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ABSTRACT

Distortion product otoacoustic emissions (DPOAE or DP) are generated using two
primary tones at frequencies f1 and f2 at levels L1 and L2; the two most prominent
DP are cubic distortion products at the frequencies 2f1-f2 and 2f2—f1. Current
understanding of their origin indicates that they arise via two distinct mechanisms.
One mechanism is thought to be non-linear distortion and the other linear coherent
reflection. Recent investigations have confirmed that both components are present in
the 2f2—f1 DP, which conflicts with current understanding of the generation
mechanisms, suggesting that the location of origin of the DP at 2f2—f1 may be
different from that at 2f1-f2.

Distortion and reflection components of DP combine in the cochlea. One method to
separate them is time window separation, which utilises phase variation in the
frequency domain to infer latency in the time domain, by means of inverse Fourier
transformation. It is independent of the location of generation of the DP but depends
on the generation mechanism. By contrast, DP can be reduced by the introduction of a
third suppressor tone, which can be used to infer the location of DP generation based
of the suppressor tone frequency, independent of generation mechanism.

The aim of this investigation was to assess the effect of suppressor frequency and
level on the 2f2—f1 DP, in order to make inferences about where this DP originates.
Twenty normally hearing participants took part in the investigation. DP were
measured (L1 = 65, L2 = 55 dB SPL) with a fixed frequency ratio f2/f1 = 1.05. By
sweeping the primary frequencies in the ranges f2 = 1.75-2.25 and 3.75-4.25 kHz,
suitable fixed test frequencies were identified for subsequent suppression testing in
each ear, as the frequencies giving DP with the greatest signal-to-noise ratio. The
frequency sweeps also allowed analysis by time window separation. Suppression was
carried out with suppressor levels introduced at 0, 20, 40 and 60 dB SPL. The
frequency of the suppressor was altered from —32 Hz to +64 Hz relative to the DP, in
16 Hz increments.

Results of time window separation confirmed that both non-linear distortion and
reflection components were present in both the 2f2—f2 DP and 2f2—f1 DP. However,
it was not possible to separate the two components of the 2f2—f1 DP by suppression,
which suggests that the 2f2—f1 DP is not generated at a discrete place. It is concluded
that the generation mechanism for the 2f2—f1 DP may be distributed along the
cochlear partition at or basal to the characteristic place corresponding to the DP
frequency.



DECLARATION

I, Richard John Perdue, declare that the thesis is my own work, except where
acknowledged, and that the research reported in this thesis was conducted in
accordance with the principles for the ethical treatment of human participants as
approved for this research by the Ethics Committee at the Institute of Sound and

Vibration Research, University of Southampton.



ACKNOWLEDGEMENTS

The author would like to thank all of the participants who contributed their time in
order to be tested for this project. Thanks to Dr Ben Lineton for advice on calibration.

Finally, thanks to Professor Mark E Lutman for his advice and guidance throughout
the construction of this thesis.



CHAPTER 1: BACKGROUND .....occiiiiiiiiee e 7

L1 INTrOAUCTION ... bbbt 7
1.1.1 DefiNING the ISSUE ......ocviieiiiiiieiieiieiee s 7
1.0.2 OULHING. ..ttt et bbbt 7

1.2 The mechanics of cochlear FUNCLION .........cccooovviieiiii e 8
1.2.1 The linear transformer and the basilar membrane ...........ccoccoovininiiinnnnn, 8
1.2.2 The travelliNg WaVE...........ccooiiiiiiei e 9
1.2.3 The non-linear cochlear amplifier...........cccoveveiieiiiie e 10

1.3 The non-linear distortion Model ............cccooeiieiiiniiecee e 11
1.3.1 An integrated model of cochlear function ...........cccccece e, 11

1.4 Mechanism based taX0NOMY .........ccccoiiiiiriiiniseee e 14
1.4.1 Non-linear distortion and linear reflection.............cccoceveveniiininiiieieen, 14
1.4.2 Phase gradi€ntS.........cooiiiriiinieieiesie st 17
1.4.3 FINE STIUCLUIE ....cvviviiie sttt ettt 19
1.4.4 MixXing and UN-IMIXING .....ooeiieiiieiiienese s 20
1.4.5 Evidence through experimentation ...........ccccccceiveiieieiie e 20
1.4.6 The third tone and fine structure predictability...........cccccocoviiiiniiiiinienn, 22
1.4.7 Pulsed and CONLINUOUS TONES ......c.cerverierieriiriisiesieieie et 24
1.4.8 A TEW CIITICISIMS ..ottt nre s 24

1.5, ClINICAl ULHIITY ..o 26
1.5.1 The principles of TEOAE and DPOAE .........ccccoeiiiiiiiieneeee, 26
1.5.2 The DP-gram and 1/O fUNCLIONS..........cccccveiieiiiiece e 28

1.6 CUFTENT ISSUBS.....c.veeueeitieiteeieetiesieesiesseesteesee e steeseesseesteensesseesseensesseesaeaneeaseenseens 29
1.6.1 Issues surrounding DPOAES and threshold estimation ...............cccccocveuee. 29
1.6.2 A few unknowns and OAE group delay ...........ccccevereneienininisieeee, 30
1.6.3 The 2f2— f1 cubic distortion product .............ccccoveieeieiiieiiecece e 33
1.6.4 Somatic electromotility and non-lNearity .........cccooeveieieniicninieeee, 36
1.6.5 PreESSUIE WAVES .......ueiiiieiieeiee ettt 36
1.6.6 A few TUIther CrItICISMS ......ccuviieiiee e 37

1.7 AIM OF RESEAICH ... e 37

1.8 Statement Of NYPOTNESES .........ooiiiiiiee e 38

CHAPTER 2: RESEARCH DESIGN ......cooiiiiiice e 40

2.1 INTFOAUCTION ...ttt 40

2.2 PArTICIPANTS. ..ottt 40
2.2.1 RECIUITMENT ...ttt sttt 41

2.3 PrOCEAUNE ...ttt ettt e be e ae et e sreentesneesseenteaneenreas 42
2.3.1 Equipment and test configuration ............ccccevveeveeiie i 43
2.3.2 TSE SBSSIONS. .. vveuveereeiteeteesiesteesteeseesseesteaseesseesaeeseesseeseeneesseesseeneesseeseaneensens 44
2.3.3 PArAMELEIS ...ttt 45
2.3.4 CaliDratioN........coii it 49

2.4, DAta PrOCESSING . .vviiveeiieeiie et ee ettt st e e et e e be e saae e baesraeenee e 49
2.4. 1 PrOQIAIMIMIE ....oiiitieieisieete sttt ettt ettt sttt et e esbe e b nne s 49
2.4.2 Stage 1. Data formatting and phase Unwrapping ........cccceeveveeviveereesneenne 50
2.4.3 Stage 2: UN-MIXING ..cuviiiiiiiiiieiiieieeieiee ettt 50
W N = - T | o PSPPSR 51
2.4.5 The NOISE TIOON .....ocveiiice s 51

2.5 Statistical design and analysis Methods ............ccccveiveiiieniciic e, 52

CHAPTER 3: RESULTS AND ANALYSIS.....ccoi it 54



S L INErOAUCTION ... 54

3. 1.1 PartiCIPANTS....cveeiiceiecieesie sttt sttt et sre e e e teeneenre s 54
B2 EMUSSIONS ...ttt sttt sttt e et e be et neenre s 54
3.2.1 Recorded emissions (Prior t0 ProCesSiNg).......ccceeveereeveereeresseeseesesseesees 54
3.2.2 EMissions (POSt PrOCESSING)....cveeuerreerieaierieerieseesteesieseesreeseesseesseessesnesseeas 56
3.2.3 INAIVIAUAI FESUIES......coviiieiict s 67
3.2.4 Suppression-growth FUNCLIONS ..........ccooiiiiiiiieiieece e 68
3.3 Statistical INterpretation...........ccocviiieiiiie e 71
3.3.1 Patterns in the data.........cccceieeiiiiieiieiece e 71
3.3.2 DP level compared t0 NOISE .......cccuevieeiieiiieieeiie s e 71
3.3.3 Analysis of varianCce (ANOVA)......coiiieiieieee e 72
CHAPTER 4: DISCUSSION ..ottt 80
A1 INEFOTUCTION ...c.viiiiiiieiieie ettt sttt neas 80
4.2 A question of validity and SNR..........cccooiiiiii e 81
4.3 Suppression-growth fUNCLIONS ..........cccoveiiiiiiece e 83
4.4 AMPIITUAE PIOTS ... 84
4.4 THE 22-T1 DP..coeiceceee ettt 85
A5 FULUIE WOTK ...ttt 88
5. CONCIUSION ...ttt 88
] (] =] (002 USROS 90
A o] 0 1=1 o [ Tor TSP 98
APPENAIX L.t 98



CHAPTER 1: BACKGROUND

1.1 Introduction

1.1.1 Defining the issue

Regardless of the initial excitement concerning Kemp's (1978) revelation that the
inner ear emits sounds for diagnostic utility in the clinic, otoacoustic emissions
(OAEs) have advanced no further than being able to differentiate between 'normal’
and 'impaired' auditory functioning (Shera, 2004). Otoacoustic emissions are used in
the clinic environment, being especially important in the newborn hearing-screening
programme. It is obvious that OAESs could be utilised in a far more helpful way, in
order to give more frequency specific and detailed characterisation concerning the
mechanisms of the middle and inner ear. Indeed, there is much evidence correlating
behavioural thresholds in humans with OAE amplitude (Lonsbury-Martin and Martin,
1990; Gaskill and Brown, 1990). There is also the potential to use OAES to monitor
changes in the cochlea due to ototoxicity and exposure to loud sounds. Investigations
of this clinical application in human ears have been hindered by the great range of
results seen in the OAE amplitude of normal hearing humans (Gaskill and Brown,
1990; Suckfull et al., 1996).

In both major research areas concerning evoked OAEs, in a laboratory and clinical
setting, the interpretation of measured OAE responses is dependent on the current
understanding of their origins (Shera, 2004). Since their discovery various models
have been developed in order to explain the mechanisms of generation of OAEs. By
further understanding the generation mechanisms underlying OAEs we will be closer

to enabling their full potential in both the laboratory and clinic setting.

1.1.2 Outline

In this chapter the literature concerning the experimental investigations and models

that form the basis of current understanding of the mechanisms and sources of



distortion product OAEs (DPOAES) are reviewed. The limitations of current
practices are explored, and current gaps in knowledge are highlighted in order to
emphasise further areas of research. This will aid in broadening the understanding of
cochlear function, and help advance the clinical utility of DPOAEs.

The paper will begin by giving an overview of the mechanics of cochlear function.
This will be followed by a description of recent advancements made in the
understanding of the origin of OAEs, and the evolution of theory. Descriptions of
experimental method and findings will be discussed relating to current interpretation,
and criticised where appropriate. The referenced articles are grouped by topic. A
methodology is then described and results presented. The results are then discussed
and conclusions drawn. Areas of controversy and disagreement will be focussed upon
and the paper will highlight gaps in current knowledge. Emphasis will then be placed

on recommendations for future research.

1.2 The mechanics of cochlear function

In order to understand how OAEs are generated it is important to know detail of the

physiological processes occurring in the cochlea.

1.2.1 The linear transformer and the basilar membrane

The significance of the outer ear and middle ear mechanisms in transferring sound
energy to the inner ear is widely known (Hammershoi and Moller, 1996; Handel,
1989, page 64). The efficiency by which sound is transferred from the outer and
middle ear to the inner ear is dependent upon how well the low acoustic impedance of
air is coupled to the high impedance fluid filled cochlea (Kemp, 2002). The
difference between the impedances of the fluid within the cochlea and the air is
estimated to be 4000:1. The middle ear increases the level of mechanical force
created by sound in the air, in order to correct for this difference in impedance values.
The middle ear effectively acts as a linear transformer (Gelfand, 2007, page 89).

Given values supplied by Gelfand (2007, page 94) using an effective area ratio of 26.6



(difference between the tympanic membrane and the oval window), an ear drum
buckling factor of 2.0, and a ossicular lever ratio of 1.3, the human middle ear
transformer ratio may be 69.2 to 1, corresponding to 36.8 dB. The real value is often
less due to frequency effects and transmission losses. This results in greater cochlear
fluid movement, which excites the sensory hair cells. Consequently the health of the

middle ear has implications on OAEs and can interfere with their measurement.

Bekesy (1948, in Gelfand, 2007) demonstrated that there is a widening of the basilar
membrane with increasing distance from the base to apex. The stimulation of the
cochlea creates a travelling wave (TW). Oscillatory transfer takes place between the
kinetic energy in the cochlea fluid and the elastic energy stored in basilar membrane
(BM) movement. Basilar membrane segments located adjacent to one another gain
energy as the fluid moves, for example, when the BM rises at a point it causes the
adjacent less stiff apical point to move also, creating a TW (Kemp, 2002). Bekesy
(1960) reported from investigations conducted on human cadavers that the elasticity
of the cochlear partition changed by a factor of 100 from the base to the apex of the
35 mm cochlea (Emadi et al., 2004). There is an increasing widening, corresponding
with a decrease in stiffness. This stiffness gradient effectively creates a series of low
pass filters, meaning that peaks in the TW occur at the base for high frequencies and
near the apex for low frequencies (Handel, 1989, page 64). Travelling waves move
from the base to the apex (Gelfand, 2007, page 127).

1.2.2 The travelling wave

The displacement amplitude increases as the TW moves toward the apex, reaching a
peak at the resonant frequency, beyond that the TW decays rapidly (Duke and
Julicher, 2003; Moller, 1973). The TW peak occurs at the resonant frequency. The
TW displacement patterns that Bekesy observed on the BM are characterised by three
properties. 1) Displacements have greater phase lags with increasing distance from the
oval window. 2) The sizes of displacements have an asymmetrical envelope around
the characteristic place, with the apical slope having a greater gradient than the basal
slope. 3) The TWs are the result of the passive mechanical characteristics of cochlear

tissues and fluids (Robles and Ruggero, 2001).



The 'lost' energy is transferred to the organ of Corti, or dissipated in resistive

elements.

The organ of Corti mechanism then converts BM motion into fluid motion across the
inner hair cell (IHC) stereocilia, resulting in excitation of neurones. Forces exerted on
the ciliary bundle derive from relative displacements between the reticular lamina and
the tectorial membrane, either due to direct attachment of cilia or due to tectorial
membrane driven flow of endolymph around the cilia (Dallos, 1992). A well-
established theory of hair cell transduction highlights mechanically gated ion channels
located at or near the tips of stereocilia. Bundle displacement toward the tallest cilia
IS excitory; movement in the opposite direction is inhibitory (Dallos, 1992).

Gelfand (2007, page 148) explains that the cochlea is tuned to specific frequencies as
a function of distance along the cochlea. This relationship is described by Liberman's
(1982) cochlear frequency map (Gelfand, 2007). The ability to separate competing
sounds of differing frequencies is a fundamental component of the auditory system
(Oxenham and Shera, 2003).

1.2.3 The non-linear cochlear amplifier

Energy is lost within the cochlea due to viscous losses (Kemp, 2002). Absorption of
energy is fundamental to the functioning of the sensory cells, in order to stimulate the
IHCs. The movement of fluid occurs in the sub-tectorial space. This energy loss is
compensated for by the 'cochlear amplifier' (Kemp, 2002). Bekesy’s initial recordings
of the TW in the dead ear implied linearity and shallow tuning. When it became
possible to measure the BM response of living organisms, a significant difference
from Bekesy’s results was unveiled (Duke and Julicher, 2003). A rise in the energy
present implied that energy is supplied to the TW in excess of that present in the
eliciting stimulus. Calculations based on data from active cochlea suggest that BM
vibrations are biologically amplified, in comparison to inactive cochlea (Robles and
Ruggero, 2001). The system is shown to be non-linear with regard to stimulus level,
and it is much more sharply tuned (Dallos, 1992). This is due to mechanical feedback

produced by outer hair cells (OHCs).
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Dallos (1992) discusses the fact that the mechanical nature of the active cochlear
process is indicated by the detection of sound in the ear canal, OAEs. The cochlear
amplifier results in increased vibratory stimulus being delivered to the IHCs, leads to
the sharp cochlear tuning and non-linear responses, and creates OAEs. This arises as
the OHCs rapidly contract and expand (up to 3-5%) in response to sound (Dallos,
1992).

