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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF PHYSICAL AND APPLIED SCIENCES

SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

by Bing Shi

The double auction, a highly efficient market mechanism, has been widely used by both tra-

ditional and online exchanges. However, with the globalisation of the economy, these market-

places increasingly need to compete with each other to attract traders and charge suitable fees to

make profits. In this situation, a double auction marketplace needs effective market rules (also

called market policies) to govern the trading activity of its buyers and sellers and the ability to set

fees appropriately in order to make profits and, at the same time, keep existing traders and attract

new ones. To this end, in this thesis, we analyse competing double auction marketplaces, and

use insights from this analysis to design an effective competing marketplace for an international

market design competition, which is called CAT.

In more detail, the design of a competing double auction marketplace consists of determining

market policies, which govern traders’ interactions in the marketplace, and a charging strategy,

which determines the fees charged to traders. In this thesis, we mainly focus on the latter since

this is a significant determinant of the traders’ choices of marketplaces and the marketplaces’

profits. Now, the effectiveness of a certain charging strategy depends on the traders’ behaviour,

both in terms of how the fees affect their market selection, as well as their bidding behaviour.

Thus, in order to set an appropriate charging strategy, we need to obtain a fundamental un-

derstanding of the traders’ market selection and bidding strategies. In the context of multiple

competing marketplaces, the optimal choice for a trader in terms of selecting a marketplace and

submitting bids not only depends on its own preferences (i.e. type, which is usually privately

known), but also on the behaviour of other traders and marketplaces, and the optimal choice of a

marketplace in terms of setting fees also depends on the behaviour of traders and other market-

places. Therefore we need to analyse the equilibrium strategies for traders and marketplaces. In

so doing, we consider several settings. In particular, we consider the settings where traders can

only enter one marketplace at a time (single-home trading) and can enter multiple marketplaces

at a time (multi-home trading). Furthermore, we consider the setting where the traded goods are

independent, substitutes or complements. In the analysis, we show how these different trading

environments and different good properties affect the strategies of traders.

In more detail still, we first analyse a single-home trading environment with a small number of

discrete trader types, where traders are assumed to use a truth-telling bidding strategy, i.e. sub-

mit their types as their shouts. For this setting, we first analyse the equilibrium market selection
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strategies of traders for given market fees. We derive the equilibrium strategies analytically and

furthermore use evolutionary game theory to investigate the dynamics of the traders’ strategies.

Our results show that when the same type of fees are charged by two marketplaces, all the traders

will converge to one marketplace. However, when different types of fees are allowed (registra-

tion fees and profit fees), competing marketplaces are more likely to co-exist in equilibrium.

Moreover, we find an interesting phenomena that sometimes all the traders eventually migrate

to the marketplace that charges higher fees. We then go on to analyse the equilibrium charging

strategies of the marketplaces. Specifically, we present two approaches: a static and a dynamic

analysis. The former is based on the assumption that marketplaces set their fees once at the

beginning and so the charging strategies are not affected by the changes in the traders’ market

selection strategies. In the latter analysis, we tackle this limitation by using a co-evolutionary

approach where we analyse how competing marketplaces dynamically set fees while taking into

account the dynamics of the traders’ market selection strategies. From this analysis, we find that

two initially identical marketplaces eventually charge the minimal fee that guarantees positive

market profits for them. We also find an initially disadvantaged marketplace with an adaptive

charging strategy can beat an initially advantaged one with a fixed charging strategy.

Building on this, we use fictitious play (a computational learning approach) to extend the above

analysis by considering continuous trader types, different trading environments and different

good properties. Moreover, we consider two more types of fees (transaction and transaction

price percentage fees), and instead of assuming that traders adopt a truth-telling bidding strat-

egy, we analyse both the equilibrium market selection and bidding strategies. In more detail,

we first analyse traders’ equilibrium bidding strategies in a single marketplace and investigate

how these strategies are affected by the different fees. In so doing, we find that registration fees

cause a bigger range of traders not to choose the marketplace; profit fees cause traders to shade

a lot; transaction price percentage fees cause sellers to shade relatively less than buyers. Then

we analyse how different trading environments and different good properties can affect traders’

equilibrium market selection and bidding strategies. We then analyse the effects of different

types of fees on obtaining market profits and keeping traders in a single marketplace environ-

ment. We find that the transaction price percentage fee is the most effective in making profits

and keeping traders. Finally, we analyse how competing marketplaces set fees in equilibrium

and show that the marketplace will charge high profit fees since traders can shade.

Finally, in addition to analysing the charging strategies, we also experimentally analyse how

different market policies affect the performance of competing marketplaces in different environ-

ments where traders adopt different bidding strategies. Then, using the insights from analysing

the equilibrium charging strategies and the market policies, we design a competing marketplace,

which we entered into the 2010 CAT competition. This agent performed well and was ranked

first in the second day’s competition and second in the third day’s competition.
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Chapter 1

Introduction

Exchanges, which are organised marketplaces where securities, futures, stocks and commodities

can be traded, are becoming ever more prevalent. Well known traditional exchanges include the

National Association of Securities Dealers Automated Quotation System (NASDAQ, a stock ex-

change), Chicago Mercantile Exchange (CME, a commodity exchange) and Minneapolis Grain

Exchange (MGEX, a futures exchange). Now, with the development of information technology,

there also exist exchanges to trade goods online. For example, Google offers DoubleClick Ad

Exchange (http://www.doubleclick.com), which is a real-time exchange enabling

large online ad publishers and ad networks and agencies to trade advertising space. Another ex-

ample is FastParts (http://www.fastparts.com), which provides an online exchange

to trade excess electronic components and used manufacturing equipment.

In the past, there was comparatively little interaction among these exchanges because of techni-

cal restrictions (such as slow information transmission and weak data processing ability). How-

ever, because of the globalised economy, now these exchanges do not exist in isolation. For

example, in China, companies can be listed on both the Shanghai and the Shenzhen Stock Ex-

changes; in the USA, companies may be listed on both the New York Stock Exchange (NYSE)

and the NASDAQ, and even in non-US marketplaces like the London Stock Exchange (LSE).

Furthermore, the same commodities (such as agricultural products and precious metals) can

be listed on both the New York Mercantile Exchange (NYMEX) and the CME. Now, because

the same stocks and commodities can be listed on multiple exchanges, these exchanges are

in competition with one another to attract companies. For example, when the National Stock

Exchange (NSE) opened in India, it proceeded to claim much of the trade volume from the

more established India’s Bombay Stock Exchange (BSE) (Shah and Thomas, 2000). Another

example is that, during the global stock market crash in 1987, unfulfilled orders on the CME

overflowed onto the NYSE (Miller et al., 1988). This competition also happens between on-

line exchanges. For example, Google’s DoubleClick Ad Exchange competes against other ad

exchanges, such as Microsoft’s AdECN (http://www.adecn.com) and Yahoo!’s Right

Media (http://www.rightmedia.com) in order to attract ad publishers and ad networks

and agencies. In addition, a number of alternative trading systems, often called “dark pools”, or

1
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“dark liquidity”, or “dark pools of liquidity”, are propagating rapidly (Carrie, 2008). Well known

dark pools include Barclays Capital’s Liquidity Cross, Goldman Sachs’s SIGMA X, Citi’s Citi

Match. In contrast to the bulk of trades executed in traditional exchanges, trades in dark pools

are made anonymously and are executed outside of the marketplace. Thus nobody knows who

has just made a transaction and so minimum information about traders is leaked. That’s why it

is called a dark pool. There is evidence that these new trading systems have taken much trade

volume from the traditional exchanges because of this minimum information leakage (Carrie,

2008), and now they are also competing with one another to attract traders by varying their terms

of trades (e.g. Liquidity Cross operates on a continuous matching basis during market hours,

while SIGMA X also offers continuous matching, and in addition, it offers X-Cross in which

the matching takes place at a scheduled time).

Many of these exchanges adopt the double auction market mechanism which is a particular type

of two-sided marketplace with multiple buyers (one side) and multiple sellers (the other side)

(Friedman and Rust, 1993). Specifically, in such a mechanism, traders can submit offers at any

time in a specified trading round and they will be matched by the marketplace at a specified time.

The advantages of this mechanism are that traders can enter the marketplace at any time and they

can trade multiple homogeneous or heterogeneous items in one place without travelling around

several marketplaces. In addition, this mechanism is highly efficient in terms of trading goods

between buyers and sellers (Smith, 1962). Since such a market mechanism has been widely

used by traditional and online exchanges, in this thesis, we focus on the competition between

multiple double auction marketplaces.

Specifically, in the competition between double auction marketplaces, traders that want to trade

goods (stocks, commodities or advertising spaces) have a choice of marketplaces in which to

participate. Thus marketplaces need to design effective and efficient market rules to govern the

trading process in order to attract traders. Moreover, competing marketplaces usually charge

some form of fee to the traders so they can make profits, and this choice will also affect traders’

choices of marketplaces. Intuitively, we can see that there exists a conflict between making

profits by charging fees and attracting traders. A marketplace can make a high short-term profit

by charging high fees, but will lose traders in the long term. Thus they need to set their fees

appropriately to make profits, while still maintaining the number of traders at a good level.

Furthermore, a trader’s choice of competing marketplaces not only depends on market rules and

market fees set by the competing marketplaces, but also depends on other traders’ behaviour (in

terms of selecting marketplaces and making offers). In more detail, buyers(sellers) will prefer

the double auction marketplace with more sellers(buyers) but less buyers(sellers) since this will

increase the probability of making transactions for them. Against this background, in this thesis,

we will analyse how traders behave strategically in the context of competing marketplaces, and

how marketplaces compete with each other effectively in terms of establishing market rules and

setting fees. We will also use insights from this formal analysis to guide the design of a practical

competing marketplace agent.

Given this context, in the next section (Section 1.1), we give an overview of the competing
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double auction marketplace design. Then, in Section 1.2, we discuss the research challenges

of this work and outline our contributions in Section 1.3. Finally, we detail the structure of the

thesis (Section 1.4).

1.1 Competing Marketplace Design

In this section we outline the key components of competing double auction marketplace de-

sign. In more detail, a marketplace can be defined as an actual or metaphorical space, where

a set of rules is established, by which buyers and sellers are in contact to exchange goods or

services (Begg et al., 1994). Given this, research on marketplace design is mainly concerned

with how to design these rules (also called the market policies) to govern traders’ interactions

to achieve some desirable properties, like high allocative efficiency (meaning the ratio of total

profits earned by all traders to the maximum possible total profits in the marketplace) or reduced

fluctuation of transaction prices.

Currently, many of the world’s marketplaces are auction based, where an auction is defined as

a mechanism or set of rules for trading goods (Jones, 1988). Therefore, market design is often

also referred to as auction design1. To this end, Wurman et al. (2002) investigate the design

space of auctions, which are commonly used in marketplaces in general, and identify three core

activities which structure the space:

• Receive offers: an offer is the price at which a buyer is willing to buy a good or the price

at which a seller is willing to sell a good. When receiving an offer, the auction needs to

verify whether it satisfies the offer accepting rules, and if so, it will admit this offer into

the active set of offers.

• Clear: the central purpose of an auction is to clear the market, i.e. execute all possible

transactions (determining the allocation of goods and the corresponding payments be-

tween buyers and sellers). This activity aims to leave no possible transactions among the

remaining offers. It contains three sub-activities:

– Timing: indicates when to execute possible transactions.

– Matching: indicates how to execute possible transactions.

– Pricing: indicates the corresponding transaction prices between matched buyers and

sellers.

• Reveal intermediate information: auctions usually supply traders with information about

the state of bidding during the process, in order to guide traders toward a final outcome.

These status report are called quotes.

1Note that not all marketplaces are auction based, such as traditional shopping centres, eBay’s half.com and
Amazon Marketplace.
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Thus in the design of auction mechanisms, offer accepting, timing, matching, pricing and quote

policies need to be determined to govern the above core activities. These policies are referred

to as market polices. Now, for ease of exposition, we first use an English auction as an example

to introduce these policies. In the English auction, only the bid that is higher than the current

standing bid (which is the highest bid at any given moment) is accepted (offer accepting policy).

If no competing buyer challenges the standing bid in a given time, then the buyer with the

standing bid becomes the winner (timing policy). The item is sold to the buyer with the highest

bid at a price equal to the standing bid (matching and pricing policies). During the auction, all

bids at any time are public to all buyers (quote policy).

In the typical double auction marketplace, market policies are also needed to govern the above

three activities. In more detail, in the double auction, any seller can submit an offer (called an

ask) at any time in a specified trading period. This ask is observed simultaneously by all buyers

and sellers. Similarly, any buyer can submit an offer (called a bid) at any time, which is also

observed by all buyers and sellers. In the following, we use shout as a generic term for a bid or

an ask, and call the offer accepting policy the shout accepting policy. How traders submit their

shouts is determined by their bidding strategies. When traders attempt to place their shouts,

the marketplace needs to use a shout accepting policy to determine whether to admit a trader’s

shout or not. Then when some shouts have been admitted, the marketplace needs to use a timing

policy to determine when to match bids with asks to make transactions. For a successful match,

the marketplace uses a pricing policy to determine the transaction price between the matched

buyer and seller. Furthermore, the marketplace also needs to generate quote information to help

traders submit shouts based on the quote policy. In order to give further understanding of these

market policies as they are used in double auctions, we now introduce some examples of each of

these different policies: the quote-beating accepting policy which only accepts bids higher than

the bid quote and asks lower than the ask quote (see section 2.3.2.2 for more details); the round

clearing and equilibrium matching policy which clears the marketplace by matching the highest

bids with the lowest asks, and does so when all traders have submitted their shouts (sections

2.3.2.2 and 2.3.2.2); the k-pricing policy which sets the transaction price of a matched buyer

and seller at some point in the interval between the buyer’s bid and the seller’s ask (section

2.3.2.2). Specifically, considering that different bidding strategies will be used by traders in the

double auction marketplace, and these strategies rely on different information provided by the

marketplace, researchers often assume that the quote policy publishes all information about the

state of traders’ shouts to all traders in double auctions. In our research, we also adopt this

assumption, and thus do not need to consider the design of a specific quote policy.

Moreover, in addition to establishing such policies, marketplaces also need to set charging poli-

cies (also referred to as charging strategies, in this thesis we use the two terms inter-changeably),

which determine fees charged to traders by marketplaces which participate in them. Such fees

enable the marketplaces to earn profits and are common in real life2. In this thesis, we consider

two categories of fees which are common in the real-world marketplaces: ex ante fees, which
2As an example, eBay charges listing fees to sellers when items are listed, and both eBay and Amazon charge

final fees to sellers when items are successfully sold.
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are charged to traders before they make transactions (like the listing fees adopted by eBay), and

ex post fees, which are charged to traders after they successfully make transactions (like the fi-

nal fees adopted by both eBay and Amazon). In the isolated marketplace environment, a simple

charging strategy is usually sufficient since traders have no other marketplaces to select. How-

ever, in the context of competing marketplaces, traders can move freely among marketplaces

to find the best deal. Therefore how marketplaces set fees becomes important since this will

significantly affect the traders’ choices of marketplaces and the marketplaces’ profits. Thus in

addition to effective market policies, a smart charging strategy is also needed in the competing

double auction marketplace design.

1.2 Research Challenges

As discussed above, the design of a competing double auction marketplace consists of the design

of market policies and a charging strategy. Intuitively, we can see that the effectiveness of market

policies and charging strategy is affected by the traders’ behaviour, which is determined by their

strategies. In more detail, in the context of multiple competing marketplaces, traders need to

decide which marketplaces to participate in (determined by their market selection strategies) and

how to submit their shouts in the selected marketplaces (determined by their bidding strategies).

Thus firstly, we need to obtain a fundamental understanding of traders’ strategies in terms of

market selection and bidding. Based on this, we can analyse how marketplaces should set their

market policies and charging strategies to make profits while still maintaining traders.

In more detail, in the context of multiple competing double auction marketplaces, traders’ mar-

ket selection and bidding strategies not only depend on market policies and the charging strate-

gies, but also depend on other traders’ strategies. Specifically, there exists a positive size effect

(Ellison et al., 2004), whereby, buyers(sellers) prefer marketplaces which have a larger number

of sellers(buyers) since this gives the buyers(sellers) access to more choices. Such an effect will

always push all traders towards concentrating into a single marketplace. However, in addition

to the positive size effect, in double auctions, buyers(sellers) also compete with each other in

order to be matched with sellers(buyers). This is referred to as a negative size effect (Ellison

et al., 2004), whereby, traders prefer marketplaces with fewer other traders on the same side.

Thus this negative size effect will push traders to distribute across different marketplaces. The

positive and negative size effects have contrary impacts on the traders’ distribution across multi-

ple marketplaces, and so enhances the complexity of analysing traders’ strategies (especially for

market selection). Furthermore, we are interested in analysing which effect has a larger impact,

and whether competing marketplaces can co-exist, and the competition can be maintained, or

whether the marketplaces collapse to a monopoly setting where all traders move to one market-

place. This is important since competition drives efficiency and offers more and better choices to

traders. Moreover, in contrast to much existing work that makes simplifying assumptions that all

traders are homogeneous with the same preferences (i.e. types), or that marketplaces have com-

plete information about the types of traders, many realistic marketplaces have heterogeneous
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traders whose types are only privately known. Specifically, in such settings, trader types can be

drawn from a discrete distribution (i.e. discrete trader types), or can be drawn from a continuous

distribution (i.e. continuous trader types). These assumptions also increase the complexity of

the analysis.

Furthermore, in the real world, there usually exist three types of trading environments. The

first is single-home trading where both buyers and sellers can only select one double auction

marketplace at a time. The second is multi-home trading where both buyers and sellers can

participate in multiple marketplaces at a time. The last is hybrid trading where one side of

traders can only enter one marketplace at a time (i.e. single-home trading), while the other

side of traders can enter multiple marketplaces at a time (i.e. multi-home trading). Different

trading environments will affect traders’ strategies, and, in turn, affect the effectiveness of the

market policies and the charging strategy. For example, in a single-home trading environment,

traders will only participate in the most profitable marketplace, and thus marketplaces have

to compete fiercely with each other to attract traders, and have to charge low fees. However,

with multi-home trading, traders will participate in any marketplace that provides non-negative

(or positive) profits for them, and thus marketplaces can charge higher fees to maximise their

profits. In addition to the impact of the trading environments on the marketplace competition,

the properties of the goods traded between buyers and sellers can also affect the competition.

Specifically, when multiple goods are traded across multiple marketplaces, these goods can be

either independent, substitutes or complementary. When they are independent, the trader’s value

for the multiple goods is additive, i.e. equal to the sum of its value on each individual good.

When they are substitutes, the trader’s value is subadditive, i.e. less than the sum of its value on

each individual good. When the goods are complementary, the trader’s value is superadditive,

i.e. greater than the sum of its value on each individual good. These different properties also

affect traders’ strategies. As an example, when trading complementary goods, buyers may prefer

to buy as many goods as they can, and thus will try to bid high in several marketplaces to make

more transactions. Therefore, when analysing competing double auction marketplaces, we need

to consider these different situations.

In this thesis, we consider all the above factors when analysing competing double auction mar-

ketplaces. More specifically, the research challenges of this thesis that deal with a number of

issues in the competing marketplace design are as follows:

1. Analyse the traders’ market selection strategies: In the competing marketplace context,

traders can move freely between marketplaces to search for the most profitable one. In-

tuitively, we can see that how traders select marketplaces is important since this will sig-

nificantly affect the competition result of marketplaces. For example, this will affect the

traders’ distribution across marketplaces, and, in turn, affect the market profits. Further-

more, this will also affect the marketplaces’ decisions of establishing market policies and

charging strategies. Thus firstly, we should obtain a fundamental understanding about

traders’ market selection strategies. In the double auction with multiple buyers and mul-

tiple sellers, the optimal choice for a trader in terms of selecting a marketplace not only
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depends on market policies and fees charged to it, but also depends on the behaviour of

other traders. Thus we need to analyse the equilibrium market selection strategies for

traders. Furthermore, as discussed above, traders’ market selection strategies are affected

by different trading environments and different properties of trading goods, and thus we

need to consider these factors in the analysis.

2. Analyse the traders’ bidding strategies: After selecting marketplaces, traders need to de-

termine the shouts which they should submit in the chosen marketplaces. How traders

submit shouts is also important since it will also affect the marketplaces’ decisions of

setting market policies and fees. Thus in addition to the market selection strategies, we

also need to analyse the bidding strategies for traders. Similar to the market selection

strategies, in double auctions, the optimal choice for a trader in terms of placing a certain

shout not only depends on market policies and fees charged to it, but also depends on the

shouts placed by other traders. Thus we need to analyse the equilibrium bidding strategies

for traders. Currently, most work on bidding strategies is restricted to single marketplaces

without considering inter-marketplace competition. Actually, even for the single market-

place, the equilibrium bidding strategy for traders is a challenging problem. In addition, in

the competing marketplace context, we also need to analyse traders’ equilibrium bidding

strategies across multiple marketplaces. Furthermore, traders’ bidding strategies are af-

fected by the different trading environments and the different properties of trading goods

as well, and thus we have to incorporate these factors in the analysis.

3. Analyse the market policies: The first part of competing market design is the choice of

the market policies. A considerable body of work exists on the market policy design of

an isolated double auction marketplace without inter-marketplace competition (in section

2.3.2.2, we introduce this work in detail). However, we do not know which market policy

will perform well when competing with other policies. Currently, there is no systematic

work on analysing the performance of market policies in the competing environment.

Furthermore, the effectiveness of a market policy also depends on the traders’ behaviour.

Therefore, we need to analyse how different market policies affect the performance of

competing marketplaces by considering different behaviours for traders.

4. Analyse the charging strategy: The second part of competing market design is the choice

of a charging strategy. By charging fees to traders, the marketplaces can make profits.

However, as mentioned previously, there exists a conflict between attracting traders and

making profits. Thus the competing marketplace has to be able to set appropriate fees to

maximise its profit, while at the same time maintain the number of traders at a good level.

Furthermore, during the competition, the marketplace’s opponents may change their fees

and traders’ bidding and market selection behaviour may change as well, and thus the

marketplaces should be able to adapt their fees to these changes. Moreover, in the real

world, marketplaces charge different types of fees, which usually have different effects

on the traders’ strategies and on obtaining profits for marketplaces. For example, when

an entry fee is charged to traders for joining a marketplace, some traders may not choose
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the marketplace because of the potential of negative trader profits that may be caused by

this fee. Thus charging an entry fee may result in good market profit for the marketplace,

but cause a decrease in the number of traders entering the marketplace. Similarly, when

a percentage fee is charged on transaction profit made by traders, traders will choose

this marketplace since such a fee guarantees non-negative profits for them. However,

the marketplace may not be able to obtain a good market profit even by charging a high

percentage fee since traders can shade their shouts to hide their actual transaction profits

(as we will show in Section 4.4.1). Therefore, we need to analyse what types of fees are

appropriate and effective for marketplaces to obtain market profits and maintain traders.

5. Design and evaluate a competing marketplace: Once we have analysed market policies

and charging strategies and obtained insights from the analysis, we will use these insights

to design a practical competing marketplace agent. Furthermore, in order to test the ef-

fectiveness of our design, we will evaluate it in the CAT competition, an international

benchmarking exercise in this area.

1.3 Research Contributions

In order to reach the ultimate aim of designing an effective competing double auction market-

place, firstly, we theoretically analyse the market selection and bidding strategies for traders

and charging strategies for marketplaces. In our system, intuitively, we can see that how a

trader selects a marketplace and submits a shout depends on other traders’ decisions, as well

as the market policies and market fees. Similarly, how a competing marketplace sets its fees

depends on the traders’ strategies and other marketplaces’ fees. Thus game theory (Binmore,

1991; Fudenberg and Tirole, 1991), which mathematically studies such strategic interactions

between self-interested agents where an individual’s success in making choices depends on the

choices of others, is the appropriate tool for theoretically analysing our system. In particular,

we will analyse the Nash equilibrium bidding and market selection strategies for traders and

the Nash equilibrium charging strategies for marketplaces. By so doing, this is the first work

to comprehensively analyse competing double auction marketplaces from a theoretical perspec-

tive. Furthermore, we empirically analyse the effectiveness of different market policies in the

context of an international market design competition (CAT), which is part of the Trading Agent

Competition (TAC) (Cai et al., 2009). Finally, we use the insights obtained from the theoretical

and empirical analysis to guide the design of a practical competing double auction marketplace.

More specifically, the research contributions of this thesis are:

1. We use game theory to analyse the market selection strategies for traders in the setting
with discrete trader types. This addresses research challenge 1. This is the first work on

analysing the equilibrium market selection strategies for traders in the context of multiple

double auction marketplaces, where traders have privately know types. Here we assume
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that traders use a simple, truth-telling bidding strategy, and can only select one market-

place at a time (i.e. single-home trading). Given these assumptions, we first analyse the

Nash equilibrium strategies for traders’ market selection for given market fees. Further-

more we analyse how traders dynamically change their market selection strategies and

which of the equilibria can be reached using evolutionary game theory (EGT). We show

that, when the same type of fees are charged, it is unlikely that multiple competing mar-

ketplaces will co-exist at long term despite the negative size effect; all traders will simply

converge to one of the marketplaces in equilibrium. However, when different types of fees

are allowed, competing marketplaces can co-exist over the long term. Counter-intuitively,

we find that in certain situations all traders may converge to the marketplace that charges

higher fees when the marketplace initially has a larger market share. This means that the

marketplace can maintain both high number of traders and high profits. We then analyse

this interesting phenomenon in more detail. Specifically, we analyse and characterise in

what situations traders select the marketplace that charges higher fees and what factors

affect this selection.

2. We game-theoretically analyse the charging strategies for marketplaces in the setting
with discrete trader types. This addresses research challenge 4. After having established

the traders’ equilibrium market selection strategies (i.e. contribution 1), we proceed to

analyse how competing double auction marketplaces should set their fees to make profits

in equilibrium in the same setting as that in contribution 1. This is also the first work

on analysing how two competing double auction marketplaces set fees in equilibrium. In

particular, we analyse the Nash equilibrium charging strategies for marketplaces using

two different approaches. In the first, we calculate marketplaces’ profits for each possible

type of fees, and then generate the payoff table, from which we find the equilibrium fees.

However, this method does not consider the fact that marketplaces’ charging strategies are

affected by the dynamic changes of the traders’ market selection strategies. In the sec-

ond approach, we address this limitation by modelling the interplay as a two-stage game,

where, in the first stage, competing marketplaces set their fees, and, in the second stage,

traders select a marketplace conditional on these fees. We then use a co-evolutionary ap-

proach to analyse this game. Specifically, we find that two initially identical competing

marketplaces will eventually charge the minimal fee that guarantees positive market prof-

its for them when traders initially have an equal probability of choosing each of them. We

also find that by dynamically evolving the charging strategy, it is possible for the market-

place that is initially at a disadvantage to outperform its opponent, which is also able to

evolve its charging strategy. Furthermore, we show that an initially disadvantaged mar-

ketplace with an adaptive charging strategy can beat the initially advantaged one with a

fixed charging strategy.

3. We use fictitious play to analyse the market selection and bidding strategies for traders
and charging strategies for marketplaces in the setting with continuous trader types.
This addresses research challenges 1, 2 and 4. We use fictitious play, a computational

learning approach, to extend the above analysis by considering continuous trader types,
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different trading environments and different properties of trading goods. Here we assume

that traders adopt discrete shouts. Given this setting, we first analyse the equilibrium

bidding strategies for traders in single double auction marketplaces without considering

inter-marketplace competition. We show empirically that the fictitious play algorithm

converges to a unique pure Bayes-Nash equilibrium. We then analyse how market fees

affect these strategies. By so doing, this is the first work that analyses what traders will

bid in equilibrium in double auctions and analyses the effect of market fees on the equilib-

rium bidding strategies. Building on this analysis, we go on to study competing market-

place environments where we consider both the traders’ bidding and the market selection

strategies. Firstly, we analyse the traders’ equilibrium strategies in the single-home trad-

ing environment with independent trading goods. We find that all traders that choose

a marketplace eventually converge to the same one. We then extended the analysis by

considering multi-home and hybrid trading environments and different good properties,

which is also the first work on considering these factors in the analysis of competing

double auction marketplaces. Finally, we analyse what types of fees are effective for

marketplaces to obtain market profits and maintain traders, and what are the equilibrium

charging strategies.

4. We empirically analyse market policies and design an effective charging strategy for the
CAT competition. This addresses research challenges 3 and 5. Through extensive exper-

iments, which are based on the CAT competition platform, we obtain empirical insights

about how each market policy influences the performance of competing marketplaces

when different bidding strategies are adopted (GD, ZIP, RE and ZI-C bidding strategies,

see Section 2.3.2.1). Examples of such insights include the fact that the allocative ef-

ficiency of a marketplace is low when it adopts a continuous clearing policy with most

traders using a ZI-C or RE bidding strategy, or when the marketplace adopts an equilib-

rium accepting policy with most traders using a GD or ZIP bidding strategy. From these

insights, we design market policies used for the CAT competition. Furthermore, based on

our theoretical analysis of charging strategies, we design a novel and adaptive charging

strategy in which the marketplace adjusts its fees based on the relative number of transac-

tions. Finally, we entered our competing marketplace into the 2010 CAT competition and

showed that it performed very well in this open benchmarking competition.

The following peer reviewed papers have been published or submitted to support these contri-

butions:

• Shi, B., Gerding, E. H., Vytelingum, P. and Jennings, N. R. (2010) An Equilibrium Analy-

sis of Market Selection Strategies and Fee Strategies in Competing Double Auction Mar-

ketplaces. Submitted to the Journal of Autonomous Agents and Multi-Agent Systems.

In this paper, we analyse the equilibrium market selection strategies for traders in the

setting with discrete trader types and use a co-evolutionary approach to analyse the equi-

librium charging strategies for marketplaces. This deals with contributions 1 and 2 (see



Chapter 1 Introduction 11

Chapter 3).

• Shi, B., Gerding, E. H., Vytelingum, P. and Jennings, N. R. (2010) An Equilibrium Analy-

sis of Competing Double Auction Marketplaces using Fictitious Play. In: 19th European

Conference on Artificial Intelligence (ECAI), Lisbon, Portugal. pp. 575-580.

In this paper, we use fictitious play to analyse the equilibrium bidding and market selec-

tion strategies for traders in the setting with continuous trader types. This partly deals

with contribution 3 (see Chapter 4).

• Shi, B., Gerding, E. H., Vytelingum, P. and Jennings, N. R. (2010) A Game-Theoretic

Analysis of Market Selection Strategies for Competing Double Auction Marketplaces.

In: 9th International Conference on Autonomous Agents and Multi-Agent Systems (AA-

MAS2010), Toronto, Canada. pp. 857-864.

In this paper, we game theoretically analyse Nash equilibrium market selection strategies

for traders in the setting with discrete trader types, and use EGT to analyse the dynamics

of traders’ strategies. This deals with contribution 1 (see Chapter 3).

• Shi, B., Gerding, E. H., Vytelingum, P. and Jennings, N. R. (2010) Setting Fees in Com-

peting Double Auction Marketplaces: An Equilibrium Analysis. In: 12th International

Workshop on Agent-Mediated Electronic Commerce (AMEC 2010), Toronto, Canada. pp.

85-98.

In this paper, we game theoretically analyse Nash equilibrium charging strategies for

traders given traders’ equilibrium market selection strategies. This deals with contribution

2 (see Chapter 3).

• Vytelingum, P., Vetsikas, I., Shi, B. and Jennings, N. R. (2008) IAMwildCAT: The Winning

Strategy for the TAC Market Design Competition. In: 18th European Conference on

Artificial Intelligence (ECAI), Patras, Greece. pp. 428-432.

In this paper, we empirically analyse the market policies used in the CAT competition

context. This partly deals with contribution 4 (see Chapter 5).

1.4 Thesis Structure

The outline of the thesis is as follows:

• In Chapter 2, we provide the necessary background on game theory and markets, and anal-

yse the literature about both isolated and competing marketplaces. Finally, we describe

the CAT competition and review relevant work in this competition.

• In Chapter 3, we game theoretically analyse the equilibrium market selection strategies

for traders and the equilibrium charging strategies for marketplaces in the setting with

discrete trader types.
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• In Chapter 4, we use fictitious play to analyse the equilibrium market selection and bid-

ding strategies for traders in the setting with continuous trader types, different trading

environments and different good properties. We also analyse the effects of different types

of fees on obtaining market profits. Furthermore, we analyse how competing marketplaces

set fees in equilibrium.

• In Chapter 5, we empirically analyse the performance of different market policies when

different bidding strategies are adopted, and use insights from this analysis to design mar-

ket policies for the CAT competition. We also use insights from the theoretical analysis

of the charging strategy to guide the practical design of a novel and adaptive charging

strategy. We show that our design of market policies and the charging strategy performed

well in the 2010 CAT competition.

• In Chapter 6, we conclude this thesis and outline future work.



Chapter 2

Literature Review

In this chapter, we begin by introducing the basic background on game theory (Section 2.1) and

general market theory from microeconomics (Section 2.2). These topics are relevant because

they form the foundations for analysing marketplace competition. Then, we go on to describe

related literature about isolated marketplaces, including bidding strategies and market policies

(Section 2.3). Following this, we review work on competing marketplaces (Section 2.4). We

then introduce the Market Design Competition (Section 2.5). Finally, we summarise this chapter

(Section 2.6).

2.1 Background on Game Theory

Game theory, which studies the strategic interactions of self-interested agents mathematically, is

an important part of microeconomics. Thus it has been widely used to analyse the interactions

between traders and between competing marketplaces. In this section, we provide the basic

notions from game theory which are related to our work. For a comprehensive overview of this

area, see Fudenberg and Tirole (1991) and Osborne and Rubinstein (1994).

In more detail, a game consists of a set of players which we will denote by I = {1, 2, ..., I}.

Each player has a strategy, which is a complete contingent plan, or decision rule, to specify

how this player will act in each possible distinguishable circumstance. Specifically, we use si

to represent a strategy for player i, and si ∈ S i, where S i is the set of all possible strategies

for player i. In the game, the strategies of all players constitute a strategy profile, which is an

I-tuple, s̄ = 〈s1, ..., sI〉 ∈ S , where S = S 1 × ... × S I is the set of all possible strategy profiles.

In addition, we use s−i = 〈s1, ..., si−1, si+1, ..., sI〉 to represent the strategy profile for all players

except i, and s−i ∈ S 1 × ... × S i−1 × S i+1 × ... × S I . Now s̄ can be rewritten as s̄ = 〈si, s−i〉. Each

strategy profile will induce an outcome for the game. Players have different preferences over

different outcomes. We use utility functions to describe players’ preferences over outcomes.

Formally, the player i’s utility function is defined as Ui : S → R, which is a mapping from the

13
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set of players’ strategy profiles to the utilities over the outcomes induced by the strategy profiles.

Now, given the set of players, the players’ strategy profiles and the utility functions, a game can

be formally represented in the following way:

Definition 2.1. For a game with player set I, Γ specifies for each player i a set of strategies

S i (with si ∈ S i) and a utility function Ui(〈s1, ..., sI〉). Formally, the game can be written as

Γ = [I, {S i}, {Ui(·)}], i ∈ I.

The strategy we presented above is termed a pure strategy, where players choose strategies in

a deterministic way. However, stable outcomes (e.g. Nash equilibria, as we will introduce

below) where all players play pure strategies, do not always exist. Therefore, in addition to

pure strategy, we also introduce the mixed strategy, whereby a probability is assigned to each

pure strategy. The mixed strategy allows a player to randomly select a pure strategy. Formally,

a mixed strategy of player i can be defined as ωi : S i → [0, 1], which assigns to each pure

strategy si ∈ S i a probability ωi(si) ≥ 0 that it will be played, where
∑

si∈S i ωi(si) = 1. Here, it is

important to note that a pure strategy can be regarded as a degenerate case of a mixed strategy,

where the particular pure strategy is selected with probability 1 and every other strategy with

probability 0. Because probabilities are continuous, there are infinitely many mixed strategies

available to a player, even when the pure strategy set is finite. The set of possible mixed strategies

for player i which has M pure strategies in set S i = {si 1, ..., si M} can be represented by

∆i =
{(
ωi(si 1), ..., ωi(si M)

)
∈ RM : ωi(si m) ≥ 0 f or all m ∈ {1, ...,M} and

M∑
m=1

ωi(si m) = 1
}

Similarly, a mixed strategy profile can be denoted by ω̄ = 〈ω1, ...ωI〉 ∈ ∆, where ∆ = ∆1× ...×∆I

is the set of all possible mixed strategy profiles. Furthermore, the mixed strategy profile can be

rewritten as ω̄ = 〈ωi, ω−i〉, where ω−i ∈ ∆1 × ... × ∆i−1 × ∆i+1 × ... × ∆I is the mixed strategy

profile for all players except i. Now, the players’ utility functions need to be redefined since their

utilities are in expectation over probability distributions of pure strategies. Specifically, player

i’s expected utility function is defined as Ũi : ∆ → R. In more detail, it is the expectation over

the probability distribution of pure strategy profile s̄ = 〈s1, ..., sI〉:

Ũi(ω̄) =
∑
s̄∈S

∏
i∈I

ωi(si) ∗ Ui(s̄)

Therefore, the game where players adopt mixed strategies can be written as Γ = [I, {∆i}, {Ũi(·)}],

i ∈ I.

After presenting the game with mixed strategies, we now introduce the notion of solution concept.

In this context, a solution concept is a formal rule used to predict how the game will be played.

These predictions describe which strategies will be adopted by the players, therefore predicting

the outcome of the game. In the following, we describe the two most commonly used solution

concepts: dominant strategy and Nash equilibrium. For the solution concept of dominant strat-

egy, it means that the player can maximise its utility by adopting a certain strategy no matter

what strategies other players use. Formally, a dominant strategy is defined as:
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Definition 2.2. A pure strategy si ∈ S i is a dominant strategy for player i in game Γ =

[I, {S i}, {Ui(·)}], i ∈ I, if

∀s′i ∈ S i and s′i , si,∀s−i ∈ S −i,Ui(〈si, s−i〉) ≥ Ui(〈s′i , s−i〉)

Generally speaking, a dominant strategy is a very robust solution concept since it is not based on

any assumptions about the information available to players about each other, and also does not

require each player to believe that other players will adopt its own optimal strategy. However,

the shortcoming is that dominant strategies often do not exist.

The other main solution concept, the Nash equilibrium, requires that in equilibrium, each player

will select the strategy which maximises its (expected) utility given the strategies of all other

players. Formally, a pure strategy Nash equilibrium is defined as:

Definition 2.3. A pure strategy profile s̄∗ = 〈s∗1, ..., s
∗
I 〉 constitutes a pure strategy Nash equilib-

rium of game Γ = [I, {S i}, {Ui(·)}], i ∈ I, if

∀i ∈ I,∀si ∈ S i,Ui(〈s∗i , s
∗
−i〉) ≥ Ui(〈si, s∗−i〉)

This definition can be extended to the game including mixed strategies:

Definition 2.4. A mixed strategy profile ω̄∗ = 〈ω∗1, ..., ω
∗
I 〉 constitutes a mixed strategy Nash

equilibrium of game Γ = [I, {∆i}, {Ũi(·)}], i ∈ I, if

∀i ∈ I,∀ωi ∈ ∆i, Ũi(〈ω∗i , ω
∗
−i〉) ≥ Ũi(〈ωi, ω

∗
−i〉)

Furthermore, in some games, it may be too complicated to derive the Nash equilibrium. There-

fore researchers have to approximate the Nash equilibrium. Specifically, ε-Nash equilibrium is

proposed as a solution concept which approximately satisfies the condition of Nash equilibrium

(Leyton-Brown and Shoh, 2008). It is formally defined as:

Definition 2.5. A pure strategy profile s̄∗ = 〈s∗1, ..., s
∗
I 〉 constitutes a pure strategy ε-Nash equi-

librium of game Γ = [I, {S i}, {Ui(·)}], i ∈ I, if

∀i ∈ I,∀si ∈ S i,Ui(〈s∗i , s
∗
−i〉) ≥ Ui(〈si, s∗−i〉) − ε

It means that in the ε-Nash equilibrium, it is not possible for any player to gain more than

ε in expected utility by unilaterally deviating from its strategy. This definition for the game

with mixed strategies is analogous. Note that every Nash Equilibrium is equivalent to a ε-Nash

equilibrium where ε = 0. In Chapter 4, we use this concept to approximate the Nash equilibrium

strategies for traders.

So far, in the description of Nash equilibrium, we have assumed that each player knows the

relevant information of all players, including their preferences on the outcomes (i.e. utility func-
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tions). Such games are known as games of complete information. However, this is a very strong

assumption that does not hold in all settings. For example, in a double auction marketplace, a

trader may not know other traders’ preferences for the goods. To overcome this shortcoming,

the extension of Nash equilibrium, Bayes-Nash equilibrium was introduced by Harsanyi (1962).

Formally, in a Bayesian game, each player is assumed to share common knowledge about the

probability distributions of players’ preferences (which are also formally referred to as types)

F(θ1, ..., θI), where θi denotes player i’s type. θi ∈ Θi, where Θi is the set of all possible types

for player i. Furthermore, in a Bayesian game, a pure strategy for player i is a function si(x),

which specifies the player’s action choice for each possible type x ∈ Θi. The set of all possible

pure strategies for player i is denoted by S i. Moreover, in a Bayesian game, although a player

does not know other player’s types, it usually assumes that each player knows its own type. The

expected utility of a player i with type θi given a strategy profile, s̄ = 〈s1(·), ..., sI(·)〉, is then

described as:

Ũi(〈s1(·), ..., sI(·)〉, θi) = Eθ−i[Ui(〈s1(θ1), ...sI(θI)〉, θi)]

which is in expectation over probability distributions of all other players’ types . Ui(〈s1(θ1), ...,

sI(θI)〉, θi) is the player i’s utility on the outcome induced by players’ strategy profile 〈s1(·), ..., sI(·)〉

on the specific realisation of players’ types θ1, ..., θI . Then a Bayesian game can be defined as

[I, {S i}, {Ũi(·)},Θ, F(·)], i ∈ I, where Θ = Θ1 × ... × ΘI .

Furthermore, the mixed strategy for player i in the Bayesian game can be defined as a function

ωi(y), which specifies the probability of the pure strategy y ∈ S i being used by player i. ωi(y) ∈

∆i, where ∆i is the set of all possible mixed strategies for player i. Then the expected utility of

a player i with type θi given a mixed strategy profile 〈ω1(·), ..., ωI(·)〉 can be described as:

Ũi(〈ω1(·), ..., ωI(·)〉, θi) =
∑
s̄∈S

ω(s̄) ∗ Eθ−i[Ui(〈s1(θ1), ...sI(θI)〉, θi)]

which is in expectation over probability distributions of pure strategy profiles and over prob-

ability distributions of other players’ types. ω(s̄) =
∏

i∈I ωi(si) is the probability of the pure

strategy profile s̄ taking place. Then a Bayesian game with mixed strategies can be defined as

[I, {∆i}, {Ũi(·)},Θ, F(·)], i ∈ I, where Θ = Θ1 × ... × ΘI .

In the Bayes-Nash equilibrium, each player selects a strategy to maximise its expected utility

given the expected utility maximising strategies of other players. Formally:

Definition 2.6. A pure strategy profile 〈s∗1(·), ..., s∗I (·)〉 constitutes a pure strategy Bayes-Nash

equilibrium of Bayesian game Γ = [I, {S i}, {Ũi(·)},Θ, F(·)], if

∀i ∈ I,∀θi ∈ Θi,∀si(·) ∈ S i, Ũi(〈s∗i (·), s∗−i(·)〉, θi) ≥ Ũi(〈si(·), s∗−i(·)〉, θi)

Similarly, the definition can be extended to the game with mixed strategy:

Definition 2.7. A mixed strategy profile 〈ω∗1(·), ..., ω∗I (·)〉 constitutes a mixed strategy Bayes-
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Nash equilibrium of Bayesian game Γ = [I, {∆i}, {Ũi(·)},Θ, F(·)], if

∀i ∈ I,∀θi ∈ Θi,∀ωi(·) ∈ ∆i, Ũi(〈ω∗i (·), ω∗−i(·)〉, θi) ≥ Ũi(〈ωi(·), ω∗−i(·)〉, θi)

Furthermore, in some games, there may exist multiple Nash equilibria. For this situation, re-

searchers usually assume that players with the same type will adopt the same strategy in equilib-

rium, which is referred to as symmetric Nash equilibrium. In our work on analysing competing

marketplaces with incomplete information, as is common in game theory, we will also focus on

the symmetric Nash equilibrium of traders’ market selection and bidding strategies (see Chap-

ters 3 and 4).

2.1.1 Evolutionary Game Theory

Up to this point, we have introduced the key relevant definitions of game theory, which will

be useful in our analysis of competing marketplaces. However, the Nash equilibrium makes

an assumption that all players have the abilities to correctly anticipate the opposing players in

equilibrium. It fails to reflect the fact that in the real world, people may not make decisions un-

der this assumption. Furthermore, traditional game theory only provides a static explanation for

why populations playing Nash equilibrium strategies remain in that state since each population

makes a best response to the other populations’ strategies. It fails to indicate whether the Nash

equilibrium strategies can be reached and which of these equilibria is most likely to occur. To

address these limitations, Maynard (1982) adopted the idea of evolution from biology to game

theory, which originated evolutionary game theory (EGT). In the biological circumstances, it

is also impossible to determine what decisions are the most rational ones, and therefore each

“player” has to learn to optimise its strategy and maximise its utility (i.e evolution). Further-

more, the basic techniques developed in EGT were also initially formulated in the context of

evolutionary biology (Maynard, 1982; Weibull, 1996). Specifically, in EGT, a dynamic process

is constructed where the proportions of various strategies in a population evolve. In more detail,

replicator dynamics are adopted in EGT to specify how players gradually adjust their strategies

over time in response to the repeated observation of their opponents’ strategies. They are for-

malised as a system of differential equations. In the following, we will introduce the replicator

dynamics equation for a single and a multiple population setting.

In a single population setting, players have the same set of pure strategies to employ. Fur-

thermore, since a very large population is being considered, the population proportion of using

different pure strategies is equivalent to the mixed strategy1. Specifically, players are assumed to

choose a strategy from the set of M pure strategies {s1, ..., sM}, and the probability of the strategy

sm being used is represented byωm. Then the mixed strategy can be denoted asω = (ω1, ..., ωM),

where
∑M

m=1 ωm = 1. The replicator dynamics will specify the dynamic adjustment of the prob-

1Note that the actual number of players in the game is not the size of the population. However, in the evolution,
players’ strategies are sampled from this large population.
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ability of which pure strategy should be played, and it is defined as ω̇ = (ω̇1, ..., ω̇M), which

describes how players gradually evolve their strategies over time. In more detail, the element

ω̇m in ω̇ is defined as follows:

ω̇m =
dωm

dt
= [Ũ(sm, ω) − Ũ(ω,ω)] ∗ ωm (m = 1, ...,M) (2.1)

where Ũ(sm, ω) is the expected utility of a player using pure strategy sm when all other players

employ the mixed strategy ω, and Ũ(ω,ω) is the expected utility for the mixed strategy ω. To

get the dynamics of the game, one needs to calculate trajectories, which indicate how the mixed

strategies evolve. In more detail, initially, a mixed strategy ω is randomly chosen as a starting

point. The dynamics ω̇ is then calculated according to equation 2.1. According to the changes

of the probabilities of which pure strategy should be played, their current mixed strategy can

be updated. This calculation is repeated until ω̇ becomes a zero vector. At this moment, the

equilibrium is reached, which is the current mixed strategy. The replicator dynamics show the

trajectories and how they converge to a Nash equilibrium. We call a Nash equilibrium to which

trajectories converge, an attractor, and call a Nash equilibrium to which no trajectories converge,

a saddle point. The region where all trajectories converge to a particular equilibrium is called

the basin of attraction of this equilibrium. The basin is very useful since when each starting

point is selected by players with an equal probability, its size indicates how likely the population

is to converge to that equilibrium (Bullock, 1997).

In the above, we introduced replicator dynamics where interaction takes place between players

from the same population, in which players evolve their mixed strategies in the same way. How-

ever, in many games, interaction may take place between players from different populations,

in which players from different populations evolve their mixed strategies differently. To this

end, we introduce replicator dynamics equations in the setting with two different populations.

Specifically, players from the two populations are assumed to choose strategies from {s1, ..., sM}

and {s′1, ..., s
′
M′} respectively. ω = (ω1, ..., ωM) and ω′ = (ω′1, ..., ω

′
M′) are used to denoted the

mixed strategies used by players from the two populations respectively. Then the replicator dy-

namics of the two populations are ω̇ = (ω̇1, ..., ω̇M) and ω̇′ = (ω̇′1, ..., ω̇
′
M′) respectively. Their

individual elements ω̇m and ω̇′m′ are calculated as follows:

ω̇m =
dωm

dt
= [Ũ(sm, ω, ω

′) − Ũ(ω,ω, ω′)] ∗ ωm (m = 1, ...,M) (2.2)

ω̇′m′ =
dω′m′

dt
= [Ũ′(s′m, ω, ω

′) − Ũ′(ω′, ω, ω′)] ∗ ω′m′ (m′ = 1, ...,M′) (2.3)

where Ũ(sm, ω, ω
′) is the expected utility of a player from a population using pure strategy sm

when all other players from this population use the mixed strategy ω and all players from the

other population use the mixed strategy ω′, and Ũ(ω,ω, ω′) is the expected utility for the player

using the mixed strategy ω. Using equations 2.2 and 2.3, we can then calculate the dynamics of

the two populations’ strategies starting from various initial mixed strategies. From these equa-

tions, we can see that the dynamic change of a mixed strategy in each population is determined

by the mixed strategy of the other population. Furthermore, the replicator dynamics equations
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for the two population setting can easily be extended in the same way to more population set-

tings.

