0.144 0.991 0.000 0.146 0.991 0.000 0.162 0.718 0.000 0.167 0.736

This panel reports normality and autocorrelation results for standardized residuals generated from fitting ADCC-Gaussian/t, AGDCC-Gaussian/t, ADCC-skew-t and AGDCC-
skew-t models (all with constant term included) to two simulated-data and three empirical data. The first column reports the p-values of Jarque-Bera normality test whose statistic
follow a chi-square distribution. The next two present p-values of two autocorrelation tests. Q(20) denotes the p-values of Box-Pierce test of order 20 on the standardized residuals
and Q2(20) reports the p-values of the same statistic calculated on the squared residuals. Significance level is set to be 95%. Thus any value below 0.05 is an indication for
rejecting the null hypothesis for which in this case are univaraite time series is normal distributed and there is no autocorrelation in either standardized residual or its squared
products.
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Table 7.23 Constant correlation test results and unconditional correlation calculated from standardized residuals generated
from the fitting of, ADCC-Gaussian/T model, AGDCC- Gaussian/T model, ADCC-skew-t and AGDCC-skew-t all with constant
term ω (or C) included, to simulated- and empirical data.

ADCC-normal ADCC-t AGDCC-normal AGDCC-t ADCC-skew-t AGDCC-skew-t
Before- After- After- After- After- After- After-

simulated ADCC-MGM
unconditional corr. 0.804 -0.002 -0.011 0.001 -0.019 -0.011 -0.018
χ2 3.638 3.559 3.553 5.176 5.227 3.554 4.073
p-values 0.457 0.469 0.470 0.270 0.265 0.470 0.396
simulated ADCC-MTM
unconditional corr. 0.796 0.014 -0.123 0.003 -0.135 -0.353 -0.138
χ2 3.080 3.653 3.442 2.393 1.766 25.590 1.617
p-values 0.545 0.455 0.487 0.664 0.779 0.000 0.806
exchange rate data
unconditional corr. -0.318 -0.033 0.022 -0.015 -0.213 0.021 0.022
χ2 1.129 0.991 1.142 1.245 40.606 0.786 0.852
p-values 0.890 0.911 0.888 0.871 0.000 0.940 0.931
stock index data
unconditional corr. 0.426 -0.052 -0.092 -0.021 -0.060 -0.046 -0.107
χ2 1.673 1.783 1.821 4.338 5.526 1.660 4.310
p-values 0.796 0.776 0.769 0.362 0.237 0.798 0.366
stock and bond
unconditional corr. -0.086 -0.026 -0.014 -0.009 -0.011 -0.016 -0.014
χ2 62.748 9.103 5.950 5.414 4.636 4.250 3.514
p-values 0.000 0.059 0.203 0.247 0.327 0.203 0.461

This panel reports Engle’s constant correlation test result and unconditional correlation of standardized residuals calculated from fitting ADCC-Gaussian/t, AGDCC-Gaussian/t,
ADCC-skew-t and AGDCC-skew-t models (all with constant term included) to five simulated- and empirical data. The first row reports the unconditional correlation, while the
next two present the Engle’s test statistic (chi-square distributed) and its associated p-value (with three lags). The first column reports the results for un-standardized return. The
remaining then present those after return is standardized by various GARCH volatilities. Significance level here is set to be 95%.
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Appendix I. Dependence measures.

A. Linear Correlation

The most popular way to calculate the relationship between two variables is to use the linear

correlation. Let (X,Y)T be a vector of random variables with nonzero finite variance. The

linear correlation coefficient for (X,Y)T is defined as

( , )( , )
( ) ( )

Cov X YX Y
Var X Var Y

             (I.1)

where Cov(X,Y)=E(XY)-E(X)E(Y) is the covariance of (X,Y)T, and Var(X) and Var(Y) are

the variance of X and Y. Here, note that this correlation coefficient can only be used to

measure the linear dependence. While it possesses invariant property under strictly increasing

linear transformation, e.g., ( , ) ( ) ( , )X Y sign X Y         , the results are sometimes

misleading due to the massive evidences observed in financial market rejecting its assumption

of X and Y both being univariate normal distributed and (X, Y) being jointly multivariate

normal distributed.