OAEs are potentially located in the external ear as a consequence of the BM
disturbances that are released from the amplifier mechanism toward the cochlear base
(Kemp, 2002). The shifting movement of the BM creates a variation in oscillating
fluid pressure on the oval and round windows. This leads to vibration of the ossicles
and the drum, via a reverse TW. OAEs are only present in non-pathological ears; the
cochlear amplifier must be functioning. Vibrations are sent back to the base to form
OAEs due to spatial imperfections and also as some energy is released basally (this
energy can be partially reflected back, resulting in repetitive circulation of the TW)
(Kemp, 2002). In the case of uneven OHC movement, a stimulus frequency OAE

(SFOAE) is created at the same frequency as the stimulus.

1.3 The non-linear distortion model

1.3.1 An integrated model of cochlear function

The non-linear distortion model theorises that when the cochlear response is non-
linear the TW produces localised distortions, approximately around the TW peak.
This is referred to as a wave-fixed phenomenon. DPOAESs were historically
considered to be created directly as a result of this process, as this seemed to
encompass the frequency dependence of cochlear TWs. This was thought to arise via
the electromotile responses of OHCs (Shera and Guinan, 1999). DPOAEs were
thought to arise through non-linear stimulus re-emission. Stimulus re-emission was
thought to primarily occur at the peak of the TW envelope, resulting in the creation of
backward TWs. DPOAEs occur as a result of non-linear distortion (Shera and

11



Guinan, 1999; Robinette and Glattke, 2007, page 32). This non-linear distortion can
be seen in Figure. 1.1, which illustrates that as the frequency alters the wave moves.
According to the integrated view DPOAES were generated by non-linear distortion
(Shera, 2004). In situations in which the cochlear map is logarithmic, the relative
wavelengths of the TW are independent of frequency. A low frequency wave moves
a greater distance and is slower in reaching its peak than a high frequency wave. The
two TWSs however travel the same number of wavelengths, and the phase
accumulation is equal (Shera, 2004).

Wave shifts when
frequency increases

Stapes 1

|I”: ||i
"

Induced distortion source
moves with the wawve

4+—— Phase lac

Baze } . Apex
Cochlear location

Figure 1.1 Diagrammatic representation of non-linear distortion for a pure-tone
stimulus. The black line at the top illustrates a frozen image of the TW and the
black line at the bottom shows the phase delay. As a result of the non-linearities
in the cochlear mechanisms a TW leads to the creation of backward travelling
waves. As this distortion source is a result of the wave itself, the phase of the
wave at the source remains constant as the frequency is raised (grey line), with
pattern moving toward the base. The amplitudes are exaggerated here for
illustration purposes. Source: Shera, 2004, page 3.
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According to this model, the emission phase is an accumulation of 1) wave travel
toward and away from the site of re-emission and 2) from the non-linear re-emission
process itself (Shera, 2004). Sources of non-linear distortion are induced by and
move with the wave when the frequency is varied. This means that the phase lag

experienced by the TW is independent of frequency (Shera, 2004).

DPOAEs are normally elicited by two prolonged pure tones with frequencies f1 and
f2. These are referred to as primaries. According to convention the lower-frequency
pure tone is labelled as the f1 primary, and its corresponding level as L1, and the
higher-frequency primary is labelled as f2 (f2 > f1), and its corresponding level is L2
(Robinette and Glattke, 2007). The frequency separation of the primaries, the f2/f1
ratio is often 1.2. The most common distortion product frequency measured in the
human ear is 2f1- 2, as in humans it is the greatest DPOAE (Figure. 1.2). The
phases of f1 and f2 at any point on the BM are a consequence of the location of the
point with respect to the TWs each stimulus creates (Robinette and Glattke, 2007).
This emission is dependent on the wave characteristics of the stimulus TW. Moving
the frequencies together will move the positions of the TW peaks but will not

influence their spatial phase relationship (Robinette and Glattke, 2007).

F

Magnitude

2F}-F,

v

Frequency
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Figure 1.2 The most commonly observed DP is 2f1- f2. The diagram highlights
the location of this DP relative to its eliciting primary tones (F1 and F2). The
2f1- f2 DP is the largest DP measurable. Source: Sharp, 2007.

From this model a constant phase is expected. Upon investigation this can be found,
thus the model appears true for DPOAES caused directly by distortion. However,
SFOAE alter greatly so although the non-linear distortion model holds true for
distortion products, it predicts a constant SFOAE and transient evoked OAE
(TEOAE) in contrast to what is shown experimentally. Consequently pure DPOAE
and low level SFOAE and TEOAE must arise by different mechanisms (Shera, 2004).

1.4 Mechanism based taxonomy

1.4.1 Non-linear distortion and linear reflection

Although the model proposed by Kemp (1978) is still relevant it is an over-
simplification of the actual processes taking place (Shera and Guinan, 1999). The
Kemp (1978) model is location based. It has since been suggested that OAEs are the
result of two fundamentally different mechanisms. This mechanism-based taxonomy
separates emissions into distortion and reflection emissions (Kalluri and Shera, 2001)
(Figure. 1.3). The Shera and Guinan (1999) model implies that the reflection
mechanism involves reflection of the distortion component travelling forward. This
differs from the wave and place-fixed theories suggested by Kemp and Brown (1983)
as this theory implied all OAEs were the result of non-linearity (Shera and Guinan,
1999). The primary TWs f1 and f2 (f2 > f1) interact to produce a non-linear
distortion near the peak of f2, increasing energy at DP frequencies (Kalluri and Shera,
2001). Travelling waves at 2f1- f2 move in both the forward and reverse direction.
The forward TW moves to its frequency place where partial reflections occur through
a linear mechanism (Shera et al., 2004), creating a second backward TW that moves
to the ear canal.

Reflections occur at random inhomogeneities located along the cochlear partition,
fixed in location (Shaffer, 2003). Figure. 1.4 illustrates the phase of the wave

changing with frequency at one of these perturbations. Examples of these
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irregularities include differences in the quantity of hair cells or differences in their
geometry, and irregularities in the anatomy such as in OHC forces resulting from
variations in the number of motor proteins (Shera et al., 2004).

Otoacoustic
Emissions

| |
OAEs resulting from OAEs resulting from
Linear Reflection Non-linear Distortion

|
Reflection Emissions resulting
from coherent reflection from
random impedance perturbations

Distortion Emissions due
to nonlinearities acting as
sources of travllelline waves

. J
hd

Evoked Emissions usually a
mixture of emissions resulting
from both mechanisms

Spontaneous Emissions
due to standing waves
caused by multiple internal
coherent reflections

Figure 1.3 The mechanism based taxonomy for mammalian OAEs. Source:
Shera, 2004.
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Wave shifts when
frequency changes

«—

Stapes

Pre-existing perturbation
(reflection source)

f

Phase change at source -

+«—— Phase lag

Bage . ) Apex
Cochlear location

Figure 1.4 Similar diagram as Figure. 1.1 demonstrating a reflection source. As
a consequence of pre-existing mechanical perturbations that are stationary, the
phase of the TW reaching the perturbation, and subsequently the phase of the
scattered wave, changes significantly with stimulus frequency. The above figure
shows one imperfection, in reality there are many more. In the example above
the red stimulus is higher in frequency than the black, so has greater amplitude.

Source: Shera, 2004, page 5.

Many of these scattered wavelets combine out of phase and may cancel out. An
anologue of Bragg's law from x-ray crystallography enables scattered wavelets to
accumulate creating a large reflected wave. The region of reflection moves along the
cochlear partition as frequency is changed (Shera and Guinan, 1998). This is clearly
exemplified in Figure. 1.4. Non-linear distortion and linear coherent reflection both
contribute to all evoked OAEs as they combine in the ear canal (Kalluri and Shera,
2001; Shera et al., 2004; Shaffer, 2003). This is demonstrated in Figure. 1.5 for
DPOAEs.
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Wav
e Location-

Place based

Non-linear

distortion | Distorti
. \l\ 1stortion Mechanism-
Reflection
based

Reflection

F 3

F 3

Figure 1.5 The origin of non-linear distortion resulting from the region of
overlap of the two stimulus waves. The two waves interfere and the recordings
made arise from these two separate generation mechanisms, as they mix in the

ear canal. Source: Shaffer et al., 2003, page 3609.

In the next section the experimental methods concerning how the two components are
separated are discussed. The two main approaches are by studying phase gradients
and the introduction of a suppressor tone.

1.4.2 Phase gradients

The phase pattern of an OAE can give information concerning the underlying
mechanisms of their creation. The phase of a TW moving through a specific place on
the BM has a recognisable gradient as the frequency of the stimulus is varied
(Robinette and Glattke, 2007). The phase gradient of a reflecting point will alter as it
moves back to the middle ear. As the stimulus frequency is lowered, the TW peak
shifts toward the apex keeping approximately an equal number of waves within its
TW envelope (Robinette and Glattke, 2007, page 31). The TW would however have
less full cycles before reaching the reflective place.

For the distortion component phase will alter little as a consequence of stimulus
frequency change. This is because the number and placing of waves varies slowly
with frequency. Essentially it is related to the bandwidth of tuning, which is broader

at higher frequencies resulting in less delay at higher frequencies.

The place-fixed characteristic will have a steeper phase than the wave-fixed
characteristic (Robinette and Glattke, 2007; Knight and Kemp, 2000).

17



Knight and Kemp (2000) investigated the place and wave- fixed dichotomy by using a
range of 2f1- f2 and 2f2- f1 DP stimulus frequency sweep data, where the 2f2— f1 DP
is more basal than the 2f1- f2 DP (as the frequencies are higher). Knight and Kemp
(2000) used a time window separation technique. The authors examined the influence
of stimulus frequency by various methods including by sweeping f1, f2 and by
sweeping both frequencies simultaneously in order to ensure a constant frequency
ratio. Knight and Kemp (2000) displayed their findings in matrices visually
demonstrating how the two different DPs are related and how DP phase and
magnitude are influenced by frequency. In each data chart the 2f1- f2 data were
located in the upper portion, and the 2f2— 1 DP data were located in the lower portion.
Knight and Kemp (2000) discovered that there is a systematic change in the
proportion of wave and place-fixed emissions. In the 2f1- f2 portion a wide stimulus
frequency ratio results in wave-fixed emissions, whilst all other DPs are place-fixed.
A transition occurs in this portion at f2/f1 = 1.1. This provided evidence that the
mechanisms underlying the origin of 2f2- f1 and 2f1- f2 at lower frequencies ratios
are fundamentally the same, but at greater frequency ratios there is an alternate source
for the 2f1- f2 DP. Knight and Kemp (2000) suggest that these findings support the
model that for wave-fixed emissions DP energy is largely created in the f2 region and
is emitted directly. For other DPs even though the DP is generated due to the non-
linearity within the f2 envelope, the DP is emitted by a combination of non-linearity

and a reflection mechanism.

The dominance of the direct emission (wave-fixed) was also emphasised by a separate
investigation conducted by Knight and Kemp (2001) using a phase gradient
dependent post-processing method. Knight and Kemp (2001) separated wave and
place-fixed components of DPOAESs. By utilising an inverse Fourier transform of a
DP sweep with a fixed frequency ratio a quasi-time domain pattern with two separate
peaks can be created, the magnitudes of which are dependent on the frequency ratio of
the sweep. The distinct peaks are a consequence of the different phase gradients.
Knight and Kemp (2001) windowed the low and high latency components in the
pseudo-time domain and then converted this back to the frequency domain
independently. Interference between the two emission components results in
overlapping of measurements but they have different level, phase and suppression
characteristics, which can be seen on frequency domain maps (Knight and Kemp,

18



2001). Low-latency components are only emitted strongly with f2/f1 between 1.1 and
1.3. The high-latency component is present more widely in the lower f2/f1 ratios.

For all but the close primary condition the lower sideband DPOAE (i.e. 2f1- f2) was
dominated by direct emission from the region of f1 and f2 wave interaction (wave-
fixed emission) (Knight and Kemp, 2001).

In summary there are different terms used to describe the components of the
DPOAEs. These differences arise because of the different ways of classifying them.
The distortion and reflection component are classified according to the mechanism of
generation, the wave-fixed and place-fixed the location. Throughout this document

the two different classification terms will be used interchangeably.

1.4.3 Fine Structure

The level dependent shift of DPOAE fine structure can be demonstrated
experimentally on participants (He and Schmiedt, 1997; Mauermann, 1999), and by
computer models (Sun et al., 1994 *°: Mauermann, 1999). Both Mauermann et al.
(1999) and He and Schmiedt (1997) measured the fine structure of the 2f1-f2 acoustic
distortion product (ADP) in the human ear canal with different primary levels. Sun et
al. (1994%) created a computer model to replicate the behaviour of ADP fine structure.
The dependency of ADP fine structure patterns on the frequency ratio of f2/f1 was
studied in the participants under two experimental conditions, by altering f1 or f2
(fixing f2 and f1 respectively). Mauermann et al. (1999) and He and Schmiedt (1997)
made further investigation by changing both primaries at a fixed ratio and observing
different order DPOAEs. As L1 was fixed and L2 was varied an upward frequency
shift was observed in the ADP fine structure as L2 increased. As L2 was fixed and L1
varied, downward frequency shifts were observed. These opposite frequency shifts

are the same as those predicted by the model developed by Sun et al. (1994%).

The investigations of ADP in the ear showed that fluctuations in DPOAE level up to
20 dB could be measured. In contrast, the results from a fixed fDP paradigm indicate
no fine structure, but a dependence of DP level on the f2/f1 ratio, with a maximum

2f1- 2 with a ratio approximating 1.2 (Mauermann et al., 1999). He and Schmiedt
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(1997) report a similar ratio, with the largest rate of shift associated with a ratio of
1.11.

In a further investigation into this topic Sun et al. (1994") increased the mean damping
factor non-linearly with input level to replicate the frequency shift of the peak of the
TW observed in experimental data. The resulting model mimics an ADP that is
compatible with data from participants wherein the ADP fine structure does not
saturate with level. The input/output functions (I/O) of the simulated ADP emissions
were also investigated. It was revealed that the functions depend on the pattern of
ADP fine structure and the I/O frequency. It must be noted that there is a fine
structure present in SFOAE (and hearing thresholds) where only a single frequency is
present (Talmadge et al., 2000; Mauermann et al., 2004).

These experimental results and those from computer simulations of DPOAE provide
evidence for a two-source model of the cochlea. The first source being an initial non-
linear interaction of primaries near the f2 place, and the second reflection from a re-

emission site at the characteristic place of the DP frequency.

1.4.4 Mixing and un-mixing

If this theory of the mechanism underlying the emission of DPOAE is accurate, that
DPOAE are the result of a mixing of the two components distortion and reflection,
then it should be possible to un-mix DPOAES into the separate components. The
frequency dependence of their phases will be consistent with the mechanism
underlying their origin. The reflection source component of the total DPOAE should
closely match the reflection source emission recorded at the same frequency under

similar conditions (Kalluri and Shera, 2001).

1.4.5 Evidence through experimentation

An experimental approach that has often been adopted to utilise the spatial separation
of the two 2f1- f2 DPOAE components is selective suppression by the introduction of

a third tone, near in frequency to the DPOAE (Talmadge, 1999; Mauermann et al.,
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1999; Gaskill and Brown, 1996; Kummer et al., 1995; Kalluri and Shera, 2001).
Pioneering experiments using this technique were carried out by Kemp and Brown
(1983, in Kalluri and Shera, 2001). The suppressor tone reduced the amplitude of the
wavelets incident upon and/or scattered back from the reflection region. A suppressor
tone with a frequency closer to the total DPOAE should have a greater impact on the
amplitude of the reflection site component than the non-linear component (Talmadge
etal., 1999). According to theory based models as the suppressor tone level
increases, initially there will be no evident effect, but will eventually result in the
decline of the reflection component. As the third tone rises in level at some point it
suppresses both components and consequently the total recorded level of the DPOAE

(Talmadge et al., 1999) (Figure. 1.6). Is this what is found in practice?