Evolutionary game theory has been widely used to study the interaction of self-interested agents

(e.g. see Tuyls 2004; Phelps 2008). In Chapter 3, we will use evolutionary game theory to anal-

yse the dynamics of traders’ market selection strategies and find which equilibrium is the most

likely to occur. Furthermore, we use will evolutionary game theory to analyse the marketplaces’

equilibrium charging strategies from a static and a dynamic approach respectively.

2.1.2 Fictitious Play

In the above, we have introduced traditional game theory and evolutionary game theory. How-

ever, finding a Nash equilibrium is usually computationally demanding. The Lemke-Howson

algorithm (Lemke and Howson, 1964), perhaps the best-known algorithm for computing Nash

equilibrium, has been shown to require exponential time on some instances (Savani and Sten-

gel, 2006). Given this, one possible way is to approximate the Nash equilibrium, i.e. compute

the ε-Nash equilibrium. There exist a number of algorithms to approximate Nash equilibrium

(Spirakis, 2008). A well-known algorithm for approximating Nash equilibrium is fictitious play,

which is a computational learning approach (von Neumann and Brown, 1950; Brown, 1951). In

the following, we describe the basics of this algorithm in detail.

In the standard FP algorithm (von Neumann and Brown, 1950; Brown, 1951), opponents are as-

sumed to play a mixed strategy. Then by observing relative appearance frequencies of different

actions, the player can estimate their opponents’ mixed strategies, and take a best response to

those strategies. The observed frequencies of opponents’ actions are termed FP beliefs. In each

round, all players estimate their opponents’ mixed strategies and update their FP beliefs, and

play a best response to their FP beliefs. All players continually iterate this process until it con-

verges. This algorithm has two types of convergence. First, it may converge to a pure strategy,

which means that after a number of iterations, the best response strategy of each player is stable.

At this moment, all players’ best response strategies constitute a pure Nash equilibrium. Sec-

ond, it may converge in FP beliefs. At this moment, the converged FP beliefs constitute a mixed

Nash equilibrium. However, in reality, it is impossible to run the algorithm to convergence since

it involves an infinite number of iteration rounds. Therefore, it is often used to approximate the

Nash equilibrium (i.e. deriving the ε-Nash equilibrium) by running the fictitious play algorithm

for a limited number of rounds.

However, we should note that the standard FP algorithm is not suitable for analysing Bayesian

games in which there is incomplete information (i.e. the player’s type is not known to the other

players). In such games, a strategy is a function that maps the set of player types to the set

of allowed actions for the player. In the standard FP algorithm, by observing the frequency of

opponents’ actions, we cannot know the actual strategy of a player since we do not know which

type performs which action. To address this, Rabinovich et al. (2009) provided a generalised
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fictitious play algorithm to analyse Bayesian games with continuous types and a finite action

space. Using this algorithm, when the FP beliefs converge, they either directly converge to

a pure Bayes-Nash equilibrium, or can be purified to produce a pure Bayes-Nash equilibrium

(Radner and Rosenthal, 1982). Moreover, it is known that a pure Nash equilibrium always exists

given the conditions that the game is non-atomic, giving zero probability to any specific player

type to appear, and the action space is finite. However, in Rabinovich et al. (2009), researchers

only showed how to use this algorithm to analyse traders’ strategies in single-sided auctions.

Building on this, in Chapter 4, we will describe how to apply this fictitious play algorithm to

approximate the Bayes-Nash equilibrium market selection and bidding strategies for traders in

the much more complex environment with multiple competing double auction marketplaces.

2.2 Background on Markets

After introducing the key basic definitions of game theory, we now give an overview on general

market theory from microeconomics. The key concepts introduced in the general market theory

will help us understand the double auction marketplace. In such settings, a market consists of

one or more buyers and sellers. Typically, each seller has a cost price for the item it possesses.

This is the lowest price it is willing to sell the item for. Similarly, each buyer has a limit price

for the item it wishes to buy, which is the highest price that it is willing to buy the item for.

The cost(limit) prices of traders are denoted by types in game theory. At each possible price,

the quantity of a commodity buyers wish to buy is referred to as demand, and the quantity of

a commodity that sellers want to sell is referred to as supply. Usually, the greater the price

of the commodity, the lower the demand, and the lower the price, the higher the demand. Such

characteristics of demand and supply are often represented by an underlying demand and supply

curve2, which is a function of demand and supply with respect to price (see Figure 2.1).

Given a stable underlying demand and supply, classical microeconomic theory claims that in a

marketplace with profit-motivated3 traders, transaction prices will converge to an equilibrium

price p∗, where the quantity of demand is equal to the quantity of supply (Mas-Collel et al.,

1995). This quantity is referred to as the equilibrium quantity q∗. The reason why transac-

tion prices are beheld to converge to an equilibrium price is as follows. In a marketplace with

profit-motivated traders, when transaction prices are below the equilibrium price, there is excess

demand. Because of this, sellers can raise their asks, and then in order to remain competitive,

buyers have an incentive to bid higher. This will raise the transaction prices towards the equi-

librium price. Similarly, when prices are above the equilibrium price, there is excess supply and

buyers can buy items from sellers with lower prices. This means that sellers have an incentive

to reduce their asks to compete against other sellers, thus lowering transaction prices towards

the equilibrium price. At the equilibrium price, neither buyers nor sellers have any incentive to
2Here, ‘underlying’ means that the demand and supply curve is determined by the buyers’ limit prices and the

sellers’ cost prices. It may be different from the reported demand and supply curve which is determined by traders’
shouts.

3 That is, a trader will always choose the action that maximises its expected profit.
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FIGURE 2.1: Demand and supply curve.

change their prices, and so the marketplace becomes stable. The value of the equilibrium price

and quantity can be determined according to the intersection of the demand and supply curve

(see Figure 2.1). In this context, we distinguish between two types of traders: intra-marginal

and extra-marginal. Traders to the left of the equilibrium point are known as intra-marginal

buyers (whose limit prices are higher than p∗) and intra-marginal sellers (whose cost prices are

less than p∗). On the right of the equilibrium point are extra-marginal buyers (whose limit prices

are less than p∗) and extra-marginal sellers (whose cost prices are higher than p∗). Intra-marginal

traders are more likely to make transactions than extra-marginal traders in practice. In addition,

we often refer to traders around the equilibrium point as marginal traders. These traders are

less likely to make transactions than intra-marginal traders, but more likely to make transactions

than extra-marginal traders.

In the marketplace, when an equilibrium quantity of goods is traded at the equilibrium price, the

optimal allocation is reached, which means that the allocative efficiency is maximised. Specif-

ically, the allocative efficiency E is the total profit earned by all traders in the marketplaces

divided by the maximum possible total profit that could have been earned by all traders:

E =
∑

i∈T |vi − TPi|∑
i∈T ∗ |vi − p∗|

× 100% (2.4)

where T is the set of traders making transactions in the marketplace, vi is the cost or limit price

of trader i, TPi is the transaction price of trader i, |vi − TPi| is trader i’s actual profit in the

transaction, T ∗ is the set of intra-marginal traders, |vi − p∗| is i’s expected profit if it trades at the

equilibrium price. In a marketplace where all buyers’ limit prices and all sellers’ cost prices are

public, i.e. the underlying demand and supply are known to all traders and the marketplace, the

equilibrium quantity and equilibrium price can be computed, and an optimal resource allocation

can be performed.
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2.3 Isolated Auction Marketplaces

Thus far we have introduced the demand and supply model of marketplaces, and described

the concept of equilibrium price and equilibrium quantity. Now, before we review related work

about competing marketplaces, we first introduce related work about isolated marketplaces with-

out inter-marketplace competition since the understanding of isolated marketplaces is the foun-

dation for further understanding competing marketplaces. Furthermore, in this thesis, since we

focus on the auction-based marketplaces, here we introduce relevant work on isolated auctions.

Note that, although in this thesis we focus on the double auction marketplaces, the work in the

single-sided auction marketplaces will be important for us to understand the double auction mar-

ketplaces. Therefore, here we first introduce related work about isolated single-sided auctions,

and then introduce isolated double auction marketplaces.

2.3.1 Single-Sided Auctions

In a single-sided auction, there is either a single seller and multiple buyers competing to win the

good, or there are multiple sellers competing to provide a good or service to a single buyer (also

called a reverse or procurement auction). In the following, we will describe the formats of some

widely used single-sided auctions. Specifically, we introduce the auctions where each buyer has

a private value4 on the good, i.e. each buyer knows the value of the good to himself at the time

of bidding, but he does not know the exact values of other buyers to the good, and knowledge of

other buyers’ values will not affect his own value.

The open ascending price or English auction is probably the oldest and most prevalent auction

form in the world (Krishna, 2002). In the traditional English auction, only the bid that is higher

than the current standing bid (which is the highest bid at any given moment) is accepted by the

auctioneer. In a given time, if no competing buyer challenges the standing bid, then the buyer

with the standing bid will win the good and pay a price equal to the standing bid. Furthermore,

in addition to the traditional English auction, there exist many variations on this auction system.

For example, in eBay, there is a deadline for selling the good through the auction. In a Japanese

auction, each buyer should indicate his interest in purchasing the good at the current price. As the

price rises, he may indicate that he is no longer interested and quits the auction. Once he quits,

he cannot reenter the auction. The auction continues until only one buyer remains. The English

auction is commonly used for selling antiques and artwork, but also for selling used goods and

real estate. Another well-known auction is the Dutch auction, which has a descending price. In

this auction, the auctioneer begins by calling out a price high enough so that initially no buyer

is interested in buying the good at that price. This price is then gradually lowered until some

buyer indicates his interest. The good is then sold to this buyer at the given price. This type of

auction is usually used to sell perishable commodities, such as fish, flowers and tobacco.

4This is the limit price for the buyer, and is also referred to as the type of the buyer, see Section 2.2.
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Note that both English and Dutch auctions are open auctions where in the auction process, each

buyer’s behaviour is observed by all other buyers and the auctioneer. There also exist two well-

known sealed-bid auctions: first-price and second-price. In both auctions, buyers submit bids

in sealed envelopes and the buyer submitting the highest bid wins the good. In contrast to the

English auction, in these auctions, buyers can only submit one bid. Furthermore, as buyers

cannot see the bids of other participants, they cannot adjust their own bids accordingly. Now,

in the first-price sealed-bid auction, the winner will pay what he actually bids. In the second-

price sealed-bid auction (also called Vickrey auction), the buyer submitting the highest bid will

win the good, but pays the second highest bid. Although this auction is extremely important in

auction theory, in the real world, Vickrey auctions are rarely used.

After describing the above four common single-sided auction mechanisms, we now describe the

bidding strategies used in these auctions. Krishna (2002) points out that the Dutch auction is

strategically equivalent to the sealed-bid first-price auction. The reason is as follows. Although

in the Dutch auction, each buyer can observe that some buyer has agreed to buy at the current

price, since that causes the auction to end, the buyer cannot utilise such information to improve

his bid. Thus bidding a certain amount in a sealed-bid first-price auction is equivalent to bidding

to buy at that amount in a Dutch auction. Furthermore, when buyers have private values on

the goods, the English auction is also weakly equivalent to the sealed-bid second-price auction.

Because of the strategic equivalence of the different single-sided auctions, in the following, we

introduce equilibrium bidding strategies in the two sealed-bid auctions.

In the auctions, a bidding strategy for a buyer is defined as a function mapping the set of possible

private values (types) to a set of allowable bids. In more detail, in a sealed-bid second-price

auction, the dominant strategy is to bid buyers’ private values truthfully. In a sealed-bid first-

price auction, the equilibrium behaviour is more complicated than in a second-price auction.

Intuitively, no buyers will bid their private value truthfully since this causes zero utility if he

wins. Therefore, in the equilibrium, buyers should shade their bids (bid is less than the actual

private value), and the degree of shading depends on the number of competing buyers and the

probability distributions of buyers’ private values. When the number of buyers in the auction

increases, the degree of shading approaches 0, i.e. in this situation, buyers’ bids approach to

their true private values.

In the above, we have described single-sided auctions with private values. There also exist

settings with a common value, where the value, although unknown at the time of bidding, is the

same for all buyers. Furthermore, in addition to a single good traded in the auction, there exist

variations in which multiple goods can be traded. However, it is beyond the scope of this review

to discuss these variations. Details about these auctions can be found in Krishna (2002).
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2.3.2 Double Auctions

In the above, we have introduced single-sided auctions. Now we introduce related work about

double auction marketplaces. As we discussed in Chapter 1, the double auction market mech-

anism is widely used in stock exchanges, commodity exchanges and even online exchanges.

Specifically, a double auction marketplace is a particular type of two-sided marketplace with

multiple buyers (one side) and multiple sellers (the other side). In such a marketplace, both

buyers and sellers can submit shouts at any time in a specified trading round, and the market

is cleared at a specific time and all possible transactions will be executed. Currently, there are

broadly two typical types of double auctions, which are Continuous Double Auction (CDA, in

which potential transactions are executed when a new shout arrives) and Clearing House (CH, in

which transactions are executed until all traders have submitted their shouts). In Section 2.3.2.2,

we will describe them in detail.

Intuitively, a double auction is a typical type of marketplace as we introduced in Section 2.2.

Buyers and sellers in double auctions will have limit and cost prices respectively. However, in

the double auction marketplace, the only known information is the bids submitted by buyers and

asks submitted by sellers, which typically do not correspond to the actual limit and cost prices.

This means that the equilibrium price and equilibrium quantity cannot be determined, and the

optimal allocation cannot be obtained in double auctions (see Section 2.2).

Despite this fact, in theory, the competition of profit-motivated traders will eventually drive

transaction prices to converge to the equilibrium price (which is consistent with the market

theory detailed in Section 2.2). The reason is that, in order to remain competitive, the buyers

(sellers) need to raise (lower) their prices when there is excess demand (supply), and thus cause

transaction prices to move towards the equilibrium price. Such an hypothesis is confirmed by

experimental analysis conducted by Smith (1962), where he stated:

“The most striking general characteristic of [this] test ... is the remarkably strong

tendency for exchange prices to approach the predicted equilibrium price for each

of these markets. As the exchange process is repeated ... the variation in exchange

prices tends to decline, and to cluster more closely around the equilibrium.”

In his experiments, a group of (human) traders were split into two groups: buyers and sellers.

Each trader could buy or sell one or more units of a homogenous commodity at a price, which

is no lower than the given cost prices for sellers and no higher than the given limit prices for

buyers. The transaction price was set at the average of the buyer’s bid and the seller’s ask.

In order to measure the convergence of transaction prices to the equilibrium price, Smith intro-

duced a coefficient of convergence, α, given the history of H transaction prices TPh (h ∈ {1...H}),

which is expressed as a percentage and given by equation:

α =

√
1
H

∑H
h=1(TPh − p∗)2

p∗
× 100 (2.5)
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FIGURE 2.2: The left panel shows the underlying demand and supply of the marketplace. The
dotted horizontal line indicates the equilibrium price, and the shaded region indicates the intra-
marginal region of the marketplace, its area is equal to the theoretical overall profits. The right
panel shows the history of transaction prices with α during the successive trading days (from

Smith (1962)).

where TPh is the price of the h-th transaction and p∗ is the equilibrium price. When α de-

creases as traders make transactions, then we can see transaction prices indeed converge to the

equilibrium price.

From Smith’s experimental results (see Figure 2.2), we can see that transaction prices are close

to the equilibrium price, and α decreases over time as the prices converge to the equilibrium

price. Thus, Smith drew the conclusion that, when there is no collusion and all traders’ shouts

and transaction prices are public, the convergence of transaction prices to the equilibrium price

can be reached in the marketplace. Smith’s work also suggests that double auction marketplaces

are bound to be efficient irrespective of the way that traders bid, and can achieve close to optimal

allocative efficiency.

So far we have introduced the basics of double auctions. Research work about double auctions

also includes bidding strategies of traders and market policies used by double auctions. As

we will see, some existing bidding strategies are adopted in the specific context of the CAT

competition. Since we will evaluate our competing marketplace in this context, it is necessary to

introduce these bidding strategies. Furthermore, existing market policies will be the foundations

of designing market policies for competing marketplaces. Therefore, we also need to introduce

existing work about market polices. In addition to market policies, as we introduced in Section

1.1, the marketplace also needs a charging strategy to determine its fees. In the following, we

will describe existing work in these three areas in turn.
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2.3.2.1 Bidding Strategies and Equilibrium Analysis

In double auction marketplaces, traders need to use bidding strategies to determine the shouts

submitted in the marketplaces. Existing literature describe a number of bidding strategies for

double auctions—including the truth-telling bidding strategy in which traders submit their limit

prices (resp. cost prices) as bids (resp. asks), the Fuzzy Logic based bidding strategy in

which traders use heuristic fuzzy rules and fuzzy reasoning mechanisms in order to determine

the best bid or ask given the current state of the marketplace (He et al., 2003), the adaptive-

aggressiveness bidding strategy in which traders adapt their bids or asks based on a short-term

and a long-term learning (Vytelingum et al., 2008), and the Q-strategy in which traders uses a

Q-learning reinforcement learning approach to adapt their bids (Borissov, 2009; Borissov et al.,

2010). However, in this thesis, since we choose to evaluate our design of a competing market-

place in the context of the CAT competition and these bidding strategies are not used in this

context, we will not discuss them here. Specifically, in the following, we will introduce the

bidding strategies used in the CAT competition, which are ZI-C, ZIP, GD and RE. Note that all

these bidding strategies are heuristic based. Thus they can be widely used in different auction

formats with different settings.

ZI-C Strategy:

Gode and Sunder (1993) developed a simple yet powerful strategy, called the Zero-Intelligence

(ZI) bidding strategy. Here, zero intelligence means the trader is not motivated to pursue profit.

Specifically, when the trader wants to submit a shout, it just selects a bid or an ask from a uniform

distribution over a given range. In their experiments on allocative efficiency and equilibrium

formation, Gode and Sunder considered two kinds of ZI strategies: the constrained ZI strategy

(ZI-C) and the unconstrained ZI strategy (ZI-U). The former is restricted by budget constraints,

which means that traders cannot trade at loss, whereas the latter is allowed to make loss-making

transactions. Specifically, a ZI-C buyer draws a bid from a uniform distribution between the

minimum allowed bid and its limit price, and the ZI-C seller draws an ask from a uniform

distribution between its cost price and the maximal allowed ask. For ZI-U traders, their shouts

are drawn from a uniform distribution between the minimum and the maximum allowed price

in the marketplace.

The results of the simulations of marketplaces with ZI-C traders and ZI-U traders are shown in

Figure 2.3. From these, we can see the differences between the resulting transaction prices when

using ZI-C, ZI-U and human traders. In particular, we can see that the marketplace with ZI-U

traders showed no evidence that transaction prices converge to an equilibrium price. In human

marketplaces, on the other hand, transaction prices converge to the equilibrium price, and this is

consistent with the classical microeconomic theory (see Section 2.2). However, they also found

that, in the marketplace with ZI-C traders, there is a slow convergence to the equilibrium price

during each trading day. They explained this convergence in the following manner. They assume

that the buyers with the highest limit prices and the sellers with lowest cost prices have a greater

chance to trade first. Then, the demand and supply curve shifts to the left as each good is traded,
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until only extra-marginal traders remain. As the demand and supply curve shifts, the range of

feasible transaction prices narrows and transaction prices converge to the equilibrium price.

FIGURE 2.3: Result from one of Gode and Sunder’s experiments. Figures on the left show the
demand and supply used in the experiments. Figures on the right show transaction prices in
different marketplaces where the top is the marketplace with ZI-U traders, the middle is with

ZI-C traders and the bottom is with human traders (from Gode and Sunder (1993)).

The simulations also show that the allocative efficiency can be very high in the double auction

marketplace even though traders are not profit-motivated and have no intelligence. Furthermore,

they found that the efficiency of marketplaces with ZI-C traders is close to the efficiency of

marketplaces with human traders. Thus they concluded that allocative efficiency is determined

by the market structure (i.e. market policies), not by the bidding strategies of traders. However,

they also pointed out that individual performance (i.e. an individual trader’s profit) might be

sensitive to individual intelligence.

In this paper, Gode and Sunder made a significant contribution to show that allocative efficiency

is determined by market structure, and individual profit is determined by individual intelligence.

However, their conclusion that ZI-C traders’ transaction prices converge to the equilibrium price

is attacked by Cliff and Bruten (1997), who showed that if demand and supply are not symmet-

ric, the average transaction prices can be significantly different from the equilibrium price. To

address this problem, they introduced the Zero-Intelligence Plus strategy which we describe in

the next subsection.
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ZIP Strategy:

The Zero-Intelligence Plus (ZIP) strategy was designed by Cliff and Bruten (1997) to show that

more than zero intelligence is required to achieve efficiency close to that of marketplaces with

human traders. This also attacked Gode and Sunder’s claim that ZI-C traders could achieve and

stabilise at equilibrium in double auction marketplaces. First, we give a simple description of

the ZIP strategy, and then describe the experimental results to show ZIP’s performance.

In more detail, the ZIP strategy uses a history of market information, and adjusts the trader’s

profit margin µ(t) according to the future market conditions in order to remain competitive.

Here, the profit margin determines the difference between the trader’s limit price (cost price)

and the bid (ask). According to the profit margin, the seller i submits its ask ai(t) at the time t:

ai(t) = λi(1 + µi(t)) (2.6)

where λi is the cost price of seller i. Similarly, a ZIP buyer j’s bid at the time t is:

b j(t) = λ j(1 − µ j(t)) (2.7)

where λ j is the limit price of the buyer. The ZIP sellers raise or lower their profits by increasing

or decreasing µi(t), and similar for buyers. By dynamically modifying µi(t) or µ j(t), sellers or

buyers remain competitive against other traders in the marketplace. The adaptation of the profit

margin is based on the simple Widrow-Hoff learning algorithm (Widrow and Hoff, 1960). The

actual adaption rules are shown in Figure 2.4.

Adaptive Rules for the ZIP Seller:
if (last shout was accepted at price q(t))

1. any seller i for which ai(t) ≤ q(t) should raise its profit margin

2. if (last shout was a bid)

1. any active seller i for which ai(t) ≥ q(t) should lower its margin

else

2. if (last shout was an ask)

1. any active seller i for which ai(t) ≥ q(t) should lower its margin

Adaptive Rules for the ZIP Buyer:
if (last shout was accepted at price q(t))

1. any buyer j for which b j(t) ≥ q(t) should raise its profit margin

2. if (last shout was an ask)

1. any active buyer j for which b j(t) ≤ q(t) should lower its margin

else

2. if (last shout was a bid)

1. any active buyer j for which b j(t) ≤ q(t) should lower its margin

FIGURE 2.4: The ZIP trading strategy.
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FIGURE 2.5: The left panel illustrates the demand and supply used for the first 11 trading
periods, and then the equilibrium price is increased to 225. The right panel shows the results
from simulations with ZIP traders, ∗ means price of each transaction (from Cliff and Bruten

(1997)).

The simulation results using ZIP strategies are shown in Figure 2.5. We can see that the transac-

tion prices converge towards the equilibrium prices after just a few days, and remain at that level

with low variance. Cliff also showed that the profit dispersion of ZIP traders was significantly

lower than that of ZI-C traders. Furthermore, by considering a sudden change in endowment of

limit and cost prices to buyers and sellers respectively at the beginning of period 12, where the

demand and supply changed and the equilibrium price increased from 200 to 225, they showed

that the transaction prices can rapidly converge to the new equilibrium price. This means this

strategy has a capacity to respond quickly to the changing market conditions.

GD Strategy:

Another well-known intelligent bidding strategy is called GD (Gjerstad and Dickhaut, 1998).

This strategy is based on a belief function that indicates the probability of a particular bid(ask)

being accepted in the marketplace. In more detail, the traders form their beliefs according to the

history of marketplace data, and particularly on the frequencies of submitted bids and asks and

of accepted bids and asks resulting in transactions. Based on the belief function, the GD trader

submits a shout which can maximise its expected profit, i.e. the product of its belief function

and its profit if a transaction occurs.

In the GD strategy, the seller’s belief function, p̂(a), is constructed as follows: if an ask a′ < a

has been rejected by the marketplace, then the ask a will also be rejected. Similarly, if an ask

a′ > a has been accepted, than the ask a will also be accepted. Furthermore, if a bid b′ > a is

accepted, then an ask a′ = b′ > a would have been accepted, and then a will be accepted by the

marketplace. Similarly, the buyer’s belief function â(b) can be constructed. In what follows, we

define the bid and ask frequencies ∀d ∈ D, where D is the set of all permissible shout prices in

the marketplace.
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Bid Frequencies: ∀d ∈ D, B(d) is the total number of bids submitted at price d, TB(d) is the

frequency of accepted bids at d, and RB(d) is the frequency of rejected bids at d.

Ask Frequencies: ∀d ∈ D, A(d) is the total number of asks submitted at price d, TA(d) is the

frequency of accepted asks at d, and RA(d) is the frequency of rejected asks at d.

Now, the seller’s belief function for each possible ask price a is given by:

p̂(a) =
∑

d≥a TA(d) +
∑

d≥a B(d)∑
d≥a TA(d) +

∑
d≥a B(d) +

∑
d≤a RA(d)

(2.8)

and the buyer’s belief function for each possible bid price b is given by:

q̂(b) =
∑

d≤b TB(d) +
∑

d≤b A(d)∑
d≤b TB(d) +

∑
d≤b A(d) +

∑
d≥b RB(d)

(2.9)

Moreover, the seller and buyer’s belief function is modified to satisfy the NYSE shout accepting

policy5. That is, the belief function on the ask, which is higher than the current outstanding ask

Oask, is set to 0 and cannot be accepted, and when the bid is lower than the outstanding bid Obid,

then belief function on this bid is set to 0, and cannot be accepted.

In addition, because the belief function is defined on the set of all bids and asks, then we need

to extend the beliefs to the space of all potential bids or asks, which are constrained by the

outstanding bid Obid and outstanding ask Oask and the step-size of the belief function. To this

end, Cubic spline interpolation is used on each successive pair of data points to calculate the

belief of points in between them. In particular, a cubic function, p(a) = α3a3 +α2a2 +α1a+α0,

is constructed with the following properties:

1. p(ak) = p̂(ak)

2. p(ak+1) = p̂(ak+1)

3. p′(ak) = 0

4. p′(ak+1) = 0

where ak and ak+1 are the successive ask prices. p′(ak) is the first derivative of p(ak). The coef-

ficients, αi, satisfying the above properties, are given by the solution to the following equation:
a3

k a2
k ak 1

a3
k+1 a2

k+1 ak+1 1

3a2
k 2ak 1 0

3a2
k+1 2ak+1 1 0




α3

α2

α1

α0

 =


p̂(ak)

p̂(ak+1)

0

0

 (2.10)

Now we have constructed the sellers’ belief function, the buyer’s belief function, q(b), can be

constructed similarly using the pairs (bk, q̂(bk)) and (bk+1, q̂(bk+1)). After defining the belief

function, Gjerstad and Dickhaut proved (see Gjerstad and Dickhaut (1998) for the proof) that
5The NYSE shout accepting policy requires that a submitted bid is higher than the outstanding bid (i.e. the current

highest unmatched bid in the marketplace), and a submitted ask is lower than the outstanding ask (i.e. the current
lowest unmatched ask in the marketplace) respectively.
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the beliefs are monotonically non-decreasing(non-increasing) for bids(asks). In particular, from

Figure 2.6, we can see the belief that an ask a > a′ is accepted is lower than the belief of a′

being accepted, and, similarly, the belief of a bid that b < b′ is accepted is lower than that of b.

FIGURE 2.6: A typical belief function of a buyer (right) and seller (left) using GD strategy
(from Gjerstad and Dickhaut (1998)).

After getting the belief function, the GD trader can form its bid or ask that maximises its ex-

pected profit. The expected profit is defined as the product of the trader’s belief function and

its utility function. The utility function equals the difference between the seller i’s ask and its

cost price ci, or the difference between the buyer j’s bid and its limit price l j (i.e. the trader’s

hidden profit through shading). We can see that as a trader increases its bid or decreases its ask,

its utility increases. However, from Figure 2.6, we can see that its belief of shout acceptance de-

creases. Thus the trader has to make a trade-off between increasing its belief of shout acceptance

and increasing its utility. In more detail, the trader’s utility function and its profit maximisation

is given as follows:

For a seller i,

U(a) =

 a − ci if a > ci

0 if a ≤ ci

For a buyer j,

U(b) =

 l j − b if b < l j

0 if b ≥ l j

a∗ = arg max
a∈(oask ,obid)

[
U(a).p̂(a)

]
(2.11)

b∗ = arg max
b∈(oask ,obid)

[
U(b).q̂(b)

]
(2.12)
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FIGURE 2.7: Left panel illustrates demand and supply of the marketplace. Note the change in
demand and supply after 5 trading days. Results of the simulations with GD traders are shown
in the right panel. The x-axis is divided into the different trading days, with the x-axis values
corresponding to the number of transactions on each trading day. The y-axis values correspond

to the transaction prices (from Gjerstad and Dickhaut (1998)).

Again they carried out a series of simulations to evaluate the performance of this strategy. In

particular, the results of the simulations showed that the allocative efficiency of marketplaces

with GD traders was close to optimal, and transaction prices converged rapidly to the equilibrium

price (see Figure 2.7). By shifting the demand and supply after several trading days, it was also

shown that GD traders responded quickly to the changing market conditions, and transaction

prices quickly converged to the new equilibrium price.

RE Strategy:

We now introduce another bidding strategy called Roth-Erev (RE), which attempts to mimic

human game-playing behaviour. In a series of studies, Roth and Erev attempted to understand

how people learn individually to behave in games with multiple strategic players. To this end,

they developed a myopic reinforcement learning algorithm, referred to as the RE algorithm

(Roth and Erev, 1998; Nicolaisen et al., 2001). We now describe this strategy in more detail.

The authors suppose that there are G feasible actions (i.e. bids or asks) for each trader in the

marketplace. At the initial trading round, each trader i assigns an equal propensity φig(1) to each

feasible action g given by φig(1) = γ(1)X
G , where X is the average profit that traders can achieve

in any given trading round, and γ(1) is a scaling parameter. Moreover, each trader i assigns

an initial equal choice probability ψig(1) to each of its feasible actions g, given by ψig(1) = 1
G .

Here, “1” means the initial trading round. The trader i then probabilistically selects a feasible

action g′ to submit according to its current choice probability. If the shout g′ can be matched,

then a transaction is executed and the trader i gets a profit R(i, g′, 1). Now we suppose that

the trader i is at the end of the nth trading round and in this round, the trader has submitted a

feasible action g′ and achieved a profit R(i, g′, n). The trader i then updates its existing action

propensities φig(n) based on its newly earned profit as follows. Given any feasible action g, the

propensity φig(n + 1) for choosing g in the next trading round n + 1 is determined as:

φig(n + 1) = (1 − r)φig(n) + ρ(i, g, g′, n,G, e) (2.13)
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where r is the recency parameter, e is the experimentation parameter and ρ(·) is the update

function reflecting the experience gained from past trades. The recency parameter r slowly

reduces the importance of past experience. The update function ρ(·) is given by

ρ(i, g, g′, n,G, e) =

 R(i, g′, n)(1 − e) if g = g′
R(i,g′,n)e

(G−1) if g , g′

The selected action g′ is reinforced or discouraged based on the profit R(i, g′, n) earned subse-

quent to this selection. Given the updated propensities φig(n + 1) for trading round n + 1, the

trader i updates choice probability ψig(n + 1) for its feasible actions g in the trading round n + 1

given by the equation:

ψig(n + 1) =
φig(n + 1)∑g=G

g=1 (φig(n + 1))
(2.14)

Finally the trader i selects a feasible action according to its current choice probability.

To date, there exists no literature on analysing the convergence of transaction prices to the equi-

librium price when traders adopt the RE strategy. However, in Section 5.1, we analyse this based

on the JCAT platform, and find that transaction prices of traders adopting RE strategy do not

converge to the equilibrium price.

Equilibrium Analysis:

In the above, we have introduced four bidding strategies, and these strategies were usually eval-

uated in the homogeneous environment where all traders use the same strategy. However, in

double auctions, traders may be able to use different bidding strategies, which results in the

problem of determining which bidding strategy traders should choose and what is the Nash

equilibrium bidding strategy. In this context, Phelps et al. (2006) used evolutionary game the-

ory (EGT) to analyse the equilibrium bidding strategies when traders can use three different

bidding strategies: truth-telling (TT), RE, and PvT (a ZIP-like strategy, which is modified for

persistent-shout marketplaces (Preist and van Tol., 2003)) in two different types of double auc-

tion marketplaces (Clearing House and Continuous Double Auction, in the following section,

we will introduce these two double auctions in detail). They show that in the Clearing House

with 6 traders, in equilibrium, traders will have 50% probability of using RE strategy and 50%

probability of using PvT strategy, and in the case with 8 traders, traders have 17% probability of

using TT strategy, 18% probability of using RE strategy and 65% probability of using PvT strat-

egy. Furthermore, in the Continuous Double Auction, in equilibrium, traders will have 100%

probability of using RE strategy in both cases with 6 traders and 8 traders. Moreover, in Phelps

et al. (2010), they also extend their work to the case with four different bidding strategies: TT,

RE, GD and TK (Kaplan’s sniping strategy (Friedman and Rust, 1993)). Moreover, Vytelingum

et al. (2008) used EGT to evaluate their AA strategy against ZIP or GDX (which is a improved

bidding strategy based on GD (Tesauro and Bredin, 2002)), and showed that in equilibrium,

traders are more likely to use the AA strategy. Note that although the above works analyse the

Nash equilibrium of existing bidding strategies, they fail to answer what exactly traders will
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bid in equilibrium. Furthermore, they do not analyse how market fees affect traders’ bidding

behaviour. In our work, we will use fictitious play to derive what shouts traders will submit in

equilibrium and how different types of market fees affect their equilibrium bidding strategies

(see Section 4.3.1).

2.3.2.2 Market Policies

After describing the key bidding strategies, we now review related work about market policies

for double auctions. As we introduced in Section 1.1, in the design of a double auction, we need

to specify four market policies, which are timing policy (determining when to clear the market),

matching policy (determining how to match buyers with sellers), pricing policy (determining

the transaction price of the matched buyer and seller) and shout accepting policy (determining

whether to admit the shout placed by the trader or not). In the following, we will describe the

related work about these policies respectively.

Timing Policy:

A timing policy determines when to clear the market (i.e. when to match bids with asks to make

transactions). There are a number of alternatives. The first is to collect all bids and asks and

to clear the market at the end of the trading day in order to maximise profits. A double auction

adopting such an approach is often referred to as a Clearing House (CH). Another approach

is to continuously clear whenever a bid or ask is accepted in the marketplace. This kind of

double auction is often called a Continuous Double Auction (CDA). Phelps et al. (2006) used

evolutionary game theory to compare the efficiencies of these alternatives. In their experiments,

traders are free to choose the following bidding strategies: truth-telling (TT), RE, and PvT. The

simulation results are shown in Tables 2.1 and 2.2, where the sum of traders’ profits is equal to

the allocative efficiency of the marketplace since the sum of expected profits is 1. The insights

obtained are as follows. In the CH, we can see that the most likely strategy to be used by traders

is the PvT strategy, and in the CDA, the RE strategy is the most likely one to be used. We also see

that the total profits of all traders under the truth-telling strategy in the CDA are relatively low,

only 0.86 in this case (mean of 0.87 in Table 2.1 and 0.85 in Table 2.2). This might suggest that

the CDA has low allocative efficiency, only 86%. However, because the RE strategy outperforms

all other strategies, all traders will choose it eventually. Then, in this case, the profit is 0.98. In

the CH, we can see that each strategy results in the same profit, 1, and can conclude that the

CH will yield 100% allocative efficiency in all cases. Now, although the CDA may yield lower

efficiency, it is still widely used in real exchange marketplaces since it is better able to handle

larger volumes of trades by clearing the market quickly (Friedman and Rust, 1993). Moreover,

switching to a CDA from a CH, as the NYSE did in the 1860s, does not seem to cause a large

loss of efficiency in practice (actually, from the experiment we can see when all traders adopt

the RE strategy, the CDA is quite efficient with 98% allocative efficiency).

In sum, the CDA is better for higher numbers of transactions since it clears the market whenever
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Equilibrium CH probability profit(allocative efficiency) CDA probability profit(allocative efficiency)
TT 0.00 1.00 0.00 0.87
RE 0.50 1.00 1.00 0.98
PvT 0.50 1.00 0.00 0.93

TABLE 2.1: Equilibrium and profit for 6 traders.

Equilibrium CH probability profit(allocative efficiency) CDA probability profit(allocative efficiency)
TT 0.17 1.00 0.00 0.85
RE 0.18 1.00 1.00 0.98
PvT 0.65 1.00 0.00 0.92

TABLE 2.2: Equilibrium and profit for 8 traders.

a new bid or ask arrives. This means traders can buy or sell items quickly, but the CDA is

worse for allocative efficiency since some extra-marginal traders may steal a deal. CH is better

for allocative efficiency since it clears the market when all traders have submitted shouts. This

means intra-marginal buyers will most likely be matched with intra-marginal sellers, but it is

worse in terms of the number of transactions since it cannot clear the market quickly in practice.

Given this, it is clear that, when determining when to clear the market, we need to consider the

trade-off between maximising profits and maximising the number of transactions.

Matching Policy:

A matching policy determines how to clear the market (i.e. how to match bids with asks to

make transactions). In this context, equilibrium matching (ME) is the most commonly used one

(Niu et al., 2008a). This policy will match intra-marginal buyers with intra-marginal sellers,

and the transaction prices are set as the equilibrium price. Since intra-marginal traders can

make transactions to guarantee their profits, ME achieves a high allocative efficiency. Note that

when using this matching policy, since the transaction prices are set at the equilibrium price,

the marketplace can arbitrarily match successful bids and asks to each other. However, in our

theoretical analysis (see Chapters 3 and 4), since we use the k-pricing policy with k = 0.5 to set

the transaction prices (see the below), we need to operate the equilibrium matching in a specific

way. In more detail, we will match buyers having the v-th highest bids with sellers having v-th

lowest asks. By so doing, we still guarantee intra-marginal traders’ profits. Another matching

policy, named Max-volume matching (MV) (Niu et al., 2008a), aims to increase transaction

volume based on the observation that a high intra-marginal bid can be matched with an extra-

marginal ask which is a little lower than the high bid. The MV matching policy can increase the

number of transactions, but at the same time can cause a loss of profits, and thus result in a low

allocative efficiency. Under this situation, a trade-off is also needed between maximising profits

(using ME) and maximising the number of transactions (using MV).

Pricing Policy:

The pricing policy determines the transaction prices for matched bids and asks. This means that

the pricing policy redistributes the profits among the traders and thus influences the profits of

the buyers and sellers. When designing the pricing policy, we need to consider the allocative ef-
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ficiency, buyers’ efficiency and sellers’ efficiency6. Furthermore, the degree of transaction price

fluctuation also needs to be considered (Niu et al., 2006). This is because with reduced price

fluctuations, transaction prices are guaranteed to be close to the equilibrium price. With this

guarantee for a fair transaction price, more traders are likely to prefer to join this marketplace,

which should, in turn, make the marketplace more profitable.

To this end, Phelps et al. (2003) consider how to design a pricing rule for the CDA to max-

imise V , which is the combination of allocative efficiency, the buyers’ efficiency and the sellers’

efficiency:

V =
allocative efficiency

2
+

buyers′ efficiency
4

+
sellers′ efficiency

4
(2.15)

They propose two approaches to designing the pricing policy. First, the transaction price is

calculated according to:

TP = k · pa + (1 − k) · pb (k ∈ [0, 1]) (2.16)

where pa is the matched ask and pb is the matched bid. This is called the k-pricing policy and is

a traditional pricing policy used in double auction marketplaces. In order to maximise V , they

want to optimise k. To this end, their simulation results are shown in Figure 2.8, and as we can

see the best value for k in this setting is 0.5.

FIGURE 2.8: Fitness V (with standard deviation) plotted against k for a marketplace with 12
traders (from Phelps et al. (2003)).

6This is the ratio of actual profits of buyers(sellers) to their expected profits when transactions are executed at the
equilibrium price.
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The second approach considers all possible combinations of the buyer’s bid pb and the seller’s

ask pa. The pricing policy was then allowed to evolve using genetic programming (see Phelps

et al. (2003) for details), and finally it was approximately equal to 0.5pb + 0.5pa, apart from a

small variation when the ask is small or when the difference between the bid and ask is marginal.

As can be seen, both approaches show that the k-pricing policy (k = 0.5) is efficient both in

terms of allocative efficiency and the traders’ efficiency.

In terms of reducing price fluctuations, Niu et al. (2006) explore modifying the traditional policy,

referred to as the k-pricing (given by Equation 2.16) to the n-pricing policy. The n-pricing policy

keeps a sliding window of size n of matching pairs of bids and asks which are used to set the

transaction prices. It is given by:

TP =
1
2n

T∑
z=T−n+1

(paz + pbz) (paT ≤ TP ≤ pbT ) (2.17)

where pbz and paz are the accepted bid and ask corresponding to the z-th transaction respectively,

T is the latest transaction and TP is the price at which the transaction is set using the n-pricing

policy. Here, TP is bounded between the buyer’s bid pbT and the seller’s ask paT. Note that the

n-pricing policy becomes the k-pricing policy with k = 0.5 when n = 1, and the auction is then

a traditional CDA. On the other hand, when n is equal to the total number of transactions, the

n-pricing policy is the rule commonly used in a CH. Thus, n ranges over a continuous space of

double auctions, with the Continuous Double Auction and the Clearing-House Double Auction

at either end.

The authors then compare the price fluctuations of n-pricing policy with n = 4 with k-pricing

policy with k = 0.5 in the CDA by measuring the coefficient of convergence α given a simple

and non-intelligent behaviour (with ZI-C traders) and a more complex and intelligent behaviour

(with GD traders). As an example, the marketplace named kCDA-ZIC means the CDA with

k-pricing policy and populated by ZI-C traders. The results, given in Figure 2.9 and Table 2.3,

showed that the price fluctuations were reduced in both marketplaces which use n-pricing policy,

with the better improvement in the marketplace with ZI-C traders (indicated by the relatively

larger decrease in α). This is because ZI-C traders randomly submit bids and asks, and the spread

of matching bids and asks is typically quite high. On the other hand, the more intelligent GD

traders submit bids and asks that tend to converge towards the equilibrium price, such that the

spread is then greatly reduced, and the n-pricing policy is then only marginally more effective.

To sum up, the effect of reducing price fluctuations by using the n-pricing policy is restricted by

traders’ bidding strategies. Moreover, there is no evidence to show that the allocative efficiency

improves when a marketplace adopts the n-pricing policy, and in some cases, the allocative

efficiency even decreases.

Shout Accepting Policy:

The shout accepting policy considers which bids and asks should be accepted by the market-
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FIGURE 2.9: Transaction prices, plotted as 10 different runs for the k-pricing policy and for
the n-pricing policy (from Niu et al. (2006)).

TABLE 2.3: Metrics for KCDAs, nCDAs and nCDAEEs measured over 10 trading days. Bold
face indicates the corresponding marketplace outperforms or equals its traditional kCDA coun-
terpart. Bold italic points out the best result in the corresponding ZI-C or GD marketplace

group (from Niu et al. (2006)).

place. This policy is typically used to speed up the transaction process, and to reduce the price

fluctuation. For example, when the marketplace only accepts bids considerably above the equi-

librium prices and asks considerably below the equilibrium price, bids and asks are much more

easily matched, and thus the transaction process is speeded up.

In more detail, the most common shout accepting policy is the NYSE shout accepting policy,

which requires that a submitted bid or ask improves on the outstanding bid or the outstand-

ing ask respectively. Such a policy is also called a quote-beating accepting policy (Niu et al.,

2008a). In order to reduce price fluctuation, Niu et al. (2006) replaced the traditional NYSE

shout accepting policy with a novel estimated equilibrium shout accepting policy (EE). Specifi-

cally, they estimated the equilibrium price, denoted by p̂∗, using a sliding window of the n′ latest

transactions:

p̂∗ =
1
n′

T∑
x=T−n′+1

TPx (2.18)

where TPx is the transaction price calculated in equation 2.17. According to the estimated

equilibrium price, the buyers have to bid above ( p̂∗ − ε), and the sellers have to ask below
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( p̂∗ + ε) (ε ≥ 0). Since transaction prices deviate considerably from the equilibrium price at

the beginning of trading, a parameter ε is introduced to relax the range of allowed bids and

asks. The efficiency and price fluctuations with the new shout accepting policy (denoted by

CDAEEε) are given in Table 2.3, where when ε = 0, marketplaces are called kCDAEE-ZIC,

nCDAEE-ZIC, kCDAEE-GD and nCDAEE-GD, and when ε = 5, 10, 15, 20, marketplaces are

called nCDAEEd5-ZIC, nCDAEEd5-GD, nCDAEEd10-ZIC, nCDAEEd10-GD, nCDAEEd15-

ZIC, nCDAEEd15-GD, nCDAEEd20-ZIC, nCDAEEd20-GD. As an example, the marketplace

named nCDAEEd15-GD means the CDA with n-pricing policy and estimated equilibrium shout

accepting policy with ε = 15 and populated by GD traders. Through simulations, a number

of observations can be made. Firstly, they consider the case where ε = 0. We can see α is

then considerably smaller for nCDAEE-ZIC, although the new shout accepting policy decreases

efficiency in that case. However, with GD traders, the performance is even worse. The price

fluctuations actually increase and the allocative efficiency decreases. The authors conjectured

that the GD trader adapts its bids or asks even though they are on the wrong side of the estimate

and thus get rejected, and it has insufficient time to adapt sufficiently to be efficient. Because

of this, the authors consider relaxing the shout accepting policy and consider different values

for the parameter ε. The results showed that, the marketplaces with ε ≥ 5 were indeed more

efficient with either ZI-C or GD traders, than with ε = 0, although when they increased ε, the

price fluctuations decreased with GD traders, but increased with ZI-C traders.

In summary, when the marketplace adopts the estimated equilibrium shout accepting policy,

in some cases, its allocative efficiency indeed increases. Thus when we compare the different

market policies, we will also consider the estimated equilibrium shout accepting policy.

2.3.2.3 Charging Strategy

In addition to establishing market polices, the double auction marketplaces also need to deter-

mine fees charged to participating traders. There are many kinds of fees charged to traders, such

as a registration fee charged when traders enter the marketplace, or a transaction fee charged

when a transaction is executed. By charging fees, marketplaces earn profits. In isolated market-

places, charging strategies are typically not considered since traders have no other marketplace

they can go to and thus fees have little impact on the behaviour of the traders. Currently, there

is no literature particularly considering a charging strategy in an isolated double auction mar-

ketplace. However, works on charging strategies for competing marketplaces exist (see Section

2.4.2.1 and 2.5.1). Furthermore, even in an isolated marketplace environment, when traders can

can choose whether or not to trade, how to set fees to maximise the market profit is also in-

teresting. Specifically, the total profit extracted from traders depends on the number of traders

participating in the marketplace and the fee charged to each trader. A higher fee causes more

traders not to choose the marketplace (even though they have no other marketplaces to enter).

Therefore, an appropriate fee should be set to maximise the profit. In 4.4.1, we will address this

problem in an isolated marketplace environment.
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2.4 Competing Marketplaces

In the previous section, we have introduced related work about isolated single-sided and double-

sided auctions, and discussed both bidding strategies and market policies for these settings.

However, as the development of global economy continues, more and more marketplaces emerge,

and traders have greater choices of which marketplaces to select and trade in. To this end, in this

section, we present existing work related to the competing marketplaces. In particular, when

trading in multiple marketplaces, traders need to consider where to trade and how to trade, i.e.

the market selection strategy and the bidding strategy. In the following, we will describe the

related work about traders’ strategies, in terms of both how they should bid (the bidding strat-

egy) and which marketplace they should choose (the market selection strategy), and then we

introduce the related work about competition between marketplaces.

2.4.1 Single-Sided Marketplaces

In this section, we describe the traders’ strategies and marketplaces’ strategies in the context of

multiple single-sided auctions (i.e. English auctions, Dutch Auctions, etc), since as we men-

tioned before, research work about competing single-sided marketplaces will provide us some

insights for analysing competing double auction marketplaces.

2.4.1.1 Traders’ Strategies

In the environment with multiple competing single-sided auctions, in order to make effective

trading decisions, traders need to determine the best set of auctions in which to bid, and deter-

mine how much to bid in the chosen auctions. Specifically, they often have to make decisions in a

dynamic, unpredictable and time-constrained environments. Thus it is often difficult for traders

to find an optimal strategy that can be used in practical contexts. For this reason, researchers

mainly adopt empirical approaches to design trading strategies across multiple marketplaces.