B. Copular function

To obtain a more reliable and accurate dependence measure in a multivariate distribution,

copular function provides a nature alternative. It models the relationship between two or more

variables by splitting the definition of marginal distributions from their joint distribution. For

example, in the credit market, a typical use of copular is to price the portfolio-based product

such as CDO. Since the major task here is to determine the joint default probability

distribution function for multiple credits which does not usually follow normal distribution,

then, the use of linear correlation may cause misleading result and this task does not have an

explicit solution. As a result, an efficient numerical procedure is then required. Here, copular

function can provide an ideal solution to link multiple single-credit (or unidimensional)

survive curve to one multi-credit (or multidimensional) survival curve.

Consider a joint distribution function F(x1, x2,…, xn) of random variables (x1, x2,…, xn),

according to Theorem 3 of Sklar (1959), this F(x1, x2,…, xn) then can be decomposed into a

composition of individual marginal distributions Fi(xi) and a copular function C(.). That is,

1 2 1 1 2 2( , , ) ( ( ), ( ), ( ))n n nF x x x C F x F x F x         (I.2)

If we replace Fi(xi) with a new uniform random variate u in [0,1] and invert the above function,

the copular function C(.) then can be written as
1 1 1

1 2 1 1 2 2

1 1 2 2

( , , ) ( ( ), ( ), ( ))
( , , )

n n n

n n

C u u u F F u F u F u
p U u U u U u

  

   

 


           (I.3)
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where 1( )iF    is the quasi-inverse function of ( )iF  .

Here, an important feature of C(.) is this measure is invariant under strictly increasing

transformation of the marginal distributions. Note, this transformation function is now only

required to be an increasing function; and it can be either linear or nonlinear. Therefore,

compared to explicitly linear association considered in the above correlation, copular’s

advantage of relaxing the restrictions is then obvious (See Embrechts, Lindskog and McNeil,

2001 p6, theorem 2.6 for proofs)

B1. Copular measure

Next, we describe two copular-based dependence measures known as Kendall’s Tau and

Spearman’s rho. They are also usually referred to as the ranking statistics since the random

variables needs to be sorted before calculation.

B1.1. Kendall’s Tau

Consider a random vector (X,Y)T, Kendall’s ranking correlation (Tau) of this vector is defined

as

( , ) {( )( ) 0} {( )( ) 0}X Y p X X Y Y p X X Y Y                      (I.4)

where ( , )TX Y   is an independent realization of joint distribution of (X,Y)T. Here, it is clear that

this correlation is actually the probability difference between the concordance and discordance

of (X,Y)T. To write it in a copular form, Tau then can be defined as
1 1

0 0
( , ) 4 ( , ) ( , ) 1x y x yX Y C u u dC u u          (I.5)

or simply, ( , ) 4 [ ( , )] 1x yX Y C U U    , where , ~ (0,1)x yU U U

B1.2. Spearman’s rho

Spearman’s rho of the same random vector (X,Y)T is given as

( , ) 3{ [( )( ) 0] [( )( ) 0]}s X Y p X X Y Y p X X Y Y                  (I.6)

where ( , )TX Y  and ( , )TX Y  are independent realizations of joint distribution of (X,Y)T. And its

copular form given that the random variables of (X, Y) T are all continuous can be written as
1 1

0 0
( , ) 12 ( , ) 3s x y x yX Y C u u du du       (I.7)

Here, sine Tau ( , )X Y and rho ( , )s X Y  both can be expressed as a function of copular, they

are invariant under monotonic transformations. For a more detailed illustration of these two

correlation coefficients, see Kendall and Stuart (1977) and Lehmann (1975).
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B2. Copular with dependence structure

Above, the dependence in a multivariate distribution is all depicted through a scalar measure

where no particular correlating-structure is assumed. However, a more popular way to

calculate the relationship between two or more variables is to assume an inherent distribution,

usually the same, for both marginal distributions and joint distribution, and then derive a

copular based on this assumption to suit the empirical multivariate data observed. Depending

on the correlating structure assumed for random variables, copular functions can vary from the

simple (independence or Gaussian copular) to more complex (Gumbel , Clayton or Student-t

copular). In the following, we describe two most popularly used copular models in finance.

