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ABSTRACT 

MtDNA sequences and microsatellite loci were used as independent molecular markers to 
reveal the genetic population structure in three deep-sea demersal fish species from the North 
Atlantic. In the Azores archipelago, the demersal fishery is the second most important after 
tuna and Helicolenus dactylopterus, Beryx splendens and Beryx decadactylus are among the 
most captured species.  
Partial sequences for the mitochondrial control region and cytochrome b gene were obtained 
for the three species using universal primers.  The diversity encountered for these markers is 
consistent with diversity found on other marine fishes, except for B.decadactylus in which 
the d-loop and cyt b diversity was lower than expected.  
 
Haplotype data indicated a strong genetic differentiation between Helicolenus dactylopterus 

NW, Cape Verde and NE Atlantic populations suggesting long distance colonisation 
processes by jump dispersal events along major oceanic currents. Eight microsatellite loci 
were developed for H.dactylopterus in order to resolve population structure at a finer 
intraregional scale (within Portuguese waters). Significant deviations from allelic 
frequencies expected under Hardy-Weinberg equilibrium were detected at several loci. 
Analysis of FIS revealed significant differences from zero as a result of heterozygote 
deficiency. Estimates of FST, RST and AMOVA were also significant, suggesting that the 
population structure of this species within Portuguese waters was not homogeneous. 
Pairwise comparisons of FST, RST and genetic distances (DSW and (σ)2) between populations 
revealed a significant separation of the Azores and Peniche (continental Portugal) 
populations as well as a moderate differentiation among subpopulations of the Azores 
archipelago.  

 
Beryx splendens and Beryx decadactylus are two congeneric species with many similarities 
in known biology. Analysis of haplotype data revealed striking differences in structure and 
history of the populations of these two species.  
MtDNA sequences confirmed that Beryx splendens is constituted by one panmitic population 
within the Northeast Atlantic as has been previously hypothesised by other authors.  
Surprisingly, indices of genetic diversity were lower in the closely-related B.decadactylus 

and there was a strong genetic differentiation between Cape Verde and the rest of the NE 
Atlantic populations when analysed for the same molecular markers. Differences found are 
discussed based on the limited knowledge of these species especially with respect to life-
history.  
 
Population structure results are discussed in relation to historical and on-going hydro-
geographic events. Evidence for the strong influence of several events previous to the last 
glacial maximum (LGM) on the population demographic history and evolution of deep-sea 
demersal fish species in the North Atlantic was found.  
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“Animals living in…the sea waters… are protected from the destruction of theirs 

species by man. Their multiplication is so rapid and their means of evading pursuit or 
traps are so great, that there is no likelihood of his being able to destroy the entire 

species of any of these animals.”   
 

Lamarck (19th century) 
 

 

 

 
“…Probably all the great sea-fisheries, are inexhaustible; that is to say nothing we do 

seriously affects the number of fish. And any attempt to regulate these fisheries 
seems consequently… to be useless.” 

 
Thomas Huxley  

 
 
 

“70% of world’s fishery resources are in deep trouble and world’s fisheries cannot be 
sustained for much more without severe appliance of new management laws. In spite 

of some management policies have been put in practice since 1993, 35% of stocks 
show declining yields, 25% are flat and 40% are still developing and there’s no space 

for growth in landings.” 
 

FAO (1997) 
 

 

 

 
“ It’s difficult to reach the deep-sea and follow the organisms that live there. So, we 

went to the deep of the cells to find the place where life since the beginning is 
recorded.” 

 
Anonymous



 vi 

ACKNOWLEDGEMENTS 

 

I would like to thank to all the people and institutions that somehow were involved in 
this work: 
 
 
To my supervisor Dr.Alex Rogers for introducing me to the amazing field of genetics 
and for guiding me troughout 5 years of research. 
 
To Dr. Gui Menezes for teaching me and let me know one of the most amazing 
places in the world, the Azores archipelago.  
 
To Prof.Paul Tyler, for the patience and for taking me under his wing. 
 
To all the people that were part of the “Molecular Ecology Group” at SOC, it was 
wonderfull to work with you all and learn how to investigate as a team. Special 
thanks to Cath and Rodrigo, my guides in profession and in life too. 
 
To people in Norman’s lab for the advices and exchange of knowledge. Very 
gratefull and fulfilling. 
 
To Mark Dixon first of all for the Sequencing and GeneScanning facilities and also 
for all the time, pacience and advices troughout the process. 
 
To the r/v Arquipélago’s tripulation, research team and other inhabitants of the 
Azores archipelago for the best times of this project, and for teaching me everything 
I know about the sea, what it means to work in marine science and the porpose of all 
this work. Thank you for the humanity lessons as well. 
 
Thank you to all my friends and family (including adoptive ones as well) for taking 
care of me, for giving me the psicological support that making a thesis implies, and 
for the help in so many different ways. Gratefully you are too many to put on a list! 
Maria and Andreia thank you for showing me some other paths biologists can chose 
or take, so I could continue on this one. André thank you for the art work. 
 
Finally, I would like to thank FCT (Fundação para a Ciência e Tecnologia) for 
supporting this work and make it possible by awarding me with the PhD Fellowship 
(SFRH/BD/1122/2000). 
This work as also been partially funded by the European Comission DGXIV/C/1 as 
study contract 97/081 “Seasonal changes in biological and ecological traits of 
demersal and deep-water fish species in the Azores”.  
 
 

 

 



 vii 

CONTENTS 

Abstract          iv 
Acknowledgements         vi 
Contents          vii 
List of Tables          x 
List of Figures          xi 
 

PART I – INTRODUCTION        1 

 
1.INTRODUCTION AND GENERAL BACKGROUND     2 

1.1 The Deep-sea        2 
1.2 Deep-sea resources and exploitation     4 

1.2.1 Deep-sea biodiversity      4 
1.2.2 Deep-sea fisheries       5 

1.3 Fisheries Management       6 
1.4 Population Genetics and Exploited Species Conservation   8 

1.4.1 Principles of population genetics     9 
1.4.2 Molecular markers      11 

MtDNA sequencing      13 
Microsatellites       14 

1.4.3 Bases for molecular data analysis    15 
 
2. CURRENT STUDY DETAILS        20 

2.1 Characterization of the study area (North Atlantic)    20 
2.1.1 The Azores archipelago      21 

2.2 Demersal fish species and fisheries on the studied area   23 
2.3 Characterization of the studied species     26 

2.3.1 Helicolenus dactylopterus (DeLaRoche 1809) – Bluemouth 26 
2.3.2 Beryx splendens (Lowe 1834) – Alfonsino   30 
2.3.3 Beryx decadactylus (Cuvier 1829) – Imperador   33 

 2.3 Actual state of work done on the subject     35 
 2.4 Aims and Objectives       36 
 

PART II –MATERIALS AND METHODS      38 

 
3.GENERAL METHODOLOGY       39 
 3.1 Sampling         39 
 3.2 Laboratory techniques       42 
  3.2.1 DNA Extraction       42 
  3.2.2 Electrophoresis and DNA quantification    43 
  3.2.3 PCR        43 
  3.2.4 Sequencing       45 
  3.2.5 Microsatellites       47 

3.3 Statistical analysis        47 
 
4. ISOLATION OF POLYMORPHIC MICROSATELLITE MARKERS FOR THE 
DEMERSAL FISH Helicolenus dactylopterus (DELA ROCHE 1809)   53 
 4.1 Abstract         53 
 4.2 Introduction         53 
 4.3 Materials and methods       54 
  4.3.1 Construction of enriched library     54 
  4.3.2 Cloning and sequencing      55 



 viii 

  4.3.3 Primer design and PCR optimisation    57 
  4.3.4 Analysis        58 
 4.4 Results         58 
 4.5 Discussion         60 
  4.5.1 Hardy Weinberg equilibrium deviations    61 
 
PART III – RESULTS         62 

 
SECTION 1 – BLUEMOUTH        63 
5. GENETIC POPULATION STRUCTURE OF Helicolenus dactylopterus (SEBASTIDAE) 
IN THE NORTH ATLANTIC OCEAN USING MtDNA SEQUENCES   64 
 5.1 Abstract         64 
 5.2 Introduction         65 
 5.3 Materials and methods       67 
  5.3.1 Sampling and DNA extractions     67 
  5.3.2 PCR amplification and sequencing     68 
  5.3.3 Sequence alignment      68 
  5.3.4 Population genetic analysis      69 
  5.3.5 Phylogeographic analysis      69 
  5.3.6 Neutrality and Demographic History    70 

 5.4 Results         71 
5.4.1 Control region       71 
 Control region sequence variation     71 
 Population variability      72 
 Phylogeographic relationships of populations   72 

   Phylogenetic analysis      74 
 Demographic History and Neutrality    74 

  5.4.2 Cyt b         77 
   Cyt b sequence variation     77 

Population Variability      77 
 Phylogeographic relationships of populations   78 

   Phylogenetic analysis      79 
   Demographic History and Neutrality    81 
 5.5 Discussion         83 
  5.5.1 Genetic variation       83 
  5.5.2 Population structure      83 
  5.5.3 Demographic evolution of H. dactylopterus populations  84 
   
6. HIGH RESOLUTION ANALYSIS OF Helicolenus dactylopterus (SEBASTIDAE) 
POPULATION STRUCTURE IN THE NORTHEASTERN ATLANTIC USING 
MICROSATELLITE         87 
 6.1 Abstract         87 
 6.2 Introduction         88 
 6.3 Materials and methods       89 
  6.3.1 Sampling        89 
  6.3.2 Microsatellite amplification and Genotyping   90 
  6.3.3 Data Analysis       90 

6.4 Results         92 
 6.4.1 Bluemouth microsatellite loci      92 
 6.4.2 Genetic variation       93 
 6.4.3 Heterozygosity and Hardy-Weinberg Equilibrium   98 
 6.4.4 Population substructuring and genetic distances   99 
 6.4.5 Isolation by distance                 103  



 ix

 6.4.6 Effective population size                 103 
 6.5 Discussion                    104 
  6.5.1 Microsatellite Genetic Variability                104 
  6.5.2 Heterozygote deficiency                 105 
  6.5.3 Population differentiation                 106 
  6.5.4 Contrast between microsatellite and mtDNA evidence             109 
  6.5.5 Relevance for management and conservation              110 
 
SECTION 2 – ALFONSINOS                   111 
7. DIFFERENTIAL GENETIC POPULATION STRUCTURE OF TWO CLOSELY 
RELATED SPECIES Beryx splendens and Beryx decadactylus (BERYCIDAE) IN THE 
NORTHEASTERN ATLANTIC USING MtDNA SEQUENCES               112 
 7.1 Abstract                    112 
 7.2 Introduction                    113 

7.3 Material and methods                  115 
7.3.1 Sampling and DNA extractions                115 
7.3.2 PCR amplification and Sequencing                115 
7.3.3 Statistical analysis                  116 

7.4 Results                    118 
7.4.1 Genetic variability of Beryx splendens               118 

Control region variation               118 
Cytochrome b variation                119 

    Geographic varation                120 
7.4.2 Genetic diversity of Beryx decadactylus               121 

Control region variation               121 
Cytochrome b variation                122 
Geographic varation                122 

7.4.3 Demographic history patterns                125 
Beryx splendens                 125 
Beryx decadactylus                126 

7.5 Discussion                    128 
7.5.1 B.splendens vs B.decadactylus genetic variation and distribution     128 
7.5.2 Demographic history                 130 
7.5.3 Conservation and fisheries management               131 

 
PART IV- FINAL REMARKS                  132 

 
8.GENERAL CONCLUSIONS                   133 

8.1 Limitations to work                   133 
  8.1.1 Sampling                   133 
  8.1.2 Molecular markers                 134 
  8.1.3 Statistical analysis                  134 
8.2 Implications for knowledge on population genetics of deep-sea demersal fish 

species.                    135 
8.3 Implications for knowledge on the evolution and demographic history of North 

Atlantic deep-sea demersal fish species.                140 
8.4 Implications for fisheries management and conservation              141 
8.5 Future work                    143 
Conclusions                    144 

 
REFERENCES                     146 
APPENDICES                     167 



 x

LIST OF TABLES 

 

Table 1.1. Applications of available molecular markers. 
Table 3.1. List of samples utilized in the present study, including sampling sites and 

sampling cruises details.  
Table 4.1. H.dactylopterus microsatellite loci description with GenBank accession numbers 
Table 4.2. H.dactylopterus. PCR conditions for amplification of 8 microsatellite loci with 

multiplex reactions. 
Table 4.3. H. dactylopterus. Microsatellite loci diversity and fits to Hardy-Weinberg 

equilibrium. 
Table 5.1. H.dactylopterus. Control region. Absolute frequencies of shared haplotypes 

between populations. 
Table 5.2. H.dactylopterus. Control region. Intrapopulation nucleotide and haplotype 

diversities. 
Table 5.3. H.dactylopterus. Control region. Analysis Molecular Variance (AMOVA) results. 
Table 5.4 H.dactylopterus. Control region. Pairwise FST values between populations and 

significance 
Table 5.5 H.dactylopterus.Control region. Parameters for the sudden expansion model and 

goodness of fit test to the model. 
Table 5.6 H.dactylopterus. Cyt b. Intrapopulation nucleotide and haplotype diversities. 
Table 5.7 H.dactylopterus. Cyt b. Analysis Molecular Variance (AMOVA) results. 
Table 5.8 H.dactylopterus. Cyt b. Pairwise FST values between populations and significance 

of p-values. 
Table 5.9 H.dactylopterus. Cyt b. Parameters for the sudden expansion model and goodness 

of fit test. 
Table 6.1 H.dactylopterus. List of utilized samples for microsatellite analysis. 
Table 6.2 H.dactylopterus. Microsatellites. Genetic variability. 
Table 6.3 H.dactylopterus. Microsatellites. Allelic frequencies across populations. 
Table 6.4 H.dactylopterus. Microsatellites. Probability of null alleles existence per locus per 

population. 
Table 6.5 H.dactylopterus. Microsatellites. Summary of genetic variation within populations 
Table 6.6 H.dactylopterus. Microsatellites. Analysis of Molecular Variation (AMOVA) 

results. 
Table 6.7 H.dactylopterus. Microsatellites. Pairwise FST and RST values between populations. 
Table 6.8 H.dactylopterus. Microsatellites. Genetic distances between populations. 
Table 7.1 B. splendens and B. decadactylus .Descriptive statistics for sequence variation in 

populations for both d-loop and cyt b. 
Table 7.2 B.splendens. Control region and cyt b. Pairwise FST values between populations  
Table 7.3  B.splendens. Control region and cyt b. Molecular Variance Analysis (AMOVA) 

results. 
Table 7.4 B.decadactylus. Control region. Analysis of Molecular Variation (AMOVA) 

results. 
Table 7.5 B.decadactylus. Control region. Pairwise FST values between 3 populations 
Table 7.6 B.decadactylus. Control region. Pairwise FST values between 7 populations 



 xi

LIST OF FIGURES 

 
Figure 1.1 Schematic representation of a cross section of the ocean showing the major depth 

zones and physiographic features.  
Figure 1.2 Schematic diagram of DNA nature in cells. 
Figure 1.3 Schematic representation of the mitochondrial DNA molecule. 
Figure 1.4 Schematic representation of a microsatellite tandem repeat. 
Figure 2.1 Simplified schematic representation of surface circulation in the North Atlantic.  
Figure 2.2 The Azores archipelago. 
Figure 2.3 North Atlantic Fisheries Management Organizations map. 
Figure 2.4 Helicolenus dactylopterus (DelaRoche 1809) 
Figure 2.5 Annual landing rates of Helicolenus dactylopterus in Europe (FAO) 
Figure 2.6 Annual landing rates of Helicolenus dactylopterus in Azores (Lotaçor) 
Figure 2.7 Beryx splendens (Lowe 1834) 
Figure 2.8 Landing rates of Beryx spp.in Europe (FAO) 
Figure 2.9 Landing rates of Beryx splendens in Azores (Lotaçor) 
Figure 2.10 Beryx decadactylus (Cuvier 1829) 
Figure 2.11 Landings of Beryx decadactylus in Azores (Lotaçor) 
Figure 3.1 The r/v “Arquipélago” 
Figure 3.2 A schematic representation of the fishing gear used in sampling surveys. 
Figure 3.3 North Atlantic map with sampling sites. 
Figure 3.4 DNA quantification using a 1 kb ladder in an electrophoresis gel.  
Figure 3.5 Schematic representation of a PCR reaction. 
Figure 3.6 Schematic representation of a sequencing procedure. 
Figure 3.7 Classification of historical demographic processes in populations. 
Figure 4.1 Schematic representation of the enriched library and cloning processes. 
Figure 5.1 Helicolenus dactylopterus. Map with sampling sites. 
Figure 5.2 H. dactylopterus. Control region. Majority rule concensus parsimony tree with 

100 bootstraps. 
Figure 5.3 H.dactylopterus. Control region. Pairwise mismatch distributions, simulated 

model of expansion and Tajima-D testes. 
Figure 5.4 H. dactylopterus. Cyt b. Minimum spanning network analysis of haplotypes for 

all populations. 
Figure 5.5 H. dactylopterus. Cyt b. Majority rule concensus neighbour-joining tree with 

10,000 bootstraps. 
Figure 5.6 H.dactylopterus. Cyt b. Pairwise mismatch distributions, simulated model of 

expansion and Tajima-D testes. 
Figure 6.1 H.dactylopterus, map with sampling sites for microsatellite analysis. 
Figure 6.2 H.dactylopterus. Two-dimensional (2D) scaling plot of pairwise stepwise 

weighted genetic distances 
Figure 6.3 H.dactylopterus. Tri-dimensional (3D) scaling plot of pairwise stepwise weighted 

genetic distances 
Figure 6.4 H.dactylopterus. Relationship and regression line between genetic differentiation 

[FST/(1-FST)] and the Log geographical distance. 
Figure 7.1 Beryx spp. Sampling map. 
Figure 7.2 B.splendens. Control region. Most common haplotype. 
Figure 7.3 B.splendens. Cyt b. Most common haplotype. 
Figure 7.4 B.splendens Cyt b. Minimum spanning network. 
Figure 7.5 B.decadactylus. Control region. Most common haplotype. 
Figure 7.6 B.decadactylus. Control region. Minimum spanning network. 
Figure 7.7 B.splendens. Control region and Cyt b. Mismatch distributions. 
Figure 7.8 B.decadactylus. Mismatch distributions and Tajima’s D-tests. 



1 

 
 
 
 
 
 
 
 
 

 

 

 

 

 

 
 
 

PART I  

INTRODUCTION 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 



Introduction 

 2

CHAPTER 1  

INTRODUCTION AND GENERAL BACKGROUND 

 
 

1.1 The Deep-sea 

 
The oceans occupy approximately 70% of the earth’s surface and the deep-sea represents 

90% of those water masses being the largest habitat of our planet (Angel, 1997). 

The deep sea is normally characterized by depths of  >1000m where the biotic and abiotic 

factors seem to vary very little. The light is scarce or inexistent, the pressure is very high, 

temperature low (-1ºC to +4ºC), the salinity constant, oxygen concentration near saturation 

and the food input very small (Gage & Tyler, 1991). However, most scientists consider the 

beginning of this habitat to be around 200m on the transition from the continental shelves to 

the continental slope considering it the cross between shallow-water fauna and deep-sea 

fauna (Tyler, 2003). This is also the definition that will be addressed and used throughout 

this study. 

It is considered here that the deep-sea starts on the “shelf break” at 200m deep, and spreads 

trough the continental slope (200-2000m), the oceanic rise (2000-4000m) and the abyssal 

plains (4000-6000m) reaching depths of  >11,000 m in trenches of the Pacific Ocean 

(Fig.1.1; Hopper, 1995).  
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Fig.1.1 – Schematic representation of a cross section of the ocean showing the major depth zones and 
physiographic features (modified from Gage & Tyler, 2001). 
 

 

In the nineteenth century it was common knowledge that no form of life could exist in the 

darkness of the depths and that the deep-sea was a desert. Only with the contribution of 

several workers as Thomson (1873), Cook (1882), Sanders (1967) and others more recently, 

it was possible to overturn this misleading theory. It was only in the 60’s with new 

technology introductions, that an impression of the scale of biodiversity of the deep-sea was 

obtained and in the 70’s and 80’s that the dynamics of this environment started to be 

properly understood (Gage & Tyler, 1991; Sumich, 1999). 
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The remoteness and inhospitability of the deep-sea environment together with the vast 

vertical dimension have always been the main reasons for the delay on its exploitation. Men 

and instruments have to be protected from the high pressure and other advert factors in order 

to explore the deepness of the oceans. Nowadays, some of these problems have been solved 

by new technologies and the introduction of submersibles, ROV’s and other instruments that 

permit scientists to physically reach the deepest parts of the sea (Gage & Tyler, 1991). 

 

Today, the idea that the deep-sea is a desert with a monotonous landscape has been 

completely overcome. It became apparent that species diversity is much greater than that 

revealed by contemporary sampling methods (e.g. Sanders et al., 1965; Hessler & Sanders, 

1967; Rice et al., 1982).  It is also known that the homogeneous and stable soft sediment 

floor is interrupted by dynamic zones with heterogenous substrates, variable temperature and 

in some cases primary production independent from sunlight – the hydrothermal vents, cold 

seeps and mid-Atlantic ridges (Tyler, 2003).  

Other complex, dynamic and rich parts of the deep-sea are the continental slopes and 

associated seamounts, which include around 9% of the ocean bottom. It is in these areas that 

the majority of deep-sea fishes are found and consequently where the largest deep-water 

fishing grounds have developed (Gordon et al., 1995).  

 

At the end of the smooth Continental shelf, at around 200m depths, the gradient of the 

seabed steepens to become the Continental slope.  

The steep Continental slope is the boundary between the continental masses and the ocean 

basins and plunges in a relatively short geographic distance to 2,000m (Sumich, 1999). Here, 

demersal fishes are abundant and diversity high. Physical parameters are quite stable as in 

the rest of the deep-sea apart from some exceptions including: extreme oxygen minimum 

zones found at 400-800m, higher temperatures in areas of the Mediterranean and Red seas, 

hydrothermal vents and other chemosynthetic ecosystems including hydrocarbon and brine 

seeps. Although the changes in physical parameters between the slope and the rise are not 

dramatic, fish species diversity abruptly decline in the transition from the bathyal to the 

abyssal zones (Merrett & Haedrich, 1997). Small-scale disturbances in the Continental slope 

may contribute to increased species richness and diversity at a local or regional scale. 

 

Seamounts are undersea volcanic mountains that rise abruptly from the deep-sea floor to near 

the sea surface, with circular, elliptical or less regular forms, functioning as islands of 

continental slope-like habitats surrounded by abyssal depths (Keating et al., 1987). These 
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topographic features together with oceanic islands have strong effects on ocean circulation 

producing deflections of currents, formation of trapped waves or generating phenomena such 

as Taylor columns (reviewed in Rogers, 1994). Specific hydrographical conditions permit 

retention of plankton and other prey organisms and may increase primary production 

(Creasey & Rogers, 1999; Coutis & Middleton, 2002). This may lead to larvae retention and 

the concentration of valuable fish species around seamounts although the exact explanations 

for this are unclear and may vary between localities (for e.g. Rogers, 1994; Mullineaux & 

Mills, 1997; Swearer et al., 1999). 

 

1.2 Deep-sea Resources 

 

1.2.1 Deep-sea biodiversity 

 
Recent exploration has greatly modified the assumption of environmental stability and poor 

biodiversity in the deep-sea. The benthic landscape is now known to be a “topographically 

complex patchwork” of distinctive habitats and the diversity and composition of deep-sea 

species is known to vary at local, regional and global scales (Tyler, 2003). 

The deep-sea benthic communities are similar to that found in shallower habitats, and are 

composed by: the meiofauna dominated by nematodes and foraminiferans; the macrofauna 

comprising numerous metazoan taxa, polychaetes, crustaceans and bivalve molluscs; the 

megafauna mainly dominated by sessile poriferans, anthozoans and crinoids as well as errant 

echinoderms, decapod crustaceans and fish (e.g. Hessler & Sanders, 1967; Gage, 1986; 

Carey et al., 1990; Gage & Tyler, 1991; Grassle & Maciolek, 1992; Lambshead, 1993; 

Creasey, 1998).  

Around 10-15% of the 25,000 world marine fish species live in the deep-sea (Haedrich, 

1997). Most deep-sea fish species are demersal - benthopelagic - (22 orders against 13 

pelagic ones) (Merret & Haedrich, 1997), i.e., they live in some way associated with the 

seabed on continental slopes, seamounts or slopes of oceanic islands. 

Species diversity and abundance has been recognized to change along bathymetric and 

latitudinal related gradients. Intraspecific phenotypic (e.g. Rex & Etter, 1998) and genetic 

changes have also been identified for deep-sea species (reviewed in Creasey & Rogers, 1999 

and Rogers, 2003).  

 

Abundance and biomass decrease exponentially with depth because of the decrease in 

nutrient input from the surface. However, dominance by single species tends to be lower in 



Introduction 

 5

the continental slope fish community and species diversity is high. Species diversity 

generally appears to show a unimodal parabolic distribution with depth, reaching a highest at 

around 2,000 - 3,000 m. This pattern has been explained by production, predation and 

competition based hypotheses (Rex, 1981).   

Horizontal species distribution and large-scale patterns of distribution in the deep-sea are 

less understood but believed to be shaped by ecological and historical factors. Biotic and 

abiotic environmental causes are undoubtedly responsible for geographic variation in deep-

sea species diversity; however, historical and hypothetical evolutionary scenarios have been 

recently pointed out as equally inductive causes (Tyler, 2003).  

 

Deep-sea demersal fish species normally exhibit “k-strategy” life histories that include 

extreme longevity, late maturity, slow growth and low fecundity as well as other 

physiological, biological and behavioural adaptations to the deep-sea (Randall & Farrell, 

1997; Koslow et al., 2000). These can be adaptations to the patchy environments 

(seamounts, island and continental slopes) to which bentho and benthopelagic species, living 

at depth ranges between 200-1000m, are associated.  

The deep-sea biogeography, community structure and population dynamics processes are not 

well understood yet and need to be studied further to have a full description of the deep-sea 

biodiversity and its distribution. 

 

1.2.1 Deep-sea fisheries 

 

Although some deep-sea fish species such as the black scabbard fish (Aphanopus carbo) in 

Madeira (Martins & Ferreira, 1995) or Ruvettus sp. in the South Pacific (Merret & Haedrich, 

1997; Koslow et al., 2000) have been traditionally exploited for centuries, it is only very 

recently that deep-sea resources have become interesting targets for large-scale commercial 

exploitation. 

It was during the 60s and 70s when the first continental shelf fisheries started to show signs 

of over-fishing (when the maximum sustainable yield is diminished on a continual basis), 

that governments were forced to seek a solution for the decrease in world landings (Iudicello 

et al., 1999; Haedrich et al., 2001). They faced a choice of either promoting the fishing of 

the until then “under-utilised” species or motivate and invest in the exploitation of new 

habitats. The deep-sea was the largest unexploited area remaining and therefore exploratory 

fishing of this new habitat began. 
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World War II provided new technologies that were subsequently utilised by fishery fleets 

and allowed the exploitation of less accessible populations and grounds further away from 

the coast with very irregular bathymetry (Gordon et al., 1995). These technologies included 

satellite positioning systems, track plotters, radar, sonar and LORAN (Long-Range 

Navigation). These enabled boats to go further, orientate better and track fish schools 

beneath the sea (Dunlap, 1972). The Russians were the first to find deep-water habitats with 

large aggregations of large deep-sea fishes. The firm white flesh of these species, suitable for 

filleting and processing, and their abundance made them suitable for exploitation 

(Troyanovsky & Lisovsky, 1995). Several other countries followed suit and intensive fishing 

on deep-sea fish assemblages began, causing their economic value to rise enormously. Novel 

fisheries comprised among others, those on roundnose grenadier (North Atlantic), pelagic 

armourhead (North Pacific) or bluenose (South Pacific) (FAO, 1997; see Creasey & Rogers, 

1999). These fisheries developed very rapidly during the 70s, reached their peaks in the 80s 

and nowadays they continue to be hit hard with fishing effort increasing exponentially. 

However, this is not solving the world fisheries crises, as like for many shallow water stocks, 

most deep-sea fisheries are already viewed as depleted or outside of safe biological limits 

(Koslow et al., 2000). FAO declared that 70% of world’s fishery resources are in decline and 

in danger of depletion. The world’s fisheries cannot be sustained for much without the 

application of new fisheries management regulations based on full knowledge of biological 

life cycles of species and intraspecific dynamics (Haedrich et al., 2001).  

  

Deepwater fisheries exploit completely different groups of fishes than the continental shelf 

fisheries (Koslow et al., 2000). Biological and life-history features of deep-sea fishes are 

likely to be very limiting for long-term sustainable fisheries. This may especially be the case 

on seamounts, where these features are more predominant amongst fish species. Fishes in 

these areas tend to be robust and deep-bodied to be able to swim in strong currents, making 

them good targets for exploitation. However their slow growth makes them sensitive to over-

fishing because of their long life cycle and low levels of recruitment (Rogers, 1994; Koslow 

et al., 2000).  