Talmadge et al. (1999) investigated this paradigm in four participants with an age
range of 20-54 years, the participants were selected after extensive screening
procedures, including multi-frequency tympanometry, audiometry, audiological
history, and the evaluation of spontaneous, transient evoked and DP otoacoustic
emissions. Utilising continuous primaries the third tone induced two effects on the

level and phase of the fine structure.

The first observation is that when apical reflection is initially greater than the overlap
region increasing the suppressor level initially results in the reflection becoming
approximately equal to the overlap region non-linear distortion component and
subsequently deepens the amplitude fine structure. When the distortion component is
equal in amplitude to the reflection component there is enhancement due to
constructive interference at maxima and reductions due to destructive interference in
the minima; this process leads to the enhancement of the fine structure (Talmadge et
al., 1999). The phase behaviour remains ramp like; the phase shifts by 360° over a
small frequency range, giving a ramp like pattern when plotting phase against
frequency in constant f2/f1 sweeps. Once the suppressor level is high enough, the
reflection component becomes less, and the amplitude fine structure begins to
decrease until it disappears altogether. High enough suppressor levels reduce both
reflection site and overlaps, and the total DPOAE decreases (Talmadge et al., 1999).
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Figure 1.6 The amplitude (top) and phase (bottom) of the total 2f1-f2 DPOAE
(solid line) and separately the non-linear distortion source (dashed line) and
reflection source (punctuated line) found using third tone suppression based un-
mixing. DPOAE stimulus parameters L1, L2 = 60, 45 dB SPL respectively,
f2/f1= 1.2. The grey lines exemplify the SFOAE recorded in the same participant
at a probe level of 40 dB SPL. The SFOAE was measured in the presence of a
third tone with the same characteristics as the f1 primary used to evoke the

DPOAE. Source: Shera, 2004, page 6.

1.4.6 The third tone and fine structure predictability

Further evidence for this occurring for the 2f1- f2 DP is presented by Kummer et al.
(1995). Using low-level primary tones the authors report particular sensitivity to
suppressor tones near Fdp. Below thresholds above which suppression generally

occurred, the DPOAE was largely suppressed, forming low-level regions of
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suppression-growth functions. At suppressor levels above normal thresholds, steeper
suppression developed. Kummer et al. (1995) suggest the two regions of the
suppression growth functions are due to interference at different cochlear sites.
Gaskill and Brown (1996) demonstrated similar findings concluding that the
measured DPs in the ear canal originate from the DP frequency region, along with
those from the primary frequency region. By introducing the third tone similar in
frequency to the DPOAE, a change can be induced in the patterns of amplitude,
phase, and group delay of the DP (Talmadge et al., 1999). The fact that it is possible
to alter the correlation between group delay and fine structure pattern with the
introduction of the third tone suppressing the DP component is further evidence

supporting the two-source theory.

Konrad-Martin (2001) recorded the 2f1- f2 DPOAE in the ear canals of nine normally
hearing participants, utilising a fixed f2 paradigm, and varying f1. The frequency of
f2 was fixed at either 2 or 4 kHz, and absolute and relative primary levels altered. In
one of two experimental conditions a third tone f3 was introduced to act as a
suppressor situated 15.6 Hz lower than 2f1- f2. An inverse fast Fourier transform
(IFFT) was used to change the recordings from the complex (sweep) frequency
domain into an equivalent time domain. Similar findings were observed to those of
Talmadge et al. (1999). A suppressor tone situated below the 2f1- f2 frequency
resulted in declines, or abolished all together components in the time envelope with
longer latencies. The lower latency components were unchanged. This implies that
the eliminated components were the result of secondary DPOAE source activity,
created close to the DP place (by reflection).

The use of a suppressor tone secondly reduced microstructure in DPOAE level and
phase responses. Kalluri and Shera (2001) also used the Fourier analysis technique,
applying it to frequency domain measurements, and suggested that the components
have different latencies. A shorter latency is exhibited by the distortion component
and a longer latency corresponds to the reflection component. Heitmann et al. (1998,
in Mauermann et al., 1999) also showed that fine structure disappears when the
DPOAE is measured with a third tone close to the DP frequency as a suppressor.

Similar findings are demonstrated in Gaskill and Brown (1996), Dreisbach and Siegel

23



(1999) and Kummer et al. (1995). The latter authors however report that in some

instances a suppressor close to 2f1- f2 results in more suppression than close to f2.

The position of the suppressor relative to the DP has an effect on the extent of
suppression on the DP, as reported by Gorga et al. (2002). Gorga et al. (2002) report
results for a suppressor fixed at either 2.1 or 4.2 kHz, set to levels between 20-80 dB
SPL. Suppressor level was fixed and 2 varied and compared to a control condition in
which no suppressor was present. The decrement plots revealed the largest
suppression when the suppressor frequency (f3) was approximately equal to f2.
Steeper slopes of DPOAE decrement versus suppressor level function were obtained
when 2>f3 relative to f2<f3.

1.4.7 Pulsed and continuous tones

Talmadge et al. (1999) further tested the model by observing the temporal behaviour
of a DPOAE when one of the primaries is pulsed and the other is kept on
continuously. The f2 primary tone was pulsed on and off (pulsed for 100 ms every
250 ms) whilst the f1 primary tone was at a continuous level. Under circumstances in
which the overlap region component is expected to be dominant from fixed ratio
measurements, an interference notch is observed in the DPOAE amplitude shortly
after-turn off of the f2 primary. When the DP tonotopic place is expected to be
dominant from fixed ratio measurements, an interference notch is observed in the
DPOAE amplitude shortly after turn-on of the f2 primary (Talmadge et al., 1999).
These notches are a consequence of destructive interference between the two

components and occurs when the two components are similar in level.

1.4.8 A few criticisms

Often in DPOAE investigations the participant numbers are very low. Knight and
Kemp (2001) for example only used two participants. These low participant numbers
compromise the accuracy of interpretation. Issues surrounding the introduction of a
suppressor tone need to be discussed. The suppressor tone may also change the

response in other ways, such as by suppressing the distortion source or leading to the
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creation of more distortion sources. Incomplete un-mixing may also occur; there is
always a trade-off scenario as the third tone is either too weak or too strong. This
results in either residual components still being present or interference. It would also
be interesting to discover if the techniques give similar results if different f2/f1 ratios
were used, and the influence of different stimulus levels. It is essential that

investigations of DPOAES are carried out in conditions of low background noise.

Knight and Kemp (2001) report that the dominating component of the elicited
DPOAE is dependent on the parameters of the stimulus. It can be difficult to make
comparisons between investigations of this type if different stimuli are used, such as
the differences between Knight and Kemp (2001) and Tubis et al. (2000) (in Knight
and Kemp, 2001). The Knight and Kemp (2001) model did not incorporate
reflections back off the stapes. These models are also based on theoretical
assumptions of cochlear mechanics, such as the emission being sourced from a point
as opposed to over a region; cochlear characteristics such as hydrodynamics and
degree of amplification (Shera et al., 2000). Shera et al. (2000) conducted their
investigation on albino guinea pigs- it is difficult to know how this relates to other
species including humans. In reality it can be difficult to interpret emissions due to

the interference between different emission types.

The condition of the cochlea and middle ear function may have an impact on DPOAE
measures, and cause individual variation from session to session (Shera and Guinan,
1999). Minor differences in the place where the probe is situated, and how the probe
is assembled can lead to large measurement alterations. SOAEs can also influence

results.

Talmadge et al. (1999) report how utilising group delays via IFFT technique is not a
direct measure and can be complicated to interpret theoretically. DP-fine structure
amplitude can even vary through the course of a single session. In Talmadge et al.
(1999) issues also arise with the interpretation of the results. Fine structure can still
be seen even if only one source is present; some authors seem to ignore this fact.
Gaskill and Brown (1990) used a larger number of participants, 34, including both
genders 19 female and 15 male, and with an age range 15-50 years. However,
because of the possible risks to the participants, tympanometric measurements were
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not made except in the ear canal of the two authors. The reasons underlying this were
not specified. Variation in middle ear pressure can affect results by altering loading

on the cochlea.

1.5. Clinical utility

1.5.1 The principles of TEOAE and DPOAE

There are two main types of OAES, spontaneous and evoked. Evoked emissions can
be sub-classified further as a result of the evoking stimulus parameters: Transient
evoked otoacoustic emissions (TEOAES), stimulus frequency otoacoustic emissions
(SFOAEsS) and distortion product otoacoustic emissions (DPOAESs) (Lonsbury-Martin
and Martin, 1990). The use of OAEs in a clinical setting was first proposed by Kemp
(1978). OAEs are recognised as being a non-invasive, objective measure of cochlear
function. They are a very repeatable measure and are easy and quick to detect
(Lonsbury-Martin and Martin, 1990).

There are two main methods used in clinical practice at present: 1) click or transient
evoked OAE and 2) the DPOAE method. OAE measurements are made with the use
of an ear canal probe that is placed down the external auditory meatus. This reduces
background noise and ensures that more of the OAE is measured. A series of click
stimuli are then transmitted into the ear at approximately 84 dB SPL peak equivalent
(p.e) level, to produce a TEOAE in the non-pathological ear (Kemp, 2002; Robinette
and Glattke, 2007). The response can be divided by frequency making it easier to
interpret results from the various parts of the cochlea (Kemp, 2002). Results are best
for analysing between 1 and 4 kHz. Measurements of OAEs are a valuable tool in
clinical audiology, as in most ears with conductive or cochlear pathology they are not
emitted (Robinette and Glattke, 2007). This is why TEOAE detection forms a vital

part of newborn hearing screening programmes.

The other technique for measuring OAEs is to use DPOAESs and they are also utilised
in a clinical capacity. These emissions are inter-modulation distortion tones

originating in the cochlea as a result of stimulation by a close pair of stimuli
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(Robinette and Glattke, 2007). Recording DPOAEs involves varying the frequency of
the two stimulus tones. The probe contains two small loud speakers (f1 and 2),
which are inserted into the ear canal. The probe must also contain a small

microphone (Lonsbury-Martin and Martin in Robinette and Glattke, 2007, page 108).
A method for recording DPOAES can be seen in Figure. 1.7. A DPOAE is assessed to
be present when the level of the DPOAE is greater by some amount than the average

noise level (Lonsbury-Martin and Martin in Robinette and Glattke, 2007, page 111).

ER-2 earphones

Travelling wave

ER-10B g 44— Emission

microphone

Figure 1.7 A simple technique that can be implemented to record DPOAEs in the
ear canal. Two earphones (ER-2) produce the stimuli, and the recording device

is a small microphone (ER-10B). Source: Lonsbury-Martin and Martin, 1990.

The elicitation of evoked OAE emissions is highly dependent on stimulus parameters
(Robinette and Glattke, 2007; Miller and Marshall, 2001; Kemp et al., 1990; Boege
and Janssen, 2002).

Two such parameters are the levels of the primary tones (L1 and L2) and the level
separation of the primary tones (L1-L2) (Robinette and Glattke, 2007, page 124;
Boege and Janssen, 2002). Equal primary tone responses at the f2 place are
considered to be the optimal conditions for eliciting DPOAEs. As primary tone level
is decreased, largest DPOAEs are exhibited when using a rising primary tone
separation L1-L2. This is due to properties of the BM (Boege and Janssen, 2002).
The linear equation L1 = 0.4*L2 + 39 dB expresses the primary tone levels expected

to give the largest amplitude of DPs using a frequency ratio of 1.22.
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The frequency ratio of f1 and f2 also has a determining role in how much variation

there is in DPOAE level as hearing threshold varies.

1.5.2 The DP-gram and I/O functions

A DPOAE audiogram (DP-gram) can be used to obtain objective information of
cochlear function. A DP-gram plots emission level relative to frequency. To create a
DP-gram data are collected across a variety of frequencies (0.1 octave intervals) for
three primary-tone levels; 65, 75, and 85 dB SPL, with L1 = L2 and f2/f1 = 1.22
(Lonsbury-Martin and Martin, 1990). In most current systems, DPOAE amplitude is
deemed to be the level of DPOAE-frequency bin that includes the DPOAE and the
background noise. This bin is studied alongside adjacent bins in which no DPOAE
measure was made. A DPOAE is regarded as present when the bin containing the
DPOAE measurement is greater by a certain degree relative to the other bins
(Robinette and Glattke, 2007, page 111). In the non-pathological ear the mean
DPOAE level is estimated to be 5 dB SPL, with a standard deviation of 5 dB between
1and 7 kHz.

Along with the DP-gram, information can be portrayed as an input/output function
(I/0). In this form the DPOAE amplitude is described in relation to the level of the
primary tones, for rising stimulus levels (Robinette and Glattke, 2007, page 111). An
example can be seen in Figure. 1.8. These 1/0 functions display OHC responses to
both threshold and supra-threshold stimuli. Results for DP-grams and 1/O functions
can be compared between normal hearing ears and impaired ears (Lonsbury-Martin
and Martin, 1990).
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Figure 1.8 DPOAE 1/O functions at f2 frequency = 1 kHz in participants with
normal hearing, and various levels of hearing impairment. Source: Dorn et al.,
2001.

1.6 Current issues

1.6.1 Issues surrounding DPOAEs and threshold estimation

Except for in research conditions it can difficult to fit the otoacoustic probe perfectly,
as a result of variations in meatal shapes, and a restricted time for carrying out the
procedure (Kemp et al., 1990; Boege and Janssen, 2002). Variations in middle ear
condition, such as the presence of fluid, can also create pressure imbalances that can
lead to a decline in the emission energy below 2 kHz, rising above 3 kHz (Kemp et
al., 1990; Boege and Janssen, 2002). The presence of spontaneous otoacoustic
emissions potentially enhances the DPOAE amplitude (Osterhammel et al., 1996;
Kimberley et al., 1994). Standing waves forming in the outer ear could also affect
calibration when using microphones at frequencies above approximately 1.5 kHz
(Siegel et al., 2005). These variations mean that there is a very large degree of inter-
subject variability creating low repeatability of DPOAE measurements, even in ears

with normal hearing (Suckfull et al., 1996; Kummer et al., 1998, Figure. 1.9).
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Robinette and Glattke (2007) explain how occasionally damage to the cochlea results
in more behavioural or evoked potential threshold elevation as opposed to DPOAE
declines. Investigations into DPOAEs evoked by high intensity stimuli (above 65 to
70 dB SPL) do not show the mechanics of the cochlear amplifier, or that of the OHCs,
but there is a gap in our knowledge regarding how much this relates with humans.
Human ears with normal thresholds can also exhibit reduced or absent DPOAES over
certain frequency ranges (Robinette and Glattke, 2007), for reasons that are unclear.

20
10 - - _ - -
E - am == s - am =m
By 0
=)
£ .10
H L —
=20

-10 0 10 20 30 40 50

Lt (dB SPL)

Figure 1.9 Complete DPOAE data from 20 normal hearing ears, plotted against
threshold level L. DP level Ldp, for L2 =60 dB SPL (SNR > 6 dB). Source:
Kummer et al., 1998.

1.6.2 A few unknowns and OAE group delay

There are still a large number of unknowns surrounding DPOAEsS that inhibit both the
understanding of the mechanisms occurring within the ear, and how they are used in
the clinical environment. These issues largely surround the mechanisms of generation

of DPOAEs. The most common theory that the cochlea makes sound created by
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backward TWs has been called into question (Robinette and Glattke, 2007, page 124).
The likelihood of compressive waves moving through the cochlear fluids being the
route for OAEs to reach the middle ear, as opposed to a backward BM TW, is

currently being studied.