B2.1 Gaussian Copular

Consider n random variables whose marginal distributions follow standard univariate normal

distribution denoted by  and their joint distribution follows multivariate normal distribution

denoted by R , the Gaussian copular function of this random vector is then defined as

1 1 1
1 2 1 1 2 2( , , ) ( ( ), ( ), , ( ))Gaussian n

R n R n nC u u u u u u             (I.8)

where R is the linear correlation matrix of multivariate normal and 1( )   is the inverse of

cumulative function of Gaussian. For bivariate random variates, the above function then can be

written as
1 1

1 2
2 2( ) ( ) 1 1 2 2

1 2 1 222

1 2( , ) exp
2(1 )2 1

u uGaussian
R

x Rx x xC u u dx dx
RR

  

 

  
  

  
   (I.9)

Here, it is important to note two things. First, while it is a tradition to apply the same

distributional type to both marginal distribution and joint distribution of a copular, there is no

inherent linkage between two. For example, when Gaussian copular is used to determine the

dependency in a credit portfolio, the assumed normally distributed joint relationship is

independent of the actual distributions of each individual credit returns (although they are also

assumed to be normal). Second, Gaussian copular can be only used to capture the dependence

around the mean; it however does not incorporate the dependence around the tails. Although

the fat tail is a stylised feature presented in most asset return distributions, the application of

Gaussian copular in finance especially in the credit market is still massive compared to other

alternatives. Due to the numerical tractability and small number of parameters required, this

model has gained substantial popularity among market participants for the risk management

purpose. And, nowadays, it nearly becomes a standard framework to model the default

correlation just like the similar importance observed for B-S in the modelling of time-varying

volatility.
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B2.2 Student-t Copular

In the real credit market if correlation is used for trading purpose, more reliable models than

Gaussian copular is then required to provide an accurate dependence measure. For example,

Student-t copular is often suggested as such an alternative. It provides a significant

improvement compared to the Gaussian copular on capturing the tail dependence between

various credit instruments. And this improvement is essential to capture an important feature

of the market, that is, if one name of a credit portfolio tends to default, the probability of

another name to default will also increase. By simply putting, the dependence of different

credits now tends to increase at the extreme events (at the tails of credit return distribution)

To take into account this tail dependence, consider again an n-element random vector (x1,

x2,…, xn) whose marginal distributions now follow univariate t distributions vt  and their joint

distribution follows multivariate t distribution ,R vt , the student-t copular function of this

random vector then  can be defined as
1 1 1

1 2 , 1 2( , , ) ( ( ), ( ), , ( ))t n
R n R v v v v vC u u u t t u t u t u           (I.10)

where R is the linear correlation, v denotes the degree of freedom parameter, vt  is defined only

for v>2 and 1( )vt
   is the inverse cumulative distribution function of univariate t. For a bivariate

data, the above t copular then can be rewritten to, (See Picone, 2005)

1 1
1 2

( 2) / 22 2( ) ( ) 1 1 2 2
, 1 2 1 222

1 2( , ) exp 1
(1 )2 1

v
t u t ut

R v
x Rx x xC u u dx dx

v RR

 
 

 

  
  

  
    (I.11)



- 250 -

Appendix II. DCC type modeling of Conditional Covariance

Since DCC type modelling technique is a major content of this research and we will use it

throughout the thesis to modelling conditional covariance and correlation, it is then necessary

to dedicate a separate part specifically illustrate the modelling structures, statistical

characteristics of this type of models. Here, in this appendix we start from presenting the

features of Engle (2002)’s standard DCC and then elaborating some variants of it.

Consider a D-variate random variable yt which follows a unknown multivariate distribution

  after information filtration, if the first central moment of this variable is assume to equal

zero and its covariance matrix t  modelled by a dynamic conditional correlation model, for

example standard DCC of Engle (2002), t  then can be estimated by firstly writing its

specification as DtRtDt and then using independant univariate GARCH processes to model Dt

and Rt respectively.