 

1.3 Fisheries Management 

 

Fisheries management consists of trying to achieve an optimum yield for fisheries 

populations by understanding the biological principles and characteristics of the species 
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(Allendorf et al., 1985). Its goal is to ensure that fisheries do not exceed the sustainability of 

a population, while maximizing its harvest (Grant et al., 1999).  

Since the beginning of deep-sea exploration, studies have been more concerned with the 

biological and ecological features of this newly accessible habitat in relation to ecosystem 

function. Relatively little research has been carried out on the response of fished populations 

to exploitation and now, research work cannot follow the rapid evolution of deep-sea fishing 

(Haedrich et al., 2001). However, one thing is certain, deep-water fisheries cannot be 

expected to support the levels of exploitation applied to shelf populations (Gordon et al., 

1995).  

Fisheries management is mainly based on the assumption that a unit stock has definable 

patterns of recruitment and mortality and hence a sustainable yield (Carvalho & Hauser, 

1995). It is known that many marine species have high dispersal potential, as there are few 

physical barriers in open sea compared to terrestrial habitats. It is therefore hard to believe in 

species subdivision, population structure or even stock units in oceanic species. 

Nevertheless, there are several factors that can contribute to isolation of populations, such as 

the capacity for larval dispersal, oceanographic circulation, historic barriers or even 

reproductive barriers (Palumbi, 1996).  

Without knowledge of the exact number of interbreeding populations of an exploited species, 

management policies may not achieve long-term conservation goals. All points of view have 

to be taken in to consideration and one should always have in mind that stock, population or 

species are hierarchical classifications of nature implemented by man (Avise & Walker, 

2000).  

 

The more common gears used in demersal deep-sea fisheries nowadays are trawls and long-

lines which are not very specific or selective gears. Deep-water fisheries cannot be expected 

to support the levels of exploitation applied to shelf populations because deep-sea fisheries 

are characterized by high species diversity, low dominance by single-species and low 

production rates (Gordon et al., 1995; Haedrich et al., 2001). Management and conservation 

strategies have been developed and applied on these key resources more and more in the 

recent years. 

 

In most parts of the world’s oceans, fisheries management has run into serious problems 

especially with the implementation of new management systems based on common fisheries 

policies, as it is the case of the European Community (Symes, 1999). These policies are 

based on Total Allowable Catch (TAC’s), quotas and delimitation of exclusive fishing zones 
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that try to manage the fishing resources at an international scale. To be able to achieve a 

sustainable development of fisheries resources at such a global scale it is necessary that an 

accurate knowledge on the species ecology and biology exists. It is important to understand 

the evolution and the population dynamics of species in space and time, to predict the impact 

of fishing exploitation and to forecast the efficiency of management measures, especially in 

terms of the biological mean of the imposed artificial delimitations. 

As a matter of fact, the accurate delineation of stocks and their boundaries has become an 

essential part of fishery management (Grant et al. 1999). 

 

Until now the most successful management policies are regional ones such as that of Nova 

Scotia or those within EEZs of Iceland and Norway. The bigger problem is with international 

waters, which correspond to most of the deep-sea environment. Here, all countries are 

allowed to fish and few specific fisheries regulations exist. The exceptions to this are where 

Regional Fisheries Management Organizations (RFMO’s) have implemented regulations for 

specific fisheries such as the whaling hunt and drift nets ban in most worldwide waters. 

Very recently the first specific deep-sea regulation at an international scale has been 

implemented by NEAFC by closing down 5 seamount areas to deep-sea bottom trawling in 

the North Atlantic. 

 

1.4 Population genetics and exploited species conservation  

 

Genetics have contributed to the general globalisation of the term “stock” by creating 

concrete boundaries and offering a more detailed analysis of the history and evolution of 

populations. Nowadays, the stock concept implies that genetic diversity and population 

structure must be considered and preserved in order to optimise the resource use 

(Bernatchez, 1994).  

It is difficult to identify populations and migration between them in marine species using 

traditional ecological methods (Moritz & Lavery, 1996). Censuring and observation methods 

are quite difficult to perform on marine populations, especially deep-sea ones, and that is one 

of the main reasons why genetic information has become such an important tool for fisheries 

management (Slatkin, 1994). Other biologically important characteristics of populations, 

such as size and reproductive efficiency can also be assessed by determining the historical 

establishment of gene pools (Althukov, 1981). Molecular genetics brought an all-new range 

of questions that were not taken in consideration for lack of information on genotypes 

(Lincoln, 1995).  
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By analysing genetic variation one can discriminate among fishes at the species, population 

and even individual levels; identify hybrids; establish species and population phylogeny and 

phylogeographic history; discriminate different stocks, analyse their migration patterns and 

estimate their effective size; assess individual stock contribution to mixed stock fisheries and 

evaluate the response of stocks to fishing exploitation (Wirgin & Waldman, 1994; Ferguson 

et al., 1995). Maintenance of stock viability is greatly promoted by the conservation of their 

gene pools, preserving genetic variability and hence, the possibility of future adaptation 

(Milligan et al., 1994). 

 

Fisheries biologists were the first to introduce the population concept with the publications 

of F. Heincke and J. Hjort in the beginning of the century. They observed that fish species 

presented sub-specific forms “like local races characteristic from different regions” or 

“varieties like geographic races or polymorphs” (Wright, 1978; Sinclair, 1988). This 

innovative perspective led to a new and probably one of the most employed concepts of 

species, the “biological species concept” by Mayr (1942) who defined a species as “groups 

of actually or potentially interbreeding natural populations, which are reproductively isolated 

from other such groups” (Rieseberg & Ungerer, 2001). 

Therefore the “population” is one of the widest concepts used as a subspecific category and 

is commonly defined as a group of conspecific individuals forming a breeding unit sharing a 

particular habitat at a certain time, although this definition is still controversial.  

The structure of a population consists of two parts: the demographic structure which includes 

processes associated with life history such as, mating system, birth, death and dispersal; and 

the genetic structure that is determined by the actual population structure, but also by 

mutation, selection and evolution (Slatkin, 1994).  

Population genetics is concerned with the analysis of demographic and evolutionary factors 

affecting the genetic composition of a population (Hartl, 2000; Ewens, 2001). Assuming the 

focus of this study is population genetics there are some mechanisms and assumptions that 

have to be taken into consideration before proceeding into a more detailed discussion of fish 

genetics. 

 

1.4.1 Principles of Population Genetics 

 

It is easy to think of a marine species as a large panmictic population, i.e., a large random 

mating population, where no evolution occurs, and the gene pool of the population maintains 

its composition. But these theoretical populations do not exist in nature, they do undergo 
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evolution that can be driven by several main forces: mutation, genetic drift, gene flow and/or 

natural selection (Hoelzel & Dover, 1991). 

Mutations are changes that occur within the DNA and that can produce new allelic forms and 

contribute to population differentiation. They can be a change at the single nucleotide level 

(transitions, transversions) or they can involve deletion, or the addition of one or more 

nucleotides or processes such as transposition, unequal crossing-over, slippage, gene 

conversion and duplication. Mutations can be silent or non-synonymous if they specify for 

the same amino acid or if they change it, respectively (Hillis et al., 1996).  

 

Allelic frequencies of a population can also change by chance, and this is known as genetic 

drift. This can cause reproductively isolated populations to randomly diverge in terms of 

genotype frequencies. The effect of this phenomenon on populations depends strongly on 

their effective population size (number of adults contributing to subsequent generations), the 

most important component of genetic drift, and its variation in time. In small populations 

genetic drift can cause strong population divergence and drastic changes in genotype 

frequencies from generation to generation. If the effective population size of a population is 

drastically reduced then genetic drift can increase and diversity of the population decrease 

(bottleneck effect; Russel, 1998). A similar effect can be detected when a population is 

established by a small number of breeding individuals (the founder effect; Hoelzel & Dover, 

1991). In populations with large effective population size the effects of genetic drift are weak 

and insignificant compared to other evolutionary forces.   

 

Genetically effective migration or gene flow occurs when individuals migrate from a 

population to another and introduce new alleles changing allelic frequencies within the 

recipient population. Actually, we can consider migration as a stabilizer of genetic 

divergence as it increases effective population sizes and reduces genetic drift. Theoretically, 

1 to 10 individual migrants per generation maybe sufficient to prevent divergence (Slatkin, 

1985).  

 

The main evolutionary force, the natural selection, as introduced by Darwin is the capacity 

for genotypes to be selected by environmental factors and passed on to following 

generations. This is probably one of the main forces of evolution and is responsible for 

maintaining much of the phenotypic variation in nature. Natural selection can act in different 

directions and it can eliminate genetic variation or maintain it.  
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In order to understand all the structuring of populations in nature we have to take in to 

consideration all these aspects and analyse them by looking at variation of distinct alleles at 

defined loci known as molecular or genetic markers (Allendorf et al., 1985; Gavrilets, 2001). 

 

1.4.1 Molecular Markers 

 

 

Mitochondrial DNA

Nuclear DNA

 
 

Fig.1.2 – Schematic diagram of DNA nature in cells. 

 

There are many types of genetic markers available to describe population structure (Park & 

Moran, 1995), and all approaches are based on the premise that migration and mating 

patterns among populations determine the extent of a common gene pool and therefore their 

integrity (Carvalho & Hauser, 1998). All techniques provide interesting approaches to 

problems that need to be addressed and no molecular marker is inherently superior to another 

(Table 1.1). It is important and worthwhile spending some time analysing which technique or 

techniques are best suited to approach a certain problem (Hillis et al., 1996). 
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Types of information Applications 

Population 
structure 

 

 

 

Method 
Genotype 
frequency 

Allele 
frequency 

Allele 
geneology 

P
arentage 

R
elatedness 

H
ybridisation 

current 

historic 

P
opulation size 
(historical) 

Alloenzymes √ √ X * ** *** ** * * 
RFLP’s √ √ √ * * *** *** ** ** 
RAPD’s X √ X * * ** ** ? ? 
Minisatellites X X X *** ** X * * ** 
Microsatellites √ √ X *** *** * *** * ** 
MtDNA 

Sequences 
X √ √ * X * ** *** ** 

 
Table 1.1. Applications of available molecular markers; √ -Yes; X – No; * to *** - increasing 
effectiveness. Modified from Moritz & Lavery (1996).  
 
 
 

Depending on the problem addressed, on the available resources, time and costing, some 

molecular markers can be more appropriate than others for studying a given problem. 

For example, DNA sequencing provides a resolution appropriate to phylogenetic and 

population-level studies but microsatellites are more appropriate to studies of parentage and 

mating systems and sometimes may not be sufficiently conserved for population-level 

comparisons (Creasey & Rogers, 1999). Some times only by using a combination of 

different molecular markers can a problem be resolved.  

It is not the scope of this section to serve as a manual of all existent molecular markers, but a 

little explanation on the markers chosen and used throughout this study will be presented. 
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MtDNA sequencing 

 

 
 

Fig.1.3. Schematic representation of the mitochondrial DNA molecule 
 
 
Mitochondrial DNA sequences are one of the most widely used tools to assess phylogenetic 

relationships between similar species, populations of the same species or even between 

individuals (Taberlet, 1996). Mt-DNA is maternally inherited without recombination, 

representing only ¼ of the effective population size of nuclear markers, which makes it more 

sensitive to detect reductions in genetic variation (Ferguson & Danzmann, 1998). The mt-

DNA molecule exists in a high copy number in the mitochondria of cells and has a circular 

structure (Fig.1.3). It is composed of 20,000 base pairs (bp) coding for 40 genes responsible 

for 2 ribosomal RNAs, 22 transfer RNAs, and 13 proteins essential in respiration (Ferris & 

Berg, 1987; Hartl & Clark, 1997). It also has a non-coding region (+ 1000bp) responsible for 

replication, known as the “control region” or “d-loop”, that evolves 4 -5 times faster than the 

entire mt-DNA molecule which itself evolves 10 times faster than nuclear DNA (Brown et 

al., 1979). It also has a large capacity to accumulate mutations that give it a faster rate of 

evolution than nuclear DNA in higher animals (Brown et al., 1979). The whole molecule 

may be regarded as a single locus with multiple alleles (Park & Moran, 1995). 

All these, and other technical advantages, such as requirement of only small amounts of 

fresh, frozen or alcohol-stored tissue, make mt-DNA a very practical genetic tool. Together 

with the fact that it is one of the most well studied parts of the animal genome, mt-DNA 

sequencing has become the molecular marker of choice when studying cospecific 
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populations (e.g.Gold et al., 1993; Norman, et al., 1994; Park & Moran, 1995; Bakke et al., 

1996; Taberlet, 1996; Stepien & Faber, 1998; Stepien, 1999; Stamatis et al., 2004). 

On the other hand, there are some disadvantages that must not be forgotten. For example, 

maternal inheritance does not provide information about males in populations, which may 

display different dispersal behaviour to females. 

The haploid nature of this marker is also an issue as no inferences about the neutrality and 

equilibrium of populations, as well as other aspects based on allelic frequencies can be 

addressed.  

 

Microsatellites 
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Fig.1.4. Schematic representation of a microsatellite tandem repeat. 
 
 

Microsatellites are presently one of the most commonly used molecular markers. They 

consist of tandem repeats of short sequence motifs, from di- to hexanucleotides (2-6bp) that 

can reach a length of up to 150bp (Fig.1.4; Ashley & Dow, 1994; Schlötterer & Pemberton, 

1994; Wright & Bentzen, 1994; Koreth et al., 1996). There are several different types of 

microsatellite including uninterrupted, interrupted or compound microsatellites, as e.g.  

(AG)n,, (GC)n AT(GC)n or (GC)n (AT)n (GT)n  respectively (Estoup & Angers, 1998). 

Microsatellites have been detected within the genomes of every organism ever analyzed 

(Hancock, 1999). They are very abundant in eukaryotes and are spread throughout the entire 

genome at 7-10-100 kilobase intervals (Schlötterer & Pemberton, 1994; Wright & Bentzen, 

1994). The mean density of microsatellites within species of different taxonomic groups 

varies widely (Estoup & Angers, 1998). 

What makes microsatellite loci very useful as molecular markers for genetic studies is their 

instability. The mutation rates of these sequence repeats are higher than other loci in the 

same genomes (Eisen, 1998) and are thought to be caused by slipped strand mispairing 

during replication, causing the insertion or deletion of repeat units (Ashley & Dow, 1994). 

Unequal crossing-over or gene conversions during recombination are other possible 

phenomena that cause mutations in microsatellites (Hancock, 1999). The high mutation rate 
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at these loci leads to extensive allelic variation and high levels of heterozygosity (Wright & 

Bentzen, 1994). Microsatellites are inherited in a simple Mendelian fashion, show no 

obvious functional role and are often selectively neutral (Ashley & Dow, 1994; Estoup & 

Angers, 1998). 

Since the 1980’s microsatellites have become one of the most popular molecular markers 

used in population genetic studies. Their main advantages over other markers are: high levels 

of polymorphism, high heterozygosity (sometimes above 50%), codominant single-locus 

inheritance, abundance in the genome and selective neutrality (Estoup & Angers, 1998). 

Microsatellite analysis can be applied to numerous ecological and evolutionary studies as 

population analysis (genetic structure, effective population sizes and sociobiological 

analysis), assessment of gene flow and hybridization zones, construction of pedigrees, 

mating systems and migration and inference of colonization patterns; besides forensic 

studies, linkage or genome mapping, and paternity testing (Ashley & Dow, 1994; Goldstein 

& Schlötterer, 1999). 

Microsatellites also present some disadvantage features which make them unsuitable for 

phylogenetic and systematic studies. The technically demanding, time consuming and 

expensive development stage may also limit their potential use as genetic markers (Estoup & 

Angers, 1998).  

Some of the attributes exhibited by microsatellites make them very suitable markers for 

fisheries research: (1) since they are very abundant, sufficient markers can be promptly 

developed using a single strategy; (2) their high allelic variation makes them attractive for 

several research topics including, species that present low levels of variation for other 

markers such as populations that have suffered severe bottlenecks, or recently derived or 

geographically proximate populations with limited genetic variation; (3) their codominant 

inheritance in a Mendelian fashion makes them more informative than other markers 

(mtDNA, RFLP’s) for population structure studies; (4) as they are assayed by PCR only 

minute amounts of samples are required; and (5) although their development is expensive 

and time consuming, at a later stage in studies, screening of multiple loci can be efficient 

(Wright & Bentzen, 1994). 

 

1.4.2 Bases for molecular data analysis 

 

Independently of the molecular marker used, data from DNA is easy comparable and permits 

to search for the relatedness among organisms at any level, from sibling individuals to 

species of different kingdoms (Avise, 1994). 
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Population geneticists normally start by describing the genetic variation found in the 

molecular markers used. The most informative molecular tool available is DNA sequencing, 

given information on mutations at the single nucleotide level. This permits to test different 

models of sequence evolution against various alternative phylogenies (Swofford et al., 

1996). These are the principles of phylogenetics the base of all DNA sequences analysis. 

Phylogenetic methods try to compare and find the correct evolutionary path that connects 

different sequences, which may belong to individuals from the same species or from 

different families (Pages & Holmes, 1998). The alignment of sequences is very important 

and can be based in different methods and models. Maximum parsimony (MP) and 

maximum likelihood (ML) are the two main alternatives for phylogenetic reconstruction 

based on discrete characters. MP presupposes that the best tree (diagram which illustrates 

sequences’ historical relationship) is the one that requires the least number of nucleotide 

changes along the branches. On another hand, ML is based on a certain model of sequence 

evolution to find the tree with higher probability. Several sequence mutational models exist 

in the literature based on base frequencies and substitution rates. 

Alternatively, comparison of sequences can be made from distance data using clustering 

algorithm or optimal criterions adopted by methods such as UPGMA (Unweighted Pair 

Group Method with Aritmetic means) or Neighbour-joining. These methods tend to be used 

more often as they implicate less computational time and effort; however, they normally 

cause loss of genetic information.  

 

Population genetics can be the next step, to determine if the genetic variation found in the 

molecular markers changes through generations or is portioned between populations. If this 

is the case, the main forces responsible and how they act to change allele frequencies should 

be determined.  

Besides the existence of several molecular methods for studies of population genetics, there 

are also several analytical approaches by which one can extract biological information from 

molecular data (Weir, 1996a).  

The level of information that can be obtained depends directly on the origin and type of 

molecular marker being used, especially if it is of a haploid (mitochondrial DNA) or diploid 

(nuclear DNA) nature. Genetic markers can be codominant, when we can distinguish the 

heterozygotes from homozygotes or dominant, when hetero and homozygotes are 

indistinguishable and both present the same pattern. Microsatellites and alloenzymes are 

codominant markers and allow analysis based on allelic frequencies and Mendelian 
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inheritance and therefore are the only ones that allow to test for fits to Hardy-Weinberg 

equilibrium, the basis of all genetic analysis. 

Hardy and Weinberg independently worked out the mathematical basis of population 

genetics in 1908, showing that if the population is very large, random mating is taking place, 

there are no mutations and migrations affecting the allele frequencies in the population and 

genotypes have equal fitness, i.e., there is no selection; allele frequencies remain unchanged 

(or in equilibrium) over generations unless other factors intervene. 

 

p2 + 2pq + q2 = 1   p=allele A frequency 

AA ... Aa .. aa                    q=allele a frequency 

 

 

If the observed frequencies do not show a significant difference from these expected 

frequencies, the population is said to be in Hardy-Weinberg equilibrium (HWE). If not, there 

is a violation of one of the assumptions of the formula and the population is not in HWE. 

This may indicate, small population size, assortative mating, inbreeding, high mutation rate, 

massive migration, selection or unequal transmission ratio of one or more genes. All these 

phenomena change allelic or genotype frequencies by increasing/decreasing 

homozygosity/heterozygosity.  Nuclear markers, such as RAPD’s are dominant, and to 

calculate allelic frequencies Hardy-Weinberg equilibrium has to be assumed. Mitochondrial 

markers behave as a single locus, and no heterozygotes or homozygotes exist making, H-W 

equilibrium impossible to be calculated. Genetic distances between sequences have to be 

calculated instead of allelic frequencies.  

 

The representativity and method of sampling as well as the type of data used are also 

important factors to take in consideration on the analysis of molecular data (Weir, 1996). 

Several types of data can be extracted from molecular markers. For instance, band patterned 

based techniques such as allozymes, RFLP’s or RAPD’s produce data that can be 

transformed into presence/absence matrixes. Equally, the sampling strategy cannot be 

neglected because it has direct influence on the analysis of the data. Different samples from a 

population will show different levels of genetic differentiation because they will have 

different sets of individuals, which makes the randomness of sampling also an important 

factor (Weir, 1996b). 
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The analysis of molecular data must be based on theoretical or biological models (Weir, 

1996a). In population genetics we must contend and understand the combined effects of 

numerous factors such as population size, patterns of mating, geographical distribution, 

mutational mechanisms, migration, natural selection and others. But factors are so many and 

interact in such a complex manner that they cannot be analyzed all at once. To simplify these 

situations, models have to be created where an essential factor(s) can be considered more 

important and others neglected, eliminating external superfluous detail (Hartl, 2000). 

Several models have been proposed over the years but their description is far beyond the 

scope of this chapter and only a small overview will be given on them. 

The first to emerge was the “classical model”, which proposed an ideal population, infinite 

in size, with random mating and no disturbing forces as mutation, migration or selection. 

This model is completely hypothetical, as no such populations exist in nature. Little by little 

several steps were taken in order to introduce more realism to this model, by supposing that 

natural populations were finite or introducing specified forces of selection, mutation or 

migration. 

 

Understanding of mutational mechanisms and rates of different molecular markers is also 

essential for an accurate estimation of population parameters.  

Theories on sequence evolution have also been proposed and developed by several authors. 

Darwin (1859) was the first to propose a theory of evolution based on natural selection, far 

before the knowledge of the structure of DNA and mechanisms of inheritence. With 

Mendel’s discovery that genetic variation was generated by mutation a new theory – Neo-

Darwinism – emerged, in which mutation is recognized as the ultimate source of variation 

but the dominant role in shaping the gene-pool of a population was given to natural 

selection. Nowadays, evolutionary studies use the Neutral theory of evolution (Kimura, 

1983) as the null hypothesis. This hypothesis states that genetic variability is caused by 

random genetic drift of selective neutral mutant alleles and if other evolutionary forces 

intensity offsets the influence of chance effects, the hypothesis is rejected. 

Several sequence mutational models have been proposed based on base frequencies and 

substitution rates. The simplest one is the Jukes & Cantor (1969), which considers equal 

frequencies for the four bases and equal substitution rates. Others allow for unequal 

nucleotide frequencies and/or different substitution rates between transitions and 

transversions: Kimura 2-parameters (Kimura, 1980) takes into account different substitution 

rates between transitions and transversions calculated from the data; Tajima & Nei (Tajima& 

Nei, 1984) considers unequal nucleotide frequencies; Tamura & Nei (Tamura & Nei, 1994) 
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allows a distinction between purines and pyrimidines transition rates; and others more recent 

and complex such as the codon model or the secondary structure model continue to be 

developed to find the more realistic mutational model.  

Several models of mutation have also been proposed by geneticists to describe the 

accumulation of mutations in microsatellites specifically: the SMM (Stepwise mutation 

Model; Kimura & Otha, 1978) - mutations increase or decrease allele sizes by single units; 

and the IAM (Infinite Allele Model; Kimura & Crow, 1964) – each mutation produces a new 

allele not present in the population; were the first. The KAM (K-allele Model; Crow & 

Kimura, 1970) – k different alleles are allowed and any allele has a constant probability of 

mutating towards any other (k-1) allelic states; and the TPM (Two-phased Model; Di Rienzo 

et al., 1994)- in which mutations introduce a gain or loss of X nucleotides; derived from the 

other two. 

Based on these assumptions, analysis of molecular data can be performed in different ways 

and be used to address different hypothesis or questions. 
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CHAPTER 2 

CURRENT STUDY DETAILS 
 
 
2.1. Characterization of the study area (North Atlantic) 

  
The North Atlantic is the most completely studied of all oceans, and yet still resists thorough 

description and rationalization.  

It is the youngest of all the oceans formed only 175-90 MY ago with the separation of the 

Pangea continent. The distance between its two margins is relatively small which means that 

margins strongly influence surface and deep-water phenomena (Longhurst, 1999).  

Surface and intermediate waters derived from other ocean’s move northward through the 

South into the North Atlantic. These warm waters suffer intense cooling in the Norwegian 

Sea and sink by vertical convection forming the Northeast Atlantic Deep Water. This water 

mass moves into the Northwest Atlantic basin where it mixes with other water masses 

forming the North Atlantic Deep Water which by its turn flows southward into the Southern 

Ocean and other oceans thereafter (Schmitz & McCartney, 1993). The warm and saline 

Mediterranean water is also important for the Mid-water (1000-1500m) circulation pattern. 

Surface and intermediate waters of the North Atlantic are influenced by the strong cyclonic 

gyre provoked by the Gulf Stream current (Fig.2.1). When this reaches the middle of the 

ocean in its western-eastern movement, breaks into two branches: the North Atlantic drift 

(flows in direction of Northern Europe) and the Azores drift that passes just south of the 

archipelago with the same name (Onken, 1993). The Azores current breaks in two directions 

flowing through the Gulf of Cadiz and Canary Islands down the African coast (Johnson & 

Stevens, 2000).  

 

One of the most important geographic features is the Mid Atlantic Ridge, which divides the 

North Atlantic in two halves and whose topography has a major influence on the near-

bottom water circulation and other processes (Levin & Gooday, 2003). 

Other topographic features that can influence hydrographic events but at local or regional 

scales are oceanic islands and seamounts. Most North Atlantic seamounts are distributed 

along the Mid-Atlantic Ridge, however, several others are spread throughout the entire basin 

apparently in sort of bunches (Epp & Smoot, 1989). Some archipelagos are also found within 

the North Atlantic basin, such as the Antilles, the Bermudas, Cape Verde and the 

Macaronesian archipelagos: Azores, Madeira and Canaries. The term seamount is generally 

defined as a submarine volcanic mountain that rises several kilometres from the sea bottom, 
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with circular or elliptical forms, to sea level (Epp & Smoot, 1989). Seamounts are places 

with high productivity where a lot of valuable fish species concentrate (Rogers, 1994) 

because they work as favourable patchy habitats for bathyal benthic and benthopelagic 

species separated by vast distances of open water. They have already been pointed out as 

possible intervenients in the distribution of species, working as stepping stone places for 

oceanic colonization processes or in migration patterns. 

 

 

North Atlantic Current

Azores Current

Canary Current

Gulf Stream

North Equatorial Current

30º
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45º
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60º75º 45º 30º 15º 0º 15º  

Fig.2.1 Simplified schematic representation of surface circulation in the North Atlantic. 

 

 

2.1.1 The Azores archipelago 

 

The Azores archipelago is situated in the middle of the Northern Atlantic Ocean, on the top 

of the mid Atlantic Ridge at the junction of 3 tectonic plates: North American plate, Eurasian 

plate and African plate (Fig. 2.2; Buforn et al., 1988). 

It’s a group of 9 volcanic islands distributed between 37º-40ºN and 25º-31ºW that have risen 

from the ocean basin 4000m below. The weather is extremely variable in this area because it 

lies within a temperate zone of the northern hemisphere that can experience polar low-

pressure fronts all year around (Morton et al., 1998). Sea temperature changes between 15ºC 
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to 23ºC and the surface isotherms place Azores in a boundary between tropical and 

temperate regions (Gorshov, 1978). 

Azores is situated in a very particular position in respect to sea circulation (Martins, 1987). 

The archipelago is in the middle of the North Atlantic basin and respective current gyre 

suffering direct influence of the Gulf Stream (Fig.2.1). This movement can be in the origin 

of colonization of the islands by some New World fauna and flora (Morton et al., 1998). As 

we go deeper into the slope water region (1.8º-4ºC) the current pattern changes a lot being 

more influenced by the Northeast Deep-Water mass formation formed by vertical convection 

near the Norwegian Sea and that will find its way into the Northwest Atlantic basin forming 

the North Atlantic Deep-Water (see page 20 and Levin & Gooday, 2003).  

 

The Azores archipelago is located in the ICES fishing area X. Is characterized by a variable 

topography, rocky bottoms and because big valleys separate the islands no continental 

platform is formed (Martins, 1987). 

The coastal fishing areas are few and narrow constituting only 1,1% of the EEZ (Economic 

Exclusive Zone), considering depths <1000m (Isidro, 1996). This value rises to 3% if we 

include the several seamounts that exist around the islands of the archipelago, and are also 

productive places that permit fishing activity at shallower depths (Martins, 1987 and Isidro, 

1996). Several seamounts make part of the Azores territory being the most important fishing 

areas in the archipelago.  

Due to all these features, Azores is one of the most exceptional areas to fish and study of the 

Atlantic Ocean and should be carefully considered in global management proposals 

especially due to its small area of fishing grounds compared with most of the countries in 

which, continental shelf constitutes 50% of their EEZ (Martins, 1987). 
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Fig. 2.2 The Azores archipelago. 
 