Many authors have investigated group delay and the site of DPOAE generation (Ren,
2004; Ruggero, 2004; Siegel et al., 2005; Ren et al., 2006). Ren et al. (2006) utilised
a technique in Mongolian gerbils whereby the auditory bulla was exposed through a
ventral lateral surgical method and made measurements of BM motion using a laser
interferometer. A sensitive microphone recorded the sound pressure in the external
ear canal. This analysis revealed that cochlear round trip delay is decreased
corresponding to intensity indicating that the emission location moves toward the base
with intensity. The decrease in delay is a result of a wider bandwidth of tuning at
higher intensities. The group delay was less than or equal to the forward wave. The
group delay at the stapes was also equal to or smaller than the forward group delay.
These findings are similar to those of Ren (2004). Ren (2004) using a similar
technique found that the slope of 2f1- f2 corresponds with movement of the BM
vibration being largely dictated by a forward TW. The stapes was also discovered to
vibrate earlier than the BM. This is consistent with a reflection generation
mechanism, as described earlier. The difference between the timing of the stapes
vibration and the BM vibration can be seen in Figure. 1.10. The discovery that the
BM vibration located at the OAE frequency is determined by a forward TW and that

the stapes vibrates before the BM is evidence contradicting the backward TW theory.

When interpreting these investigations it is important to note that Mongolian gerbils
are unlike humans, as they do not have a reflection component to their DPOAEsS.
Also less sharp filtering at the same place may lead to shorter delays. This highlights
the fallacy of equating distance and time when the TW is not at a constant speed.

Ruggero (2004) identified results that are applicable to the hypothesis that either
OAEs propagate via acoustic compression waves in the cochlear fluids or as a result
of backward TWs, but was unable to separate the two.

Siegel et al. (2005) expanded upon the work of Ren (2004) by examining the entire
length of the chinchilla cochlea as well as areas of the guinea pig and cat cochlea.
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Siegel et al. (2005) found in chinchilla that SFOAE group delays were similar to or
shorter than BM group delays for frequencies >4 kHz and <4 kHz, respectively.

These short delays are evidence against the theory of coherent reflection filtering.
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Figure 1.10 Frequency response of the BM, stapes and ear canal sound pressure
to fixed f2 (17 kHz) and frequency altered f1. The stapes vibrates 50 us before
the BM. Source: Ren, 2004.

Further evidence for the compression wave idea was indirectly presented by van Dijk
and Manley (2001) as they identified DP in the tree frog Hyla cinerea despite the fact
that their hearing organs do not sit on the BM. This is in direct contrast to the
findings of Baker et al. (1989) who did not find DPOAE in three species of frog, Rana
temporaria, R. pipiens, and R. esculenta (Dijk and Manley, 2001). Robles et al.
(1997) discovered that in situations where the stimulus tones had large gaps between
frequencies, the responses to the primaries were tiny and increased approximately
linearly, in contrast to 2f1- f2 responses that were bigger and increased more
compressively. Robles et al. (1997) suggest that this means that DPs do not originate

at the measurement site but from a more basal location and move toward the 2f1- f2

site.
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1.6.3 The 2f2-f1 cubic distortion product

There is a limited amount of literature concerning the origin of the 2f2— f1 emission.
Some authors do indicate that the generation site is located basal to the DP frequency
place along the BM (Wilson and Lutman, 2006; Erminy et al., 1998). Martin et al.
(1987 in Wable et al., 1996) investigated the 2f2— f1 DP in the rabbit ear, and
contrasted it with the 2f1- f2 DP. The 2f2— f1 DP was found to originate from a
region more basal to the relative frequency places. Martin et al. (1998) demonstrated
that in normal hearing humans the 2f2— f1 DP is generated basal to the primary-tone
place on the BM. This implies that the 2f2— f1 DP could reveal different information
concerning cochlear function than the 2f1- f2 DP. Wable et al. (1996) used latency as
a means of gathering information concerning the generation sites of the 2f1- f2 and
2f2— f1 DP in humans. It was revealed that amplitudes were lower (mean difference
of 10.5+ 4.2 dB at 70 dB and 10.2 + 4.6 dB at 55 dB) and latencies shorter for

2f2— f1 in comparison to 2f1- f2. Moulin and Kemp (1996) also exemplified that for
lower sideband DPOAEs an f2 sweep resulted in greater time delay than the f1 sweep,
in contrast to the 2f2— f1 DP where no difference was observed. Moulin and Kemp
(1996) suggest that this implies the DPs do not originate from the same aspect of the
TW. Further research is needed as evidence of these investigations indicates a
potentially different generation process for the 2f2— f1.

Erminy et al. (1998) also concluded that there were large variations between the
behaviour of 2f1- f2 and 2f2— 1 DP, potentially as a result of different generation
mechanisms. Differences included at high frequencies (i.e. f2 > 4 kHz) the
prevalence of 2f2- f1 declined, whereas by contrast the 2f1- f2 remained the same.
Thus the 2f2- f1 DP appears to have greater dependence on frequency. Wable et al.
(1996) suggest that a comparison of both DPOAESs would be a valuable tool in

assessing cochlear function.
Martin et al. (1997) explain how the 2f1- f2 amplitudes remain relatively constant

whilst the 2f2— f1 levels showed great variation. As both emissions were generated

by the same set of primaries, this indicates a difference in some underlying generation
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mechanism. This is further implied by the differences in amplitude between the two

emissions.

Knight and Kemp (2001) discovered in one of their two participants, the 2f2— f1 DP
contained two components. When the frequency is varied one component (wave-
fixed) exhibited a constant phase, and the other (place-fixed) exhibited a sloping
phase. Knight and Kemp (2001) suggest that for the 2f1- f2 wave-fixed emission the
DP originates in the 2 region and is emitted directly. This is problematic as the TW
cannot propagate at the DP frequency at the 2 place. All other DPOAES are
described by Knight and Kemp (2000) as place-fixed, and the DP is not directly
emitted but moves apically, where it is re-emitted basally as a consequence of a
reflection mechanism. Knight and Kemp (2001) document that in one of their two
participants (RN) both a wave-fixed and place-fixed component in the 2f2— f1 DP
were present, but could not define it as being a normal characteristic as it was only
located above the noise in a single participant. Knight and Kemp (2001) report that
the origins are potentially in the region of the DP frequency place in the cochlea.

Wilson and Lutman (2006) used an experimental design to identify the wave and
place-fixed components of both the 2f1- 2 and the 2f2— f1. The investigation
included 20 non-pathological adult ears. The investigators used four frequency ratios
f2/f1 =1.05, 1.10, 1.22, and 1.32. Fixed frequency sweeps were collected and plotted
as a function of f2. Wilson and Lutman (2006) found evidence supporting the
existence of a wave and place-fixed component of the 2f1- f2. They also discovered
that in the majority (18) of the participants the wave and place-fixed components were
present for 2f2— f1. The 2f1- f2 emission had a wave-fixed component that had
largest magnitude at f2/f1 = 1.22, and the place-fixed component remained
unchanged. The 2f2- f1 emission had a greater place-fixed component and a smaller
wave-fixed component, both of which do not have a strong dependence on frequency
ratio (Wilson and Lutman, 2006). Wilson and Lutman (2006) proposed a mechanism
of generation of the 2f2— f1 DP, which can be seen in Figure 1.11. The authors
suggest that the DP wave may be created at any location basal to the DP frequency
place. Waves of the primary frequencies f1 and f2 travelling past the 2f2— f1 DP
place are basal to the characteristic frequency so subsequently are not slowed by the
mechanics of the cochlea. It is suggested that non-linearity at the 2f2— f1 DP place
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results in energy being emitted basally through a reverse TW or a through the
cochlear fluids. As neither of the primaries has reached their characteristic place, this
may explain why this component is so small for the 2f2— f1 DP (Wilson and Lutman,
2006). Wilson and Lutman (2006) state that potentially the reflection and distortion

emissions are in operation at the DP frequency place, or basal to it.

Sharp (2007) used similar parameters as Wilson and Lutman (2006) but used a
suppression method to investigate 2f2— f1 and 2f1- f2. Sharp (2007) explains how
unlike the time window separation technique the suppression method relies on the two
components being physically remote. Sharp (2007) confirmed that both wave and

place- fixed components are evident in the 2f2— f1 DP.

F2 wave
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F1 wave
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Figure 1.11 Theorised mechanism of generation of the 2f2-f1 DP. Distortion (D)
and reflection (R) are generated at the 2f2- f1 frequency place. Distortion
generates a DP frequency wave that travels toward the cochlear base. Waves of
the DP frequency, the result of BM imperfections (), slow as they arrive at the
DP frequency place and are subsequently reflected toward the cochlear base.
Source: Wilson and Lutman, 2006.
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The source of the 2f2— f1 DP is still not entirely known, as the two components (non-
linear distortion and reflection) may originate at the 2f2— f1 frequency place or with
the wave-fixed component being basal to the 2f2— f1 place. It is clear that further
investigation of the 2f2— f1 distortion product is necessary.

1.6.4 Somatic electromotility and non-linearity

Another issue that has been highlighted concerns how the non-linearities associated
with stereociliary transduction and the somatic electromotility of OHCs mix with one
another to produce OAEs (Robinette and Glattke, 2007).

There is still much controversy over the origin of this non-linearity and to date many
hypotheses exist: 1) mechano-electrical transduction by stereocilia, 2)
electromechanical transduction by somatic motility, 3) mechanical non-linearities
resulting from ion channel processes (Liberman et al., 2004). The discovery of
prestin, the motor protein located in the OHC of the cochlea corresponded with
numerous investigations to evaluate its function (Cheatham et al., 2005). Current
issues have arisen concerning the role of prestin (Liberman et al., 2004). To properly
link OHC electromotility with the amplification processes, frequency selectivity needs
to be assessed and the completeness of the OHCs transducer discovered (Cheatham et
al., 2004).

By using similar techniques Liberman et al. (2004) and Cheatham et al. (2004)
revealed that although 2f1- f2 distortion components are reduced, they are still
present in the cochlear microphonic potentials in the ear canal of prestin knockout
mice. Cheatham et al. (2004) discovered that compound action potentials in prestin
knockout mice are similar to those in the controls at high levels where the cochlear

amplifier has little influence.

1.6.5 Pressure waves

Olson (1999) provided direct evidence of intra-cochlear pressure waves close to the

partition, indicating a fluid component to the cochlear wave. Olson (1999) describes

36



the frequency and location dependence of the non-linear fluid wave. Variations in
pressure were used by Olson (1999) to find the velocity. The waves penetration depth
was approximated to be 15 um. This indicates the quantity of fluid within the wave,
its magnitude and frequency dependence. The results were obtained in anaesthetised
gerbils. In the experimental conditions one location along the cochlear partition was
probed in the scala tympani. Gains measured were up to 50 dB recorded at the scala
tympani relative to the ear canal (Olson, 1999). It is difficult to know if the probe
alters the mechanics and how the BM and fluid motion can be disentangled.
Differences in pressure variations result in the conclusion that there is fluid motion,
and the quick decline in pressure associated with increasing distance corresponds with
the localised nature of the TW.

1.6.6 A few further criticisms

A criticism of Ren et al.’s (2006) investigation is that only the high frequency region

of the BM could be studied using the interferometer.

An issue with Ruggero’s (2000) investigation was that measurements were made on
different species; this has implications, as it may not be appropriate to compare
DPOAEs elicited in gerbils and guinea pigs.

Different hardware systems used in obtaining OAE measurements have different
methods so are difficult to compare (Suckfull et al., 1996). Even in the non-
pathological ear DPOAES can vary by a large degree, because of probe position,
external and middle ear characteristics and due to the influences of spontaneous

otoacoustic emissions.

1.7 Aim of Research

Current understanding regarding the origin of distortion product otoacoustic
emissions (DPOAES) suggests that they arise via two distinct mechanisms. One
mechanism is thought to be non-linear distortion, and the other being linear-coherent

reflection. These two components combine and contribute to the DPOAES measured
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in the ear canal. This mechanism-based taxonomy is founded on experimental
evidence. Each mechanism has different delay characteristics. This allows
investigators to distinguish the mechanisms via time window separation. Another
method allows the mechanisms to be separated via the introduction of a suppressor
tone. In arecent publication it was confirmed that not only are these two components
evident in the 2f1- f2 DPOAE, but also in the 2f2— f1 DP. This casts doubt on the
existing model. The two separation techniques will be compared for the 2f2- f1 DP

in order to challenge the existing theory.

Wilson and Lutman (2006) investigated the mechanisms of generation of the 2f2— f1
DP in humans using a time-window separation method. Wilson and Lutman (2006)
proved that in most participants (18 of 20) both a wave-fixed and a place-fixed
component are present in the 2f2— f1 DP. The authors also demonstrated that the
2f2- f1 emission is adequately measurable above the noise floor. Sharp (2007) also
separated the two components for the 2f2— f1 DP, but stressed the need for future

research.

It has been demonstrated that there are still large gaps in our knowledge regarding the
understanding of DPOAEs. One issue focuses on the lack of understanding
surrounding the mechanisms of generation of the 2f2— f1 DP. There is now some
evidence indicating that the locus of origin of the 2f2— f1 DP is different from that of
the 2f1- f2 DP, and that it potentially propagates in a different way. Experimental
investigations have revealed much concerning the components of the 2f1- 2 DP;
using time window separation and suppression techniques. A further investigation
will implement these techniques with the 2f2— f1 DP, in order to evaluate if the
current two-mechanism model holds true. The following investigation will utilise a
fixed frequency ratio, but will alter suppressor tone level and frequency in order to
investigate the current two-mechanism paradigm. This will challenge existing theory

and broaden the understanding of a presently under-studied DP.

1.8 Statement of hypotheses
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Time window separation techniques and the suppression method will separate the
2f2— 1 DP into two separate components, located above the noise floor. As the
suppressor level increases, the effect on the DP will increase. The relating null
hypothesis is that the two techniques will not separate out the 2f2— f1 DP into
distinguishable components or the components will not be significantly above the

noise floor.

Also as the suppressor frequency and intensity alter, the effects on the DP will alter.
The relating null hypothesis is that as the suppressor frequency and intensity alter,

there will be no noticeable effect on the DP.
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CHAPTER 2: RESEARCH DESIGN

2.1 Introduction

The previous chapter described the present theories regarding the origins of DPOAES.
The two-mechanism theory was described in detail, whereby DPs arise through non-
linear distortion and linear coherent reflection (Shera, 2004; Kemp, 2002). The

techniques used in verifying this theory have been described.

It was emphasised however, that until recently few investigators have studied the
origins of the 2f2— f1 DP. There are still many unknowns surrounding this DP, not
least if the 2f2— f1 DP has a different locus of origin to the 2f1- f2 DP, and if it

propagates in a different way. The aim of the present investigation is to:

e Determine whether the 2f2— f1 DP is accurately measurable above the noise floor.
e Determine the effect of suppressor level on the 2f2— f1 DP.

e Determine the effect of suppressor frequency on the 2f2— f1 DP.

This will challenge existing theory and broaden the understanding of a presently
under-studied DP, potentially allowing inference of where the 2f2— f1 DP is

generated.

This section will explain the methodology implemented for the selection of
participants and the practical considerations taken into account whilst conducting this
investigation. The entire investigation was conducted in the Institute of Sound and
Vibration Research (ISVR), University of Southampton. All procedures took place in
a sound proof booth in accordance with 1ISO 8253-1 for the measurement of hearing
threshold to a level of 0 dB HL.

2.2 Participants
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2.2.1 Recruitment

A total of 23 participants took part in this investigation. They were recruited from
within the Institute of Sound and Vibration Research (ISVR), and other schools from
within the University of Southampton. Participants were aged between 19-32 years.
This was to ensure against the selection of participants with damaged hair cells, as
this may have consequences for the generation of DPOAEs (Oeken et al., 2000;
Lonsbury-Martin et al., 1991). The experimental procedure was conducted
throughout July-August, 2010.

Participants were chosen only after intensive screening. All participants were
required to have otologically normal ears. Selection criteria adhered to ISO 389
(2000) and the definition of normality stated within. Participants were all of normal
health. It was attempted to include an equal number of males and females, but this
was unfeasible at the time of testing. Requirements of all participants included no
history of tinnitus and it was essential that they were not exposed to loud sounds

within 48 hours prior to the session beginning.