Here, note that in a standard DCC Dt is d d diagonal matrix with it on its ith diagonal

denoting the s.t.d of ith time series. This variable is easy to estimate using traditional

optimization process of univaraite GARCH such as BHHH. However, to calculate Rt, the time

varying correlation matrix, one then needs to introduce a new auxiliary function so that this

matrix can be formed as a by-product of the auxiliary function. For example, in Engle (2002)

this auxiliary function, called Qt, is modeled by another univariate GARCH
'

1 1 1(1 )t t t tQ Q Q            (II.1)

where ,   are scalar vectors denoting the ARCH and GARCH parameter, Q  represents the

unconditional covariance of standard error t , that is '[ ]t tQ E   . And the general DCC(p,q)

model then can be defined as

'

1 1

'

1 1 1
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/
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


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

 

    

 

   
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tion estimation
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  (II.2)
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Above, if we use other processes than GARCH to model auxiliary function, Rt will change and

another forms of DCCs can be derived. For example, the simplest variant of standard DCC is

the CCC of Bollerslev (1990) where author assumed the conditional correlation no longer a

time varying variable but a deterministic constant. For this particular case, dynamic property

of correlation matrix is now scarified although estimation cost becomes much lower.

In other cases, variants of DCC are then proposed in more sophisticated ways. Take ADCC

(1,1) of Hafner and Franses (2003) for example, auxiliary function Qt of correlation matrix is

assumed to be
2 2 2 2 ' 2 2 '

1 1 1 1 1(1 )t t t t t tQ Q N Q                            (II.3)

where two new variables are now introduced to account for the asymmetric effects. One is

 0t t tI      which denotes the observations whose values of different time series

involved in empirical data at the same date are all negative. The other is N  that represents the

unconditional covariance of t , that is '[ ]t tN E  . Here, it is worth noting in (II.1)

parameter  and   are both set to be scalar products for simplicity. However, in Hafner and

Franses (2003) they are proposed in squared forms so that positive definitiveness of covariance

matrix can be ensured. As for stationarity of covariance, this condition is met if we restrict
2 2 2 1    

Similarly, Capiello et al., (2004) developed another modification of standard DCC by using a

set of diagonal matrixes. In their AGDCC (p,q) model Qt is specified, using the same way as

t  in Diagonal-BEKK,

 ' ' ' ' ' ' ' '
1 1 1 1 1t t t t t tQ Q Q Q N Q                            (II.4)

where parameters are all defined to be diagonal matrixes so that positive definitiveness of

covariance is ensured from the start of modeling and the correlation targeting (or stationarity)

is allowed after a nonlinear restriction on parameters ,  is imposed to constraint the

eigenvalues of   lies within the unit circle.

Meanwhile, to increase the model flexibility and yield more benefits, Cajigas and Urga (2005)

combined ADCC and AGDCC to propose a new dynamic correlation model. By assuming

standard error t to be multivariate asymmetric Laplace distributed, they let their Qt to follow

a new hybrid updating process. That is
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 2 2 2 ' ' ' ' '
1 1 1 1 11t t t t t tQ Q N Q                         (II.5)

Surely, apart from changing the form of auxiliary function, we have other ways to propose a

generalized DCC. As just illustrated, unknown distribution assumed for standard error can be

modified so that probability associated with the dynamic feedback may change. And this way

of increasing generality is usually cheaper than just changing Qt because less parameter will

be involved. ADCC-MGM and ADCC-MTM model to be proposed in Chapter 5 in this thesis

is just a case of it.



- 253 -

Appendix III. Hierarchical form of multivariate T distribution

(MTM)

Specification of multivariate T distribution can be written in several ways. If this density is

compounded into a standard mixture, surely, the resulting mixture distribution can also be

expressed in similar ways. For example, if a D-variate random process ty  whose observations

is now assumed to follow a standard M-component t mixture distribution (MTM), its density in

its most common form then can be written as

 1
1

| ~ , ; , ,
M

t t m t m m m m
m

y F t y   


        (IV.1)

where m  denotes the mixing probability, ,m m  and m  represent the mean, variance and

degree of freedom parameter. After augmenting each observation with a label variable, say tz ,

likelihood function of (IV.1) can be defined as

   
 

   

1
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 






 



   
     




(IV.2)

Above, if we rewrite all component distributions (student t) in a hierarchical way, (IV.2) can

also be obtained in another form. To illustrate this modification in more details, consider now

a new random variable X drawn from an i.i.d multivariate t, say  ~ , ; , ,X t X    , if its

density is now written using (IV.2), we can easily obtain

   ' 1 2
t

/ 2

y1( ) 1
2

D

t t
D

t

y
p X


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




   
     

     (IV.3)

However, this equation can be re-organized if two hierarchical forms of standard t are adopted.