 
 
 
2.2 Demersal fishes and fisheries in the studied area 

 

 

The deep-sea demersal fish community is best known in the North Atlantic than in any other 

ocean in the world. A wide rate of investigations on the abundance, faunal composition, 

vertical and horizontal distribution, biogeographical and temporal patterns of deep-sea 

demersal fish species have been compiled by Thiel (1983), Haedrich & Merrett (1988), 

Vinck et al. (1994) and Haedrich (1997) for example. 

There are around 505 species (belonging to 72 families) of deep-sea demersal fish species on 

the slope of the North Atlantic, 77.4% of which are endemic to this topographic area. 

Alefocephalidae (slick heads), Macroridae (grenadiers) and Ophidiidae (cusk eels) are the 

dominant families in this order (Merrett & Haedrich, 1997 and Levin & Gooday, 2003) 

Nevertheless, an accurate description of the deep-water fishery in the North Atlantic is a 

difficult task, as some of these fisheries tend to develop very quickly and decline equally 

rapidly. Simultaneously, it is often difficult to determine the target and by-catch species from 

landing data and consequently, to obtain accurate catch and effort data. 
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Some deep-water fisheries are well established, hence well described, and have been 

exploited for almost a century now, such as the long-line fishery for black scabbard fish 

(Aphannopus carbo) in Madeira and the semi-pelagic trawl fisheries for blue whithing 

(Microsmesistius poutassou) and argentine (Argentina silus) in the Rockall Trough. Others 

are more recent but also long-established fisheries like redfish (Sebastes spp.) and Greenland 

halibut (Reinhardtius hippoglossoides) in the Norwegian Sea, crustaceans and Pagellus 

bogaraveo off the Iberian Peninsula, and roundnose grenadier (Coryophaenoides rupestris) 

in the Northwest Atlantic. Trawl fisheries to the West of Scotland and Ireland are probably 

the more important and mediatic fisheries nowadays (Koslow et al., 2000; Gordon, 2001; 

Haedrich et al., 2001). 

 

In the Azores, the demersal fishery is the most important resource after the tuna fishery, in 

terms of capture quantities (around 30% of total landings) and commercial value (around 

50%) (Menezes & MdaSilva, 1997; Lotaçor, 2003). 

Is mainly directed to Pagellus bogaraveo, but it’s considered a multispecific fishery as other 

demersal fish species are equally captured in significant quantities: bluemouth (Helicolenus 

dactylopterus), alfonsino (Beryx splendens), imperador (Beryx decadactylus), conger 

(Conger conger), forkbeard (Phycis phycis), wreckfish (Polyprion americanus), white 

scabbardfish (Lepidopus caudatus) and others (Menezes et al., 1997).  

In terms of fisheries conservation, the North Atlantic fisheries management is mainly divided 

into five international organizations which are responsible for the management of fisheries 

and conservation of the resources: the International Council for the Exploitation of the Sea, 

the Northeast Atlantic Fisheries Comission, Northwest Atlantic Fisheries Organization, the 

Western Central Atlantic Fishery Comission, Fishery Committee for the Estaern Central 

Atlantic and a regional organization the Sub-regional Comission on Fisheries responsible for 

the Cape Verde area (Fig.2.3).  



Study Details 

 25

Northeast Atlantic Fisheries Commission (NEAFC) / International Council for the Exploration of the Sea (ICES)

Northwest Atlantic Fisheries Organization (NAFO)

Western Central Atlantic Fishery Commission (WECAFC )

Fishery Committee for the Eastern Central Atlantic (CECAF)

Sub-Regional Commission on Fisheries (SRCF)

30º

15º

45º

60º

60º75º 45º 30º 15º 0º 15º

 

 

Fig. 2.3 North Atlantic Fisheries Management Organizations map 



Study Details 

 26

2.3 Characterization of the studied species 

 

2.3.1. Helicolenus dactylopterus (Dela Roche 1809) - BLUEMOUTH 

 

 

Fig.2.4 

 

 
Morphology and Taxonomy 

 

Helicolenus dactylopterus (Dela Roche 1809) is a demersal fish of the Order 

Scorpaeniformes and belongs to the Family Sebastidae. Is commonly known as bluemouth 

(English), rascasse du fond (French) or boca-negra and cantarilho (Portuguese). 

H.dactylopterus possesses a compressed body, head with ridges and spiny fins. As indicated 

by its name, it can be easily recognized by the large mouth with a darkly colored trachea. It 

has a variable colour, normally reddish, along the dorsal ridge and flanks, with a pink to 

white ventral surface coloration. The flanks maybe patterned with bars of darker color. 

The morphological differences between the populations of this species along with their 

geographical and ecological separation have been little studied. For this reason the 

phylogenetic position of the genus has not yet been defined. Some authors have included it 

in the family Scorpaenidae and the sub-family Sebastinae (Echmeyer, 1969; Nelson, 1984 

and Hureau & Litvinenko, 1986) while others place it in the family Sebastidae and the sub-

family Sebastinae (Eschmeyer, 1998; Froese & Pauly, 2005). The genus Helicolenus 

contains 9 species including H.dactylopterus, H.alporti, H.avius, H.barathi, H.fedorofi, 

H.higeldorfi, H.legerichi, H.mouchezi and H.percoides. Helicolenus dactylopterus has been 

divided into 4 different populations corresponding to the areas of South Africa, the Golf of 
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Guinea, Northeast Atlantic (from Norway to North Africa) and Northwest Atlantic (Nova 

Scotia to Venezuela) (Echmeyer, 1969). This was prior to the work of Barsukov (1980) that 

proposed the subdivision of the species Helicolenus dactylopterus into several subspecies of 

which Helicolenus dactylopterus dactylopterus corresponds to the northeast Atlantic and 

Mediterranean zones that include our study area (Azores). 

 

Distribution 

 

Like many fish in this family (Sebastidae) bluemouth is typical of high-energy continental 

and oceanic island slopes and seamounts. Is commonly found between 400-600m depths 

along the edge of the continental shelf and upper continental slope of the eastern Atlantic 

(from Norway to the Gulf of Guinea), the Mediterranean (Massutí et al., 2001) the western 

Atlantic (from Canada to Brazil), and off the west coast of South Africa. It is also distributed 

on the slopes of the Macaronesian islands (Azores, Madeira, Canaries and Cape Verde), on 

seamounts of the Mid-Atlantic Ridge (Hureau & Litvinenko, 1986) and non-axial seamounts 

such as the Josephine Bank (Maul, 1976).  

 

Biology and Ecology 

 

Helicolenus dactylopterus is a representative long-lived deep-sea fish with conservative 

reproductive traits. It is known that adult fish lead a very sedentary life style according to 

tagging experiments and seabed observations. Around the Azores archipelago many tagged 

specimens have been recaptured, after more than one year, exactly in the same places as they 

were originally caught and tagged (Menezes unpubl. data).  

In the Bay of Biscay several individuals of this species were observed remaining in place at 

the bottom even in the proximity of a submersible. Bluemouth can be characterized as a 

typical sit-and-wait ambush predator, attacking prey as they pass (Uiblein et al., 2003). Is 

considered a selective carnivorous feeding mainly on benthic crustaceans (decapods), fishes 

and gelatinous plankton (pyrosomes) and accidentally some cephalopods and polychaetes 

(Nouar & Maurin, 2000). 

 

Studies indicate this species has a relatively slow growth rate, considerable longevity and 

sexual dimorphism (Isidro, 1989; Kelly et al., 1999).  

A maximum age of 43 years old and length of 47cm have been recorded for males, which are 

more abundant in the larger length classes (Estácio et al., 2001). The mean length of females 
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is significantly smaller than males (White et al., 1998) but they can also reach lengths of 

46cm (Estácio et al., 2001). 

In terms of growth rate, dimorphism is also found; male growth is fastest during the first few 

years while females exhibit growth acceleration between 7 and 11 years (Esteves et al., 

1997). 

Very little is known about the life cycle of this species, especially its reproductive strategies, 

and until now, information was quite contradictory on this subject (Krefft, 1961). The order 

Scorpaenidae is mainly oviparous with some confirmed cases of viviparity only in the family 

Sebastinae (Indian Ocean). However, the reproductive mode of Helicolenus appears to lie 

between that of Scorpaena and Sebastes in being intermediate between the viviparous and 

oviparous condition (Krefft, 1961). This species is known to have internal fertilization with 

brooding of eggs until the early stage of development (early embryo) consistent with 

zygoparity (Muñoz et al., 1999; Sequeira et al., 2003). Spawning occurs multiple times in a 

single season and fecundity is relatively high for a scorpaenid (11,000 to 87,000 eggs) 

(Muñoz & Casadevall, 2002). This leads to the assumption that this species may have a more 

limited dispersal than fish species with broadcast spawning. Curiously, asynchrony has been 

found between the annual reproductive cycles of the two sexes. Females reach maturity 

between January and May, while males are mature during the period from June to October. 

Fertilization takes place during this time and females store the sperm in the ovaries for 

periods up to 6 months (Isidro, 1989; Estácio et al., 2001). Females mature at 3 years of age 

while males mature later at 5 (Krug et al., 1998). Other studies have confirmed this life cycle 

for Helicolenus dactylopterus in other parts of the world (Petrakis et al., 1998; White et al., 

1998; Kelly et al., 1999 and Muñoz et al., 1999). 

 

Specific fisheries data 

 

The fishing grounds of bluemouth are spread throughout the entire North Atlantic. It does 

not have a specific directional fishery but is caught by long-line or trawls that operate at 

various depths.  

European catches have fluctuated and increased a lot in the last decade (Fig.2.5). In 1998 

production rates of bluemouth have tripled reaching the highest peak of 0.6 MT in two years. 

Since then it has decreased considerably but has not yet reached the catch levels recorded in 

the beginning of the 90’s.   
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Fig.2.5  Annual landing  rates of Helicolenus dactylopterus in Europe (FAO, 2004) 

 

 In the Azores bluemouth is caught by long-line fishery directed at Pagellus bogaraveo, and 

represents an significant proportion of the total landings and commercial value of the 

demersal fishery.  The actual annual landings are approximately 350-ton a year, which 

represents half of the quantity presented in 1994 the most productive year for demersal 

fisheries in the archipelago (Fig.2.6; Lotacor, 2003). In the Azores, bluemouth is commonly 

caught with total lengths between 14 and 47 cm, which for male individuals correspond to an 

age of 3 to 14 years old and for females, 3 to 12 years old.  
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Fig.2.6. Annual landings of Helicolenus dactylopterus in Azores (Lotaçor, 2003) 
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2.3.2 Beryx splendens (Lowe 1834) – ALFONSINO 
 

 

 
Fig.2.7 

 

 
Morphology and taxonomy 

 
Beryx splendens (Lowe 1834) is a demersal fish species of the family Berycidae commonly 

known as alfonsino or golden eye perch (english), béryx long (French) or alfonsim and 

salongo (Portuguese) (Bougis, 1945). This species is characterized by its slightly elongated 

body shape, bright red colour, big eyes and robust strong-swimmer type body. 

The Berycidae family is constituted by the Centroberyx and Beryx genera and this last one 

includes three species: B. splendens, B. decadactylus and B. mollis (endemic of Osaka Bay).  

 
Distribution 

 
Beryx splendens has a worldwide distribution from tropical to temperate waters (Bougis, 

1945 and Busakhin, 1982). It inhabits rocky areas of the slope or seamounts at a wide range 

of depths (25-1240m) but is normally found between 400-600m (Maul, 1986; Ivanin, 1987 

and Relini et al., 1995).  This species has a wide spread distribution in waters of the eastern 

Atlantic (Portugal, Spain, Morocco, Madeira, Azores and Canaries Islands and as far south 

as South Africa), western Atlantic (Gulf of Maine to the Gulf of Mexico), Pacific (Japan and 

Australia) (Ikenouye, 1969; Bushakin, 1982; Maul, 1986; Ivanin, 1987; Lehodey et al., 1994 

e 1997; Lehodey & Grandperrin, 1996a e 1996b) and it has also been recently recorded in 

the Mediterranean sea (Relini et al., 1995). 
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Biology and Ecology 

 
Very little is known about biology and life cycle of B.splendens and most existent works 

refer to age and growth (Ikenouye 1969; Massey & Horn 1990; Rico et al., 2001), 

reproduction (Lehodey et al.1997; González et al., 2003), development (Mundy, 1990), 

systematics and distribution (Lehodey et al., 1994) in areas where this species is an 

economically important fishery resource such as off Japan, New Zealand and Russia. 

Alfonsin larvae and juveniles are epipelagic for several months, apparently moving deeper 

and settling on the bottom as they grow (Mundy, 1990). Actually, the hypothesis of two 

differentiated parts of the life history has been proposed, known as the vegetative zones, 

constituted by larvae and juveniles in a growing phase and the reproductive zones, 

represented by the mature individuals ready to spawn (Lehodey & Grandperrin, 1996a).  

Adults are benthopelagic and representative of the typical strong swimming, robust, deep- 

bodied fish typical of the demersal habitat of seamounts and continental slopes (Koslow et 

al., 2000). They are normally found in groups 5-20m of the bottom of the upper slope, or 

even in schools 10-50m above seamounts (Maul, 1981,1990). 

It is presumed that individuals have a continual feeding activity and are known to migrate 

vertically over night for feeding on fish and crustaceans on the slope (Galaktionov, 1985; 

Dubochkin & Kotlyar, 1989). The diet of B.splendens consists of small meso- or 

benthopelagic fishes and decapods or species with diurnal vertical migration (Dürr & 

González, 2002). 

Alfonsinos can live until 20 years of age and reach lengths greater than 50cm. Median life 

expectancy is 12 years for females (≅ 43,5cm) and 9 years for males (≅ 36 cm). Like many 

other fishes, individuals grow throughout their entire life with a higher rate during first year 

(18-19cm) during which they reach 50% of their total length and progressively decreasing 

until reaching an annual rate of 2 to 5 cm at around 8 years of age (Lehodey & Grandperrin, 

1996a and Anibal et al., 1998). It is not evidently clear but it can be said that females grow 

faster than males and medium size increases with depth (Lehodey et al., 1994; Rico et al., 

2001). 

The first sexual maturation occurs around the second year of life but L50 is only reached at 7 

years old by males and a little bit earlier by females, at 6 years old. In both hemispheres 

maturation occurs in late Spring and spawning during the Summer months, followed by a 

pos- laying period in the autumn and rest until next spring (Ikenouey, 1969; Mundy, 1990; 

Lehodey et al., 1994 and 1997; Lehodey & Grandperrin, 1996a). But there is also the theory 

that spawning season of this species varies with climatic zones (González et al., 2003).  
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B.splendens is gonochoric with no evidences of sexual dimorphism (González et al., 2003). 

Fecundity is high (270 000-700 000 eggs per spawn) typical of a K-type reproduction 

strategy (Lehodey et al., 1997).  

 

 
 Specific Fisheries Data 
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Fig.2.8. Annual landing rates of Beryx spp.in Europe (FAO, 2004). 

 
 

 
Commercial fisheries for alfonsino exist where they are abundant. It is normally caught as 

by-catch by bottom long-line or trolling gears which operate in deep areas of the slope or 

seamounts (Galaktinov, 1985; Maul, 1986; Ivanin, 1987and Relini et al., 1995). In some 

places, is the main target species of small-scale demersal fisheries performed with handlines 

and bottom drop lines (Rico et al., 2001).  

Catches are usually recorded for Beryx spp. as a whole (Fig.2.8) except for rare occasions 

when specific statistics are presented for specific regions, such as in Azores  (Fig.2.9; 

Lotaçor, 2003). 
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Fig. 2.9. Annual landings of Beryx splendens in Azores (Lotaçor, 2003) 

 
 
 
 
2.3.3. Beryx decadactylus (Cuvier 1829) – IMPERADOR 
 
 

 

 
 

Fig.2.10 

 
 

Morphology and taxonomy 

 
Beryx decadactylus (Cuvier, 1829), commonly known as imperador (Portugal and UK) in 

several places is the second representative species of the Berycidae family in the Atlantic.  It 

is quite difficult to differentiate between this species and Beryx splendens. Both species are 

sympatric apparently with similar biology and morphology, differentiating from one another 

only in body shape. B.decadactylus has a rounder and wider body than B.splendens, showing 
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a head length smaller than body height. In early life stages it is almost impossible to 

differentiate between individuals from the two species based on morphology alone (Mundy, 

1990).  

 

Distribution 

 

Beryx decadactylus is found in the Atlantic, Mediterranean, southern Indian Ocean, western 

Pacific and Hawaii; around seamounts and continental slope at 400-800 m depth. 

 

Biology and Ecology 

 

No studies exist on the biology, behavior or ecology of Beryx decadactylus alone. Most 

information about this species is extrapolated from Beryx splendens works because of the 

similarity between the two species. There is some comparative work on the two species 

focusing on diet (Dürr & González, 2002) and larval morphology (Mundy, 1990). 

 

 

Specific Fisheries Data 

 
As stated earlier, landing statistics are normally presented for Beryx spp. as a whole (Fig 

2.7), except for some small fisheries areas, e.g.Azores (Fig.2.12). However, with this 

information, it can be said that Beryx decadactylus is caught in smaller numbers at greater 

depths than alfonsino. 
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Fig.2.11 – Annual landings of Beryx decadactylus in Azores (Lotaçor, 2003). 



Study Details 

 35

2.3 Actual state of work done on the subject 
 

 

Since genetics has become an important tool in marine species conservation, several studies 

of this matter have been conducted on deep-sea fish species, especially on those subject to 

exploitation (reviewed in Creasey & Rogers, 1999 and Rogers, 2003). 

 Because of the extreme environmental conditions of the deep-sea it is very difficult to 

discern interactions of target species at the population and community level either by in site 

observation or indirect approaches. Molecular techniques can provide valuable data about 

phylogeny, structure and endemicity of target species. Together with morphometric and 

hydrographical data can be used to infer population structure, gene flow, recruitment, 

reproductive strategies and behaviour of deep-sea species.  

Over the last quarter of century numerous genetic studies have been undertaken to determine 

variation and population structure of deep-sea organisms using a variety of molecular 

techniques. 

Until the mid-ninety’s, allozyme electrophoresis was widely used to study many deep-sea 

species of invertebrates and vertebrates including crustaceans (France, 1994; Creasey, 1998), 

molluscs (Gooch & Schopf, 1972), echinoderms (Ayala et al., 1975) and fish (Johnson & 

Utter, 1976; Lowry et al., 1996). With progress, molecular techniques like RFLP’s, RAPD’s 

and mtDNA sequencing were quickly adopted and applied on deep-sea studies in order to 

explain genetic diversity (e.g. Miya & Nishida, 1999), phylogeography (e.g. Kojima et al., 

2001), demographic history and phylogeny of deep-sea organisms. Hydrothermal vents 

organisms’ phylogeny and population structuring have also been approached using these 

techniques (e.g. Creasey et al., 1997; Autem et al., 1985). More recently, microsatellites 

have also been undertaken and used to try to solve finer-regional scale population 

differentiation on organisms like corals (Le Goff-Vitry et al., 2004), toothfish (Smith & 

McVeagh, 2000), and redfish (Roques et al., 1999a and 2001) for example. 

However, contrary to the big number of studies on the biodiversity of deep-sea species in the 

North Atlantic, genetic studies are quite more rare. Most of molecular approaches have been 

made to deep-sea species from the Pacific Ocean (reviewed in Rogers, 2003). 

In the North Atlantic deep-sea demersal fish species’ population genetic studies exist on 

goraz (Stockley, 2005), wreckfish (Sedberry et al., 1996), redfish (Roques et al., 2001), cod 

(Ruzzante et al., 1996), and some others, but lots of work still needs to be done, to obtain an 

accurate vision of the general population structure and biology of these species. 
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Since 1995, a project for monitoring the Azorean demersal fishery commenced in order to 

obtain the basis for an optimised management strategy of the resource (Menezes et al., 

1998).  Seasonal research cruises have been annually conducted to obtain information on the 

ecological and biological features of the demersal fish species, and several studies on age, 

growth, reproduction and feeding have been published (Esteves et al., 1997; Morato et al., 

1999, 2001; Estácio et al., 2001; Rico et al., 2001; González et al., 2003).  

A genetic approach for characterisation of the life history of commercial species has been 

carried out for a few species. Some very preliminary work was done using allozyme 

electrophoresis and only recently some work on DNA has been done on some of the most 

captured demersal species in the archipelago such as Pagellus bogaraveo, Beryx splendens 

and Polyprion americanus (Sedberry et al., 1999; Stockley, 2001; Stockley et al., 2005). 

 

2.4 Aims and objectives 
 

With increased focus upon the deep-sea environment and the exploitation of deep-sea 

resources, it is apparent that understanding of the degree of population/stock structuring and 

evolutionary story is essential, in order to comprehend the impact (direct /indirect) of fishing 

and the future of the species. 

In the present study, DNA sequencing and microsatellites were used to investigate the level 

of genetic differentiation of North Atlantic populations within three deep-sea demersal fish 

species commercially exploited in the Azores archipelago by a bottom long-line fishery 

directed at Pagellus bogaraveo.  

Helicolenus dactylopterus (Sebastidae), Beryx decadactylus and Beryx splendens 

(Berycidae) are significant representatives in terms of quantity and commercial value of the 

demersal fishery.  

MtDNA sequences and microsatellites can provide information on the degree of stock 

separation and population structure between different areas at an oceanic and regional 

geographic scale. An idea about life-history, reproductive strategy and behaviour can also be 

obtained for each species. Aspects of evolutionary and demographic history can equally be 

inferred. 

Most of all, the three different species can be compared in terms of all these different aspects 

and an overall comprehension can be extrapolated for North Atlantic deep-sea demersal 

fishes in general. 

This thesis provides the first examination of the population genetics of these selected deep-

sea Azorean fish and North Atlantic species exploited by demersal fisheries. To deeply 

understand the local population dynamics of the studied species, a wider geographic scale 
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has to be analysed, and the geographical area of interest to this study was whenever possible 

expanded to the North Atlantic scale. 

Section II refer to all the material and methods used throughout this study and include 

Chapter 4, a detailed explanation of the methodology used to develop and design 

microsatellite markers for Helicolenus dactylopterus. 

In Chapter 5 the population structure of Helicolenus dactylopterus is analysed by sequences 

of two mtDNA regions, a non-coding (control region) and a coding region (cyt b). Evidences 

for historical influences on the genetic population structure are also given. 

Chapter 6 gives an account of the population structure of Helicolenus dactylopterus, but at a 

finer regional geographic scale (Northeast Atlantic and within island groups of the Azores 

archipelago) using more sensitive molecular markers, the microsatellites developed in 

Chapter 4. 

Chapter 7 refers to other two deep-sea demersal species Beryx splendens and Beryx 

decadactylus. The population structure in the Northeast Atlantic of these two close related 

species is described by analysis of mtDNA sequences. A comparative approach and possible 

explanations for differences in population structure and biological aspects are presented. 

Chapter 8 discusses the results of the other chapters in a general context of evolution, 

conservation and relevance of this study to the knowledge of deep-sea demersal fish species 

population genetics as well as for the fisheries management of these resources. 
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PART II 

MATERIALS AND METHODS 
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CHAPTER 3 

GENERAL METHODOLOGY 

 

 
The aim of this section is to give a general view of the techniques used throughout this study. 

General methodologies, from laboratory procedures to statistical analyses, are presented here 

and explained. Specific methods and conditions will be described in further detail in the 

appropriate chapters.  

It seemed appropriate to dedicate here an entire chapter to microsatellite development for 

Helicolenus dactylopterus. Specific primers for amplification of microsatellite loci for this 

species did not exist before and were isolated for the present study. The method described 

here is not new but a modification of some existing protocols; nevertheless the objective of 

the description is to permit whoever reads this thesis to replicate this microsatellite isolation 

procedure.  

 

3.1.Sampling 

 

Since 1997 the Departamento de Oceanografia e Pescas da Universidade dos Açores has 

been conducting annual and seasonal surveys as part of different EU-funded projects 

regarding the demersal fishery in the Azores archipelago (Menezes et al., 1998).  

Several sampling cruises have been undertaken around the Azorean islands and adjacent 

seamounts every spring (ARQDAÇOP97 to ARQDAÇOP03) and, sporadically, around the 

Madeira and Cape Verde archipelagos (ARQMADP97 and ARQCABO00) on board of the 

research vessel “Arquipélago” (Fig.3.1). The fishing gear used in sampling surveys is 

identical to the one used in the commercial demersal fishery in the Azores. This is a bottom 

long line “stone-buoy” type of gear composed of a mainline to which several branch-lines 

with hooks are attached. Longlines are set in skates, each divided in 4 skate-sides with 

around 30 hooks. A floating buoy is set every two skate-sides alternating with stones, which 

results in a semi-buoying gear that permits effective fishing of some bentho-pelagic species 

in addition to others that are more associated with the seabed (Menezes et al., 1998; Fig.3.2). 
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Fig.3.1- The r/v “Arquipélago”.  

 

 

 

 
 

Fig.3.2- A schematic representation of the fishing gear used in sampling surveys (bottom long-line 
stone-buoy type of gear).  
 

The aim of these surveys was to collect the maximum information in order to understand the 

biology, ecology and the impact of fisheries on exploited demersal fish species in this region. 

Each sampled individual suffered a complete biological sampling for future studies on 

growth, age, maturation and life cycle. In addition, a piece of muscle and/or liver was taken 

from each fresh individual and stored in 95% ethanol, for genetic analysis. 

Several deep-sea demersal fish species including the ones chosen for this study; Helicolenus 

dactylopterus (bluemouth), Beryx decadactylus (imperador), and Beryx splendens 

(alfonsino); were captured during these cruises. 
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In order to understand the population dynamics of these species at a regional scale one needs 

to have a wider perspective, so, whenever possible samples from other places in the North 

Atlantic were collected. Collecting areas and numbers of individuals per site were sampled 

considering the molecular markers to be used and available resources and facilities. In some 

cases, it was possible to acquire samples from mainland Portugal (Peniche) and the 

Northwest Atlantic (USA coast), in addition to the ones from the Macaronesian archipelagos 

already described. 

Location of sample sites can be found in Fig.3.3. Cruises designations, dates, sample sites 

and sizes are presented in Table 3.1. 
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Fig.3.3 – North Atlantic map with sampling sites and Azores archipelago detail. 

 

Individuals from Peniche were acquired in the local fish market during landing of regional 

fishing boats. Tissue from under the gills (to avoid damage of specimens) was taken and 

stored in 95% ethanol.  

Bluemouth fins from the East Coast of the USA (South Carolina) were collected by 

Dr.George Sedberry from the South Carolina Department of Natural Resources and stored in 

a sacorsyl-urea solution. 
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Species Location Area Cruise Date Sample size Codes 

Oriental group ARQDAÇOP00 May2000 88 Hd1/n 

Ocidental group ARQDAÇOP00 June2000 80 Hd 5/n 

Central group ARQDAÇOP00 May2000 34 Hd 4/n 
Azores 

Seamounts ARQDAÇOP00 May2000 80 Hd 6/n 

Madeira Madeira ARQMADP97 Jun1997 26 Hd Mn 

Portugal Peniche - Aug2001 80 Hd Pn-n 

Cape Verde Cape verde ARQCABO00 Oct2000 75 Hd CBn-n 

Helicolenus 

dactylopterus 

USA Carolina - Mar2002 44 Hd USAn 

Oriental group ARQDAÇOP99 Jun1999 30 Bd 6/n 

Ocidental group ARQDAÇOP99 Jun1999 30 Bd5/n 

Central group ARQDAÇOP01 Jun2001 32 Bd4/n 
Azores 

Seamounts ARQDAÇOP01 Jun2001 24 Bd 1/n 

Madeira Madeira ARQMADP97 Jun1997 18 Bd Mn 

Portugal Peniche - Apr2003 28 Bd Pn 

Beryx 

decadactylus 

Cape Verde Cape verde ARQCABO00 Oct2000 15 Bd CBn-n 

Azores Azores ARQDAÇOP97 1997 35 Bs An 

Madeira Madeira ARQMADP97 Jun1997 35 Bs Mn 

Beryx splendens 

Cape Verde Cape Verde ARQCABO00 Oct2000 25 Bs CVn 

 

Table 3. 1. List of samples utilized in the present study, including sampling sites and sampling cruises 
details. 
 

 

3.2 Laboratory techniques 

 

3.2.1. DNA Extraction 

 
All the molecular markers chosen for this study require genomic DNA to be extracted. 

The DNA from a small piece of tissue (around 1-3mg≈ 1mm3) from each fish was digested 

in 410µl of extraction buffer (350µl dH2O, 40µl 1M Tris-HCl and 20µl 25%SDS) and 10µl 

of proteinase K (14-22mg/ml in 10mM TrisHCl, pH7.5 - Roche) for 1.5-2 hours at 55ºC. The 

tissue was then subjected to a phenol/chloroform protocol based on Sambrook et al. (1989) 

and optimised after Hillis & Moritz (1996). 

Precipitation of the DNA was then carried out by standing for at least 1 hour at –20ºC, with 

350µl 100% ice-cold ethanol and 35µl 3M sodium acetate. Following this, the solution was 

centrifuged at 0ºC for 15 min to pellet the DNA, which was then washed with 70% ice-cold 

ethanol. 