Participants were excluded if they had ears deemed to be pathological. This was
determined through taking a history to evaluate issues such as past ear surgery, ear
disease, and/or persistent infections. No participants were included if they had a
known family history of hereditary deafness. Participants were screened via the

following procedures:
e History taking.
e Otoscopy: In order to check for excessive wax or occlusion in the ear canals,
including foreign bodies. To look for otitis media with effusion. To evaluate
if there was an incidence of otitis externa or any other contraindications (BSA,

2010). Otoscopy was performed based on the BSA protocol (BSA, 2010).

e Tympanometry: Results must of been within the normal range expected for an

adult with healthy middle ear function:

41



Measurement Normal Range

Ear canal volume 0.3-2.0mil
Middle ear compliance 0.3-1.6 mleqv
Middle ear pressure -50 - +50 daPa

This was to ensure normal middle ear function. Tympanometric investigation was
performed using a GSI-33 tympanometer in diagnostic mode, utilising 226 Hz
frequency and swept at + 200 to — 200 daPa. Tympanometry was performed
according to the BSA protocol (BSA, 1992).

e Audiometry: Following the BSA protocol (BSA, 2004) a full audiometric
assessment was conducted, inclusive of octave intervals from 0.25 to 8.0 kHz.
This was carried out using a Kamplex 3 audiometer with TDH-39 headphones.
This was to ensure hearing thresholds were within normal limits of + 20 dB
HL, as DPOAEs appear to be related to cochlear integrity, which has been
correlated with hearing threshold (Boege and Janssen, 2002; Gorga et al.,
2003).

e A health and consent form was completed by all participants prior to the
session beginning in order to support the history, determine any exposure to
loud sounds or ototoxic substances, and rule out any severe trauma to the

auditory system.

The investigation protocol was approved by the ISVR Safety and Ethics Committee,

and all potential hazards were evaluated through Risk Assessment forms.

2.3 Procedure

A brief history was taken, before an ear examination (otoscopy). Tympanometry was
then performed, followed by audiometry. Participants then completed a health and

consent form. The test session could then begin in full.
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2.3.1 Equipment and test configuration

All procedures were carried out within ISVR, University of Southampton. The
Investigation was conducted specifically in Audiometric Booth 1. The basic set-up is
indicated in Figure 2.1.

A-D/D-A PC with DSP

Microphone converter card

system

ER-2
earphones

Travelling wave

Al
FTy

44—  Emission

microphone

Figure 2.1 Basic procedural set-up for the recording of a DPOAE in the
laboratory. Source: adapted from Lonsbury-Martin and Martin, 1990, and
Wilson, 2005.

Equipment consisted of a Personal Computer with a Digital Signal Processing card
linked to an external analogue-digital (A/D) and digital-analogue (D/A) converter unit
(Institute of hearing Research DSP remote converter module), at a sample rate of
32.768 kHz. The stimuli were delivered via ER-2 insert earphones (Etymotic
Research) connected to a common probe (Etymotic Research ER-10B+ OAE probe).
The probe was sealed in the ear of the participant using a standard tympanometry

probe tip. The size of probe tip was chosen based on the size of the participant’s ear
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canal. A new probe tip was used for each individual to protect against possible cross
contamination. The probe was placed in the ear such that it needed no external
support to stay in the ear. The probe contained a microphone to measure the sound
pressure level in the ear canal. The two tubes were positioned such that one just
protruded from the entrance of the probe tip, and the other was flush with the
entrance. This has been considered to be the best position for stimulus delivery
(Lineton, pers comm.) The output was amplified by 40 dB using the ER-10B+
system and fed to the A/D converter and stored by the DSP card. Epochs of 62.5 ms
were gathered and transformed to the frequency domain via FFT. Measurements of
phase were collected in degrees and amplitude in dB. Data was visually output onto a

Desktop personal computer (PC) monitor.

2.3.2 Test sessions

All testing was conducted in a single session. Each test session was designed to last
approximately one and a half hours. This duration caused minimum disruption to the
participants, whilst enabling the investigator to collect all of the relevant information.
By conducting the investigation in a single session issues of probe fit and individual
variation were reduced (Zhao and Stephens, 1999). The participants were instructed
not to create any noise or move about throughout the duration of the test. Participants
were informed that doing so would disrupt the test. Participants were sat in a
comfortable recliner chair, and were informed that the lights could be switched off if
they found this more relaxing. This would not interfere with the results. The
investigator viewed the participant at all times through an observation screen.
Participants were informed to raise a hand if they needed a comfort break or wished to

communicate in any way. A glass of water was provided for all participants.

The ear with the best pure tone thresholds was selected from each participant for

testing. If there was no difference between ears, an ear was randomly selected.
In order to ensure complementary analysis the following parameters were chosen

based on the investigations of Wilson and Lutman (2006) and Sharp (2007). Itis

important to note that these previous investigations were both conducted within ISVR,
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Univeristy of Southampton, and the same equipment and facilities were used as in the

present investigation.

2.3.3 Parameters

Wilson and Lutman (2006) used four frequency ratios, f2/f1 = 1.05, 1.1, 1.22 and
1.32. In the present study a frequency ratio of 1.05 was used as this revealed the
largest 2f2— f1 DP in Wilson and Lutman’s (2006) investigation. Under this
condition the DP was situated furthest above the noise floor, as indicated in Figure
2.2.

-10

-20

Level (dB SPL)

-30

1.05 11 122 1.32

Frequency ratio
Figure 2.2 The 2f2- f1 emission (white bars) and corresponding noise level (black
bars), averaged across participants. L1 =65 dB, L2 =60dB, and L1 =55dB, L2
=40 dB SPL (with f2/f1=1.22). Error bars represent one standard deviation.

Source: Wilson and Lutman, 2006.

DPOAEs were measured using a maximum buffer level of 50, averaging the 65.2 ms
epochs. The rejection level was set at signal-to-noise ratio > 10 dB over the
frequencies of interest. The levels of the primary tones were L1 at 65 dB and L2 at 55
dB SPL. Other primary tone levels have been utilised in the past such as L1 = 55 and
L2 =40 dB SPL by Kummer et al. (1998) and L1 = 60 and L2 = 45 dB SPL by
Kalluri and Shera (2001). Once again the levels chosen in the present investigation
were selected to ensure consistency with the investigations carried out by Wilson and

Lutman (2006) and Sharp (2007). These primary levels were deemed adequate to
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elicit an appropriate 2f2— f1 DP, as they are barely measurable at lower levels (Wable
etal., 1996).

By adding a suppressor tone with a frequency near to the DP, models predict that it
will have a greater influence on the reflection site component than the non-linear
distortion component (Talmadge et al., 1999; Kummer et al., 1995; Kalluri and Shera,
2001). Thus it is envisaged that the levels of both these mechanisms may be altered
by introducing a suppressor tone. At low suppressor levels there will be minimal
effect. As the suppressor tone increases in level its influence on the reflection

component will also increase and the overall level of the DP will decline.

The influence of the frequency of the suppressor will also be studied. As the
suppressor tone moves location closer to the DP it should become more effective at
suppressing the reflection component. Another variation on this is to change whether
the suppressor is located above or below the DP. It was suggested by Sharp et al.
(2007) that locating a suppressor between the DP and the primaries will lead to a
greater amount of suppression than when the suppressor is outside the two
components. Gorga et al. (2002) demonstrated steeper slopes of DPOAE decrement
versus suppressor level function for the situation in which f2>f3 relative to f2<f3,
where 3 is the suppressor frequency.

The recording conditions are highlighted in Table 2.1. DPOAESs were initially
measured via a sweep recording with a minimum buffer level of 50, and a maximum
of 200. Either a low frequency sweep centred on 2 kHz (1.75-2.25 kHz) was studied
first, or a high frequency sweep centred on 4 kHz (3.75-4.25 kHz). These sweeps
were chosen to encompass both a low and high frequency region. The F2 was swept
in frequency in 16 Hz increments. An automatic stopping mechanism was activated
at signal-to-noise ratio (SNR) of 15 dB. From this sweep a single frequency was
chosen for further analysis. This was the point with the greatest SNR across the
range of f2 values, based on visual inspection of the data. This was to ensure that the

analysis was based on robust pairs of data that were not contaminated by noise.

Table 2.1 Recording conditions that each individual participant received. The
suppressor level was varied through 0, 20, 40, and 60 dB SPL for each condition.
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The f2/f1 = 1.05, whereby L1 = 65 dB, L2 =55 dB SPL. The High frequency
region represents 3.75-4.25 kHz, and the Low frequency region 1.75-2.25 kHz.
The order of testing was determined by a Latin Square method. Each condition
was repeated. Suppressor frequency (Hz) is relative to DP frequency.

Suppressor 2f1-f2 2f2-f1
Frequency

Low High  Low High
-32 X X X X
-16 X X X X
16 X X X X
32 X X X X
48 X X X X
64 X X X X
None X X X X

The primaries resulting in this DP were used for the analysis of suppression. The
single data had a maximum buffer level of 500 and a minimum of 200. There were 24
recording conditions for each participant. Measurements were initially made with no
suppressor tone added and the level of the DP was recorded. Throughout suppression
all variables, including primary levels, primary frequencies, and rejection levels
remained unaltered. The same measurement was then made but with a suppressor
tone introduced 32 Hz below the DP, and the amplitude of the DP was again recorded.
The suppressor tone was introduced through the same channel as f1, and presented
through the same ER-2 earphone. It was attempted to deliver the suppressor through
a separate channel, via a real ear measurement (REM) probe, but it was not possible
to synchronise frequencies sufficiently accurately. The suppressor was first
introduced at 20 dB, and this level was raised in 20 dB increments, to a maximum of
60 dB, in order to study the influence of suppressor level on the DP. These levels
were selected based on the work of other investigators such as Talmadge et al. (1999),
Gaskill and Brown (1996) and Kummer et al. (1995) in order to show the effect of the
suppressor tone having no influence on the DP (lower suppressor levels) to
completely removing it (higher suppressor levels). This process was repeated for

suppressors located from —32 Hz to + 64 Hz above the DP place, in 16 Hz increments.
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As a reference for the unsuppressed level of the DP, a measurement was made with no
suppressor introduced. The location of the suppressor tones relative to the DP can be

seen in Figure 2.3.
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P 2F-F, 2F,-F,
Magnitude suppressor suppressor
2F,-F;
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‘ ..................................................... ’ < ..................................................... ’
Frequency

Figure 2.3 Two DPOAEs represented in the frequency domain, highlighting the
two eliciting primary tones (F1 and F2) and the corresponding DPs of interest.
The location of the suppressor tones are also included. The dotted arrows
indicate the region of location of the suppressors. In this example the
suppressors are at a positive relative frequency. Source: adapted from Sharp,
2007.

The exact procedure was then repeated in order to ensure test re-test reliability. This
reinforces the validity of the results.
The same procedure was then carried out for the alternative DP (either 2f1- f2 or

2f2— f1). This was then repeated over the alternative frequency region (high or low).

The order of testing was randomised between participants by the application of a
Latin Square. This was to protect against order effects and other variations in hair cell
activity, such as acclimatisation as the participant moves from a loud external

environment to a sound controlled environment.
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It was deemed important to also study the 2f1- f2 emissions again as this also aids in

validating the reliability of the experimental set up.

2.3.4 Calibration

The experimental set up was calibrated utilising an audio frequency spectrometer,
which was coupled to an IEC-711 ear simulator. A tympanometry probe tip was
attached to the device and inserted into the ear simulator. The earphones were then
calibrated individually from 256 Hz to 6000 Hz in 256 Hz increments at a level of 60
dB, at a resolution level of £0.5 dB. Adjustments were made directly to the stimulus
levels. Intermediate frequencies were adjusted by linear interpolation. The
microphone was calibrated only at 1024 Hz because of the potential influence of
standing waves at higher frequencies and the discrepancies in the responses because
of possible differences in probe tube insertion (Wilson and Lutman, 2005). The
frequency response is expected to be linear across the range of frequencies
investigated, based on its specification and manufacturer's individual calibration
curve, so the individual result of the 1024 Hz was applied across the whole frequency

range.

2.4. Data processing

2.4.1 Programme

Data processing was conducted utilising Matlab (Mathworks Inc.) software. A pre-
existing program initially used by Parazzini (2004) and adapted further by Wilson and
Lutman (2006) was implemented in this investigation. The programme was modified

in order to allow adequate processing of the data found within this investigation.

The raw data is fundamentally processed in two stages in order to transfer it into a

format suitable for further analysis.
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The collected data is of a form in which both wave and place-fixed components of the

DPOAE are combined across an f2 frequency sweep in 16 Hz increments.

The initial stage involved phase unwrapping. This allows the transformation of data
with rotating phase (from -180 to +180°) to data with a continuous phase variation
with frequency (Knight and Kemp, 2000). This is achieved using a phase unwrapping
algorithm.

The following stage requires the data to be converted into the time domain. This
enables the two components (wave-fixed and place-fixed) to be separated in order to
compare the individual component amplitudes with that of the total DPOAE. The two
components are separated according to their latency (Knight and Kemp, 2000) as the

wave-fixed component has a shorter latency (<2 ms) than the place-fixed component.

After separation of the components they are converted back into the frequency
domain, and power averaged in order to give a single amplitude value for that

component.

The Matlab code for both stages is reproduced in Appendix 1.

2.4.2 Stage 1: Data formatting and phase unwrapping

This programme reads the files (.dat) from the DPOAE recording software. The
phase data is unwrapped and the required data components are used for further

processing.

2.4.3 Stage 2: Un-mixing

Stage 2 carries out time window separation according to the method of Withnell et al.
(2003):

1) The conversion of the DPOAE amplitudes into a complex form.
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2) Equal frequency spacing between the data points is achieved via linear
interpolation (Wilson, 2005).

3) The data is extended by zeros in order to attain a value that is a power of two (this
helps the FFT calculation).

4) An inverse fast Fourier transform (IFFT) is conducted on the data.

Results are exhibited as a plot in the time domain for checking.

5) In order to remove the reflection component of the DP, leaving only the distortion
component, the IFFT is subjected to a recursive exponential filter (order 10) with a
cut-off at 2ms. Kalluri and Shera (2001) further supported the cut-off time as they
unveiled that for the 1-2 kHz range, reflection emissions are delayed by
approximately 15 periods of the stimulus frequency (Wilson, 2005).

6) The filtered IFFT is subjected to a FFT to obtain the sweep corresponding to the
complex amplitude of the wave-fixed component. This is displayed as a plot of the
distortion (wave-fixed) component.

7) The subtraction of the wave-fixed component from the original complex amplitude
data reveals the place-fixed (reflection) component. The place-fixed data is plotted on

the same axes as the wave-fixed data (Wilson, 2005).

The programme output also features plots of the original complex amplitude data in
the time domain and the phase and amplitude of both the wave-fixed and place-fixed

components in the frequency domain.

2.4.4 Averaging

The previously described un-mixing presents the data as a range of amplitudes across
frequency. It is useful to obtain a single amplitude value for each of the recording
conditions. This is done by averaging across frequency, achieved by power averaging
(Knight and Kemp, 2001; Beckerleg, 2002; Wilson, 2005; Sharp, 2007).

2.45 The noise floor

A method of noise floor estimation was utilised as developed by Wilson and Lutman
(2006), and further used by Sharp (2007). Once again, Matlab was used in order to
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process the noise. This programme was similar to those used for processing the

emission data.

Background noise measurements were obtained near to the DP frequencies whilst
measuring the DPOAE. The phase data of the noise was not measured at this point.
Instead, the recorded amplitudes were labelled with a random phase, as it can be
assumed that the phase of the noise is independent of frequency (Wilson, 2005).

The subsequent phase and amplitude values obtained for the noise were then
subjected to the same processing techniques as the DPOAE data, and averaged. This
created individual estimates of the noise in the two latency periods for each recording
for each participant (i.e. wave-fixed and place-fixed). Consequently the DPOAE and
noise data could be analysed directly in order to reveal whether the emissions were

significantly above the noise.