One is combination of Normal and Gamma

| ~ ( , / )
~ ( / 2, / 2)

X N
v v

  





       (IV.4)

the other is combination of Normal and Chi square

2

| ~ ( , / )
~ ( )

X N
v v
  

 




           (IV.5)
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Here,  denotes the missing weight vector of observable data X; ( , / )N   is a normal

distribution with mean   and covariance matrix / ; ( / 2, / 2)v v and  2 v  respectively

represents a Gamma distribution and a Chi square distribution.

Given above equations, for a t mixture model, if Normal-Gamma is used to define each

component t distribution, probability of an observation, say ty , drawn from thm  mixture

component is then just,

| ( , ) ~ ( , / )
| ( ) ~ ( / 2, / 2)

t t t m m t

t t m m

y z m N
z m v v

  


 

 
     (IV.6)

And we can obtain its corresponding likelihood function by

 
 

 1| ( | , / ) / 2, / 2
i

t m t m m t m m
i z m

L F N y v v   
 

       (IV.7)

after all , ,t ty z   are known.

Since in this thesis the purpose is to derive sampling kernels for all parameters in t mixture

model so that random draws of these parameters can be simulated and their empirical moments

estimated, given (IV.4) and (IV.5) we can find a new way different from those depicted in

Chapter 6 for simulation. However, to avoid any duplicative task, we do not use it in our

analysis. To see its application in similar Bayesian statistics, Lee et al. (2004) provided an

example.
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Appendix IV. Use EM algorithm to estimate M-component

Gaussian Mixture distribution

Consider a D-variate random variable yt and a multivariate Gaussian mixture distribution .

Presume each observation of this variable is now drawn from a component (Gaussian) of this

mixture and associated with a specific indicator variable (or label variable) zt, which is

assumed to be multinomially distributed and having value one for element corresponding to

the selected mixture component, and zeros for all others. That is,

 0, 0, 0, 1, 0, 0, 0 T
t

M componet

z   
               (V.1)

Then, after all observations are labelled, we can form a complete information set (y,z) for

mixture model. And using EM algorithm to estimate this model is just to maximize the

likelihood function of the joint density ( , | )f y z  . Here, it is worth noting that this

optimization step is different from our traditional task of maximizing the likelihood of ( | )f y 

using only observed data y. This is because only after the component label is updated we can

know which component generate a specific observation. However, since zt is now

unobservable, often we need to continuously update its information and iterate this procedure

with maximization (or optimization) step until the convergence of parameter values can be

finally confirmed.

Below, we illustrate an example of this estimation process. Say the probability of mth Gaussian

component being selected to generate the tth observation is denoted by m . That

is ( 1)mt mf z   . Log-likelihood function of the complete data (y, z) is
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 
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   (V.2)

where  , ,m m m     denotes the parameter set of interest, ( | 1; )t mtp y z   represents the

likelihood function of mth Gaussian component ( , )m mN   .

We now take the expectation of (V.2)

1 1
( ) [ log ( | 1; ) log ]T M

c mt t mt mt mt m
z p y z z  

 
      (V.3)



- 256 -

and maximizing ( )c   with respect to  ,  then M-step (Maximization) of EM algorithm can

be formulized as
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 
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  (V.4)

Here, note that in (V.3) while the weight parameter is updated, usually it is beneficial to

impose a Lagrange multiplier to the target derivative function   /c m   .
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    (V.5)

This is because m  is now a probability measure that needs to satisfy 1m  . Besides we

can also rewrite (V.5) to

1

T
mtt

m

z
T

                      (V.6)

, since
1 1

T M
mtt m

z T
 

   .

Once the expected complete log-likelihood function ( )c   has been maximized and

elements in   have all been updated, to ensure the incomplete log-likelihood is also

maximized, each of the expectation of the latent variable mtz  then needs to be computed.