To this end, Preist designed an algorithm for traders that purchase one or more identical goods

from multiple English auctions which may terminate simultaneously or at different times (Preist

et al., 2001b,a). When all auctions terminate simultaneously, the trader uses a coordination

mechanism to ensure that he has the lowest leading bids to purchase the appropriate number of

goods. Furthermore, when auctions terminate at different times, the trader first calculates its

expected utility in the auction which is about to terminate, and compares it to expected utilities

in the remaining non-terminating auctions (the calculation is based on the trader’s beliefs about

other traders’ private values). Given the comparison, the trader must decide whether to place

a higher bid in the auction which is about to terminate, or withdraw from it. How the traders

update their beliefs of other traders’ private values is in a similar spirit to the GD strategy, except

that GD strategy is only applied in a single double auction marketplace. They also demonstrated

that, when more traders adopt this algorithm, the allocative efficiency is increased.
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In addition to Preist’s work, Byde also proposed a dynamic programming approach for traders

that participate in multiple English auctions to buy a single good (Byde, 2001a,b), and shows

that the dynamic programming approach is more effective at obtaining high utilities compared to

other algorithms. Based on this initial work, Byde et al. (2002) further developed a framework

in which traders can make rational bidding decisions to buy multiple identical goods across

multiple heterogenous single-sided auctions (English, Dutch, sealed-bid first-price and Vickrey

auctions) with varying start and end times (i.e. the times for starting auctions and terminating

auctions can be different). Such a framework aims to find the optimal decision making behaviour

for traders. Furthermore, since finding the optimal decision making behaviour is infeasible given

the time-constrained nature of auctions, in order to get a practical solution, Byde et al. (2002)

also implemented a heuristic algorithm to approximate the decision making behaviour.

Moreover, He et al. (2006) developed a heuristic algorithm for traders to buy multiple identical

goods from multiple English auctions with varying start and end times. This algorithm works by

using a fuzzy neural network to predict auctions’ closing prices and to decide the allocation of

the goods to the customers, and then calculates the satisfaction degree of the allocation. Based

on this, it calculates the set of auctions which it believes are the best to bid in. Moreover, rather

than just bidding in the best set of auctions, the trader also decides to bid in other auctions

which are likely to have broadly the same outcome. By this, the trader’s chance of winning the

desired goods is increased. Moreover, since they consider that goods have multiple attributes

(for example, in auctions selling flights, the goods can be described by their dates of departure

and return, by their carrier, and the class of ticket being bought), the trader has to make trade-offs

between them during its bidding process in order to satisfy the user’s preferences.

Furthermore, Anthony and Jennings (2002, 2006) proposed an approach for traders to buy a

single good from heterogenous auctions (English, Dutch and Vickrey auctions) with varying

start and end times. Their decision making model works as follows. Each trader constructs an

active auction list and collects relevant information (such as current standing bid in each auc-

tion). After this, the trader determines the maximum bid it is willing to make at the current

time, which is dependent on four bidding constraints: (i) the remaining time, (ii) the number of

remaining auctions, (iii) the desire for a bargain and (iv) the desperation of the trader. Based on

the current maximum bid, the trader determines the auctions which it can bid in and calculates

what it should bid in these potential auctions. Then, the trader selects the auction with the high-

est expected utility as the target auction. Finally, the trader submits a bid in the target auction.

In addition, they use a genetic algorithm (GA) to search for effective strategies for each of the

various environments since the strategy’s effectiveness is heavily affected by the environment.

The trader will adopt the strategy that is most appropriate to its prevailing context by evolving

strategies. In addition, Yuen et al. (2006) also investigate heuristic utility maximising bidding

strategies for traders to buy one or more items from multiple heterogenous auctions with differ-

ent starting and closing times. They design a two-stage strategy to approximate the best response

bidding strategy for a global bidder. In the first stage, it computes a maximum bid or threshold

for each auction. Then in the second stage, the trader exploits the bidding threshold calculated



42 Chapter 2 Literature Review

from the first stage and decides which auctions it should participate in.

In addition to empirical approaches to the bidding across multiple homogenous or heterogenous

auctions reviewed above, Gerding et al. (2008) adopted a theoretical approach for analysing the

optimal bidding strategy used in multiple, simultaneous Vickrey auctions with perfect substi-

tutes. They consider a single bidder, called the global bidder, that is able to bid in any number

of auctions, whereas the other bidders, called the local bidders, can only bid in a single auction.

By theoretical analysis, they find the following results. In the multiple simultaneous Vickrey

auctions context, the best strategy for a global bidder is to bid below its true private value, in

contrast to that in a single Vickrey auction context, where the dominant strategy of a bidder is

to bid its true private value. Furthermore, the expected utility of the global bidder is maximised

by participating in all auctions even though it only requires one item. They prove that, when

all auctions are identical, the strategy to maximise the global bidder’s expected utility is to bid

either uniformly across all auctions, or relatively higher in one of the auctions, and the same

or lower in the other auctions. They argue that even though a global bidder has a considerably

higher expected utility than a local one, not all bidders should necessarily bid globally. They

also show that a global bidder has a positive effect on the allocative efficiency.

In addition to the above work, in the specific context of TAC Travel Competition (http://www.

sics.se/tac), travel agents need to decide how to trade in multiple auctions in order to pro-

cure travel packages (flights, hotels and entertainment). Details about trading strategies in this

context can be found in Stone et al. (2003); Vetsikas and Selman (2003); Toulis et al. (2006); He

and Jennings (2003).

Now we have introduced related work about traders’ strategies across multiple single-sided auc-

tions. We can see that when buyers want to purchase multiple goods from multiple single-side

auctions, they first need to decide which auction(s) they want to participate in, and then decide

what bids to submit. This analysis will be insightful for us to analyse how traders select mar-

ketplaces and submit shouts in the context of multiple competing double auction marketplaces.

However, our analysis in the double auctions will be much more complex. The reason is as

follows. In multiple single-side auctions where there is a seller staying in each single-sided

auction, researchers only need to consider the market selection of buyers. However, in the dou-

ble auctions, there are multiple buyers and multiple sellers. We need to consider the market

selection of both buyers and sellers. The market selection of buyers(sellers) not only depends

on market policies and market fees, but also depends on the number and types of other traders

in marketplaces. Furthermore, in single-sided auctions, only the buyer bidding the highest wins

the good, and thus how buyers bidding depends on other buyers’ bidding behaviour. However,

in double auctions, the transactions can happen between multiple buyers and multiple sellers.

Thus how buyers(sellers) submitting shouts not only depends how other buyers(sellers) bidding,

but also depends on how sellers(buyers) bidding.
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2.4.1.2 Competition between Single-Sided Marketplaces

So far we have described related work about traders’ strategies in the context of multiple single-

sided auctions. However, this work does not consider the interaction between auctions them-

selves. Actually, auctioneers (or sellers, when sellers determine the auction rules) need to com-

pete with each other to attract traders (in terms of, e.g. charging fees, setting the duration of the

auction, setting reserve prices, and so on). In the following, we will describe the related work

about how single-sided auctions compete against each other.

McAfee (1993) was the first to consider mechanism design and reserve prices (which is the

lowest price that the seller will agree to sell the good for) in the context of competing sellers.

In his paper, sellers can choose any direct mechanism and these mechanisms are conducted

for multiple periods with discounted future payoffs. He studies the relationship between the

auction mechanism (which is determined by the sellers) and type distributions of buyers across

sellers, and the consequences of this relationship for sellers choosing an auction mechanism

in equilibrium. He finds that the equilibrium reserve prices posted by sellers are equal to the

sellers’ values. However, his work is based on some strong assumptions (e.g. it assumes that

any individual seller has no significant impact on buyers’ profits, and that buyers’ expected

profits in future periods are invariant to deviation of a seller in the current period), which are

only reasonable in the case of infinitely many players. Burguet and Sakovics (1999) then relax

some of these strong assumptions. Specifically, they derive a unique equilibrium strategy for the

buyers when two sellers are competing with each other by setting reserve prices. They prove

that there always exists an equilibrium strategy for the sellers, but it cannot be a symmetric

one in pure strategies. They show that in the mixed equilibrium, sellers will set a reserve price

above their own private value of the good. Another work about the competition between sellers

is Hernando-Veciana (2005), which considers a large number of sellers. This paper shows that

each seller announces a reserve price equal to its private values when the number of sellers and

buyers is large.

Another important work is done by Gerding et al. (2007), which considers the setting with a

small numbers of buyers and competing sellers, and considers that a mediator charges fees to

the competing seller for running the auction. This work shows that pure Nash equilibria for

the asymmetric seller setting exist. In addition, they also find that by shill bidding (where the

seller pretends to be a buyer to bid in its own auction), the seller can further improve its utility.

Finally, they evaluate the ability of different fees to deter shill bidding and quantify their impact

on market efficiency. They show that auction fees based on the difference between the payment

and the reserve price are more effective than the more commonly used auction fees with regards

to deterring shill bidding and increasing market efficiency.

Now we have introduced the related work about the competition between single-sided auctions.

In this competition, sellers who determine the auction rules, compete with each other to attract

buyers by setting reserve prices. Therefore, this work only considered single-sided auctions

attracting one side of traders. Our double auctions will be more complex since they have to
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compete with each other to attract both sides of traders (i.e. buyers and sellers), and the market

selection strategies of buyers and sellers also interact with one another.

2.4.2 Two-Sided Marketplaces

After describing related work about competing single-sided auctions, we now turn to two-sided

double auction marketplaces with multiple buyers and multiple sellers. So far there exists no

literature that deals with trading strategies which are specifically designed to operate across

multiple double auctions (in Section 4.3, we will use fictitious play to analyse traders’ equilib-

rium strategies across multiple marketplaces). However, for the setting with single-home trading

where traders can only enter one marketplace at a time, the bidding strategies introduced in Sec-

tion 2.3.2.1 (i.e. ZI-C, ZIP, GD, RE, TT, PvT, GDX, AA, FL and so on), which are designed

for isolated marketplace environment, are appropriate and efficient for traders to use. Then to

select which marketplace to choose, Niu et al. (2008b) propose two market selection strategies

for traders to search for the most profitable marketplace (we will introduce them in Section 2.5.1

when we describe the CAT competition). Note that there is comparatively little theoretical work

focusing on the competition between double auction marketplaces. However, there exists a con-

siderable body of work on analysing competing two-sided marketplaces. As we mentioned in

Section 1.1, the double auction marketplace is a particular type of two-sided marketplace. Thus

research on general two-sided marketplace competition should benefit research on the more

specific double auction marketplace setting. In the following, we describe the existing work

about how two-sided marketplaces compete with each other, where researchers mainly focus on

determining fees charged to traders (i.e. charging strategy).

2.4.2.1 Competition between Two-Sided Marketplaces

There exist various two-sided marketplaces in the real world. Examples of such two-sided mar-

ketplaces are dating websites where males are on one side and females are on the other side,

operating systems for PCs where software developers are on one side, and consumers are on the

other side, card payment systems where shops are on one side and cardholders are on the other

side, and so on.

In a two-sided marketplace, the traders’ choice of marketplaces is significantly affected by the

number of traders on the other side. This comes from the positive size effect (Caillaud and

Jullien, 2003), which means that traders have larger expected profits in the marketplace which

has the larger number of traders on the other side. This is because a large number of one side

gives the other side access to more diversity. Thus, the two-sided marketplaces need to try to

attract traders on both sides (since a small number of traders on one side will cause less expected

profits for traders on the other side and, in turn, cause those traders to leave the marketplace). For

example, payment card systems need to attract both retailers and cardholders to adopt their cards,

operating systems need to court both users and application developers, and dating websites need
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to attract both males and females. However, this gives rise to a “chicken and egg” problem: to

attract buyers (one side), a marketplace should have a large base of the registered sellers (the

other side), but these will be willing to register only if they expect many buyers to show up.

One of the most important works on this problem is from Caillaud and Jullien (2003), who

analyse the competition between two marketplaces. In their work, they assume that traders are

homogeneous with the same preference (type), and traders’ utilities only depend on the number

of traders on the other side. Furthermore, two types of fees are allowed in their model: a registra-

tion fee charged when traders enter the marketplace, and a transaction fee charged when traders

are successfully matched. In addition, they allow the marketplaces to charge negative regis-

tration fees, which means that the marketplaces can subsidize traders in order to attract them.

Firstly, they analyse the case with single-home trading. Specifically, they analyse a “divide-and-

conquer” strategy of subsidizing one side of the traders (by charging negative registration fees)

while recovering loss (by charging positive transaction fees) from the other side. They show

that, when traders can only enter one marketplace at a time, competition between marketplaces

is severe and, in equilibrium, all traders enter the same marketplace, but this marketplace has

to give up all profit. They further analyse the more complicated case with multi-home trading,

which induces lower degree of competition and, as a result, generates positive profits in equi-

librium. They show that in the multi-home environment, an efficient equilibrium always exists

in which traders register with the marketplace with cheaper registration fees, and are willing to

register with the marketplace which provides the lower transaction fee.

Another significant work on competition in two-sided marketplaces is Rochet and Tirole (2003),

whose analysis can be understood in the context of competing credit card platforms with two

sides: consumers and the set of retailers. In their analysis, the credit card platforms charge

fees for each transaction. When a credit card offers a lower transaction fee to retailers than its

opponent, then a retailer needs to make a choice between only accepting the cheaper card or

accepting both cards. When the retailer accepts only the cheaper card, then its consumers have a

stark choice between paying by this card or not using this card at all. However, if the retailer ac-

cepts both cards, then it may happen that fewer consumers use the retailer’s preferred lower-cost

card to pay. By theoretical analysis they find that, in equilibrium, all retailers accept both credit

cards while consumers use their preferred cards. The split of transaction fee charged to both

sides depends on how consumers consider the substitute of the two competing cards. If they

consider the two cards as close substitutes, then retailers need to bear most of the transaction fee

in equilibrium. They also derive a simple formula which can be used to govern fees in two-sided

marketplaces. However, in both Caillaud and Jullien (2003) and Rochet and Tirole (2003), it is

assumed that buyers(sellers) are homogeneous with the same preference (type), and will choose

the same marketplace. In the real-world double auctions, this assumption is not appropriate

since traders are usually heterogeneous with different preferences. In addition, Damiano and

Hao (2008) consider a setting with heterogeneous traders. They assume that traders select mar-

ketplaces only according to the types of other traders, instead of the number of traders, and thus

they do not consider the (positive) size effect.
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Furthermore, another important work is done by Lee (2008), who analyses under what condi-

tions two competing marketplaces can co-exist. They point out that strong marketplace differ-

entiation or weak positive size effect can make competing marketplaces co-exist. In our work,

we will also analyse whether competing marketplaces can co-exist and under what conditions if

they can.

Although the above works are related and can benefit the research on competing double auc-

tion marketplaces, none of these papers specifically consider the double auction mechanism to

match traders. This changes the problem because in the competition of double auction market-

places, the market selection strategy of the traders not only depends on the number of traders

choosing the marketplaces, but also on their own types and those of other traders choosing the

marketplaces. Furthermore, in addition to the positive size effect, there also exists the negative

size effect. Buyers(sellers) have to compete with each other in order to be matched with sell-

ers(buyers). Therefore, buyers(sellers) prefer the marketplace with few buyers(sellers). Com-

petition between two double auction marketplaces is considered by Ellison et al. (2004). They

show that, in some cases, the negative size effect has a larger impact than the positive size ef-

fect, and traders will not migrate from this state, which means that two competing marketplaces

can co-exist in equilibrium. This model is similar to ours since we also consider heterogeneous

traders and both positive and negative size effects. However, Ellison et al. (2004) make the sim-

plifying assumption that traders choose a marketplace before learning their own types, and thus

the market selection strategy is independent of a trader’s type. Therefore, unlike in our model,

using their model, they show that similar marketplaces can co-exist in equilibrium. In contrast,

we find that in our model, traders will converge to one marketplace except for the case when

there is strong market differentiation (i.e. where competing marketplaces charge different types

of fees).

2.5 The CAT Competition

After describing the related work about competing marketplaces, now we introduce a specific

competition between double auctions since our design of a competing marketplace will be evalu-

ated in this context. In order to promote the research on competing double auction marketplaces,

an annual Market Design Competition (CAT) was introduced as part of the Trading Agent Com-

petition (TAC) (Cai et al., 2009). To this end, a marketplace competition platform was provided,

which is called JCAT (Niu et al., 2008b). In the following, we will detail this platform according

to technical reports issued by CAT competition organisers (see Cai et al. 2009; Niu et al. 2009)

and describe the related work in this specific context of CAT.
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2.5.1 Basic Structure and Rules

The CAT competition was first introduced as part of TAC in 2007, in order to promote research

on efficient and effective competing marketplace design. The underlying platform, JCAT, allows

multiple marketplaces to compete against each other and allows marketplaces to be evaluated

in a uniform way. Furthermore, this competition has been run successfully in 2007, 2008, 2009

and 2010, and can provide an international benchmark for evaluating the competing marketplace

design. Given this, in this thesis, we will evaluate our design of a competing marketplace based

on this platform.

As depicted in Figure 2.10, the CAT competition consists of traders, i.e. buyers and sellers,

and specialists. Traders can buy or sell goods in one of the available marketplaces which are

operated by specialists. In the competition, the traders are provided by the CAT organisers, and

specialists (with the market policies and charging strategies) are designed by the competition

entrants. Each entrant can only operate a single marketplace in the competition.

FIGURE 2.10: Architecture of CAT competition.

Each CAT competition lasts for a number of trading days7, and each day consists of a fixed

number of rounds, during which traders submit shouts to the specialist they are registered with.

Each round lasts for a known constant length of time. In the competition, each trader is assigned

a private value for the goods it wishes to buy or sell. For the buyer, the private value is its limit

price, and for the seller, the private value is its cost price. In the competition, traders’ private

values remain constant during a day, but may change from day to day, depending on the config-

uration of the game parameters. Traders need to enter marketplaces to make transactions. Here,

each trader can only register with one marketplace on a particular day, i.e. only single-home

7A trading day is a virtual day, not an actual tournament day in real time.
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trading is considered. Thus bidding strategies in isolated marketplaces can be used. Typically,

ZI-C, ZIP, GD and RE strategies (see Section 2.3.2.1 for details) are permitted in this setting.

In addition to the bidding strategies, traders have one of several market selection strategies to

decide which marketplace to register with. These market selection strategies implemented in

JCAT are as follows:

• random strategy: the trader randomly chooses a marketplace to participate in.

• ε-greedy exploration strategy: the trader treats the choice of marketplace as an n-armed

bandit problem8 which it solves using an ε-greedy exploration strategy where 0 ≤ ε ≤ 1.

With such a strategy, a trader updates its value function according to its recent profits,

and then it chooses the most profitable marketplace with probability 1 − ε, and randomly

chooses one of the remaining marketplaces with probability ε. The probability ε can

remain constant or can vary over time, depending on the value of a parameter α. If α is 1,

ε remains constant, while if α takes any value in (0, 1), then ε will decrease over time.

• softmax exploration strategy: This market selection strategy is similar to the above ε-

greedy exploration strategy except that it uses a softmax exploration strategy in the n-

armed bandit algorithm. This means the trader does not treat all marketplaces, except the

best marketplace, as the same. If this strategy does not choose the most profitable market-

place, it weighs the choice of remaining marketplaces in order to choose more profitable

marketplaces. A parameter τ, which is similar to ε, controls the relative importance of

the weights a trader assigns to marketplaces. It can also be fixed or have a variable value

determined by α.

Specialists facilitate transactions by matching bids and asks and determining the transaction

price. As discussed in Section 1.1, a double auction marketplace consists of the following market

policies: timing, matching, pricing and shout accepting policies. Furthermore, the marketplace

also needs to specify its charging strategy. An overview of the policies implemented in JCAT is

listed in Table 2.4. In the pricing policy, in addition to k-pricing policy and n-pricing policy we

introduced in Section 2.3.2.2, JCAT implements two other pricing policies:

• Uniform pricing policy: sets the transaction prices for all matched ask-bid pairs at the

same point.

• Side-biased pricing policy: is a kind of k-pricing policy with varying k, where k is set to

split the profit in favour of the side where fewer shouts exist.

In addition to the quote-beating accepting and equilibrium accepting policy introduced in Sec-

tion 2.3.2.2, JCAT implemented four other accepting policies:
8This is a machine learning problem, similar to the slot machine, where there are n levers, and each lever provides

a reward drawn from a distribution associated with that lever Sutton and Barto (1998). The objective is to maximize
the reward sum through iterative pulls. There is no initial knowledge about the levers. In each pull, a trade-off is made
between “exploitation” of the lever that has the highest expected reward and “exploration” to get more information
about the expected rewards of the other levers.
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• Always accepting policy: accepts any shouts submitted by traders.

• Transaction-based accepting policy: records the most recently matched bids and asks,

and then uses the lowest matched bid and the highest matched ask as thresholds to restrict

the allowed shouts.

• History-based accepting policy: is derived from the GD bidding strategy. GD forms the

belief about how likely a given shout is to be matched based on the history of previous

shouts. Then, according to this belief, the marketplace accepts shouts that can be matched

with the probability no lower than a specified threshold.

• Self-beating accepting policy: accepts all shouts of traders who have not submitted shouts

yet, but then only allows traders to modify their standing shouts with more competitive

prices.

For the charging strategy, JCAT provides five types of fees which can be set:

• Registration fee: a flat fee charged for participating in a marketplace.

• Information fee: a flat fee charged by the specialist to traders and specialists who require

market information from the marketplace. This information consists of the entire history

of the accepted shouts and the transactions in that marketplace.

• Shout fee: a flat fee charged for successfully submitted bids or asks.

• Transaction fee: a flat fee charged on each successful transaction.

• Profit fee: a share of the observed profit made by traders, where a trader’s observed

profit is calculated as the difference between the shout and transaction price. Note that a

trader’s observed profit is different from its actual profit (which is the difference between

its private value and transaction price).

Given this, JCAT comes with five pre-set charging strategies. The five pre-set charging strategies

in the JCAT platform are as follows:

• Fixed charging: imposes fees at a specified fixed level.

• Bait-and-switch charging: makes a specialist reduce its charges until it captures a certain

market share, and then it slowly increases charges to increase profit. The specialist adjusts

its charges downward again when the market share drops below a certain level.

• Charge-cutting charging: sets the charges to the lowest charges set by the other market-

places on the previous day. This will attract many traders, but may sacrifice profits.

• Learn-or-lure-fast charging: adapts charges towards some desired target according to the

scheme used by the ZIP bidding strategy.
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Timing Policy (Section 2.3.2.2) Matching Policy (Section 2.3.2.2)
Continuous clearing9 ME

Round clearing10

Pricing Policy (Section 2.3.2.2) Charging Strategy
k-pricing Fixed charging
n-pricing Bait-and-switch charging

Uniform pricing Charging-cutting charging
Side-biased pricing Learn-or-lure-fast charging

Shout Accepting Policy (Section 2.3.2.2)
Quote-beating accepting

Estimated equilibrium Accepting
Self-beating accepting

Transaction-based accepting
History-based accepting

TABLE 2.4: Market policies implemented in the JCAT.

Although JCAT has provided some pre-set market policies and charging strategies, specialists

can design their own in order to effectively compete with one another in making profit, attracting

traders and ensuring shouts submitted in the marketplace result in transactions. To evaluate their

performance, the marketplaces are scored based on a combination of three different metrics:

• Profit Share: the profit obtained by the specialist on a particular day as a percentage of

the total profits obtained by all specialists on that same day. The profit share score is a

number between 0 and 1 for each specialist for each day.

• Market Share: the percentage of traders who have registered with that specialist on a

given day. The market share score is between 0 and 1.

• Transaction Success Rate: the percentage of shouts accepted by the marketplace result-

ing in transactions. The transaction success rate score is between 0 and 1.

These metrics are weighted equally (i.e. weighted one-third each) and added together to produce

a combined score for each specialist for each Assessment Day11. Scores are then summed across

all Assessment Days to produce a final game score for each specialist. The specialist with the

highest final score is the winner of the competition.

2.5.2 Traders Migrating between Marketplaces

In the competing marketplace context with single-home trading, traders move freely between

the different marketplaces to search for the one which they believe to be the most profitable.
9It is the implementation of CDA policy in the JCAT.

10It is the implementation of CH policy in the JCAT.
11In order to avoid effects arising from the fact that the competition has a start day and an end day, not all the

trading days will be used for assessment purpose. In more detail, the organisers randomly choose a day as a starting
trading day and a day as an ending day, and then randomly choose days between the starting day and the ending day
on which assessment will be undertaken. These days are called “Assessment Days”.
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Such migration will significantly determine the final competition results of marketplaces, and

thus needs to be researched in detail. To this end, based on the JCAT platform, Niu et al. (2007)

provided an experimental analysis on this aspect of the traders’ behaviour. Specifically, in their

experiments, traders’ market selection strategies are chosen from random selection strategy,

ε-greedy exploration strategy or softmax exploration strategy, which we described in Section

2.5.1. From the results, the authors concluded that, when traders choose marketplaces randomly,

marketplaces charging higher fees tend to make larger profits. However, as soon as traders are

able to learn, they exhibit a strong tendency to concentrate towards marketplaces charging low

fees. They also showed that the traders’ market selection is dependent on how traders learn.

In particular, using ε-greedy exploration allows traders to settle on the cheaper marketplace

more quickly, while the softmax exploration allows traders to better distinguish the range of

non-optimal marketplaces.

Building on this, Cai et al. (2008) ran experiments to analyse the impact of multiple marketplaces

on the efficiency of trading. From their results, they found that, while dividing traders into

multiple marketplaces leads to a loss of allocative efficiency, this loss is reduced when traders

are allowed to move among marketplaces in search of greater profits. In particular, they showed

that when traders can move among marketplaces, this can cause segregation. For example, most

intra-marginal traders may concentrate on one marketplace because, in this marketplace, they

have more possibilities to trade. In the specific context of CDAs, extra-marginal traders may, in

general, be able to steal a deal from intra-marginal traders, but when such segregation occurs, it

is hard for extra-marginal traders to do so. This, in turn, leads to increased allocative efficiency.

In addition, they showed that fees can drive traders that are not making profits to try different

marketplaces, and thus allow marketplaces to rid themselves of unproductive traders. In the CHs,

although extra-marginal traders cannot steal a deal from intra-marginal traders, the movement

of traders can still increase profits by allowing a trader that is extra-marginal in one marketplace

to become intra-marginal in another. Generally speaking, because traders are profit-motivated,

they migrate towards marketplaces that provide more profits, and overall this increases the total

profits of the set of marketplaces, increasing the global efficiency. This effect is enhanced by the

application of fees since these tend to reduce profits and then discourage traders from remaining

in marketplaces that are unprofitable for them.

To sum up, from the above experimental analysis, we can see that profit-motivated traders with

a learning ability will migrate towards profitable marketplaces, and this migration process is en-

hanced by fees imposed by marketplaces since they reduce traders’ profits. The way that traders

move between marketplaces is important when considering the design of market policies. Ef-

fective market policies are needed to provide highly efficient allocation in order to guarantee

traders’ profits and attract traders. Moreover, the charging strategy should be given particular

consideration since it has been shown to have a large impact on the traders’ decision of which

marketplace they will register with. However, this experimental analysis considered heuristic

strategies adopted by traders and marketplaces and the results depend on the choices of heuris-

tics, and thus cannot easily be used to derive general conclusions.
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In addition, in Sohn et al. (2009), PSUCAT proposes a simple game-theoretic model to analyse

traders’ market selection in the CAT context, which assumes a game with complete information

about the traders’ private values. They analyse how registration fees affect the market selection

of intra-marginal and extra-marginal traders. They show that extra-marginal traders are the first

to leave the marketplace when it starts charging a registration fee. Intra-marginal traders are the

next to leave the marketplace as the registration fee increases. Furthermore, they find that the

resulting number of Nash equilibria drop as the registration fee increases. However, this analysis

assumes a game with complete information about the traders’ types, in contrast to reality, where

traders’ types are usually privately known.

2.5.3 Competition Results

In this section, we introduce the market policies and charging strategy used by specialists in the

CAT competition (2007, 2008, 2009 and 2010), where IAMwildCAT is the entry of University

of Southampton, that I have been involved since 2008. This existing work, which is directly

related to the competing marketplace design in the context of the CAT competition, will give us

further understanding of the design of competing marketplaces.

2.5.3.1 2007

The 2007 CAT Competition consisted of 10 specialists: IAMwildCAT, PSUCAT, CrocodileAgent,

jackaroo, Havana, PersianCat, PhantAgent, Mertacor, TacTex and Manx, and the result is shown

in Table 2.5. In Niu et al. (2010), the competition organisers analyse the policies used in the

competition by inferring the market policies from the binaries of the specialists submitted by the

participants12. They analysed the competition through two approaches: while-box approach and

black-box approach. The white-box approach attempts to relate the internal logic and features of

strategies to the competition outcomes. In more detail, they showed that most specialists use ME

to clear markets at the equilibrium price. IAMwildCAT and Mertacor are the only two which at-

tempt to match intra-marginal shouts with extra-marginal shouts close to the equilibrium point in

order to reach high transaction success rates. Furthermore, about half the specialists use a round

clearing policy which means the marketplace is cleared at the end of each round, and the other

half use a continuous clearing policy. The specialists in the competition used a wide range of

shout accepting policies. In particular, IAMwildCAT, PSUCAT, CrocodileAgent and Mertacor

used a modified or improved estimated equilibrium shout accepting policy. Havana, jackaroo

and MANX adopted the quote-beating accepting policy. TacTex used an always-accepting pol-

icy and PersianCat used a transaction-based accepting policy. For the pricing policy, Havana,

PersianCat, TacTex and MANX used the k-pricing policy. On the other hand, IAMwildCAT,

PSUCAT and Mertacor used a modified or improved side-biased pricing policy. jackaroo used

12The CAT competition organisers require the participants to submit the binaries of the specialist they used in the
competition, but not the actual source code.
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Rank Specialist Score
1 IAMwildCAT 365.496
2 PSUCAT 328.333
3 CrocodileAgent 308.813
4 jackaroo 272.239
5 Havana 256.441
6 PersianCat 218.458
7 PhantAgent 146.208
8 Mertacor 133.912
9 TacTex 107.925
10 MANX 95.976

TABLE 2.5: Result of 2007 CAT competition

the n-pricing policy, whereas CrocodileAgent used a combination of modified n-pricing policy

and side-biased pricing policy. From all the market policies, most effort seems to have been

placed in the charging strategy and most specialists designed their own or modified charging

strategies provided by JCAT. Considering how fees are updated over time, some specialists

adapted their charges, whereas other specialists directly calculated the charges such that they

would expect to achieve a certain target profit, and some specialists combine the above two ap-

proaches by changing the fees gradually from the current level to the target level. For different

type of fees, about half of the specialists mainly or exclusively charged registration fees and

profit fees. TacTex charged only shout fees. Three specialists, CrocodileAgent, Havana and

MANX charged each kind of fees without any preference on a certain kind of fee. Moreover,

most specialists utilise the start effect (which means attracting traders by charging less in the

early stage of game) and the end effect (which means imposing higher charges to earn more

profit when the competition is about to end) even though the starting and ending days may not

be included in the Assessment Days.

Furthermore, they use a black-box approach to analyse the competition, which will consider the

strategies as atomic entities. A black-box analysis abstracts away the internal structure of the

specialists and many details of the dynamics during the interaction between specialists, making

it possible to consider many more situations. In more detail, in this approach, they consider

two sets of experiments: multilateral simulations with games involving all the specialists and

bilateral simulations with games each involving two specialists. Through the analysis, they

show that in these simulations, the winner IAMwildCAT still dominates other entrants. They

further introduce a specialist MetroCat (which is designed by organisers for evaluation purpose),

and show that this specialist quickly dominates all entrants including IAMwildCAT. The success

of MetroCat also suggests that there is a significant room for the improvement of entrants in this

year’s competition.
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Rank Specialist Score
1 PersianCat 425.773
2 MANX 384.921
3 jackaroo 380.554
4 PSUCAT 379.416
5 Mertacor 354.283
6 IAMwildCAT 331.708
7 DOG 314.014
8 CrocodileAgent 287.8
9 MyFuzzy 259.503
10 BazarganZebel 252.128
11 Hairball 242.853

TABLE 2.6: Result of 2008 CAT competition

2.5.3.2 2008

In the 2008 CAT Competition, there were 11 specialists: BazarganZebel, CrocodileAgent, DOG,

Hairball, IAMwildCAT, MANX, Mertacor, MyFuzzy, PSUCAT, PersianCat and jackaroo, and

the result is shown in Table 2.6. Up to now, only three entrants have published their strategies

in the 2008 CAT Competition: PersianCat (the winner of the 2008 CAT Competition), Mertacor

and CrocodileAgent. In the following, we introduce their policies briefly, and then introduce the

analysis of the 2008 CAT Competition by the competition organisers.

In the 2008 CAT Competition, the market policies adopted by PersianCat are as follows (Honari

et al., 2009):

• timing policy: it adopts continuous clearing policy, which clears the marketplace imme-

diately when a new shout is admitted.

• matching policy: it uses the equilibrium matching policy, i.e. matching high bids with

low asks.

• shout accepting policy: it adopts an equilibrium accepting policy. Specifically, it calcu-

lates the equilibrium price on day i according to the equation: p̂∗i =
1

2n
∑ j=i−n

j=i−1(MaxA j +

MinB j), where n is the length of sliding window, and is equal to 4 in the competition,

MaxA j and MinB j are the maximum transacted ask and the minimum transacted bid on

day j. Then it set a slack value ε to moderate the restriction of the accepting policy. It

sets p̂∗i − ε and p̂∗i + ε as the minimum acceptable bid and the maximum acceptable ask

respectively in PersianCat on day i. In the competition, the ε is 10% of the p̂∗i .

• pricing policy: it sets the transaction price to its estimated equilibrium price. If the equi-

librium price is outside the range of the matched bid and ask, it sets the transaction price

to the nearest price of the matched bid and ask.

• charging strategy: it adopts a charging strategy, which only charges a fixed profit fee.
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The market policies adopted by Mertacor are as follows (Stavrogiannis and Mitkas, 2009):

• timing policy: it uses a round clearing policy for the earlier rounds, and then switches to

a continuous clearing policy to increase the volume of its transactions.

• matching policy: it uses the equilibrium matching policy, i.e. matching high bids with

low asks.

• shout accepting policy: it designs a global equilibrium accepting policy, which allows

only globally intra-marginal traders to place shouts in the earlier rounds of a given trading

day. It then subsequently switches to the quote-beating accepting policy. Specifically, the

global equilibrium price is calculated as follows. It continually keeps track of the highest

bids and the lowest asks in Mertacor. It believes that these prices constitute the closest

available estimation of traders’ private values. Moreover, it estimates the number of goods

traded every day as traders’ daily endowment. When a sufficient number of traders have

been explored, it forms the global demand and supply curves and then computes the global

equilibrium price.

• pricing policy: it adopts a uniform global equilibrium pricing policy, which sets the price

of all transactions at the global equilibrium price.

• charging strategy: it only charges a profit fee, and sets the fee according to its market

statistic and opponent scores.

The market policies adopted by CrocodileAgent are as follows (Petric et al., 2008):

• timing policy: it clears the market every second round.

• matching policy: it uses the equilibrium matching policy, i.e. matching high bids with

low asks.

• shout accepting policy: it uses an equilibrium accepting policy provided by the JCAT

platform.

• pricing policy: it adopts a slightly modified n-pricing policy in order to reduce the loss of

traders and ensure that both buyers and sellers will obtain profits from transactions.

• charging strategy: it divides the game into two phases. In the luring phase, it tries to

attract traders by charging no fees. Then once obtaining a good market share, it switches

to the charging phase, and begins to charge fees to make profits.

The competition organisers also analysed specialists in the 2008 CAT Competition in order

to better understand the characteristics of the policies adopted by specialists in relation to the

competition context (Robinson et al., 2009). Specifically, they empirically evaluate the gener-

alisation abilities of marketplaces in the different trader populations, different competing spe-

cialists populations and different scoring periods. They show that specialists in the 2008 CAT
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Rank Specialist Score
1 jackaroo 542.6
2 CUNY.CS 533.1
3 IAMwildCAT 512.9
4 PSUCAT 499.7
5 Mertacor 395.0
6 rucat0 391.2
7 UMTac09 379.4
8 cestlavie 365.1
9 PersianCat 327.0
10 BazarganZebel 315.6
11 TWBB 294.0
12 Tianuani 261.0
13 CrocodileAgent 217.7
14 WaterCAT 167.1

TABLE 2.7: Result of 2009 CAT competition

Competition are not robust, which means that a specialist which performs well in a particular

competition context may not perform well if the competition context changes. Thus the market

policies adopted by specialists seem not to generalise, and the competition organisers suggest

entrants should make their specialists more robust in the future competition.

2.5.3.3 2009 and 2010

The results of the CAT competition in 2009 and 2010 are shown in Tables 2.7 and 2.8 respec-

tively. We found that jackaroo performed well in these two years’ competition (ranked first in

2009 and second in 2010), and Mertacor’s performance was improved significantly from the

fifth in 2009 to the first in 2010. We also can see that our entrant, IAMwildCAT, performed

well in these two years’ competition (ranked third in both years). Furthermore, we found that

the performance of competition marketplaces changed in different days’ competition since com-

petition operators changed traders’ strategies. Up to now, neither entrants nor competition or-

ganisers have published their analysis for these two years’ competition. Therefore, we do not

know market policies and charging policies used by other competing marketplaces. However,

for the market fee charged to traders, which is the information we can directly observe from the

competition, we find that most effective marketplaces only charge profit fees, and set other types

of fees as zero.
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Rank Specialist Score
1 Mertacor 627.394
2 jackaroo 589.667
3 IAMwildCAT 548.238
4 PoleCAT 521.918
5 TWBB 461.398
6 PSUCAT 447.459
7 MyFuzzy 428.547
8 AstonCAT 393.911
9 PersianCat 255.724

TABLE 2.8: Result of 2010 CAT competition

2.5.3.4 IAMwildCAT

In this section, we introduce the market policies and charging policy used by IAMwildCAT in

the 2007, 2008, 2009 and 2010 CAT competition.

2007:

In terms of the timing policy, IAMwildCAT clears the market at the end of each round, i.e.

round clearing. In terms of the matching policy, it is observed that intra-marginal traders are

expected to trade earlier than marginal traders such that the amount of profit to be extracted in

the marketplace is higher earlier in the trading day, and with less profit to be made at the end

of trading day. Thus IAMwildCAT chooses the following strategy to deal with the trade-off: it

clears the market for maximising profits in the end of earlier rounds of the trading day. Then,

on the following rounds, with less profits to be made in the marketplace, IAMwildCAT clears to

maximise the number of transactions.

For the pricing policy, IAMwildCAT uses a variation of the k-pricing policy. In particular,

IAMwildCAT looks at a window of the 10 trading days for the average number of buyers and

sellers it attracts. If the difference between the number of buyers and sellers is bigger than 10%

of the total number of traders, k is adjusted in order to give more profit to the side (buyers or

sellers) which is under represented. Such a pricing policy is similar to the side-biased pricing

policy implemented in the JCAT.

In the design of the shout accepting policy, IAMwildCAT adopts the equilibrium shout accepting

policy to reject bids below the equilibrium price and asks above the equilibrium price. Because

of the error of estimating the equilibrium price, IAMwildCAT provides some slack when de-

termining the minimum accepted bid and the maximum accepted ask. Furthermore, in order to

increase TSR, on the last few trading rounds, IAMwildCAT only accepts bids and asks that can

be currently cleared.

Finally, in the design of the charging policy, initially, IAMwildCAT explores the marketplace in

order to build up its market share. Specifically, it attracts as many traders as possible by giving

up all profits, scoring only by its higher market share and its transaction success rate. With a
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large market share, it then starts exploiting these traders by charging registration and profit fees

to extract profits from them. With increasing fees, the marketplace becomes less attractive to

potential traders, and then gradually, the effect of increased fees decreases the market share.

At this point, IAMwildCAT stops exploiting and goes back to exploring to increase its market

share back to a predetermined threshold. Once it reaches that target, it has a sufficient number of

traders registered to start exploiting. By following this policy, the marketplace can maintain the

market share at a reasonably high level while exploiting the traders whenever the market share

is very high. This charging policy would then oscillate between the exploiting and exploring

behaviours until the end of the game.

2008:

In 2008, in the design of IAMwildCAT, for the timing policy, the same as 2007, the marketplace

adopts the round clearing policy. For the matching policy, IAMwildCAT makes a trade-off be-

tween maximising traders’ profits and maximising the number of transactions. In more detail,

when shouts are far away from the equilibrium price, it uses the ME matching policy to max-

imise traders’ profits. Then when traders’ shouts are within an area close to the equilibrium

price, it uses the MV matching policy to maximise the number of transactions. For the pricing

policy, it is the same as that in 2007 CAT competition. For the shout accepting policy, IAMwild-

CAT uses a quote-beating accepting policy. Finally, for the charging policy, it adopts a concept

of positive feedback loop. In more detail, IAMwildCAT begins to charge fees until it obtains

the highest market share, and because of the highest market share, it may obtain the highest

market profit among all competing marketplace by charging lower fees. Because of lower fees,

the marketplace can still maintain and attract more traders. Then attracting more traders means

charging even lower fees to traders to obtain the highest market profit. In this situation, we

can see that IAMwildCAT can charge lower fees to obtain good market profit, but still remain

competitive.

2009:

In 2009, IAMwildCAT uses the same timing and matching policies as those in 2008. For the

pricing policy, it uses an equilibrium pricing policy, where the equilibrium price is set as the

transaction prices. The estimation of the equilibrium price is similar to that PersianCat did in

2008 (see Section 2.5.3.2). For the shout accepting policy, IAMwildCAT uses an equilibrium-

beating accepting policy. For the charging policy, from the competition of 2008, it is observed

that IAMwildCAT fails to obtain the highest market share, but is able to keep market share at a

good level. In this situation, the charging policy used in 2008 does not charge enough to make

profit. In this year, the charging policy is improved according to this observation. In more detail,

when the marketplace fails to obtain the highest market share, but can keep it at a good level,

the marketplace still begins to charge fees.
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2010:

In 2010, according to insights from the analysis done in this thesis, we design market policies

and the charging policy. In more detail, IAMwildCAT makes a trade-off between the round

clearing and the continuous clearing policies. It also makes a trade-off between maximising the

number of transactions and maximising traders’ profits. For the pricing policy, it adopts the equi-

librium pricing policy, and for the shout accepting policy, IAMwildCAT switches between the

quote-beating and the equilibrium beating accepting policies. For the charging policy, IAMwild-

CAT uses an adaptive charging policy which adapts fees based the number of transactions. For

details, refer to Chapter 4.

2.6 Summary

In this chapter, we began by outlining the background on game theory and market theory in

microeconomics. We then introduced related work on isolated single-sided auctions and double

auctions. After this, we introduced existing work about competing single-sided auctions and

competing two-sided marketplaces. Finally, we introduced the CAT competition for evaluat-

ing the competing double auction marketplace and reviewed the relevant work in this specific

context.

Although existing work analyses the competition between marketplaces, they do not fully ad-

dress the research challenges introduced in Section 1.2. In the following, we discuss why they

fail to address our research challenges in detail, and briefly introduce what we do in this thesis

to address these challenges.

Firstly, from the literature review, we can see that a number of theoretical models have been

proposed to analyse how traders select two-sided marketplaces and how competing two-sided

marketplaces set fees to make profits and keep traders. They are related to our work on com-

peting double auction marketplaces since the double auction marketplace is a particular type of

a two-sided marketplace. However, most of this work only considers the positive size effect,

whereby buyers(sellers) prefer marketplaces which have a larger number of sellers(buyers). As

we discussed in Section 1.2, in double auction marketplaces, the negative size effect also exists,

since traders on one side will compete with each other in order to be matched with traders on the

other side. This negative size effect will encourages traders to distribute across different mar-

ketplaces, thereby making it more likely for several competing marketplaces to co-exist in the

long term. In this thesis, our analysis of competing double auction marketplaces will inherently

consider both positive and negative size effects, and we find that the positive size effect has a

larger impact than the negative size effect, and traders will concentrate in one marketplace (see

Chapters 3 and 4).

Moreover, most existing work assumes that all traders are homogeneous (i.e. have the same

type), and the marketplaces have complete information about the types of traders. These simpli-
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fying assumptions fail to fulfill our research challenge that traders usually have heterogeneous

types which are privately known. In this situation, the traders, in choosing their marketplaces,

not only care about fees charged by the marketplaces and the number of other traders, but also

their types. Although in the CAT competition there exists some work that considers these fac-

tors, they consider specific heuristic strategies adopted by traders and marketplaces and the

results depend on the choices of heuristics, and thus cannot easily be used to derive general

conclusions. In our analysis, we will consider that traders have privately known heterogeneous

types. Specifically, in Chapter 3, we analyse equilibrium strategies of traders and marketplaces

under the assumption that traders have heterogeneous discrete trader types which are privately

know. In Chapter 4, we extend the analysis to the setting with privately know continuous trader

types.

Furthermore, comparatively little existing work considers different trading environments (single-

home, multi-home and hybrid trading) and currently no literature considers different good prop-

erties (independent, substitutes and complementary) when analysing competing two-sided mar-

ketplaces. As we discussed in Section 1.2, strategies of marketplaces and traders will be affected

by these factors. Moreover, in fact, currently no work has considered traders’ strategies across

multiple double auction marketplaces in the multi-home trading environment (although trading

strategies across multiple single-sided auction indeed exist, and heuristic bidding strategies used

for isolated double auctions can be used in the single-home trading environments with multi-

ple double auction marketplaces). In Chapter 4, we will address this challenge by considering

different trading environments and different good properties.

Finally, as we saw in Section 2.3.2.2, a considerable body of work exists on the market pol-

icy design of an isolated double auction marketplace. However, we do not know which market

policy performs well when competing with other policies. Furthermore, the performance of

different market policies are affected by traders’ behaviour. Currently, there is no systematic

work on analysing the performance of market policies in the competing environments by con-

sidering different behaviours for traders. To address this research challenge, in Chapter 5, we

experimentally analyse how different market policies influence the performance of competing

marketplaces in different environments where different bidding strategies are used. Further-

more, based on insights obtained from this analysis, we design our market policies in the CAT

competition.



Chapter 3

Analysis of Competing Marketplaces
with Discrete Trader Types

In this chapter, we theoretically analyse the market selection strategies for traders and charging

strategies for marketplaces in the context of multiple competing double auction marketplaces.

This work addresses the research challenges 1 (analysing market selection strategies for traders)

and 4 (analysing charging strategies for marketplaces) in Section 1.2. The rationale for so doing

is to provide useful insights to guide the design of a charging strategy. As we discussed in

Section 1.3, the strategies of traders and marketplaces are affected by each other, and thus we

use game theory to analyse the Nash equilibrium strategies. In this chapter, we focus on the

single-home trading environment where traders can only enter one marketplace at a time. Such

an environment is highly competitive because the marketplaces have to compete fiercely to fully

attract a trader (compared to a multi-home trading environment where traders can participate in

multiple marketplaces at a time). For this setting, we are interested in analysing how both traders

and marketplaces behave strategically. We will analyse the settings with multi-home trading and

hybrid trading in Chapter 4.

The structure of this chapter is as follows. Firstly, we propose a game-theoretic framework for

analysing competing marketplaces (Section 3.1). Then, based on the framework, we analyse the

Nash equilibrium market selection strategies for traders that are restricted to a predefined number

of discrete types (Section 3.2). After having established the traders’ equilibrium strategies, we

go on to use two different approaches to analyse equilibrium charging strategies for marketplaces

(Section 3.3). Finally, we summarise in Section 3.4.

3.1 A Game-Theoretic Framework for Competing Marketplaces

In this section we introduce the game-theoretic framework which models a setting with com-

peting marketplaces and forms the basis of our analysis. Specifically, in our framework, a trad-

61
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ing round is considered1 and it proceeds as follows. First, all marketplaces publish their fees.

Second, based on the observed fees, each trader selects a marketplace according to its market

selection strategy. Third, traders submit their shouts according to their bidding strategies. Fi-

nally, after all traders have submitted their shouts, the marketplace matches buyers and sellers

and then executes transactions. In the following, we start by introducing the basic notation of

our framework. Then we introduce the marketplaces’ charging strategies and the traders’ market

selection strategies respectively. Finally, we provide the definition of equilibrium strategies in

the context of our system.

3.1.1 Buyers and Sellers

We consider a set of buyers, B = {1, 2, ...B}, and a set of sellers, S = {1, 2, ...S }. Each buyer is

interested in purchasing one item, and each seller has one item for sale. All items are identical.

Each buyer and seller has a type, which is denoted as θb and θs respectively. The type of a buyer

denotes its limit price, i.e. the highest price it is willing to buy the item for, and the type of a

seller denotes its cost price, i.e. the lowest price it is willing to sell the item for (see Section

2.2). We assume that the types of all buyers are independently drawn from the same cumulative

distribution function Fb, with support [l, l̄], and the types of all sellers are independently drawn

from the same cumulative distribution function F s, with support [c, c̄]. The distributions Fb and

F s are assumed to be common knowledge and differentiable. The probability density functions

are f b and f s respectively. However, the type of each specific trader is not known to the other

traders or the marketplaces. In addition, we assume that there is a set of competing marketplaces

M = {1, 2, ...M}, that offer places for trade and provide a centralised matching service between

the buyers and sellers.