2.5 Statistical design and analysis methods

Statistical analysis of the data was conducted using a combination of SPSS 17 (Lead

technologies Inc.) and Microsoft Excel.

The first stage in the analysis of the results was to determine whether the pattern of
results obtained demonstrated a normal distribution. In order to achieve this aim the
Kolmogorov-Smirnov test was implemented on both the DP recordings and
corresponding noise levels. This process is essential in determining the use of

parametric testing (Field, 2009).

The DP and corresponding noise recordings were then analysed to ensure the validity
of the results. The DP should be sufficiently distinguishable above the noise. This
was achieved by visual observation of graphed data, and via Student’s t-tests. The t-

test output also displayed confidence intervals.
The ultimate goal of the investigation was to determine the influence of the

suppressor level and position on the 2f1- f2 DP and how this compares to the 2f2- f1
DP. This was achieved through visual analysis of suppression-growth functions, and
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statistically via repeated measures analysis of variance (ANOVA). Post hoc tests
(Bonferroni) were then carried out to determine where the significant differences

specifically lay.

The results are presented in the following chapter.

53



CHAPTER 3: RESULTS AND ANALYSIS

3.1 Introduction

3.1.1 Participants

A total of 23 participants were initially recruited for testing. Of these original 23
participants three were excluded, due to their age ranges exceeding the recommended
for testing. The participants included seven males and 13 females, with a mean age
23.6 years, and a standard deviation of 2.6 years. Hearing thresholds were all within

normal limits and no contraindications were exhibited.

3.2 Emissions

3.2.1 Recorded emissions (prior to processing)

Each participant underwent each recording condition, for both the 2f1- f2 and 2f2- f1
DPs. DP levels were recorded along with the corresponding noise level. A sweep
measurement was first obtained in order to determine the most appropriate primary
frequencies to elicit the best DP response. This was based on the SNR. Single
recordings were then made, initially with no suppressor, and then with a suppressor

introduced.

The suppressor frequency was altered from 32 Hz below the DP to 64 Hz above, in 16
Hz intervals. Suppressor level was gradually increased for each suppressor position,
from 0 dB to a maximum of 60 dB in 20 dB increments. Where erroneous results
were evident at the highest suppressor level, a suppressor was introduced at 55 dB, as
opposed to 60 dB, in order to elicit a clearer signal. This occurred most frequently for
the 2f1- 2 low condition. Results were deemed erroneous where upon visual

inspection the data point was located significantly far away from the other data points.
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The recorded sweep data were then power averaged in order to obtain single values
for amplitude. A similar process was conducted on the noise values. Figures 3.1 and
3.2 below show that the average DP level was well above the average noise in all
conditions before processing. The figures indicate that the 2f1- f2 DP is higher than
the 2f2- f1 DP, and that both DPs are above the noise.
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Figure 3.1 2f1- f2 DP and noise levels averaged for all 20 participants. Both the
low and high recording conditions are shown, along with the initial and repeat

recordings. The error bars represent a single standard deviation.
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Figure 3.2 2f2-f1 DP and noise levels averaged for all 20 participants. Both the
low and high recording conditions are shown, along with the initial and repeat
recordings. The error bars represent a single standard deviation.

3.2.2 Emissions (post processing)

The technigque by which the initial data were processed has been described previously.
Processing was carried out using the Matlab software. The initial stage involves a
procedure known as an inverse fast Fourier transform (IFFT). Knight and Kemp
(2000) describe how the two components of the DPs can be identified based on their
group delays. Similar to the results of Knight and Kemp (2000), here it was also
demonstrated that there is a peak seen before approximately 3 ms, followed by a
number of peaks thereafter. An example of the results obtained from a participant
from the present study is shown in Figure 3.3. Knight and Kemp (2000) describe that
the small group delay corresponds to the wave-fixed emission and the later to the

place-fixed emission.
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Figure 3.3 Example 2f1- f2 low DPOAE represented in the time domain, as
output by Matlab software. Both the wave and place- fixed components are

exhibited. This data was obtained from participant LH.

After the IFFT has been performed the phase and amplitude of the DP are displayed.
From these plots it is demonstrated that the data contain two components, one with a

sloping phase and the other with a steady phase when plotted against frequency. An

example is shown in figure 3.4.
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Figure 3.4 Phase (bottom) and amplitude (top) of Fourier transform data from
participant LH, for condition 2f1- f2 low initial. The separation of the DP into
two components is exemplified. The reflection component exhibits a clear

sloping phase and the distortion component has a steady phase.

It is also important to assess that the signal is still above the noise after separation into
distortion and reflection components. It is clear from Figures 3.5 to 3.8 that for most
of the conditions, when averaged across participants, the signal is above the noise.
Once again the 2f1- f2 condition elicits greater levels of DP relative to the 2f2— f1.
The reflection component of the DP is greater than the distortion component in both
cases. As an example for the 2f1- 2 low initial condition (by comparing Figure 3.5
to 3.6) the distortion component was -17.44 dB SPL (+ 7.32 to one standard

deviation), and the reflection component was -4.79 dB SPL (+ 5.86 to one standard
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deviation). The distortion component of the 2f2— f1 DP is particularly low, and there

is an overlapping of the error bars between the DPs and the noise.

2F1-F2 Distortion

O Emission level
Noise level

Level (dB SPL)

Low Low High High
distortion distortion distortion distortion
initial repeat initial repeat

Recording condition

Figure 3.5 2f1- f2 distortion component and noise levels averaged for all 20
participants. Both the low and high recording conditions are shown, along with
the initial and repeat recordings. The error bars represent a single standard

deviation.
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Figure 3.6 2f1- f2 reflection component and noise levels averaged for all 20

participants. Both the low and high recording conditions are shown, along with

the initial and repeat recordings. The error bars represent a single standard

deviation.
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Figure 3.7 2f2- f1 distortion component and noise levels averaged for all 20

participants. Both the low and high recording conditions are shown, along with

the initial and repeat recordings. The error bars represent a single standard

deviation.
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Figure 3.8 2f2—- f1 reflection component and noise levels averaged for all 20

participants. Both the low and high recording conditions are shown, along with

the initial and repeat recordings. The error bars represent a single standard

deviation.

It is also important to determine if after the introduction of the suppressor tone the DP

levels are still above the noise. It is shown in Figures 3.9 to 3.16 that the DP levels
are above the noise in most conditions after the addition of the suppressor tone. For
the 2f1- f2 DP and 2f2- f1 under the high suppression condition it is clear that the
noise is large and the error bars are large (as an example for initial mean noise = -14
dB SPL, + 13.89 to one standard deviation, compared to the mean DP = -2.47 dB
SPL, +7.21 to one standard deviation).
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Figure 3.9 DP and corresponding noise levels for 2f1- f2 low initial, after the
introduction of the suppressor tone. Results represent an average across all 20
participants. Error bars represent one standard deviation. Absent =0, Low =
20, med = 40, High = 60 dB SPL for the suppressor levels.
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Figure 3.10 DP and corresponding noise levels for 2f1- f2 low repeat, after the
introduction of the suppressor tone. Results represent an average across all 20
participants. Error bars represent one standard deviation. Absent =0, Low =
20, med = 40, High = 60 dB SPL for the suppressor levels.
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Figure 3.11 DP and corresponding noise levels for 2f1- 2 high initial, after the

introduction of the suppressor tone. Results represent an average across all 20

participants. Error bars represent one standard deviation. Absent =0, Low =
20, med = 40, High = 60 dB SPL for the suppressor levels.
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Figure 3.12 DP and corresponding noise levels for 2f1- f2 high repeat, after the

introduction of the suppressor tone. Results represent an average across all 20

participants. Error bars represent one standard deviation. Absent =0, Low =
20, med = 40, High = 60 dB SPL for the suppressor levels.
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Figure 3.13 DP and corresponding noise levels for 2f2- 1 low initial, after the

introduction of the suppressor tone. Results represent an average across all 20

participants. Error bars represent one standard deviation. Absent =0, Low =
20, med = 40, High = 60 dB SPL for the suppressor levels.
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Figure 3.14 DP and corresponding noise levels for 2f2- f1 low initial, after the

introduction of the suppressor tone. Results represent an average across all 20

participants. Error bars represent one standard deviation. Absent =0, Low =
20, med = 40, High = 60 dB SPL for the suppressor levels.
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Figure 3.15 DP and corresponding noise levels for 2f2— f1 high initial, after the
introduction of the suppressor tone. Results represent an average across all 20
participants. Error bars represent one standard deviation. Absent =0, Low =
20, med = 40, High = 60 dB SPL for the suppressor levels.
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Figure 3.16 DP and corresponding noise levels for 2f2- f1 high repeat, after the
introduction of the suppressor tone. Results represent an average across all 20
participants. Error bars represent one standard deviation. Absent =0, Low =
20, med = 40, High = 60 dB SPL for the suppressor levels.
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3.2.3 Individual results

In order to determine whether the DP level was significantly above the noise it is

important not only to analyse the averaged data but also the individual participants.

This is due to the potential for large variation between participants. Sharp (2007) and

Wilson (2005) used a criterion of a minimum of a 3 dB difference between the DP

level and the noise, to categorise if a DP is sufficiently present for each recording

paradigm. The results of each individual are shown in Table 3.1 and it describes

whether a sufficient signal is present or not. It is clear from the table that lower

emission levels were exhibited for the 2f2— f1 low and high distortion components,

with averages of 60 and 57.5 % present respectively.

Table 3.1 Individual participant data displaying the number of participants with

DP levels 3 dB greater than the simultaneous noise levels.

Number Number

Condition recorded  present % Present

2F1-F2 Low distortion initial 20 17 85
2F1-F2 Low distortion repeat 19 17 89
2F1-F2 Low reflection initial 20 20 100
2F1-F2 Low reflection repeat 19 19 100
2F1-F2 High distortion initial 20 20 100
2F1-F2 High distortion repeat 19 19 100
2F1-F2 High reflection initial 20 20 100
2F1-F2 High reflection repeat 19 19 100
2F2-F1 Low distortion initial 20 13 65
2F2-F1 Low distortion repeat 20 11 55
2F2-F1 Low reflection initial 20 20 100
2F2-F1 Low reflection repeat 20 19 95
2F2-F1 High distortion initial 20 11 55
2F2-F1 High distortion repeat 20 12 60
2F2-F1 High reflection initial 20 20 100
2F2-F1 High reflection repeat 20 20 100

67



3.2.4 Suppression-growth functions

Typical results demonstrating the effect of the different suppressor levels on the

2f1- f2 and 2f2- f1 high and low conditions are shown in Figures 3.17-3.20. These
figures are presented in a format similar to those presented by Gaskill and Brown
(1996) and Kummer et al. (1999). The figures show a downward trend in DP level
with suppressor level across all conditions toward the high suppressor level. Each
line in the figures shows the DPOAE level as a function of an increasing suppressor
tone. These may be referred to as suppression-growth functions. Common
characteristics of participants DP suppression were visible in each case. Figures 3.17-

3.20 use data collected from participant SEL to exemplify these characteristics.

The level of suppression was largest under the high suppressor levels condition, as
highlighted by the steep, parallel suppressor growth functions between the medium
and high suppressor levels. As an example, Figure 3.17 (2f1- f2 low), with
suppressor frequency of 1632 when no suppressor was introduced DP level was 4.7
dB, at 20 dB suppressor level the DP was at 4.1 dB, at 40 dB suppressor level the DP
was 4.3 dB, and at 60 dB suppression the DP was 1.4 dB.

It must be noted that where occasional erroneous results were present they were
omitted from the analysis. These points were only found for the 2f1- 2 low
condition for the high suppressor level, and occurred infrequently in eight of the

participants.

There was no visible effect of suppressor frequency on either the 2f1- f2 or 2f2- f1

condition.
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Figure 3.17 Level of DP as a function of suppressor level. The different lines
represent different suppressor frequencies. The figure represents the 2f1- 2 low
repeat DP at 1616 Hz condition for participant SEL. L1=65, L2=55, L1/L.2=1.05.
Suppressor levels were none, low, medium and high corresponding to 0, 20, 40,
and 60 dB SPL respectively. Mean noise floor was —19.33 (+£7.66 to one standard
deviation) dB SPL.
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Figure 3.18 Level of DP as a function of suppressor level. The different lines
represent different suppressor frequencies. The figure represents the 2f1- 2
high repeat DP at 3712 Hz condition for participant SEL. L1=65, L2=55,

L1/L2=1.05. Suppressor levels were none, low, medium and high corresponding
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to 0, 20, 40, and 60 dB SPL respectively. Mean noise floor was —25.73 (£6.56 to
one standard deviation) dB SPL.
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Figure 3.19 Level of DP as a function of suppressor level. The different lines
represent different suppressor frequencies. The figure represents the 2f2—- f1 low
repeat DP at 4432 Hz condition for participant SEL. L1=65, L2=55, L1/L2=1.05.
Suppressor levels were none, low, medium and high corresponding to 0, 20, 40,
and 60 dB SPL respectively. Mean noise floor was —26.94 (+4.46 to one standard
deviation) dB SPL.
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Figure 3.20 Level of DP as a function of suppressor level. The different lines
represent different suppressor frequencies. The figure represents the 2f2- f1
high repeat DP at 4112 Hz condition for participant SEL. L1=65, L2=55,
L1/L2=1.05. Suppressor levels were none, low, medium and high corresponding
to 0, 20, 40, and 60 dB SPL respectively. Mean noise floor was —28.88 (+2.25 to
one standard deviation) dB SPL.

3.3 Statistical interpretation

3.3.1 Patterns in the data

The DP and noise levels obtained from each participant were analysed in order to
determine whether the data exhibited a normal distribution. Kolmogorov-Smirnov
tests of normality were performed on the noise and DP levels of all participants under
each experimental condition. Data was analysed for normality across both results for

suppressor position and for suppressor level.

Of the 40 graphs produced (16 for suppressor level, 24 for suppressor position) 39
were normally distributed (p > 0.05) and one was not normally distributed (p < 0.05).
This not normally distributed condition was:

DP Placement Variable

2f2-f1 High Suppressor position (-16 Hz)

The results of the Kolmogorov-Smirnov tests suggest the underlying data distributions

are approximately normal. Parametric testing was conducted throughout.

3.3.2 DP level compared to noise

The first hypothesis to be resolved determines if the DP recordings can be

distinguished from the noise recordings. In order to resolve this dependent-means t-

71



tests were performed for each recording condition to further assess if the DP levels

were significantly above the noise.

Considering the results for the paired t-tests it was clear that on average the

participants experienced greater DP levels than noise levels.

For the 2f1- f2 low condition, participants experienced greater levels of DP (M = —
1.33, SE = 0.78 dB SPL) when compared to noise (M =-25.29, SE = 0.47 dB SPL).
This represents a significant difference t (59) = -30.38, p < 0.05.

This was true for the 2f1- 2 high condition with greater DP levels (M =—4.9, SE =
0.98 dB SPL) compared to noise (M =-29.29, SE = 0.28 dB SPL), t (59) = -27.56, p
<0.05.

This was also true for the 2f2— 1 low condition with greater DP (M =-10.42, SE =
0.07 dB SPL) than noise (M =-28.31, SE = 0.44 dB SPL), t (59) = -29.83, p < 0.05.

This also was true for 2f2- f1 high with a larger DP (M = -14.79, SE = 1.01 dB SPL)
than noise (M =-29.69, SE = 0.25 dB SPL), t (59) = -16.68, p < 0.05.

Confidence intervals were also calculated via the t-test, which represents the SNR.
The lowest lower limit was —26.16 dB SPL (2f1- f2 high) and highest upper was —
13.12 dB SPL (2f2- f1 high).

Pearson's correlations coefficient was also calculated in order to determine if the
larger DP levels were from those participants exhibiting the larger noise values. For
all conditions the DP and noise levels demonstrated a significant correlation. For the
2f1-f2 low condition r = 0.273, p < 0.05, for 2f1-f2 high r = 0.457, p < 0.05, for 2f2-f1
low r = 0.562, and for the 2f2-f1 high condition r = 0.576, p < 0.05.