DNA was resuspended in 50µl elution buffer (buffer AE from Dneasy kits, Qiagen) and 

stored at -20ºC until further use. 

In some cases some RNAse (1µl before digestion) was used to remove excess RNA 

sometimes present in liver samples. 
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3.2.2 Electrophoresis and DNA quantification 

 

Electrophoresis gels were used in this study to visualize and analyse DNA using the 

principle that different sized charged molecules migrate at different rates through the gel 

matrix when electrical power is applied. 

1% agarose gels were used [25ml 1x TAE + 0,25g agarose (Sigma)] stained with ethidium 

bromide (1µl of 10mg/ml etbr) (Sigma) and a current supply of 70v applied.  

Size and quantity of DNA fragments was calculated by comparison with a 1Kb ladder (Life 

Technologies; Fig.3.4). 

Gels were visualised under UV light using an UviDoc 008-XD gel documentation system 

and images digitised. UviDoc ver.98 software was used to quantify the DNA fragments by 

comparative analysis of fluorescence intensity. 

 

volume of sample

volume of ladder band
x 25 = concentration of sample

(when the same amount of ladder and sample are loaded in the gel e.g. 1µl)

 
 

Fig.3.4 – DNA quantification using a 1Kb ladder in a electrophoresis gel.  

 

3.2.3 PCR (Polymerase Chain Reaction) 

 

The polymerase chain reaction (PCR) is one of the key processes in molecular biology. This 

reaction permits the synthetic amplification of a minute amount of DNA in millions of 

copies in a few hours (Mullis, 1990). 
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Fig.3.5 – Schematic representation of a PCR reaction 

 

PCR consists of a simple process with three parts: denaturation of the double-stranded target 

DNA, annealing of open chains with specific primers and extension of the complementary 

DNA strands (Fig.3.5). The principle of PCR is that it artificially performs the natural 
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replication of DNA made by cells, using an enzymatic thermal process. Denaturation of 

target DNA from double to single strands is normally performed by heating the sample to 

94ºC. Following this, the temperature is lowered to allow the oligonucleotide primers to bind 

to the specific template sites and, finally, temperature is set to 72ºC to permit the Taq 

polymerase enzyme to work and synthesise the complementary DNA segment (Palumbi, 

1996a). This cycle is repeated several times (30-40 times), which permits the number of 

copies to grow exponentially. 

In order to work, PCR reactions need a suitable chemical environment usually composed of a 

buffer solution, the enzyme (Taq), Mg2+ (cofactor in the enzymatic catalysis), DNTP’s 

(material for synthesis), primers and templates. These are the basic requirements for any 

PCR reaction, but for each case, temperatures, timings, and product concentrations have to 

be chosen in order to optimise the reactions and obtain the required results (Hoelzel & 

Dover, 1991). 

The Polymerase Chain Reaction brought a new range of possibilities in molecular genetic 

analysis as it permits the selection of a desired DNA fragment from the genome for study 

and direct sequencing of that segment. Another advantage is the fact that this technique only 

requires small amounts of DNA, which avoids the sacrifice of individuals and permits work 

with samples such as saliva, nails, hair, etc. The robustness of this technique eliminates the 

requirement of high quality DNA, which allows easier sample storage in the field 

(Bernatchez, 1994). 

In this study, PCR was used to specifically amplify different mtDNA regions using universal 

primers, screen nuclear DNA for microsatellite rich sequences and amplify those same repeat 

sequences. 

 

3.2.4 Sequencing 

 

Sequences were obtained by a cycle-sequencing reaction based on a dideoxynucleotide chain 

termination method by Sanger et al. (1977). 

Purified PCR products (QIAquick PCR kit Qiagen) were used as templates in a cycle 

sequencing reaction using ABI Prism Big Dye Terminator Cycle Sequencing Ready 

Reaction Kits (Applied Biosystems) under the following conditions: 10µl reactions – 4µl 

Dye; 0.16 µl primer; 1µl sample and 4.84 µl H2O - at 96ºC for 10s, 50ºC for 5s, 60ºC for 

4min during 25 cycles and a holding step at 4ºC.  

The primer anneals to the complementary DNA strand and extension is performed in the 

presence of dideoxynucleotides that induce termination of the synthesis. Terminators are 
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labelled with different coloured fluorescent dyes that will present different emission spectra 

on an electrophoresis gel illuminated by laser (Fig.3.6). The resulting cycle sequencing 

fragments were cleaned up using a DyeEx Spin Kit (Qiagen) following the supplier’s 

instructions. Finally, products were visualized using an ABIPrism 377 sequencer by 

electrophoresis in a polyacrylamide gel and electropherograms read using DNA Sequencing 

Analysis Software Version 3.3 ABI (Applied Biosystems). 

 

 

5‘-GTTTTCCCAGTCACGACAATCAGGCTTAAA-3’
3‘-CAAAAGGGTCAGTGCTGT TAGTCCGAATTT-5’

DNA Denaturation
(only 1 chain is shown)

3‘-CAAAAGGGTCAGTGCTGT TAGTCCGAATTT-5’

Primer addition

5‘-GTTTTCCCAGTCACGAC
3‘-CAAAAGGGTCAGTGCTGT TAGTCCGAATTT-5’

Divide into 4 samples with dATP, dCTP, dGTP, dTTP
(at least 1 radioactive dNTP) and polymerase

ddATP ddCTP ddGTP ddTTP

primer+AATC
primer+AATCAGGC

primer+A
primer+AA
primer+AATCA
primer+AATCAGGCTTA
primer+AATCAGGCTTAA
primer+AATCAGGCTTAAA

primer+AATCAG
primer+AATCAGG

primer+AAT
primer+AATCAGGCT
primer+AATCAGGCTT

A C G T

A
A
A
T
T
C
G
G
A
C
T
A
A

Fragments separated by electrophoresis
and visualized by auto-radiography

Fig.3.6– Schematic representation of a sequencing procedure 
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3.2.5 Microsatellites 

 
Methodology and material used to develop and work with microsatellite loci throughout this 

study will be explained in the next chapter. 

 

 

3.3 Statistical analysis 

 

The background to statistical analysis has already been explained in the first part of this 

study. Specific analysis problems and specific software programs will be given in the 

respective chapters, whenever relevant. Hence, this section will be simply dedicated to the 

presentation of some models and equations that are traditionally used in population genetic 

analysis. 

 

3.3.1 Genetic variation 

 

Measurements of genetic variation can be carried out at a number of levels, from allozymes 

to single nucleotides. Here, variation will only be considered at the nucleotide level as 

appropriate to mitochondrial sequence and nuclear microsatellite analysis.  

Genetic variability can be estimated using a number of parameters including: the mean 

number of alleles per locus, the percentage of polymorphic loci, number of segregating sites, 

average number of pairwise nucleotide differences and observed or expected 

heterozygosities based upon Hardy-Weinberg assumptions, among others. 

Gene and nucleotide diversity are the most frequently used diversity indices to compare 

levels of variation between different populations in terms of allelic frequencies and 

nucleotide pairwise differences respectively. 

Gene diversity or heterozygosity, h (Nei, 1987) is defined, as the probability of two 

randomly chosen genotypes are different in the sample  

 

∑
=

−=
m

i

ih
1

21 χ    

 

Where m is the number of alleles and χi the population frequency of the ith allele at a locus.
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Nucleotide diversity, π (Tajima, 1983; Nei, 1987) is defined as the probability that two 

homologous nucleotides, randomly chosen from the sample, are different. 

 

ijj

ij

i πχχπ ∑=  

 

Where χi is the population frequency of the ith haplotype and πij is the proportion of different 

nucleotides between the ith and the jth haplotypes. 

 

3.3.2 Population variation and comparison 

 

When analysing intra-specific variability one of the most common methodologies used for 

understanding population genetic structure, is Wright’s F-statistics. 

Wright (1951) introduced the concept of F-statistics or fixation indices, which measure the 

reduction of heterozygosity - expected with random mating at any one level of a population 

hierarchy - relative to another. 

Gametes drawn from the same population or sub-population are more likely to have a 

common ancestor than gametes drawn from different ones. The level of such genetic 

differentiation may increase by random genetic drift, as mutations accumulate over time, and 

decrease with migration, as input of new alleles occur. 

Wright’s F- statistics permits the assessment of this differentiation by describing the 

hierarchically subdivided populations as “the correlation between random gametes within a 

population, relative to gametes of the total population” Wright (1965).  

Three indices FIS, FIT and FST (depending on the hierarchical level being compared) are used 

in F-statistics and are related accordingly to the following equation: 
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FST is a measure of overall population subdivision and has a value between zero (no 

differentiation) and one (complete differentiation).  
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Where HT is the mean expected heterozygosity in the total population and HS the mean 

expected heterozygosity across sub-populations. A qualitative guideline for the interpretation 

of FST has been suggested by Wright (1978): 

 

- Little genetic differentiation: 0<FST<0.05 

- Moderate genetic differentiation: 0.05<FST<0.15 

- Great genetic variation: 0.15<FST<0.25 

- Very great genetic differentiation: 0.25<FST 

 

FIS is the fixation index, which relates subpopulations with regional aggregates, or groups of 

inbred organisms to the subpopulation to which they belong, measuring the decrease of 

heterozygosity between these two levels (Nei, 1987).  

 

FIS is often referred to as the inbreeding coefficient as it measures the correlation of genes 

used to assess random mating or inbreeding between subpopulation within the same sample. 

The average frequency of homozygotes among different subpopulations is always greater 

than expected with random mating between them. This is known as the Wahlund effect 

(Wahlund, 1928) and is one possible cause of high values of FIS.  
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At another level of hierarchy, FIT, measures reduction of heterozygosity of the regional 

aggregates relative to the total combined population, or in terms of inbreeding, the 

heteorzygosity of the inbred organisms relative to the total population. 

 

T

IT

IT
H

HH
F

−
=  

 

For microsatellites, an analogous alternative to FST, the RST statistic has been proposed by 

Slatkin (1995). RST is based on the assumption that in microsatellites allele size depends on 

the size of its ancestor, assuming the stepwise mutation model contrary to the Infinite Allele 

Model assumed in FST. The major difference is that the index is defined in terms of allele 

size:  

 



Methodology 

50 

S
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Where S is the variance of allele size considering the total population and SW the average 

variance in allele size within sub-populations. 

 

Debate has always been open about the more useful strategy for microsatellite analysis 

because of serious doubts about the appropriate model of mutation to apply to these markers 

(see Balloux & Lugon-Moulin, 2002). 

Classically, two models of mutation have been considered for microsatellite loci: the Infinite 

Alleles Model (IAM; Kimura & Crown, 1964) which states that a mutation always induces a 

new allele not previously existent in the population; and the Stepwise Mutation Model 

(SMM; Kimura & Ohta, 1978) which assumes that mutations involve only a single repeat 

unit (deletion or addition) towards alleles possibly present in the population already. But 

more recently, some variations have been introduced and several intermediate models arose. 

Among the most cited ones is the Two-Phase Model (TPM; DiRienzo et al., 1994), a 

variation of the SMM where the possibility of occasional changes by multiple repeat units 

has been introduced. Also, a more realistic variation of the IAM, the K-Allele Model (KAM; 

Crown & Kimura, 1970) has been considered for microsatellite loci. In this model K 

different alleles are allowed and any allele has a constant probability of mutating towards 

any of those alleles despite the parental allelic states. Several other intermediate models exist 

and authors don’t seem to reach a common decision on each of the models represent more 

accurately the mutation process of microsatellite markers. Because of that, both FST and RST 

were applied to microsatellite data in this study. 

 

Fixation indices have also been used to estimate gene flow for a long time (Slatkin, 1985). 

Only a small number of migrants is required to prevent genetic divergence among 

populations (estimated for example by FST). The relation is translated by:  

 

Nm
FST 41

1

+
=  

 

Where N is the population size, and m the number of migrants per generation. 

However, more recently, serious questions have been raised about the credibility of 

estimation of actual numbers of migrants from F-statistics (see Whitlock & MacCauley, 

1999) and it was decided not to use these calculations in this study.  
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Another useful method of modelling population genetic structure is known as AMOVA 

(Analysis of Molecular Variance) (Excoffier et al., 1992) and permits a hierarchical analysis 

by partitioning the total variance into covariance components at the level of individuals 

within populations, sub-populations or demes within regions and then between populations 

between geographic regions. 

This approach has the advantage of taking into account the number of mutations between 

alleles/haplotypes rather than simply considering allele/haplotype frequencies as in FST.  

 

Source of variation Degrees of freedom Sum of squares (SSD) Variance components 

Among groups G-1 SSD(AG) n’’σa
2 +n’σb

2+σc
2 

Among populations/ 

Within groups 
P-G SSD(AP/WG) nσb

2+σc
2 

Within populations (2)N-P SSD(WP) σc
2 

Total (2)N-1 SSD(T) σT
2 

 

G= number of groups in the structure 

P= Total number of populations  

N= Total number of individuals (genotypic data x2) or gene copies (haplotypic data) 

 

The variance components are used to infer fixation indices assuming: 
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Where σi
2’s are the different variance components with a=group, b=population and c= 

haplotypes.  

 

3.3.3 Demographic history and evolution 

 

Molecular genetic data can provide information on the relationship among existent 

populations, but can also reveal information on recent evolutionary history such as past 

population size (Avise et al., 1988).  

Several estimators presented above can reveal, by themselves or when used in conjunction 

with others, interesting data with respect to demographic processes and population trajectory.  
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For example, h and π can be used to measure genetic diversity of genomes but can also be 

used to estimate recent historical demographic events in populations of a species (Grant & 

Bowen, 1998; Benzie et al., 2002; Arnaud-Haond et al., 2003). 

Grant and Bowen (1998) suggested that populations of marine species presenting different 

combinations of haplotype and nucleotide diversity could be categorized into four groups 

related to influence of historical demographic processes (Fig.3.7). 

 

 

 

 

Population bottleneck followed by rapid 

population growth 

 

 

Large stable population with long 

evolutionary history 

    h     
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Recent population bottleneck or founder 

event 

 

Divergence between geographically 

subdivided populations 
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  Fig.3.7 - Classification of historical demographic processes in populations (accordinging to Grant & 
Bowen, 1998).  
 

FST when used in conjunction with geographic distances in isolation by distance models can 

also be a source of evidence for historic processes (Slatkin, 1993). It was proposed that 

species with no evidence of isolation by distance and low levels of FST may have suffered a 

recent colonisation process, contrary to evidence of no gene flow when FST values are high. 

Mismatch distribution of pairwise nucleotide differences together with neutrality tests can 

also be a source of data on recent evolutionary history by inferring past population sizes 

(Rogers & Harpeding, 1992). 

Episodes of population growth or decline leave a characteristic signature in the distribution 

of nucleotide site differences between pairs of individuals. In histograms showing the 

distribution of relative frequencies and pairwise mismatch distributions the shape of curves 

will depend on past demographic events. 
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CHAPTER 4 

DEVELOPMENT AND ISOLATION OF POLYMORPHIC 

MICROSATELLITE MARKERS FOR THE DEMERSAL FISH 

Helicolenus dactylopterus (DELA ROCHE 1809) 

 
 

4.1 Abstract 

 
In this Chapter the development and isolation of specific microsatellite loci for the demersal 

fish Helicolenus dactylopterus (Sebastidae) from the Azores archipelago is described. A 

non-radioactive enriched library method was used. Primers were designed for 12 identified 

loci and 6 were successfully amplified in multiplex optimised PCR reactions. Observed and 

expected heterozygosities ranged between 0.378 – 0.868 and 0.529 – 0.925 respectively. 

Departures from the expected Hardy-Weinberg equilibrium were observed in 3 loci and are 

likely to be a consequence of population structure within the Azores archipelago. Resulting 

data may be used as tools for the identification of fish stocks and establishment of 

scientifically based fisheries management. 

 

4.2 Introduction 

 
As previously discussed in Chapter 1, microsatellites have presently become one of the most 

popular molecular markers used in population genetics, as a result of their high mutation 

rates, variability, apparent neutrality and abundance throughout many eukaryotic genomes.  

Their major drawback is that it is usually necessary to detect and isolate microsatellite loci 

from most species investigated for the first time. These repetitive sequences are usually 

found in non-coding regions where the mutation rate is higher than in coding regions. With 

such a high mutation rate in microsatellite and flanking sequences they are highly 

unconserved and it is difficult to design primers to universally amplify these loci. However, 

in some cases, primers designed for one species can be used to amplify homologous loci in 

studies on other related taxa – the Cross-Priming strategy (Estoup & Angers, 1998). Highly 

conserved flanking regions have been reported for some microsatellite loci in several 

families allowing primers developed for a certain species to amplify loci in other closely 

related species. Their efficiency depends on both the stability of the loci over evolutionary 

time and the rates of evolution of the flanking regions. 

If no sequence information, for the species under investigation, or a related one, is available 

in the literature, or if the cross-priming strategy fails, the characterization of microsatellites 

has to be done as a preliminary step to an investigation. 
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Several methods exist in the literature for microsatellite isolation (Zane et al., 2002). The 

most common method used to isolate microsatellites consists of the construction and 

screening of an enriched library of repeat motif sequences (Kandpal, et al., 1994). In the 

past, this would include a radioactive step for the labelling of oligonucleotide probes, but 

nowadays this step has been replaced by chemiluminescent techniques that are safer. 

However, a note must be made that since the completion of the practical work for isolation 

of microsatellites in this thesis, more efficient methods have been developed for 

microsatellite isolation that do not require any form of probe-detection (see FIASCO method 

in Zane et al., 2002). 

There have been few studies on Helicolenus dactylopteurus and no microsatellite loci have 

been isolated and developed for this species. Nevertheless, some studies have been carried 

out on species of the same family, and cross priming was tried with primers developed for 

another member of the family Sebastidae: Sebastes mentella (Roques et al. 1999b), but with 

no success. 

The objective of the present chapter was to identify, isolate and develop polymorphic 

microsatellite loci for Helicolenus dactylopterus in order to analyse the population genetic 

structure including identification of stocks and migration patterns and help establish a 

scientifically based identification of stocks for fisheries management purposes. 

 

4.3 Materials and methods 

 
4.3.1 Construction of enriched library 

 
A fully non-radioactive method was chosen for isolation of polymorphic microsatellite loci. 

An enriched library technique based on Kandpal et al. (1994) with modifications by Morgan 

et al. (1999) was used (see Morgan et al., 1999 for specific procedure details that may not be 

presented here). 

Genomic DNA from liver/muscle was isolated from 100 individuals from different localities 

within the Azorean archipelago. Extractions were performed using the phenol-chlorophorm 

extraction protocol presented in Chapter 3 (Sambrook et al., 1989). Extractions of 20 

individuals were combined and precipitated with ethanol in order to increase the variability 

of the sample and obtain the required amount of DNA necessary for this protocol (≈1µg/µl). 

DNA was digested for 3 hours using Mbo1 restriction enzyme (Promega) that recognises 

CTGA - 4 bps sequences. Fragments with CTGA sticky ends ranging from 50 to 5000bps 

were obtained and run in a 1% LMP agarose (Promega) gel. 200-500 bp fragments were 

selected by excision from the gel under UV light and purified following manufacturers 
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instructions for Qiagen mini columns. The next step consisted of ligating the sticky ends 

with complementary adapter molecules using T4 ligase (Promega) for specific PCR 

amplification of the fragments. Adapter oligonucleotide sequences were taken from Kandpal 

et al. (1994):  

 

5’-GAT CGC AGA ATT CGC ACG AGT ACT AC-3’  

3’-CG TCT TAA GCG TGC TCA TGA-5’  

 

In order to increase the probabilities of finding microsatellite sequences the enrichment step 

of the protocol began by incubation of the purified PCR products with a synthetic 

biotinylated (CA)n probe (Sigma) at 50ºC for 18 hours. Fragments containing GT repeats 

were labelled with biotin that strongly binds with streptavidin and allows the hybridised 

repeat regions to be separated with streptavidin-coated magnetic beads (Promega). In a vial, 

hybridised fragments were concentrated against the wall with a magnet and unlabelled DNA 

poured off in the supernatant into another vial. Six washing cycles with magnetic selection 

were performed with increasing stringency to select the most specific (CA)n regions 

(increasing temperature and NaOH concentration). All seven washes were kept and purified 

through Qiagen PCR purification columns and PCR amplified using one of the adapter 

oligonucleotides as primer (Mbo1). PCR products were run in a 2% agarose gel that was 

subject to southern blotting on a nitro-cellulose membrane (Roche) to detect the richest wash 

in CA-repeats. The membrane was probed with a digogxygenin-labelled (CA)10 

oligonucleotide (Sigma) that binds to alkaline phosphatase in a chemiluminescent reaction 

using Boehringer-Mannheim Dig-Detection kit. Washes were then exposed to a light 

sensitive film (Kodak Bio-Max light-2) to identify the most enriched wash (strongest dig-

probe signal) and purify it using a filter column.  

 

4.3.2 Cloning and sequencing 

 
DNA fragments rich in (CA)n repeats were ligated into plasmid vector pGEM-T using T4 

ligase to transform E.coli (JM109 strain) (Promega). DNA fragments were present as inserts 

in the bacterial plasmid DNA and were multiplied as the bacteria grew into colonies. PGEM-

T Easy Vector System II (Promega) includes a gene resistant to penicillin that is inserted in 

the β-galactosidase gene. Colonies were grown in a medium containing the substrates IPTG 

(isopropyl-β-D-thiogalactopyranoside) and X-Gal (5-bromo-4-chloro-3-indolyl-β-D-

galactopyranoside): the first induces production of β-galactosidase that reacts with the 
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second producing a blue colour. If successful cloning of an insert in the vector occurred, 

bacteria were unable to degrade galactose and grew into white colonies (positives). 

 
 

DNA Extraction

Tissue sample Genomic DNA DNA Fragments

Digestion with MboI

Electrophoresis Gel 300-500 bp fragments

Adapter Molecule

PCR

Hibridization
(CA)

10
+biotin

Selection with a magnet

Streptavidin-coated

magnetic beads

Insertion into a plasmid

Cloning

Sequencing  

 
Fig.4.1- Schematic representation of the enriched library construction process and cloning. 
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Positives were plated out onto duplicated gridded dishes and grown overnight at 37ºC. One 

of the plates was used to detect microsatellite-containing clones by southern blotting with a 

nylon membrane and the other was used for selection and purification. Colonies with the 

strongest signal on the photographic film were considered to potentially contain 

microsatellites. These were picked and grown over night followed by purification of the 

plasmids with Promega Wizard Plus minipreps before sequencing on an ABI377 automated 

sequencer using standard M13 plasmid primers (forward – CGC CAG GGT TTT CCC AGT 

CAC GAC and reverse – AGC GGA TAA CAA TTT CAC ACA GGA). 

  

4.3.3 Primer design and PCR optimisation 

 
Primer pairs for amplification of the identified microsatellite containing sequences were 

designed using the program PRIMER 3 (Rozen & Skaletsky, 1998). Several parameters were 

taken into consideration to prevent primer mispairing and improve the performance of the 

primers during PCR amplification: 

- Primer size should be between 18-25bp: 

- Low self-complementarity and primer dimer formation (between primer pairs) 

- Exclusion of highly repetitive zones. 

- High GC content: G-C bonds are more stable and avoid problems with internal 

secondary structure. Ideally around 40-60% of the sequence should be GC.  

- Similarity between Tm (melting temperatures) for primer pairs: Tm is usually 5ºC 

higher then annealing temperature and can be affected by [Mg2+] and [K+]. Ideally 

Tm should be around 60ºC.    

PCR amplification was performed on a Hybaid “PCR Express” thermocycler with 

temperature gradient block. A number of different cycling conditions were used until 

amplification worked reliably. Different annealing temperatures and quantities of reagents 

were also tested.  Once reactions were individually optimised for each primer pair, multiplex 

reactions (with several primers at the same time) were tried in order to simplify and save 

some timework and cost.  

Through optimisation, it was possible to amplify and genotype a quadriplex and two duplex 

sets of primers.  

PCRs were then performed in a MWG-Biotech Primus 96 Plus machine, consisting of an 

initial denaturation step of 4 min at 94ºC, followed by 30 cycles of 94ºC-60s, 58ºC-45s, 

72ºC-60s and a extension step of 72ºC for 20min.10 µl reactions contained approximately 

20ng of DNA; 1µl 10x Qiagen buffer (Tris-HCl pH7.8, KCl, 1.5 mM Mg2+); 2µl Qiagen “Q 
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solution”; 0.9µl DNTP’s mix Perkin Elmer; 0.1µl extra dATP; 6 pmol (quadriplex) and 7 

pmol (duplex) of each primer; 0.75U Taq polymerase (Qiagen) and chemical water. 

For Genescan trials one of each pair of primers (the reverse) was ordered with a different 5’ 

fluor-label (6-FAM; NED and HEX).  

 

4.3.4 Analysis 
 

The assessment of the variability of microsatellite loci was done using the GeneScan 3.1 

software (ABIPrism) and analysis was performed with both GeneScan and Genotyper 

(Applied Biosystems) applications. 

Deviations from Hardy-Weinberg equilibrium were calculated for each locus in order to 

assess their neutral inheritance. Calculations were performed by Arlequin version 1.1 

(Schneider et al., 2000) considering HO (Observed Heterozygosity) and HE (Expected 

Heterozigosity) based on genotype frequencies predicted by the HWE model.   

 

AA=p2 ; Aa= 2pq;  aa =q2   

 

The test for significance of difference between Ho and HE was performed by Guo & 

Thompson’s (1992) analogue to Fisher’s exact test (1935) (Schneider et al., 2000), which 

allows confirmation of the fit to the H-W assumptions. 

 

4.4 Results 

 
Around 200 colonies were successfully transformed and 33 were positive for (CA)n repeats. 

Twenty-five clones were sequenced and primers designed for twelve of them. From the 12 

successfully amplified loci, eight produced consistent products in multiplex PCR reactions 

and were considered further (see characteristics of loci on Table 4.1). 

Multiplex 1 (Duplex 2) contained Hd020 and Hd076 loci in the same PCR reaction; 

multiplex 2 (Quadriplex 1) contained Hd008, Hd044, Hd063 and Hd106 and multiplex 3 

(Duplex 9) contained Hd092 and Hd095. All six microsatellite loci were scored for 40 

individuals randomly chosen from different areas of the Azores archipelago (Table 4.2). 
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Locus 

GenBank 

Accession 

No. 

Repeat Motif Clone Size 
Size 

Range 

     
Hd 008 AY123151 (CA)6CCCATGTA(CA)8CCTATGTA(CA)14 219 204-249 
     
     
Hd 020 - (CA)9 161 161-167 
     
     
Hd 044 AY123152 (GT)9 187 183-192 
     
     
Hd 063 AY123153 (GTGTGTGTT)4(GT)4 218 208-235 
     
     
Hd 076 - (GT)9 212 213-217 
     
     
Hd 092 AY123154 (CA)21 182 166-206 
     
     
Hd 095 AY123155 (CA)12 120 115-191 
     
     
Hd 106 AY123156 (GT)5TT (GT)13 137 135-183 
     

 
Table 4.1 – Helicolenus dactylopterus microsatellite loci description with GenBank Accession 
numbers.  
 

Locus Primers (5'-3') – fluorescent dye Annealing T (ºC) Multiplex group 

    
Hd 008 F-GCATGTGATGACCTTTGACC 58 Q1 
 R-GTTACAGCGGCAAGAAACC – 6FAM   
    
Hd020   F- CAGATGACACCGCACATTG 58 D2 
 R- TAAAACACCCCAACTACCCC - HEX   
    
Hd 044 F-AATGGGCTGAACTGTCCTTG 58 Q1 
 R-CTCTGACTGCTTCCTGGGTC - HEX   
    
Hd 063 F-GGCTCTGTCTATCTCTCGCC 58 Q1 
 R-TTCTGAGTTCCCAAACACCC- NED   
    
Hd 076 F – CTGCTGCTGCCTGTCTCAC 58 D2 
 R - ACTCCATCTCTCTCCACCCCTC - NED   
    
Hd 092 F-TGATGCAGTGGTGGAGAGAG 58 D9 
 R-ACCTTCTATCTGACGCGAGG –6FAM   
    
Hd 095 F-TTGGCTTTTTGTCGAGGG 58 D9 
 R-GCTAACATCAGCACGAATGG- NED   
    
Hd 106 F-AGCTTGGGCTGAAAGATGG 58 Q1 
 R-TGGCAGCAGAGATGAACG – 6FAM   

Table 4.2 - Helicolenus dactylopterus. PCR conditions for amplification of 8 microsatellite loci with 
multiplex reactions including primer sequences, fluorescent dyes, multiplex agroupments and 
annealing temperatures. 
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In general, polymorphism was high showing 3 - 21 different alleles per locus. The observed 

and expected heterozygosity ranged from 0.211 to 0.868, and from 0.356 to 0.925, 

respectively. The observed genotype frequencies deviated from Hardy-Weinberg 

expectations at four out of the eight loci (P<0.001) resulting from heterozygote deficiency 

(Table 4.3).  