3.1.2 Marketplaces and Fees

Since we consider marketplaces to be commercial enterprises that seek to make a profit, we

assume that they charge fees for their service as match makers. Recall that in Section 1.1, we

introduced two types of fees which are common in the real-world marketplaces: ex ante fees,

which are charged to traders before they make transactions (e.g. the listing fees adopted by

eBay), and ex post fees, which are charged to traders after they successfully make transactions

(e.g. the final fees adopted by eBay and Amazon). In this analysis, we consider registration and

profit fees which are typical examples of such fees. In more detail, we define a fee structure

of a marketplace m to be the tuple pm = (rm, qm) ∈ P, rm ≥ 0 and qm ∈ [0, 1], where rm is a

1This means that we consider a one-shot game. The competition between multiple double auctions is usually
regarded as a repeated game. However, the analysis on this game is very complicated, and currently there is no
existing work or models we can build upon. Therefore, in this thesis, we look at a one-shot game. In the future
work, we would like to extend the analysis to the repeated game. However, we note that the repeated game consists
of single one-shot games, and any sequence of one-shot game Nash equilibria is a subgame-perfect equilibrium of
the repeated game (Fudenberg and Tirole, 1991). Therefore, insights from analysing the one-shot game will be also
useful for designing a competing double auction marketplace.
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fixed registration fee charged to a trader when it enters the marketplace, qm is the percentage

fee charged on the trader’s profit, which is the difference between the trader’s shout and the

transaction price, and in the following, we refer to such a fee as a profit fee, and P is the set of

all allowable fee structures. Then the fee structures of all competing marketplaces constitute a

fee system P̄ = 〈p1, p2, ...pM〉 ∈ P
M, where PM is the set of all allowable fee systems. Now we

describe how a marketplace will set its fee structure. In this work, we consider a mixed charging

strategy, where each fee structure is selected with some probability. A pure strategy can be

regarded as a degenerate case of a mixed strategy, where the particular pure strategy is selected

with probability 1 and every other strategy with probability 0. Now, a mixed charging strategy of

marketplace m is defined as µm : P → [0, 1], which means that the probability that marketplace

m sets fee structure pm is µm(pm), where
∑

pm∈P µm(pm) = 1. We use µ̄ = 〈µ1(·), ...µM(·)〉

to represent the charging strategy profile of all marketplaces. In addition, we use µ−m(·) to

represent the charging strategy profile of all marketplaces except for marketplace m. Then we

can rewrite µ̄ as µ̄ = 〈µm(·), µ−m(·)〉.

Finally, we use the k-pricing policy to determine the transaction price of a matched buyer and

seller (see Section 2.3.2.2), where the transaction price of a successful interaction in marketplace

m is determined by a pricing parameter km ∈ [0, 1], which sets the transaction price of a matched

buyer and seller at the point determined by km in the interval between their shouts. For example,

when a bid db is matched with an ask ds in marketplace m, the transaction price is

TP = km ∗ ds + (1 − km) ∗ db (3.1)

The pricing parameters of all marketplaces constitute the pricing system K̄ = 〈k1, k2, ..., kM〉
2.

3.1.3 Traders’ Market Selection Strategies

After describing the charging strategies of the marketplaces, we now introduce the traders’

market selection strategies. We assume that each trader has a mixed market selection strat-

egy, whereby each marketplace is selected with some probability. Furthermore, since the fees

are determined before the traders choose their marketplaces, the strategy is a function of the

fee system. Specifically, a mixed market selection strategy of buyer i is defined as a func-

tion ωb
i : [l, l̄] × M × PM → [0, 1], where ωb

i (θb,m, P̄) denotes the probability that buyer

i with type θb ∈ [l, l̄] chooses the marketplace m ∈ M given the fee system P̄, satisfying∑
m∈M ωb

i (θb,m, P̄) ≤ 1. Here, 1 −
∑

m∈M ωb
i (θb,m, P̄) is the probability that buyer i with type

θb chooses no marketplace. This happens when buyer i finds it has a negative expected profit in

each marketplace. We use ω̄b(P̄) = 〈ωb
1(·, P̄), ..., ωb

B(·, P̄)〉 to represent the strategy profile of all

buyers in the fee system P̄. In addition, we use ωb
−i(·, P̄) to represent the strategy profile of all

buyers except i. Then ω̄b(P̄) can be rewritten as ω̄b(P̄) = 〈ωb
i (·, P̄), ωb

−i(·, P̄)〉. Similarly, we use

ωs
j : [c, c̄] ×M × P̄ → [0, 1] to define the probability of selecting a marketplace of seller j and

2In this work we use a fixed pricing policy and so it does not form part of the strategy of a marketplace, but the
framework can be easily extended to include this as part of the strategy as well.



64 Chapter 3 Analysis of Competing Marketplaces with Discrete Trader Types

use ω̄s(P̄) = 〈ωs
1(·, P̄), ..., ωs

S (·, P̄)〉 to represent the strategy profile of all sellers in the fee system

P̄, and rewrite it as ω̄s(P̄) = 〈ωs
j(·, P̄), ωs

− j(·, P̄)〉.

3.1.4 Definition of Equilibrium Strategies for Selecting a Marketplace and Set-
ting Fees

Before we can analyse how traders actually select marketplaces and how competing market-

places set fees (which we discuss in Section 3.2 and 3.3 respectively), we first need to specify

the expected utility functions for traders and marketplaces, and define an appropriate solution

concept in the context of competing marketplaces.

To this end, we first describe a buyer’s expected utility equation for a given fee system P̄. A

seller’s expected utility can be given analogously. Given a buyers’ strategy profile ω̄b(P̄) and a

sellers’ strategy profile ω̄s(P̄) in the fee system P̄, the expected utility of a buyer i with type θb

in the fee system P̄ and pricing system K̄ is defined by:

Ũb
i (P̄, K̄, ω̄b(P̄), ω̄s(P̄), θb) =

M∑
m=1

ωb
i (θb,m, P̄) × Ũb

i,m(P̄, K̄, ω̄b(P̄), ω̄s(P̄), θb) (3.2)

where Ũb
i,m(P̄, K̄, ω̄b(P̄), ω̄s(P̄), θb) is buyer i’s expected utility if it chooses to trade in market-

place m.

Furthermore, marketplace m’s expected utility given a charging strategy profile µ̄, pricing pa-

rameter km and traders’ market selection strategy profiles ω̄b(·) and ω̄s(·), is as follows:

Ũm(µ̄) =
∑

P̄∈PM

µ(P̄) ∗ Ũm(P̄, km, ω̄
b(P̄), ω̄s(P̄)) (3.3)

where µ(P̄) =
∏

m∈M µm(pm) is the probability that fee system P̄ = 〈p1, ..., pM〉 is selected, and

Ũm(P̄, km, ω̄
b(P̄), ω̄s(P̄)) is marketplace m’s expected utility given fee system P̄. Note that both

the buyer’s expected utility in marketplace m, Ũb
i,m(P̄, K̄, ω̄b(P̄), ω̄s(P̄), θb), and marketplace m’s

expected utility, Ũm(P̄, km, ω̄
b(P̄), ω̄s(P̄)), depend on the specific bidding strategies adopted by

traders and the matching policy adopted by marketplace m. We will detail them in Section 3.2.1

and 3.3.2.2 respectively where we consider a particular market setting.

After providing general forms for the traders and the marketplaces’ expected utilities, we are

now ready to define the equilibrium strategies for traders and marketplaces in our system. Since

we consider a game with incomplete information about traders’ types, the Bayes-Nash equilib-

rium (BNE) solution concept (see Section 2.1), in which each player’s strategy maximises its

expected utility given other players’ strategies, is the most appropriate to define this equilibrium

behaviour. Here, we define equilibrium strategies of both traders and marketplaces as a whole,

since in our system, traders’ market selection strategies and marketplaces’ charging strategies

affect each other. Formally, the mixed Bayes-Nash equilibrium in our setting is defined as:
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Definition Given pricing system K̄, a charging strategy profile µ̄∗ and market selection strategy

profiles ω̄b∗(·) and ω̄s∗(·) constitute a mixed Bayes-Nash equilibrium, if:

∀i ∈ B,∀θb ∈ [l, l̄],∀P̄ ∈ PM,∀ωb
i (·, P̄) ∈ ∆T :

Ũb
i (P̄, K̄, 〈ωb∗

i (·, P̄), ωb∗
−i(·, P̄)〉, ω̄s∗(P̄), θb) ≥ Ũb

i (P̄, K̄, 〈ωb
i (·, P̄), ωb∗

−i(·, P̄)〉, ω̄s∗(P̄), θb);

i.e. each buyer’s strategy is a best response to other traders’ strategies for each possible fee system.

and ∀ j ∈ S,∀θs ∈ [c, c̄],∀P̄ ∈ PM,∀ωs
j(·, P̄) ∈ ∆T :

Ũ s
j(P̄, K̄, ω̄

b∗(P̄), 〈ωs∗
j (·, P̄), ωs∗

− j(·, P̄)〉, θs) ≥ Ũ s
j(P̄, K̄, ω̄

b∗(P̄), 〈ωs
j(·, P̄), ωs∗

− j(·, P̄)〉, θs);

i.e. each seller’s strategy is a best response to other traders’ strategies for each possible fee system.

and ∀m ∈ M,∀µm(·) ∈ ∆M :

Ũm(〈µ∗m(·), µ∗−m(·)〉) ≥ Ũm(〈µm(·), µ∗−m(·)〉)

i.e. each marketplace’s charging strategy is a best response to other marketplaces’ charging strategies.

where ∆T is the set of all possible (mixed) market selection strategies and ∆M is the set of all

possible (mixed) charging strategies.

Given the equilibrium definition, in what follows, we will analyse the both the traders’ equi-

librium market selection strategies (in Section 3.2) and the marketplaces’ equilibrium charging

strategies (in Section 3.3).

3.2 Equilibrium Analysis of the Market Selection Strategies

After describing the framework for analysing competing double auction marketplaces, we now

use this to analyse the equilibrium strategies of market selection for the trading agents. Before

doing this, however, we first need to specify the bidding strategies adopted by the traders and

the matching policies adopted by the marketplaces. In this analysis, we make a simplifying

assumption that traders use a truth-telling bidding strategy, which means that they will submit

their types as their shouts during the trading process3. For the matching policy, we consider the

equilibrium matching policy (see Section 2.3.2.2) since this aims to maximise traders’ profits

and thus maximises the allocative efficiency for the marketplace. Given the specific bidding

strategy and matching policy, in the following, we will derive traders’ expected utilities in this

setting, and then game-theoretically and dynamically analyse traders’ equilibrium strategies of

market selection for a given fee system. We are interested in calculating the symmetric Bayes-

Nash equilibria (BNEs), as is common in game theory for settings with incomplete information,

3As we said in Section 1.2, deriving the traders’ equilibrium bidding strategies in double auctions is a challeng-
ing problem. Furthermore, in this chapter, we want to focus the relationship between marketplaces’ fees and traders’
market selection. Therefore, here we consider a simple bidding strategy, which can be easily mathematically repre-
sented, to simplify the analysis. While the bidding strategies can affect traders’ expected profits, and in turn affect
their market selection, the analysis based on this bidding strategy will still provide us valuable insights about the re-
lationship between marketplaces’ fees and traders’ market selection strategies. In Chapter 4, we will analyse traders’
equilibrium bidding strategies by using fictitious play.
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and so we can assume that (in equilibrium) traders with the same type will employ the same

strategy. Thus in the following equations, we omit the indexes i and j when referring to specific

buyers and sellers, and we add the convention that the market selection strategy profile consists

of the market selection strategy of each type, instead of each trader.

3.2.1 A Trader’s Expected Utility

In what follows, we derive the expected utility of a buyer with type θb in the fee system P̄

given the market selection strategy profiles of buyers and sellers, ω̄b(P̄) and ω̄s(P̄). The seller’s

expected utility is calculated analogously. According to Equation 3.2, we need to calculate

the trader’s expected utility in each marketplace m. Intuitively, the trader’s expected utility in

marketplace m not only depends on its own type, but also on the number and types of other

traders choosing this marketplace. While Fb and F s are the overall type distribution functions

of buyers and sellers respectively, the distribution of types within an individual marketplace can

differ depending on which types choose what marketplace. We refer to the type distribution of

a specific marketplace m as the local type distribution, which is also a cumulative distribution

function. This is derived as follows. For a given fee system P̄ and market selection strategy

ωb(·), the probability that the type of a buyer is less than θb in marketplace m is:

Hb
m(θb|P̄) =

∫ θb

l
f b(x) ∗ ωb(x,m, P̄)dx (3.4)

We can see that the prior probability that a buyer (irrespective of its type) will choose market-

place m is given by Hb
m(l̄|P̄). Note that the above function is not a proper local type distribution

function because the function range may be smaller than 1. Then, to obtain a proper local type

distribution function of buyers in marketplace m, we need to normalise the above equation:

Gb
m(θb|P̄) =

Hb
m(θb|P̄)

Hb
m(l̄|P̄)

(3.5)

This is also called the local type distribution. Furthermore, the local probability density function

of buyer types is:

gb
m(θb|P̄) =

f b(θb) ∗ ωb(x,m, P̄)
Hb

m(l̄|P̄)
(3.6)

The equations of the sellers can be derived in the same way.

Recall that, in addition to the types of traders, the expected utility also depends on the (expected)

number of traders choosing this marketplace. To this end, we calculate the probabilities that

there are exactly τb other buyers (excluding the buyer for which we are calculating the expected

utility) and τs sellers choosing marketplace m, which are given by the binomial distributions:

ρb
m(τb) =

(
B − 1
τb

)
∗
(
Hb

m(l̄|P̄)
)τb

∗
(
1 − Hb

m(l̄|P̄)
)B−1−τb

(3.7)
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ρs
m(τs) =

(
S
τs

)
∗
(
Hs

m(c̄|P̄)
)τs

∗
(
1 − Hs

m(c̄|P̄)
)S−τs

(3.8)

We now proceed to calculate the buyer’s expected utility, which is affected by the matching pol-

icy of marketplaces. To this end, recall that in the equilibrium matching policy, the marketplace

matches the buyer with the v-th highest limit price with the seller with the v-th lowest cost price.

We then calculate the probability that the buyer’s type θb is at a certain position. Specifically,

for given fee system P̄, when τb + 1 buyers choose marketplace m, the probability that the buyer

with type θb is the v-th (v = 1, ..., τb + 1) highest is given by:

Prb
m(v|θb, P̄) =

(
τb

v − 1

)
∗
(
1 −Gb

m(θb|P̄)
)v−1
∗
(
Gb

m(θb|P̄)
)τb+1−v

(3.9)

Similarly, the probability that the seller’s type θs is the v-th (v = 1, ..., τs) lowest among τs sellers

in marketplace m is given by:

Prs
m(v|θs, P̄) =

(
τs − 1
v − 1

)
∗
(
Gs

m(θs|P̄)
)v−1
∗
(
1 −Gs

m(θs|P̄)
)τs−v

(3.10)

Furthermore, the prior probability that a seller is the v-th lowest is given by:

Prs(v|P̄) =
∫ c̄

c
Prs

m(v|θs, P̄) ∗ gs
m(θs|P̄)dθs (3.11)

Now using Bayes’ theorem, we can calculate the probability density function of a seller at

position v:

gs
m(θs|v, P̄) =

Prs
m(v|θs, P̄) ∗ gs

m(θs|P̄)
Prs(v|P̄)

(3.12)

At this moment, we can get the buyer’s expected gross profit (without taking into account any
fees that the buyer pays to the marketplace) in marketplace m with strategy profiles of buyers
and sellers, ω̄b(P̄), ω̄s(P̄):

Λ̃b
m(P̄, K̄, ω̄b(P̄), ω̄s(P̄), θb) =

B−1∑
τb=0

ρb
m(τb)∗

τb+1∑
v=1

Prb
m(v|θb, P̄)∗

( S∑
τs=v

ρs
m(τs)∗

∫ θb

θs=c
km∗(θb−θs)∗gs

m(θs|v, P̄)dθs
)

(3.13)

where θb − θs is called the trading surplus, and km ∗ (θb − θs) is the share of the buyer’s surplus,

which is determined by the pricing parameter km. By also considering the registration fee and

profit fee from marketplace m, a buyer’s expected utility in this marketplace becomes:

Ũb
m(P̄, K̄, ω̄b(P̄), ω̄s(P̄), θb) = Λ̃b

m(P̄, K̄, ω̄b(P̄), ω̄s(P̄), θb) ∗ (1 − qm) − rm (3.14)

The above equation gives the expected utility of the buyer in a particular marketplace. Therefore,

a buyer’s expected utility over all marketplaces in the fee system P̄ is:

Ũb(P̄, K̄, ω̄b(P̄), ω̄s(P̄), θb) =
M∑

m=1

ωb(θb,m, P̄) ∗ Ũb
m(P̄, K̄, ω̄b(P̄), ω̄s(P̄), θb) (3.15)
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After deriving traders’ expected utilities, in the next section, we will game theoretically analyse

the equilibrium market selection strategies for traders.

3.2.2 A Game-Theoretic Analysis of Market Selection Strategies

In this section, we analytically derive the traders’ equilibrium market selection strategies for a

given fee system P̄ = 〈p1, ..., pM〉 (i.e. each marketplace m ∈ M sets the fee structure pm with

100% probability (µm(pm) = 1)). As we said before, we focus on the symmetric BNE which

means that traders with the same type will adopt the same strategy in equilibrium. Furthermore,

in order to get insights from this complicated game with more traders and more types while

allowing for tractable results, we initially make several simplifying assumptions (specified be-

low). In the next section, we will use evolutionary game theory to computationally determine

the equilibrium which will allow us to relax some of these assumptions.

Specifically, we make the following assumptions. First of all, we consider the competition

between two marketplaces, i.e. M = 2 (this is consistent with the previous theoretical work

introduced in Section 2.4. However, in Section 3.2.3.4, we discuss the setting with more than

two competing marketplaces), and we restrict our analysis to two buyers and two sellers, i.e.

B = S = 2, (although we will relax this in Subsection 3.2.3 and Section 3.3). In addition, we

restrict our analysis to discrete trader types. In particular, we assume that there are two types of

buyers and two types of sellers: rich and poor, which are denoted by tb
2 and tb

1 respectively for

buyers, and ts
1 and ts

2 for sellers. A rich buyer is defined as having a higher limit price than a poor

buyer, i.e. tb
2 > tb

1, and a rich seller is defined as having a lower cost price than a poor seller, i.e.

ts
1 < ts

2. Trader types are independently drawn from the discrete uniform distribution (i.e. both

types are equally likely). In Chapter 4, we will extend this analysis by considering continuous

trader types. Furthermore, we only consider profit fees at this stage (i.e. r1 = r2 = 0). This

simplifies the analysis since traders always have non-negative profits when participating, and

they will always choose one of the marketplaces. In this way we can reduce the strategy space

since ωb(θb, 1, P̄) = 1 − ωb(θb, 2, P̄), and similar for sellers. We will extend our analysis to

registration fees in Subsection 3.2.3 and Section 3.3.

Given these assumptions, we now investigate the traders’ market selection equilibrium be-

haviour. Intuitively, we can see that all traders selecting one marketplace constitutes a pure

strategy BNE, since given all other traders selecting one marketplace, the best response of a

trader is also to select this marketplace (otherwise they will have nobody to trade with). In

addition to the pure strategy BNEs, we are also interested in the mixed symmetric BNE of the

traders’ market selection strategies since we would like to know whether two competing mar-

ketplaces can co-exist. Previously, note that we derived a trader’s expected utility considering

continuous trader types (see Equation 3.15). Now we need to adapt this equation to discrete

trader types. However, since this is straightforward, we will not show it in detail. As we know,

in the mixed Nash equilibrium, a player should be indifferent between choosing each of the pure

strategies that form part of the mixed strategy, i.e. its expected utility for each of these pure
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strategies should be the same (Osborne and Rubinstein, 1994). Since in our setting each trader

has only two pure strategies, i.e. choosing marketplace 1 or 2, in any non-pure Nash equilibrium

the traders should be indifferent between these choices. Thus we get the following equations to

calculate the mixed BNE (one for each type of buyers and sellers):

Ũb
1(P̄, K̄, ω̄b(P̄), ω̄s(P̄), tb

2) = Ũb
2(P̄, K̄, ω̄b(P̄), ω̄s(P̄), tb

2) (3.16)

Ũb
1(P̄, K̄, ω̄b(P̄), ω̄s(P̄), tb

1) = Ũb
2(P̄, K̄, ω̄b(P̄), ω̄s(P̄), tb

1) (3.17)

Ũ s
1(P̄, K̄, ω̄b(P̄), ω̄s(P̄), ts

1) = Ũ s
2(P̄, K̄, ω̄b(P̄), ω̄s(P̄), ts

1) (3.18)

Ũ s
1(P̄, K̄, ω̄b(P̄), ω̄s(P̄), ts

2) = Ũ s
2(P̄, K̄, ω̄b(P̄), ω̄s(P̄), ts

2) (3.19)

If the solution is in the range [0, 1], then this constitutes a mixed symmetric BNE.

By expanding the above equations (see Appendix A), we find that the solution such that

ωb(tb
1, 1, P̄) = ωb(tb

2, 1, P̄) (3.20)

and

ωs(ts
1, 1, P̄) = ωs(ts

2, 1, P̄) (3.21)

always exists. This means that there always exists a mixed BNE whereby buyers adopt the

same mixed strategy no matter whether they are rich or poor, and the same for sellers. In the

following, we analyse this solution in more detail to better understand the traders’ equilibrium

behaviour.

To this end, we first rewrite Equations 3.16-3.19 as the following two equations:[
2 ∗ ωs(ts

1, 1, P̄) −
(
ωs(ts

1, 1, P̄)
)2
− ωb(tb

1, 1, P̄) ∗ ωs(ts
1, 1, P̄) + ωb(tb

1, 1, P̄) ∗
(
ωs(ts

1, 1, P̄)
)2
]
∗k1 ∗ (1 − q1)

=

[
1 − ωs(ts

1, 1, P̄) + ωb(tb
1, 1, P̄) ∗ ωs(ts

1, 1, P̄) − ωb(tb
1, 1, P̄) ∗

(
ωs(ts

1, 1, P̄)
)2
]
∗k2 ∗ (1 − q2) (3.22)[

2 ∗ ωb(tb
1, 1, P̄) −

(
ωb(tb

1, 1, P̄)
)2
− ωb(tb

1, 1, P̄) ∗ ωs(ts
1, 1, P̄) + ωs(ts

1, 1, P̄) ∗
(
ωb(tb

1, 1, P̄)
)2
]
∗(1 − k1) ∗ (1 − q1)

=

[
1 − ωb(tb

1, 1, P̄) + ωb(tb
1, 1, P̄) ∗ ωs(ts

1, 1, P̄) − ωs(ts
1, 1, P̄) ∗

(
ωb(tb

1, 1, P̄)
)2
]
∗(1 − k2) ∗ (1 − q2) (3.23)

Note that the solution for the above two equations depends on how both marketplaces set pricing

parameters k1 and k2, and how they charge profit fees q1 and q2. Now we analyse how these

two factors affect the mixed BNEs respectively. Firstly, we assume that both marketplaces

charge the same profit fee (from Equations 3.22 and 3.23, we can see that when q1 = q2, they

can be cancelled from both left- and right-hand sides of equations), but have different pricing

parameters. Then the resulting mixed BNEs are shown in Figure 3.1(a), from which we find that

when the marketplace sets a high value for the pricing parameter, i.e. allocates more profits to

buyers and thus less to sellers, buyers have a higher probability of choosing this marketplace,

and sellers have a lower probability of choosing it. In this situation, buyers(sellers) have the

same expected utility in marketplaces 1 and 2, and thus a mixed BNE is constituted. Then we

consider the case where both marketplaces have the same pricing parameter (when k1 = k2, they
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k1 k2

(a) The mixed BNE strategy of traders when both marketplaces
charge the same profit fee, but have different pricing parameters.
k1 is the pricing parameter of marketplace 1 and k2 is the pricing
parameter of marketplace 2.

q1 q2

(b) The mixed BNE strategy of traders when both marketplaces
have the same pricing parameter, but charge different profit fees.
q1 is the profit fee of marketplace 1 and q2 is the profit fee of
marketplace 2.

FIGURE 3.1: The mixed BNE strategy of traders.

can be cancelled in equations), but charge different profit fees. In this situation, by analysing

Equations 3.22 and 3.23, we can see that all traders have the same market selection strategy.

The results are shown in Figure 3.1(b). Counter-intuitively, we find that, in equilibrium, traders

have a higher probability of choosing marketplace 1 when it charges a higher profit fee. This is

because when buyers have beliefs that sellers have a higher probability of choosing marketplace

1, then they will prefer to choose marketplace 1 even though it charges a higher fee, and they

still have the same expected utility in marketplaces 1 and 2. Mutatis mutandis for sellers. This

implies that it is possible for the competing marketplace to charge a higher fee to make more

profits while still maintaining market share at a good level. In the following section, we will

analyse this phenomenon in more detail.

3.2.3 An Evolutionary Analysis of Market Selection Strategies

In the above, we game-theoretically analysed the traders’ equilibrium behaviour with regards to

market selection strategies and showed that there exist at least three BNEs: all traders choosing

marketplace 1 or 2 and the mixed BNE. As we discussed in Section 2.1.1, such equilibria only

provide a static explanation for why populations playing BNE strategies remain in that state

since each population makes a best response to the other populations’ strategies. Therefore, this

solution concept fails to indicate whether the BNE can be reached and which of these equilibria

is most likely to be converged to. To overcome this and to analyse settings with more than 2

buyers and 2 sellers, in what follows, we use evolutionary game theory (EGT) to analyse this

game, which focuses on the dynamic change of strategies rather than the static properties of

Nash equilibria (see Section 2.1.1). In EGT, players gradually adjust their strategies over time

in response to the repeated observation of their opponents’ strategies4. In the following, we first
4Note that, although this process is a repeated learning process, the game itself is not a repeated game, but a

one-shot game. We just use such a repeated learning process to analyse how traders learn to change their strategies,
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describe the replicator dynamics equations used in our analysis, which capture the dynamics of

traders’ market selection strategies, and then give the evolutionary analysis in detail.

3.2.3.1 Replicator Dynamics

In EGT, the replicator dynamics equation is often used to specify the dynamic adjustment of
the probability of which pure strategy should be played (see Section 2.1.1). In our work, we
consider 4 different types of traders (rich buyers, poor buyers, rich sellers and poor sellers). In
order to allow different types of traders to converge to different equilibrium strategies, we use
a different population to evolve the strategy of each type. Therefore first we introduce the 4-
population replicator dynamics equations which show the dynamic changes of traders’ market
selection strategies with respect to time t:

ω̇b(tb
1,m, P̄) =

dωb(tb
1,m, P̄)
dt

=
(
Ũb

m(P̄, K̄, ω̄b(P̄), ω̄s(P̄), tb
1) − Ũb(P̄, K̄, ω̄b(P̄), ω̄s(P̄), tb

1)
)
∗ ωb(tb

1,m, P̄) (3.22)

ω̇b(tb
2,m, P̄) =

dωb(tb
2,m, P̄)
dt

=
(
Ũb

m(P̄, K̄, ω̄b(P̄), ω̄s(P̄), tb
2) − Ũb(P̄, K̄, ω̄b(P̄), ω̄s(P̄), tb

2)
)
∗ ωb(tb

2,m, P̄) (3.23)

ω̇s(ts
1,m, P̄) =

dωs(ts
1,m, P̄)
dt

=
(
Ũ s

m(P̄, K̄, ω̄b(P̄), ω̄s(P̄), ts
1) − Ũ s(P̄, K̄, ω̄b(P̄), ω̄s(P̄), ts

1)
)
∗ ωs(ts

1,m, P̄) (3.24)

ω̇s(ts
2,m, P̄) =

dωs(ts
2,m, P̄)
dt

=
(
Ũ s

m(P̄, K̄, ω̄b(P̄), ω̄s(P̄), ts
2) − Ũ s(P̄, K̄, ω̄b(P̄), ω̄s(P̄), ts

2)
)
∗ ωs(ts

2,m, P̄) (3.25)

Note that the 4 populations interact through the utility functions, which depend on the strategies

of other trader types. As an example, ω̇b(tb
1,m, P̄) describes how the poor buyer with type tb

1

changes its probability of choosing marketplace m in the fee system P̄. Here, Ũb
m(P̄, K̄, ω̄b(P̄),

ω̄s(P̄), tb
1) is the poor buyer’s expected utility when choosing marketplace m given market se-

lection strategy profiles ω̄b(P̄) and ω̄s(P̄), and Ũb(P̄, K̄, ω̄b(P̄), ω̄s(P̄), tb
1) is the poor buyer’s

overall expected utility (see Subsection 3.2.1). In order to get the dynamics of the strate-

gies, we need to calculate trajectories, which indicate how the mixed strategies evolve. In

more detail, initially, a mixed strategy is chosen as a starting point (in our results, we ex-

periment with a large number of points). In the following, we denote a starting point by(
ωb(tb

2, 1, P̄), ωb(tb
1, 1, P̄), ωs(ts

1, 1, P̄), ωs(ts
2, 1, P̄)

)
. The dynamics are then calculated according

to the above replicator equations. According to the dynamic changes of traders’ strategies, their

current mixed strategies can be calculated. Such calculations are repeated until ω̇b(·) and ω̇s(·)

become zero, at which point the equilibrium is reached. When considering traders evolving from

all possible starting points, we get several regions. The region from which all trajectories con-

verge to a particular equilibrium is called the basin of attraction of this equilibrium. The basin

is very useful since given the assumption that each starting point is selected by traders with an

equal probability, its size can be used as an indicator of the probability of traders converging to

and thus, which equilibrium, if any, can be reached.
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(t)
BNE 2

BNE 1

mixed BNE

(a) Equilibrium behaviour of 2 buyers and 2 sellers with three
chosen starting points.

(t)
BNE 2

BNE 1

mixed BNE

(b) Equilibrium behaviour of 2 buyers and 2 sellers with start-
ing points around (0.5, 0.5, 0.5 0.5).

FIGURE 3.2: Equilibrium behaviour of 2 buyers and 2 sellers in the setting with 2 identical
marketplaces when q1 = q2 = 10% and r1 = r2 = 0.

that equilibrium. However, we should note that replicator dynamics equations are only used to

find which equilibrium traders are likely to converge to, and they do not show the realistic way

that traders select marketplaces.

3.2.3.2 Experimental Results

After providing replicator dynamics equations, we now analyse how traders dynamically evolve

their market selection strategies to converge to the equilibrium.

4-population with two identical marketplaces:

Firstly, we analyse the general cases with four different populations (rich buyers, poor buyers,

rich sellers and poor sellers). For illustrative purposes, we assign the traders’ types as follows:

tb
1 = 4, tb

2 = 8, ts
1 = 0 and ts

2 = 3.5 At this stage, we assume that both marketplaces only charge

profit fees. We first consider the case where the two competing marketplaces are identical.

Specifically, we consider k1 = k2 = 0.5 and q1 = q2 = 10% as an example. According to

Equations 3.22 and 3.23, we know that (0.5, 0.5, 0.5, 0.5) is a mixed BNE. We now show

the evolutionary results of two representative starting points (0.6, 0.4, 0.7, 0.2), (0.1, 0.8, 0.3,

0.9) and a specific starting point (0.5, 0.5, 0.5, 0.5) in Figure 3.2(a). The x-axis is the time at

which the mixed strategies evolve, the points at t = 0 correspond to the starting points, from

which traders evolve their strategies. As can be seen, traders eventually converge to BNE 1 (i.e.

marketplace 1) or BNE 2 (i.e. marketplace 2) except that when starting at the mixed BNE, traders

will stay at the mixed BNE. Furthermore, we analyse the area of the starting points around the

equilibrium (0.5, 0.5, 0.5, 0.5) and find that these do not converge to (0.5, 0.5, 0.5, 0.5). This is

described in Figure 3.2(b), which shows the evolutionary results when starting points are chosen

from 0.499 to 0.501 with step size 0.0005. Therefore, we can conclude that even though (0.5,

0.5, 0.5, 0.5) is a mixed BNE, it is a saddle point where no trajectories converge, and is unlikely

to be reached.

5Other type values can be chosen. However, our experiment analysis confirms that the conclusions are similar.
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(t)
BNE 2

BNE 1

mixed BNE

(a) Equilibrium behaviour of 2 buyers and 2 sellers with three
chosen starting points.

(t)
BNE 2

BNE 1

mixed BNE

(b) Equilibrium behaviour of 2 buyers and 2 sellers with start-
ing points around (0.3679, 0.3679, 0.3994, 0.3994).

FIGURE 3.3: Equilibrium behaviour of 2 buyers and 2 sellers in the setting with 2 different
marketplaces when q1 = 20%, q2 = 40% and r1 = r2 = 0.

4-population with two different marketplaces:

Now we consider the traders’ evolved strategies when fees and pricing parameters are different

across marketplaces. As an example, we let k1 = 0.48, k2 = 0.51, q1 = 20% and q2 = 40%. By

solving Equations 3.22 and 3.23, we find one mixed BNE at (0.3679, 0.3679, 0.3994, 0.3994).

Then we show the evolutionary results of two representative starting points (0.2, 0.4, 0.3, 0.1),

(0.7, 0.9, 0.8, 0.6), and the specific starting point (0.3679, 0.3679, 0.3994, 0.3994) in Figure

3.3(a) and the evolutionary results with starting points around the equilibrium (0.3679, 0.3679,

0.3994, 0.3994) in Figure 3.3(b). We still find that traders finally converge to either marketplace

1 or 2, and the mixed BNE is unlikely to occur. Furthermore, we also ran experiments from a

large number of starting points, and still find that traders eventually converge to one marketplace

in equilibrium.

2-population:

In the above, we have analysed the dynamics of traders’ market selection strategies with 4

populations. However, in these cases, it is difficult to clearly visualise how traders evolve to

converge to the equilibrium when considering a variety of starting points. Therefore, in order

to be able to further illustrate the dynamics of EGT when traders evolve from various starting

points, we run all next sets of experiments by assuming that rich buyers and rich sellers have

the same behaviour, and poor buyers and poor sellers have the same behaviour. In order to

reasonably make this assumption, rich(poor) buyers and rich(poor) sellers should be treated

equally by marketplaces. Thus, we assume pricing parameter km = 0.5, i.e. the transaction

price is set in the middle of shouts of the matched buyers and sellers, which means that the

marketplaces have no bias in favor of buyers or sellers when allocating surpluses. Furthermore,

we assume that surpluses of buyers and sellers are symmetric and, as an example, we let tb
1 = 4,

tb
2 = 6, ts

1 = 0 and ts
2 = 2. Based on these assumptions, in the following experiments, Equations

3.22 and 3.25 are equivalent, as are Equations 3.23 and 3.24. By so doing, we reduce the 4-

population replicator dynamics to 2-population, and can visualise traders’ dynamics of market

selection strategies in 2-dimensional graphs.
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BNE 2

BNE 1

(0.4090, 0.4090)

FIGURE 3.4: Evolutionary process of market selection strategies with 2 buyers and 2 sellers
when q1 = 50%, q2 = 60% and r1 = r2 = 0. The dotted line denotes the boundary between the

basins of attractions.

2-population with 2 buyers and 2 sellers:

Firstly, we still consider 2 buyers and 2 sellers. We assume that marketplace 1 charges 50%

profit fee and marketplace 2 charges 60% profit fee. Then the mixed BNE satisfying Equations

3.20 and 3.21 is (0.4090, 0.4090). The evolutionary results are shown in Figure 3.4, where the

x-axis is the rich buyer(seller)’s probability of choosing marketplace 1, and the y-axis is the poor

buyer(seller)’s probability of choosing marketplace 1. We find that all traders either converge

to BNE 1 (i.e. marketplace 1) or BNE 2 (i.e. marketplace 2) in equilibrium depending on the

initial starting points, and no trajectory converges to (0.4090, 0.4090) (the solid circle in Figure

3.4), i.e. the mixed BNE is a saddle point. This indicates that the mixed BNE is hard to reach.

Furthermore, the figure also shows that the basin of attraction to BNE 1 is bigger, which means

that traders have a higher probability of converging to marketplace 1 since this marketplace

charges less than marketplace 2. From the results, we also find that two competing marketplaces

cannot co-exist in equilibrium. We then try various fee systems with different combinations of

profits fees charged by marketplaces, and still find that all traders converge to one marketplace

in equilibrium.

2-population with 5 buyers and 5 sellers:

Now, we extend the above analysis to the case with 5 buyers and 5 sellers (in the following

analysis, unless mentioned otherwise, we always assume that there are 5 buyers and 5 sellers).

The same as above, we still assume that both marketplaces only charge profit fees. For example,

we assume that marketplace 1 charges 20% profit fee and marketplace 2 charges 30% profit fee.

The dynamic results for different starting points are shown in Figure 3.5. We still find that all

traders eventually converge to one marketplace. By experimenting with various fee systems with

different combinations of profit fees, we still find that all traders converge to one marketplace

in equilibrium. We then extend our analysis to the case that both competing marketplaces only

charge registration fees, and still find that traders eventually converge to one marketplace in
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BNE 2

BNE 1

FIGURE 3.5: Evolutionary process of market selection strategies with 5 buyers and 5 sellers
when q1 = 20%, q2 = 30% and r1 = r2 = 0. The dotted line denotes the boundary between the

basins of attractions

equilibrium if they want to select a marketplace6. These show that in our framework, the positive

size effect has a larger impact than the negative size effect, which will cause traders to converge

to one marketplace in equilibrium.

2-population with different marketplaces charging different types of fees:

Then we consider the case that different types of fees are charged by competing marketplaces

(i.e. marketplace 1 charges profit fees, and marketplace 2 charges registration fees). In this case,

we find that for some fee systems (when the profit fee of marketplace 1 is higher than 10%,

and the registration fee of marketplace 2 is higher than 0.4), traders may converge to different

marketplaces in equilibrium when evolving from certain starting points. As an example, we

assume that marketplace 1 charges 50% profit fee and marketplace 2 charges 0.8 registration

fee. The results are shown in Figure 3.6. We found that, in this case, when traders evolve from

certain starting points, they will converge to BNE 3, where rich traders converge to marketplace

1 which charges a registration fee, and poor traders converge to marketplace 2 which charges a

profit fee. At this moment, two competing marketplaces co-exist. In contrast to Ellison et al.

(2004), where co-existence of competing marketplaces is caused by negative size effect, here

the co-existence is caused by the strong differentiation of competing marketplaces by setting

different types of fees. In more detail, rich traders prefer the marketplace charging a lump

sum fee since this fee is likely to be smaller than the absolute extracted profit obtained from

charging profit fees on a large transaction profit. However, poor traders prefer the marketplace

which charges a profit fee, since this can guarantee non-negative profits for them, and a high

registration fee may lead to negative profits.

6Note that when high registration fees are charged, eventually, poor traders (and rich traders) may not choose any
marketplace since high registration fees may cause negative profits for them.
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BNE 2

BNE 1BNE 3

FIGURE 3.6: Evolutionary process of market selection strategies with 5 buyers and 5 sellers
when q1 = 50%, q2 = 0, r1 = 0 and r2 = 0.8. The dotted line denotes the boundary between

the basins of attractions.

3.2.3.3 Lock-in Region

In the above analysis where both marketplaces charge profit fees, we find that when evolving

from certain starting points, traders may converge to BNE2 (i.e. marketplace 2, which is the

more expensive one). This is interesting since it means that the marketplace can charge higher

fees to make more profits but still keep traders (even if the size of the basin of attraction is

smaller when fees are relatively higher). In the following, we analyse this phenomenon in

detail. In doing so, we consider profit fees as an example (i.e. both marketplaces charge no

registration fees). Since EGT only works with a finite set of strategies, we discretize the profit

fees of the marketplaces. Specifically, we discretize the continuous profit fee from 0 and 1 with

a step size of 0.1 (it can also be discretized with other step sizes, such as 0.05). Furthermore,

in the following analysis, we still assume that there are 5 buyers, 5 sellers and 2 competing

marketplaces, and let tb
1 = 4, tb

2 = 6, ts
1 = 0, ts

2 = 2 and k1 = k2 = 0.5. Clearly, the traders’

evolution of their market selection strategies depends on two factors: the starting point and the

fees charged to them. We now choose a starting point (0.8, 0.7, 0.8, 0.7), where traders have

higher initial probabilities of choosing marketplace 1. Figure 3.7 then shows the results after

we evolve the traders’ market selection strategies in the competing marketplaces with different

profit fees. The red area is what we call the “lock-in region”, which shows when profit fees of

marketplace 1 and 2 are within this area, even though marketplace 1 charges a higher profit fee

than marketplace 2, traders still converge to marketplace 1. This result is interesting since at

this moment, the expensive marketplace can make more profits while still maintaining traders.

Note that when the profit fee of marketplace 2 is higher than 60%, marketplace 1 can no longer

maintain traders if its profit fee is higher than marketplace 2, i.e. the lock-in region disappears.

Furthermore, by running experiments, we also find the existence of the lock-in region when

both competing marketplaces charge registration fees, or charge different types of fees. Now

we can see that it is possible for traders to converge to the expensive marketplace if currently
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FIGURE 3.7: Lock-in region of marketplace 1 with 5 buyers and 5 sellers.

traders have higher probabilities of choosing this marketplace. This result gives useful insights

into a strategy for setting fees in competing marketplaces. Specifically, firstly, a marketplace

should lower its fees to attract or maintain traders. After obtaining an advantageous position,

the marketplace should then increase its fees higher than its opponents, while still keeping its

traders since traders still have higher expected utilities in the expensive marketplace. This so-

called bait-and-switch strategy has been adopted by a number of entrants in the CAT competition

(Niu et al., 2008a), where initially they charge lower and even no fees to attract traders, and

once they have built up a larger market share, they will charge fees to make profits, but still can

maintain market share at a good level. While such a strategy is quite intuitive and common in

many marketplaces, our analysis provides a more formal justification for it. Furthermore, we

can use the strategy as an indication of the level at which the fees should be set.

The effect of the number of traders on the lock-in region:

After obtaining the preliminary conclusion that it is possible for traders to stay in the expensive

market, we investigate what factors can affect the size of the lock-in region. In particular, we

investigate how the number of traders can affect the size of lock-in region. In the following, we

calculate the size of the lock-in region as the sum of the differences of the two marketplaces’

discretized profit fees in the lock-in region. For example, the size of the lock-in region in Figure

3.7 is 1.2.7 From Figure 3.8 we find that, as the number of traders in the competing market-

place environment increases, the size of the lock-in region decreases, which means traders will

increasingly select the cheap marketplace. The reason for this is as follows. The traders’ choice

of marketplaces is determined by their expected utilities, which, in turn, depend on two parts:

the gross profit and fees charged to them (see Equation 3.14). From Figure 3.9 we can see that,

as the number of traders in the multiple competing marketplaces environment increases, the dif-

ference of the traders’ gross profits in two marketplaces (i.e. Λb
1(·) − Λb

2(·), Λs
1(·) − Λs

2(·), see

7Since we consider discretized fees, the size of the lock-in region is defined as the sum of differences of the two
marketplaces’ discretized fees, which is: (0.3 − 0.0) + (0.3 − 0.1) + (0.4 − 0.2) + (0.5 − 0.3) + (0.5 − 0.4) + (0.6 −
0.5) + (0.7 − 0.6).
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FIGURE 3.8: The size of lock-in region with respect to the number of traders.
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FIGURE 3.9: Gross profit difference in two marketplaces with the mixed strategies of traders
(0.8, 0.7, 0.8, 0.7).

Equation 3.13) gradually decreases. This means that the gross profits of traders in two market-

places gradually become closer to each other. Then the traders’ choice of marketplace is mainly

determined by the market fees. Thus they will increasingly choose the cheap marketplace. This

indicates that, in a multiple competing marketplaces context with a large number of traders, it is

difficult for the marketplace to maintain both a high number of traders and high profits.

The effect of the trader types on the lock-in region:

Furthermore, intuitively, competing marketplaces want to attract traders of a rich type since

they are more likely to make transactions. Given this, we now analyse what happens when a

certain type of trader initially has a bias towards selecting a particular marketplace. First, we

consider the rich type’s effect on the lock-in region, where we fix the poor traders’ probabilities

of choosing marketplace 1 to be 0.5, and then change the strategies of the rich traders from

0.55 to 0.95 with step size 0.05. The results are shown in Figure 3.10. From this, we can see
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FIGURE 3.10: The size of lock-in region with respect to rich traders’ strategy with 5 buyers
and 5 sellers.

that, when rich traders have a higher initial probability of selecting marketplace 1, the size of the

lock-in region increases. This means that rich traders have a positive effect on the lock-in region.

In contrast, if we fix the rich traders’ probabilities of choosing marketplace 1 to be 0.5, and then

increase the poor traders’ probabilities of choosing marketplace 1 starting from 0.05, we find no

lock-in regions exist. This is because the surpluses were chosen such that poor traders can make

relatively good profits, which means they are not poor enough. Thus we reduce the poor traders’

surpluses to enhance their effect on the lock-in region. If we let tb
1 = 1, tb

2 = 8, ts
1 = 0 and ts

2 = 7,

we get the following result. When the poor traders’ probability of choosing market 1 is 0.1, the

lock-in region exists and its size is 0.1. When the probability increases to 0.2, the lock-in region

disappears. Thus we can see that poor traders have a negative effect on the size of the lock-in

region.

The effect of randomisation of market selection strategies on the lock-in region:

So far, we assumed that traders always evolve from their current market selection strategies.

Now we analyse how the lock-in region will be affected when some traders are able to explore

other marketplaces randomly. We do this because, first of all, traders usually have incomplete

information about other traders’ market selection decisions. Thus they need to explore and try

different marketplaces to obtain more information. For this reason, in the CAT competition,

traders have some probability of randomly selecting a marketplace to explore other market-

places. Secondly, in reality, not all traders are (fully) rational, i.e. they may not always choose

the cheapest marketplace. Thus we consider the case where some traders randomly select mar-

ketplaces. For example, when the randomisation probability is 10%, then traders will have

90% probability of using their current market selection strategies and 10% probability of se-

lecting each marketplace with equal probability to explore other marketplaces. For this setting,

we analyse how the probability of randomisation affects the size of lock-in region. Then the

relationship between the randomisation probability and the size of lock-in region is shown in

Figure 3.11. We find that when the probability of randomly selecting marketplaces increases,
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FIGURE 3.11: Relationship between the probability of randomly selecting marketplaces and
the size of lock-in region with 5 buyers and 5 sellers.

the size of lock-in region decreases. Furthermore, when the probability of randomly selecting

marketplaces is higher than 70%, the lock-in region disappears completely. This means that, as

exploration increases, it is more difficult for the competing marketplace to keep traders when

charging higher fees even though it initially has a larger market share. Thus in the environment

with traders having greater probabilities to explore to search for the cheaper marketplace, the

marketplace with a large market share has only a limited advantage.

3.2.3.4 Greater Numbers of Competing Marketplaces

So far we have analysed the market selection strategies of traders in the setting with two compet-

ing marketplaces. As stated previously, this analysis is in line with all previous theoretical work

which has focused on this canonical case, see Section 2.4.2.1. However, in the real world, it is

often the case that more than two marketplaces compete with one another to attract traders and

make profits. Now, intuitively, we expect that our results will carry over to this more complex

setting. Specifically, when multiple competing marketplaces only charge the same type of fees

(i.e. registration or profit fees), we expect that traders will still converge to one marketplace in

equilibrium. On the other hand, when multiple competing marketplaces charge different types

of fees (i.e. some marketplaces charge profit fees, and others charge registration fees), we be-

lieve that traders will either converge to only one marketplace, or only two marketplaces where

one charges a profit fee and the other charges a registration fee. To explore these hypotheses, we

ran experiments with larger numbers of marketplaces8. By so doing, we found that, consistent

with the previous analysis, when all marketplaces charge profit fees (or registration fees), traders

will converge to one of them in equilibrium9. Exactly which one depends on the initial starting

8We still assume that there are 5 buyers and 5 sellers, and let tb
1 = 4, tb

2 = 6, ts
1 = 0 and ts

2 = 2. For the pricing
parameters, we assume that k1 = k2 = 0.5.

9This means that multiple marketplaces cannot co-exist. This conclusion is different from what we observe in
practice. We believe that this is because in our model, different marketplaces adopt the same mechanism and have
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(t)

(a) Rich traders.

(t)

(b) Poor traders.

FIGURE 3.12: Evolutionary process of traders in the setting with 5 buyers, 5 sellers and 3
competing marketplaces when q1 = 10%, q2 = 20%, q3 = 30% and r1 = r2 = r3 = 0.

point and market fees. Moreover, consistent with the previous analysis, in such experiments,

we also found that traders may converge to the expensive marketplace in equilibrium when this

marketplace initially has a larger market share. For example, when there are three competing

marketplaces where marketplaces 1, 2 and 3 charge 10%, 20% and 30% profit fees respectively,

and initially rich traders choose marketplaces 1, 2 and 3 with probabilities 0.1, 0.2 and 0.7 re-

spectively, and poor traders choose marketplaces 1, 2 and 3 with probabilities 0.3, 0.2 and 0.5

respectively, the dynamic changes of traders’ probabilities of choosing marketplaces are shown

in Figure 3.12. From the evolutionary results, we can see that eventually traders choose one

marketplace with 100% probability, i.e. converge to one marketplace. Specifically, in this case,

traders converge to marketplace 3 which is the most expensive since initially this marketplace

has a larger market share. Furthermore, when some of them charge registration fees and others

charge profit fees, we found that traders either converge to one marketplace in equilibrium or the

rich traders converge to the marketplace which charges a registration fee and the poor traders

converge to the marketplace which charges a profit fee (multiple competing marketplaces which

charge the same type of fees do not co-exist in equilibrium and only one of them can survive).

For example, when there are three competing marketplaces where marketplaces 1 and 2 charge

40% and 50% profit fees respectively and marketplace 3 charges a 0.8 registration fee, and

initially rich traders choose marketplaces 1, 2 and 3 with probabilities 0.15, 0.2 and 0.65 re-

spectively, and poor traders choose marketplaces 1, 2 and 3 with probabilities 0.35, 0.25 and 0.4

respectively, the dynamic changes of traders’ probabilities of choosing marketplaces are shown

in Figure 3.13. From this figure, we can see that eventually rich traders converge to marketplace

3 charging a registration fee, and poor traders converge to marketplace 1 charging a profit fee.

We also can see that marketplaces 1 and 2 charging the same types of fees cannot co-exist, and

only marketplace 1 survives.

identical goods, and thus cannot provide enough diversity for traders to select different marketplaces.
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(t)

(a) Rich traders.

(t)

(b) Poor traders.