3.3.3 Analysis of variance (ANOVA)
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It is important to note that for the 2f1- f2 low condition, for the high suppressor level,
occasionally erroneous results were obtained. These results were clear outliers and

removed, as described previously, before any further analysis.

An amplitude plot demonstrating the effect of suppressor position and level on the DP
under the 2f1- f2 low condition is shown in Figure 3.21. The figure is averaged
(mean) across all participants, and includes both the initial and repeat measurements.
It is clear from the figure that initially the rise in suppressor level has little impact on
the degree of suppression. However, the high suppressor level has a large effect on

the DP level. The effect of suppressor frequency is not entirely clear.

Mauchly's test indicated that the assumption of sphericity had been violated for the
main effects of suppressor level, ¢® (0.178), p<0.05, suppressor frequency, c® (0.029),
p <0.05. Therefore degrees of freedom were corrected using Greenhouse-Geisser
estimate of sphericity (for the main effect of suppressor level € = 0.612, for the main
effect of suppressor frequency € = 0.440). The results of the two-way repeated
ANOVA suggest a main effect of suppressor level, (F1g 201 = 0.000, p<0.05, r =
0.94.), but no effect of suppressor frequency (F2.2, 242 = 0.204, p>0.05). There was no
significant interaction between suppressor level and suppressor frequency (F2s, 27.9=
0.97, p>0.05). Bonferroni post hoc test revealed a significant difference in DP levels
between the high suppressor condition and the absent condition (C195% = -3.937
lower, —1.594 upper, p<0.05), low condition (C195% = -3.615 lower, —1.635 upper,
p<0.05), and medium (C195% = —3.652 lower, —1.673 upper, p<0.05). No other
comparisons were significant (ps>0.05).
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Figure 3.21 Amplitude plot of the 2f1- f2 low averaged across all 20 participants.
The curves for suppressor levels are highlighted on the right-hand side of the
plot. L1=65,L2=55,L1/L2=1.05. Absent suppressor level represents 0 dB
SPL, Low represents 20 dB SPL, Medium represents 40 dB SPL, and High
represents 60 dB SPL. Mean noise floor was —21.63 (+5.47 to one standard
deviation) dB SPL. The 0 value on the x-axis represents the DP position.
Outliers have been removed. The suppressor frequency represents the
suppressor frequency relative to the DP.

An amplitude plot demonstrating the effect of suppressor frequency and level on the
DP under the 2f1- f2 high condition is shown in Figure 3.22. The figure is averaged
(mean) across all participants, and includes both the initial and repeat measurements.
It is clear from the figure that the initial effect of increasing the suppressor level is
noticeable, but not large. As the suppressor level increases there is a larger reduction

in the DP level. The suppressor frequency appears to have little effect on the DP.

Mauchly's test indicated that the assumption of sphericity had been violated for the

main effects of suppressor level, ¢ (0.117), p<0.05, suppressor frequency, c¢® (0.000),
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p<0.05. Therefore degrees of freedom were corrected using Greenhouse-Geisser
estimate of sphericity (for the main effect of suppressor level e=0.584, for the main
effect of suppressor frequency € = 0.229). The results of the two-way repeated
ANOVA suggest a main effect of suppressor level, (F1.7 647 =0.000, P<0.05, r =
0.96), but no effect of suppressor frequency (Fy.1, 42.4= 0.737, p>0.05). There was no
significant effect between suppressor level and suppressor frequency (F2.6 97.0=0.533,
P>0.05). Bonferroni post hoc testing revealed a significant difference in DP levels
between the high suppressor condition and absent condition (C195% = —5.439 lower,
—3.168 upper, p<0.05), low (C195% = —-5.280 lower, —3.178 upper, p<0.05), and
medium (C195% = —-5.109 lower, —2.654 upper, p<0.05). No other comparisons were
significant (ps>0.05).
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Figure 3.22 Amplitude plot of the 2f1- f2 high averaged across all 20
participants. The curves for suppressor levels are highlighted on the right-hand
side of the plot. L1 =65, L2 =55, L1/L2 =1.05. Absent suppressor level
represents 0 dB SPL, Low represents 20 dB SPL, Medium represents 40 dB SPL,
and High represents 60 dB SPL. Mean noise floor was —27.04 (£3.99 to one

standard deviation) dB SPL. The 0 value on the x-axis represents the DP
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position. The suppressor frequency represents the suppressor frequency relative
to the DP.

An amplitude plot demonstrating the effect of suppressor frequency and level on the
DP under the 2f2- f1 low condition is shown in Figure 3.23. The figure is averaged
(mean) across all participants, and includes both the initial and repeat measurements.
It is clear from the figure that even the lowest level of suppressor has a large effect on
the DP level. The effect is largest for the highest level of suppressor. The effect of
suppressor frequency is also visible, with a deepening of amplitude fine structure

before the DP frequency is reached, and rising thereafter.

Mauchly's test indicated that the assumption of sphericity had been violated for the
main effects of suppressor level, ¢® (0.099), p<0.05, suppressor frequency, c® (0.001),
p<0.05. Therefore degrees of freedom were corrected using Greenhouse-Geisser
estimate of sphericity (for the main effect of suppressor level € = 0.445, for the main
effect of suppressor frequency €=0.265). The results of the two-way repeated
ANOVA suggest a main effect of suppressor level, (F1 3 507 = 0.000, P<0.05, r =
0.96), and a main effect of suppressor frequency (F1 3,502 = 0.000, p<0.05, r = 0.74).
There was also a significant effect between suppressor level and suppressor frequency
(Fa4.9,187.0=0.000, p<0.05, r = 0.24). Bonferroni post hoc testing revealed a significant
difference in DP levels between the high suppressor condition and the absent
condition (C195% = -10.164 lower, -5.466 upper, p<0.05), low condition (C195% = —
9.188 lower, —4.865 upper, p<0.05), and medium (CI195% = —8.843 lower, —4.460
upper, p<0.05). There was also a significant comparison between the low condition
and absent (C195% = 4.460 lower, 8.843 upper, p<0.05), and between the medium
condition and absent (C195% = -2.016 lower, —0.311 upper, p<0.05). No other

comparisons were significant (ps>0.05).

Significant effects were also shown between suppressor frequency —16 and —32
(C195% = —7.985 lower, -1.756 upper, p<0.05), +16 (C195% = —7.820 lower, -1.666
upper, p<0.05), +32 (C195% = —7.844 lower, —1.523 upper, p<0.05), +48 (CI195% = —
7.812 lower, —1.298 upper, p<0.05) and +64 (C195%=—7.893 lower, —1.533 upper,
p<0.05). Bonferroni post hoc testing revealed a significant difference in DP levels
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between the high suppressor condition and the absent condition (C195% = -10.344
lower, —4.561 upper, p<0.05), low condition (C195% = -9.911 lower, —5.185 upper,
p<0.05), and medium condition (C195% = —9.905 lower, —5.363 upper, p<0.05). No
other comparisons were significant (ps>0.05).
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Figure 3.23 Amplitude plot of the 2f2- f1 low averaged across all 20 participants.
The curves for suppressor levels are highlighted on the right-hand side of the
plot. L1=65,L2=55,L1/L2=1.05. Absent suppressor level represents 0 dB
SPL, Low represents 20 dB SPL, Medium represents 40 dB SPL, and High
represents 60 dB SPL. Mean noise floor was —27.18 (+4.13 to one standard
deviation). The 0 value on the x-axis represents the DP position. The suppressor
frequency represents the suppressor frequency relative to the DP.

An amplitude plot demonstrating the effect of suppressor position and level on the DP
under the 22— f1 high condition is shown in Figure 3.24. The figure is averaged
(mean) across all participants, and includes both the initial and repeat measurements.
The figure reveals that the suppressor initially has little effect. The DP actually rises

initially for the low and medium suppressor levels, but declines for the highest
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suppressor level. The effect of suppressor position for the low and medium position
is that the DP level rises as the suppressor frequency approaches. For the high
suppressor level as the suppressor frequency approaches the DP frequency there is a
deepening in the amplitude fine structure, with an amplitude minimum exhibited after

the DP frequency.

Mauchly's test indicated that the assumption of sphericity had been violated for the
main effects of suppressor level, ¢? (0.056), p<0.05), suppressor frequency c? (0.465),
p<0.05. Therefore degrees of freedom were corrected using Greenhouse-Geisser
estimate of sphericity (for the main effect of suppressor level € = 0.463, for the main
effect of suppressor frequency € = 0.775). The results of the two-way repeated
ANOVA suggest a main effect of suppressor level, (F13 52.7=0.000, p<0.05, r =
0.95), but no main effect of suppressor frequency (Fsg, 1473 = 0.694, p>0.05). There
was no significant effect between suppressor level and suppressor frequency (Fe 6, 252.0
=0.192, p>0.05).
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Figure 3.24 Amplitude plot of the 2f2- f1 high averaged across all 20
participants. The curves for suppressor levels are highlighted on the right-hand
side of the plot. L1 =65, L2 =55, L1/L2 =1.05. Absent suppressor level
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represents 0 dB SPL, Low represents 20 dB SPL, Medium represents 40 dB SPL,
and High represents 60 dB SPL. Mean noise floor was —29.77 (£2.16 to one
standard deviation). The 0 value on the x-axis represents the DP position. The

suppressor frequency represents the suppressor frequency relative to the DP.
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CHAPTER 4: DISCUSSION

4.1 Introduction

Enhancing the understanding of the mechanisms of generation of OAEs is essential in
utilising them to their full capacity in both the laboratory and clinic. Thus far, this
paper has examined the literature surrounding the evolution of the models through
which investigators have enhanced this understanding, particularly concerning
DPOAEs. The physiological mechanisms underlying DPOAES have been discussed
(Shera, 2004; Robinette and Glattke, 2007), and methods of analysis have been
described and criticised (Talmadge et al., 1999). The current two-source theory has
been investigated, concerning the non-linear distortion and linear coherent reflection
mechanisms (Shera and Guinan, 1999; Kalluri and Shera, 2001).

Two separation techniques have been described including time-window separation
(Knight and Kemp, 2000) and the introduction of a suppressor tone (Maurmann et al.,
1999; Gaskill and Brown, 1996). The paper emphasised present gaps in the
understanding of DPOAEs, with particular reference to the 2f2— f1 DP.

The following questions were constructed:

e Isthe 2f2- f1 DP is accurately measurable above the noise floor?
e What is the effect of suppressor level on the 2f2— f1 DP?
e What is the effect of suppressor frequency on the 2f2— f1 DP?

A methodology has been detailed and implemented in order to broaden understanding

of this DP, and the results presented.

In this next section the results presented in the previous chapter will be discussed,

along with how they relate to current understanding.
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4.2 A question of validity and SNR

The results presented for the time window separation data support the theory that the
parameters and conditions of measurement recording were valid, as the results are

fully consistent with those of other investigators.

The IFFT output is similar to that demonstrated by Knight and Kemp (2000) with a
peak seen below approximately 3 ms, followed by further peaks after. Knight and
Kemp (2000) report that with a frequency ratio of f2- f1 = 1.04 the group delay was
3-4 ms, when using a frequency ratio of 1.2 the group delay was 0.5-1 ms. The peak
with the small group delay signifies the wave-fixed emission, and the larger group

delay reflects the place-fixed emission (Knight and Kemp, 2000).

It is clear from Fig 3.4 that the DP could be separated into two components typical of
those shown by Kalluri and Shera (2001), and Shera (2004), and supported further by
Wilson and Lutman (2006). The DP can be seen to be separating into two
components, one with a phase not being influenced by frequency, and the others
phase varying more with frequency. The original (unmixed) recording is similar to
the reflection component, indicating predominance of that component, which is

typically found for such frequency ratios.

The validity of the methodology implemented is further supported by the high SNRs
obtained for the data both pre and post processing as exemplified in Figures 3.5-3.8.
This emphasises that the parameters used (frequency ratio and primary levels) were
sufficient to elicit recognisable responses. This further supports the results and
methodology of Wilson and Lutman (2006) who found adequate SNRs for both the
2f1- f2 and 2f2- f1 emissions. Similar to these authors however, the 2f2— f1 DPs
were lower than the 2f1- f2, particularly the distortion component. There is some
overlap between the error bars of the noise and the DP.  The results presented here
are similar to those of Martin et al. (1998) and Wable et al. (1996) who also report
that the amplitude of the 2f2— f1 DP is typically much lower than the 2f1- f2 DP.

After the introduction of the suppressor tone the results altered. These differences are
exhibited under the high suppressor condition for both the 2f1- f2 and 2f2- f1 DPs.
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This is potentially due to the effect the high suppressor level may have had on the
recordings. As the suppressor was being delivered through the same channel as f1 it

may have caused this higher apparent noise effect.

The results of the paired t-tests support the results displayed in the figures, as the DP

levels were significantly above the noise in all cases.

However the validity of the results may be compromised by the significant correlation
between the DP levels and the noise levels. The participants with the highest levels of
DP had the highest levels of noise. This is perhaps due to the suppressor energy
leaking into the FFT bins used for noise estimation, or inter-modulation with the
suppressor increasing energy in these bins.

Further evidence supporting the validity of the results comes from the fact that all
measurements were repeated. Both the initial and repeated measurements were very
comparable to each other, almost being identical for both the 2f1- 2 and 2f2- f1

conditions, as shown in Figures 3.5-3.8.

All participants were given clear instructions to remain as still as possible throughout
recording, and told to relax as much as possible. The participants were seated in a
sound treated booth. This helped to achieve the lowest possible noise levels during
the testing, protecting against noise contamination. This ensured the good SNR
reported. This is an improvement over Knight and Kemps work (2001) who did not
utilise completely sound treated conditions for the implementation of their

methodology.

Further validity was acquired due to the large number of participants recruited. Often
in DPOAE investigations the participant numbers are very low. Knight and Kemp
(2001) for example only used the left ears of two participants; Talmadge et al. (1999)
and Kalluri and Shera (2001) only used four participants. These low participant

numbers may not be adequate to make accurate inferences.

It is important to note when discussing validity the apparently erroneous results,
which were occasionally exhibited under the 2f1- f2 low conditions, when the high
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suppressor level was in use. There are a number of issues that surround the use of a
suppressor tone, as mentioned in Chapter 1. The suppressor may alter the response
(Gorga et al., 2002), including having the potential to add more distortion sources.
These newly created distortion products may leak into frequency bands utilised for the
measurement of noise levels. The third tone may also have an additive effect on the
measured DP, potentially leading to an increased DP level. Also discussed earlier is
the problem of incomplete un-mixing, because of the inherent trade off between
introducing the third tone at a level that is either too low or too high.

The large, overlapping error bars for the high suppressor level exhibited in Figures
3.9-3.16 reflect this. The apparently erroneous results were removed prior to further
analysis. The results of the present investigation may be considered valid, as they are
comparable to other investigations of a similar type, such as Sharp et al. (2007).

4.3 Suppression-growth functions

As an introduced suppressor tone increases in level it will at first not have a
noticeable effect on the components of the DP (Talmadge et al., 1999). As the
suppressor tone is initially introduced at a low level the DP level exhibits at first a
stable plateau. As the suppressor level rises this stable period is followed by a rapid
decline in DP level (Gaskill and Brown, 1996).

The results presented in the previous chapter support the experimental findings of
previous investigations, such as those conducted by Gaskill and Brown (1996) and
Kummer et al. (1995). The results presented here indicate that the 2f2— f1 DP can be
suppressed in a similar way to the 2f1- f2 DP, for the experimental conditions

utilised.

Kummer et al. (1995) reported that the location of the suppressor relative to the DP
had a noticeable effect on the extent of suppression. The threshold of suppression
was marginal approximately above f2 and minimally increased with raising
frequency, but increased continuously with decreasing the level of the suppressor.