 
 

Locus Sample size No of alleles HO HE P (H-W) 

      
Hd 008 25 18 0.800 0.888 0.072 
      
Hd 020 38 4 0.211 0.412 0.001*** 
      
Hd 044 37 6 0.378 0.529 0.002** 
      
Hd 063 40 5 0.600 0.659 0.160 
      
Hd 076 40 3 0.275 0.356 0.001*** 
      
Hd 092 38 20 0.868 0.925 0.360 
      
Hd 095 38 21 0.684 0.880 0.000*** 
      
Hd 106 39 18 0.641 0.785 0.408 
      

 
Table 4.3 – H.dactylopterus. Microsatellite loci diversity and fits to Hardy-Weinberg equilibrium. 
*** significant P-values for P<0.001.  
 
 

 

4.5 Discussion 
 
Some of the microsatellite loci described were more variable in size than usually expected 

for this kind of marker (Goldstein & Schlötterer, 1999). In some cases this variation can 

result from complex repeat patterns (e.g. Hd008 and Hd063), but in the case of simple 

dinucleotide motifs like Hd095, rare alleles can be the cause of such a wide range of alleles 

sizes. The possibility of misinterpreted readings has also to be taken into consideration, as 

sometimes, artifactual “stutter bands” on gels can make some loci difficult to score correctly.  

Overall genetic diversity was high with values of overall expected heterozygosity 

comparable with those found in other marine fish (García León et al., 1997; Ruzzante et al., 

1996; Rico et al., 1997; Stockley et al., 2000) and even for some species of the same family 

(Roques et al., 1999b). 
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4.5.1 Hardy Weinberg equilibrium deviations 

 
Significant deviations from Hardy-Weinberg equilibrium were obtained for four of the eight 

loci analysed as a result of heterozygote deficiency.  

The departures from the Hardy-Weinberg expected genotype frequencies because of 

heterozygote deficiency could be explained by several hypotheses including the presence of 

null alleles, selection, non-random mating within the chosen sample or population structure. 

 

Null alleles arise when mutations occur within primer-binding sequences, which prevent the 

primer from annealing and amplifying one or both alleles in an individual. In such a 

situation, heterozygotes can be under represented and misinterpreted as homozygotes biasing 

estimates of allele frequencies and leading to an observed heterozygote deficiency in the 

population (Pemberton et al., 1995). It is difficult to detect with certainty the presence of null 

alleles because panmixia and non-violation of any H-W assumption have to be assumed. In 

most cases, as in this one, definitive identification of a null allele is not possible but it can be 

done by pedigree analysis for instance as in Callen et al. (1993). Nevertheless, a more 

indirect estimation of null allele frequencies can be carried out using statistical methods 

(Chakraborty et al. 1992; Allen et al., 1995; Brookfield, 1996). 

Once more, the presence of “stutter bands” on gels can lead to scoring errors revealed by an 

apparent deficiency of heterozygotes (O’Reilly & Wright, 1995). 

 

Small sample size can also be responsible for misinterpretation of data, as microsatellite 

analysis requires large numbers of samples, from 50 to 100 individuals, to obtain accurate 

genotype frequencies (Ruzzante, 1998).  

The Wahlund effect (1928) is also characterized by deficiency of heterozygotes. This can 

occur if a sampled population is divided into smaller reproductive groups. Heterozygote 

deficiency can also arise through inbreeding. Heterozygote deficiency is eliminated when 

populations are panmitic with large effective sizes, no barriers to dispersal and random 

mating.  

 

Subdivision of the Azorean metapopulation into demes around the three island groups and 

seamounts could be responsible for the observed significant deviations from H-W expected 

frequencies. The 40 individuals screened with microsatellite loci come from different 

sampling areas distributed within the Azores archipelago, around different islands and 

seamounts. All these hypotheses are examined in greater detail in Chapter 6.  
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CHAPTER 5  

GENETIC POPULATION STRUCTURE OF Helicolenus 

dactylopterus (SCORPAENIDAE) IN THE NORTH ATLANTIC 

OCEAN USING MtDNA SEQUENCES 
 

 
5.1 Abstract 

 

 
Aspects of the life history of H. dactylopterus suggest that populations located in different 

geographic areas may exhibit marked genetic differentiation as a result of low dispersal. In 

this chapter, partial sequences of the mitochondrial control region (D-loop) and cytochrome 

b (Cyt b) were used to test the hypothesis that H. dactylopterus disperses between 

continental margin, island and seamount habitats on a regional or even oceanic scale in the 

North Atlantic Ocean. Individuals were collected from 5 different geographic areas: Azores, 

Madeira, continental Portugal (Peniche), Cape Verde and the Northwest Atlantic. D-loop 

(415bp) and cyt b (423bp) regions were partially sequenced for 208 and 212 individuals, 

respectively. Analysis of variance amongst mitochondrial DNA sequences based on F-

statistics and AMOVA demonstrated significant genetic differentiation between populations 

in different geographic regions specifically the Mid-Atlantic Ridge (Azores)/ NE Atlantic 

(continental Portugal, Madeira) compared to populations around the Cape Verde Islands and 

in the NW Atlantic. Some evidence of intraregional genetic differentiation between 

populations was found. Minimum spanning network analysis revealed star-shaped patterns of 

haplotype frequency suggesting that populations had undergone expansion following 

bottlenecks and / or they have been colonised by jump dispersal events across large 

geographic distances along pathways of major ocean currents. Mismatch disequilibrium 

analysis indicated that Azores and northwestern Atlantic populations fitted a model of 

population expansion following a bottleneck estimated to be between 0.64 and 1.2 million 

years before present. Phylogenetic analysis also suggested that invasion of the NW Atlantic 

slope by populations originating on the eastern side of the Atlantic may have occurred. 
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5.2 Introduction 

 
Many bathyal fish species (living at 200 – 2000m depth) have large geographic ranges that 

span one or more oceans. Populations of benthopelagic species inhabit continental slopes, 

the slopes of oceanic islands and seamounts that may be separated from each other by 

thousands of kilometres of the deep ocean. The question arises as to whether such species 

have life histories that are characterised by extremely high dispersal or if their present day 

distributions have resulted from past dispersal events when oceanic conditions and the 

configuration of geographic features were different. Such historic structuring of populations 

is exhibited by shallow–water fish such as anchovies (reviewed in Grant & Bowen 1998).   

 

 Since the mid- 20th century major fisheries have developed which target deep-water fish 

species living on the slopes of continents, oceanic islands and on seamounts (Koslow et al., 

2000). These have targeted markedly different guilds of fish to those traditionally exploited 

by fisheries. In particular robust, deep-bodied species, with “K-type” life strategies, typical 

of high-energy benthic habitats located on seamounts and continental slopes have been 

subject to trawl and long-line fisheries. These have included orange roughy (Hoplostethus 

atlanticus), rock-fish (Sebastes spp) and slender armourhead (Pseudopentaceros wheeleri). 

They are generally long-lived, with low natural rates of mortality and sporadic recruitment to 

populations (Rogers 1994, Koslow et al. 2000).  The life- history of many deep-sea fish 

species, however, includes an extensive larval phase. This suggests that they may exhibit 

high levels of dispersal and, as a result, should exhibit a lack of stock structure on oceanic, 

regional and sub-regional scales. However, seamounts and oceanic islands maybe isolated 

from each other and from continental margins by large geographic distances. Current-

topography interactions may also generate trapped parcels of water around these features 

(e.g. Taylor columns on seamounts) acting as larval retention mechanisms (Rogers 1994).  

Many studies of seamount and oceanic island-associated species to date suggest that 

populations do exhibit panmixia across large geographic distances on regional or even 

oceanic scales, as expected from aspects of life history, including: slender armourhead  

(Pseudopentaceros wheeleri Hardy 1983), wreckfish (Polyprion americanus Bloch & 

Schneider 1801) and alfonsino (Beryx splendens Lowe 1834) (Martin et al. 1992, Sedberry et 

al. 1996, Hoarau & Borsa 2000). For some deep-water species of fish there is, however, 

evidence for genetic differentiation among populations at the trans-oceanic, oceanic and 

regional scales including roundnose grenadier (Coryphaenoides rupestris Gunnerus 1765), 

Greenland halibut (Reinhardtius hippoglossoides Jordan & Snyder 1901), rockfish 
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(Sebastolobus alascanus (Bean 1890) and S. altivelis (Gilbert 1896)), ling (Genypterus 

blacodes (Forster 1801)), hoki (Macruronus novaezealandiae (Hector 1871)), oreos 

(Allocyttus niger (James, Inada & Nakamura 1988), A. verrucosus (Gilchrist 1906)) and 

others (reviewed in Creasey & Rogers 1999, Rogers 2003). 

 

The existence of morphologically different geographic populations of bluemouth is 

inconsistent with features of its life history (see Chapter2). However, this species is known 

to have internal fertilization with brooding of eggs until the early stage of development 

(early embryo) consistent with zygoparity (Sequeira et al. 2003) and larvae occur in the 

zooplankton. Tagging experiments around the Azores archipelago strongly suggest that adult 

fish lead a very sedentary life style, as many tagged specimens have been recaptured, after 

more than one year, exactly in the same places as they were originally caught and tagged 

(Menezes unpubl. data). Thus, although adults are sedentary, larval-mediated dispersal is 

likely to occur in this species allowing genetically effective migration over considerable 

distances. 

 

The aim of this study is to investigate the genetic population structure of bluemouth in the 

North Atlantic Ocean to determine whether this species can disperse over large (inter-

oceanic) distances or whether larval transport is limited. Extensive larval dispersal will result 

in panmixia amongst populations at the regional and oceanic scale whereas limited dispersal 

will lead to marked genetic structure amongst populations. Historical factors, such as the 

effects of the Last Glacial Maximum, may have also played a role in determination of the 

current distribution of this species and the genetic structure of populations (e.g. Muus et al. 

2001, Marko 2004). To test this hypothesis, H. dactylopterus was collected using a stratified 

sampling scheme from the Macaronesian archipelagos (Azores, Madeira, Cape Verde), 

continental Portugal (Peniche), and the NW Atlantic (off the coast of the USA - South 

Carolina). Single samples were collected from localities on an oceanic scale; multiple 

samples were collected on a regional scale in the NE Atlantic and on a sub-regional scale in 

the Azores Archipelago including the three island groups and the Azores Bank (38o10’N 

29o00’W).  Genetic population structure was analyzed amongst populations by comparisons 

of haplotype frequencies in partial sequences of the mitochondrial cytochrome b gene (cyt b) 

and mitochondrial control region (D-loop). 
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5.3 Material & Methods 

 

5.3.1 Sampling and DNA extractions 

 

The majority of Helicolenus dactylopterus individuals (see Table 3.1) were collected in the 

Madeira, Azores and Cape Verde archipelagos during the ARQDMAD-P97, ARQDAÇO-

P00 and ARQDCAB-P00 cruises on board of the RV “Arquipélago” of the Department of 

Oceanography and Fisheries - University of Azores (Menezes et al., 1998; map Fig.5.1). 

These samples were collected using a “stone-buoy” type of bottom long-line gear (Menezes 

et al., 1998). Other individuals were collected at the fisheries market of Peniche (Portugal) 

and samples from the USA were sent by Dr. George Sedberry from the South Carolina 

Department of Natural Resources. 

Liver and muscle samples were removed from fresh fish and stored in 95% ethanol 

immediately after collection. In the case of NW Atlantic samples, fins were collected and 

stored in a sarcosyl/urea preservative solution. Total genomic DNA was extracted from small 

(1-3mg) sections of tissue following a phenol\chloroform protocol based on Sambrook et al. 

(1989). The extracted DNA was resuspended in elution buffer and stored at –20ºC until 

further utilization.  
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Figure 5.1. North Atlantic map with H.dactylopterus sampling sites. 
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5.3.2 PCR amplification and Sequencing 

 

The mitochondrial control region (415 bp) was amplified for 208 individuals by PCR using 

two universal primers: L-Pro-1 (5’-ACT CTC ACC CCT AGC TCC CAA AG-3’) and H-

DL-C-1 (5’-CCT GAA GTA GGA ACC AGA TGC CAG-3’) described by Ostellari et al. 

(1996). PCR reactions of 10 µl total volume containing 1µl 10x buffer (Qiagen Crawley, 

West Sussex, U.K.; Tris-HCl, KCl, MgCl2, pH 7.8); 1.25µl MgCl2 (Qiagen); 0.6 µl DNTP 

mix (Applied Biosystems, Warrington, Cheshire, U.K.); 0.1 µl Taq polymerase (Qiagen); 

1.5µl of template (10-20 ng DNA); 5.05 µl H2O and 0.5 µl of each primer (10pmol/µl), were 

conducted on a Perkin Elmer DNA Thermal Cycler 480 under conditions as follows: 4mins 

at 94ºC, followed by 30 cycles of denaturing at 92ºC for 60s, annealing at 50ºC for 60s and 

extension at 72ºC for 60s; finishing with an extension step at 72ºC for 5 min. 

The cyt b region (423bp) was amplified for 212 individuals using the same PCR reagents and 

quantities as for D-loop but using the universal primers CYB-GLU-L-CP (5’-TGA CTT 

GAA GAA CCA CCG TTG -3’) and CB2-H (5’- CCC TCA GAA TGA TAT TTG TCC 

TCA-3’) described by Palumbi et al. (1991). PCR cycles were performed in an MWG-

Biotech Primus 96 plus thermocycler under the following conditions: 94ºC for 4min, 

followed by 30 cycles of 94ºC for 50s, 56ºC for 30s and 72ºC for 50s; finishing with an 

extension step at 72ºC for 5 min.  

All amplified products were purified using a QIAquick PCR Purification Kit (Qiagen) 

following the supplier’s instructions. Sequences were obtained by a cycle-sequencing 

reaction based on a dideoxynucleotide chain termination method by Sanger et al. (1977). 

Each purified PCR product was used in a cycle sequencing reaction using Applied 

Biosystems Big Dye Terminator Cycle Sequencing Ready Reaction Kits (Applied 

Biosystems) under the following conditions: 10 µl reactions – 4µl Dye; 0.16 µl primer; 1µl 

sample and 4.84 µl H2O - at 96ºC for 10s, 50ºC for 5s, 60ºC for 4min during 25 cycles and a 

holding step at 4ºC. The resulting cycle sequencing fragments were cleaned up using a 

DyeEx Spin Kit (Qiagen) following the supplier’s instructions. Finally, products were 

visualized using an Applied Biosystems Prism 377 automated sequencer. 

 

5.3.3 Sequence alignment 

 

Both mitochondrial partial sequences were sequenced in both directions to check the validity 

of the sequence data. One example of cyt b and d-loop sequences were used to search 
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Genbank for similar sequences using the Basic Local Alignment Search Tool (BLAST) 

available on the NCBI website (http://www.ncbi.nih.gov/BLAST/). The most similar 

sequences obtained from BLAST searches were added as outgroups for phylogenetic 

analysis to the data sets obtained for Helicolenus dactylopterus in the present study. These 

included cyt b partial sequence data for Sebastes emphaeus (AF030725), Sebastes hopkinsi 

(AF030751), Hozukius emblemarius (AB096132) and Helicolenus hilgendorfii (NC003195, 

AB096133, AB096134). D-loop sequences were obtained from Sebastes inermis 

(AB071270.1) and Helicolenus hilgendorfii (AP002948). All sequences were aligned using 

CLUSTAL X  (Thompson et al., 1997). Alignments were checked by eye and repeated using 

different values for parameters. For cyt b all parameters were as default with Pairwise 

parameters set at Gap Opening Penalty 10, Gap Extension penalty 0.1 and Multiple 

Alignment parameters set at Gap Opening Penalty of 10, Gap Extension 0.2. D-loop 

alignment parameters were default except for pairwise and multiple alignment parameters 

that were both set at Gap Opening Penalty 10 and Gap Extension Penalty 5.  

 

5.3.4 Population genetic analysis 
 

Eight different geographic populations were defined a priori: NW Atlantic, Cape Verde, 

Peniche (continental Portugal), Madeira, Azores Central group, Azores Oriental group, 

Azores Occidental group and Azores seamounts (Azores Bank). 

Intrapopulation diversity was analysed by estimating gene diversity (h)- the probability that 

2 randomly chosen haplotypes are different (Nei, 1987), and nucleotide diversity (π) - the 

probability that 2 randomly chosen homologous nucleotides are different (Tajima, 1983; Nei, 

1987). 

Hierarchical genetic differentiation and the significance of group and population structure 

were tested using analysis of molecular variance (AMOVA) (Excoffier et al., 1992) and F-

statistics (Wright, 1951) respectively. All population analyses were performed using 

Arlequin version 2.0 (Schneider et al., 2000). 

 

5.3.5 Phylogeographic analysis 
 

Phylogenetic analysis was carried out on both Cyt b and D-loop sequences along with 

outgroup taxa in order to ascertain whether results obtained using population genetic analysis 

were reflected in the geographic distribution of haplotypes. Because mitochondrial DNA 

sequences often have unequal nucleotide base frequencies and transition/transversion ratios 
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markedly different from 2, these parameters were estimated using the programme Tree-

Puzzle Version 5.0 (Strimmer & von Haesler, 1996). This programme also identified 

sequences that were identical and these were reduced to a single sequence for subsequent 

analyses to save on computing time and to minimise the size of output trees. 

Sequence data was subsequently analysed using distance (Neighbour-Joining) and Maximum 

Parsimony methods. All analyses used default parameters except for Expected 

Transition/Transversion ratios and nucleotide frequencies that were estimated from the data. 

The HKY85 model of sequence evolution (Hasegawa et al., 1985) was used in all analyses 

where appropriate as this most closely simulates the evolution of mitochondrial DNA 

sequences. It was assumed that mutation rates were similar across the analysed partial 

sequences and Gamma Distribution was set at default. The sampling error of Neighbour-

Joining and Maximum Parsimony Trees was analysed using bootstraps of 10,000 replicates 

where possible followed by the construction of Majority Rule Trees. For Maximum 

Parsimony analysis, for D-loop sequences, only 100 bootstraps were possible because of 

computational limitations. In order to attempt to reduce homoplasy cyt b sequences were 

also analysed using Transversions only, again using 100 bootstraps because of computational 

limitations. All phylogenetic analyses were carried out using Phylip vers. 3.6a3 (Felsenstein, 

2002). 

Because phylogenetic analysis makes assumptions that are invalid at the population level 

(ancestral haplotypes are extinct) data were also analysed using phylogeographic techniques 

based on haplotype networks as implemented by the software package TCS Version 1.13 

(Clement et al., 2000). 

 

5.3.6 Neutrality and Demographic History 

 

Demographic history was investigated by analysing mismatch distributions of pairwise 

differences between all individuals of each population using the Arlequin ver.2.00 software 

package (Schneider et al., 2000). This kind of analysis can discriminate whether a population 

has undergone a rapid population expansion (possibly after a bottleneck) or has remained 

stable over time. The mismatch distribution will appear unimodal (like a Poisson curve) if 

accumulation of new mutations is greater than the loss of variation through genetic drift, and 

multimodal if the generation of new mutations is offset by random genetic drift (Rogers & 

Harpending, 1992). 

Arlequin vers.2.00 was also used to test for departures from mutation drift equilibrium with 

Tajima’s D-test (Tajima 1989). The time of possible population expansions (t) was 
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calculated through the relationship τ = 2ut (Rogers & Harpending 1992), where τ is the 

mode of the mismatch distribution, u is the mutation rate of the sequence considering that 

u=2µk (µ is the mutation rate per nucleotide and k is the number of nucleotides). A mutation 

rate of 2% per nucleotide per million years was used for cyt b as the mean rate for vertebrate 

mitochondrial DNA (Brown et al. 1979). The d-loop region evolves faster than this rate in 

fish and a mean value of 3.6% per million years was selected as the mean mutation rate 

estimated from species pairs located either side of the Isthmus of Panama (Donaldson & 

Wilson 1999). The generation time for H. dactylopterus was taken as approximately 14 years 

as ageing studies on otoliths have indicated that most fish live to 13-14 years of age. Note 

that this study indicated that ages of more than 30 years were not uncommon for bluemouth 

and individuals reaching a maximum age of 43 years for males and 37 years for females in 

the NE Atlantic (Kelly et al. 1999). 14 years is probably therefore a conservative figure for 

generation time in this species. 

 

5.4 Results 

 

5.4.1 Control region 

 
Control region sequence variation 

 
A total of 208 individuals were sequenced for the mt-DNA control region (415bp) and the 

overall diversity revealed was high with 191 different haplotypes. This agrees with previous 

works on teleostean fish (Lee et al., 1995). Only 16 haplotypes (≅8%) were shared among 

different individuals, the other 160 were singletons. Nine of the shared haplotypes were 

represented in more than one site; while the other seven were only shared between 

individuals restricted to the same geographical site (Table 5.1). The most common haplotype 

sequence was registered in GenBank (Accession Number AY563096). Sequence 

comparisons revealed 138 divergent sites resulting mainly from transitions, followed by 

transversions and some insertions/deletions of single base pairs. The expected 

Transition/Transversion ratio was 5.38 and nucleotide frequencies were:  T = 0.314, C = 

0.166, A = 0.396 and G = 0.124.  
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    Haplotypes   

 Site 
A B C D E F G H I J K L M N O P nh nt 

Cape Verde 0 0 0 0 0 0 0 0 0 3 3 2 0 0 0 0 22 28 

NW Atlantic 0 0 0 0 0 0 0 0 0 0 0 0 8 2 0 0 18 26 

Peniche 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 28 28 

Madeira 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 22 22 

Central G. 1 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 27 27 

Oriental G. 0 1 0 0 1 0 1 1 1 0 0 0 0 0 2 0 22 23 

Occidental G. 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 2 25 26 

Seamounts 0 0 0 0 2 1 1 0 0 0 0 0 0 0 0 0 27 28 

Total 2 3 2 2 4 2 2 2 2 3 3 2 8 2 2 2 191 208 

 
Table 5.1. H. dactylopterus. Control region. Absolute frequencies of shared haplotypes; nt- number of 
individuals analyzed per site; Nh- number of haplotypes per site. 
 

 

Population variability 

 
The haplotype diversity (h) of the analysed populations was very high, with observed values 

between 0.911 in the NW Atlantic and 1.000 in several other populations. In contrast, 

nucleotide diversity (π) within each population was moderate to low, ranging from 0.006 in 

the NWA population and 0.033 in Cape Verde (Table 5.2). 

 

Populations 
Nucleotide diversity 

(π) 
Haplotype diversity 

(h) 

CAPE VERDE 0.033 0.976 

NWA 0.006 0.911 

MADEIRA 0.031 1.000 

PENICHE 0.029 1.000 

AZORES 0.029 0.996 

 

Table 5. 2. H. dactylopterus. Control region. Intrapopulation nucleotide (π) and haplotype (h) 

diversities. 

 

Phylogeographic relationships of populations 

 
The analysis of molecular variance (Table 5.3) on the 5 specified groups (Madeira, Peniche, 

Azores, Cape Verde and NW Atlantic) indicated that a high proportion of the total variance 

was attributed to differences between the defined groups of populations with a significant 

value (p<0.0127), indicating geographic structure in haplotype frequencies for d-loop 
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between regions. Only 0.01 % of the variation was attributed to differences between 

populations within groups but this was also significant suggesting that, whilst the 

populations within the NE Atlantic did not contain a large component of the variance at the 

sub-regional scale, there were significant differences within the region.    

 

 

Source of 

variation 

% Total 

variance 

Fixation indices P-value 

 
Among groups 39.86 FCT= 0.3986 <0.05 
Among populations 
within groups 0.01 FSC= 0.0001 <0.001 

Within populations 60.13 FST= 0.3987 <0.001 
 

Table 5.3. H. dactylopterus. Control region. Analysis of molecular variance (AMOVA) results.  
 

      

Estimates of genetic differentiation between all eight pre-defined populations, using F-

statistics, are given in Table 5.4. The populations from the NW Atlantic and Cape Verde 

Islands showed high levels of genetic differentiation from all the other populations. Fst 

values were high for all comparisons with the Cape Verde Islands, ranging from 0.235 to 

0.659. For comparisons with the USA continental slope populations values ranged from 

0.690 to 0.766. The p-values associated with these comparisons were significant (p<0.0005). 

Significant genetic differentiation was not detected between populations within the NE 

Atlantic region (Azores, Peniche, Madeira).  

 

 

Populations 

 

 

 

    FSTvalues   

Azores 
(Oriental) 

Azores 

(Ocidental) 
Azores 

(Central) 

Azores 
Seamounts 

Peniche  Madeira  
NW 

Atlantic 

Cape 

Verde  

Oriental - -0.0115 -0.0117 -0.0116 0.0048 -0.0075 0.7583*** 0.3036*** 

Ocidental 
 - 0.0167 -0.0085 0.0034 -0.0101 0.7326*** 0.2711*** 

Central   - 0.0083 0.0069 0.0191 0.7665*** 0.3317*** 

Seamounts    - -0.0077 -0.0189 0.6904*** 0.2346*** 

Peniche     - -0.0162 0.7173*** 0.2434*** 

Madeira      - 0.7272*** 0.2349*** 

NWA       - 0.6587*** 

CapeVerde        - 

Table 5.4 - H. dactylopterus. D-loop. Pairwise FST values between populations and significance. p-
values: ***= significant at p<0.001 (after sequencial Bonferroni corrections). 
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Phylogenetic analysis 

 

Haplotype networks were inconclusive for d-loop and were excluded from this section as a 

result of high variability and high level of homoplasy amongst sequences. Neighbour-joining 

trees showed a poor resolution amongst populations from the NE Atlantic (Azores, Madeira, 

European continental shelf) but Cape Verde individuals were mostly contained within 3-4 

clades depending on the type of analysis and NWA individuals were always contained within 

a single clade.  For Neighbour-Joining analysis Cape Verde individuals were most closely 

related or sister haplotypes to NWA haplotypes but bootstrap sampling of the data showed 

that this relationship was not supported and trees were characterised by a high number of 

polytomies (Figure 5.2). A few Cape Verde individuals were detected amongst NE Atlantic 

haplotypes and a few NE Atlantic individuals were detected amongst Cape Verde clades or 

unresolved haplotypes. Bootstrap support was extremely poor for Neighbour Joining trees 

apart from near the tips of the tree. Sebastes inermis appeared in different parts of the tree 

with different analyses suggesting that this sequence was so distantly related to H. 

dactylopterus that it was effectively acting as random data (e.g. Wheeler, 1990). 

 

Demographic History and Neutrality 

 

Since no evidence of genetic differentiation was observed in the Azores, all populations 

within this archipelago could be pooled as a single group to conduct tests of selective 

neutrality and demographic history as for intrapopulation diversity. Pairwise mismatch 

distributions and results of Tajima’s D-test performed on each population are given in Fig 

5.3. The parameters of the model of sudden expansion (Rogers & Harpending, 1992) and the 

goodness of fit test to the model are also given in Table 5.5. All histograms presented multi-

modal curves characteristic of populations with constant size over time. Most of the 

populations presented moderate to highly negative Tajima’s D-test values although only one, 

the NW Atlantic was significant. This population presents a unimodal curve with a 

significantly negative Tajima D-test value, indicating a sudden expansion in population size. 

A time of this expansion was estimated at approximately 642,000 years before present. 
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Figure 5.2. H. dactylopterus. Control region. Majority rule concensus parsimony tree with 100 
bootstraps. Inermis = Sebastes inermis; Hilg = Helicolenus hilgendorfii (northwest Pacific); P = 
European continental shelf; M = Madeira; CB = Cape Verde Islands; USA = US continental slope. 
Samples without alphabetical prefix are from the Azores.  
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Fig.5.3 – H.dactylopterus. Control region. Pairwise mismatch distributions (Rogers & Harpending 
1992), simulated model of sudden expansion (Rogers 1995) and results of Tajima’s D-test with 
associated probability (Tajima 1989) for each population.  
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Populations Azores Madeira Peniche Cape verde  NWA 

Parameters      

   S 105 57 67 60 24 
   θθθθ0 0.003 0.000 0.002 0.005 0.002 
   θθθθ1 38.037 60.469 54.258 59.102 35.039 
   ττττ 18.172 17.875 18.478 18.630 2.728 

Goodness of fit test      
   SSD 0.008 0.013 0.012 0.006 0.003 

   P 0.238 0.223 0.173 0.513 0.595 
   R 0.004 0.018 0.009 0.009 0.034 
   P 0.859 0.360 0.705 0.579 0.692 

 
Table 5.5 – H.dactylopterus. Control region. Parameters of the sudden expansion model and goodness 
of fit test to the model for each population. S-number of polymorphic sites, θ0 – pre-expansion 
population size, θ1- post-expansion population size, τ - time in number of generations, SSD – sum of 
squared deviations, R- raggedness index, P= p-values.  

 

5.4.2 Cyt b region 

 
Cyt b sequence variation 

 
The 5’end of the cyt b mtDNA region (423 bp) was amplified from a total of 212 individuals 

altogether. The alignment of the sequences revealed 69 different genotypes defined by 70 

divergent nucleotide sites. Most nucleotide variation resulted from transitions followed by 

transversions with an expected Transition/Transversion ratio of 5.63. The nucleotide 

frequencies were T = 0.302, C = 0.287, A = 0.249 and G = 0.162. The most common 

haplotype (GenBank Acc. No. AY563095) was found in 50 individuals from the NE Atlantic 

populations (Azores, Madeira, European continental slope) but this was not detected in Cape 

Verde and NWA individuals. 14 other haplotypes were also found shared amongst 

individuals from different areas. 