FIGURE 3.13: Evolutionary process of traders in the setting with 5 buyers, 5 sellers and 3
competing marketplaces when q1 = 45%, q2 = 50%, q3 = 0, r1 = r2 = 0 and r3 = 0.8.

3.3 Equilibrium Analysis of Charging Strategies

In the previous subsection, we analysed the traders’ equilibrium strategies of market selection

for a given fee system. Now, given the insights from this analysis, we analyse how marketplaces

should set fees to make profits in equilibrium. In the following, we analyse this problem through

two different approaches. In the first, we investigate the equilibrium charging strategies from a

static analysis. This approach is based on the assumption that marketplaces set their fees once

at the beginning and so the charging strategies are not affected by the changes in the traders’

market selection strategies. In the second approach, we address this limitation by modelling the

game as a two-stage game where the strategies of the traders and the marketplaces are affected

by each other.

3.3.1 Static Analysis

In this section, we derive equilibrium charging strategies for the marketplaces through a static

analysis, where we assume that the marketplaces’ charging strategies are not affected by dy-

namic changes in the traders’ market selection strategies (although they are affected by the

traders’ equilibrium market selection strategies, which is described in the following). Specifi-

cally, in this analysis, we first derive the marketplaces’ expected utilities corresponding to each

possible fee system, which are dependent on the traders’ equilibrium market selection strategies

in this fee system and the probability of traders converging to that equilibrium. Specifically, we

use EGT to analyse how traders evolve their market selection strategies in the given fee system,

and approximate the probability of traders converging to a specific equilibrium by approximat-

ing the size of basin of attraction of that equilibrium under the assumption that each starting

point is equally likely selected by traders. After calculating the marketplaces’ expected utilities

for each possible fee system, we obtain the payoff table10. Finally, we analyse the equilibrium

10It is a matrix, where the first column(row) represents the corresponding marketplace’s fee, and the cell represents
the marketplaces’ utilities, which correspond to marketplaces’ fees.
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charging strategies according to the payoff table. We can see that in this analysis, how the mar-

ketplaces’ expected utilities are calculated is a key issue. Therefore, in the following, we first

derive equations to calculate these expected utilities. Based on this, we will analyse how mar-

ketplaces set fees in equilibrium in two different cases where marketplaces charge the same type

of fees and different types of fees.

3.3.1.1 Expected Utilities of Marketplaces

In this section, we describe how to calculate the marketplaces’ expected utilities for a given

market fee system P̄. Intuitively, we can see that the marketplaces’ expected utilities not only

depend on the current fee system P̄, but also on the traders’ market selection strategy profiles

ω̄b(P̄) = 〈ωb(tb
1,m, P̄), ωb(tb

2,m, P̄)〉 and ω̄s(P̄) = 〈ωs(ts
1,m, P̄), ωs(ts

2,m, P̄)〉, which is condi-

tional on the fee system. In order to derive marketplace m’s expected utility, we first calculate

the probability that there are exactly τb
1 poor buyers and τb

2 rich buyers choosing m:
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b
2

)
is the multinomial coefficient and

ωb(tb1 ,m,P̄)
2 is the probability that a buyer is

poor and chooses marketplace m. Similarly, we get the probability that there are exactly τs
1 rich

sellers and τs
2 poor sellers in m:

%s
m(τs

1, τ
s
2) =

( S
τs

1, τ
s
2, S − τ

s
1 − τ

s
2

)
∗

(ωs(ts
1,m, P̄)

2

)τs
1
∗

(ωs(ts
2,m, P̄)

2

)τs
2
∗

(
1 −

ωs(ts
1,m, P̄)

2
−
ωs(ts

2,m, P̄)

2

)S−τs
1−τ

s
2

(3.27)

Furthermore, marketplace m’s expected utility in the fee system P̄ given its pricing parameter

km when there are exactly τb
1 poor buyers, τb

2 rich buyers, τs
1 rich sellers and τs

2 poor sellers in

this marketplace is calculated by:

Ũm(P̄, km, τ
b
1, τ

b
2, τ

s
1, τ

s
2) = (τb

1 + τ
b
2 + τ

s
1 + τ

s
2) ∗ rm + (Λb + Λs) ∗ qm (3.28)

where Λb, Λs are the buyers’ and the sellers’ share of the trading surplus respectively when

τb
1 poor buyers, τb

2 rich buyers, τs
1 rich sellers and τs

2 poor sellers are matched according to the

equilibrium matching policy11. At this moment, we can get the marketplace’s expected utility

given the fee system and the traders’ market selection strategy profiles:

Ũm
(
P̄, km, ω̄

b(P̄), ω̄s(P̄)
)
=

B∑
τb

1=0

B−τb
1∑

τb
2=0

S∑
τs

1=0

S−τs
1∑

τs
2=0

∗%b
m(τb

1, τ
b
2) ∗ %s

m(τs
1, τ

s
2) ∗ Ũm(P̄, km, τ

b
1, τ

b
2, τ

s
1, τ

s
2)

(3.29)

Now given the fee system P̄, we need to calculate the marketplace’s expected utility at the

point where all traders use equilibrium market selection strategies, which are conditional on
11This can be easily calculated. For example, when there are 2 rich buyers, 3 poor buyers, 3 rich sellers and

2 poor buyers in marketplace m, Λb =
(
max(tb

2 − ts
1, 0) ∗ 2 + max(tb

1 − ts
1, 0) + max(tb

1 − ts
2, 0) ∗ 2

)
∗ km and Λs =(

max(tb
2 − ts

1, 0) ∗ 2 + max(tb
1 − ts

1, 0) + max(tb
1 − ts

2, 0) ∗ 2
)
∗ (1 − km).
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this fee system. As we discussed previously, there can exist multiple BNEs. In such cases, the

marketplace’s expected utility depends on which BNE strategy the traders will choose and the

probability of choosing this BNE strategy. Given a fee system, we have used EGT to analyse

how traders choose BNE strategies in Section 3.2.3.2. Similarly, here, we use EGT to find which

BNE strategies traders will choose and with what probability. Recall that in EGT, we use the

replicator dynamics to show the trajectories and how they converge to an equilibrium. The size

of the basin, where all trajectories converge to a particular equilibrium, can be used to indicate

the probability of traders converging to that equilibrium (see Section 3.2.3.1). However, there

are infinitely many possible starting points, which means that we have to approximate the size

of basins. In this work, we do this by discretizing the starting points. Specifically, we calculate

the size of basin of attraction by discretizing the mixed strategy of each type from 0.01 to 0.99

with step size 0.049, which gives 214 = 194481 different starting points12. Note that if we use

even more points, we can estimate the probability of traders’ convergence to each equilibrium

more accurately.

Now that we know, given a fee system P̄, what BNE strategies traders will choose and with what

probabilities, we are able to calculate the expected utility for a marketplace. Specifically, given

that there are X possible BNEs, we use 〈x1, x2, ..., xX〉 to represent the probabilities of traders

converging to these BNEs. Then marketplace m’s expected utility in the fee system P̄ is:

Ũm(P̄) =
X∑

z=1

xz ∗ Ũm
(
P̄, km, 〈ω

zb(tb
1,m, P̄), ωzb(tb

2,m, P̄)〉, 〈ωzs(ts
1,m, P̄), ωzs(ts

2,m, P̄)〉
)

(3.30)

where ωzb(tb
1,m, P̄), ωzb(tb

2,m, P̄), ωzs(ts
1,m, P̄) and ωzs(ts

2,m, P̄) denote the z-th BNE market

selection strategies.

Now we have derived equations to calculate the marketplace’s expected utility given the fee

system P̄. Based on this, we can analyse the equilibrium charging strategy for marketplaces.

As we know, the range of possible fees is continuous, which results in infinitely many possible

fee systems. It is too complicated to analyse the game with an infinite strategy space. However,

in Wellman (2006), researchers claim that for this kind of game, it is useful to approximate the

game by restricting the strategy space, and results from the restricted strategy space still provide

insights into the original game. Similarly, in this work, in order to obtain tractable results,

we also restrict the fee space by discretizing these fees. Then we calculate the marketplaces’

expected utilities corresponding to these fees, and generate the payoff table for marketplaces, by

which we can analyse the equilibrium fee system.

3.3.1.2 Experiment Results

After deriving equations to calculate the marketplaces’ expected utilities and describing the

analysis process, we now analyse the equilibrium charging strategies for marketplaces. We first
12The discretization is not from 0 to 1 since when the mixed strategy is 0 or 1, it constitutes an equilibrium of

replicator dynamics, but may be not a Nash equilibrium.
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consider the case that only profit fees can be charged to traders. We still assume that there are 5

buyers, 5 sellers and 2 competing marketplaces, and let tb
1 = 4, tb

2 = 6, ts
1 = 0 and ts

2 = 2. For the

pricing parameters, we assume that k1 = k2 = 0.5.13 Furthermore, we discretize profit fees from

0 to 1 with step size 0.1. Therefore, each marketplace can choose from 11 different profit fees.

For two competing marketplaces, there are 112 = 121 different fee systems. For each of these

combinations, we use EGT to obtain the basin of attraction to each BNE of the market selection

strategies. Then by approximating the size of each basin, we get the probability of traders

choosing each BNE, which is shown in Figure 3.14. Then using Equation 3.30, we calculate the

marketplaces’ expected profits. The results are shown in Table 3.1. From this table, by using

Gambit (http://gambit.sourceforge.net), we find that both marketplaces charging

30% profit fee constitutes a unique pure Nash equilibrium (NEQ) fee system. In this equilibrium,

both competing marketplaces charge non-zero profit fees and therefore make positive profits.

Furthermore, we also analyse the case that both competing marketplaces only charge registration

fees, and find that both marketplaces charging a 0.1 registration fee constitutes a unique NEQ.

Now we will consider the case where different competing marketplaces charge different types

of fees: marketplace 1 charges only profit fees, and marketplace 2 charge only registration fees.

We discretize registration and profit fees from 0 to 1 with step size 0.1. Then there are again

121 different fee systems. By exploring the traders’ market selection strategies under all pos-

sible fee systems, we obtain the probabilities of traders converging to each BNE, which are

shown in Figure 3.15. Note that, as we discussed in Section 3.2.3.2, when different types of fees

are charged, traders may converge to different marketplaces in the equilibrium. Figure 3.15(c)

shows in which fee systems, traders may converge to different marketplaces. After estimating

the probabilities of traders’ convergence to each BNE, we then calculate the marketplaces’ ex-

pected utilities using Equation 3.30. The marketplaces’ expected utilities are shown in Table 3.2,

from which we can see that in this case, marketplace 1 charging 30% profit fee, and marketplace

2 charging 0.5 registration fee constitutes the unique NEQ fee system.

13In this situation, rich(poor) buyer and rich(poor) seller have the same behaviour.
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(a) Size of basin of attraction to BNE 1 (marketplace 1). (b) Size of basin of attraction to BNE 2 (marketplace 2).

FIGURE 3.14: Sizes of basins of attraction when both competing marketplaces only charge
profit fees.

(a) Size of basin of attraction to BNE 1 (marketplace 1). (b) Size of basin of attraction to BNE 2 (marketplace 2).

(c) Size of basin of attraction to BNE 3.

FIGURE 3.15: Sizes of basins of attraction when competing marketplaces charge different
types of fees.
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3.3.2 Co-Evolutionary Analysis

In the above, we have investigated the marketplaces’ equilibrium charging strategies through a

static analysis, which is restricted to the assumption that their charging strategies do not change

in response to the traders’ market selection strategies. In this section, we address this limita-

tion by modelling the game as a two-stage game where, in the first stage, marketplaces publish

their fee structures according to their charging strategies and then, in the second stage, traders

select marketplaces according to their market selection strategies, which are conditional on the

fee system from the first stage. Given this complicated setting of a two-stage game with incom-

plete information about traders’ types, it is difficult to use traditional game-theoretic methods to

analyse equilibrium charging strategies. Intuitively, we can see that the traders’ market selection

strategies and the marketplaces’ charging strategies will affect each other. Hence, we use a co-

evolutionary approach to analyse this problem. This approach can capture the dynamic process

of how marketplaces evolve their charging strategies to converge to equilibrium while taking

into account the dynamic changes of the traders’ market selection strategies. In the following,

before we perform the co-evolutionary analysis, we first describe the co-evolutionary process in

more detail.

3.3.2.1 The Co-Evolutionary Process

In the co-evolutionary process, both the competing marketplaces and the traders dynamically

learn to adapt their strategies to maximise their own expected utilities. This learning process

is repeated until both traders and marketplaces do not change their strategies. At this moment,

an equilibrium is reached. In each learning round (i.e. a co-evolutionary step), traders update

their expected utilities before they evolve their market selection strategies. Now in order to

calculate the expected utilities, they require information about the local type distribution (i.e.

the type distribution of traders in a specific marketplace, see Section 3.2.1) of other traders.

While in Section 3.2.1 the local type distribution was calculated for a given fee system, the

strategies of the marketplaces are mixed (i.e. each fee system is selected by marketplaces with a

certain probability) and therefore in this case we calculate the local type distribution taking into

account the mixed marketplace strategies. Specifically, these local type distributions depend

on the traders’ market selection strategies (which are conditional on each fee system) and the

marketplaces’ charging strategies (which determine the probability of each possible fee system

being selected). This is important since it creates a link between the strategy composition of

the marketplaces and its effect on the expected utility of the traders, enabling co-evolution to

occur14.

Now we describe the co-evolutionary process in detail, which is depicted in Figure 3.16. First,

we initialise the marketplaces’ charging strategies and the traders’ market selection strategies.

Then we calculate the initial local type distributions of buyers and sellers (see Equation 3.32 in
14An alternative approach is to keep the local distribution conditional on the fees, but then the population dynamics

of the charging strategies will have no effect on the traders’ expected utilities.
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FIGURE 3.16: The co-evolutionary process.

the following subsection). From the initial local distributions, traders calculate their expected

utilities, and then evolve their market selection strategies. After traders evolve their market

selection strategies, the marketplaces calculate their expected utilities (which depend on the

traders’ mixed market selection strategies and the marketplaces’ charging strategies) and then

evolve their charging strategies. After the marketplaces evolve their charging strategies, we

update the local distributions of the traders, and then enter the next co-evolutionary step. This co-

evolutionary process continues until all dynamic changes of traders’ market selection strategies

and marketplaces’ charging strategies become zero. At this point, an equilibrium is reached.

In the following, before giving the experimental analysis in detail, we first need to derive equa-

tions to calculate the expected utilities of traders and marketplaces, and give the replicator dy-

namics equations.

3.3.2.2 Expected Utilities of Traders and Marketplaces

As discussed above, in the co-evolutionary process, a trader’s expected utility depends on the

local type distributions of the other traders. In Subsection 3.2.1, we calculated the local type

distributions for a given fee system. However, since the charging strategies of the marketplaces

are mixed, here we consider the traders’ local type distributions under all allowable fee systems.

These new local type distributions are derived in the following way. First, the probability that

the type of a buyer is less than θb in marketplace m is:

Hb
m(θb) =

∑
P̄∈PM

µ(P̄) ∗ Hb
m(θb|P̄) =

∑
P̄∈PM

µ(P̄) ∗
∫ θb

l
f b(x) ∗ ωb(x,m, P̄)dx (3.31)

where µ(P̄) =
∏

m∈M µm(pm) is the probability of the fee system P̄ = 〈p1, ..., pM〉 appearing, and

Hb
m(θb|P̄) is the probability that the type of a buyer is less than θb in marketplace m for a given

fee system P̄ (see Equation 3.4). Then, by normalising the above equation, we obtain a proper
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local type distribution of the buyers in marketplace m:

Gb
m(θb) =

Hb
m(θb)

Hb
m(l̄)

(3.32)

The local probability density function of buyer types is:

gb
m(θb) =

∑
P̄∈PM µ(P̄) ∗ f b(θb) ∗ ωb(θb,m, P̄)

Hb
m(l̄)

(3.33)

The equations for sellers can be calculated in the same way. All other equations to calculate

the traders’ expected utilities are the same as before except that in these equations we need to

replace Hb
m(θb|P̄), Gb

m(θb|P̄) and gb
m(θb|P̄) (which are conditional on a specific fee system P̄) by

Hb
m(θb), Gb

m(θb) and gb
m(θb) (which are under all possible fee systems) respectively.

In addition to the traders’ expected utilities, in this two-stage game, we also need to calcu-

late the expected utility of each marketplace. In Section 3.3.1.1, we have derived the market-

place’s expected utility given a particular fee system P̄ and the traders’ market selection strat-

egy profiles: ω̄b(P̄) and ω̄s(P̄). This calculation assumes that each marketplace adopts a pure

charging strategy, i.e. µm(pm) = 1 (m = 1, ...,M). Here, we need to calculate the expected

utility of the marketplace adopting a mixed charging strategy. Intuitively, a marketplace’s ex-

pected utility not only depends on its own charging strategy, but also on the charging strategies

of the other marketplaces and the traders’ mixed market selection strategies (which are con-

ditional on the fee systems announced in the first stage). In the following, we calculate the

expected utility of marketplace m given a charging strategy profile µ̄ and the market selection

strategy profiles of traders ω̄b(·) and ω̄s(·). In the first step, we use Equation 3.29 to calculate

Ũm(P̄, km, ω̄
b(P̄), ω̄s(P̄)), which is marketplace m’s expected utility given the fee system P̄, pric-

ing parameter km, the buyers’ strategy profile ω̄b(P̄) = 〈ωb(tb
1,m, P̄), ωb(tb

2,m, P̄)〉 and the sellers’

strategy profile ω̄s(P̄) = 〈ωs(ts
1,m, P̄), ωs(ts

2,m, P̄)〉. Then marketplace m’s expected utility with

a (mixed) charging strategy profile µ̄ is:

Ũm(µ̄) =
∑

P̄∈PM

µ(P̄) ∗ Ũm(P̄, km, ω̄
b(P̄), ω̄s(P̄)) (3.34)

where µ(P̄) =
∏

m∈M µm(pm).

3.3.2.3 Replicator Dynamics

We now describe the replicator dynamics equations for traders and marketplaces respectively

for the two-stage game. In addition to adding the replicator dynamics equations for the market-

places, the two-stage game also requires a considerable increase in the number of equations for

the traders. This is because, while in Section 3.2.3, the equations were for a given fee system,

these are now conditional on the fee system. For each possible fee system, a different population

evolves the strategy of each trader type (there are 4 populations: rich buyer, poor buyer, rich
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seller and poor seller). Specifically, when the fee system is P̄, the replicator dynamics equations

for each population of traders are given by Equations 3.22, 3.23, 3.24 and 3.25. We can see

that, for each fee system, there are 4 × M replicator dynamics equations. Since there are |PM |

different fee systems, in total, there are |PM | × 4 × M replicator equations for traders.

Now we describe replicator dynamics equations for the marketplaces. Since there are |P| al-

lowable fee structures, for each marketplace, there are |P| replicator dynamics equations for its

charging strategy. In total there are M × |P| replicator dynamics equations for marketplaces15.

Specifically, marketplace m’s replicator dynamics equation for fee structure p′m is as follows:

µ̇m(p′m) =
dµm(p′m)

dt
=

(
Ũm(p′m, µ−m(·)) − Ũm(µ̄)

)
∗ µm(p′m) (3.35)

where µ̇m(p′m) describes how marketplace m changes its probability of choosing fee structure

p′m, Ũm(µ̄) is m’s overall expected utility as derived in Section 3.3.2.2, and Ũm(p′m, µ−m(·)) is m’s

expected utility of choosing fee structure p′m given the other marketplaces’ charging strategy

profile µ−m(·):

Ũm(p′m, µ−m(·)) =
∑

P̄∈PM : pm=p′m

∏
l∈M\{m}

µl(pl) ∗ Ũm(P̄, km, ω̄
b(P̄), ω̄s(P̄))

)
(3.36)

3.3.2.4 Experimental Results

After describing the co-evolutionary process and the replicator dynamics equations, we are ready

to analyse how marketplaces evolve their charging strategies over time. Specifically, in the

following analysis, we still discretize the profit and registration fees from 0 to 1 with step size

0.1. We also assume that there are 2 competing marketplaces, 5 buyers and 5 sellers, and let

tb
1 = 4, tb

2 = 6, ts
1 = 0, ts

2 = 2. Furthermore, for the pricing parameters, we assume that

k1 = k2 = 0.5.

Two identical marketplaces initially having the same charging strategy:

First, we consider that both marketplaces only charge profit fees. Then there are 11 possible fee

structures16 for each marketplace, which implies that there are 968 replicator dynamics equa-

tions for the traders and 22 replicator dynamics equations for the two competing marketplaces.

We assume that initially both marketplaces are identical. That is, they have the same probabil-

ities of choosing each fee structure, and for each fee system, the initial probability of traders

choosing marketplace 1(2) is the ratio of profit fee of marketplace 2(1) to the sum of profit

fees of both competing marketplaces (this means that traders have higher initial probabilities of

choosing the cheaper marketplace). Then the initial probability of traders choosing each market-

place under all possible fee systems is equal, i.e. 0.5. From this setting, we evolve the charging

15Here we consider that different marketplaces are from different populations since different marketplaces may
adopt different types of fees, or even though they use the same type of fees, different marketplace may set their initial
charging strategies differently.

16They are (0,0), (0,0.1), (0,0.2), (0,0.3), (0,0.4), (0,0.5), (0,0.6), (0,0.7), (0,0.8), (0,0.9), (0,1.0).
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FIGURE 3.17: Evolutionary process of charging strategies of marketplace 1 and 2 when they
have identical initial charging strategies.

strategies of marketplaces and the market selection strategies of the traders. The evolutionary

process of charging strategies is shown in Figure 3.17 where the x-axis is the possible profit fees

the marketplace can charge, the y-axis is the evolutionary time, and the z-axis is the probability

of the marketplace choosing each profit fee during the evolutionary process. Note that, in this

case, the evolutionary processes of two initially identical marketplaces are still identical. From

the figure, we can see that during the evolutionary process, both marketplaces gradually set low

fees with higher probability, and in equilibrium, both marketplaces set a 10% profit fee with

100% probability. This is because two identical marketplaces have to undercut each other by

decreasing fees to attract traders. Eventually, they converge to a pure strategy where both mar-

ketplaces charge a 10% profit fee, which is the minimum allowed profit fee which can guarantee

positive profit for the marketplaces17. In addition, for the traders’ evolutionary process, we look

at the traders’ probability of choosing marketplace 1 considering all possible fee systems. In

this case, the probability of traders choosing each marketplace is unchanged, which is 0.5. This

shows that in a highly competitive environment, competing marketplaces have to charge the low-

est fees, and even no fees, in order to keep traders. This is different from the static analysis in

Section 3.3.1, where in equilibrium both competing marketplaces charge a 30% profit fee. The

reason is that in the co-evolutionary analysis, competing marketplaces respond to the dynamic

changes in the traders’ market selection strategies, and in order to remain competitive, eventu-

ally, they have to charge the lowest profit fee. However, in the static analysis, the competing

marketplaces set their fees once at the beginning, and their charging strategies do not respond to

the changes in the traders’ market selection strategies.

In the previous analysis (see Section 3.2.3.2), we introduced randomisation for the traders’ mar-

ket selection strategies to analyse the effect of exploration and bounded rationality. Now we do

the same for the above co-evolutionary setting. In doing so, we find that, as the probability of

17If a lower minimal profit fee would have been allowed, e.g. 1%, then both competing marketplaces will converge
to this lower profit fee.
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FIGURE 3.18: Equilibrium charging strategies of marketplace 1 and 2 with respect to randomi-
sation of market selection when two competing marketplaces have identical initial charging

strategies.

traders randomly choosing marketplaces increases, in equilibrium, fees increase. For example,

when we introduce 20% randomisation, then in equilibrium, both marketplaces will charge a

20% profit fee. The result is shown in Figure 3.18. From this, we can see when randomisation

goes above 50% (i.e. when traders have a very high probability of randomising their market

selection), in equilibrium, the marketplaces charge very high fees. Especially, when the ran-

domisation reaches 100%, both marketplaces charge 100% profit fee. This is because two iden-

tical competing marketplaces have the same evolutionary process, and thus they cannot attract

traders from each other. When traders have probabilities of randomly choosing marketplace,

both marketplaces will find that, even though they charge higher fees, they still keep traders.

Thus marketplaces will charge higher fees to make more profits.

Two marketplaces initially having different charging strategies:

Now we consider the more general case, in which the marketplaces have different initial charg-

ing strategies. For example, we assume that initially marketplace 2 is slightly cheaper than mar-

ketplace 1, and thus marketplace 1 is slightly disadvantaged in terms of the traders’ probability

of choosing marketplaces. For this setting, the evolutionary charging strategies of marketplace

1 and 2 are shown by Figures 3.19(a) and 3.19(b), and the dynamic changes of the traders’

probabilities of choosing marketplace 1 are shown in Figure 3.19(c). From these, we can see

that in equilibrium, all traders converge to marketplace 1, which is initially disadvantaged. The

reason is that from Figures 3.19(a) and 3.19(b), we can see that marketplace 1 decreases its fees

to attract traders because of its disadvantageous position in the initial state, and marketplace

2 increases fees since it has an advantageous position in the initial state. Although there exist

small fluctuations for traders’ probabilities of choosing marketplaces because of the fee changes

of marketplace 1 and 2, eventually all traders will converge to marketplace 1. This shows that it

is possible for an initial disadvantaged marketplace to beat an advantaged one by dynamically

adapting its fees. We also find that once marketplace 1 attracts all traders, it will charge higher
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(a) Charging strategy of marketplace 1. (b) Charging strategy of marketplace 2.

(c) Traders’ probability of choosing marketplace 1.

FIGURE 3.19: Evolutionary process of charging strategies of marketplace 1 and 2 and traders’
probability of choosing marketplace 1 when two competing marketplaces have different initial

charging strategies.

fees, around 70% profit fee, but still keep traders. This is because the profit fees of both com-

peting marketplaces are within the lock-in region, and therefore marketplace 1 can keep traders

even though it is more expensive. However, if we again introduce randomisation (see Figure

3.20), we see that the behaviour of the traders’ market selection changes significantly. In detail,

we can see that marketplace 1 tries to charge a higher profit fee, but because of random explo-

ration, traders will migrate to marketplace 2 (the cheaper marketplace). This causes marketplace

1 to reduce its fees and traders to migrate back to this marketplace. In fact, we observe that the

strategies of the traders and the marketplaces never converge to an equilibrium. However, by ob-

serving the overall evolutionary process, we still can see that, on average, marketplace 1 charges

slightly higher fees than marketplace 2 because of its higher initial market share.

Two different marketplaces having an adaptive charging strategy and a fixed charging
strategy respectively:

In the above, we analysed the dynamic behaviour of both competing marketplaces evolving their
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FIGURE 3.20: Traders’ probability of choosing marketplace 1 with 20% random exploration
when two competing marketplaces have different initial charging strategies .

(a) Charging strategy of marketplace 1. (b) Traders’ probability of choosing marketplace 1.

FIGURE 3.21: Evolutionary process of charging strategy of marketplace 1 and traders’ proba-
bility of choosing marketplace 1 when marketplace 1 adopts an adaptive charging strategy and

marketplace 2 adopts a fixed charging strategy.

charging strategies. In the real world, however, some marketplaces may adopt a fixed charging

strategy, which means that they will not change fees during a specific time. To consider this

situation, we now analyse how a marketplace with an adaptive charging strategy competes with

a marketplace with a fixed charging strategy. As an example, we assume that marketplace 2

fixes its profit fee at 30%, and marketplace 1 evolves its charging strategy and initially market-

place 1 is slightly more expensive than marketplace 2. The evolutionary process of the charging

strategy of marketplace 1 is shown in Figure 3.21(a), and the dynamic changes of the traders’

probability of choosing marketplace 1 for this setting are shown in Figure 3.21(b). From these

figures, we can see that initially, marketplace 1 decreases its fee, and when attracting all traders,

it will increase its fee, but still keep traders. In equilibrium, marketplace 1 will charge 70%

profit fee. However, if in the beginning marketplace 1 is much more expensive than marketplace
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(a) Charging strategy of marketplace 1. (b) Charging strategy of marketplace 2.

(c) Traders’ probability of choosing marketplace 1.

FIGURE 3.22: Evolutionary process of charging strategies of marketplace 1 and 2 and traders’
probability of choosing marketplace 1 when marketplace 1 charges a profit fee and marketplace

2 charges a registration fee.

2 (which means that marketplace 2 has a very large lock-in region), then even though market-

place 1 charges a very low fee, it still fails to attract traders. If both marketplaces have similar

initial charging strategies, then the marketplace using an adaptive charging strategy can beat the

marketplace using a fixed charging strategy. However, when a marketplace initially has a large

market share, it is difficult for a new marketplace to obtain market share, even when undercutting

its competitors.

Two different marketplaces charging different types of fees:

Finally we analyse how marketplaces evolve their charging strategies when different types of

fees are charged. Previously (in Section 3.2.3.2), when marketplaces charge different types of

fees, we showed that rich traders prefer marketplaces that charge registration fees, and poor

traders prefer marketplaces that charge profit fees. From Figure 3.22(c), we find that, initially,

rich traders still prefer marketplace 2 charging a registration fee, and poor traders prefer market-

place 1 charging a profit fee, which is the same as the previous analysis. However, from Figures
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3.22(b) and 3.22(c), we can see that when rich traders choose marketplace 2, this marketplace

charges a higher registration fee. Then, in contrast to the previous analysis, where different types

of traders converge to different marketplaces in equilibrium, rich traders leave marketplace 2,

and all traders converge to marketplace 1. Once all traders choose marketplace 1, from Figure

3.22(a), we can see marketplace 1 charges 90% profit fee, but still keeps the traders.

3.4 Summary

In this chapter, we proposed a game-theoretic framework for analysing competing double auc-

tion marketplaces that vie for traders and make profits by charging fees. Firstly, we analysed

the equilibrium market selection strategies for traders for a given fee system. In more detail, we

used game theory to analyse the equilibrium market selection strategies and adopted evolution-

ary game theory to investigate how traders dynamically change their strategies, and thus, which

equilibrium, if any, can be reached. In so doing, we showed that when the same type of fees

are charged by two marketplaces, it is unlikely that competing marketplaces will continue to co-

exist when traders converge to their equilibrium market selection strategies. Eventually, all the

traders will congregate in one marketplace. However, when different types of fees are allowed

(registration fees and profit fees), competing marketplaces are more likely to co-exist in equilib-

rium, where rich traders will converge to the marketplace charging a registration fee, and poor

traders will converge to the marketplace charging a profit fee. Somewhat surprisingly, we found

that sometimes all the traders eventually migrate to the marketplace that charges higher fees.

Thus we further analysed this phenomenon, and specifically analysed how random exploration

by traders affects this migration.

Secondly, we analysed the equilibrium charging strategies of the marketplaces using two differ-

ent approaches. In the first, we derived the equilibrium charging strategies by a static analysis.

However, this approach did not consider the interaction between traders’ strategies and market-

places’ strategies. We tackled this limitation by using a co-evolutionary approach to analyse this

game. Specifically, we considered the competition of the marketplaces as a two-stage game,

where the traders’ market selection strategies and marketplaces’ charging strategies affect each

other. In particular, we used a co-evolutionary approach to analyse how competing market-

places dynamically set fees while taking into account the dynamics of the traders’ market se-

lection strategies. In so doing, we found that two initially identical marketplaces undercut each

other, and they will eventually charge the minimal fee that guarantees positive market profits for

them. Furthermore, we also extended the co-evolutionary analysis of the marketplaces’ charging

strategies to more general cases. We found that by dynamically evolving the charging strategy,

it is possible for the marketplace that is initially at a disadvantage to outperform its opponent,

which is also able to evolve its charging strategy. Furthermore, we showed that an initially dis-

advantaged marketplace with an adaptive charging strategy can beat the initially advantaged one

with a fixed charging strategy.
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Furthermore, we also want to point out that a certain conclusion drawn from this chapter is

consistent with the work done by Sohn et al. (2010); Niu et al. (2008a) in the context of the

CAT competition. In more detail, both of them presented that intra-marginal traders will select

the marketplace charging a registration fee with a high probability, and extra-marginal traders

will select the marketplace charging a profit fee with a high probability. Their conclusion aligns

well with our conclusion that when two double auction marketplaces charge different types

of fees, it can happen that rich traders (corresponding to intra-marginal traders) converge to

the marketplace charging a registration fee, and poor traders (corresponding to extra-marginal

traders) converge to the marketplace charging a profit fee.

The work in this chapter addresses our research challenges of analysing equilibrium market se-

lection strategies for traders and equilibrium charging strategies for marketplaces (i.e. research

challenges 1 and 4, see Section 1.2), which is the first theoretical work in the context of compet-

ing double auction marketplaces. This analysis is insightful and can be used to guide the design

of a charging strategy. For example, the lock-in region gives us the insight that the competing

marketplace should initially charge lower and even no fees to attract traders, and once it has built

up a larger market share, the marketplace can charge fees to make profits, but still can maintain

market share at a good level. However, in this work, we only considered discrete trader types,

and assumed that traders adopt a simple, truth-telling bidding strategy. In the next chapter, we

will address these shortcomings by considering continuous trader types and analysing both equi-

librium market selection and bidding strategies for traders. We will also extend this analysis to

the settings with multi-home trading and hybrid trading, and with different properties of goods.





Chapter 4

Analysis of Competing Marketplaces
with Continuous Trader Types

In Chapter 3, we game theoretically analysed the equilibrium market selection strategies for

traders and equilibrium charging strategies for marketplaces. Now, while this analysis led to

a number of important insights, it was restricted to the setting with two discrete trader types.

Furthermore, we made the simplifying assumption that traders use a truth-telling bidding strat-

egy, which means that traders will submit their types as their shouts. However, in practice, trader

types are often drawn from a wider range, and they may bid strategically (such as shading shouts

in order to make more profits). In addition, we assumed that marketplaces can only choose from

two types of fees (registration and profit) to make profit. However, as we will show in this

chapter, when traders can bid strategically, we find that neither fees are effective in terms of

making profits or keeping traders (see Section 4.4). Charging registration fees will cause traders

to leave the marketplace quickly, and charging profit fees encourages traders to hide their ac-

tual profits by shading their shouts, resulting in very low revenue for the marketplaces. In this

chapter, we will address all these limitations. Specifically, we consider a setting with contin-

uous trader types, where we use fictitious play (a computational learning approach) to analyse

both the equilibrium market selection and bidding strategies for traders. Furthermore, because

of ineffectiveness of both registration and profit fees in making profits and keeping traders, we

consider two more types of fees: transaction and transaction price percentage fees. We introduce

the former one because it is used in the CAT competition (see Section 2.5.1), and we introduce

the latter one because it is commonly used in real-world auctions (e.g. both eBay and Ama-

zon charge a percentage fee on the final sale prices to sellers). In so doing, we analyse what

types of fees are effective in making profits and keeping traders, and analyse how competing

marketplaces set fees in equilibrium.

We furthermore extend the model in several directions. First, in addition to the single-home trad-

ing environment where traders can only enter one marketplace at a time (the analysis in Chapter

3 was restricted to this environment), we also consider other trading environments: multi-home

101
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environments where traders can enter multiple marketplaces at a time, and hybrid environments

where one side of traders (e.g. buyers) use multi-home trading and the other side of traders

(e.g. sellers) use single-home trading. These different trading environments affect the way in

which traders select marketplaces and submit shouts. For example, in the multi-home trading

environment, traders will enter multiple marketplaces if they can make positive profits in these

marketplaces. Furthermore, if buyers can enter multiple marketplaces at a time, they can obtain

multiple goods. As discussed in Section 1.2, these goods can be either independent, substitutes,

or complementary. These different properties also affect traders’ strategies. For example, when

trading complementary goods, buyers will prefer to buy as many goods as they can, and thus

they will try to bid high in several marketplaces to make more transactions. Therefore, in this

chapter, in addition to considering different trading environments, we will also analyse goods

with these different properties.

Specifically, this chapter addresses research challenges 1 (analysing market selection strategies

for traders), 2 (analysing bidding strategies for traders) and 4 (analysing charging strategies for

marketplaces). The structure of this chapter is as follows. In Section 4.1, we formalise the above

setting, and derive expected utilities of traders and marketplaces in this new setting. In Section

4.2, we describe the fictitious play (FP) algorithm used in our analysis. In Section 4.3, we use

FP to analyse traders’ equilibrium market selection and bidding strategies in different trading

environments with different good properties. In Section 4.4, we analyse the effects of different

types of fees on obtaining market profits and how competing marketplaces should set fees in

equilibrium. Finally, we summarise in Section 4.5

4.1 Framework

In this section, we first extend the setting from Chapter 3, and then derive equations to calculate

expected utilities of traders and marketplaces for this new setting.

4.1.1 Basic Settings

The basic setting for traders and marketplaces in this chapter is similar to that used in Chapter

3 (see Section 3.1.1). In this section we will discuss the changes with respect to Chapter 3 as a

result of the changes in the setting described above. First of all, since we consider continuous

trader types, in this setting we assume that types of buyers (sellers) are identically and indepen-

dently drawn from the cumulative distribution function Fb (F s) with support [0,1] (in contrast to

that in Chapter 3 where we only consider discrete trader types). Furthermore, we consider two

more types of fees: transaction and transaction price percentage. Consequently, the fee structure

of a marketplace m is now defined as pm = (rm, tm, qm, om), rm ≥ 0, tm ≥ 0, qm ∈ [0, 1] and

om ∈ [0, 1], where rm is a registration fee charged to traders when they enter the marketplace,

tm is a transaction fee charged to buyers and sellers when they make transactions, qm is a profit
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fee charged on profits made by buyers and sellers, and om is a transaction price percentage fee

charged on the transaction price of buyers and sellers. As before, the fee structures of all com-

peting marketplaces constitute a fee system P̄ = 〈p1, p2, ...pM〉. Moreover, we further make an

assumption that traders will incur a small cost ε when they choose any marketplace (such as

time cost for trading online, travel and time costs for trading in shopping mall). We do this so

that they slightly prefer choosing no marketplace than choosing a marketplace and making no

transactions (even if rm = 0). This small cost will help us distinguish buyers’ behaviour between

bidding zero and not choosing the marketplace, and sellers’ behaviour between bidding one and

not choosing the marketplace.

The process of a trading round is the same as Chapter 3 (see Section 3.1) except that, in this set-

ting, traders can enter multiple marketplaces when multi-home trading is allowed. As before, we

assume that each trader can only trade a single unit of the good in each marketplace. However,

because now multi-home trading is allowed, traders may trade multiple goods when they enter

multiple marketplaces. We assume that goods traded in different marketplaces are identical. As

we said before, these goods can be either independent, substitutes, or complementary. We model

these different preferences as follows. For a buyer with type θb, the value that it derives when it

successfully purchases T units of goods is given by:

vb(θb,T ) = αb
T ∗ θ

b (4.1)

where we refer to αb
T as the “buyer preference coefficient”, determining whether the buyers

have independent, substitutable or complementary preferences. In more detail, if goods are

independent for the buyer, then the values for individual good are additive, i.e. αb
1 = 1 and

αb
T − α

b
T−1 = 1, ∀T ≥ 2 (which is equivalent to αb

T = T ). If, on the other hand, the goods

are substitutes, then the total value for getting T goods is subadditive, i.e. αb
1 = 1 and 0 ≤

αb
T − α

b
T−1 < 1, ∀T ≥ 2. In particular, for perfectly substitutable goods for the buyer, we have

αb
T = 1 (T = 1, ...,M). Finally, if goods are complementary for the buyer, the total value is

superadditive, i.e. αb
1 = 1 and αb

T −α
b
T−1 > 1, ∀T ≥ 2. Specifically, for perfectly complementary

goods, we have αb
T = 0 (T = 1, ...,M − 1) and αb

M = 1, i.e. the buyer obtains value θb when

it successfully purchases M goods, and the buyer obtains zero value when it purchases less

than M goods. The value function for a seller is defined analogously, where αs
T is the seller

preference coefficient. We assume that αb
T and αs

T are the same for all buyers and sellers, and

these parameters are common knowledge.

In addition to multi-home, we now allow traders to bid strategically. In what follows, we de-

scribe how this affects the framework from Chapter 3. Specifically, we make the assumption

that there is a finite number of bids and asks and that these are discrete. The reason for doing so

is two-fold. First of all, this assumption is more realistic than having continuous bids because, in

practice, the numeraire is discrete. Second, it allows us to compute the Bayes-Nash equilibrium

more easily using fictitious play. Now the ranges of possible bids and asks constitute the bid

space and ask space respectively. For convenience, we further assume that buyers and sellers

have the same shout space, which is given by Φ = {0, 1
D ,

2
D , ...,

D−1
D , 1} ∪ {
}, i.e. the bid(ask)
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space comprises D + 1 allowable bids(asks) from 0 to 1 with step size 1/D, and 
 means not

submitting a shout in the marketplace (i.e. not choosing the marketplace). Recall that, in our

new setting, traders can place shouts in multiple marketplaces. We refer to a combinational

shout across multiple marketplaces as an action. Formally, a buyer’s action is defined as a tuple

δb = 〈db
1, d

b
2, ..., d

b
M〉, where the buyer bids db

m in marketplace m if db
m , 
, and does not choose

marketplace m if db
m = 
. Similarly, a seller’s action is given by δs = 〈ds

1, d
s
2, ..., d

s
M〉. The set of

all possible actions constitutes the action space, which is defined as ∆ = ΦM. Note that in our

system, both buyers and sellers have the same action space.

Now, a trader’s action is determined by its strategy, which is a mapping from the set of types to

the action space. In addition, each trader does not know what the exact types of the other traders

are, and only know their type distribution functions. Therefore, given the trader’s strategy and

the type distribution function, we can derive the probability of a certain action being played by

this trader. Since the expected utility of a trader (and a marketplace) is directly dependent on

its beliefs about other traders’ action choices, instead of looking at traders’ strategies, in what

follows we directly consider traders’ action distributions. This will also be convenient when

we use fictitious play to derive traders’ equilibrium strategies (see Section 4.2). Specifically,

we change our notation from before and now use ωb
i (ωs

i ) to denote the probability of action δb
i

(δs
i ) being chosen by a buyer (seller). Furthermore, we use Ωb =

(
ωb

1, ω
b
2, ..., ω

b
|∆|

)
,
∑|∆|

i=1 ω
b
i = 1,

to represent the probability distribution of buyers’ actions, and Ωs = (ωs
1, ω

s
2, ..., ω

s
|∆|

) for the

sellers’ action distribution.

4.1.2 The Trader’s Expected Utility

Before analysing the strategies of the traders and the marketplaces, we first need to derive equa-

tions to calculate expected utilities of traders and marketplaces. Although in Chapter 3 we have

given equations to calculate them, these equations are based on the assumption that traders sub-

mit their types as shouts, and thus are not appropriate in this setting. Therefore, in this section,

we derive the equations to calculate the expected utility of a trader based on the action distri-

bution of other traders. Then in the following section, we will describe how to calculate the

expected utilities of marketplaces.

In what follows, we derive the expected utility of a buyer, but the seller’s is calculated analo-

gously. We can see that a buyer’s expected utility depends on its type, its own action, and its

beliefs about action choices of other traders. In the following, we calculate the expected utility

of a buyer with type θb adopting the action δb = 〈db
1, d

b
2, ..., d

b
M〉 given the other buyers’ action

distribution Ωb and the sellers’ action distribution Ωs, and the fee system P̄. The expected util-

ity consists of two parts: the expected value on the goods, and the expected payment. In the

following, we derive these two parts respectively.

To calculate the buyer’s expected value, since we consider the equilibrium matching policy

matching buyers having high bids with sellers having low asks, we need to consider the buyer’s
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positions in the available marketplaces (the buyer’s position is the rank of the buyer’s bid among

all descendingly sorted bids). Clearly, a buyer’s position is determined by its own action and

those of other buyers. However, since we do not know the actions of other traders, we can only

derive the probabilistic information about the buyer’s position in a marketplace. Furthermore,

since buyers can place multiple bids in multiple marketplaces at the same time, bids in different

marketplaces are correlated with each other, and thus the buyer’s positions in different mar-

ketplaces are also correlated with each other. Therefore, we cannot consider each marketplace

independently and need to consider the buyer’s joint positions in marketplaces. Furthermore,

since we consider discrete bids and multiple buyers may place the same bids, we need to use a

tie-breaking rule to determine a buyer’s position.

Therefore, to calculate the expected value, we need to take the following steps. First, we calcu-

late the expected joint positions of the buyer by considering all possible action choices of other

buyers and their action distributions. In addition to other buyers’ actions, a buyer’s expected

value also depends on the sellers’ actions. Therefore, we then consider the number of sellers

choosing different actions. Finally, given the buyer’s joint positions and the number of sellers

choosing different actions, we can derive the buyer’s expected value by considering all possible

numbers of units it can win. In the following, we discuss these steps in turn.

Firstly, we describe how to determine a buyer’s joint positions across the marketplaces. As we

said above, when we know the number of buyers choosing different actions, we can determine

the buyer’s joint positions. Specifically, we use a |∆|-tuple x̄ = 〈x1, ...x|∆|〉 ∈ X to represent the

number of buyers choosing different actions, where xi is the number of buyers choosing action

δb
i , X is the set of all such possible tuples and we have

∑|∆|
i=1 xi = B − 1 (note that we need to

exclude the buyer for which we are calculating the expected utility). The probability of exactly

xi buyers choosing action δb
i is

(
ωb

i
)xi , and then the probability of this tuple appearing is:

ρb(x̄) =
(

B − 1
x1, ..., x|∆|

)
∗

|∆|∏
i=1

(
ωb

i

)xi
(4.2)

Now for a particular x̄, we determine the buyer’s position in each marketplace as follows. Firstly,

we obtain the number of other buyers whose bids are greater than the buyer’s bid in marketplace

m, db
m, which is given by:

X>
m(x̄, db

m) =
∑

δb
i ∈∆:db

im>db
m

xi (4.3)

where db
im is the bid placed in marketplace m through action δb

i . Similarly, we use X=m(x̄, db
m)

to represent the number of buyers whose bids are equal to the buyer’s bid in marketplace m

(excluding the buyer itself):

X=m(x̄, db
m) =

∑
δb

i ∈∆:db
im=db

m

xi (4.4)

Due to having discrete bids and given X>
m(x̄, db

m) buyers bidding higher than the buyer’s bid

db
m and X=m(x̄, db

m) buyers bidding equal to db
m, the buyer’s position in marketplace m could be
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anywhere from X>
m(x̄, db

m)+1 to X>
m(x̄, db

m)+X=m(x̄, db
m)+1, which constitutes the buyer’s position

range in this marketplace. Since X=m(x̄, db
m) + 1 buyers have the same bid, as we said previously,

a tie-breaking rule is needed to determine the buyer’s position. Here we adopt a standard rule

where each of these possible positions1 occurs with equal probability, i.e. 1/(X=m(x̄, db
m) + 1).

Now, given the buyer’s position ranges in different marketplaces, we can obtain the set of all

possible joint positions for the buyer. Specifically, we use a M-tuple v̄x̄ = 〈v1, ..., vM〉 ∈ Vx̄ to

represent one of the possible joint positions where vm is the buyer’s position in marketplace m,

and Vx̄ is the set of all possible joint positions satisfying the condition X>
m(x̄, db

m) + 1 ≤ vm ≤

X>
m(x̄, db

m)+ X=m(x̄, db
m)+ 1 (m = 1, ...,M). The probability of the buyer having the joint positions

v̄x̄ given the tuple x̄ is:

Φ(v̄x̄) =
M∏

m=1

1
X=m(x̄, db

m) + 1
(4.5)

Note that tie-breaking occurs independently for each marketplace.

In addition to depending on positions in different marketplaces, the buyer’s expected value also

depends on sellers’ action choices. Specifically, we use a |∆|-tuple ȳ = 〈y1, ...y|∆|〉 ∈ Y to

represent the number of sellers choosing different actions, where yi is the number of sellers

choosing action δs
i , and Y is the set of all such possible tuples and we have

∑|∆|
i=1 yi = S . The

probability of this tuple appearing is:

ρs(ȳ) =
(

S
y1, ..., y|∆|

)
∗

|∆|∏
i=1

(
ωs

i

)yi
(4.6)

Now given the buyer’s joint positions v̄x̄ and the number of sellers choosing different actions ȳ,

we are ready to calculate the buyer’s expected value on traded goods. Since the buyer can enter

multiple marketplaces and thus purchase multiple goods, we need to consider its expected value

on different units of goods. Remember that each trader can only trade one unit of good in each

marketplace, and thus when there are M marketplaces in total, the possible number of goods the

buyer can purchase is from 1 to M. Specifically, in Section 4.1.1, we have defined the buyer’s

value vb(θb,T ) on T units of goods by considering different good properties (see Equation 4.1).