Kummer et al. (1995) state that the DP was especially influenced by the suppressor

83



near to the DP frequency. The effect of suppressor frequency was not so evident

here, potentially due to the different parameters utilised.

4.4 Amplitude plots

The ANOVA results expressed the significant effect of suppressor level on the DP for
all conditions. For each condition there was a significant difference between the high

suppressor condition and the absent condition. This is shown in the amplitude plots in
Figures 3.21-3.24.

The amplitude plots in Figures 3.21-3.24 are exhibited in a similar fashion to those of
Talmadge et al. (1999). Talmadge et al. (1999) introduced a third tone to determine
the effect of level and position on the DP. The authors describe how in instances in
which the reflection component is less than the non-linear distortion component
increasing the level of the suppressor removes the amplitude fine structure. For cases
in which the reflection component is greater than the non-linear distortion component
increasing the suppressor level has the initial effect of making the reflection
component equal to the non-linear distortion component, resulting in a deepening of
the amplitude fine structure. When the suppressor level is large enough the reflection
component becomes less than the non-linear distortion component and the amplitude
fine structure disappears. For larger suppressor levels both the levels of the reflection
and non-linear distortion component decrease, and there is a decline in the overall
level of the DP (Talmadge et al., 1999). This provides further support for the two-
source theory.

It has been demonstrated that for the recording parameters utilised in this
investigation the reflection component is larger than the non-linear distortion
component (Figures 3.5-3.8). It is expected that the results presented here could show
similar results to those of Talmadge et al. (1999) for the condition under which the
reflection component is larger than the non-linear distortion component. However,
the deepening in the fine structure was only shown for the 2f2— f1 low condition.
Figure 3.23 shows a deepening of amplitude fine structure as the suppressor
frequency approaches the DP frequency, but then increasing. In Figures 3.21, 3.22
and 3.24 it is difficult to determine a discernible pattern at the high suppressor level.
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In the amplitude plots only for the 2f2— f1 low condition was there a deepening in
amplitude fine structure. For all other conditions this was not the case. This may
imply support for the theory of Wilson and Lutman (2006), with the non-linear
distortion and linear coherent reflection components arising from the DP frequency

place.

4.4 The 2f2-f1 DP

The 2f2— 1 DP has been studied much less than the 2f1- f2 DP. It has been
demonstrated on many occasions that the origin of the 2f2-f1 DP is basal to the DP
frequency place along the BM (Wilson and Lutman, 2006; Erminy et al., 1998; Wable
etal., 1996). Amplitudes are also reportedly lower for the 2f2— f1 DP in comparison
to the 2f1- f2 DP (Wable et al., 1996). This is consistent with results of the current
investigation as the 2f1-f2 is consistently larger than the 2f2— f1, and is located further
above the noise floor. This is clear from figures 3.1-3.2. Moulin and Kemp (1996)
implied this potentially is due to the DP not having the same location of generation as
the 2f1- f2.

Knight and Kemp (2000) investigated the wave-fixed and place-fixed theory by using
2f1- f2 and 2f2- f1 DP stimulus frequency sweep data. Knight and Kemp (2000)
discovered that there is a systematic change in the proportion of wave and place-fixed
emissions. In the 2f1- f2 portion a wide stimulus frequency ratio results in wave-
fixed emissions, whilst all other DPs are place-fixed. A transition occurs in this
portion at f2/f1 = 1.1. This provided evidence that the mechanisms underlying the
origin of 2f2- f1 and 2f1- f2 at lower frequencies ratios are fundamentally the same,
but at greater frequency ratios there is an alternate source for the 2f1- f2 DP. Knight
and Kemp (2000) suggest that these findings support the model that for wave-fixed
emissions DP energy is largely created in the f2 region and is emitted directly. For
other DPs even though the DP is generated due to the non-linearity within the f2
envelope, the DP is emitted by a combination of non-linearity and a reflection

mechanism.

85



Knight and Kemp (2001) suggest that for the 2f1- f2 wave-fixed emission the DP
originates in the f2 region and is emitted directly. All other DPOAEs are described by
Knight and Kemp (2000) as place fixed, and the DP is not directly emitted but moves
apically, where it is re-emitted basally as a consequence of a reflection mechanism.
Knight and Kemp (2001) document that in one of their two participants (RN) both a
wave-fixed and place-fixed component in the 2f2— f1 DP was exhibited, but could not
define it as being a normal characteristic as it was only located above the noise in a
single participant. Knight and Kemp (2001) report that the origins are potentially in

the region of the DP frequency place in the cochlea.

Wilson and Lutman (2006) investigated the wave and place-fixed components of the
2f1- f2 and 2f2- f1 emission, to determine if it was a common feature of human ears.
The authors used frequency ratios f2/f1 of 1.05, 1.1, 1.22, and 1.32. They did indeed
discover that both wave and place-fixed components were present in most of the
participants (emissions present in all but two place-fixed 2f2- f1 DP recordings).
Wilson and Lutman (2006) proposed a mechanism of generation of the 2f2— f1 DP,
which can be seen in Figure 1.11. Waves of the primary frequencies f1 and 2
travelling past the 2f2— f1 DP place are basal to the characteristic frequency so
subsequently are not slowed by the mechanics of the cochlea. It is suggested that
non-linearity at the 2f2— f1 DP place results in energy being emitted basally through a
reverse TW or through the cochlear fluids. Wilson and Lutman (2006) conclude that
it may be assumed that the non-linear distortion and the linear coherent reflection

components occur at the DP frequency place, or basal to it.

The investigation described here offers support for the theory of Wilson and Lutman
(2006), as it was not possible to selectively suppress the reflection or distortion
component of the DP separately. This points towards a distributed source of the
distortion mechanism, at or basal to the DP frequency place.

Martin et al. (1998) used suppression, onset latencies and correlation techniques to
further examine the generation site of the 2f2— f1 DP compared to the 2f1-f2 DP.
Martin et al. (1998) conclude that the 2f2- f1 DPOAE is generated at, or basal to, the
2f2- f1 frequency place.
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Sharp (2007) further investigated the components of the 2f1- f2 and 2f2- f1 by not
only using a time window separation method, but also a suppression technique. Sharp
(2007) utilised the same four frequency ratios as Wilson and Lutman (2006). The
investigation revealed that both the 2f1- f2 and the 2f2- f1 DPOAEs exhibit wave
and place-fixed components, when subject to both suppression and time window
separation techniques. The DPOAEs found by Sharp (2007) by both methods
exhibited similar patterns, with only the wave-fixed component of 2f1- f2 having a
high dependence on frequency ratio. The levels of the different DPOAE components
did alter greatly between the two methods, highlighting large variations in the results
of the two techniques. Sharp (2007) concludes that as it was possible to separate the
distortion and reflection components of the 2f1- 2 and 2f2— f1 emission via
suppression, they must arise by similar mechanisms. Sharp (2007) suggested that the
position of the suppressor relative to the DPs may have an influence on the possible
levels of suppression. Placing the suppressor between the DP and the primaries may

have increased the efficacy of the suppressor.

The suppressor method works based on the different locations of generation of the
two different components. If the two components were originating from the same
place of origin, then the suppression method would not be able to separate the two
components, as suggested by Wilson and Lutman (2006). This investigation revealed
that the introduction of a suppressor tone does indeed reduce the overall levels of the
DP for both the 2f1- 2 and 2f2- f1, but in most cases it was not possible to
selectively suppress either component separately. As the suppressor technique is
dependent on the generation sites being physically remote, it can be assumed that the
origins of the 2f2— f1 emission, unlike those of the 2f1- f2 emission are not separated

spatially.
The evidence presented in this investigation supports the theory of Wilson and

Lutman (2006) that for the 2f2— f1 DP potentially the reflection and distortion sources

are at an identical location on the BM.
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4.5 Future work

It has been noted that delivering a suppressor tone through the same channel as one of
the primaries may result in possible interaction between the two stimuli, which
complicates interpretation. It was attempted in this study to deliver the suppressor
tone through a third channel using a REM probe tube. However, it was not possible
to obtain sufficiently accurate synchronisation with the primaries to satisfy the
requirements of the recording technique. In a future experiment it would be
interesting to deliver the third tone through a separate channel, if possible, to more
accurately assess the effect of a third tone on the DP.

There is still very little literature concerning the origins of the 2f2— f1 DP. It would
be interesting to further validate the experimental findings of this investigation but
utilising a wider range of frequency ratios. Here the frequency ratio 1.05 was used. It
would be valuable to further determine if similar results are obtained for other
frequency ratios such as 1.1 and 1.22. Also by using a larger number of suppressor
frequencies, relative to the DP, including possibly multiple suppressors, a more
complete picture of the effect of suppressor position on the DP level can be
established.

5. Conclusion

It is clear that both the non-linear distortion and reflection component of the 2f1- f2
and 2f2- f1 can be measured above the noise floor when separated by time-
windowing. Time window separation is a technique that relies on the different

latencies of the components.
Suppression analysis revealed that at low levels of suppression there is a minimal
effect on the DP levels. At higher suppression levels there is a decline in the overall

level of the DP.

No effect of suppressor frequency was revealed.
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It was not possible to separate the two components of the 2f2— f1 DP by suppression,
a technique that relies on location. This may imply a distributed source of the

distortion mechanism, at or basal to the DP frequency place.
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Appendices

Appendix 1

function [Dp_complex_eq, Dp_dist_amp, Dp_dist_nowind, Dp_ref_amp,
Dp_ref_nowind, Dp_freq_eq] = unmixing(n, tcutoff, filename, f1, f2, Dp_type,
Dp_amp, Dp_phase)

%function [Dp_complex_eq, Dp_dist_amp, Dp_dist_nowind, Dp_ref_amp,
Dp_ref _nowind, Dp_freq_eq] =

% unmixing(n, tcutoff, filename, f1, f2, Dp_type, Dp_amp, Dp_phase)

%

%function of the unmixing algorithm according to Withnell et al Hear. Res. 178,
2003, 106-117

%input parameters: n:order of the recursive exponential filter (try 10)

% tcutoff: filter cutoff (recursive exponential filter) in ms

% filename: name of input data file

% Dp_type: coded DP 1=2f1-f2 and 2=2f2-f1

% f1, f2: vectors of frequency values in sweep

% Dp_amp, Dp_phase vectors of amplitude (dB) and phase values
% in sweep from get_dp_file function called previously
%output parameters: Dp_complex_eq

% Dp_dist_amp D component mag vector

% Dp_dist_nowind D component vector without Hann window
% Dp_ref_amp R component mag vector

% Dp_ref_nowind R component vector without Hann window
% Dp_freg_eq vector of DP frequencies

P e mm e mmmm e mmmmm e —mm————

fs=32768;

%sample frequency of the system (Hz)

deltaf=16;

%binwidth

N=fs/(deltaf);

%N number of points in frequency (2048 till fs no till Nyquist, no mirroring)
Max_freq=deltaf*N;

%max frequency (32768 hz according to the article you have to go till fs, no till
Nyquist)

f=[deltaf:deltaf:Max_freq/2];

%frequency vector till Nyquist

%step 1: conversion of Amplitude and Phase in complex number; Amplitude in
mPa e Phase

%unwrapped in radians

Dp_amp_mPa=unitconv2(Dp_amp,'dBmPa’);

Dp_phase_rad=Dp_phase*(pi/180);
Dp_phase_rad_unw=unwrap_local(Dp_phase_rad); % unwrap function to avoid
jumps greater than pi
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Dp_complex=complex(Dp_amp_mPa.*cos(Dp_phase_rad_unw),
Dp_amp_mPa.*sin(Dp_phase_rad_unw));

%step 2: linear interpolation of the data to obtain 16 Hz of step between the Dp
frequency.
%With our way of recording we have a step of 32 or 16 Hz
if Dp_type ==
Dp_freq=2*f1-f2;
xlabel_text="2f1-f2 (Hz)";
elseif Dp_type ==
Dp_freq=2*f2-f1;
xlabel_text="2f2-f1 (Hz)';
else
error('Unsupported DP type: must be 1 or 2')
end

random=rand(length(Dp_freq),1);

Dp_freq=(Dp_freg+random);

Dp_freq=sort(Dp_freq);
Dp_freq_eq=[Dp_freq(1):deltaf:Dp_freq(length(Dp_freq))];
Dp_complex_eqg=interp1(Dp_freq,Dp_complex,Dp_freg_eq,'linear’);

%step 3: the complex data is buffered with zeros from 0 to fs.
%No mirroring of the complex data is performed.
buffer_data=zeros(1,N);

index=fix(N*(Dp_freq_eq./Max_freq));
buffer_data(index)=Dp_complex_eq;

%step 4: perform IFFT.

%The time resolution is 30.5 micros. The time-domain waveform obtained from the
IFFT

%extended from 0 to 62.5 ms (2048 points multiplied by 30.5 micros).
time_nowind=ifft(buffer_data,N); % analytic signal
time_nowind_magn=abs(time_nowind); % envelope of the analytic signal
t=[0:(1/Max_freq):(N-1)*(1/Max_freq)].*1000; % time vector (in ms!)

%step 5: IFFT is multiply by a n-order recursive exponential filter to remove
%components attribute to reflections within the cochlea (developped by Shera
and Zweig 1993)

rec_filt = recur_expo_filt(n,tcutoff,t);

filter_time=time_nowind.*rec_filt; %filter on time data
figure;plot(t,time_magn,'r',t,abs(filter_time));

title(strcat(' [, filename, 7));

%step 6: An FFT is performed on filtered IFFT.

%The FFT is performed on N value but only the first 0 to N/2 values are necessary
(the

%values from N/2+1 to N-1 are redundant conjugates). The individual FFT are
summed to obtain
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%the total FFT,i.e.the complex amplitude of the wave-fixed (or distortion)
component.

filtered_freqdata=fft(filtered_windowed_time,N,2);
Dp_dist_nowind=fft(filter_time,N); %complex amplitude of the wave-fixed
component

Dp_dist_amp=unitconv2(abs(Dp_dist(index)), mPadB");
Dp_dist_nowind_amp=unitconv2(abs(Dp_dist_nowind(index)),'mPadB");
Dp_eq_amp=unitconv2(abs(Dp_complex_eq),’mPadB);

%step 7: the total place-fixed (or reflection)component is obtained by
subtraction of the

%complex amplitude of the wave-fixed from the original data
Dp_ref_nowind=Dp_complex_eq-Dp_dist_nowind(index);
Dp_ref_amp=unitconv2(abs(Dp_ref),'mPadB");
Dp_ref_nowind_amp=unitconv2(abs(Dp_ref_nowind),'mPadB’);

strl=strcat('Dp Amplitude', ' [', filename, '1);

str2=strcat('Dp Phase’, ' [/, filename, 7);

figure;subplot(2,1,1);

plot(Dp_freq_eq,Dp_eq_amp,'ro-',Dp_freq_eq, Dp_dist_nowind_amp,'gs-
",Dp_freq_eq,Dp_ref_nowind_amp,'bd-
\Dp_freq,Dp_amp,'k’,'LineWidth',1,'MarkerSize',2);
h=gca;set(h,"YLim',[-60 20]);title(strl);ylabel('dB SPL');

hold on;subplot(2,1,2);
plot(Dp_freq_eq,unwrap_local(angle(Dp_complex_eq)),ro-
"\Dp_freg_eq,unwrap_local(angle(Dp_dist_nowind(index))),'gs-

", Dp_freq_eq,unwrap_local(angle(Dp_ref_nowind)),'bd-
\Dp_freq,Dp_phase_rad_unw,'k','LineWidth',1,'MarkerSize',2);
h=gca;set(h,"YLim',[-40 10]);title(str2);ylabel('Radians’);xlabel(xlabel_text);
legend('Dp’,'DpDis','DpRef','Original’,3);

Dp_dist_nowind=Dp_dist_nowind(index);
% in this way all the vector exported have the same length.

function p = unwrap_local(p_in)
%LocalUnwrap Unwraps row vector of phase values in radians
p=p_in;
m = length(p);
for i=2:m
if (p(i)-p(i-1)) > pi
for j=i:m
p(G) = p(@) - 2*pi;
end
end
end
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