And this step is just the E-step of EM algorithm. That is
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          (V.7)

And the whole iterations will just alternate between these E-s and M-s until the convergence of

MLE is finally proved.

To provide a more straightforward illustration of above estimation procedure, we now present

the pseudo-code of implementing EM algorithm in a Gaussian mixture model.

1. Initialisation: , , ,m m m tmz  
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2. E-steps:

for t=1 to T

for m=1 to M; Calculate

      1/ 2/ 2 1( | 1, ) 2 exp / 2d T
t mt m t m m t mp y z y y          
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end

end

3. M-steps:

for m=1 to M; Calculate
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end

4. Convergence
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Appendix V. Definition and Statistical properties of Markov

Chains

Definition of Markov chains

We define a Markov Chain starting from the concept of a stochastic process. A stochastic

process, say ( ){ }m , is a consecutive set of random quantities defined on some given state

space   and indexed so that the order is known. Here, the state space refers to the range of

possible values for  ; it could be either discrete or continuous depending on how the variable

of interest is measured. Given this definition, ( ){ }m  is then said to be a Markov Chain if its

sampling sequence on state space  satisfies the condition,
( 1) (1) (2) ( ) ( 1) ( )( | , ,..., ) ( | ),m m m mE E        for all m≥0. That is, the conditional expectation

of ( 1)m   only depends on the preceding value ( )m  and independent of all earlier information.

Thus, the current state is the only information source that determines the nature of the next,

and all earlier memory will be forgotten. This characteristic is called the ‘local property’ of

Markov Chain. It turns out to be enormously useful when generating samples from the limiting

distributions of interest because when the chain eventually finds the region of the state space

with the highest density, it will only produce a sample that is mildly dependent on the value of

the last state.

Before proceeding, it is also important to know two basic elements for constructing Markov

Chains. That is the initial probability P0 and the transition probability T. P0 tells us how

Markov chain starts; T maps the potential transition events to the probability of occurrence. If

the state space is discrete, usually a Markov chain will present a matrix mapping, however

while the state space becomes continuous, T is then usually represented by a probability

density function (p.d.f). For a more detailed illustration on this issue, see for example Doob

(1990) and Gamerman (1997).

Statistical properties

Markov Chain can show many different characteristics depending on the way it is constructed.

However, basically there are only few that are central to the Bayesian statistics. For example, a

major theorem of Markov Chain called convergence theorem states that, “…under certain

regularity conditions, an irreducible, aperiodic and positive recurrent homogeneous chain will

converge to a limiting probability distribution after the initial burn-in period is thrown

away…” In practice, it means if one looks at the values generated by a given chain sufficiently
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far from its simulation origin, the successive values will be distributed with stable frequencies

stemming from a stationary probability distribution. This is one of the most important results

of this stochastic process, and it explained why MCMC algorithms are feasible for inference

calculation. Since in Bayesian statistics the major task is to simulate such a sampling sequence

that can converge to the posterior density, it then equals to know how to generate this chain so

that it has the properties of irreducibility, aperiodicity, positive recurrence and homogeneity.

Concerning this task, we present in the following a brief description of these statistical

properties.

a. Homogeneity

A Markov Chain is said to be homogeneous or stationary if at any step m, the transition

probability T does not depends on the value of m, or by a similar putting, T does not evolve

with time. Therefore, given the initial distribution P0, the state of a homogenous chain after m-

step is

Pm= P0Tm (VI.1)

b. Irreducibility

Irreducible, loosely speaking, is the property that any state of a Markov chain can be reached

from all other states. To make this illustration more clearly, consider a discrete Markov chain
( ){ }m  with finite state space S={s1,…sk}. We say a state si will communicate with another

state sj, si→sj, if the chain has positive probability of ever reaching sj from si. And these two

states are said to be intercommunicating, si←→sj, if the conditions of si→sj and sj→si are both

satisfied. Given these definitions, an irreducible Markov chain can be defined if for all si, sj∈S,

we have si←→sj, or we can find an n such that (Tn)i, j>0 where T i, j denotes the transition

probability from state i to state j.

c. Aperiodicity

Now, we move onto illustrating the aperiodicity property of Markov chains. And we start from

defining the period of a state. First, for a finite or infinite set {a1, a2, …} of positive integers,

we write gcd{a1, a2, …} as the greatest common divisor of a1, a2, …. The period, d(si), of a

state si∈S is then defined as the length of time to repeat an identical cycle of chain values.