Now by considering all possible marketplace subsets with cardinality T , where exactly T trans-

actions are made by this buyer, we obtain the buyer’s expected value when it purchases T units

of goods given its joint positions v̄x̄ and the number of sellers choosing different actions ȳ:

Ṽ(v̄x̄, ȳ, θb, δb,Ωb,Ωs,T ) =
∑

MI⊂2M:|MI |=T

ϕb(v̄x̄, ȳ, δb,MI) ∗ vb(θb,T )

=
∑

MI⊂2M:|MI |=T

ϕb(v̄x̄, ȳ, δb,MI) ∗ αb
T ∗ θ

b (4.7)

where ϕb(v̄x̄, ȳ, δb,MI) indicates whether the buyer makes transactions in marketplacesMI and

does not make transactions in M − MI . Note that conditional on the buyer’s joint positions

1They are X>
m(x̄, db

m) + 1, X>
m(x̄, db

m) + 2,..., X>
m(x̄, db

m) + X=m(x̄, db
m) + 1.
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and the number of sellers choosing different actions, whether the buyer making a transaction

or not in each marketplace is independent of each other, and thus whether the buyer making

transactions inMI and not making transactions inM−MI is given by:

ϕb(v̄x̄, ȳ, δb,MI) =
∏

m∈MI

ψb(vm, ȳ,m, db
m) ∗

∏
m∈M−MI

χb(vm, ȳ,m, db
m) (4.8)

where ψb(vm, ȳ,m, db
m) indicates whether the buyer with bid db

m makes a transaction in mar-

ketplace m given its position vm and the number of sellers choosing different actions ȳ, and

χb(vm, ȳ,m, db
m) indicates whether the buyer with bid db

m does not make a transaction in market-

place m. Given the number of sellers choosing different actions, we will know what asks are

placed in marketplace m, from which we can calculate the number of asks which are not greater

than db
m:

Y≤m(ȳ, db
m) =

∑
δs

i ∈∆:ds
im≤db

m

yi (4.9)

Now whether the buyer making a transaction in marketplace m is given by:

ψb(vm, ȳ,m, db
m) =

 1 if Y≤m(ȳ, db
m) ≥ vm

0 if Y≤m(ȳ, db
m) < vm

and whether the buyer not making a transaction in marketplace m is:

χb(vm, ȳ,m, db
m) =

 1 if Y≤m(ȳ, db
m) < vm

0 if Y≤m(ȳ, db
m) ≥ vm

Finally, by considering all possible numbers of units the buyer is purchasing, all possible num-

bers of sellers choosing different actions, all possible joint positions and all possible numbers of

buyers choosing different actions, the buyer’s expected value is given by:

Ṽ(θb, δb,Ωb,Ωs) =
∑
x̄∈X

ρb(x̄) ∗
∑

v̄x̄∈Vx̄

Φ(v̄x̄) ∗
∑
ȳ∈Y

ρs(ȳ) ∗
M∑

T=1

Ṽ(v̄x̄, ȳ, θb, δb,Ωb,Ωs,T ) (4.10)

After deriving the expected value, in the following, we derive the expected payment of the

buyer given the action distributions of buyers and sellers, Ωb and Ωs, and the fee system P̄.

Firstly, we derive the buyer’s expected payment given its joint positions v̄x̄ and the number of

sellers choosing different actions ȳ. This is equal to the sum of the expected payment in each

marketplace, which is:

P̃b(v̄x̄, ȳ, θb, δb,Ωb,Ωs, P̄) =
M∑

m=1

P̃b
m(vm, ȳ, θb, db

m,Ω
b,Ωs, pm)

where P̃b
m(vm, ȳ, θb, db

m,Ω
b,Ωs, pm) is the expected payment of the buyer given its bid db

m and its

position vm in marketplace m. Specifically, when db
m = 
, i.e. not bidding in this marketplace,

the expected payment is 0; when db
m , 
, by sorting the asks ascendingly, we will know what
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exact ask will be (if it can be) matched with the bid db
m. We denote the ask matched with bid db

m

in marketplace m as ds
m. As a result, P̃b

m(vm, ȳ, θb, db
m,Ω

b,Ωs, pm) is given by:

P̃b
m(vm, ȳ, θb, db

m,Ω
b,Ωs, pm) =


0 if db

m = 

P̃b

m(vm, ȳ, θb, db
m,Ω

b,Ωs, ds
m, pm) + rm + ε if db

m ≥ ds
m

rm + ε otherwise

where P̃b
m(vm, ȳ, θb, db

m,Ω
b,Ωs, ds

m, pm) is the buyer’s expected payment in marketplace m ex-

cluding registration fee rm and constant cost ε when it is matched with ds
m, which is given by:

P̃b
m(vm, ȳ, θb, db

m,Ω
b,Ωs, ds

m, pm) = TP + tm + TP ∗ om + (db
m − TP) ∗ qm (4.11)

where TP = ds
m ∗ km + db

m ∗ (1 − km) is the transaction price, tm is the transaction fee, TP ∗ om is

the payment of transaction price percentage fee, and (db
m − TP) ∗ qm is the payment of profit fee.

Now by considering all possible numbers of sellers choosing different actions, all possible joint

positions and all possible numbers of buyers choosing different actions, the buyer’s expected

payment is given by:

P̃b(θb, δb,Ωb,Ωs, P̄) =
∑
x̄∈X

ρb(x̄) ∗
∑

v̄x̄∈Vx̄

Φ(v̄x̄) ∗
∑
ȳ∈Y

ρs(ȳ) ∗ P̃b(v̄x̄, ȳ, θb, δb,Ωb,Ωs, P̄) (4.12)

Finally, the expected utility of the buyer with type θb using action δb is:

Ũb(θb, δb,Ωb,Ωs, P̄) = Ṽb(θb, δb,Ωb,Ωs) − P̃b(θb, δb,Ωb,Ωs, P̄) (4.13)

Now we have derived equations to calculate expected utilities of traders. This way of calculating

traders’ expected utilities is intuitive and thus can be easily explained. However, the computation

is heavy since we need to consider all the possible numbers of traders choosing different actions.

In more detail, given shout space Φ and M competing marketplaces, there are |Φ|M actions for

traders. Then for B buyers, there are |X| = |Φ|M∗(B−1) possibilities for buyers’ action choices

(excluding the buyer itself), and |Y| = |Φ|M∗S for sellers. In Appendix B, in order to reduce

the computation, we introduce an alternative approach to calculate traders’ expected utilities

(which is somewhat less intuitive and thus is relatively harder to explain). Specifically, we

compare buyers’ actions in terms of comparing bids in these actions. By doing so, we obtain 3M

different events for buyers’ action comparison. By considering the number of buyers choosing

actions satisfying each event, we can calculate the buyer’s joint positions. Now we reduce the

possibilities of buyers’ action choices from |Φ|M∗(B−1) to 3M∗(B−1). For sellers, instead of directly

looking at all possible numbers of sellers choosing different actions, we consider the possibilities

of the number of the sellers in different marketplaces. By doing so, we reduce the possibilities

from |Φ|M∗S to (S +1)M (note that the number of sellers in each marketplace is from 0 to S since

multi-home trading is allowed)2. For details of this approach, we refer to Appendix B. Note

2For example, in the following analysis, we consider 11 possible shouts plus 
, 2 competing marketplaces, 5
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that in our implementation of the algorithm, in order to reduce the computation, we adopt the

approach in Appendix B to calculate a trader’s expected utility. However, both approaches are

mathematically equivalent.

4.1.3 The Marketplace’s Expected Utility

After deriving equations to calculate the expected utilities of traders, we now calculate expected

utilities of marketplaces. Specifically, in the following, we derive equations to calculate market-

place m’s expected utility given its fee structure pm and the action distributions of buyers and

sellers, Ωb and Ωs. Intuitively, we can see that the expected utility depends on the number of

traders choosing each action. Similarly, we use a |∆|-tuple x̄ = 〈x1, ..., x|∆|〉 ∈ X′,
∑|∆|

i=1 xi = B, to

denote the number of buyers choosing different actions, where xi is the exact number of buyers

choosing action δb
i , and X′ is the set of all such possible tuples. We use ȳ = 〈y1, ..., y|∆|〉 ∈ Y,∑|∆|

i=1 yi = S , to denote the number of sellers choosing different actions. Given the number of

buyers and sellers choosing different actions, x̄ and ȳ, we will know the bids and asks placed

in marketplace m. Then marketplace m’s expected utility is calculated as follows. Since mar-

ketplace m uses equilibrium matching to match traders, we first sort the bids descendingly and

asks ascendingly in marketplace m, and then match high bids with low asks. Specifically, we

assume that there are T transactions in total in marketplace m, and in transaction t, we use TPt,

Λb
t and Λs

t to represent the transaction price, the buyer’s share of the trading surplus3, and the

seller’s share of the trading surplus respectively. These can be easily calculated. For exam-

ple, for a transaction made by buyer with bid db
t and seller with ask ds

t , the transaction price is

TPt = ds
t ∗km+db

t ∗ (1−km), the buyer’s share of trading surplus is Λb
t = db

t −TPt = (db
t −ds

t )∗km,

and the seller’s share of trading surplus is Λs
t = TPt−ds

t = (db
t −ds

t )∗ (1−km). The marketplace’s

utility is:

Um(pm, x̄, ȳ) =
∑

δb
i ∈∆:db

im,	

xi∗rm+
∑

δs
i ∈∆:ds

im,	

yi∗rm+

T∑
t=1

(tm∗2+Λb
t ∗qm+Λ

s
t ∗qm+TPt∗om∗2) (4.14)

where db
im is the bid placed in marketplace m through the action δb

i . In this equation, the former

two parts are profits from charging registration fees to buyers and sellers respectively, and the

last part is the profit from charging transaction fees, profit fees and transaction price percentage

fees.

Now we have obtained the marketplace’s expected utility given the number of buyers and sellers

choosing different actions, x̄ and ȳ. Furthermore, the probability of x̄ appearing is:

%b
m(x̄) =

(
B

x1, ..., x|∆|

)
∗

|∆|∏
i=1

(
ωb

i

)xi
(4.15)

buyers and 5 sellers. By using this alternative approach, we reduce the possibilities of buyers’ action choices from
128 = 429981696 to 38 = 6561, and reduce the possibilities for sellers from 1210 = 61917364224 to 62 = 36.

3The trading surplus of a transaction is the difference of the matched bid and ask in this transaction.
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and the probability of ȳ appearing is:

%s
m(ȳ) =

(
S

y1, ..., y|∆|

)
∗

|∆|∏
i=1

(
ωs

i

)yi
(4.16)

At this moment, we can get the marketplace’s expected utility given action distributions Ωb and

Ωs:

Ũm
(
pm,Ω

b,Ωs) = ∑
x̄∈X′

%b
m(x̄) ∗

∑
ȳ∈Y

%s
m(ȳ) ∗ Um(pm, x̄, ȳ) (4.17)

Furthermore, given action distributionsΩb andΩs, we can obtain the expected number of traders

choosing marketplace m, which we will use when analysing the effects of different types of fees

on making profits and keeping traders (see Section 4.4.1). Specifically, given the number of

buyers and sellers choosing different actions, x̄ and ȳ, the number of traders in marketplace m

is:

Qm
(
x̄, ȳ

)
=

∑
δb

i ∈∆:db
im,


xi +
∑

δs
i ∈∆:ds

im,


yi (4.18)

Then by considering all possible numbers of buyers and sellers choosing different actions, we

obtain the expected number of traders in marketplace m:

Q̃m
(
Ωb,Ωs) = ∑

x̄∈X′
%b

m(x̄) ∗
∑
ȳ∈Y

%s
m(ȳ) ∗ Qm

(
x̄, ȳ

)
(4.19)

Note that the above computation of the expected utility and the expected number of traders in

the marketplace is also very heavy since we need to consider all possible numbers of traders

choosing different actions. However, we usually calculate these when traders adopt equilibrium

strategies, where only a few actions are chosen by traders (as we will show in the equilibrium

analysis, see Section 4.3). Therefore, this way of calculating the marketplace’s expected utility

and the expected number of traders is still feasible.

4.2 The Fictitious Play Algorithm

In this section we describe how we can use fictitious play (FP) to approximate the equilibrium

market selection and bidding strategies for traders in our setting. As we discussed in Section

2.1.2, the standard FP algorithm (von Neumann and Brown, 1950; Brown, 1951) is not suitable

for analysing Bayesian games in which the player’s type is not known to the other players. To

address this, Rabinovich et al. (2009) provided a generalised fictitious play algorithm to analyse

games with continuous types, a finite action space and incomplete information. However, in

Rabinovich et al. (2009), researchers only showed how to use this algorithm to analyse traders’

strategies in single-sided auctions. Building on this, in the following, we apply this algorithm
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to approximate traders’ equilibrium strategies in the much more complex environment with

multiple competing double auction marketplaces.

We now describe how to use the generalised FP algorithm in our setting. We first describe how

to compute the best response actions against current FP beliefs. Then we describe how to update

FP beliefs according to the best response action distributions. Furthermore, we introduce how to

measure the convergence in our setting. Finally, we show the structure of the entire algorithm.

We first describe how to compute the best response actions against current FP beliefs. Previ-

ously, we used Ωb and Ωs to denote the probability distributions of buyers’ and sellers’ actions

respectively. In the FP algorithm, we use them to represent FP beliefs about the buyers’and

sellers’ actions respectively. Then, given their beliefs, we compute the buyers’ and the sellers’

best response functions. In the following, we describe how to compute the buyers’ best response

function σb∗, where σb∗(θb,Ωb,Ωs) = argmaxδb∈∆Ũ(θb, δb,Ωb,Ωs) is the best response action

of the buyer with type θb against FP beliefs Ωb and Ωs. The optimal utility that a buyer with

type θb can achieve is Ũ∗(θb,Ωb,Ωs) = maxδb∈∆Ũ(θb, δb,Ωb,Ωs). Considering the equations to

calculate the buyer’s expected utility in Section 4.1.2, we note that the buyer’s expected utility

Ũ(θb, δb,Ωb,Ωs) is linear in its type θb for a given action. Given this, and given a finite number

of actions, the best response function is the upper envelope of a finite set of linear functions,

and thus is piecewise linear. An example with 4 actions, δb
1, δb

2, δb
3 and 
, is given in Figure

4.1. Given each action, the buyer’s expected utility with respect to its type is shown by line1,

line2, line3 and line
 (i.e. x-axis) respectively. The optimal utility achieved by the buyer is

represented by the set of thick piecewise linear segments. Each line segment corresponds to a

type interval, where the best response action of each type in this interval is the same. In this

figure, the best response action δb
i corresponds to the interval Ψb

i (i = 1, 2, 3) and the best re-

sponse action 
 corresponds to Ψb

. More generally, we can create the set of distinct intervals

Ib, which constitute the continuous type space of buyers, i.e.
⋃
Ψb∈Ib Ψb = [0, 1], which satisfy

the following conditions:

• For any interval Ψb, if θb
1, θ

b
2 ∈ Ψ

b, then σb∗(θb
1,Ω

b,Ωs) = σb∗(θb
2,Ω

b,Ωs), i.e. types in

the same interval have the same best response action.

• For any distinct Ψb
1,Ψ

b
2 ∈ Ib, if θb

1 ∈ Ψ
b
1, θb

2 ∈ Ψ
b
2, then σb∗(θb

1,Ω
b,Ωs) , σb∗(θb

2,Ω
b,Ωs)

Now we have computed the best response function and also provided the set of intervals of types

corresponding to the best response actions. Based on this, we can calculate the best response

action distribution of buyers, which is done as follows. We know that given the buyers’ type

distribution function Fb and probability density function f b, the probability that the buyer has

the type in the interval Ψb is
∫
Ψb f (x)dx, denoted by Fb(Ψb). When the best response action

corresponding to the interval Ψb
i is δb∗

i , the probability that the action δb∗
i is used by buyers is

ωb
i = Fb(Ψb

i ). By calculating the probability of each action being used, we obtain the current

best response action distribution of buyers, denoted by Ωb
br, which is against current FP beliefs.
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FIGURE 4.1: Piecewise linear expected utility functions.

We can then update the FP beliefs of buyers’ actions, which is given by:

Ωb
τ+1 =

τ

τ + 1
∗Ωb

τ +
1

τ + 1
∗Ωb

br

where Ωb
τ+1 is the updated FP beliefs of the buyers’ actions for the next iteration round τ + 1,

Ωb
τ is the FP beliefs on the current iteration round τ, and Ωb

br is the probability distribution of

best response actions against FP beliefs Ωb
τ. This equation actually gives the FP beliefs on the

current round as the average of FP beliefs of all previous rounds. The computation of the sellers’

best response function and belief updates is analogous. In our setting, we need to update both

buyers’ and sellers’ FP beliefs simultaneously.

We now describe how to check the convergence of Nash equilibrium. Recall that in Section

2.1.2, we introduced that it is unrealistic to run the fictitious play algorithm for an infinite number

of iteration rounds for the convergence, and therefore, it is often to run the algorithm for a limited

number of rounds to derive the ε-Nash equilibrium. Recall that in the ε-Nash equilibrium, it is

not possible for any player to gain more than ε in expected utility by unilaterally deviating from

its strategy (see Section 2.1). Therefore, in our setting, if the difference between the expected

utility of a buyer(seller) in current best response action distributions and its expected utility of

adopting best response action against current best response action distributions is not greater

than ε, the FP algorithm stops the iteration process, and the current best response actions with

corresponding type intervals constitute an ε-Bayes-Nash equilibrium. Specifically, in our work

we set ε as ε = 0.00001. Formally, the measure of convergence is given by:

|Ũb(Ωb
br,Ω

s
br) − Ũb

br(Ω
b
br,Ω

s
br)| ≤ ε and |Ũ s(Ωb

br,Ω
s
br) − Ũ s

br(Ω
b
br,Ω

s
br)| ≤ ε

Ũb(Ωb
br,Ω

s
br) is the expected utility of a buyer in the best response action distributions Ωb

br and

Ωs
br:

Ũb(Ωb
br,Ω

s
br) =

∫ 1

0
f b(x) ∗ Ũb(x, δb,Ωb

br,Ω
s
br)dx (4.20)

where δb is the action chosen by the buyer with type x (actually, it is the best response action of

this buyer against FP beliefsΩb
τ andΩs

τ, i.e. σb∗(x,Ωb
τ,Ω

s
τ)). Ũb

br(Ω
b
br,Ω

s
br) is the expected utility
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of a buyer adopting the best response action against the current best response action distributions

Ωb
br and Ωs

br:

Ũb
br(Ω

b
br,Ω

s
br) =

∫ 1

0
f b(x) ∗ Ũb(x, δb∗,Ωb

br,Ω
s
br)dx (4.21)

where δb∗ = σb∗(x,Ωb
br,Ω

s
br) is the best response action of the buyer with type x against action

distributions Ωb
br and Ωs

br. The equations for sellers are analogous.

Finally, given the calculation of best response actions, the update of FP beliefs and the measure

of convergence, Figure 4.2 shows the structure of the entire FP algorithm.

Initial:
set iteration count τ = 0
set the initial beliefs Ωb

0 and Ωs
0

1. loop
Compute best response functions σb∗(θb,Ωb

τ,Ω
s
τ) and σs∗(θs,Ωb

τ,Ω
s
τ) against

the action distribution Ωb
τ and Ωs

τ;
Generate the interval Ψb

i corresponding to the best response action δb∗
i ;

Generate the interval Ψs
i corresponding to the best response action δs∗

i ;
3. Compute current best response action distribution of buyers and sellers:

Ωb
br = (ωb

1, ..., ω
b
|∆|

), where ωb
i = Fb(Ψb

i ), i = 1, ..., |∆|
Ωs

br = (ωs
1, ..., ω

s
|∆|

), where ωs
i = F s(Ψs

i ), i = 1, ..., |∆|
4. Update beliefs:

Ωb
τ+1 =

τ
τ+1 ∗Ω

b
τ +

1
τ+1 ∗Ω

b
br

Ωs
τ+1 =

τ
τ+1 ∗Ω

s
τ +

1
τ+1 ∗Ω

s
br

5. Measure the convergence, if (so), then
6. return the best response actions δb∗

i and δs∗
i with corresponding type intervals Ψb

i and Ψs
i

7. end if
8. Set τ = τ + 1
9. end loop

FIGURE 4.2: The fictitious play algorithm.

4.3 Equilibrium Analysis of Market Selection and Bidding Strategy

In this section, we will use the FP algorithm to analyse the traders’ equilibrium strategies. We

first analyse traders’ equilibrium bidding strategies in a single marketplace. This will help us to

understand the analysis in the more complex setting with multiple competing marketplaces. In

the following, for illustrative purposes, we show our results in a specific setting with 5 buyers and

5 sellers, and 11 allowable bids(asks) unless mentioned otherwise4. Furthermore, we assume

that the small cost for traders to enter a marketplace is set to ε = 0.0001. For the transaction

price, we assume that km = 0.5, i.e. the transaction price is set in the middle of the matched

bid and ask, which means that the marketplaces have no bias in favour of buyers or sellers when

4We also tried other settings. However, we still obtained the similar results.
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allocating surpluses. Finally, we assume that both buyers and sellers’ types are independently

drawn from a uniform distribution.

4.3.1 A Single Marketplace

As we introduced in Section 2.3.2.1, many heuristic bidding strategies for double auctions have

been proposed in the literature (GD, ZIP, ZI-C and so on). However, they all fail to answer what

exactly traders should bid in equilibrium. This is important since how traders bid in a given

marketplace will affect their expected utilities and this, in turn, their selection of marketplaces.

Furthermore, market fees may also affect traders’ bidding strategies. Therefore, in this section,

we first analyse the equilibrium bidding strategies of traders in a single marketplace without

fees, and then analyse the strategies when the marketplace charges different types of fees.

We first consider the case where the marketplace charges no fees to traders. We use the FP

algorithm to analyse the traders’ equilibrium strategies, and find that starting from different

initial beliefs of traders’ actions, all traders who choose the marketplace eventually converge to

the same pure Nash equilibrium bidding strategy, which is shown in Figure 4.3. The gray line

represents buyers’ bids in equilibrium and the black line represents sellers’ asks in equilibrium.

From this figure, we can see what traders will bid corresponding to their types in equilibrium.

We find that buyers shade their bids by decreasing their bids, and sellers shade their asks by

increasing their asks, in order to keep profits. We also find that when buyers’ types are lower

than a certain point and sellers’ types are higher than a certain point, they will not enter the

marketplace because of the small cost ε.

Now we consider how different types of fees (registration, transaction, profit and transaction

price percentage fees) can affect the traders’ equilibrium bidding strategies. First we consider

that the marketplace charges a registration fee. For example, when we assume that it charges

0.1 registration fee, then the traders’ equilibrium bidding strategies are shown in Figure 4.4. We

can see that, compared to the case where no fees are charged (see Figure 4.3), there exists a

bigger range of types of traders not choosing this marketplace. This is because the registration

fee causes negative profits for them. In addition, we further find that when registration fees are

charged, both buyers and sellers will shade less (compared to Figure 4.3) in order to increase

the probability of being matched.

After analysing the traders’ equilibrium bidding strategies in the marketplace charging a reg-

istration fee, we now consider the case that the marketplace charges a transaction fee. As an

example, we assume that the marketplace charges 0.1 transaction fee. The results are shown in

Figure 4.5. We find that compared to the case that no fees are charged (see Figure 4.3), there

exists a bigger range of types of traders not choosing the marketplace. However, compared to

the case that a registration fee is charged (see Figure 4.4), more traders are willing to submit

shouts since the payment only happens after they make transactions.

Then we consider the case that the marketplace charges a profit fee. As an example, we assume
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FIGURE 4.3: Equilibrium strategies with the same number of buyers and
sellers.

FIGURE 4.4: Equilibrium strategies of traders with registration fees.

that the marketplace charges 50% profit fee. The results are shown in Figure 4.6. We still find

that compared to the case that no fees are charged (see Figure 4.3), there exists a bigger range of

types of traders not choosing the marketplace. However, compared to the case that a transaction

fee is charged (see Figure 4.4), more traders are willing to submit shouts. This is because the

profit fee is a percentage fee charged on the observed trading surplus (which is the difference

of the matched bid and ask), and when traders shade their shouts, a profit fee will not cause

negative profits for them. Furthermore, we find that charging profit fees causes traders to shade

their shouts more. This is because when a profit fee is charged, the marketplace extracts profits

from traders according to their trading surpluses, which are the differences of matched bids

and asks. Then in order to keep more profits, the traders try to reduce the trading surpluses by

lowering bids or increasing asks.

Now we consider the case that the marketplace charges a transaction price percentage fee. As

an example, we assume that the marketplace charges 20% transaction price percentage fee. The

results are shown in Figure 4.7. We find that compared to the case where no fees are charged

(see Figure 4.3), there exists a bigger range of types of traders not choosing the marketplace.

Furthermore, we find that in this case, in contrast to the above cases, the behaviour of buyers and

sellers are not symmetric. Sellers shade their asks less than buyers. For example, when types

of sellers are within [0.1, 0.19], sellers submit asks 0.3 (i.e. the shading is from 0.11 to 0.2),

compared to that when types of buyers are within [0.81 0.9], buyers submit bids 0.6 (i.e. the

shading is from 0.21 to 0.3). The reason is as follows. The transaction price is at the middle of

the shouts of the matched buyer and seller. When a transaction price percentage fee is charged,

in order to reduce the payment, buyers will shade to decrease their bids in order to reduce the

transaction prices. However, for sellers, on one hand, they want to shade more by increasing



116 Chapter 4 Analysis of Competing Marketplaces with Continuous Trader Types

FIGURE 4.5: Equilibrium strategies of traders with transaction fees.

FIGURE 4.6: Equilibrium strategies of traders with profit fees.

their asks; on the other hand, they want to shade less to decrease transaction prices to reduce the

payment. They have to make a trade-off. That’s why in this case, buyers shade their bids more

in contrast to that sellers shade their asks less.

Note that in the above analysis, we choose a specific value for each type of fees. We also try

other values of fees. We find that higher fees will cause more traders not to participate in the

marketplace. However, for the bidding behaviour of traders still participating in the market-

place, the conclusions obtained in the above analysis are still applied. For example, when a

higher registration fee is charged, traders have to shade their shouts less in order to increase the

probability of being matched; when a higher transaction price percentage fee is charged, sellers

will shade much less than buyers; and when a higher profit fee is charged, traders will shade

their shouts more in order to keep more profits.

In the above, we considered the case with the same number of buyers and sellers. In often hap-

pens that there are different numbers of buyers and sellers in the marketplace. In this situation,

buyers and sellers have different market power, which will affect their bidding strategies. We

now analyse this issue in our setting. For example, we consider the case that there are 8 buyers

and 5 sellers and no fees are charged to traders. Then the traders’ equilibrium bidding strategies

are shown in Figure 4.8. Compared to Figure 4.3, as can be expected, we see that because there

are more buyers than sellers, the competition between buyers is more severe, and thus they have

to raise their bids. For sellers, since they have a higher probability of being matched, they raise

their asks. At this moment, sellers have more market power, and can therefore extract more

profit from their transactions.
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FIGURE 4.7: Equilibrium strategies of traders with transaction price per-
centage fees.

FIGURE 4.8: Equilibrium strategies with 8 buyers and 5 sellers.

4.3.2 Competing Marketplaces

In the above, we analysed how traders submit shouts in a single marketplace in equilibrium. This

analysis will provide foundations for analysing how traders submit shouts in the environment

with competing marketplaces. As we will show, in the competing marketplace context, when

traders converge to one marketplace, their bidding strategies are exactly the same as that in a

single marketplace environment. Based on this, we now analyse traders’ equilibrium market

selection and bidding strategies in the competing marketplace environment with two compet-

ing marketplaces5. As mentioned in Section 1.2, there are three types of trading environments:

single-home, multi-home and hybrid trading environments. Furthermore, when multiple goods

are traded by the same trader across multiple marketplaces, goods can be either independent,

substitutable or complementary. In the single-home trading environment, since we assume that

only one unit of the good is traded by each trader, we do not need to consider the good prop-

erties. However, in the multi-home and hybrid trading environments where multiple goods can

be traded by each trader, we need to consider these different good properties. In the following,

we first analyse traders’ equilibrium strategies in the single-home trading environment. Then

we extend the analysis to the multi-home and hybrid trading environments with different good

properties.

5We also considered the case with more than two competing marketplaces. However, the results are similar to the
case with two competing marketplaces and therefore we omit them.
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FIGURE 4.9: Equilibrium strategies of traders with different types of fees.

4.3.2.1 Single-Home Trading

We now consider traders’ equilibrium strategies in the single-home trading environment, where

traders can only enter one marketplace at a time. In this environment, traders can only trade

one unit of good, and thus its value on the good is its type, i.e. αb
1 = αs

1 = 1. In order to

understand the effects of fees on the traders’ strategies, we first consider the basic setting where

the marketplaces charge no fees to traders, before we consider fees. By using FP, we find that,

except for some traders (buyers with low types and sellers with high types) choosing no mar-

ketplace, all other traders eventually converge to one marketplace in equilibrium. Since the two

marketplaces are identical at this moment, the traders will eventually converge to marketplace

1 or 2 with the same probability. In addition, we find that the traders’ bidding strategies in the

converged marketplace are the same as the case with a single marketplace (i.e. Figure 4.3).

We now consider what happens to the traders’ behaviour when they are charged fees. First we

consider the cases where both marketplaces charge the same type of fees (registration, trans-

action, profit or transaction price percentage). We run simulations with many possible initial

beliefs, and find that traders eventually converge to one marketplace, which depends on initial

FP beliefs and market fees. Since traders converge to one marketplace, the equilibrium bidding

strategies are the same as the case with a single marketplace (i.e. Section 4.3.1).

Now we consider the cases where marketplaces charge different types of fees. Firstly, we con-

sider that marketplace 1 charges a profit fee and marketplace 2 charges a registration fee. For

example, we consider that marketplace 1 charges a relatively high profit fee of 90%, and mar-

ketplace 2 charges a registration fee of 0.1. If initial beliefs are uniform (i.e. all actions are

equally probable), we find that all traders eventually converge to marketplace 1, and the equi-

librium bidding strategies are shown in Figure 4.9. The reason for the traders converging to

marketplace 1, which seems more expensive, is as follows. When a high profit fee is charged,

the traders shade their shouts more to keep profits (as can be seen in Figure 4.9). However,

shading has no effect in the case of registration fees. Therefore, traders prefer the marketplace

charging profit fees compared to registration fees. Furthermore, we ran simulations with many

other fee combinations and different initial beliefs, and always find that all traders converge to

one marketplace. This is different from the analysis in Section 3.2.3.2, where when different

types of fees are charged, traders may converge to different marketplaces in equilibrium (rich
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traders converge to the marketplace charging a registration fee, and poor traders converge to

the marketplace charging a profit fee). The reason is that traders can hide their actual trading

surpluses by shading their shouts, and thus even when a high profit fee is charged, traders still

can keep profits. As per the analysis in Chapter 3, the positive size effect has a larger impact

than the negative size effect, and all traders will converge to one marketplace.

Furthermore, we consider the cases of other combinations of different types of fees, such as

marketplace 1 charging a profit fee, and marketplace 2 charging a transaction price percentage

fee, or marketplace 1 charging a registration fee, and marketplace 2 charging a transaction price

percentage fee, and so on. However, we still find that traders eventually converge to one mar-

ketplace, and the equilibrium bidding strategies for traders is the same as the case of a single

marketplace.

4.3.2.2 Multi-Home Trading

So far we have analysed equilibrium strategies for traders in the single-home trading environ-

ment. Now we extend the analysis to the multi-home trading environment where both buyers

and sellers can enter multiple marketplaces at a time. In such an environment, multiple goods

may be traded by each trader. Therefore we now need to consider the properties of goods since

these will affect traders’ strategies. Specifically, here we assume that for sellers, all goods are

independent (i.e. when obtaining one unit of good, αs
1 = 1, and when obtaining two units of

goods, αs
2 = 2) since a seller’s value on sold goods is usually equal to the sum of its value on

each individual sold good (i.e. additive). Thus in the multi-home trading environment, sellers

are willing to enter any marketplace which can provide positive profits for them. For buyers,

goods can be either independent, substitutable or complementary. In the following, we will

analyse traders’ equilibrium strategies by considering different good properties for buyers. Fur-

thermore, since we focus on the effects of different trading environments and good properties

on the traders’ equilibrium strategies, we assume that both competing marketplaces charge no

fees (the analysis of the cases with fees is similar).

Independent Goods:

In the multi-home trading environment with independent goods, buyers’ values on goods are

additive, i.e. the good property coefficient αb
1 = 1, αb

2 = 2. In such an environment, buyers

and sellers will enter both marketplaces when their expected utilities (equal to expected values

minus the expected payments) in both marketplaces are positive. The analysis of their bidding

strategies is then identical to the single marketplace setting (i.e. Section 4.3.1).

Substitutable Goods:

Now we analyse the equilibrium strategies for traders in the multi-home trading environment

with substitutable goods for buyers (i.e. αb
1 = 1, and 1 ≤ αb

2 < 2). Here we consider perfectly

substitutable goods, i.e. αb
1 = 1 and αb

2 = 1. This means that when the buyer with type θb
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wins one good, it obtains value θb and pays for the good; and when this buyer wins two goods,

it only obtains value θb, but pays for two goods. When both 5 buyers and 5 sellers are multi-

home trading, totally, there are 2 ∗ 122 = 288 different actions that traders can take, in contrast

to 2 ∗ 12 ∗ 2 = 48 different actions in the single-home environment. Since sellers are multi-

home trading with independent goods and both competing marketplaces are identical, in order

to reduce the action space, we simplify the analysis by assuming that 5 sellers only submit asks

in marketplace 1, and another 5 sellers only submit asks in marketplace 2. Now the total number

of actions for traders is reduced from 288 to 122 + 24 = 168. The results is shown in Figure

4.10(a) and 4.10(b). We can find that, in this setting, the same buyer (or buyers with the same

type) will bid differently in two marketplaces. The reason is as follows. Because of perfectly

substitutable goods, buyers would like to purchase and pay for only one good. Therefore, buyers

with high types will choose to only bid in one marketplace, and will bid slightly higher than the

buyers with lower types. By so doing, they can win one good successfully and only pay for

this good. For example, when the types are within [0.928, 1.0], they bid 0.6 in marketplace

1. However, for buyers with lower types, in order to make transactions, they have to bid in

both marketplaces in order to increase the probability of being matched. In this situation, they

may make transactions in both marketplaces, which means that they have to pay for two goods.

Then in order to make transactions and decrease the payment, they may choose to bid slightly

higher in one marketplace, and lower in another one. That’s why buyers bid differently in two

marketplaces. Furthermore, we note that some of these buyers with lower types will bid higher

in one marketplace, and the other will bid higher in another one. This is because all buyers

bidding higher in one marketplace results in fierce competition between them, and thus some

of them will choose to bid higher in another one in order to increase the probability of being

matched.

Complementary Goods:

Now we analyse the setting with complementary goods for buyers. We first consider the case

with perfectly complementary goods, i.e. αb
1 = 0 and αb

2 = 1. This means that when the buyer

with type θb wins one good, it obtains zero value, but needs to pay for the good; and when

this buyer wins two goods, it obtains value θb, and pays for two goods. Furthermore, in or-

der to reduce the action space, we still assume that 5 sellers only submit asks in marketplace

1, and another 5 sellers only submit asks in marketplace 2. The results are shown in Figures

4.11(a) and 4.11(b). We can see that with perfectly complementary goods, only buyers with

high types will bid in marketplaces, and they will bid in both marketplaces (if they only bid in

one marketplace and make a transaction, they need to pay for the good, but obtain zero value

because of the perfectly complementary goods). Buyers with relatively low types will not enter

marketplaces since even though they bid in both marketplaces, because of their low types and

perfectly complementary goods, they are more likely to obtain negative profits. Furthermore,

we find that buyers shade their bids more. For example, when buyers’ types are within [0.825,

1.0], buyers will bid 0.5 in both marketplaces. The reason is as follows. With perfectly comple-

mentary goods, the buyer with type θb purchasing two goods, only obtains value θb, but has to
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(a) Buyers

(b) Sellers

FIGURE 4.10: Equilibrium strategies of traders in the multi-home trading environment with
perfectly substitutable goods for buyers.

pay for two goods. In order to keep profits, buyers should shade their bids more. Furthermore,

we extend this analysis to another case that αb
1 = 1 and αb

2 = 4, i.e. when the buyer with type θb

wins one good, it obtains value θb and pays for the good; and when this buyer wins two goods, it

obtains value 4 ∗ θb (four times of its type), but only pays for two goods. The results are shown

in Figures 4.12(a) and 4.12(b). Compared to the perfectly complementary goods, we find that

buyers still bid in two marketplaces. However, they will not shade their bids. Instead, buyers

increase their bids in order to increase the probability of being matched. Particularly, when

buyers’ types are within [0.408,1.0], buyers bid 1.0 in each marketplace. This is because when

purchasing two complementary goods, buyers’ values for goods are very high (i.e. 4 ∗ θb). In

this situation, in terms of obtaining more utility, it is better for the buyers to increase the bids to

increase the probability of making transactions than to shade bids. Furthermore, this will cause

a bigger range of sellers to ask since when buyers increase their bids, sellers with high types still

can make transactions.

4.3.2.3 Hybrid Trading

Now we analyse the equilibrium strategies for traders in the hybrid trading environment where

one side can only participate in one marketplace, and the other side can participate in multiple

marketplaces. Specifically, we consider the case that buyers can participate in multiple market-

places and sellers can only participate in one marketplace at the same time. Note that the results

of the opposite case where sellers can choose multiple marketplaces and buyers can only choose

one are similar.
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(a) Buyers

(b) Sellers

FIGURE 4.11: Equilibrium strategies of traders in the multi-home trading environment with
perfectly complementary goods for buyers.

(a) Buyers

(b) Sellers

FIGURE 4.12: Equilibrium strategies of traders in the multi-home trading environment with
complementary goods for buyers.
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(a) Buyers

(b) Sellers

FIGURE 4.13: Equilibrium strategies of traders in the hybrid trading environment with inde-
pendent goods for buyers.

Independent Goods:

We now analyse the case with independent goods for buyers (i.e. αb
1 = 1, αb

2 = 2). The

results are shown in Figures 4.13(a) and 4.13(b). From these figures, we can see that sellers

eventually split and place asks in different marketplaces in equilibrium. In this situation, two

competing marketplaces co-exist. This co-existence is caused by the negative size effect. In

more detail, the sellers have to compete with each other in order to be matched with buyers

and make transactions, and thus they prefer those marketplaces with fewer sellers. Because

identical buyers stay in both competing marketplaces in this case, then the attractiveness from

the buyers to the sellers (i.e. the positive size effect) in both marketplaces is the same. At this

moment, the internal competition between the sellers (i.e. the negative size effect) takes effect,

which drives the sellers to stay in different marketplaces. Another interesting phenomenon is

that compared to the traders’ equilibrium strategies in Figure 4.3, we find that buyers raise their

bids and sellers also raise their asks in this case. The reason is as follows. As the sellers are split

in two marketplaces, then in each marketplace the number of sellers is less than the number of

buyers. Thus as per our previous analysis (see Figure 4.8), sellers have more market power than

buyers, and so buyers raise their bids in order to be matched and sellers raise their asks to extract

more profits from transactions.

Substitutable Goods:

Now we analyse the cases when goods are substitutable for buyers. We first analyse the case

with perfectly substitutable goods (i.e. αb
1 = 1, αb

2 = 1). In this case, we find that in equilibrium

traders will only choose one marketplace, and the bidding strategies are the same as the case with
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(a) Buyers

(b) Sellers

FIGURE 4.14: Equilibrium strategies of traders in the hybrid trading environment with substi-
tutable goods for buyers.

a single marketplace charging no fees (see Figure 4.3). The reason is as follows. When goods

are perfectly substitutable for buyers, buying more than one good does not mean obtaining more

value for buyers, but does mean paying more. Thus buyers will prefer to bid in one marketplace.

This will cause sellers to converge to that marketplace. Furthermore, since in the above analysis

when buyers’ expected values on goods are additive, we find that buyers will bid in multiple

marketplaces. Thus we hypothesise that as buyers’ values on multiple goods increase, they will

begin to prefer to bid in multiple marketplaces, and sellers may split in two marketplaces because

of the negative size effect. This is confirmed by running experiments with different values of

αb
2. We find that when αb

2 ≥ 1.8, buyers will begin to bid in two marketplaces. Specifically,

when αb
2 = 1.8, the traders’ equilibrium bidding strategies are shown in Figures 4.14(a) and

4.14(b), from which we can see that buyers bid in two marketplaces and sellers distribute in two

marketplaces.

Complementary Goods:

Finally, we analyse the case with complementary goods for buyers in the hybrid trading environ-

ment. Firstly, we consider perfectly complementary goods for buyers (i.e. αb
1 = 0 and αb

2 = 1).

When there are 5 buyers and 5 sellers, we find that in equilibrium, no traders will choose any

marketplace. The reason is as follows. With perfectly complementary goods, buyers have to

bid in both marketplaces and need to shade their bids more in order to make positive profits.

However, since sellers are single-home trading, sellers have more market power when they split

in two marketplaces, and buyers have to increase their bids in order to increase the probability

of being matched. Now buyers cannot shade at a high degree. When they purchase two goods,
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(a) Buyers

(b) Sellers

FIGURE 4.15: Equilibrium strategies of traders in the hybrid trading environment with per-
fectly complementary goods for buyers.

their values of the two goods are equal to their types, but have to pay for two goods. In this

situation, buyers may have negative profits. Now buyers will not choose any marketplaces, and

then sellers will also not choose any marketplaces. If we increase the number of sellers (to de-

crease their market power) and decrease the number of buyers (to increase their market power),

for example, we consider 2 buyers and 10 sellers, the results are shown in Figures 4.15(a) and

4.15(b). We can see that buyers will bid in two marketplaces, and shade more to keep profits.

Because of the negative size effects, sellers will distribute in two marketplaces. Furthermore, in

the case with 5 buyers and 5 sellers, we change the property coefficient as αb
1 = 1 and αb

2 = 4

(i.e. when purchasing two goods, the buyer with type θb can obtain value 4 ∗ θb). The results are

shown in Figures 4.16(a) and 4.16(b). We can see that buyers will bid in two marketplaces, and

instead of shading, they increase their bids to increase the probabilities of making transactions,

since when making transactions in both marketplaces, they will obtain very high values (i.e. four

times their types). For sellers, since buyers’ bids in both marketplaces are identical, each type

of seller has equal probability to ask in each marketplace. For example, when sellers’ types are

within [0, 0.257], sellers can ask 0.6 in marketplace 1 or ask 0.6 in marketplace 2. Furthermore,

since buyers increase their bids, sellers increase their asks to make more profits.

4.4 Equilibrium Analysis of Charging Strategies

In Section 4.3.1, we analysed the traders’ equilibrium bidding strategies in a single marketplace

with different types of fees charged. From the analysis, we find that when registration fees or
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(a) Buyers

(b) Sellers

FIGURE 4.16: Equilibrium strategies of traders in the hybrid trading environment with com-
plementary goods for buyers.

transaction fees are charged, traders may choose to leave the marketplace; when profit fees are

charged, traders will shade their shouts more, and high profit fees cannot guarantee high market

profits; and when transaction price percentage fees are charged, compared to buyers, sellers

shade less in order to reduce transaction prices, and thus reduce the payments. From all of this,

we can see that it is not obvious which type of fees is the most effective in terms of maximising

market profits and keeping traders. Given this, in the following, we first analyse this problem in

a single marketplace, which will help us find the most effective type of fees that we can use in

the competition. Then we will analyse how competing marketplaces set fees in equilibrium.

4.4.1 A Single Marketplace

As before, we analyse a single marketplace with 5 buyers and 5 sellers, but now consider the

profit made by the marketplace when different types of fees are charged. We start by analysing

registration fees. Specifically, we discretize registration fees from 0 to 1 with step size 0.01.

For each registration fee, we use FP to analyse the equilibrium strategies for traders. Then

according to the traders’ action distributions in equilibrium, we use Equations 4.17 and 4.19 to

calculate the expected profit for the marketplace and the expected number of traders entering the

marketplace respectively. By so doing, we know for each level of registration fee, how much

profit the marketplace can extract from traders and how many traders will enter the marketplace.

These are shown in Figure 4.4.1, where Figure 4.17(a) shows the expected market profit and

Figure 4.17(b) shows the expected number of traders for different registration fees. From these

results, we can see that, as the marketplace increases its registration fee, the market profit first
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(a) Market profit (b) Number of traders

FIGURE 4.17: Market profit and number of traders in a single marketplace charging a registra-
tion fee.

(a) Market profit (b) Number of traders

FIGURE 4.18: Market profit and number of traders in a single marketplace charging a transac-
tion fee.

increases, and when the marketplace charges a 0.14 registration fee, it obtains the maximum

market profit. From Figure 4.17(b), we can see how this relates to the number of traders. Initially

when the marketplace charges no fees to traders, it contains around 7 traders (the small cost ε

causes the other 3 traders not to choose the marketplace). When the marketplace increases the

registration fee, we can see that traders leave the marketplace quickly. When the registration

fee increases to around 0.19, no traders will stay in this marketplace. As traders leave the

marketplace, from Figure 4.17(a), we can see that the market profit also decreases, and going to

0 when the registration fee increases to around 0.19.

Now we analyse how the marketplace sets its transaction fee to make a profit. The results are

shown in Figures 4.18(a) and 4.18(b). From this, we can see that the marketplace obtains the

maximum profit when it charges a transaction fee of around 0.22. When the transaction fee

reaches 0.6, no traders stay in the marketplace.

Furthermore, we analyse how the marketplace sets its profit fee to make a profit. The results

are shown in Figures 4.19(a) and 4.19(b). We can see that as the profit fee increases, the mar-

ket profit first increases to the maximum point, and then decreases. Furthermore, from Figure



128 Chapter 4 Analysis of Competing Marketplaces with Continuous Trader Types

(a) Market profit (b) Number of traders

FIGURE 4.19: Market profit and number of traders in a single marketplace charging a profit
fee.

(a) Market profit (b) Number of traders

FIGURE 4.20: Market profit and number of traders in a single marketplace charging a transac-
tion price percentage fee.

4.19(b), we can see that the marketplace can keep traders at a good level (around 6 traders

staying in the marketplace even when it charges 100% profit fee), since traders can shade their

shouts to hide actual trading surpluses, and thus reduce payments.

Finally, we analyse what happens when the marketplace charges a transaction price percentage

fee. From Figure 4.20(a) we find that when the marketplace charges a 43% transaction price

percentage fee, the maximum market profit is reached. Furthermore, from Figure 4.20(b), we

can see that traders still choose the marketplace even though a high transaction price percentage

fee is charged.

Now we compare the effects of different types of fees on obtaining market profits and keeping

traders. From Figures 4.19(a) and 4.19(b), we can see that when a profit fee is charged to

traders, the marketplace is more likely to keep traders. However, even though a very high profit

fee is charged, the extracted profit is still low. From Figures 4.17(a), 4.18(a) and 4.20(a), we

can see that the effects of the registration, transaction and transaction price percentage fees

on obtaining market profit are similar, In more detail, when this marketplace charges a 0.14

registration fee, or a 0.22 transaction fee, or a 43% transaction price percentage fee, it will obtain
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the maximum profit which is around 0.44. However, at this point, only around 3.1 traders stay

in the marketplace when a registration fee is charged, around 3.6 traders stay when a transaction

fee is charged, and around 4.6 traders stay when a transaction price percentage fee is charged.

Given this, we can conclude that the marketplace charging a transaction price percentage fee

is the best on obtaining market profits and keeping traders. Furthermore, we can see that a

transaction fee is better than a registration fee. Thus in the design of a charging strategy for the

CAT competition (in Section 5.4), we will let the marketplace charge a transaction fee, instead

of charging a registration fee. Note that although the transaction price percentage fee is the most

effective, it is not allowed in the CAT competition.

4.4.2 Competing Marketplaces

In the above, we analysed how a single marketplace sets its fee to maximise profit while keeping

traders. However, this analysis did not consider the competition between multiple marketplaces.

Given this, in this section, we will analyse how marketplaces set fees in equilibrium when com-

peting with each other. We analyse this in the single-home trading setting since such a trading

mechanism results in a highly competitive environment (where marketplaces have to compete

fiercely with each other to attract traders), and we are interested in analysing how both market-

places set fees in such an environment6. In the following analysis, we discretize fees from 0 to

1 with step size 0.1. Then we obtain different fee systems. For each fee system, we calculate

the marketplaces’ expected utilities. In more detail, for a given fee system, we repeat the exper-

iments by trying different initial fictitious play beliefs7. For each set of initial FP beliefs, we run

the fictitious play algorithm and obtain the traders’ equilibrium strategies. Given the equilibrium

strategies of the traders, by using Equation 4.17, we then calculate the marketplaces’ expected

utilities for the given fee system when starting from the particular FP beliefs. When repeating

the experiments from different initial FP beliefs, we obtain the average utilities of marketplaces

for this given fee system. We repeat this process for different fee systems, and obtain a payoff

table, from which we can analyse the equilibrium fee system for marketplaces. In the following,

we analyse how marketplaces set fees in three different cases: both marketplaces only charge

registration fees; only charge profit fees; and one marketplace charges a registration fee, and

the other charges a profit fee (which is the same as what we did in Chapter 3). The analysis of

marketplaces charging other types of fees is similar.

In the first case where both marketplaces only charge registration fees, there are 121 different

fee systems. The payoff table are shown in Table 4.1, from which, by using Gambit, we can see

that both marketplaces charging 0.1 registration fee constitutes a NEQ fee system.

In the second case, we assume that both marketplaces only charge profit fees. The payoff table

is shown in Table 4.2. Compared to the analysis using EGT in Section 3.3.1, we find that
6This analysis can also be easily extended to multi-home trading and hybrid trading environments.
7Similar to the analysis in Section 3.2.3, we also find the existence of a lock-in region, i.e. when traders start from

some FP beliefs, where they initially prefer some marketplace, then even though this marketplace charges a higher
fee, traders may eventually converge to this marketplace in equilibrium.
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in equilibrium, both marketplaces charge higher profit fees. This is because traders can now

shade their shouts, whereas before we assumed that traders had a truth-telling bidding strategy.

Specifically, both marketplaces charging a 60% profit fee with probability 0.067, a 70% profit

fee with probability 0.593 and a 80% profit fee with probability 0.340 constitutes a mixed Nash

equilibrium.

Now we consider the case that different types of fees are charged to traders. We consider that

marketplace 1 charges a registration fee and marketplace 2 charges a profit fee. The payoff table

is shown in Table 4.3. From this, we find that marketplace 1 charging a 0.1 registration fee, and

marketplace 2 charging a 90% profit fee constitutes a NEQ fee system.