 

Population Variability 

 

Haplotype diversity (h), within the geographic populations was high ranging from 0.426 in 

the NWA population to 0.936 in Madeira. Nucleotide diversity (π) was generally low 

ranging from 0.002 in the NWA population to 0.007 in continental Portugal (Peniche) (Table 

5.6). 
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Populations 
Nucleotide diversity 

(ππππ) 

Haplotype diversity 

(h) 

CAPE VERDE 0.006 0.788 

NWA 0.002 0.426 

MADEIRA 0.007 0.936 

PENICHE 0.007 0.860 

AZORES 0.005 0.865 

 

Table 5.6. H. dactylopterus. Cyt b. Intrapopulation nucleotide (π) and haplotype (h) diversities. 

 

Phylogeographic relationships of populations 

 
The hierarchical partition of variance amongst populations tested using AMOVA (Excoffier 

et al., 1992) was performed as previously presented for the control region (Table 5.7). The 

proportion of “among regions” variation is large (45.52%) and significant. Again, only a 

small variance component was attributable to populations within regions but this was also 

significant. 

 

Source of variation % Total variance Fixation indices P-value 
 

Among groups 42.52 FCT= 0.4252 <0.001 
Among populations within groups -0.07 FSC= -0.0013 <0.001 
Within populations 57.56 FST= -0.4244 <0.001 

 
Table 5. 7. H. dactylopterus. Cyt b. Analysis of molecular variance (AMOVA) results. 
 
 

The estimates of pairwise FST values between the different geographic areas are given in 

Table 5.8 together with respective p-values. High FST values were found in pairwise 

comparisons between all NE Atlantic populations and the Cape Verde and NW Atlantic. P-

values were all significant (p<0.0005), as for the results obtained with the control region.  
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FSTvalues   

Azores 

(Oriental) 

Azores 

(Ocidental) 

Azores 

(Central) 

Azores 

Seamounts 
Peniche Madeira 

NWA 

Atlantic 

Cape 

Verde 

Oriental -        

Ocidental 0.0002 -       

Central -0.0123 0.0052 -      

Seamounts 0.0082 -0.0043 -0.0004 -     

Peniche 0.0270 0.0279 0.0188 0.0096 -    

Madeira -0.0027 -0.0068 0.0053 0.0013 0.0069 -   

NWA 0.7910*** 0.7408*** 0.7714*** 0.7315*** 0.7159*** 0.7531*** -  

Cape 

Verde 
0.4154*** 0.3668*** 0.3778*** 0.3119*** 0.2509*** 0.3440*** 0.6845*** - 

 

Table 5.8. H. dactylopterus. Cyt b. Pairwise FST values for between populations and significance. p-
values: ***= significant at p<0.0005 (after sequencial Bonferroni corrections) 
 

Phylogenetic analysis 

 

The haplotype network derived from cyt b partial sequences is presented in Figure 5.4. The 

most common haplotype, represented by a square-shaped box (size of squares and circles is 

proportional to the number of haplotypes) represents individuals from the NE Atlantic 

(Azores, Madeira, Peniche). The fourth and fifth most common haplotypes were restricted to 

the NW Atlantic and Cape Verde respectively. The star-shaped phylogenies for 3 primarily 

NE Atlantic clades, and the Cape Verde and NWA clades are consistent with recent 

population expansion. The fact that different regions are almost exclusive to specific clades 

is consistent with results from analysis of molecular variance and F-statistics that suggest 

strong genetic differentiation between the NE Atlantic, Cape Verde and NW Atlantic (but 

see below). 
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Figure 5.4. H. dactylopterus. Cyt b. Minimum spanning network analysis of haplotypes for all 
populations. Black dots represent putative mutational steps between haplotypes. 
 

Neighbour-joining and maximum parsimony analysis of the cyt b haplotype data (Figure 5.5) 

also showed poor resolution for NE Atlantic populations and poor bootstrap support for the 

trees as a whole. However there were similarities in the topology of all trees for cyt b 

analyses, including Tranversion-only analysis, in that NW Atlantic haplotypes formed a 

single clade and this was most closely related to Cape Verde haplotypes that were found 

mostly in 3 clades. A few Cape Verde individuals exhibited NE Atlantic haplotypes and a 

few Cape verde haplotypes were found in the NE Atlantic islands. A single small clade of 

haplotypes from the Azores only was also consistently resolved but with poor support. This 

may contribute to the small but significant variance component detected by analysis of 

molecular variance at the sub-regional scale. Sebastes spp did not consistently occur in one 

place on the tree though for Neighbour-Joining analysis, if designated as the outgroup. Again 

this is consistent with a distant relationship between Sebastes spp and Helicolenus resulting 

in a large degree of homoplasy in the data. 
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Fig.5.5.- H. dactylopterus. Cytb. Majority rule concensus neighbour-joining tree with 10,000 
bootstraps. AF030725 = Sebastes emphaeus; AF030751 = Sebastes hopkinsi; AB069132 = Hozukius 

emblemarius; AB096133 & AB069134 = Helicolenus hilgendorfii (northwest Pacific); P = European 
continental shelf; M = Madeira; CB = Cape Verde Islands; USA = NWA continental slope. Samples 
without alphabetical prefix are from the Azores. 
 

Demographic History and Neutrality 

 

Pairwise mismatch distributions and results of Tajima’s D-test performed on each population 

- Azores, Madeira, Peniche, Cape Verde and NWA – are given in Fig 5.6. The parameters of 

the model of sudden expansion (Rogers & Harpending, 1992) and the goodness of fit test to 

the model are also given in Table 5.9.  For Azores and NWA mismatch distributions were 

close to an estimated Poisson model curve and presented significantly negative Tajima’s D-

values, indicating more rare nucleotide sites than it would expected under a neutral model of 

evolution. The Madeira population could not be fitted to an expansion model. For Cape 

Verde and Peniche populations Tajima’s D-values were not significantly negative, and the 

mismatch distributions were closer to multi-modal curves, normally characteristic of stable 

populations over time. The estimated times of expansion for populations from the Azores 

and the NWA were 1.02 and 1.24 million years respectively.   
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Fig 5.6 – H.dactylopterus. Cyt b. Pairwise mismatch distributions (Rogers & Harpending, 1992), 
simulated model of sudden expansion (Rogers, 1995) and results of Tajima’s D-test with associated 
probability (Tajima, 1989) for each population 

 
 

Populations Azores Madeira Peniche Cape verde  USA 

Parameters      
   S 42 19 17 13 7 
   θθθθ0 0.003  2.472 0.005 0.404 
   θθθθ1 15.079  620.625 4.073 0.405 
   ττττ 2.473  0.701 4.544 3.000 

Goodness of fit test      
   SSD 0.001 No fit 0.005 0.022 0.034 

   P 0.852  0.727 0.561 0.135 
   R 0.024  0.024 0.061 0.351 
   P 0.789  0.867 0.582 0.634 

 
Table 5.9 – H.dactylopterus. Cyt b.Parameters of the sudden expansion model and goodness of fit test 
to the model. S-number of polymorphic sites, θ0 – pre-expansion population size, θ1- post-expansion 
population size, τ - time in number of generations, SSD – sum of squared deviations, R- raggedness 
index, P= p-values. 
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5.5 Discussion 

 
5.5.1 Genetic variation  
 
Nucleotide ratios are consistent with previous findings that the mtDNA control region is an 

A-T rich region for fish and other vertebrates. Nucleotide and haplotype diversity of H. 

dactylopterus populations can provide some information on the history of bluemouth 

populations in the North Atlantic. High genetic variation (h) and low to moderate nucleotide 

diversity (π) were found in all populations analysed for both mtDNA markers. This pattern 

of genetic diversity can be attributed to a population expansion after a low effective 

population size caused by bottlenecks or founder events (Grant & Bowen, 1998). Such an 

explanation is also consistent with the star-shaped haplotype networks detected for cyt b in 

populations of H. dactylopterus (Fig.5.4). Mismatch distribution analysis further supports a 

population expansion, for populations in the Azores and the NW Atlantic (Fig.5.3 and 5.6). 

In such cases, the rapid growth of a population leads to the retention of new mutations 

especially in mtDNA sequences, known to evolve several times faster than nuclear DNA 

(Brown et al.1979).  Such patterns of diversity, haplotype networks and mismatch 

equilibrium strongly suggest a historical influence on the genetic structure of H. 

dactylopterus populations as estimated by analysis of haplotype frequencies. 

 

5.5.2 Population structure 

 
F-statistics, analysis of molecular variance, haplotype network and phylogenetic analysis all 

indicate marked genetic structure in H. dactylopterus populations at the inter-regional scale. 

There appears to be no effective gene-flow between the northeastern and northwestern 

Atlantic populations of this species and little or no gene-flow between the Cape Verde 

Islands and populations on the Mid-Atlantic Ridge (Azores), Madeira and the European 

Continental slope (Peniche). However, a few “Cape Verde” haplotypes were sampled from 

NE Atlantic populations and vice versa. This may represent occasional migrants between 

these localities though the overall level of genetic exchange must be below that required to 

homogenise populations, or there is a barrier to gene flow between these populations (i.e. 

they are separated species). These haplotypes may also represent historical migration events 

or even homoplasy amongst haplotypes. In contrast to studies on some seamount-associated 

species (wreck fish, alfonsino, slender armourhead) the larval dispersive phase in H. 

dactylopterus is not sufficient to allow gene-flow between populations at the regional scale. 
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Occasional long-distance migration has been detected in other deep-water species that can 

even span the entire length of oceans (e.g.Møller et al., 2003). 

Within the geographic region of the NE Atlantic there is some evidence for genetic 

differentiation between the island groups and seamounts of the Azores, Madeira and the 

European continental slope. Analysis of molecular variance showed that only a small 

component of variance was attributable to populations within regions, however, this was 

significant. It must also be noted that phylogenetic analysis for both d-loop and cyt b data 

both revealed a small clade of haplotypes that only occurred in the Azores. This is suggestive 

of some degree of reproductive isolation of Azores populations but the limited sample sizes 

in this investigation, and the poor resolution of phylogenetic analyses, limit the interpretation 

of these data. Migration between these populations is probably occurring by larval transport 

in the Azores and Canaries currents. Adult migration is not consistent with behavioural 

observations for this species but these data are limited at present so this cannot be ruled out.  

More detailed investigations of the populations within this region, using high-resolution 

genetic markers to detect fine-scale genetic structure, are presented in the next chapter.  

 

5.5.3 Demographic Evolution of H. dactylopterus populations 
 

A strong historical influence on the genetic population structure of marine organisms in the 

North Atlantic has been suggested for other demersal fish species (e.g. Carr et al. 1995, 

Pogson et al. 1995, Muus et al. 2001, Bargelloni et al. 2003, Stockley et al. 2005). In 

particular, the last glacial maximum is thought to have been responsible for the 

extermination or reduction of populations of marine organisms in both the North Atlantic 

and North Pacific. The survival of some species in refugia is thought to be responsible for 

genetic signatures of bottlenecks followed by recent population expansion. Mismatch 

equilibrium tests and Tajima’s D are both indicative of population bottlenecks followed by 

expansion in at least two of the sample locations, the Azores and the NW Atlantic. The 

haplotype network and phylogenetic analyses of the NE Atlantic, Cape Verde and NWA 

populations suggest historical dispersal events between these populations followed by 

population expansions. The phylogenetic trees and minimum-spanning networks are similar 

to extinction-recolonization models of other fish taxa (e.g. sardine evolution; Grant & 

Bowen, 1998).   

The polarity of the relationships between the NW Atlantic and Cape Verde and other NE 

Atlantic populations inferred by using Helicolenus hilgendorfii as the outgroup taxon suggest 

that the eastern Atlantic populations are likely to have been the source of migrants for the 
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NW Atlantic population of H. dactylopterus. Migration between the NE Atlantic and Cape 

Verde Islands is limited in the present day and if it exists at all it is sporadic. Dispersal routes 

may include larval dispersal via the Canaries current and adult dispersal along the 

continental slope. This is consistent with data that suggests that current western Atlantic 

populations of some marine invertebrates such as Asterias rubens, Littorina obtusata and 

Nucella lapillus were founded from the eastern Atlantic (e.g. Wares & Cunningham 2001). 

For these species, trans-Atlantic migration is thought to have occurred after the last glacial 

maximum, which was much more severe in the NW Atlantic than the NE, resulting in 

elimination of populations of marine organisms on the eastern coast of North America 

(Wares & Cunningham 2001, Hewitt 2003). The last glaciation was sufficiently severe not 

only to influence intertidal and near-shore species but also impacted deep-water species 

living in the Atlantic probably through effects on the planktonic stage of the life-cycle and/or 

by influencing food supply for adult populations. Refugia in the eastern Atlantic allowed 

survival of populations throughout this episode of climatic cooling. The low genetic diversity 

associated with USA populations is also consistent with long-distance or jump-dispersal 

events between the eastern and western Atlantic rather than stepping-stone or Gaussian 

modes of dispersal (reviewed Hewitt, 2003). Intuitively, it may seem unlikely that deep-sea 

species were strongly impacted by previous glaciation events, but the larvae of H. 

dactylopterus are planktonic and would therefore be vulnerable to changes in sea-surface 

temperatures and other physical factors. In addition, food chains in the deep sea, with the 

exception of chemosynthetic communities, are dependent on surface productivity. Any 

changes that impact surface productivity patterns are likely to have knock-on effects on food 

webs as indicated by recent changes in community structure of deep-sea animals (e.g. Billett 

et al. 2001, Wigham et al. 2003). An east to west migration is counter to evidence that some 

tropical Atlantic taxa migrated from the western Atlantic to the eastern Atlantic via the 

Atlantic Equatorial Undercurrent (Muus et al. 2001). Historical dispersal for H. 

dactylopterus, across the Atlantic would have to occur at the larval stage via the Northern 

Equatorial Current.  

The estimated times for expansion in H. dactylopterus, however, are not consistent with the 

end of the last glacial maximum, but are much older ranging from 0.64 – 1.2 million years 

for the NWA population to 1.02 million years for the Azores population. These times are 

more in agreement with data available for populations of decapod crustaceans from the 

North Atlantic / Mediterranean region (200,000 – 400,000 years; Stammatis et al., 2004) but 

even exceed these estimates markedly. The period encompassed by the expansion times for 

H. dactylopterus populations in the NWA and Azores coincide with a period of major global 
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climatic change, known as the Mid-Pleistocene Revolution. This period began with a major 

advance in ice sheets, as detected through marine oxygen isotope (δ18O) records around 

900,000 years ago, that also coincided with major shifts in ocean biogeochemistry (Becquey 

& Gersonde, 2002). This was followed by a shift to 100,000-year glacial cycles at 

approximately 650,000 years ago (Mudelsee & Schulz, 1997). A further significant event, 

known as the Mid-Brunhes Event occurred 300,000 – 400,000 years ago and was associated 

with an increase in glaciation of the northern hemisphere (Jansen et al., 1986; Becquey & 

Gersonde, 2002). Whilst the estimates of times of population expansion from this study may 

be subject to considerable margins of error it is clear that the time of expansion for H. 

dactylopterus populations, in the North Atlantic, is much older than the LGM. The extensive 

time period since expansion may explain the morphological differences between populations 

of this species and together with phylogeographic data may even cast doubt on the 

conspecificity of at least some H. dactylopterus sub-species (see Emerson et al. 1999 for a 

comparable terrestrial example). Significantly it suggests that glaciations prior to the Last 

Glacial Maximum may strongly influence the genetic structure of populations of marine 

species in the North Atlantic / Mediterranean. Some of these events were more severe than 

the Last Glacial Maximum and may have had geographically wider and more profound 

impacts on marine organisms. 
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CHAPTER 6 

HIGH-RESOLUTION ANALYSIS OF Helicolenus dactylopterus 

(SEBASTIDAE) POPULATION STRUCTURE IN THE 

NORTHEASTERN ATLANTIC USING MICROSATELLITES  

 
 
6.1 Abstract 

 
The population structure of Helicolenus dactylopterus in Portuguese waters was surveyed 

using 8 polymorphic microsatellite loci. At a regional scale the geographic locations of 

Peniche (mainland Portugal), Madeira and Azores where sampled with a finer local scale 

analysis undertaken within the Azores archipelago between island groups: Occidental group, 

Oriental group, Central group and a seamount (Azores bank).   

Contrary to previous work with mtDNA sequences, which showed little evidence for genetic 

differentiation of bluemouth populations within the NE Atlantic, microsatellite data revealed 

isolation of the Peniche population and some differentiation at the local scale within the 

Azores archipelago. 

There were significant excesses of homozygotes over all samples, more than expected for 

randomly mating populations in Hardy-Weinberg equilibrium. Tests of FST, RST, SDW and 

(δµ)2 genetic distances measures revealed significant differences between Continental 

Portugal (Peniche) and the Azores archipelago sup-populations (P<0.005). Some inter-

regional differentiation was also detected within the Azores archipelago and resolved by 

multiscalling analysis of genetic distances. Isolation-by-distance was not confirmed by 

Mantel tests.    

The microsatellite heterogeneity suggests that there is a strong population differentiation that 

may have be caused by lack of gene-flow between populations at the regional scale, 

hydrographical and climatic factors or more recent and on-going demographic events caused 

by anthropogenic actions in some regions.  
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6.2 Introduction 

 

The previous chapter was dedicated to the study of the population structure of Helicolenus 

dactylopterus within the North Atlantic using mtDNA markers. The work revealed strong 

population differentiation between both the Cape Verde and NW Atlantic populations from 

the NE Atlantic populations (Azores, Madeira and Peniche). This was contrary to 

expectations based on potential for larval-mediated dispersal in this species but consistent 

with previous work showing morphological differences between geographically separated 

populations of bluemouth. However, a degree of reproductive isolation of the Azores 

archipelago was suggested by phylogenetic analyses, and analysis of molecular variance 

attributed a small but significant component of variance to groups within the Azores 

archipelago. This suggested that population differentiation maybe occurring in this species at 

the local geographic scale. 

Significant differences in H.dactylopterus landing numbers (e.g. Azores and Peniche 

markets) can also be indicative of geographic differences in population size and perhaps 

demographic parameters at a fine geographic scale. This may occur if populations are acting 

independently as separate stocks. 

MtDNA sequences are considered to be very useful for population genetic studies 

particularly because of their rate of evolution, which is faster than nuclear DNA (Brown et 

al., 1979 and Meyer, 1994) (see Chapter 1). However, recent studies employing 

microsatellites markers have began to uncover regional and subpopulation structuring in 

pelagic and demersal fish species (e.g. cod) previously thought to be homogeneous over 

large geographical ranges when analysed using mtDNA sequencing (Ruzzante et al., 1999; 

and 2000).  

When effective population size is moderate, mtDNA sequences are more likely to provide 

better population markers because of greater genetic drift in this genome, but this 

susceptibility can also lead to misleading conclusions with regards to population 

substructuring in large panmitic populations (Ferguson et al., 1995 and Ferguson & 

Danzmann, 1998). 

The high levels of allelic variation together with other features (see Chapter 1) make 

microsatellite loci better markers to understand genetic variability at a finer-scale and to 

resolve microevolutionary events between closely related populations or at the intra-

population level (Estoup & Angers, 1998). They permit the detection of slight departures 

from panmixia in geographically proximate populations with limited genetic variation or that 

have experienced severe bottlenecks (Wright & Bentzen, 1994). 
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In terms of conservation and management of exploited fish species it is important to 

understand the distribution of genetic diversity to delineate distinct stocks or management 

units. Estimating the dispersal capacity of a species is fundamental to assess its ability to re-

colonize areas after a natural or anthropogenic impact. Small local populations, with low 

genetic diversity, which are more susceptible to extinction, are formed when gene flow is 

geographically restricted.  

Primer pairs for eight highly polymorphic microsatellite loci were specifically developed for 

Helicolenus dactylopterus (see Chapter 4 and Aboim et al., 2003) and used here. The 

objective of the present study was to conduct a survey on the genetic variability revealed by 

these markers to test the hypothesis of genetic differentiation of bluemouth populations at a 

finer geographic scale, within a single region of the NE Atlantic. This region includes the 

Portuguese waters that comprise the Madeira and Azores archipelagos and the continental 

slope of Europe adjacent to Portugal. 390 individuals were sampled in Portuguese waters 

from 6 different localities: Peniche (continental Portugal), Madeira Islands and 4 areas 

within the Azores archipelago (Oriental, Central, Occidental and Seamounts groups). 

 

6.3 Material and Methods 

 
6.3.1 Sampling 
 

Peniche

Madeira

Azores

Cape Verde

Helicolenus dactylopterussamples

40º

39º

38º

37º

32º 24º31º 30º 29º 28º 27º 26º 25º

600m depth

Occidental group

Central group

Seamounts

Oriental group

0 km 500 1000 1500 km

s c a l e

30º

15º

45º

60º 45º 30º 15º 0º 15º

 
Fig.6.1. H.dactylopterus. Map with sampling sites for microsatellite analysis. 
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Samples were collected using methods described in Chapter 3. A list of the utilised samples 

and corresponding sample locations is presented in Table 6.1 and illustrated in Figure 6.1.  

An effort was made to obtain a minimum number of 80 individuals per location as indicated 

by Ruzzante (1998) which suggests an optimum sample size of between 50 and 100 when 

working with microsatellite data. 

 
 

Location Area Cruise Date Sample size 

Oriental group ARQDAÇOP00 May 2000 88 

Ocidental group ARQDAÇOP00 June 2000 80 

Central group ARQDAÇOP99 

ARQDAÇOP00 

 

May 2000 

45 

34 

Azores 

Seamounts ARQDAÇOP00 May 2000 80 

Madeira Madeira ARQMADP97 June 1997 26 

Portugal Peniche - August 2001 80 

Table 6.1 – List of utilized samples for microsatellite analysis. 
 

 

6.3.2 Microsatellite amplification and Genotyping 
 

A detailed description of the primer development, DNA extraction protocols, PCR and 

running conditions are given in Chapter 4 (see also, Aboim et al., 2003). Genotyping of 

microsatellite loci was performed by labelling reverse primers from each pair with a different 

5’-fluorescent dye, taking into account requirements for multiplex PCR reactions and 

electrophoresis gels: Hd 008 (6-FAM); Hd020 (HEX); Hd044 (HEX); Hd 063 (NED); Hd 

076 (NED); Hd 092 (6-FAM); Hd 095 (NED) and Hd106 (6-FAM) (Table 4.2). 

PCR products were diluted 4 times before screened on an ABI 377 automated sequencer. Gel 

lanes were analysed using GeneScan ABIPrism software and detected peaks were 

transferred to Genotyperver.2.00 ABIPrism for further analysis. 

 

6.3.3 Data Analysis 

 

Intrapopulation genetic diversity was estimated from the allelic composition of 6 putative 

populations. Allele frequencies, estimates of number of alleles and probability tests for gene 

and genotypic differentiation were estimated using GENEPOP vers. 3.1 software  (Raymond 

& Rousset, 1995).  Arlequin ver 2.0 (Schneider et al., 2000) was used to estimate observed 

and expected heterozygosities and to test for conformation with Hardy-Weinberg 

equilibrium expectations using a test analogous to the Fisher’s exact tests (Guo & 
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Thompson, 1992). The Arlequin program was also used to carry out an analysis of molecular 

variance (AMOVA). 

 To test whether a particular locus contributed disproportionately to any heterozygote 

deficiencies, single and multilocus FIS estimators were calculated as in Weir & Cockerman 

(1984) using F-STAT ver.2.9.3 (Goudet, 1995). The null hypothesis of no linkage 

disequilibrium was tested for all possible pairs of loci in each population and for all 

populations using the same software, as well as, the estimation of extent of genetic 

differentiation among pairs of samples with pairwise FST analysis (estimated by θ; Weir & 

Cockerman, 1984).  

Because of a current debate concerning the most suitable statistic for quantifying population 

differentiation with microsatellite loci, the genetic variation apportioned among samples was 

also estimated with unbiased RST (estimated by Rho; Goodman, 1997) which assumes a 

stepwise mutation model and adjusts for differences in sample and allele sizes variances, 

using the RST-CALC computer programme (Goodman, 1997). 

For this study, genetic distances between populations were estimated through DSW (Shriver at 

al., 1995) and (δµ)2 (Goldstein et al.1995) using the Populations vers. 1.2.28 software 

(Langella, 1999). To better understand the genetic population variation a multidimensional 

scaling of genetic distances was also performed on both DSW and (δµ)2 using Primer ver.5.2.0 

software package ( Clarke & Gorley,2001). This approach has the advantage of detecting 

non-hierarchical aspects of genetic variation without excluding hierarchies and linearity of 

other hierarchical analyses (Lessa, 1990).   

The hypothesis that subtle genetic differences have arisen as a result of geographic isolation, 

in which dispersal between sites may be correlated to geographic distance – the stepping 

stone model – was tested through the correlation between pairwise FST /(1 – FST) values and 

the logarithm of geographic distances between populations. Statistical significance was 

inferred with a Mantel Test (10000 permutations) (Mantel, 1967) as in Genepop vers. 3.3 

(Raymond & Rousset, 1995). Distances among samples were measured as the shortest 

distance between localities in kilometres (Km).  

The existence of null alleles was tested with MicroChecker (Van Oosterhout, 2004) as well 

as other possible genotyping errors (i.e. stuttering and large allele dropout) within the 

microsatellite data set. 

The program Migrate (Beerli & Felsenstein, 2001) was used to estimate relative effective 

population sizes. Migrate uses a Markov chain Monte-Carlo based Maximum-likelihood 

(MCML) approach based on an expansion of the coalescent model to estimate θ. Theta (θ) is 

equal to 4Neµ, where Ne is the long-term (inbreeding) effective population size and µ is the 
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mutation rate for the microsatellite data set. As microsatellite mutation rates (µ) are reported 

to vary in several orders of magnitude (10-5 to 10-2 per locus; Weber & Wong, 1993), θ-

estimates were not used to assess actual effective population sizes but, assuming that the 

mutation rate is the same for all microsatellite loci, were validated as estimators of relative 

effective population sizes for comparison between samples. 

 

6.4 Results 

 

6.4.1 Bluemouth microsatellite loci 

 
Eight microsatellite loci were isolated and amplified for 390 bluemouth individuals across 6 

sample locations. All loci were polymorphic across all populations and were used for the 

subsequent analyses. The overall variability and characteristics of microsatellite loci are 

described in Table 6.2 (See also Chapter 3 and Aboim et al., 2003). 

Across all six samples combined, the average number of alleles per locus was relatively high 

(k = 20) ranging from 38 alleles for Hd008 to a minimum of 7 alleles for Hd020 and Hd076. 

These were also the loci with the highest and the lowest observed and expected 

heterozygosities.  

 

 

Locus 

GenBank 

Accession 

No. 

Repeat Motif 
Size 

Range 
n NA HW FIS FST RST 

          
Hd 008 AY123151 (CA)6CCCATGTA(CA)8 

CCTATGTA(CA)14 
203-249 357 38 *** 0.137 -0.002 -0.0008 

          
Hd020  (CA)9 117-169 374 7 *** 0.371 0.050 0.0099 
          
Hd 044 AY123152 (GT)9 178-192 382 8 *** 0.284 0.005 -0.0037 
          
Hd 063 AY123153 (GTGTGTGTT)4 (GT)4 209-244 385 9 ** 0.075 0.003 -0.0010 
          
Hd 076  (GT)9 209-221 383 7 *** 0.165 0.010 0.0098 
          
Hd 092 AY123154 (CA)21 165-215 380 27 *** -0.007 0.021 0.0000 
          
Hd 095 AY123155 (CA)12 110-194 371 34 Ns 0.278 0.002 0.0001 
          
Hd 106 AY123156 (GT)5TT (GT)13 125-191 388 32 *** 0.157 0.013 0.0286 
          

 

Table 6.2 - H.dactylopterus.Microsatellites genetic variability. N= sample size; NA = number of 
alleles; HW= significance of deviation from Hardy-Weinberg Equilibrium *** = P<0.001, ** = 
P<0.05; FIS = variance of allele frequencies within populations; FST and RST= estimates of overall 
genetic differentiation between populations. 
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6.4.2 Genetic Variation 
 

 
Table 6.3 lists the allele sizes in base pairs and their frequency in each population. All loci 

were highly polymorphic for Helicolenus dactylopterus. A total of 162 alleles were found in 

the 390 sampled individuals. The number of alleles per locus varied considerably, ranging 

from 7 to 38. There were private alleles in all populations and Peniche presented the highest 

number with 8 private alleles. There did not appear to be large differences among geographic 

sites in the number of alleles resolved, except for Madeira, which had a significantly smaller 

number of sampled individuals. 

Allele frequencies distributions were multimodal and exhibited many rare alleles. 