That is,

,( ) gcd{ 1: ( ) 0}n
i i jd s n T              (VI.2)

For example, if we now start from si, d(si) is then the greatest common divisor of the set of

times that the chain can return (i.e., has positive probability of returning) to si,. If d(si) equals to
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one, then we can say the state si is aperiodic. And the whole Markov chain is aperiodic, if all

its states are aperiodic.

d. Positive recurrence

Apart from the above characteristics, recurrence is also an important property of Markov

Chain. It has a close relationship to irreducibility. And the linkage between these two concepts

is important for defining a subspace that captures the Markov Chain and simultaneously

assures this Markov chain will explore the entire subspace. An irreducible Markov Chain is

said to be recurrent with respect to a given state A which is a single point or a defined

collection of points, if the probability that the chain occupies A infinitely often over

unbounded time is nonzero. And a Markov chain is said to be positive recurrent, if the average

time to return to A is bounded.

e. Markov Chain Convergence Theorem

Given a Markov chain which possesses all statistical properties described above including

homogenous, irreducible, aperiodic and recurrent, an important theorem frequently referred to

as the ‘Existence of stationary distribution’ states that there always exists for this chain at least

one stationary distribution that over the states S will persist forever once it is reached.

Formally, this stationary distribution (also called invariant distribution, equilibrium

distribution or limiting distribution), say 1( , )k    can be identified, if for a Markov

chain, it satisfies the conditions

(i) 0i  for i=1,…,k, and
1

1k
ii




 , and

(ii) T   , meaning that ,1

k
i i j ji
T 


  for j=1,…,k.

Besides, another part of this theorem called ‘Uniqueness of the stationary distribution’ states

that for any irreducible, aperiodic and homogeneous Markov chain, it will converges to one

and only one stationary distribution. Thus, in Bayesian statistics once this stationary

distribution is obtained, it will correspond to only posterior density of interest.

f. Erogdicity

Now, it is necessary to introduce a new concept which can encompasses all statistical

properties illustrated above. That is ergodicity. Formally, we say a Markov Chain is ergodic if

this chain have all properties of irreducibility, aperiodicity, positive recurrence and

homogeneity, and

,lim( )n
i j jn

T 


 (VI.3)
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for all si and sj in S. Since an ergodic Markov Chain can now fulfill all conditions mentioned in

‘Markov Chain convergence theorem’, it is easy to find one and only one stationary

distribution for its sampling sequence. And in Bayesian statistics, if a specific chain is found to

have reached its ergoic state, then we say it will behave as a pseudo sample from the posterior

density.

Since it is already known the state of a chain at time m will be nearly independent of the state

at time n if nm  , different states in this chain although by their very definition are serial

dependent; their empirical moments can be used to approximate the distributional

characteristics of the density of interest. For example, suppose now we have a sampling

sequence ( ){ }m  with M simulated values and an arbitrary burn-in period (to eliminate the

effect from P0) with length of N, the conditional mean of this chain

( )
1

1ˆ( ) M m
N

E
M N

 



                 (VI.4)

then can be used to approximate the true parameter value ̂ .

g. Reversibility

Apart from the erogidicty, another important property of Markov chain is also worth noting

here although it is not a necessary condition for chains to converge. Countless researchers

found that Markov chain simulated by applying a MCMC algorithm is usually reversible to the

state where it is generated from. Concretely, a probability distribution on S is said to be

reversible for the chain (or for the transition matrix T ) if for all i, j∈{1,…,k} we have

, ,i i j j j iT T  (VI.5)

And a Markov Chain is said to be reversible if there exists a reversible distribution for it. Here,

although this property is not a necessary condition for convergence, it can be imposed as a

restrictive condition when simulating chains. This is because in most nontrivial situations, the

easiest way to construct a chain with a given stationary distribution is just to make sure this

reversibility condition holds (See Robert and Casella 1999 p. 235 for the proof).
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Appendix VI. How Gibbs sampler is related to Metropolis

Hastings algorithm (MH)

A lot of statistics textbooks have referred the Gibbs sampler as a special case of MH algorithm.