4.5 Summary

In this chapter, we used a FP algorithm to analyse how traders select marketplaces and submit

shouts, and how competing marketplaces set fees in equilibrium in a setting with continuous

trader types. Specifically, we first analysed traders’ equilibrium bidding strategies in a single

marketplace, where we found that traders shade their shouts in equilibrium. We further analysed

the effect of different types of market fees on the traders’ equilibrium bidding strategies and

observed that registration fees cause a bigger range of traders to not choose the marketplace;

profit fees cause traders to shade their shouts more; and transaction price percentage fees cause

sellers to shade relatively less than buyers’ shading. Then we analysed the traders’ equilibrium

market selection strategies and bidding strategies in the single-home trading environment with

multiple marketplaces. We found that all traders eventually converge to bid in one marketplace.

Competing marketplaces cannot co-exist even though they charge different types of fees. This

is contrary to the conclusion in Chapter 3 that competing marketplaces may co-exist when one

marketplace charges a registration fee and another charges a profit fee. This difference occurs

because in this setting, traders can reduce the payment incurred by profit fees by shading their

shouts to hide their actual trading surpluses, and then traders will prefer the marketplace charg-

ing a profit fee. Furthermore, we extended the analysis by considering multi-home and hybrid

trading environments and different good properties. We then analysed the effects of different

types of fees on obtaining market profits and keeping traders in a single marketplace environ-

ment, and showed that the transaction price percentage fee is the most effective in terms of

making profits and at the same time keeping traders for the marketplace. Finally, we analysed

how competing marketplaces set fees in equilibrium, and found that since traders can shade their

shouts, the marketplace will charge a high profit fee.

This work addresses our research challenges of analysing equilibrium market selection and bid-

ding strategies for traders and equilibrium charging strategies for marketplaces (i.e. research

challenges 1, 2 and 4, see Section 1.2). Specifically, this is the first work that derives the equi-

librium bidding strategies for traders in double auctions and analyses the effect of market fees

on these strategies. This analysis is insightful and can be used to guide the design of a charging
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strategy. For example, we found that when charging a profit fee, the marketplace may not be

able to obtain a good level of profit even though a very high profit fee is charged, since traders

will shade their shouts more. However, the marketplace can keep the number of traders at a

good level. Another example is that charging a transaction fee is better than a registration fee to

make profits and keep traders. In the following chapter of designing a competing marketplace,

we will use these insights to design an effective charging policy.



Chapter 5

Designing a Competing Double
Auction Marketplace

So far, we have analysed the equilibrium charging strategies for marketplaces and obtained

a number of insights into individual and systemwide behaviour in a competing marketplace

situation (see Chapters 3 and 4). However, as noted in Section 1.1, in addition to the design

of a charging policy, we also need to design effective market policies that cover issues such as

timing, matching, pricing and shout accepting policies. Now as we discussed in Section 2.5.1,

there exist many such policies for competing marketplaces. However, we do not know which

of them will perform well when marketplaces using different policies compete with each other.

Therefore, we need to analyse how the different polices affect the performance of competing

marketplaces. Specifically, in this chapter, we will conduct an experimental analysis on this issue

in the context of the CAT competition since this provides an international benchmark for this

problem. However, before we can do this, we first need to know how traders select marketplaces

and submit shouts in this context since the traders’ strategies will affect the effectiveness of the

different market policies. Then, based on the analysis of traders’ strategies, we can undertake

an experimental analysis of market policies in different environments where different bidding

strategies are adopted. By doing so, we obtain further insights about which policy is effective

in guaranteeing traders’ profits and thus attracting traders and how traders’ bidding strategies

affect the effectiveness of market policies. We then use these insights to design market policies

for the CAT competition. This is in addition to the insights from Chapters 3 and 4 to designing

a charging policy for the CAT competition.

The structure of this chapter is as follows. In Section 5.1, we describe how traders select mar-

ketplaces and submit shouts in the CAT competition. Then, in Section 5.2, we analyse how

different market polices affect the performance of competing marketplaces when different bid-

ding strategies are adopted. Through this analysis, we obtain several insights. In Section 5.3,

we use the obtained insights to design market policies for the CAT competition. In Section 5.4,

we design a charging policy and evaluate it in the CAT competition context. In Section 5.5, we

135
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describe the competition result of 2010 when our competing marketplace adopted the market

policies and charging policy designed in this chapter. Finally, we summarise in Section 5.6.

5.1 Traders’ Strategies in the CAT Competition

In this section, we describe how traders behave in the CAT competition (these are provided by

the operators of the competition, not the competition entrants, see Cai et al. 2009; Niu et al.

2009). Firstly, we describe how traders select marketplaces. Then we analyse how traders

submit shouts when using different bidding strategies.

5.1.1 Selecting Marketplaces

Firstly, we describe how traders select marketplaces in the CAT competition. In particular, the

ε-greedy exploration strategy is adopted by all traders. This uses the parameter ε to adjust the

balance between exploration of searching for the most profitable marketplace and exploitation of

selecting what they believe is the most profitable marketplace (see Section 2.5.1). The parameter

ε is from 0 to 1, and in the CAT competition, it is usually set as 0.1. In more detail, in the

beginning of the competition, traders select each marketplace with equal probability. Then

in the following days, according to their historical knowledge, they select the most profitable

marketplace with probability 1 − ε, and explore other marketplaces with probability ε. Niu

et al. (2007) experimentally analysed the traders’ choices of marketplaces when they adopt this

strategy in the specific context of the CAT competition. They showed that through exploration,

traders will eventually locate the marketplace which is the most profitable. Therefore, since

traders are able to search for the highly efficient marketplace when adopting this market selection

strategy, competing marketplaces should provide effective market policies to maximise traders’

profits to attract them. Note that this strategy is similar to our equilibrium analysis of traders’

market selection strategies in Chapter 3, where we found that when we introduced randomisation

for traders’ market selection (i.e. traders randomly select marketplaces with some probability to

explore other marketplaces), traders can explore to locate the cheapest marketplace (see Section

3.2.3.3).

5.1.2 Submitting Shouts

In the CAT competition, four heuristic bidding strategies are adopted: ZI-C, RE, GD and ZIP

(see Section 2.3.2.1). In this section, we analyse how traders submit shouts when using these

different bidding strategies. We first need to set up the marketplace where traders submit shouts.

Specifically, we adopt the same market policies as those that were used in Chapters 3 and 4

(as we will show in Section 5.2, these market policies are highly efficient). In more detail, we

adopt the round clearing policy (see Section 2.3.2.2), equilibrium matching policy (see Section
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(a) ZI-C Strategy (b) RE Strategy

(c) ZIP Strategy (d) GD Strategy

FIGURE 5.1: Bids, asks and transaction prices in the marketplace with traders using different
bidding strategies.

2.3.2.2) and a k-pricing policy with k = 0.5 (see Section 2.3.2.2). For the shout accepting policy,

we use the quote-beating accepting policy since this policy is widely used in real exchanges (like

the NYSE, see also Section 2.3.2.2 for a detailed description of this policy). After setting up

the marketplace, we now consider the composition of traders in the experiments. Specifically,

we assume that there are 60 buyers and 60 sellers in this marketplace. Their private values

are independently drawn from a uniform distribution between 50 and 150, and each trader is

allowed to buy or sell up to 3 identical goods each day. Each experiment lasts for 100 days

with 10 round per day and 1 second per round1. In the trading round, traders will submit shouts

(and may improve their shouts in order to get matched). We run four experiments with all

traders adopting ZI-C, RE, ZIP and GD strategies respectively based on the JCAT platform2,

and randomly choose one trading day for which we plot the bids, asks and transaction prices of

all successful transactions in that day (the results are similar in other days).

1These setups are similar to those in the CAT competition.
2Here we use version 0.11 of JCAT platform. All the following experiments are also based on this version.
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The experimental results are given in Figure 5.1 where we show the bids, asks and transaction

prices of traders. From Figures 5.1(a) and 5.1(b), we can see that, although ZI-C and RE traders’

transaction prices are close to the equilibrium price, which is 100, their shouts are typically far

away from the equilibrium price (i.e. they shade their shouts very little). On the other hand,

from Figures 5.1(c) and 5.1(d), we can see that the shouts from the ZIP and GD traders are

concentrated in the area close to the equilibrium price (i.e. they shade their shouts a lot), and

their transaction prices do indeed converge to the equilibrium price. The reason is as follows.

Intra-marginal ZIP traders try to find shouts that provide high profits and also try to remain

competitive in the marketplace. Through learning, ZIP traders find that, when their bids (asks)

are a little higher (lower) than the equilibrium price, their profits are high and they are still

sufficiently competitive to make transactions. Thus ZIP traders’ shouts are concentrated in the

area close to the equilibrium price. For traders using GD strategy, recall that in Section 2.3.2.1,

we introduced the fact that the submitted shout depends on the belief of the shout accepted by

the marketplace and the hidden profit (which is the difference between the private value and the

shout). When their shouts are close to the equilibrium price, the hidden profits are high, and

as shouts close to the equilibrium price are accepted by the marketplace, traders’ beliefs about

shout acceptance within the area close to the equilibrium price increase. Eventually, more traders

will submit shouts close to the equilibrium price because of the high probability of acceptance

and high hidden profits. We also note that in the last rounds, no transactions take place in

the marketplace with trader adopting GD or ZIP strategy. This is because the more intelligent

GD and ZIP traders can sell or buy items more quickly than ZI-C and RE traders. Moreover,

we also run experiments by considering fees charged to traders. However, we find that fees

cannot affect traders’ shouts significantly when they use these heuristic bidding strategies, and

the experimental results are similar to those in Figure 5.1. Furthermore, given this analysis, we

further classify the four bidding strategies into two categories: the first is made of the ZI-C and

RE strategies, where shouts generated by them are distributed over a wide range; the second

consists of the ZIP and GD strategies, where their shouts are concentrated in the area close

to the equilibrium price. This classification is useful because it enables us to group the four

bidding strategies and can help us analyse the experiments of how each market policy affects

the performance of competing marketplaces in the following section.

5.2 Experimental Analysis of Market Policies

In this section, we experimentally analyse how different market policies affect the performance

of competing marketplaces in the context of the CAT competition. Specifically, we use alloca-

tive efficiency, market share, transaction success rate (TSR) and the number of transactions as

metrics to measure marketplaces’ performance. The reasons of adopting these metrics are as

follows. Allocative efficiency is commonly used in literature to measure the performance of

marketplaces; both market share and TSR are used as metrics in the CAT competition; and the

number of transactions is important for us to determine whether to charge fees or not. This
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analysis will provide us insights for designing effective market polices in the CAT competition.

Furthermore, recall that in Chapters 3 and 4, we conducted our equilibrium analysis by assuming

that marketplaces adopt the specific market policies (i.e. round clearing, equilibrium matching

and k-pricing policy with k = 0.5). Through the experimental analysis in this section, we will

know whether these specific market policies perform well, and if so, then our assumption is

reasonable. Note that since the effectiveness of market policies are affected by the traders’ bid-

ding strategies, we need to conduct the analysis in different environments with different bidding

strategies. In the following, we first describe the different market policies that we will analyse.

Then we run experiments in different environments to analyse how different market policies

affect the marketplaces’ performance.

5.2.1 Market Policies

In this section, we introduce the market policies that we want to analyse. For the timing policy,

we consider continuous clearing (CC) and round clearing (RC) (see Section 2.3.2.2). For the

matching policy, we consider the equilibrium matching policy (ME) which matches buyers with

high bids with sellers with low asks, i.e. match intra-marginal buyers with intra-marginal sellers,

and the maximising volume matching policy (MV)3 which matches buyers with high bids with

sellers with high asks if they can be matched, i.e. match intra-marginal buyers with extra-

marginal sellers (see Section 2.3.2.2). For the pricing policy, existing research has shown that

the k-pricing policy with k=0.5 is efficient both in terms of the allocative efficiency and the

traders’ efficiency (see Section 2.3.2.2), and thus we use this pricing policy in our analysis.

In terms of the shout accepting policy, we mainly consider the two alternatives that have been

most widely used in the CAT Competition: the quote-beating accepting policy (AQ) and the

estimated equilibrium accepting policy (AE) (see Section 2.3.2.2). Note that in addition to these

market policies, other policies do exist. However, from the CAT competition, we find that lots

of policies designed by entrants are built from these specific policies. Thus here we focus on

these market policies.

In addition to the above matching policies, we also design a specific one. As discussed in Sec-

tion 2.3.2.2, there are some disadvantages with both ME and MV. The former aims to maximise

traders’ profits. Thus, intra-marginal traders are happy with this matching policy since they can

usually earn high expected profits. However, it is difficult for marginal traders, who submit

shouts close to the equilibrium price, to make transactions. The latter aims to maximise the

number of transactions, and thus benefits TSR. In this case, marginal traders are easily matched,

and thus they favour this policy. However, using this policy, intra-marginal traders cannot be

guaranteed to trade with other intra-marginal traders to obtain high expected profit. Thus their

profit is lost and it causes a decrease in allocative efficiency. Thus in order to strike a balance

between maximising profits and maximising the number of transactions, we developed the fol-

lowing matching policy which combines the advantages of both ME and MV. At the end of each

3We had to implement the MV matching policy since it was not actually implemented in the JCAT platform.
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Marketplace Policies Timing Policy Matching Policy Shout Accepting Policy
CC-ME-AQ continuous clearing equilibrium matching quote-beating accepting
CC-MV-AQ continuous clearing maximising volume quote-beating accepting
RC-ME-AQ round clearing equilibrium matching quote-beating accepting
RC-MV-AQ round clearing maximising volume quote-beating accepting

RC-MEV-AQ round clearing combined matching of ME and MV quote-beating accepting
CC-ME-AE continuous clearing equilibrium matching estimated equilibrium accepting
CC-MV-AE continuous clearing maximising volume estimated equilibrium accepting
RC-ME-AE round clearing equilibrium matching estimated equilibrium accepting
RC-MV-AE round clearing maximising volume estimated equilibrium accepting

RC-MEV-AE round clearing combined matching of ME and MV estimated equilibrium accepting

TABLE 5.1: The different marketplace policies in the experimental setup.

round, the marketplace is firstly cleared using ME, which guarantees that intra-marginal traders

obtain high expected profits. Then, when the bid-ask spread4 is less than a certain threshold, i.e.

most remaining traders are marginal traders with low expected profits, the marketplace is cleared

using MV. By so doing, it generates high profits for most traders, similar to ME, and increases

the number of transaction, similar to MV. In the following, this matching policy is referred to

as MEV. Note that we only adopt the MEV matching policy when the marketplace is cleared at

the end of each round, i.e. in combination with the RC policy. When the marketplace is cleared

continuously, both ME and MV cannot guarantee high profits of intra-marginal traders. Thus

MEV cannot offer any advantage in this case, and we will not combine CC with MEV in our

experiments.

From the above we therefore consider two types of timing policies, three types of matching

policies, two types of shout accepting policies and one type of pricing policy. Given this,

we consider 10 different marketplaces with different combinations of policies, namely: CC-

ME-AQ, CC-ME-AE, CC-MV-AQ, CC-MV-AE, RC-ME-AQ, RC-ME-AE, RC-MEV-AQ, RC-

MEV-AE, RC-MV-AQ, RC-MV-AE. See Table 5.1 for an overview of these policies. In what

follows, we analyse the above policies in the competing marketplace context with different bid-

ding strategies. We also want to know whether the marketplace adopting RC-ME (i.e. the market

policies we used in Chapters 3 and 4) can perform well when competing with marketplaces using

other combinations.

5.2.2 Experiments with Homogeneous Bidding Strategy

We first run experiments in the environments where all traders use the same bidding strategy

(i.e. homogeneous bidding strategy). From this, we will know how each bidding strategy affects

the effectiveness of market policies, and this will provide the foundation for understanding the

further analysis where different traders may use different bidding strategies (i.e. heterogeneous

bidding strategies). The experimental setup is as follows. Each experiment runs for 100 days

with 10 rounds per day and 1 second per round. There are 200 buyers and 200 sellers. The

private values of all traders are independently drawn from a uniform distribution between 50 and

4This is the difference between the outstanding bid and the outstanding ask in the marketplace, see Section 2.3.2.1
for the definition of outstanding bid/ask.
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150, and each trader is allowed to buy or sell up to 3 goods per day. All traders use either ZI-C,

RE, GD or ZIP strategy. Furthermore, in the experiments, there are 10 competing marketplaces

and each one of them adopts one of the policy combinations specified in Table 5.1. In total, we

run 4 experiments with all traders adopting ZI-C, RE, GD and ZIP strategies respectively, and

each experiment is repeated 40 times.

The results with all traders only adopting ZI-C strategy are shown in Figure 5.2 and Table 5.2.

For clarity, we do not add error bars in the figures, and instead we calculate 95% confidence

intervals of the average values of each metric in tables. The average values are taken over 100

days and 40 runs. The confidence intervals show the error of the average daily result over the

40 runs. For example, in Table 5.2, 91.171±1.211 means the 95% confidence interval range

of allocative efficiency of the marketplace adopting CC-ME-AE, where 91.171 − 1.211 is the

lower 95% confidence limit, 91.171 + 1.211 is the upper 95% confidence limit and 91.171 is

the mean of scores of 100 days and 40 runs. Here we can see that the marketplaces using RC-

ME-AQ and RC-MEV-AQ, significantly outperform other marketplaces in terms of allocative

efficiency (see Figure 5.2(a) and Table 5.2), and also in terms of market share (see Figure 5.2(b)

and Table 5.2) and the number of transactions completed (see Figure 5.2(d) and Table 5.2). The

reason for this is that ZI-C traders submit shouts from a uniform distribution, and, as a result,

their shouts are not close to the equilibrium price (as shown in Figure 5.1(a)). Consequently,

when the marketplace maximises the number of transactions, as the marketplaces using CC-ME,

CC-MV and RC-MV do, the intra-marginal buyers cannot be guaranteed to trade with the intra-

marginal sellers, and thus lose potential profits. These intra-marginal traders will then choose

other more profitable marketplaces. Furthermore, AE provides a tighter restriction on accepting

shouts, and thus, the TSR of marketplaces adopting AE is significantly better than a marketplace

using AQ (see Figure 5.2(c) and Table 5.2). However, because of the imprecise estimation

of the equilibrium price, this accepting policy drives some traders to leave the marketplace,

which decreases slightly the number of transactions. From this experiment, we find that the

marketplace with RC-ME-AQ performs well in all these metrics. In addition, from Figure 5.2(b),

we note that in the first few trading days, the market shares of marketplaces using CC-ME-AQ,

CC-MV-AQ and RC-MV-AQ are high. This is because some extra-marginal traders may be able

to “steal” transactions, and thus prefer these marketplaces. However, because intra-marginal

traders’ profits are harmed, they leave these marketplaces and this leads to a decreased market

share.

The second experiment uses RE traders. These experimental results are shown in Figure 5.3

and Table 5.3. Now, recall from Section 5.1.2 that shouts of RE traders are also far away from

the equilibrium price, and therefore, as we expect, the experimental results are similar to those

experiments with ZI-C traders and the explanation is the same as above.

Figures 5.4 and 5.5 and Tables 5.4 and 5.5 show the experimental results with ZIP and GD

traders respectively. As before, since shouts of both ZIP and GD traders are close to the equi-

librium price, these two sets of experiments show the same pattern. From this, we can see

that the allocative efficiency of marketplaces adopting AE is quite low (see Figures 5.4(a) and
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5.5(a), and Tables 5.4 and 5.5), and the number of transactions is very low (see Figures 5.4(d)

and 5.5(d) and Tables 5.4 and 5.5). The reasons for this are as follows. As discussed in Sec-

tion 5.1.2, ZIP and GD traders’ shouts are close to the equilibrium price, and so transaction

prices converge to the equilibrium price. However, the estimated equilibrium price is not al-

ways precise enough. A small error of estimated equilibrium price may cause the rejection of

many shouts, and then traders will choose to leave the marketplace5. Therefore, a marketplace

using AE performs worse than a marketplace using AQ. From the experimental results, we can

also determine that the market share in the marketplaces adopting CC-ME-AQ or RC-MV-AQ

is slightly higher than the marketplaces using RC-ME-AQ (see Tables 5.4 and 5.5, the result is

statistically significant). This is different from the experiments with the ZI-C and RE traders.

The reason for this discrepancy is that ZIP traders’ shouts are close to the equilibrium prices, and

thus the marketplace cannot distinguish between intra-marginal and marginal traders. Therefore,

the advantage of RC-ME in maximising traders’ profits is weakened. As a result, in this case,

the performance of RC-ME is similar to RC-MV and CC-ME in terms of the traders’ profits.

However, in marketplaces using RC-MV and CC-ME, marginal traders can easily be matched,

and some extra-marginal traders may also trade. Therefore, marginal traders and some extra-

marginal traders prefer marketplaces using RC-MV and CC-ME. However, because the number

of marginal traders and extra-marginal traders that steal transactions is small, and they are dis-

tributed in marketplaces using RC-MV and CC-ME respectively, CC-ME-AQ and RC-MV-AQ

just slightly outperform RC-ME-AQ in terms of market share.

Now we have run experiments where all traders use the same bidding strategy. In summary,

because of the similarity of traders using ZI-C and RE strategies, the experimental results us-

ing these traders are similar. Similarly, we find that experimental results with ZIP traders are

similar to those with GD traders. When traders’ shouts are far away from the equilibrium price,

the timing and matching policies mainly determine the marketplace’s performance. Conversely,

when traders’ shouts are close to the equilibrium price, the shout accepting policy mainly deter-

mines the marketplace’s performance. Specifically, from our experimental results, we can see

that the performance of marketplaces using AE in the environments with GD and ZIP strategies,

and marketplaces using CC-ME, CC-MV, RC-MV in the environments with ZI-C and the RE

strategies is very poor. We also find that the marketplace using RC-ME-AQ performs well in all

cases, even though they might be outperformed slightly by other marketplaces in some particular

environments.

5.2.3 Experiments with Heterogenous Bidding Strategies

In the above, we analysed how different market policies affect the competing marketplaces’

performance in the environments where all traders use the homogeneous bidding strategy. How-

5In the above experiments with ZI-C or RE traders, because traders’ shouts are generally far away from the
equilibrium price, the error of the estimated equilibrium price has little impact on the number of rejected shouts in
a marketplace using AE. This is why the AE has small impact in such a marketplace, in contrast to the experiments
with ZIP traders.
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(a) Allocative efficiency (b) Market share

(c) TSR (d) Number of transactions

FIGURE 5.2: Scores of marketplaces with ZI-C strategy.

Marketplace Alloc. Eff. % Market Share TSR Num. of Transactions
CC-ME-AE 91.171±1.211 0.087±0.003 0.949±0.014 21.638±1.923
CC-ME-AQ 87.900±0.753 0.110±0.004 0.806±0.016 20.018±1.578
CC-MV-AE 90.140±2.002 0.085±0.004 0.939±0.020 20.382±1.956
CC-MV-AQ 87.193±0.856 0.109±0.005 0.803±0.015 20.342±2.122
RC-ME-AE 95.951±0.360 0.096±0.005 0.965±0.003 30.228±2.886
RC-ME-AQ 96.970±0.335 0.113±0.006 0.911±0.012 34.089±3.005

RC-MEV-AE 95.521±0.665 0.093±0.005 0.959±0.007 27.685±2.818
RC-MEV-AQ 97.118±0.175 0.110±0.005 0.913±0.007 33.312±2.422
RC-MV-AE 91.324±1.650 0.088±0.003 0.950±0.017 22.579±1.837
RC-MV-AQ 89.623±0.730 0.109±0.004 0.852±0.013 23.007±1.950

TABLE 5.2: Average daily results and corresponding 95% confidence intervals of marketplaces
with ZI-C strategy. The average values are taken over 100 days and 40 runs. The confidence
intervals show the error of the average daily result over the 40 runs. Bold face indicates that

the corresponding marketplaces have high value ranges of the metric.
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(a) Allocative efficiency (b) Market share

(c) TSR (d) Number of transactions

FIGURE 5.3: Scores of marketplaces with RE strategy.

Marketplace Alloc. Eff. % Market Share TSR Num. of Transactions
CC-ME-AE 80.024±1.532 0.080±0.003 0.928±0.012 16.632±1.608
CC-ME-AQ 80.456±0.663 0.106±0.004 0.788±0.010 18.126±1.178
CC-MV-AE 85.573±0.616 0.092±0.004 0.956±0.003 22.994±1.805
CC-MV-AQ 80.008±0.859 0.112±0.003 0.786±0.011 18.832±1.021
RC-ME-AE 88.88±0.332 0.084±0.004 0.950±0.004 22.714±1.956
RC-ME-AQ 90.770±0.237 0.117±0.004 0.910±0.007 34.228±2.429

RC-MEV-AE 88.858±0.670 0.092±0.003 0.950±0.009 26.124±2.372
RC-MEV-AQ 90.910±0.296 0.117±0.004 0.907±0.008 34.122±2.838
RC-MV-AE 83.743±1.595 0.086±0.004 0.933±0.015 20.92±2.264
RC-MV-AQ 84.804±0.565 0.115±0.002 0.858±0.004 24.098±0.827

TABLE 5.3: Average daily results and corresponding 95% confidence intervals of marketplaces
with RE strategy.
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(a) Allocative efficiency (b) Market share

(c) TSR (d) Number of transactions

FIGURE 5.4: Scores of marketplaces with ZIP strategy.

Marketplace Alloc. Eff. % Market Share TSR Num. of Transactions
CC-ME-AE 67.538±5.030 0.066±0.003 0.715±0.050 11.286±1.830
CC-ME-AQ 96.952±0.108 0.149±0.003 0.917±0.001 50.758±1.275
CC-MV-AE 70.935±4.663 0.061±0.003 0.738±0.047 10.8±1.621
CC-MV-AQ 96.627±0.196 0.126±0.005 0.894±0.006 38.666±2.802
RC-ME-AE 75.14±2.597 0.067±0.002 0.761±0.025 11.192±0.683
RC-ME-AQ 97.873±0.058 0.130±0.004 0.928±0.003 44.352±2.033

RC-MEV-AE 72.224±2.814 0.066±0.002 0.741±0.028 12.616±1.146
RC-MEV-AQ 97.897±0.105 0.136±0.003 0.936±0.002 48.57±1.86
RC-MV-AE 61.998±5.574 0.058±0.004 0.639±0.052 7.806±1.733
RC-MV-AQ 97.882±0.123 0.142±0.004 0.931±0.003 47.992±1.633

TABLE 5.4: Average daily results and corresponding 95% confidence intervals of marketplaces
with ZIP strategy.
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(a) Allocative efficiency (b) Market share

(c) TSR (d) Number of transactions

FIGURE 5.5: Scores of marketplaces with GD strategy.

Marketplace Alloc. Eff. % Market Share TSR Num. of Transactions
CC-ME-AE 63.248±0.860 0.064±0.001 0.717±0.016 7.03±0.407
CC-ME-AQ 95.686±0.315 0.142±0.004 0.876±0.007 39.966±2.146
CC-MV-AE 53.789±4.835 0.064±0.002 0.633±0.058 5.676±0.834
CC-MV-AQ 95.834±0.170 0.153±0.004 0.886±0.003 44.518±1.531
RC-ME-AE 59.056±9.185 0.066±0.003 0.642±0.099 6.772±1.168
RC-ME-AQ 96.830±0.096 0.125±0.002 0.923±0.001 42.64±0.482

RC-MEV-AE 63.216±4.352 0.064±0.002 0.692±0.040 6.94±0.797
RC-MEV-AQ 96.808±0.156 0.135±0.003 0.923±0.004 48.662±2.327
RC-MV-AE 72.220±2.261 0.065±0.001 0.778±0.024 8.07±0.686
RC-MV-AQ 97.272±0.112 0.123±0.003 0.921±0.003 42.452±1.953

TABLE 5.5: Average daily results and corresponding 95% confidence intervals of marketplaces
with GD strategy.
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ever, it often happens that traders use heterogeneous bidding strategies in the CAT competition.

Therefore, in this section, we analyse how different market policies affect the performance of

marketplaces in the environments where traders use heterogeneous bidding strategies. Specifi-

cally, we will analyse different environments where a big proportion of traders adopts a certain

bidding strategy. We also want to analyse the environment where the same number of traders

adopts each bidding strategy. In more detail, we consider five different environments where

traders adopting heterogenous bidding strategies: (i) 300 ZI-C, 40 RE, 40 GD and 40 ZIP

traders; (ii) 40 ZI-C, 300 RE, 40 GD and 40 ZIP traders; (iii) 40 ZI-C, 40 RE, 300 GD and

40 ZIP traders; (iv) 40 ZI-C, 40 RE, 40 GD and 300 ZIP traders; (v) 100 ZI-C, 100 RE, 100

GD and 100 ZIP traders. In all of these environments, the number of buyers using a particular

bidding strategy is equal to the number of sellers6.

The result when using environment (i) are shown in Figure 5.6 and Table 5.6. From these

experiments, we can see that the marketplace adopting RC-ME-AQ still performs well (see

allocative efficiency in Figure 5.6(a) and Table 5.6 and the number of transactions in Figure

5.6(d) and Table 5.6). We also note that the performance of marketplaces adopting RC-ME-AE

improves compared with the experimental results with traders adopting the ZI-C strategy (see

Figure 5.2 and Table 5.2). The reason is as follows. Shouts from ZIP and GD traders in this

environment generate transaction prices closer to the equilibrium price than those with traders

adopting ZI-C strategy. This means that the marketplace using AE can estimate the equilibrium

price more precisely. Because shouts of ZI-C traders are far away from the equilibrium price,

as previously discussed, the estimation error of the equilibrium price has little impact on the

number of rejected shouts. Thus the marketplace adopting RC-ME-AE improves within this

environment. Then we run experiments with environment (ii) where most traders use the RE

strategy, we can see the experimental results shown in Figure 5.7 and Table 5.7 are similar to

those with environment (i). The marketplace adopting RC-ME-AQ still performs well.

Our third set of experiments uses environment (iii) and the results are shown in Figure 5.8 and

Table 5.8. We can see that the marketplace adopting RC-ME-AQ still performs well. Further-

more, similar to previous experiments with all traders adopting the GD strategy, we can see that

the marketplaces using AE performs badly because of the rejection of many shouts. We also find

that compared with the experimental results with trader only adopting GD strategy (see Figure

5.5 and Table 5.5), the marketplaces adopting AE improve their performance slightly in this

environment with heterogenous strategies. The main reason for this is that in this environment,

the beliefs of GD traders on shouts which are a bit further away from the equilibrium price in-

crease because of the wide range of ZI-C and RE traders’ shouts (see the calculation of belief

function in equation 2.8 and 2.9 of Section 2.3.2.1), and thus the shouts of the GD traders in

this environment become a little wider than those of all traders adopting the GD strategy only.

This means that the number of rejected shouts when adopting AE decreases, and thus the perfor-

mance of the marketplaces using AE improves slightly. It also explains why in this environment

the marketplaces adopting CC-ME, CC-MV and RC-MV perform slightly worse than they do

6This is the same as that of the CAT competition in recent years.
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with all traders adopting the GD strategy, since now, intra-marginal traders are more likely to

be matched with marginal traders, and thus choose to leave these marketplaces. Furthermore,

the experimental results with environment (iv) where most traders use ZIP strategy are shown in

Figure 5.9 and Table 5.9. We find that they are similar to those with the environment (iii) where

most traders use GD strategy.

Finally, the experimental results with environment (v) are shown in Figure 5.10 and Table 5.10.

In this environment, the numbers of traders using each of the ZI-C, RE, ZIP and GD strate-

gies are equal. Again we can see that the marketplace using RC-ME-AQ performs well in the

allocative efficiency (see Figure 5.10(a)) and in the number of transactions (see Figure 5.10(d)).

Now we have analysed how different market policies affect the allocative efficiency, market

share, TSR and the number of transactions in different environments. This analysis provides us

insights of designing market policies for the CAT competition. In the following section, we will

describe our design of market policies in detail.

5.3 Market Policy Design

In this section, we use insights from the above analysis to design market policies for the CAT

competition. In the experimental analysis, we found that the marketplace adopting RC-ME-AQ

always performs well in different environments. Therefore, our design of market policies will

be built from RC-ME-AQ. In the following, we discuss how to design each market policy in

detail.

For the timing policy, in Section 5.2, we found that when traders use the GD or the ZIP strategy,

the continuous clearing policy also performs well. Actually, from Section 2.3.2.1, we can see

that GD traders need to use information about transactions to improve their beliefs of shout

acceptance. Therefore, in our timing policy, in the first round of each trading day, when a

new shout is accepted by the marketplace, and this shout is close to the equilibrium price, the

marketplace will immediately clear the shout (if it can be matched). However, if this shout is far

away from the equilibrium price, it will be cleared at the end of the round. By so doing, on one

hand, we can guarantee profits for buyers with high limit prices and sellers with low cost prices

(since these traders are more likely to be matched at the end of round); on the other hand, the

immediately matched bids and asks will provide useful information for traders to improve their

shouts. After the first round, traders will have information to improve their shouts. Then in the

remaining rounds, our marketplace will use round clearing policy in order to guarantee traders’

profits.

For the matching policy, as we discussed in Section 5.2, the ME matching policy can maximise

traders’ profits, and thus it can attract traders to improve the market share. However, it is difficult

for marginal traders to make transactions. The MV matching can maximise the number of tran-
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(a) Allocative efficiency (b) Market share

(c) TSR (d) Number of transactions

FIGURE 5.6: Scores of marketplaces in the environment where most traders use ZI-C strategy.

Marketplace Alloc. Eff. % Market Share TSR Num. of Transactions
CC-ME-AE 84.582±3.179 0.076±0.003 0.902±0.031 16.742±1.849
CC-ME-AQ 90.069±0.725 0.120±0.003 0.8280±0.008 23.938±0.620
CC-MV-AE 86.438±0.521 0.077±0.002 0.932±0.005 15.78±1.030
CC-MV-AQ 87.489±1.212 0.103±0.005 0.798±0.018 20.268±1.977
RC-ME-AE 94.730±0.355 0.112±0.002 0.972±0.002 37.504±1.231
RC-ME-AQ 96.067±0.101 0.118±0.003 0.918±0.006 37.842±2.689

RC-MEV-AE 92.423±1.097 0.092±0.005 0.951±0.009 26.962±2.883
RC-MEV-AQ 95.886±0.317 0.115±0.004 0.921±0.005 37.572±2.398
RC-MV-AE 89.655±0.514 0.082±0.002 0.950±0.003 20.054±0.599
RC-MV-AQ 91.945±0.469 0.106±0.002 0.861±0.010 25.018±1.543

TABLE 5.6: Average daily results and corresponding 95% confidence intervals of marketplaces
in the environment where most traders use ZI-C strategy.
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(a) Allocative efficiency (b) Market share

(c) TSR (d) Number of transactions

FIGURE 5.7: Scores of marketplaces in the environment where most traders use RE strategy.

Marketplace Alloc. Eff. % Market Share TSR Num. of Transactions
CC-ME-AE 83.809±1.227 0.086±0.003 0.940±0.010 20.69±1.649
CC-ME-AQ 85.304±1.344 0.115±0.003 0.824±0.013 25.972±1.853
CC-MV-AE 84.906±1.144 0.084±0.002 0.939±0.008 20.136±1.695
CC-MV-AQ 85.695±1.784 0.115±0.004 0.807±0.018 25.218±2.199
RC-ME-AE 89.560±0.259 0.097±0.003 0.961±0.003 20.584±2.228
RC-ME-AQ 91.334±0.247 0.112±0.003 0.911±0.004 31.104±1.461

RC-MEV-AE 90.007±0.562 0.101±0.002 0.965±0.001 30.976±1.607
RC-MEV-AQ 91.071±0.421 0.103±0.004 0.901±0.005 31.316±1.496
RC-MV-AE 84.845±2.084 0.087±0.005 0.928±0.016 21.264±3.382
RC-MV-AQ 86.962±0.881 0.102±0.002 0.844±0.006 19.018±0.922

TABLE 5.7: Average daily results and corresponding 95% confidence intervals of marketplaces
in the environment where most traders use RE strategy.
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(a) Allocative efficiency (b) Market share

(c) TSR (d) Number of transactions

FIGURE 5.8: Scores of marketplaces in the environment where most traders use GD strategy.

Marketplace Alloc. Eff. % Market Share TSR Num. of Transactions
CC-ME-AE 89.279±1.498 0.095±0.007 0.924±0.011 25.488±4.013
CC-ME-AQ 94.504±0.472 0.120±0.005 0.854±0.008 32.176±2.538
CC-MV-AE 87.649±1.192 0.089±0.004 0.914±0.008 20.472±1.786
CC-MV-AQ 95.002±0.542 0.127±0.007 0.857±0.014 35.552±4.048
RC-ME-AE 72.519±4.413 0.070±0.005 0.758±0.042 11.204±2.344
RC-ME-AQ 95.261±0.291 0.124±0.004 0.912±0.007 41.518±2.669

RC-MEV-AE 88.064±0.887 0.076±0.002 0.910±0.008 17.126±1.125
RC-MEV-AQ 94.589±0.266 0.114±0.004 0.900±0.005 35.866±2.386
RC-MV-AE 81.88±3.610 0.079±0.005 0.853±0.035 16.606±2.700
RC-MV-AQ 94.863±0.456 0.107±0.004 0.877±0.006 29.396±2.045

TABLE 5.8: Average daily results and corresponding 95% confidence intervals of marketplaces
in the environment where most traders use GD strategy.
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(a) Allocative efficiency (b) Market share

(c) TSR (d) Number of transactions

FIGURE 5.9: Scores of marketplaces in the environment where most traders use ZIP strategy.

Marketplace Alloc. Eff. % Market Share TSR Num. of Transactions
CC-ME-AE 77.695±5.344 0.072±0.006 0.810±0.053 18.216±3.582
CC-ME-AQ 95.776±0.183 0.123±0.004 0.885±0.008 35.894±2.35
CC-MV-AE 78.430±4.720 0.083±0.006 0.828±0.041 20.836±3.522
CC-MV-AQ 94.902±0.616 0.122±0.005 0.879±0.009 35.696±3.415
RC-ME-AE 75.682±6.141 0.073±0.005 0.779±0.061 17.802±3.600
RC-ME-AQ 95.761±0.064 0.124±0.005 0.929±0.004 43.818±2.839

RC-MEV-AE 90.904±0.830 0.086±0.004 0.929±0.006 24.898±2.409
RC-MEV-AQ 95.512±0.409 0.119±0.003 0.927±0.002 41.156±1.147
RC-MV-AE 79.402±4.219 0.083±0.004 0.834±0.045 20.08±2.618
RC-MV-AQ 96.537±0.239 0.116±0.003 0.908±0.009 37.088±2.639

TABLE 5.9: Average daily results and corresponding 95% confidence intervals of marketplaces
in the environment where most traders use ZIP strategy.
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(a) Allocative efficiency (b) Market share

(c) TSR (d) Number of transactions

FIGURE 5.10: Scores of marketplaces in the environment where the numbers of traders using
different bidding strategies are equal.

Marketplace Alloc. Eff. % Market Share TSR Num. of Transactions
CC-ME-AE 83.840±4.131 0.081±0.004 0.881±0.040 20.462±2.773
CC-ME-AQ 93.498±0.420 0.119±0.006 0.869±0.005 30.294±1.796
CC-MV-AE 87.651±3.332 0.101±0.008 0.914±0.032 29.728±4.086
CC-MV-AQ 91.645±0.551 0.117±0.004 0.835±0.014 26.16±2.730
RC-ME-AE 85.079±3.079 0.079±0.004 0.897±0.028 18.206±2.296
RC-ME-AQ 93.649±0.232 0.117±0.002 0.916±0.005 31.29±1.250

RC-MEV-AE 91.311±0.298 0.095±0.003 0.959±0.003 34.130±1.409
RC-MEV-AQ 93.331±0.288 0.098±0.004 0.888±0.007 35.62±1.178
RC-MV-AE 85.143±2.352 0.075±0.001 0.896±0.027 16.996±1.175
RC-MV-AQ 93.047±0.164 0.118±0.002 0.881±0.005 29.248±1.070

TABLE 5.10: Average daily results and corresponding 95% confidence intervals of market-
places in the environment where the numbers of traders using different bidding strategies are

equal.
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sactions, and thus can improve TSR. However, since it fails to guarantee traders’ profits, some

traders may leave the marketplace using the MV matching policy. Therefore, in our competing

marketplace, we adopt the MEV matching policy, which is a trade-off between the ME and the

MV matching policy. In more detail, in the MEV matching policy, when shouts are far away

from the equilibrium price, we use the ME matching policy to maximise traders’ profits, and

when traders’ shouts are within an area close to the equilibrium price, we use the MV matching

policy to maximise the number of transactions. By so doing, this policy can guarantee traders’

profits and increase the number of transactions, and from Section 5.2 we actually have seen that

this policy performs well.

Now we consider the shout accepting policy. This determines the shouts accepted by the market-

place, and thus significantly affects the TSR. If we provide tight restrictions on accepting shouts,

our TSR will be improved. However, some intra-marginal traders’ shouts will not be accepted

by the marketplace, and they will leave the marketplace. Therefore we need to make a trade-off

between these. In Section 5.2, we have shown that the quote-beating accepting policy provides

a loose restriction on accepting shouts, and the equilibrium accepting policy provides a tight

restriction on accepting shouts. Therefore, in our marketplace, when the number of transactions

decreases, we will switch to the quote-beating accepting policy. If the number of transactions is

at a good level, we will use the equilibrium accepting policy to improve TSR.

Finally, for the pricing policy,, market theory has indicted that when the transactions happen at

the equilibrium price, the optimal allocative efficiency is reached (see Section 2.2). Therefore,

we use the equilibrium price as the transaction price in the CAT competition. In more detail,

if the equilibrium price is higher than the matched ask and is lower than the matched bid, we

set the equilibrium price as the transaction price; otherwise we set the transaction price to the

bid or ask which is closest to the equilibrium price. Note that in this thesis, we adopt k-pricing

policy in the analysis, which is different from what we actually used in the CAT competition.

The reason is that k-pricing policy can be easily represented in a mathematic way and it also

has been shown to be highly efficient in the literature (Phelps et al., 2003). Furthermore, in a

marketplace with symmetric demand and supply curve, we can expect that the transaction price

set by k-pricing policy with k = 0.5 is approximately equal to the equilibrium price.

Now we have introduced our design of the market policies for the CAT competition. In Section

5.5, we will describe how these policies performed in 2010 CAT competition. First, however,

we will detail the design of the charging policy.

5.4 Charging Policy Design

After detailing the market policies for the CAT competition, in this section we discuss the design

of our charging policy, which is used to determine fees charged to traders. As we discussed be-

fore (see Section 1.2), there exists a conflict between making profits and attracting (or keeping)

traders. In particular, the marketplace charging higher fees may obtain high market profits in the
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short term, but will lose traders in the long term, and so will receive less profits. Thus, a good

charging policy should be able to make high market profits, while still maintaining the number

of traders at a good level. In particular, in this section, we will design an adaptive charging

policy that charges market fees based on market conditions.

In so doing, we would like to use the insights from our analysis in Chapters 3 and 4. However,

we cannot directly use these results because the setting is different in a number of respects7.

Firstly, for traders’ bidding behaviour, as we discussed in Section 5.1.2, traders using the equi-

librium bidding strategies shade their shouts less than when using GD or ZIP strategy, and more

than when using ZI-C or RE strategy. Furthermore, in Chapters 3 and 4, although both EGT and

FP are repeated learning approaches, the game we analysed is a one-shot game (i.e. restricted

in one trading round). In the CAT competition, there are several trading days which includes

several trading rounds, and thus it is a repeated game. Finally, in the CAT competition, different

marketplaces have different charging policies, and we cannot guarantee that other marketplaces

also use the equilibrium charging strategies. Given this situation, we cannot directly use the

equilibrium charging strategies we have derived. However, as we will show, a number of the

general insights from the equilibrium analysis are still useable. In the following, we first deter-

mine what types of fees are effective at making profits and keeping traders. Then we decide at

what point in the game to charge fees and how much to charge.

In the CAT competition, competing marketplaces can charge five different types of fees: regis-

tration, information, shout, transaction and profit fees (see Section 2.5.1). We now discuss each

of these in turn, and determine what types of fees are the most effective. A registration fee is

charged to all traders that register with a marketplace. When such a fee is charged, because

extra-marginal traders usually cannot trade in the marketplace, their profits will be negative.

Thus these traders will leave the marketplace. As extra-marginal traders leave the marketplace,

the market share will decrease. Moreover, when a high registration fee is charged, some intra-

marginal traders whose limit/cost prices are close to the equilibrium price may also leave the

marketplace because of negative profits. This is consistent with our analysis in Section 4.4,

where we found that charging registration fees cause traders to leave the marketplace quickly.

The information fee is charged only to GD and ZIP traders since only these traders need in-

formation provided by the marketplaces to generate shouts. Therefore, this is equivalent to a

registration fee, but one that only applies to GD and ZIP traders. A shout fee will be charged

when traders successfully place shouts. Like the registration fee, this may drive extra-marginal

traders to leave the marketplace when shouts placed by extra-marginal traders are accepted by

the marketplace, and thus decreases the market share. We can see that the above three types

of fees are charged to traders no matter whether they have made any profits (i.e. ex ante fees,

see Section 1.1). This causes some traders to have negative profits and leave the marketplace.

Therefore, all these three types of fees are less effective in either making profits or keeping

traders. In contrast, transaction and profit fees are charged only when traders make transactions,

and thus make profits (i.e. ex post fees, see Section 1.1). Therefore, in such cases, traders’
7We have to operate the theoretical analysis on the restricted setting to provide basic insights. In the future, we

will aim to close the gap between the theoretical and practical aspects.
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profits are usually positive. Furthermore, charging these two types of fees will not drive extra-

marginal traders to leave the marketplace, which will benefit the market share. This is consistent

with our analysis in Section 4.4, where we found that the marketplace charging transaction fees

can maintain traders longer than the marketplace charging registration fees, and the marketplace

charging profit fees can keep traders even though it charges very high profit fees. Furthermore,

from Section 4.4, we found that charging transaction fees is effective in making profits and

charging profit fees cannot guarantee high market profit when traders can shade their shouts a

lot. However, we should note that when traders cannot significantly shade their shouts (e.g. ZI-

C or RE traders), i.e. they cannot effectively hide their actual profits, charging profit fees will

guarantee high market profits. Now, given this analysis, in terms of making profits and keeping

traders, we decide to charge two types of fees: transaction and profit fees. Note that in Section

4.4, we found that the transaction price percentage fee is the most effective in making profits

and keeping traders. However, this type of fees is not allowed in the CAT competition.

After determining what types of fees to charge to traders, we now describe when and how much

to charge. From Section 3.2.3.3, we obtained the insight that, initially, the marketplace should

charge low (or even zero) fees to attract traders, and when it obtains a larger market share, it can

charge higher fees, but still keep traders. In our charging policy, we adopt this insight. However,

we should note that in Section 3.2.3.3, we also found that, when there is a large number of

traders, or traders are able to explore other marketplaces to search for cheaper alternatives, it is

difficult for the marketplace to keep traders even though it already has a larger market share. In

the context of CAT competition, there are a large number of traders (400 traders in recent years’

competition), and traders with an ε-greedy exploration strategy are able to search for the cheaper

marketplace. Thus it is difficult for the marketplace to keep traders when it charges higher fees

in the CAT competition. We address this problem by reducing the fees whenever the transaction

share falls below a certain threshold, thereby repeating the above problem. Here the transaction

share is the number of transactions made in this marketplace as a percentage of the total number

of transactions made in all marketplaces. The reason that instead of directly looking at market

share, we look at the transaction share is as follows. As we discussed above, our marketplace

charges fees after traders make transactions. However, a large number of traders does not always

mean a large number of transactions since it may happen that most traders are extra-marginal

traders. Thus it is better for determining whether charging fees or not based on transaction share,

instead of market share.

Now we discuss how to calculate the marketplace’s transaction share in the CAT competition. In

order to do this, we need to know the number of transactions in other marketplaces. In the JCAT

platform, the marketplace can subscribe to other marketplaces to obtain this information, but

an information fee needs to be paid to subscribed marketplaces. This payment (incurred by an

information fee) will result in a “lost profit share” for the marketplace, which is the proportion

of total information fees to the total profits of all marketplaces. Thus, in the beginning of each

competition day, we need to decide which marketplace we need to subscribe to. In more detail,

we do not require information about marketplaces which have historically low transaction share
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since low transaction share indicates that these marketplaces perform badly. Furthermore, when

the “lost profit share” is less than a predetermined threshold, then the marketplace purchases

information from all marketplaces. However, if the “lost profit share” is higher than this thresh-

old, then the specialist does not purchase information from marketplaces with high information

fees and low historical transaction shares, so as to keep the “lost profit share” below the thresh-

old. However, these marketplaces may perform better later, and therefore it is necessary to relax

the threshold regularly in order to obtain information from these marketplaces. After obtain-

ing information about transactions from other marketplaces, we can calculate the marketplace’s

transaction share directly.

Then our charging policy proceeds as follows. In the first few days, our marketplace charges no

fees in order to attract traders, and thus build up its transaction share. When the marketplace

obtains a large transaction share (i.e. reaches a predetermined threshold), it then starts to charge

transaction and profit fees to extract profits from traders. With increasing fees, the marketplace

becomes less attractive to potential traders (since traders are able to search for the cheaper mar-

ketplace), and then gradually, the effect of increased fees decreases the number of traders, and

thus the transaction share. At this point, the marketplace decrease its fees and goes back to

building up its transaction share back to a predetermined threshold. Once it reaches this target,

it has a sufficient number of transactions, and can charge high fees to make profits again. By

following this process, the marketplace will adapt fees according to its transaction share, and

can make high profits while maintain the transaction share at a reasonably good level.

