The University of Southampton
University of Southampton Institutional Repository

The effects of variation in wave period and flow asymmetry in sediment dynamics

The effects of variation in wave period and flow asymmetry in sediment dynamics
The effects of variation in wave period and flow asymmetry in sediment dynamics
The results of laboratory experiments are described, relating to aspects of hydrodynamics and sediment dynamics under second-order Stokes type waves (or flows), of varying degrees of asymmetry. The majority of the measurements related to laminar and/or transitional flow conditions and were made using an oscillating trolley apparatus.
The transition to turbulence over smooth beds has been reported previously in terms of a (single) critical flow amplitude Reynolds number, Recrit=U?a/?. On the basis of observations undertaken using sinusoidal flows (Li, 1954) and during the present study, this is found to be the case for wave periods of T>3.5s, where mean Recrit=1.66×105. However, for T<3.5s, it is shown that Recrit decreases in proportion to T. On the basis of the observations made by Li (1954), Manohar (1955) and during the present study, transition over rough (granular) beds is described by Recrit=c(a/D), where c is a coefficient that, for relatively fine sediment (D<275?m), is a linear function of T; for relatively coarse sediment (D>421?m), it is a linear function of D. At large values of Recrit, corresponding to longer wave periods together with relatively small bed roughness length-scales, the observed values deviate from the rough-bed relationship and tend towards the smooth-bed limiting value. Flow asymmetry acts to stabilise the boundary layer, increasing either the critical boundary Reynolds number RE 2? /? ? crit c =U (in the case of smooth beds), or Recrit (in the case of rough beds), following a non-linear relationship. Regulating mechanisms are proposed by which the transition to turbulence is governed over (relatively) smooth and/or rough beds. Of principle importance is the balance between the stabilising effect of fluid acceleration and the destabilising effects of vertical gradients in the horizontal velocity (thought to be important in regulating transition over a smooth-bed) and localised eddy formation around individual grains on the bed (similarly over rough beds).
The threshold of motion for non-cohesive, sand-sized sediment is expressed typically as a critical bed shear stress amplitude, ?o, relative to the resistant properties of individual grains (due to gravity). On this basis, numerous critical shear stress (e.g. the well known approach of Shields, 1936) and velocity amplitude relationships have been presented elsewhere. Previously, Voulgaris et al. (1995) have identified that a higher ?o is required to cause threshold at smaller wave periods. On the basis of a large number of observations undertaken (elsewhere, and as part of the present study) using similar equipment, a negative linear relationship has been established between T and ?o; this becomes progressively more significant, for threshold occurring under larger values of Re (into the transitional regime). Flow asymmetry has the effect of increasing ?o crit; however, the critical orbital diameter for given conditions remains approximately constant, irrespective of the asymmetry. Using these data, in combination with detailed observations of the phase of the onset and the subsequent duration of sediment motion, it is suggested that (especially under (near) laminar flows) the threshold of motion is in response to a ‘time-‘ or ‘phase-mean’ shear stress, corresponding to some form of cumulative force. In addition, under turbulent or partially turbulent flow conditions, the stochastic distribution of the instantaneous shear stress is broader under waves of larger T and/or smaller R; this permits similarity in the occurrence of high-shear events, over a range of conditions. However, the mean ?0 crit decreases. Hence, an artefact or anomalous decrease is included, at longer wave periods, in the (time-mean) peak value of ?o crit used to represent such flows.
Lambkin, D.O.
68a3b16f-2aa1-463c-9f8a-3d942a59dfa7
Lambkin, D.O.
68a3b16f-2aa1-463c-9f8a-3d942a59dfa7

Lambkin, D.O. (2004) The effects of variation in wave period and flow asymmetry in sediment dynamics. University of Southampton, Faculty of Engineering Science and Mathematics. School of Ocean and Earth Science, Doctoral Thesis, 234pp.

Record type: Thesis (Doctoral)

Abstract

The results of laboratory experiments are described, relating to aspects of hydrodynamics and sediment dynamics under second-order Stokes type waves (or flows), of varying degrees of asymmetry. The majority of the measurements related to laminar and/or transitional flow conditions and were made using an oscillating trolley apparatus.
The transition to turbulence over smooth beds has been reported previously in terms of a (single) critical flow amplitude Reynolds number, Recrit=U?a/?. On the basis of observations undertaken using sinusoidal flows (Li, 1954) and during the present study, this is found to be the case for wave periods of T>3.5s, where mean Recrit=1.66×105. However, for T<3.5s, it is shown that Recrit decreases in proportion to T. On the basis of the observations made by Li (1954), Manohar (1955) and during the present study, transition over rough (granular) beds is described by Recrit=c(a/D), where c is a coefficient that, for relatively fine sediment (D<275?m), is a linear function of T; for relatively coarse sediment (D>421?m), it is a linear function of D. At large values of Recrit, corresponding to longer wave periods together with relatively small bed roughness length-scales, the observed values deviate from the rough-bed relationship and tend towards the smooth-bed limiting value. Flow asymmetry acts to stabilise the boundary layer, increasing either the critical boundary Reynolds number RE 2? /? ? crit c =U (in the case of smooth beds), or Recrit (in the case of rough beds), following a non-linear relationship. Regulating mechanisms are proposed by which the transition to turbulence is governed over (relatively) smooth and/or rough beds. Of principle importance is the balance between the stabilising effect of fluid acceleration and the destabilising effects of vertical gradients in the horizontal velocity (thought to be important in regulating transition over a smooth-bed) and localised eddy formation around individual grains on the bed (similarly over rough beds).
The threshold of motion for non-cohesive, sand-sized sediment is expressed typically as a critical bed shear stress amplitude, ?o, relative to the resistant properties of individual grains (due to gravity). On this basis, numerous critical shear stress (e.g. the well known approach of Shields, 1936) and velocity amplitude relationships have been presented elsewhere. Previously, Voulgaris et al. (1995) have identified that a higher ?o is required to cause threshold at smaller wave periods. On the basis of a large number of observations undertaken (elsewhere, and as part of the present study) using similar equipment, a negative linear relationship has been established between T and ?o; this becomes progressively more significant, for threshold occurring under larger values of Re (into the transitional regime). Flow asymmetry has the effect of increasing ?o crit; however, the critical orbital diameter for given conditions remains approximately constant, irrespective of the asymmetry. Using these data, in combination with detailed observations of the phase of the onset and the subsequent duration of sediment motion, it is suggested that (especially under (near) laminar flows) the threshold of motion is in response to a ‘time-‘ or ‘phase-mean’ shear stress, corresponding to some form of cumulative force. In addition, under turbulent or partially turbulent flow conditions, the stochastic distribution of the instantaneous shear stress is broader under waves of larger T and/or smaller R; this permits similarity in the occurrence of high-shear events, over a range of conditions. However, the mean ?0 crit decreases. Hence, an artefact or anomalous decrease is included, at longer wave periods, in the (time-mean) peak value of ?o crit used to represent such flows.

Text
Lambkin_2004_PhD_Thesis.pdf - Other
Download (4MB)

More information

Published date: 2004
Organisations: University of Southampton

Identifiers

Local EPrints ID: 17637
URI: http://eprints.soton.ac.uk/id/eprint/17637
PURE UUID: 00030e7b-304a-4bcf-a8e5-7500d726cfc4

Catalogue record

Date deposited: 21 Oct 2005
Last modified: 15 Mar 2024 06:01

Export record

Contributors

Author: D.O. Lambkin

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×