To obtain a practical view of how these two MCMC techniques are closely related to each

other, we provide in the following the proof. For a more detailed illustration, see Robert and

Casella (1999).

To prove Gibbs sampler is a special case of MH algorithm, first it is necessary to start from

defining the jumping density of MH algorithm equivalent to the full conditional of Gibbs

sampler so that ( ) ( ) ( ) ( )( | ) ( | )k k k kq p     . Then, by letting

( 1) ( 1) ( 1) ( 1)
1 2( , ,..., )m m m m

K        be the current state and * ( ) ( 1) ( 1)
1 2( , ,..., )m m m

K      be a

candidate value for mth simulated value of  , the acceptance probability ( )D   of *  in MH

algorithm can be calculated by,

 
 

 
 

* * ( 1)

( 1) ( 1) *

( ) ( 1) ( 1) ( ) ( 1) ( 1)
1 2 1 2

( 1) ( 1) ( 1) ( 1) ( 1) ( 1)
1 2 1 2

( ) ( 1) ( 1) ( 1) (
1 2 1 2

( ) / |
( )

( ) / |

( , ,..., ) / | ,...,

( , ,..., ) / | ,...,

( , ,..., ) * ,

m

m m

m m m m m m
K K

m m m m m m
K K

m m m m m
K

p q
D

p q

p p

p p

p p

  

  

     

     

    



 

   

     

   

 




 
 

1) ( 1) ( 1) ( 1)
2

( 1) ( 1) ( 1) ( ) ( 1) ( 1) ( 1) ( 1)
1 2 1 2 2

,..., * ( ,..., )

( , ,..., ) * , ,..., * ( ,..., )

1

m m m
K K

m m m m m m m m
K K K

p

p p p

  

       

  

      



Here, note that whenever the full conditionals of Gibbs sampler are set equal to the jumping

densities of MH, ( )D   is always equal to one. Thus, every candidate values drawn from the

jumping density will be accepted for sure in MH algorithm, and no rejection will occur. Thus,

we can say Gibbs sampler is a special case of MH algorithm.
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Appendix VII. BIS’s Triennial Central Bank Survey on trading

volume of four major currencies

This appendix reports the daily trading volume of four major currencies USD EUR GBP and

JPY. Data is collected from Bank of International Settlement’s (BIS) annual survey published

in Apr. 2004. And three panels are presented below to show the amounts and shares of how

these currencies are traded in both spot and OTC market. First, Panel A presents the currency

distribution of reported foreign exchange market turnover. Then, given the cross pairs of above

currencies, Panel B reports the daily turnover of these pairs. Finally, Panel C gives the daily

trading volume of OTC derivatives traded on these pairs. Note that the data below are all

documented in quantity of billions of US dollar.

Panel A. Currency distribution of reported foreign exchange market turnover
Currency 1989 1992 1995 1998 2001 2004

USD 90 82 83.3 87.3 90.3 88.7
EUR - - - - 37.6 37.2
JPY 27 23.4 24.1 20.2 22.7 20.3
GBP 15 13.6 9.4 11 13.2 16.9

Panel B. Foreign exchange turnover by currency pairs

1992 1995 1998 2001 2004Currency pairs
Vol. %. Vol. %. Vol. %. Vol. %. Vol. %.

USD/EUR - - - - - - 354 30 501 28
USD/JPY 155 20 242 21 256 18 231 20 296 17
USD/GBP 77 10 78 7 117 8 125 11 245 14
EUR/JPY - - - - - - 30 3 51 3
EUR/GBP - - - - - - 24 2 43 2

Panel C. OTC foreign exchange derivatives turnover by currency pairs

Total Currency optionsCurrency pairs
1995 1998 2001 2004 1995 1998 2001 2004

USD vs. others 34 77 54 110 31 68 48 92
EUR - - 17 38 - - 16 31
JPY 14 36 19 30 13 33 17 27
GBP 3 5 4 12 3 4 3 9

Euro vs. others - - 10 23 - - 9 20
JPY - - 6 10 - - 6 10
GBP - - 2 4 - - 2 3
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