 

 

Locus 008    Na= 21.5   

Allele 

Oriental 

Group 

n=70 

Central 

Group 

n=55 

Ocidental 

Group 

n=76 

Seamounts 

 

n=64 

Madeira 

 

n=21 

Peniche 

 

n=71 

195 0.007 0 0 0 0 0 
197 0 0 0 0.008 0 0 
198 0 0.009 0 0 0 0 
201 0 0 0.013 0 0 0.007 
203 0.029 0.009 0.026 0.023 0 0.021 
205 0.007 0.009 0.020 0.023 0 0.021 
207 0.021 0.045 0.007 0.016 0.024 0.007 
209 0.014 0.009 0.013 0.031 0.024 0.021 
211 0 0.009 0.013 0.008 0 0.014 
213 0.021 0.009 0 0 0.024 0 
215 0.007 0 0.020 0.016 0.024 0.007 
217 0 0.009 0 0 0 0 
218 0 0 0 0 0 0.007 
219 0.014 0.009 0.039 0.016 0.048 0.014 
221 0.021 0.045 0.007 0.031 0.024 0.021 
223 0.150 0.100 0.105 0.125 0.071 0.077 
225 0.236 0.227 0.276 0.242 0.286 0.190 
227 0.114 0.127 0.112 0.133 0.071 0.148 
229 0.057 0.045 0.039 0.047 0.143 0.049 
230 0 0.027 0 0 0 0 
231 0.100 0.100 0.132 0.078 0.048 0.120 
233 0.100 0.145 0.079 0.094 0.071 0.148 
235 0.036 0.036 0.013 0.016 0.024 0.028 
236 0 0.009 0 0 0 0 
237 0 0 0.013 0 0.071 0.014 
239 0 0.009 0.026 0.008 0 0.021 
240 0 0 0 0 0.024 0 
241 0.007 0 0 0.008 0.024 0.007 
243 0.014 0 0 0 0 0.007 
245 0.014 0.009 0 0.023 0 0.021 
247 0.007 0 0.020 0.008 0 0 
249 0.007 0 0 0.023 0 0 
251 0 0 0 0 0 0.007 
253 0.007 0 0.020 0.016 0 0 
255 0.007 0 0.007 0 0 0 
261 0 0 0 0 0 0.014 
263 0 0 0 0 0 0.014 
269 0 0 0 0.008 0 0 
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Observed alleles 23 21 21 23 16 25 
Private alleles 1 3 0 2 1 4 

Allelic richness 13.96 13.56 13.87 15.01 16.00 15.03 

 
 

Locus 020    Na= 4.67   

Allele 

Oriental 

Group 

n=72 

Central 

Group 

n=54 

Ocidental 

Group 

n=74 

Seamounts 

n=70 

Madeira 

n=25 

Peniche 

n=79 

117 0 0 0 0.007 0 0 
159 0.007 0 0 0 0 0 
161 0.042 0.306 0.014 0.043 0.080 0 
163 0.750 0.565 0.838 0.714 0.840 0.810 
165 0.181 0.093 0.122 0.214 0.040 0.146 
167 0.021 0.037 0.020 0.021 0.020 0.038 
169 0 0 0.007 0 0.020 0.006 

Observed alleles 5 4 5 5 5 4 
Private alleles 1 0 0 1 0 0 

Allelic richness 3.81 3.86 3.41 3.85 4.66 3.11 
 

 
Locus 044    Na= 5.33   

Allele 

Oriental 

Group 

n=70 

Central 

Group 

n=64 

Ocidental 

Group 

n=75 

Seamounts 

n=72 

Madeira 

n=23 

Peniche 

n=78 

178 0 0 0.027 0 0 0 
180 0 0 0.007 0 0 0 
182 0 0.008 0.027 0 0 0.013 
184 0.693 0.633 0.567 0.611 0.674 0.622 
186 0.014 0.023 0.033 0.014 0 0.115 
188 0.214 0.242 0.280 0.326 0.326 0.186 
190 0.057 0.039 0.013 0.014 0 0.045 
192 0.021 0.055 0.047 0.035 0 0.019 

Observed alleles 5 6 8 5 2 6 
Private alleles 0 0 2 0 0 0 

Allelic richness 4.12 4.84 5.95 3.83 2.00 4.97 

 
 

Locus 063    Na= 6.17   

Allele 

Oriental 

Group 

N=72 

Central 

Group 

n=64 

Ocidental 

Group 

n=77 

Seamounts 

n=73 

Madeira 

n=22 

Peniche 

n=77 

209 0.069 0.062 0.091 0.103 0.068 0.071 
216 0.021 0.008 0.006 0.007 0 0 
218 0.368 0.406 0.429 0.274 0.364 0.448 
225 0.007 0.031 0 0.007 0 0 
227 0.458 0.391 0.396 0.473 0.455 0.409 
234 0.014 0.016 0.013 0.007 0 0 
236 0.049 0.070 0.065 0.130 0.114 0.065 
243 0 0.016 0 0 0 0.006 
244 0.014 0 0 0 0 0 

Observed alleles 8 7 6 7 4 5 
Private alleles 1 0 0 0 0 0 

Allelic richness 5.83 6.17 4.70 4.86 4.00 4.21 
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Locus 076    Na=4.67   

Allele 

Oriental 

Group 

n=73 

Central 

Group 

n=59 

Ocidental 

Group 

n=75 

Seamounts 

 

n=72 

Madeira 

 

n=25 

Peniche 

 

n=79 

209 0.007 0.008 0.013 0.035 0.020 0.006 
211 0.027 0 0.013 0 0 0 
213 0.048 0.008 0 0.049 0.200 0.051 
215 0.767 0.737 0.787 0.688 0.660 0.797 
217 0.137 0.246 0.180 0.222 0.120 0.146 
219 0.014 0 0 0 0 0 
221 0 0 0.007 0.007 0 0 

Observed alleles 6 4 5 5 4 4 
Private alleles 1 0 0 0 0 0 

Allelic richness 4.44 2.71 3.25 4.03 3.84 3.19 

 
  

Locus 092    Na= 19.83   

Allele 

Oriental 

Group 

n=70 

Central 

Group 

n=59 

Ocidental 

Group 

n=76 

Seamounts 

 

n=72 

Madeira 

 

n=25 

Peniche 

 

n=78 

165 0 0.017 0 0.007 0 0 
167 0.036 0.051 0.026 0.028 0.020 0.006 
169 0.093 0.102 0.086 0.132 0.080 0.026 
171 0.014 0.017 0.033 0.014 0 0 
173 0.029 0.025 0.020 0 0 0.019 
175 0.079 0.110 0.099 0.090 0.040 0.026 
177 0.057 0.059 0.046 0.049 0.120 0.237 
179 0.036 0.034 0.033 0.021 0.100 0.205 
181 0.043 0.034 0.013 0.021 0 0.006 
183 0.043 0.017 0.013 0.028 0.060 0.013 
185 0.007 0 0.020 0.028 0 0 
187 0.029 0.051 0.039 0.042 0.020 0.019 
189 0.043 0.051 0.013 0.049 0.040 0.013 
190 0.007 0 0 0 0 0 
191 0.036 0.059 0.099 0.132 0.120 0.032 
193 0.043 0.102 0.151 0.069 0.060 0.103 
195 0.121 0.144 0.086 0.090 0.140 0.045 
197 0.086 0.068 0.112 0.062 0.080 0.205 
199 0.057 0.017 0.046 0.042 0.060 0.013 
201 0.079 0.008 0.026 0.049 0.040 0.019 
203 0.029 0.008 0 0 0.020 0.013 
205 0.007 0.017 0 0.021 0 0 
207 0.014 0.008 0.020 0.014 0 0 
209 0 0 0.007 0 0 0 
211 0.007 0 0 0 0 0 
213 0.007 0 0.013 0 0 0 
215 0 0 0 0.014 0 0 

Observed 

alleles 24 21 21 21 15 17 
Private alleles 2 0 1 1 0 0 

Allelic richness 17.72 16.09 15.76 16.41 14.44 11.37 

  

Locus 095    Na= 21.83   

Allele 

Oriental 

Group 

n=68 

Central 

Group 

n=55 

Ocidental 

Group 

n=77 

Seamounts 

 

n=71 

Madeira 

 

n=24 

Peniche 

 

n=76 

110 0.007 0.027 0.013 0.007 0.021 0.026 
112 0.007 0.027 0.006 0.035 0.021 0.007 
114 0.051 0.073 0.071 0.042 0.042 0.079 
116 0.037 0.036 0.058 0.021 0.021 0 
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118 0.044 0 0.019 0.021 0 0.013 
120 0.029 0.164 0.032 0.007 0.146 0.046 
122 0.279 0.227 0.318 0.275 0.250 0.263 
124 0.132 0.064 0.058 0.099 0.042 0.079 
126 0.110 0.064 0.110 0.099 0.083 0.145 
128 0.088 0.100 0.097 0.197 0.125 0.151 
130 0.059 0.045 0.065 0.028 0.062 0.033 
132 0.044 0.045 0.019 0.056 0.042 0.020 
134 0.007 0.018 0.013 0.007 0.042 0.013 
136 0.007 0 0 0.007 0 0 
138 0.015 0 0.026 0.014 0 0 
140 0.007 0.009 0.006 0 0.042 0.007 
142 0.007 0.009 0.006 0 0.021 0 
144 0.007 0.009 0.006 0 0 0.007 
148 0 0 0.006 0 0 0 
150 0 0 0 0.007 0 0 
152 0 0.009 0 0.007 0.021 0.007 
154 0.007 0 0.006 0 0 0.007 
156 0.015 0.009 0.019 0.007 0 0 
158 0.007 0.009 0.013 0 0 0.013 
160 0.015 0.009 0.013 0.007 0 0.020 
162 0 0.018 0 0.021 0 0 
164 0 0 0 0.007 0 0 
166 0 0.009 0 0.014 0.021 0 
168 0 0 0.013 0.014 0 0 
174 0.007 0.009 0 0 0 0 
176 0 0 0 0 0 0.007 
178 0.007 0 0 0 0 0.026 
180 0 0.009 0 0 0 0.026 
194 0 0 0 0 0 0.007 

Observed alleles 24 23 23 23 16 22 
Private alleles 0 1 1 2 0 2 

Allelic richness 14.26 15.20 14.20 13.55 15.18 13.48 

 

Locus 106    Na= 23.5   

Allele 

Oriental 

Group 

n=71 

Central 

Group 

n=66 

Ocidental 

Group 

n=77 

Seamounts 

 

n=70 

Madeira 

 

n=25 

Peniche 

 

n=79 

125 0.014 0 0.013 0.021 0 0.006 
129 0 0 0.006 0 0 0 
131 0 0 0 0.007 0 0 
133 0.014 0.030 0.026 0.007 0.060 0.038 
135 0.451 0.439 0.461 0.436 0.320 0.209 
 137 0.063 0.076 0.084 0.079 0.120 0.120 
139 0.028 0.038 0.019 0 0.040 0 
141 0.014 0.015 0.006 0.014 0 0 
145 0 0 0.006 0.007 0.020 0.006 
147 0.007 0.015 0.000 0.007 0.020 0.019 
149 0.007 0 0.013 0.007 0.040 0.006 
151 0.007 0.015 0.013 0.007 0.020 0.006 
153 0 0 0.006 0.021 0 0 
155 0.014 0.008 0 0.007 0 0.025 
157 0.014 0.015 0.026 0 0 0.013 
159 0.028 0.030 0.026 0.014 0 0.006 
161 0.028 0.015 0.006 0.014 0 0.019 
163 0.021 0.015 0.013 0.014 0.020 0.006 
165 0.021 0.023 0.026 0.021 0.020 0.019 
167 0.042 0.015 0.013 0.036 0.060 0.108 
169 0.042 0.038 0.013 0.029 0.100 0.114 
171 0.042 0.030 0.013 0.021 0.080 0.057 
173 0.014 0.030 0.052 0.036 0.020 0.044 
175 0.049 0.038 0.065 0.100 0.040 0.044 
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177 0.028 0.030 0.026 0.043 0.020 0.063 
179 0.028 0.023 0.026 0.021 0 0.006 
181 0.014 0.030 0.019 0.007 0 0 
183 0.007 0.023 0.006 0.007 0 0.025 
185 0 0.008 0.013 0 0 0.013 
187 0 0 0 0.014 0 0.006 
189 0 0 0 0 0 0.013 
191 0 0 0 0 0 0.007 

Observed alleles 24 23 26 26 16 26 
Private alleles 0 0 1 1 0 2 

Allelic richness 15.36 15.74 14.88 14.86 14.80 15.55 

 
Table 6.3 – H.dactylopterus. Microsatellites allele frequencies across 6 populations estimated trough 
Genepop 3.3 (Raymond & Rousset, 1995). Alleles are represented in base pairs. n = number of 
individuals; NA= mean number of alleles per population. 
 

 

There was no evidence of linkage disequilibrium among pairs of loci within each population, 

as permutation tests showed no significant p values (P>0.05) for 161 out of 169 comparisons 

(data not shown). Eight (4.9%) comparisons showed a significant value for linkage 

disequilibria, but this dropped to no significant values after Bonferroni correction (Rice, 

1998). 

Some random individuals failed to amplify, even after attempting re-amplification: 37(9.3%) 

individuals for locus Hd008, 18 (4.5%) for locus Hd020, 12 (3.0%) for locus Hd044, 9 

(2.3%) for locus Hd063, 10 (2.5%) for locus Hd 076, 14 (3.6%) for locus Hd092, 22 (5.6%) 

for locus Hd095 and 6 (1.5%) for locus Hd106. 

This phenomenon, seem to be explained by the presence of mutations within the primer 

binding section causing the presence of null alleles. The probability of this is quite high for 5 

loci as checked by Microchecker and presented in Table 6.4, even knowing that the 

percentage of non amplifying loci is quite small comparing to the total amplified loci in most 

cases (<5%). 

 

 Hd008 Hd020 Hd044 Hd063 Hd076 Hd092 Hd095 Hd106 

Occid.G. yes no yes no no no yes no 
Orien.G. yes yes yes no yes no yes no 
Central G. yes yes yes no no no yes yes 
Seamounts yes no no no no no yes yes 
Madeira no yes no yes yes no yes yes 
Peniche yes yes yes no no no yes yes 
Table 6.4 – H.dactylopterus. Microsatellites. Probability of null alleles existence per locus per 
population calculated with MicroChecker (Oosterhout et al., 2004) 
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6.4.3 Heterozygosity and Hardy-Weinberg Equilibrium  

 

Estimates of variability at eight microsatellite loci within all populations sampled are shown 

in Table 6.5. Within samples, mean observed heterozygosity (HO) ranged from 0.670 in the 

Occidental group to 0.720 in the Central group of Azores; and mean expected heterozygosity 

(HE) ranged from 0.506 in Madeira to 0.626 for the Azores seamounts population. Most 

populations showed a deficit in heterozygotes for the majority of loci. 

Significant departures from Hardy-Weinberg equilibrium were detected for 30 out of 48 

comparisons, of which 17 remained significant after a sequential Bonferroni procedure. All 

populations presented a significant global deficit of heterozygotes for all loci. Only in a few 

cases, did loci present an excess of heterozygotes: Hd092 for three populations (Central G., 

Oriental G. and Seamounts), Hd063 for Central G. and Hd008 for Madeira. However, these 

heterozygotes excesses were never statistically significant. 

The non - conformity with the Hardy-Weinberg predicted genotype frequencies and the 

global heterozygozity deficiency is also shown in the significantly positive FIS values (Table 

6.5).  
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 LOCATION 

LOCUS Oriental G. Central G. Ocidental G. Seamounts Madeira Peniche 

Hd008       
NA 23 21 21 23 16 25 

H0 0.700 0.704 0.776 0.766 1.000 0.817 
HE 0.890** 0.893*** 0.879 0.896* 0.890 0.904* 
FIS 0.212*** 0.205** 0.114*** 0.143** -0.128 0.108** 

Hd020       
NA 5 4 5 5 5 4 
H0 0.194 0.204 0.230 0.386 0.160 0.241 
HE 0.419*** 0.601*** 0.297* 0.455 0.327** 0.323* 
FIS 0.522*** 0.653* 0.194*** 0.133 0.456** 0.257** 

Hd044       
NA 5 6 8 5 2 6 
H0 0.329 0.422 0.427 0.444 0.304 0.333 
HE 0.474** 0.551* 0.600** 0.522 0.463 0.567*** 
FIS 0.308*** 0.220*** 0.290* 0.150 0.328 0.413*** 

Hd063       
NA 8 8 6 7 4 5 
H0 0.569 0.719 0.623 0.616 0.318 0.610 
HE 0.663 0.677* 0.656 0.685* 0.681*** 0.633 
FIS 0.126 -0.062 0.043 0.092 0.523*** 0.026 

Hd076       
NA 6 4 5 5 4 4 
H0 0.315 0.356 0.307 0.458 0.200 0.291 
HE 0.393*** 0.399 0.361 0.488** 0.558*** 0.353** 
FIS 0.198* 0.109 0.126 0.041 0.620*** 0.151 

Hd092       
NA 24 21 21 21 15 17 
H0 0.957 0.864 1.000 0.972 0.880 0.821 
HE 0.944 0.931 0.925 0.932 0.935* 0.848*** 
FIS -0.015 0.071 -0.081* -0.044 0.055 0.033 

Hd095       
NA 24 23 23 23 16 22 
H0 0.632 0.636 0.610 0.662 0.583 0.645 
HE 0.878*** 0.902*** 0.868*** 0.864*** 0.902*** 0.878** 
FIS 0.281*** 0.293*** 0.294*** 0.234*** 0.355*** 0.263*** 

Hd106       
NA 24 23 27 26 16 26 
H0 0.761 0.606 0.701 0.700 0.600 0.696 
HE 0.791 0.803*** 0.772 0.792 0.891** 0.910*** 
FIS 0.030 0.238* 0.092*** 0.115* 0.314*** 0.234*** 

Multilocus       

Mean HE 0.516 0.563 0.584 0.626 0.506 0.557 

Mean HO 0.682 0.720 0.670 0.704 0.706 0.677 

H-W *** *** *** *** *** *** 

FIS 0.178*** 0.211*** 0.122*** 0.107*** 0.269*** 0.177*** 

Table 6.5 – H.dactylopterus.Microsatellites.Summary of genetic variation whithin the studied 
locations. NA, number of alleles; HO, Observed heterozygosity; HE, Expected heterozygosity; FIS, 
inbreeding coefficient. Significant values: (*=P<0.05, **=P<0.01; ***=P<0.001).Underline values= 
significant H-W desviations after sequential Bonferroni correction. 
 

6.4.4 Population substructuring and genetic distances 
 

Hierarchical AMOVA was used to test for genetic structuring defined by the 3 main 

geographical regions (Peniche, Madeira and Azores). To avoid losing statistical power, the 

Madeira population was excluded from the initial AMOVA (I) because of its smaller sample 



 Bluemouth – Population structure using microsatellites 
 

 100

size (N=25) compared to the other samples (58<N<80). A second AMOVA (II) including the 

Madeira sample was also performed. Both AMOVAs revealed that the greatest percentage of 

the variance was explained by within sup-populations (97.97% and 98.8% respectively), and 

only a non-significant 1.54% or 1.12% was explained by variance among groups (Table 6.6). 

Locus by locus AMOVA showed that Hd020, Hd106 and Hd092 have a greater contribution 

for the percentage of variance among groups (data not shown). 

 

 Source of Variation %Total Variance Fixation indices P-value 

Among groups 1.12 FCT= 0.0112   0.083 
Among Populations within groups 0.58 FSC= 0.0059 <0.001 AMOVA I 

Within Populations 98.30 FST= 0.0170 <0.001 
     

Among groups 1.54 FCT= 0.0154   0.199 
Among Populations within groups 0.58 FSC= 0.0059 <0.001 AMOVA II 

Within Populations 97.98 FST= 0.0211 <0.001 
Table 6.6  - Helicolenus dactylopterus. Microsatellite Analysis of Molecular variance (AMOVA) 
results. AMOVA I does not include the Madeira sample. 
 
 
Multi-locus estimates of FST values for each population were high, indicating some level of 

differentiation between populations sampled.  

The analogous RST coefficient, calculated by averaging the variance components over loci, 

also revealed a significant structuring of genetic variation among populations. The different 

loci did not contribute equally to the population differentiation as can be seen by looking at 

the single locus FST and RST values that ranged from 0.000 to 0.050 (Table 6.2).  

In agreement with previous work with other markers (see previous Chapter and Aboim et 

al.2005), microsatellites demonstrated genetic uniformity across Portuguese Macaronesian 

island populations (Azores and Madeira archipelagos). However, in contrast to mtDNA 

sequences, microsatellites detected more subtle, and significant levels of population 

differentiation between Peniche and Azores samples. 

Pairwise comparison of FST values revealed the Peniche sample to be relatively distinct from 

the Azorean samples - Seamounts, Oriental, Ocidental and Central groups (Table 6.7). The 

RST coefficient also confirmed the high degree of genetic isolation between Peniche and the 

Azorean archipelago populations, except for the Seamounts group.  
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 (with no  Bonferroni corrections) 

FST\ RST Oriental G. Central G. Ocidental G. Seamounts Madeira  Peniche 

Oriental G. - 0.0089 -0.0042 -0.0037 -0.0058 0.0138*º 
Central G. 0.0086 - 0.0062 -0.0011 0.0177 0.0261* 
Ocidental G. 0.0016 0.0135** - -0.0008 0.0051 0.0171** 
Seamounts 0.0013 0.0110**º 0.0045 - -0.0023 0.0076 
Madeira 0.0019 0.0096 0.0056*º 0.0038 - 0.0165 
Peniche 0.0144*** 0.0275*** 0.0155*** 0.0219*** 0.0083 - 

 
  (after sequencial Bonferroni corrections) 

 

FST\ RST Oriental G. Central G. Ocidental G. Seamounts Madeira  Peniche 

Oriental G. - 0.0089 -0.0042 -0.0037 -0.0058 0.0138 
Central G. 0.0086 - 0.0062 -0.0011 0.0177 0.0261* 
Ocidental G. 0.0016 0.0135* - -0.0008 0.0051 0.0171* 
Seamounts 0.0013 0.0110 0.0045 - -0.0023 0.0076 
Madeira 0.0019 0.0096 0.0056 0.0038 - 0.0165 
Peniche 0.0144* 0.0275* 0.0155* 0.0219* 0.0083 - 

 
Table 6.7 – H.dactylopterus. Microsatellites. Population pairwise FST (below diagonal) and RST (above 
diagonal) comparisons.  FST estimated by FSTAT 2.9.3 (Goudet,1995) and RST estimated by RSTCalc 
(Goodman, 1997). Significant values (*=P<0.05, **=P<0.01; ***=P<0.001 and º = non significant 
after sequencial Bonferroni correction). 
 
 
Genetic differences between populations were also tested using two pairwise measures of 

genetic distance DSW (Shriver et al., 1995) and (δµ)2 (Goldstein, 1995),which are shown in 

Table 6.8. 

 
 
 
Populations Oriental G Central G Ocidental G Seamounts Madeira Peniche 

Oriental G - 177.994 174.364 186.944 156.91 200.227 
Central G 0.074 - 179.892 191.846 162.332 204.588 

Occidental G 0.033 0.068 - 189.301 159.01 203.645 
Seamounts 0.046 0.091 0.064 - 171.239 211.673 
Madeira 0.055 0.104 0.081 0.787 - 184.219 
Peniche 0.271 0.309 0.333 0.265 0.259 - 

Table 6.8 – H.dactylopterus. Microsatellites.Genetic distances between populations. Below diagonal 
DSW (Shriver et al., 1995) distances. Above diagonal (δµ)2.(Goldstein, 1995). 
 

 

The multidimensional scaling of genetic distances using DSW (Shriver et al., 1995) is 

presented in Fig. 6.2 and 6.3. In these graphs or dimensional plots the relative distances of 

the points represent the relative dissimilarities of the samples. Points that are close together 

represent samples with smaller genetic distances, hence, less genetic differentiation, and 

points further apart correspond to more differentiated populations. Oriental, Central and 

Occidental Groups are tightly grouped demonstrating that there is high genetic similarity 

between these populations. Madeira and Peniche samples are shown quite far apart from the 
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rest of the populations consistent with a high level of differentiation relative to the Azores 

archipelago. The Seamounts population also shows a high distance (but lower than Madeira 

and Peniche vs Azores- see 3D plot).   

 

Oriental GroupCentral GroupOccidental Group

Seamounts

Madeira

Peniche

 
 
Fig. 6.2 – Two-dimensional (2D) scaling plot of pairwise stepwise weighted genetic distances (DSW – 
Shriver et al., 1995). 
  

 

 
Fig.6.3 – Tri-dimensional (3D) scaling plot of pairwise stepwise weighted genetic distances (DSW – 
Shriver et al., 1995). 
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6.4.5 Isolation by distance 
 

 
The hypothesis that the geographic distance between populations, i.e, isolation by distance, 

alone, was responsible for the genetic differentiation was excluded. The relationship between 

FST/(1-FST) values and the logarithm of geographic distances in kilometers showed a non-

significant but positive correlation (r=0.152; P=0.151) (Fig. 6.4). The absence of significant 

correlation between genetic and geographic distances suggests that genetic differentiation 

estimated, as Fst values between samples, cannot be explained solely by geographic 

isolation.  

 

Fig.6.4 – H.dactylopterus. Relationship and regression line between genetic differentiation [FST/(1-
FST)] and the Log geographical distance. 
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6.4.6 Effective Population Size 
 

The average θ-values estimated with Migrate software, for the entire microsatellite data set, 

were 9.4300 in the Azores archipelago, 0.9356 in Madeira and 4.0593 in Peniche (mainland 

Portugal). All θ-estimates varied significantly between the three samples. The very low value 

obtained for Madeira might be related to the small number of samples obtained and analyzed 

for this population. However, the significant difference obtained between Peniche and 

Azores samples with a smaller effective sample size for Peniche cannot be neglected.     

 
 
6.5 Discussion 

 
6.5.1 Microsatellite Genetic Variability  
 
 

Microsatellite loci display high levels of polymorphism in Helicolenus dactylopterus, 

suitable for population structure analysis. This agrees with polymorphism found in mtDNA 

markers (see Chapter 5) for this species, which was also relatively high for this type of 

marker.  

However, the mean expected heterozygosity over all populations found in H.dactylopterus 

using microsatellites is much lower (HE = 0.559) compared with other marine fish such as 

sea bass (HE = 0.779) and herring (HE = 0.889) (García de León et al., 1997; O’Connell et 

al., 1998; Shaw et al., 1999b).  

 All loci showed significant deviations from Hardy-Weinberg equilibrium due to 

heterozygote deficiencies translated into high positive FIS values, except one. Disequilibria 

can result from several nonexclusive factors such as null alleles, population differentiation, 

selection or evolution.  

Regarding the high probabilities of nonamplifying alleles presence in some loci, it is worth 

mentioning that this phenomenon may underestimate the degree of heterozygosity and cause 

deviations from Hardy Weinberg equilibrium and non-Mendelian inheritance of alleles. 

There is also the probability of mis-scoring of alleles in heterozygous individuals because of 

stutter bands in genotyping gels. This is a common problem in microsatellite analyses of 

populations and occurs especially in long dinucleotide or composed repeats. During PCR 

slipped-strand mispairing can occur and may form extra shadow bands that appear as several 

peaks instead of a single product (Shinde et al., 2003). Some of the loci showed some stutter 
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bands, but analysis of allelic frequencies and values show no significant evidence of this 

(data not shown). 

6.5.2 Heterozygote deficiency  

 

Heterozygotes deficiencies have often been detected in other marine fishes (García de León 

et al., 1997; Rico et al., 1997) and hypothetically explained as a combination of several 

technical factors such as null alleles and biological factors including inbreeding, the 

Wahlund effect, selection and assortative mating. 

 

Heterozygotes deficiency can be explained by mating among relatives, hence inbreeding, 

within the sampled populations. This hypothesis is plausible in H.dactylopterus has adults 

are found to be very sedentary and fertilization is internal, which enhances chances of non-

random matting between individuals. However, the pelagic larvae of this species should act 

to counter these affects unless mechanisms for larval retention are occurring because of 

larval behavior or through physical mechanisms such as island mass effects (e.g. 

Hernandezleon, 1991) or Taylor column formation (seamounts only; reviewed in Rogers, 

1994). 

Another possibility is that heterozygote deficiency may be caused by small reproductive 

subunits within the sampled populations that are present but not detected. This is known as 

the Wahlund effect (Wahlund, 1928) and is analogous to the effects of inbreeding, as it also 

causes high positive observed FIS values (Table 6.3). The average frequency of homozygotes 

among subpopulations is always greater than would be expected with random mating; 

because the mixture of two or more populations in Hardy-Weinberg equilibrium with 

different allele frequencies produces a mixed population with a greater heterozygote 

deficiency than expected for the average HWE allele frequencies (Hartl, 2000). 

 

The existence of the Wahlund effect in this case is possible as sample sites are quite large 

and can comprise more than one population. For instance, in the Madeira archipelago, 

samples came from different places in the archipelago that are far apart from each other, and 

in Peniche, samples were also collected from different areas. In the case of Azores, it seems 

more improbable that a Wahlund effect exists as sampling areas were more controlled and 

restricted, however, a temporal Wahlund effect could also occur and should be taken into 

account. Each population could represent several subunits of individuals recruited in 

different years or sampling may have occurred at a time when different reproductive stocks 

were mixed outside of the breeding season. The mating behavior and reproductive strategies 
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of H.dactylopterus are not completely studied and several details need to be explained in 

order make such remarks. Comparisons of population structure at different time periods and 

analysis taking into consideration the age of individuals would be useful to test these 

hypotheses. 