So far we have established when to charge fees. Now, in order to set the level of fees, we use

the concept of target profit. This is the profit that our marketplace attempts to extract from

traders on the current day. Intuitively, we can see that the target profit depends on the number

of transactions made in the marketplace. If more transactions are made, the marketplace can

extract more profits from traders. In more detail, we consider that the target profit share is

approximately equal to the transaction share of the marketplace, and then the target profit will

be equal to the product of the marketplace’s transaction share and the estimated historical total

profits extracted from traders by all marketplaces. After calculating the target profit, we now

describe how to set transaction and profit fees to obtain such a profit.

Since we charge two different types of fees, we need to split the target profit to two parts, each

of which is extracted from charging transaction fee and profit fee respectively. We now discuss

how to split the target profit. To this end, the shaded area in Figure 5.11 shows the observed

profits of traders. Here, the observed profits are the sum of the differences between the matched

bids and asks. Note that the observed profits are not equal to the actual profits of traders unless

traders adopt a truth-telling strategy. If traders use the ZI-C or RE strategies, the observed profits

are relatively close to the actual profits, compared to that of traders using ZIP or GD strategies.

Given the target profit, when only a profit fee is charged, the target profit is equal to the size of

the dark triangular area. When only a transaction fee is charged, the target profit is equal to the

size of the rectangular area surrounded by the red line. From the figure, we can see that, traders

whose shouts are far away from the equilibrium price will pay more when a profit fee is charged
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FIGURE 5.11: Trade-off between charging a profit fee and a transaction fee. Red, blue and
yellow lines represent different types of fees charged to traders respectively: transaction fee,

profit fee, and a combination of transaction and profit fee.

than when a transaction fee is charged; and traders whose shouts are close to the equilibrium

price pay more when a transaction fee is charged than that when a profit fee is charged. Thus in

the design of a charging policy, we need to make a trade-off between these two fees, as showed

by the yellow line in Figure 5.11, which we call the combined fee. In more detail, initially, we

assume that more than half of the target profit is obtained from charging a transaction fee since

charging a transaction fee can guarantee market profit in any cases (even though traders shade

shouts a lot), and the rest from a profit fee. As the game proceeds, we adjust the balance as

follows. If most shouts are close to the equilibrium price, i.e. most traders shade their shouts a

lot, charging a profit fee cannot guarantee a target profit, and thus we extract more from charging

transaction fees. On the other hand, when less shouts are close to the equilibrium price, charging

a profit fee can guarantee the target profit. We then extract relatively more from charging profit

fees. However, in this case, traders with shouts far away from the equilibrium price will pay

more when profit fees are charged, and thus may leave the marketplace. To avoid this, we

assume that at least half target profit is extracted from charging transaction fees.

5.4.1 Evaluation of the Charging Policy

Now that we have presented our adaptive charging policy, in this section, we evaluate it against a

number of the charging policies used in recent years’ CAT competition. Note that all competition

entrants only published their binary codes of marketplace implementation, and thus we do not

know exactly what charging policies other marketplaces used in the competition. We can only

observe the fees charged to traders from the competition log files. However, by investigating the

log files from recent years, we found that the marketplaces that perform well only charge profit

fees and these fees are fairly constant. Given these, we consider three marketplaces, which
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charge fixed 5%, 10% and 15% profit fees respectively (which is similar to what most of the

marketplaces did in the competition). Although very few marketplaces charge transaction fees

in the CAT competition, according to our analysis in Section 4.4, this type of fees is effective

in making profits and keeping traders. Therefore, we consider three marketplaces charging

fixed 0.5, 1 and 1.5 transaction fees respectively, which correspond more or less to the above

profit fees in terms of the absolute payments incurred by them8. Furthermore, we consider a

marketplace charging a fixed 0.1 registration fee as a representative marketplace charging other

types of fees. For all these marketplaces, we assume that they begin to charge fees on day 21

(i.e. in the first 20 days, they charge no fees to build up their market share). In terms of the

market policies, we consider that all marketplaces adopting the default market policies provided

by JCAT platform, which are RC-ME-AQ and k-pricing policy with k = 0.5 (in Section 5.2, we

have shown that these market policies perform well).

We now run simulations to evaluate our charging policy against the above fixed policies. The

experimental setup is as follows. Each experiment runs for 200 days with 10 rounds per day and

1 second per round. There are 200 buyers and 200 sellers. The private values of all traders are

independently drawn from a uniform distribution between 50 and 150, and each trader is allowed

to buy or sell up to 3 goods per day. We will run our simulations in different environments with

different bidding strategies since the effectiveness of a charging policy is affected by traders’

strategies. For each environment, the experiment is repeated 40 times. Firstly, we consider

the environment where all traders use ZI-C bidding strategy. We evaluate the performance in

terms of market share, profit share, the sum of weighted market share and profit share with

0.5 weight on each and the number of transactions. The results are shown in Figure 5.12 and

Table 5.11, from which, we can see that our charging policy can significantly outperform other

marketplaces. From Figures 5.12(a) and 5.12(b), we can see that once competing marketplaces

begin to charge fees, our marketplace will attract traders and make profits at a good level. In the

whole competition, we can see that our market share is maintained at a good level, and our profit

share is quite high. This is because our charging policy determines the target profit according

to the changes of the transaction share, and thus will not set unreasonable fees to extract profits.

Moreover, by extracting the target profit from charging both transaction and profit fees, our

marketplace is better on keeping traders than those marketplaces only charging a profit fee or a

transaction fee. Thus our marketplace can obtain a good profit share while maintaining traders

at a good level. Furthermore, we also find that the market share of the marketplace charging a

registration fee is very low since no extra-marginal traders stay in this marketplace. We then

run experiment in the environment of all traders using RE strategy, and the results are shown in

Figure 5.13 and Table 5.12. We also find that the marketplace using our charging policy obtains

the highest market share and profit share, and it outperforms other marketplaces significantly.

We further run experiments in the environments where all traders use GD and ZIP strategies

8When traders’ private values are drawn from a uniform distribution between 50 and 150, we roughly consider
that the average of the buyers’ bids is around 110 and the average of the sellers’ asks is around 90. Given that the
transaction prices are set as 100, the absolute payments incurred by 5%, 10% and 15% profit fees are 0.5, 1 and 1.5
respectively.
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respectively. The results are shown in Figure 5.14, Table 5.13 and Figure 5.15, Table 5.14 re-

spectively. We can see that our marketplace outperforms other marketplaces. Furthermore, since

traders shade their shouts a lot (see Figure 5.1(d) and 5.1(c)), we find that the marketplaces

charging profit fees can maintain traders at a higher level compared to marketplaces charging

transaction fees (see Figures 5.14(a), 5.15(a) and Tables 5.13 and 5.14), and the marketplaces

charging transaction fees can obtain profit share at a high level compared to marketplaces charg-

ing profit fees (see Figures 5.14(b), 5.15(b) and Tables 5.13 and 5.14).

Finally, we evaluate our charging policy in an environment where traders use different bidding

strategies. Specifically, we assume that there are 100 ZI-C traders, 100 RE traders, 100 GD

traders and 100 ZIP traders. Experimental results are shown in Figure 5.16 and Table 5.15.

Again, we can see that the marketplace adopting our charing policy has the highest market share

and profit share. This shows that our charging policy is also effective in making profits and

keeping traders when traders adopt heterogeneous bidding strategies.

5.5 The 2010 CAT Competition

Now we have introduced our design of market policies and the charging policy. In 2010 CAT

competition, on the first day, we entered our marketplace using policies not based on the results

of this thesis (as the software was not available). On the second and third days of the competi-

tion, which took place a while later, we did use market policies and the charging policy designed

in this thesis. The competition results showed that our marketplace performed well in the last

two days’ competition, obtaining the first position on the second day and the second position on

the third day among nine entrants. In the following, we describe how our marketplace performed

on the second and third day.

The competition results of the second day and the third day are shown in Figure 5.17 and Table

5.16 and Figure 5.18 and Table 5.17 respectively. On the second day, we obtained the first

position, and on the third day, we obtained the second position. In more detail, we can see that

our competing marketplace obtained good scores on the sum of daily market share, the sum

of daily profit share and the sum of daily TSR. The high market share shows that the timing,

matching and pricing policies used by our competing marketplace are highly effective in terms

of guaranteeing traders’ profits, and thus can attract and keep traders. The high TSR shows that

our shout accepting policy is highly effective to reject shouts which are unlikely to be matched,

and the high market share also shows that the shout accepting policy does not reject shouts that

can make transactions. Furthermore, from the high scores of profit share and market share, we

can see that our marketplace using the adaptive charging policy designed in this chapter makes a

high market profit while maintaining the number of traders at a good level. This shows that our

design of the charging policy, which adapts the fees according to the transaction share and makes

a trade-off between only charging a profit fee and only charging a transaction fee, is highly

effective. However, although our competing marketplace performed well in the competition, it
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(a) Market share (b) Profit share

(c) Sum of weighted market share and profit share (d) Number of transactions

FIGURE 5.12: Evaluation of charging policy with ZI-C strategy.

Marketplace Market Share Profit Share Sum of Weighted Market and Profit Share Num. of Transactions
IAM 0.181±0.002 0.223±0.002 0.202±0.002 54.44±1.248

PF 5% 0.158±0.003 0.13±0.004 0.144±0.003 48.966±2.382
PF 10% 0.128±0.002 0.143±0.002 0.136±0.001 32.644±1.243
PF 15% 0.11±0.002 0.107±0.003 0.108±0.002 21.419±1.682
RF 0.1 0.067±0.002 0.004±0.001 0.036±0.002 25.017±1.535
TF 0.5 0.124±0.001 0.042±0.002 0.083±0.002 29.895±1.212
TF 1 0.117±0.002 0.104±0.003 0.111±0.002 27.989±1.741

TF 1.5 0.115±0.002 0.141±0.002 0.128±0.002 24.015±1.257

TABLE 5.11: Evaluation of charging policy with ZI-C strategy. PF: Profit Fee. RF: Registra-
tion Fee. TF: Transaction Fee.
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(a) Market share (b) Profit share

(c) Sum of weighted market share and profit share (d) Number of transactions

FIGURE 5.13: Evaluation of charging policy with RE strategy.

Marketplace Market Share Profit Share Sum of Weighted Market and Profit Share Num. of Transactions
IAM 0.193±0.002 0.211±0.002 0.202±0.002 46.586±1.559

PF 5% 0.125±0.002 0.077±0.002 0.101±0.002 32.847±1.672
PF 10% 0.121±0.002 0.185±0.004 0.153±0.004 26.155±1.91
PF 15% 0.116±0.003 0.106±0.004 0.111±0.003 22.817±2.223
RF 0.1 0.069±0.002 0.005±0.002 0.037±0.002 25.93±1.551
TF 0.5 0.133±0.003 0.064±0.002 0.098±0.003 33.761±2.56
TF 1 0.124±0.002 0.083±0.002 0.104±0.002 30.373±1.49

TF 1.5 0.114±0.002 0.164±0.004 0.139±0.004 23.761±1.653

TABLE 5.12: Evaluation of charging policy with RE strategy.



Chapter 5 Designing a Competing Double Auction Marketplace 163

(a) Market share (b) Profit share

(c) Sum of weighted market share and profit share (d) Number of transactions

FIGURE 5.14: Evaluation of charging policy with GD strategy.

Marketplace Market Share Profit Share Sum of Weighted Market and Profit Share Num. of Transactions
IAM 0.198±0.002 0.215±0.002 0.206±0.002 55.693±1.965

PF 5% 0.159±0.004 0.04±0.003 0.099±0.003 48.231±2.178
PF 10% 0.152±0.004 0.074±0.002 0.113±0.004 44.345±2.249
PF 15% 0.144±0.004 0.085±0.002 0.114±0.004 39.962±1.992
RF 0.1 0.056±0.002 0.008±0.001 0.032±0.002 21.477±1.482
TF 0.5 0.109±0.002 0.113±0.002 0.111±0.002 27.375±1.619
TF 1 0.093±0.002 0.181±0.002 0.137±0.002 22.017±1.51

TF 1.5 0.082±0.002 0.178±0.002 0.13±0.002 16.851±1.337

TABLE 5.13: Evaluation of charging policy with GD strategy.



164 Chapter 5 Designing a Competing Double Auction Marketplace

(a) Market share (b) Profit share

(c) Sum of weighted market share and profit share (d) Number of transactions

FIGURE 5.15: Evaluation of charging policy with ZIP strategy.

Marketplace Market Share Profit Share Sum of Weighted Market and Profit Share Num. of Transactions
IAM 0.196±0.002 0.201±0.002 0.198±0.002 54.234±1.949

PF 5% 0.149±0.004 0.078±0.002 0.113±0.004 48.084±2.233
PF 10% 0.137±0.004 0.123±0.004 0.130±0.004 41.454±2.033
PF 15% 0.113±0.002 0.107±0.004 0.11±0.002 26.876±1.594
RF 0.1 0.059±0.002 0.005±0.001 0.032±0.002 22.295±1.472
TF 0.5 0.125±0.004 0.087±0.002 0.106±0.003 34.72±1.864
TF 1 0.113±0.002 0.134±0.004 0.123±0.004 29.294±1.702

TF 1.5 0.107±0.002 0.16±0.004 0.134±0.004 26.258±1.596

TABLE 5.14: Evaluation of charging policy with ZIP strategy.
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(a) Market share (b) Profit share

(c) Sum of weighted market share and profit share (d) Number of transactions

FIGURE 5.16: Evaluation of charging policy with heterogeneous strategies.

Marketplace Market Share Profit Share Sum of Weighted Market and Profit Share Num. of Transactions
IAM 0.203±0.002 0.222±0.002 0.212±0.002 53.079±1.702

PF 5% 0.126±0.004 0.052±0.002 0.089±0.002 37.523±1.666
PF 10% 0.122±0.004 0.124±0.004 0.123±0.004 31.707±1.776
PF 15% 0.119±0.004 0.178±0.006 0.148±0.004 25.091±2.251
RF 0.1 0.071±0.002 0.005±0.002 0.038±0.002 27.49±1.637
TF 0.5 0.127±0.004 0.066±0.002 0.096±0.002 33.341±2.117
TF 1 0.122±0.002 0.108±0.004 0.115±0.004 29.382±1.668

TF 1.5 0.109±0.002 0.138±0.004 0.124±0.004 23.707±1.588

TABLE 5.15: Evaluation of charging policy with heterogeneous strategies.
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(a) Daily score (b) Market share

(c) Profit share (d) TSR

FIGURE 5.17: Competition on the second day.

Rank Specialist Total Score Total Market Share Total Profit Share Total TSR
1 IAMwildCAT 198.228 69.923 110.582 414.199
2 jackaroo 193.008 56.508 83.266 439.035
3 Mertacor 191.679 82.001 106.06 386.393
4 PoleCAT 174.621 56.073 72.319 395.481
5 PSUCAT 153.013 48.203 18.368 392.597
6 TWBB 148.324 44.928 14.953 384.151
7 MyFuzzy 139.166 36.469 29.93 350.114
8 AstonCAT 115.685 35.906 8.229 303.241
9 PersianCat 73.765 27.026 13.31 182.512

TABLE 5.16: Competition result on the second day in 2010 CAT competition
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(a) Daily score (b) Market share

(c) Profit share (d) TSR

FIGURE 5.18: Competition on the third day.

Rank Specialist Total Score Total Market Share Total Profit Share Total TSR
1 Mertacor 208.576 83.289 135.125 406.367
2 IAMwildCAT 198.421 69.988 109.403 415.548
3 jackaroo 172.217 46.303 39.357 431.686
4 PoleCAT 170.951 55.662 75.222 381.917
5 AstonCAT 164.445 61.543 38.651 393.029
6 TWBB 157.257 45.567 13.204 431.686
7 MyFuzzy 148.131 35.082 31.325 377
8 PSUCAT 141.819 41.291 9.319 375.029
9 PersianCat 79.7 26.26 13.368 200.297

TABLE 5.17: Competition result on the third day in 2010 CAT competition
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failed to beat Mertacor (which is the winner of this year’s competition) on the third day. This

means that our design of market policies and the charging policy can be improved.

5.6 Summary

In this chapter, we first described how traders select marketplaces and submit shouts in the

CAT competition. We then ran experiments to analyse how different market policies affect

marketplaces’ performance in different environments with different bidding strategies. This

analysis addresses our research challenge 3 of analysing market policies (see Section 1.2). From

this analysis, we obtained several insights, and we further used these insights to design market

policies for the CAT competition. For example, in the first round of each trading day, we adopt

the continuous clearing in order to provide information for traders to improve their shouts, and

we switch between quote-beating accepting and equilibrium accepting policies in order to keep

traders and improve TSR. After designing market policies, we then used insights from Chapters

3 and 4 to design a novel charging policy, which will charge transaction and profit fees, and adapt

fees according to transaction share. We further evaluated it in the context of CAT competition.

Finally, we showed that our design of market policies and charging policy performs well in the

actual CAT competition (ranked the first on the second day and the second on the third day).

This work then addresses our research challenge 5 of designing an effective competing double

auction marketplace (see Section 1.2).



Chapter 6

Conclusions and Future Work

The double auction, a highly efficient market mechanism, has been widely used by both tra-

ditional and online exchanges. In today’s economy, these marketplaces increasingly need to

compete with each other to attract traders and make profits by appropriately charging fees to

participating traders. Therefore, it is necessary to design effective market policies and charging

strategies that can operate effectively in this situation. To this end, in this thesis, we analysed

how double auction marketplaces can be designed to compete with each other in an effective

way and then use the insights from this analysis to design an effective competing marketplace

agent. In so doing, we have made several contributions (summarised below in Section 6.1) to

the state of the art. Thereafter, we outline the directions for future work in this area in Section

6.2.

6.1 Research Summary

The design of a competing double auction marketplace primarily consists of setting the market

policies and a charging strategy. In this thesis, we mainly focused on how competing market-

places should set their fees (i.e. the charging strategy), since this is a significant determinant

that affects traders’ market selection and the marketplaces’ profits. Now, because such charg-

ing strategies are affected by both the traders’ market selection and bidding strategies, we first

analysed the traders’ strategies and then the marketplaces’ charging strategies. Since the opti-

mal behaviour of a trader in terms of selecting marketplaces and submitting shouts depends on

the behaviour of other traders and marketplaces, and the optimal behaviour of a marketplace

in terms of setting fees depends on the behaviour of traders and other marketplaces, we used

game theory to analyse the equilibrium strategies for traders and marketplaces. In addition to

analysing the charging strategies, we further analysed how different market policies affect the

performance of competing marketplaces in the CAT competition. Finally, based on the insights

from analysing the charging strategies and market policies, we designed an effective compet-

ing double auction marketplace, and entered it into 2010 CAT competition, where it was very

169
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successful.

In more detail, firstly, in Chapter 3, we used game theory to analyse equilibrium market se-

lection strategies for traders and equilibrium charging strategies for marketplaces in the setting

with discrete trader types. We also assumed that traders use a truth-telling bidding strategy and

traders can only enter one marketplace at a time (i.e. single-home trading). This work addressed

research challenges 1 (analysing market selection strategies) and 4 (analysing charging strate-

gies), and it is the first theoretical work on analysing equilibrium strategies for marketplaces

and traders in the context of multiple competing double auction marketplaces. Specifically, we

first analysed the equilibrium market selection strategies for traders for a given fee system. We

used game theory to derive the equilibrium market selection strategies analytically and used

evolutionary game theory to investigate the dynamics of traders’ strategies. In so doing, we

showed which equilibrium traders are more likely to converge to. Furthermore, we found that,

when the same type of fees are charged by two marketplaces, all the traders will congregate

in one marketplace. However, when different types of fees are allowed (registration fees and

profit fees), competing marketplaces are more likely to co-exist in equilibrium. Furthermore,

we found an interesting phenomenon that sometimes all the traders eventually migrate to the

marketplace that charges higher fees, when this marketplace initially has a larger proportion

of the traders. We further analysed this phenomenon in detail. This analysis provided us the

insight into the charging strategy, which is that, firstly, a marketplace should lower its fees to

attract or maintain traders, and after obtaining an advantageous position, the marketplace can

then increase its fees while still keeping traders. Based on the analysis of traders’ equilibrium

market selection strategies, we analysed the equilibrium charging strategies of the marketplaces

using two different approaches. In the first, we derived the equilibrium charging strategies by

a static analysis. However, this approach did not consider the interaction between the traders’

and the marketplaces’ strategies. We then tackled this limitation by using a co-evolutionary ap-

proach to analyse how competing marketplaces dynamically set fees, while taking into account

the dynamics of the traders’ market selection strategies. In so doing, we found that two initially

identical marketplaces undercut each other, and they will eventually charge the minimal fee that

guarantees positive market profits for them. Furthermore, we also extended the co-evolutionary

analysis of the marketplaces’ charging strategies to more general cases. Specifically, we anal-

ysed how an initially disadvantaged marketplace with an adaptive charging strategy can beat an

initially advantaged one with a fixed charging strategy, and how competing marketplaces evolve

their charging strategies when different types of fees are allowed.

The work in Chapter 3 was restricted to the setting with discrete trader types and assumed that

traders adopt a simple, truth-telling bidding strategy. In Chapter 4, we addressed these shortcom-

ings by considering continuous trader types and analysing both the equilibrium market selection

and bidding strategies for traders. Moreover, we considered two more types of fees: transaction

and transaction price percentage fees. Furthermore, we extended this analysis to settings with

different trading environments and with different good properties. By considering these addi-

tional factors, we used a fictitious play algorithm to analyse how traders select marketplaces and
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submit shouts, and how competing marketplaces set fees in equilibrium. This work addressed

research challenges 1 (analysing market selection strategies), 2 (analysing bidding strategies)

and 4 (analysing charging strategies). In more detail, we first analysed traders’ equilibrium

bidding strategies in a single marketplace and analysed the effect of different types of market

fees on the traders’ equilibrium bidding strategies. We observed that registration fees cause a

bigger range of traders not to choose the marketplace; profit fees cause traders to shade their

shouts more; and transaction price percentage fees cause sellers to shade relatively less than

buyers’ shading. This is the first work that derives the equilibrium bidding strategies for traders

in double auctions and analyses the effect of market fees on these strategies. Then we analysed

the traders’ equilibrium market selection and bidding strategies in the single-home trading en-

vironment with multiple marketplaces. Furthermore, we extended the analysis by considering

multi-home and hybrid trading environments and different good properties, which is also the

first work to consider these factors in the analysis of competing double auction marketplaces.

We then analysed the effects of different types of fees on obtaining market profits and keeping

traders in a single marketplace environment, and showed that the transaction price percentage

fee is the most effective in terms of making profits and keeping traders. Finally, we analysed

how competing marketplaces set fees in equilibrium. From this analysis, we found that com-

peting marketplaces need to charge high profit fees in equilibrium since traders hide their actual

profits by shading.

Finally, in Chapter 5, we analysed the traders’ behaviour of selecting marketplaces and submit-

ting shouts in the specific context of the CAT competition. Based on this, we analysed how

different market policies affect the performance of competing marketplaces in different environ-

ments where different bidding strategies are adopted. This work addressed research challenge 3

of analysing market policies. Finally, we used insights from analysing the market policies and

the equilibrium charging strategies to design a competing marketplace. As we have shown, this

marketplace performed well in 2010 CAT competition. In particular, it ranked first in the sec-

ond day’s competition and second in the third day’s competition. This work addressed research

challenge 5 of designing an effective competing marketplace.

When taken together, this research work has successfully addressed the research challenges

outlined in the beginning of the thesis and has made a number of important contributions to the

design of effective competing double auction marketplaces.

6.2 Future Work

Despite these accomplishments, there still exist limitations of our work. For example, our anal-

ysis of market policies is still experimental, and we modelled our game as a one-shot game.

Therefore, there are still a number of issues to be addressed in order to further improve the

design of competing double auction marketplaces. Specifically, these are as follows:

• In this thesis, we experimentally analysed how different market policies affect the perfor-
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mance of competing marketplaces. However, this analysis was restricted to the specific

context of the CAT competition. In the future, we would like to analyse how marketplaces

compete with each other in terms of setting their mechanisms (i.e. market policies) from

a theoretical perspective. Specifically, we would like to analyse when and how to execute

possible transactions (i.e. timing and matching policies) and how to set the transaction

prices (i.e. pricing policy). For the timing policy, the market can be cleared when a new

shout is admitted (i.e. continuous clearing, in which traders can buy or sell goods quickly,

but cannot guarantee traders’ profits), or when all traders have submitted their shouts (i.e.

round clearing, in which traders’ profits can be guaranteed, but they take longer to buy or

sell goods). In the real world, in addition to caring about profits made in each marketplace,

traders may also look at the time costs of sale or purchase in each marketplace. Different

traders may weight differently the obtained profits and time costs, and thus prefer different

marketplaces. Therefore, we would like to analyse how to set an effective timing policy

to attract traders that have different requirements. For the matching policy, we want to

find a matching policy that can guarantee traders’ profits (as the equilibrium matching

does) and can maximise the number of transactions (as the maximising volume matching

does). Furthermore, for the pricing policy, many potential policies could be adopted. This

policy determines the trading surplus allocation between buyers and sellers. An improper

surplus allocation may cause asymmetric demand and supply, and thus drives traders with

excess demand or supply to leave the marketplace. Furthermore, in the competition, other

factors may also cause asymmetric demand and supply in the marketplace. For example,

the marketplace’s opponents may attract more buyers by allocating more profits to them.

Faced with this, sellers with excess supply may leave the marketplace since they cannot

make transactions. In this situation, the marketplace needs to use the pricing policy to

adjust the surplus allocation to re-balance the demand and supply. In the future, we would

like to analyse this policy as well. Finally, in addition to theoretically analysing each type

of market policy separately, we would like to consider the combination of market policies

as a whole, and analyse which one is the most effective. This analysis is likely to provide

further and general insights about designing market policies, and can be applied in the

more general scenario of competing marketplaces.

• Furthermore, our current theoretical analysis is restricted to one trading round, i.e. a one-

shot game. However, the practical competition between marketplaces usually involves

multiple trading rounds, and thus is a repeated game. For example, as we mentioned

earlier, the CAT competition involves multiple days, each of which includes multiple

trading rounds, and thus it is a repeated game. Given this, instead of determining its

action in an isolated round, in the repeated game, a trader should take into account the

impact of its current action (in terms of selecting marketplaces and submitting shouts) on

the future actions of other traders and marketplaces in the future trading rounds, and the

same for a competing marketplace. In this vein, we would therefore like to extend our

theoretical analysis to a repeated game involving multiple trading rounds. In more detail,

in this repeated game, we want to analyse how traders select marketplaces and submit
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shouts, and how competing marketplaces set market policies and fees. This analysis will

provide further insights about designing market policies and charging strategies.

• Finally, although our design of market and charging policies performed well in the 2010

CAT competition, it failed to obtain the first position. This may mean that our design can

be further improved. Therefore, we would like to use insights from the above theoretical

analysis of market policies and the repeated game to improve the market policy design.

Furthermore, we would like to use insights from the above analysis of the repeated game to

improve the charging policy. Moreover, as we introduced in Section 5.4, in addition to the

gap between the one-shot game and the repeated game, we also made other assumptions,

which meant that we could not directly use the equilibrium charging strategies in the CAT

competition. We would like to close these gaps in the future. For example, although

we cannot guarantee that other marketplaces also use equilibrium charging strategies,

according to these marketplaces’ fees and the traders’ actions, and taking into account the

impact of our marketplace’s fees on future actions of traders and other marketplaces, we

can derive the best response fees to maximise the market profits while maintaining the

number of traders at a good level.





Appendix A

Expansion of Equations when Deriving
Nash Equilibrium Analytically in
Section 3.2.2

Now we expand equations in Section 3.2.2 to derive Nash equilibrium. In Section 3.2.2, we
consider 2 buyers, 2 sellers and 2 competing marketplaces only charging profit fees. For trader
types, we consider two discrete trader types, rich and poor. Furthermore, we use Λ1 = tb

2 − ts
1 to

represent the surplus of a transaction between rich buyer and rich seller, Λ2 = tb
2− ts

2 to represent
the surplus of a transaction between rich buyer and poor seller, Λ3 = tb

1 − ts
1 to represent the

surplus of a transaction between poor buyer and rich seller and Λ4 = tb
1 − ts

2 to represent the
surplus of a transaction between poor buyer and poor seller. According to Equation 3.14, we
obtain the expected utility of rich buyer in marketplace 1:

Ũb
1 (P̄, K̄, ω̄b(P̄), ω̄s(P̄), tb2)

=

[(
1 −

ωb(tb2 , 1, P̄) + ωb(tb1 , 1, P̄)

2

)
∗
(
ωs(ts

1, 1, P̄) + ωs(ts
2, 1, P̄) −

(
ωs(ts

1, 1, P̄) + ωs(ts
2, 1, P̄)

)2

4

)
∗
Λ1 + Λ2

2

+
1
2
∗

(
ωb(tb2 , 1, P̄) ∗

(
ωs(ts

1, 1, P̄) + ωs(ts
2, 1, P̄) −

(
ωs(ts

1, 1, P̄) + ωs(ts
2, 1, P̄)

)2

4

)
∗
Λ1 + Λ2

2

+ωb(tb1 , 1, P̄) ∗

(
ωs(ts

1, 1, P̄) + ωs(ts
2, 1, P̄)

)2

4
∗

(
ωs(ts

1, 1, P̄)
)2
∗ Λ1 +

(
ωs(ts

2, 1, P̄)
)2
∗ Λ2(

ωs(ts
1, 1, P̄)

)2
+

(
ωs(ts

2, 1, P̄)
)2

)]
∗k1 ∗ (1 − q1) (A.1)

and we obtain its expected utility in marketplace 2:
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The poor buyer’s expected utility in marketplace 1 is:
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and the poor buyer’s expected utility in marketplace 2 is:
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The rich seller’s expected utility in marketplace 1 is:

Ũ s
1(P̄, K̄, ω̄b(P̄), ω̄s(P̄), ts

1)

=

[(
1 −

ωs(ts
1, 1, P̄) + ωs(ts

2, 1, P̄)

2

)
∗
(
ωb(tb1 , 1, P̄) + ωb(tb2 , 1, P̄) −

(
ωb(tb1 , 1, P̄) + ωb(tb2 , 1, P̄)

)2

4

)
∗
Λ1 + Λ3

2

+
1
2
∗

(
ωs(ts

1, 1, P̄) ∗
(
ωb(tb1 , 1, P̄) + ωb(tb2 , 1, P̄) −

(
ωb(tb1 , 1, P̄) + ωb(tb2 , 1, P̄)

)2

4

)
∗
Λ1 + Λ3

2

+ωs(ts
2, 1, P̄) ∗

(
ωb(tb1 , 1, P̄) + ωb(tb2 , 1, P̄)

)2

4
∗

(
ωb(tb2 , 1, P̄)

)2
∗ Λ1 +

(
ωb(tb1 , 1, P̄)

)2
∗ Λ3(

ωb(tb1 , 1, P̄)
)2
+

(
ωb(tb2 , 1, P̄)

)2

)
∗(1 − k1) ∗ (1 − q1) (A.5)

and rich seller’s expected utility in marketplace 2 is:
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The poor seller’s expected utility in marketplace 1 is:
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and the poor seller’s expected utility in marketplace 2 is:
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Recall that in the mixed Nash equilibrium, we have:
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Now we replace the left-hand and right-hand sides of Equations A.9, A.10, A.11 and A.12 by
Equations A.1, A.2, A.3, A.4, A.5, A.6, A.7 and A.8 respectively. Then when ωb(tb

1, 1, P̄) =
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and Equations A.11 and A.12 can be rewritten as the same equation:[
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This means that ωb(tb
1, 1, P̄) = ωb(tb

2, 1, P̄) and ωs(ts
1, 1, P̄) = ωs(ts

2, 1, P̄) will be one of the

solutions for Equations A.9, A.10, A.11 and A.12, and by solving Equations A.13 and A.14, we

can obtain the solutions.





Appendix B

An Alternative Approach to Calculate
Expected Utilities of Traders in Section
4.1.2

In Section 4.1.2, when we calculate the expected utilities of traders, we need to consider all

possible numbers of buyers and sellers choosing different actions. As we discussed previously,

this calculation is demanding. Given this fact, we introduce an alternative approach to calculate

a trader’s expected utility. Specifically, we calculate the expected utility of a buyer with type θb

adopting the action δb = 〈db
1, d

b
2, ..., d

b
M〉 given the other buyers’ action distribution Ωb and the

sellers’ action distribution Ωs, and the fee system P̄. The calculation for the seller is analogous.

The expected utility consists of two parts: the expected value on the goods and the expected

payment. In the following, we derive these two parts respectively.

We first derive the buyer’s expected value on traded goods. In order to do this, we need to know

the buyer’s joint positions. In contrast to that in Section 4.1.2, we derived the buyer’s joint

positions from the number of buyers choosing different actions, we derive this by comparing

buyers’ actions in terms of comparing bids in these actions. In more detail, when comparing the

buyer’s bid db
m with another bid d′bm in marketplace m, there are three possible mutually exclu-

sive events, i.e. db
m > d′bm (i.e. the buyer’s bid in marketplace m is higher than another buyer’s

bid in this marketplace)1, db
m = d′bm (i.e. both buyers have the same bid in marketplace m) or

db
m < d′bm (i.e. the buyer’s bid in marketplace m is less than another buyer’s bid in this market-

place). Thus when comparing the buyer’s action, 〈db
1, d

b
2, ..., d

b
M〉, with another buyer’s action,

〈d′b1 , d
′b
2 , ..., d

′b
M〉, in terms of comparing bids in each marketplace, there are 3M possible mutually

exclusive events, each of which is a joint event of comparing bids across M marketplaces. We

use R = {R1,R2, ...,R3M } to represent the set of all these possible joint events. For example,

when there are two marketplaces, we have R = {R1 = (<, <),R2 = (<,=),R3 = (<, >),R4 =

(=, <),R5 = (=,=),R6 = (=, >),R7 = (>, <),R8 = (>,=),R9 = (>, >)}. As an example, event

1For not choosing the marketplace, i.e. d′bm = 
, we regard that db
m > d′bm = 
.
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R1 = (<, <) means that the buyer’s bids in both marketplaces are less than the bids placed by

another buyer. The probability that a joint event Ri occurs is:

φb
i =

∑
δb

j∈∆:δb ? δb
j=Ri

ωb
j (B.1)

where as we introduced previously, ωb
j is the probability of a buyer choosing the action δb

j , and

δb ? δb
j = Ri means that event Ri occurs when we compare action δb with δb

j .

To calculate the position, we furthermore need to know the number of buyers satisfying each

event. Specifically, we use a 3M-tuple x̄ = 〈x1, ..., x3M 〉 ∈ X to represent the number of buyers

satisfying each event, where there are exactly xi buyers satisfying event Ri when they compare

their actions with the buyer’s action, and X is the set of all such possible tuples satisfying the

conditions xi ≥ 0 and
∑3M

i=1 xi = B − 1 (note that we need to exclude the buyer for which we

are calculating the expected utility) and |X| = 3M∗(B−1). The probability of exactly xi buyers

satisfying event Ri is
(
φb

i
)xi , and then the probability of this tuple appearing is:

ρb(x̄) =
(

B − 1
x1, ..., x3M

)
∗

3M∏
i=1

(φb
i )xi (B.2)

Now given tuple x̄, we determine the buyer’s joint positions as follows. Firstly, we obtain the

number of buyers whose bids are greater than the buyer’s bid in marketplace m, which is given

by:

X>
m(x̄) =

∑
Ri∈R:Rim=‘<’

xi (B.3)

where Rim is the event of comparing bids in marketplace m from the joint event Ri. Similarly,

we use X=m(x̄) to represent the number of buyers whose bids are equal to the buyer’s bid in

marketplace m (excluding the buyer itself):

X=m(x̄) =
∑

Ri∈R:Rim=‘=’

xi (B.4)

Due to having discrete bids and given X>
m(x̄) buyers bidding higher than the buyer’s bid db

m and

X=m(x̄) buyers bidding equal to db
m, the buyer’s position in marketplace m could be anywhere from

X>
m(x̄)+1 to X>

m(x̄)+X=m(x̄)+1, which constitutes the buyer’s position range in this marketplace.

Since X=m(x̄)+ 1 buyers have the same bid, a tie-breaking rule is needed to determine the buyer’s

position. As we did in Section 4.1.2, we adopt a standard tie-breaking rule where each of these

possible positions2 occurs with equal probability, i.e. 1/(X=m(x̄) + 1). For example, when there

are two marketplaces and joint event Ri occurs for xi buyers, i = 1, ..., 9, in marketplace 1, we

have X>
1 (x̄) = x1 + x2 + x3 and X=1 (x̄) = x4 + x5 + x6, and the buyer’s position will be anywhere

from X>
1 (x̄) + 1 to X>

1 (x̄) + X=1 (x̄) + 1 with equal probability 1/(X=1 (x̄) + 1); and in marketplace

2, we have X>
2 (x̄) = x1 + x4 + x7 and X=2 (x̄) = x2 + x5 + x8, and the buyer’s position will be

anywhere from X>
2 (x̄)+ 1 to X>

2 (x̄)+X=2 (x̄)+ 1 with equal probability 1/(X=2 (x̄)+ 1). Now, given

2They are X>
m(x̄) + 1, X>

m(x̄) + 2,..., X>
m(x̄) + X=m(x̄) + 1.
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the buyer’s position ranges in different marketplaces, we can obtain the set of all possible joint

positions for the buyer. Specifically, we use a M-tuple v̄x̄ = 〈v1, ..., vM〉 ∈ Vx̄ to represent one

of the possible joint positions where vm is the buyer’s position in marketplace m, and Vx̄ is the

set of all possible joint positions satisfying the condition X>
m(x̄) + 1 ≤ vm ≤ X>

m(x̄) + X=m(x̄) + 1

(m = 1, ...,M). The probability of the buyer having the joint positions v̄x̄ given the tuple x̄ is:

Φ(v̄x̄) =
M∏

m=1

1
X=m(x̄) + 1

(B.5)

Note that tie-breaking occurs independently for each marketplace.

In addition to depending on positions in different marketplaces, the buyer’s expected value also

depends on the numbers of sellers choosing different actions. Different from Section 4.1.2 where

we consider all possible numbers of sellers choosing different actions, we consider the number

of sellers submitting asks in each marketplace. Given this and the sellers’ action distributions,

we can know whether the buyer will be matched in each marketplace. Since a seller can place

multiple asks in multiple marketplaces at the same time, the numbers of sellers submitting asks

in different marketplaces are also correlated with each other. Thus we need to consider the

joint numbers of sellers submitting asks in different marketplaces. Specifically, we use a M-

tuple ȳ = 〈y1, ..., yM〉 ∈ Y to denote the joint numbers of sellers submitting asks in different

marketplaces, where ym is the number of sellers submitting asks in marketplace m, and Y is

the set of all such possible tuples satisfying the condition that 0 ≤ ym ≤ S (m = 1, ...,M), and

|Y| = (S + 1)M. In the following, we derive the probability of a specific tuple ȳ appearing. We

use the powerset 2M = {M1, ...,M2M } to denote the set of all possible marketplace subsets. For

marketplace subset MI , I = 1, ..., 2M, we use ∆I ⊂ ∆ to denote the subset of seller’s actions

which only submit asks inMI , and submit 
 in the complementM −MI (i.e. sellers do not

choose marketplaces inM−MI). From the seller’s action distribution Ωs, we can calculate the

probability of sellers choosing actions from ∆I (i.e. only submitting asks in marketplace subset

MI):

µs
I =

∑
δs

j∈∆I

ωs
j (B.6)

Now we use a 2M-tuple z̄ = 〈z1, ..., z2M 〉 ∈ Z,
∑2M

I=1 zI = S , to denote the numbers of sellers

submitting asks in each of these possible marketplace subsets, where zI is the number of sellers

choosing actions from action subset ∆I (i.e. only submitting asks in subsetMI), and Z is the

set of all such possible tuples. The probability of this tuple appearing is:

ρs(z̄) =
(

S
z1, ..., z2M

)
∗

2M∏
I=1

(µs
I )

zI (B.7)

Given tuple z̄, we can know the joint numbers of sellers submitting asks in different market-

places. Specifically, we introduce a function g(z̄) = 〈y′1, ..., y
′
M〉, which converts the numbers

of sellers submitting asks in different marketplace subsets to the numbers of sellers submitting
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asks in different single marketplaces, where

y′m =
∑

MI∈2M:m∈MI

zI (B.8)

Now we calculate the probability of the tuple ȳ appearing:

ρs(ȳ) =
∑

z̄∈Z:ȳ=g(z̄)

ρs(z̄) (B.9)

Now given the buyer’s joint positions v̄x̄, the joint numbers of sellers submitting asks in different

marketplaces ȳ, we are ready to calculate its expected value on traded goods. Since the buyer can

enter multiple marketplaces and thus purchase multiple goods, we need to consider its expected

value on different units of goods. Remember that each trader can only trade one unit of good

in each marketplace, and thus when there are M marketplaces in total, the possible number of

goods the buyer can purchase is from 1 to M. Specifically, in Section 4.1.1, we have defined

the buyer’s value vb(θb,T ) on T units of goods by considering different good properties (see

Equation 4.1). Now by considering all possible marketplace subsets with cardinality T , where

exactly T transactions are made by this buyer, we obtain the buyer’s expected value when it

purchases T units of goods given its joint positions v̄x̄ and the numbers of sellers submitting

asks in different marketplaces ȳ:

Ṽ(v̄x̄, ȳ, θb, δb,Ωb,Ωs,T ) =
∑

MI⊂2M:|MI |=T

ϕb(v̄x̄, ȳ, δb,MI) ∗ vb(θb,T )

=
∑

MI⊂2M:|MI |=T

ϕb(v̄x̄, ȳ, δb,MI) ∗ αb
T ∗ θ

b (B.10)

where ϕb(v̄x̄, ȳ, δb,MI) is the probability of the buyer making transactions in marketplacesMI

and not making transactions inM−MI . Note that given the buyer’s position and the number

of sellers submitting asks in each marketplace, the probability of the buyer making a transaction

(or not making a transaction) in each marketplace is independent of each other, and thus the

probability of the buyer making transactions inMI and not making transactions inM−MI is

given by:

ϕb(v̄x̄, ȳ, δb,MI) =
∑

m∈MI

ψb(vm,m, db
m, ym) ∗

∑
m∈M−MI

χb(vm,m, db
m, ym) (B.11)

where ψb(vm,m, db
m, ym) is the probability of the buyer with bid db

m making a transaction in

marketplace m given its position vm and ym sellers submitting asks in this marketplace, and

χb(vm,m, db
m, ym) is the probability of the buyer with bid db

m not making a transaction in market-

place m. In the following, we derive them respectively.

First, we introduce three support functions3: e<s (d) denotes the probability that the sellers’ asks

3These are calculated by taking the sum of the probabilities of actions whose corresponding shouts in marketplace
m satisfy the conditions defined by these functions.
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are strictly less than d in marketplace m, e=s (d) denotes the probability that the sellers’ asks are

equal to d in marketplace m, and e>s (d) denotes the probability that the sellers’ asks are strictly

higher than d in marketplace m but are not 
. Given the buyer’s position vm, its bid db
m, and the

number of sellers ym submitting asks in marketplace m, the probability of the buyer making a

transaction in marketplace m is given by:

ψb(vm,m, db
m, ym) =

ym∑
c=vm

(
ym

c

)
∗

(
e<s (db

m) + e=s (db
m)

E

)c

∗

(
e>s (db

m)
E

)ym−c

(B.12)

where E = e<s (db
m) + e=s (db

m) + e>s (db
m). Note that this calculation is given the condition that ym

sellers have submitted asks in marketplace m, and thus the probability of an ask less than or

equal to db
m in marketplace m should be normalised, i.e.

(
e<s (db

m) + e=s (db
m)

)
/E, and the same

reason for e>s (db
m)/E. The probability of the buyer not making a transaction in marketplace m is

given by:

χb(vm,m, db
m, ym) =

vm−1∑
c=0

(
ym

c

)
∗

(
e<s (db

m) + e=s (db
m)

E

)c

∗

(
e>s (db

m)
E

)ym−c

(B.13)

Finally, by considering all possible numbers of units the buyer purchase, all possible joint num-

bers of sellers submitting asks in different marketplaces, all possible joint positions and all

possible numbers of buyers satisfying different joint events, the buyer’s expected value is given

by:

Ṽ(θb, δb,Ωb,Ωs) =
∑
x̄∈X

ρb(x̄) ∗
∑

v̄x̄∈Vx̄

υ(v̄x̄) ∗
∑
ȳ∈Y

ρs(ȳ) ∗
M∑

T=1

Ṽ(v̄x̄, ȳ, θb, δb,Ωb,Ωs,T ) (B.14)

After deriving the expected value, in the following, we derive the expected payment of the buyer

given the action distributions of buyers and sellers, Ωb and Ωs, and the fee system P̄. Firstly,

we derive the buyer’s expected payment given its joint positions v̄x̄ and joint numbers of sellers

submitting asks in different marketplaces ȳ. The buyer’s expected payment is the sum of its

expected payment in each marketplace, which is:

P̃b(v̄x̄, ȳ, θb, δb,Ωb,Ωs, P̄) =
M∑

m=1

P̃b
m(vm, ym, θ

b, db
m,Ω

b,Ωs, pm)

where P̃b
m(vm, ym, θ

b, db
m,Ω

b,Ωs, pm) is the buyer’s expected payment in marketplace m when it

bids db
m given its position vm and ym sellers submitting asks in this marketplace, and it is given

by:

P̃b
m(vm, ym, θ

b, db
m,Ω

b,Ωs, pm) = 0 if db
m = 
∑

ds∈Φ−{
}
P̃b

m(vm, ym, θ
b, db

m,Ω
b,Ωs, ds, pm) + rm + ε if db

m , 
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where
∑

ds∈Φ−{
}
P̃b

m(vm, ym, θ
b, db

m,Ω
b,Ωs, ds, pm) is the buyer’s expected payment excluding reg-

istration fee rm and constant cost ε, and P̃b
m(vm, ym, θ

b, db
m,Ω

b,Ωs, ds, pm) is the buyer’s expected

payment when it attempts to be matched with the ask ds, which is given by:

P̃b
m(vm, ym, θ

b, db
m,Ω

b,Ωs, ds, pm) =
0 if db

m ≤ ds

vm−1∑
ys

1=0

ym−ys
1∑

ys
2=vm−ys

1

ρs(ym, ys
1, y

s
2, d

s) ∗ P̃b
m(vm, ym, θ

b, db
m,Ω

b,Ωs, pm|ds) if db
m > ds

where

ρs(ym, ys
1, y

s
2, d

s) =
(

ym

ys
1, y

s
2, ym − ys

1 − ys
2

)
∗

3∏
i=1

(es
i (ds)
E

)ys
i

is the probability that there are exactly ys
1 asks strictly less than ds, exactly ys

2 asks equal to

ds (including the ask itself), and exactly ym − ys
1 − ys

2 asks greater than ds. The same as be-

fore, since the calculation is given the condition that ym sellers have submitted asks in mar-

ketplace m, and thus the probability of an ask less than (equal to, or greater than) ds in mar-

ketplace m should be normalised, i.e. es
i (ds)/E and E = e<s (ds) + e=s (ds) + e>s (ds). Note that

vm−1∑
ys

1=0

ym−ys
1∑

ys
2=vm−ys

1

ρs(ym, ys
1, y

s
2, d

s) actually gives the overall probability that this match happens. Fi-

nally, P̃b
m(vm, ym, θ

b, db
m,Ω

b,Ωs, pm|ds) is the buyer’s expected payment when it is matched with

the ask ds. This is given by:

P̃b
m(vm, ym, θ

b, db
m,Ω

b,Ωs, pm|ds) = TP + tm + TP ∗ om + (db
m − TP) ∗ qm (B.15)

where TP = ds ∗ km + db
m ∗ (1 − km) is the transaction price, tm is the transaction fee, TP ∗ om is

the payment of transaction price percentage fee, and (db
m − TP) ∗ qm is the payment of profit fee.

Now by considering all possible joint numbers of sellers submitting asks in different market-

places, all possible joint positions and all possible numbers of buyers satisfying different joint

events, the buyer’s expected payment is given by:

P̃b(θb, δb,Ωb,Ωs, P̄) =
∑
x̄∈X

ρb(x̄) ∗
∑

v̄x̄∈Vx̄

υ(v̄x̄) ∗
∑
ȳ∈Y

ρs(ȳ) ∗ P̃b(v̄x̄, ȳ, θb, δb,Ωb,Ωs, P̄) (B.16)

Finally, the expected utility of the buyer with type θb using action δb is:

Ũb(θb, δb,Ωb,Ωs, P̄) = Ṽb(θb, δb,Ωb,Ωs) − P̃b(θb, δb,Ωb,Ωs, P̄) (B.17)

In this way of calculating a buyer’s expected utility, for buyers, by comparing actions in terms

of comparing bids in the actions, we reduce the possibilities of buyers’ action choices from

|Φ|M∗(B−1) to 3M∗(B−1), and for sellers, by considering the possibilities of the number of the sellers

submitting asks in different marketplaces, we reduce the possibilities from |Φ|M∗S to (S +1)M. In

our analysis where we consider 11 possible shouts plus 
, 2 competing marketplaces, 5 buyers
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and 5 sellers, we significantly reduce the possibilities of buyers’ action choices from 128 =

429981696 to 38 = 6561, and reduce the possibilities for sellers from 1210 = 61917364224 to

62 = 36.
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