Null alleles have been reported in several microsatellite loci studies as a possible cause for 

heterozygotes deficiency. The presence of null alleles results in false homozygotes causing 

deviations from Hardy-Weinberg proportions and biasing all population analyses based on 

allelic frequencies. Five of the microsatellites used in this study showed high probability of 

failure in PCR amplification due to mutations within the primer-annealing sequence. So, the 

hypothesis that null alleles can put in cause the population analysis has to be considered. 

 

It is not possible to conclude, without error, which of the hypotheses presented above 

explains the heterozygotes deficit observed and probably more than one may be involved.  

 

6.5.3 Population differentiation 

 

Evidence of population structure at fine geographical scales has been shown in several 

marine fish species in several parts of the world using different molecular markers (e.g. 

Ruzzante et al., 1996; 1998). Actually, within the analyzed area a study on Pagellus 

bogaraveo (Stockley, 2005) has also shown evidence for the same pattern of population 

differentiation between the Azores and the Portuguese continental slope as found here for 

H.dactylopterus. 

Highly significant levels of population differentiation based on both FST and RST were found 

for H.dactylopterus populations on a regional scale across the NE Atlantic (Table 6.7). 

Isolation-by-distance does not seem to be the main cause of the differentiation found, as no 

significant correlation was found between geographic and genetic distances of populations.    

The detection of relatively small-scale population units conforms to studies on bluemouth 

behavior, reproduction and tagging. Internal fertilization and sedentary adults can promote 

differentiation between samples.  

Low gene-flow between populations caused by physical, hydrographical and historical 

demographic factors are surely playing a major role in shaping the genetic structure of the 

species at this regional scale. 

Results show a clear isolation of Peniche and Azores samples. Looking at the geographic 

location of Peniche it seems feasible that the level of isolation between bluemouth off of 

mainland Portugal and those off the Azores is higher than between Madeira and Peniche. 
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Several seamounts exist between these two locations ( Epp & Smoot, 1989) and Madeira is 

closer to the continental shelf, permitting demersal fish to migrate more easily between them. 

Looking at the circulation pattern of surface currents in the NE Atlantic region it is also 

possible that larval dispersal through current transport is easier between Peniche and 

Madeira through the Canaries current than between Peniche and Azores (see fig 2.1 - 

Chapter 2). 

The fact that Madeira sample is also much smaller than the others (only 25 individuals) can 

also be the main reason for not finding such evident genetic differentiation between this 

population and the others.  

In addition to geographic and ecological factors, historical events can also be invoked to 

explain the genetic discontinuity between populations. It is possible that a combination of 

both historical and contemporary ecological factors has effectively isolated Peniche or 

Azores bluemouth populations.  

Strong historical influences on the genetic population structure of H.dactylopterus were 

previously hypothesized on the basis of mtDNA sequence data (Chapter 5). The Azores 

population showed evidence of bottlenecks followed by expansion events in the past.  

The reproductive isolation of Azores populations proposed in the previous chapter is here 

confirmed and enhanced by these more sensitive and polymorphic markers.  

 

It would be useful and interesting to test for bottlenecks and times of expansion using allelic 

data to compare with the ones obtained with mtDNA. However, specific tests for 

demographic past events such as recent bottlenecks are not so common for microsatellite 

data. Most of them, such as for example that of Cornuet & Luikart (1996), assume Hardy-

Weinberg equilibrium in the tested populations, which is not the case here.  

The isolation encountered is also supported by the θ-estimates that point to a significantly 

smaller effective population size of the Peniche sample when compared with the Azores 

archipelago. Landing numbers observed in Peniche and Azores markets support these results, 

as Peniche numbers seem to be lower than Azorean ones, specially if one takes into 

consideration that sometimes several other Scorpaenae species are misidentified as 

bluemouth in this area (Moura, 1995; Moreira et al., 2000; Lotaçor, 2003). 

 This might be due to anthropogenic factors such as different resources’ exploitation levels in 

both areas, or it can also be attributed to biological characteristics of the species such as 

specific reproductive behavior or assemblages.  

However, further analysis using temporal sets of samples would be useful on trying to 

understand the demographic history of populations using microsatellites markers. 
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The data presented here also suggests the evidence of some degree of population structure 

between subpopulations of the Azores archipelago. FST analysis shows some significant 

differentiation of Central Group subpopulation from some other groups of the archipelago. 

This might be influenced by the fact that the Central group sample is constituted by 

individuals belonging to two different collection years. The observed genetic relationships 

could have been caused by temporal instability of allele frequencies, although some studies 

in teleost marine fishes have demonstrated that allelic shifts over small periods of time are 

not so common (Grant & Utter, 1984). This is probably especially the case in relatively long-

lived species of fish such as H.dactylopterus. For this reason it would also be interesting to 

analyze temporal sets of samples which could reveal interesting results on the demographic 

history of these populations (Beaumont, 1999). However, such separation should not be 

completely neglected as some evidence of internal differentiation within the Azores 

archipelago has already been come from mtDNA data although this was not significant.  

 

Multidimensional scale analysis of genetic differences provided further evidence of a 

possible population separation within the Azores archipelago. The genetic distance between 

the Seamounts population from the others of the archipelago is quite striking. No previous 

analyses have revealed genetic isolation between seamount populations although this has 

been hypothesized as resulting from physical retention of larvae by hydrodynamic processes 

around these topographic features. One of the explanations for the maintenance of benthic or 

bentho-pelagic populations in isolated and patchy environments is the combination of several 

patterns of circulation flow and water masses. It has been described that around islands and 

seamounts typical flow patterns such as Taylor Columns (Roden, 1987 and 1991), Island 

mass effect (Sander, 1981; Hernandezleon, 1991; Caldeira et al., 2002) and other 

hydrographic processes may induce retention of larvae or high production up-welling 

inducing adults to stay feeding on this habitats  (Rogers et al., 1994; Mullineaux & Mills, 

1997; Rissik & Suthers, 2000). But contrary to what expected it has been difficult to find 

evidence for genetic isolation of seamount communities.  

 

As pointed out before, the presence of null alleles can highly biased the population analyses 

based on allelic frequencies. So, all those analyses were repeated excluding loci with strong 

probability of null alleles. When loci Hd008, Hd020, Hd044, Hd095 and Hd106 were 

omitted from the data, some slight differences were found (see Appendice 1). For example, 

on FST and RST pairwise comparisons some differences in population structure within the 
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Azores archipelago were found. Most pairwise significant values were maintained, with no 

doubts for the Peniche population isolation. However, some differentiation within the Azores 

archipelago was lost, nominally, no significance was found between the Central and 

Occidental groups, but a significant differentiation was found between Seamounts and 

Occidental groups. This seems to emphasize some kind of isolation of the Occidental Group, 

which might be caused by its geographic location. The occidental group is located in a 

different tectonic plate and separated from the other islands and seamounts by the Mid-

Atlantic Ridge, which might influence migration of demersal species. Some differentiation 

was also lost on the genetic distances analysis, with no significant separation of the Madeira 

and Seamounts group populations from the rest, has obtained for the entire data set. 

 

Looking at the previous chapter, it was hypothesized that Cape Verde individuals might be 

considered to belong to a different species as no sufficient gene flow seems to exist between 

NE Atlantic (Azores, Madeira and Peniche) and this archipelago. It should be interesting to 

analyse the data set excluding those individuals with Cape Verde exclusive haplotypes. The 

number of samples in this situation is probably of a number too small compared to the high 

numbers used for microsatellite analysis, but maybe it would influence the obtained results.  

 

6.5.4 Contrast between microsatellite and mtDNA evidence 
 

The results presented in this chapter contrast sharply with those derived from the analysis of 

sequence variation in the cytochrome b and control regions of mtDNA, which did not show 

strong evidence of subpopulation structure within the NE Atlantic region (see Chapter 5 and 

Aboim et al., 2005).  The contrast between the results is even more remarkable when one 

considers that the assayed individuals for nuclear DNA variation were the same or were 

drawn from the same aggregations as the ones assayed for mtDNA variation. These results 

support the assertion that nuclear DNA has a much higher potential for detecting variation 

and genetic differences than mitochondrial DNA (Ward & Grewe, 1994; Carvalho & Hauser, 

1995; Park & Moran, 1995). However, some authors have found exactly the opposite, with 

mtDNA revealing more significant differentiation between populations than microsatellite 

data as has been seen in, for example, toothfish (Appleyard et al., 2002; Shaw et al., 2004). 

This reinforces the statement that more than one marker should be used in molecular studies 

whenever necessary as their resolution and sensitivity to different factors diverge. 

The encountered differences in this study can be explained by several factors that rely 

mainly on the fact that mtDNA is haploid and maternally inherited which makes the 
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effective population size of this marker ¼ of a nuclear marker like microsatellites. Because 

of this, mtDNA is more susceptible to genetic drift effects and demographic effects 

reflecting historical divergences between populations. Microsatellites have a higher mutation 

rate and effective population size that make them more sensitive to recent divergences than 

the effects of genetic drift. Differences in the level of homoplasy can also influence the 

results obtained by each marker.  

But the more accurate explanation for the detected differences is probably the number of 

samples analyzed rather than the mutation rate of each marker.  

 
 
6.5.5 Relevance for Management and Conservation 
 
 
The obtained data have important implications for the conservation of genetic diversity in H. 

dactylopterus and other deep-sea fish populations with similar characteristics. If populations 

are depleted in one region through fishing activities then it is unlikely that they will be 

recolonised from adjacent geographic regions by immigration over the short to medium 

timescale. If overexploitation occurs within a very limited area on a local scale, then targeted 

populations are likely to be replenished from other proximate sub-populations. This suggests 

that a useful management strategy for this species is one that protects at least some sub-

populations within each region in which H. dactylopterus is found. Only such a strategy will 

be likely to assist in the survival of the species and preservation of intraspecific genetic 

diversity. Management measures that attempt to limit fishing pressure across a wide 

geographic area will reduce the genetic diversity of the entire regional population. Such a 

strategy can have disastrous consequences if control of exploitation is ineffective or quotas 

are set at the wrong level as has occurred for other deep-sea species such as orange roughy 

(Rogers, 1994). 
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CHAPTER 7 

GENETIC POPULATION STRUCTURE OF TWO CLOSELY 

RELATED SPECIES, Beryx splendens and Beryx decadactylus 

(Berycidae) IN THE NORTHEASTERN ATLANTIC USING 

MtDNA SEQUENCES 

 

 
7.1 Abstract 

 

 
The geographic variation of two closely related species Beryx splendens (alfonsino) and 

Beryx decadactylus (imperador) in the Northeast Atlantic was investigated using partial 

sequence analysis of mitochondrial cytochrome oxidase-b (cyt b) and the mitochondrial 

control region (CR). 

Alfonsinos and imperadors are sympatric species with largely overlapping distributions, and 

present very similar morphological, biological and life history characteristics. However, the 

species were found to differ widely in terms of the variability of mtDNA and spatial 

distribution of haplotypes. 

The mitochondrial control region (421 bp) and cyt b (273bp) were sequenced from 

individuals captured in Azores, Madeira and Cape Verde archipelagos. B.splendens showed 

no significant population structure indicating that it forms a panmitic population in the 

Northeast Atlantic. In contrast, strong evidence for isolation of the Cape Verde population 

from Madeira and the Azores was detected for B. decadactylus. Following these results it 

was decided to perform a finer scale analysis on imperador by analysing samples from 

Peniche (mainland Portugal) and dividing the Azores archipelago into several different sub-

sampling groups. This confirmed the differentiation between Cape Verde population and all 

the other samples and also detected a significant differentiation between Peniche and one of 

the Azores sub-samples (Central Group).  

Mismatch distribution analysis points to a demographic history of a sudden 

expansion/bottleneck around 1 million years before present for B.splendens for the entire 

Northeast Atlantic population. For B.decadactylus no evidence of expansions or bottlenecks 

was found. 

The contrast in the genetic population structure of two related deep-sea fish regarded as 

having similar life-history characteristics is striking. Implementation of correct management 

strategies for these two species is necessary and must take into account genetic evidence of 

panmixia in B.splendens and particularly the presence of discrete genetic stocks of 

B.decadactylus. 
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7.2 Introduction 

 

Given the lack of physical barriers in the oceans it is difficult to conceive that marine species 

can exhibit structured populations at the regional scale (Palumbi, 1994; Ward et al., 1994).  

Nevertheless, this has already been shown in many studies, and even the present work has 

demonstrated, that life-history characteristics of species and physical parameters of the 

oceans can have strong effects on the genetic variability of populations and cause 

differentiation at large and small scales. Several marine fish species, pelagic and demersal, 

are known to be differentiated in smaller demes across the oceans or even smaller regions 

contradicting the long held idea of general panmixia and extensive gene flow across marine 

environments (Baker et al, 1995; Aboim et al., 2005). 

Following this line of thought, it is also difficult to believe that sympatric and closely related 

fish species with morphological, biological and ecological similarities may exhibit different 

phylogeographic patterns. However, some studies have proven the contrary, showing that 

subtle differences in behaviour, life-history strategies, reproduction and recruitment may 

induce contrasting population structures and demographic histories among very similar 

species (Bargelloni et al., 2003; Zardoya et al., 2004) 

In this chapter, two closely related congeneric species will be compared in terms of genetic 

variability and population structuring.  

 

Beryx splendens (alfonsino) and Beryx decadactylus (imperador) are two deep-sea demersal 

fish species, with important commercial value and are highly exploited wherever they are 

abundant (Lehodey et al., 1994; Rico et al., 2001; Akimoto et al., 2002). In the Northeast 

Atlantic Ocean they are caught in substantial quantities by several fisheries around 

seamounts and continental slopes, normally as by-catch in mixed-species fisheries. However, 

in some regions such as the Canary Islands, Beryx splendens is the main target species of 

small-scale fisheries.  

B.splendens and B.decadactylus are morphologically very similar and they are often sold as 

the same in markets. Catches are usually recorded as Beryx spp. as a whole (Figure 2.8) and 

no separate statistics exist for these species except sometimes at a regional scale; e.g. Azores 

(Lotaçor, 2003 – see Chapter 2 Figures 2. 9 and 2.11).  

Relatively little is known about the life history and biology of these two species, especially 

about B.decadactylus. Some work exists on the reproduction (Lehodey et al., 1994 & 1996; 

Gonzalez et al., 2003), development (Massey & Horn, 1996; Anibal et al., 1998; Rico et al, 

2001), distribution (Busakhin, 1982; Ivanin, 1987; Relini et al, 1995) and behavior 
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(Galaktionov, 1984) of B.splendens and its life-history characteristics are normally assumed 

to be the same for B.decadactylus. No specific studies on B. decadactylus are available, 

except for some comparative studies with B.splendens on feeding habits (Dürr & González, 

2002) and larval stages (Mundy, 1990). 

Both species are benthopelagic (Maul, 1981) with a depth distribution mainly between 300 – 

1,300m around seamounts and continental slopes at tropical and temperate latitudes of the 

world’s oceans (Shotton, 2005). They are typical of the actively swimming deep-bodied type 

of deep-sea demersal fish. Fecundity is high and the pelagic larval stage is thought to last for 

several months allowing long-distance dispersal.  

The only relevant difference in these two species seems to lie in population size, as alfonsino 

seems to be more abundant than imperador, a fact confirmed by information on catches and 

availability of the species in certain geographic localities (Lotaçor, 2003). Imperador also 

seem to achieve bigger lengths then alfonsino and in some areas, such as the Azores, they are 

found at greater depths (Menezes et al., 2001). These subtle differences in fish-catch 

statistics may indicate a more conservative life-history for imperador than that of alfonsino. 

 

This is not only one of the first population genetic studies on B.decadactylus but also an 

innovative approach in terms of the comparison between the two species of Beryx at the 

molecular level. It is also an important contribution to fisheries management, as it seems that 

fishery biology has showed little interest in analyzing the two species separately.  

The present work provides information on the genetic variability of mtDNA in these two 

related species as well as on their geographic genetic structure and demographic history in 

the Northeast Atlantic area. The genetic analysis of geographic structure is important in 

exploited species because it may reveal sub-populations or stocks used for scientifically-

based fisheries management.  
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7.3 Material and Methods 

 

7.3.1 Sampling and DNA extractions 

 
Liver or muscle samples of both Beryx splendens and Beryx decadactylus were collected 

from Madeira, Azores and Cape Verde archipelagos following the procedures presented in 

Chapter 3. Some extra samples of Beryx decadactylus were collected from Peniche 

(mainland Portugal) and different areas within the Azores archipelago for a finer scale 

geographic analysis (Fig.7.1). A list of samples is presented in Table 3.1 (see Chapter 3). 

Storage of tissues and DNA extractions were also performed in the same way as explained in 

Chapter 3. 
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Fig.7.1 – Beryx spp. sampling map. 

 

 
7.3.2 PCR amplification and Sequencing 

 

The mitochondrial control region (CR) was amplified for both species by PCR using two 

universal primers L-Pro-1 (5’-ACT CTC ACC CCT AGC TCC CAA AG-3’) and H-DL-C-1 

(5’-CCT GAA GTA GGA ACC AGA TGC CAG-3’) described by Ostellari et al. (1996). 
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PCR reactions of 10 µl total volume containing 1µl 10x buffer (Qiagen Crawley, West 

Sussex, U.K.; Tris-HCl, KCl, MgCl2, pH 7.8); 1.25µl MgCl2 (Qiagen) ; 0.6 µl DNTP mix 

(Perkin Elmer); 0.1 µl Taq polymerase (Qiagen); 1.5µl of template (10-20 ng); 5.05 µl H2O 

and 0.5 µl of each primer (10pmol/µl), were conducted on a Perkin Elmer DNA Thermal 

Cycler 480 under conditions as follows: 4mins at 94ºC, followed by 30 cycles of 

denaturation at 92ºC for 60s, annealing at 50ºC for 60s and extension at 72ºC for 60s; 

finishing with an extension step at 72ºC for 5 min. 

The cyt b region was also amplified for both species using the same PCR reagents and 

quantities as for D-loop but using the universal primers CB1-L (5’- ATC CAA CAT CTC 

AGC ATG ATG AAA-3’) and CB2-H (5’- CCC TCA GAA TGA TAT TTG TCC TCA-3’) 

described by Horau & Borsa (2000). PCR cycles were performed in an MWG-Biotech 

Primus 96 plus thermocycler under the following conditions: 94ºC for 4min, followed by 30 

cycles of 94ºC for 50s, 53ºC for 30s and 72ºC for 50s; finishing with an extension step at 

72ºC for 5 min.  

All amplified products were purified using a QIAquick PCR Purification Kit (Qiagen) 

following the supplier’s instructions. Sequences were obtained by a cycle-sequencing 

reaction based on the dideoxynucleotide chain termination method by Sanger et al. (1977). 

Each purified PCR product was used in a cycle sequencing reaction using Applied 

Biosystems Big Dye Terminator Cycle Sequencing Ready Reaction Kits (Applied 

Biosystems, Warrington, Cheshire, U.K.) under the following conditions: 10 µl reactions – 

4µl Dye; 0.16 µl primer; 1µl sample and 4.84 µl H2O - at 96ºC for 10s, 50ºC for 5s, 60ºC for 

4min during 25 cycles and a holding step at 4ºC. The resulting cycle sequencing fragments 

were cleaned up using a DyeEx Spin Kit (Qiagen) following the supplier’s instructions. 

Finally, products were visualized using an Applied Biosystems Prism 377 automated 

sequencer. 

 

7.3.3 Statistical analysis 
 

Thirty-one control region sequences and twenty-five cyt b sequences of Beryx splendens 

from the Azores archipelago were included in the analysis from Stockley (2001) and 

analysed together with the rest of the samples. Sequences were aligned and edited using 

Clustal X (Thompson et al, 1997).   

General genetic variability, population genetic statistics, mismatch distribution and neutrality 

tests were all estimated using Arlequin (Schneider et al., 2000).  
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Levels of inter- and intrapopulation genetic diversity were quantified by indices of 

nucleotide (π; Nei 1987) and haplotype (h; Nei 1987) diversity, number of polymorphic sites 

(S), occurrence of indels and substitutions, and base composition percentage. 

Genetic homogeneity between populations was tested by the FST -statistic (Wright, 1951). 

Pairwise comparisons and their statistical significance were assessed under the null 

distribution hypothesis (panmixia), by performing 10,000 permutations. P-values were 

adjusted with the sequential Bonferroni correction (Rice, 1998). An analysis of molecular 

variance  (AMOVA; Excoffier et al., 1992) was used to evaluate the extent to which 

sequence variation was partitioned among areas and populations. 

Phylogenetic relationships among haplotypes were analysed constructing a network using 

the program Network ver. 4.0.8.1 (available on www.fluxus-engineering.com). A Reduced 

Median Network (Bandelt et al., 1995) was used after a Median Joining logarithm  (Bandelt 

et al., 1999) because of the high number of haplotypes and homoplasy. 

Mismatch distribution analysis was used to explore the demographic history of both species. 

Observed distributions of the number of pairwise differences between sequences were tested 

against the sudden population expansion model (Rogers & Harpending, 1992) in order to 

discriminate if populations have remained stable over time or undergone a rapid population 

expansion. The validity of the expansion model was tested by Tajima’s D neutrality test 

(Tajima, 1989). This test is normally used to test selective neutrality, but is also sensitive to 

population history, and can be used in mismatch distributions because population growth 

predicts significant negative d-values.  The time and magnitude of an inferred population 

expansion was determined by calculating the expected mean pairwise differences (θ), and 

units of mutational time (τ) where τ=2ut (u=the mutation rate over the fragment essayed; t= 

time in generations), and θ=2nu (n= effective population size) (Rogers & Harpending, 1992). 

The average mutation rate for fish mtDNA control region used was 3.6% per nucleotide per 

million years (Donaldson & Wilson, 1999); and for cyt b, which evolves more slowly, was 

2% (Brown et al., 1979). 

Generation times were taken from (http://www.fishbase.org) which indicates a mean of 9.7 

years for B.splendens and 11.5 years for B.decadactylus.  
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7.4 Results 

 

Populations N 
(CR/cytb) 

Haplotypes 
(CR/cytb) 

Private 
haplotypes 

h 
(CR/cytb) 

π 
(CR/cytb) 

reference 

B.splendens 

 
      

Cabo verde 25/21 22/10 6/6 0.990/0.833 0.014/0.008 This study 

Madeira  28/34 26/15 19/7 0.995/0.736 0.016/0.006 This study 

Azores 25/32 21/8 12/2 0.987/0.900 0.016/0.008 Stockley(2001) 

 
Total 78/87 57/22 - 0.991/0.823 0.015/0.007  

B.decadactylus 

 
      

Cabo Verde 15/9 9/3 6 0.905 0.008 This study 

Madeira 17/6 11/2 4 0.735 0.004 This study 

Azores       This study 

Oriental G. 25 13 6 0.903 0.004 This study 

   

OccidentalG. 

23 12 4 0.862 0.004 This study 

Central G. 28 8 4 0.743 0.003 This study 

Seamounts 23 8 2 0.771 0.003 This study 

Peniche 28/8 9/1 1 0.828 0.003 This study 

 
Total  

 
159/23 

 
70/5 

 
- 

 
0.821 

 
0.004 

 

Table 7.1 – B.splendens and B.decadactylus: descriptive statistics for sequence variation in 
populations for both d-loop and cyt b. 
 
 

7.4.1 Beryx splendens 

 
Control region variation 

 
 
A total of seventy-eight nucleotide sequences of the mitochondrial control region 5’-end 

(448 bp), were used in this analysis. Twenty-five sequences from Azores were taken from 

Stockley (2001) and the other 53 were sequenced for the present study.  

The overall diversity of haplotypes was extensive, totalling 57 different haplotypes detected 

among the 78 individuals sequenced, based on variation of 46 polymorphic sites, caused 

mainly by substitutions (19 transversions and 25 transitions) and 5 indels.     

Base composition was strongly biased: with adenine and thymine occurring at mean higher 

percentages of 32.46% and 27.79% respectively, while cytosine occurred at 23.65% and 

guanine only at 16.10%. These biases are similar to those found on the mt-DNA control 

region of other teleost marine fishes (Jean et al., 1995; Quinteiro et al.2000). 
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 5’- AGGATTCTAAACTAAACTATTCTCTGCCGCCCCAGCCCGCCCCA-CATATATG 

TCCTA-GAAAGCTAGTATAGACATATATGTATTATCACCATGAATCGAATTTA 

ACCATTTTCAATGGTGCCTCGGTACATAAATGTAGTTCCACTATTTGTCGAA

CTTAAACACTCACACATCAATACAAATACAAAGGTGTACATAAAGCAATACT

GGAATAACCAATAAATTAATTAATTCACGTGACAGCCGACATTTAAGACCGA

ACACAACTCGCATCGGTTGAGTTATACCATGCACTCAACACCTCGTCAACTC

TCAGATTCTCAAGTGTAGTAAGAAACCACCATCAGTTGATTCCTTAATGCAT

ATCATGCTTGATGGTCAGGGACAAAACTCGTGGGGGTTTCACTTAGTGAAC

TATTTCTGGCATCTGGTTCCTACTTCAGGA – 3’ 

 

 
Fig.7.2 – Beryx splendens most common haplotype of mtDNA control region. 
 
 

A total of 46 haplotypes were unique and the dominant CR haplotype for Beryx splendens 

was only found in 5 individuals (see Fig.7.2). As a result, overall haplotype diversity (h) was 

high averaging 0.991 and ranging from 0.987 in Azores and 0.995 in Madeira. Nucleotide 

diversity (π) was low with a mean of 0.0153, ranging from 0.014 in Cape Verde and 0.0160 

in Azores. 

The number of haplotypes per sample did not show much variation but the number of private 

haplotypes showed more divergence: Cape Verde had 17 private haplotypes in a total of 22 

haplotypes, the Azores 11 out of 21 and Madeira 19 out of 26 (Table 7.2). 

 

Cytochrome  b variation 

 

A 273 bp sequence of the mtDNA cytb region was sequenced for fifty-five individuals from 

Cape Verde and Madeira and were combined with another 32 sequences of Azorean 

individuals taken from the work of Stockley (2001).  

When all sequences were compared 22 different haplotypes were detected, diverging on 32 

polymorphic sites resulting from 24 transitions, 12 transversions and no indels.  

The most abundant haplotype was shared by 29 individuals (8 from Cape Verde, 14 from 

Azores and 7 from Madeira) and is represented in Fig. 7.3. Two other shared haplotypes 

were found in all samples, all the others were shared between two samples and only 13 were 

unique haplotypes.  

 

5’- CCAAATCCTCACAGGACTTTTCCTAGCCATACACTACACCTCCGACATCGCTAC 

GCCTTCTCATCAGTAGCCCACATCTGCCGAGATGTAAACTACGGATGACTAATC 

GAAACCTACATGCCAACGGAGCATCTGTCTTCTTCATCTGCATCTACATACACT 

CGGCCGAGGACTATACTACGGCTCCTACCTATATAAAGAAACCTGAAACACCT 

GTAGTCCTACTCCTGCTAGTAATAATAACCGCTTTCGTAGGCTACGTACTCC -3’ 

 

    Fig.7.3 – Beryx splendens most common haplotype of mtDNA cythocrome b region. 
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As expected for a non-coding region and from other works on the genetic variability of the 

cyt b, overall haplotype diversity for B.splendens mtDNA cyt b region was high (h= 0.823) 

but lower than CR, ranging from 0.736 in Azores to 0.9002 in Madeira. Nucleotide diversity 

was low (π = 0.007), ranging from 0.006 in Azores to 0.008 in both Cape Verde and Madeira 

(Table 7.2). 

 

Geographic variation 

 
Genetic homogeneity between geographic locations was tested by pairwise FST analysis 

(Wright, 1951). Pairwise comparisons (Table 7.2) revealed no significant heterogeneity 

between any pair of samples when analysing control region or cyt b sequences.  

 

 

FST Azores Cape Verde Madeira 

Azores - 0.031 -0.012 

Cape Verde -0.006 - 0.019 

Madeira -0.020 -0.018 - 
 
Table 7.2 – Beryx splendens control region (below diagonal) and cyt b (above diagonal) Pairwise FST 
values between populations.  
 
 
The lack of geographical subdivision within the overall data set was also apparent in the 

analysis of molecular variance (AMOVA) with non-significant FCT values for both mtDNA 

regions (Table 7.3). 

 
Source of Variation % Total variance Fixation indices P-values 

Control region    
Among populations -1.48 FST= -0.0148 0.864 
Within populations 101.48   

Cyt b    
Among populations 0.94 FST= 0.0094 0.083 
Within populations 99.06   

 
Table 7.3 – Beryx splendens. Control region and Cyt b. Analysis of molecular variance (AMOVA) 
results. 
 
 

The haplotype network derived from cyt b partial sequences is presented in Figure 7.4. The 

most common haplotype, represented by the biggest circle box (size of circles is proportional 

to the number of haplotypes) represents individuals from the 3 different analysed populations 
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(Azores, Madeira and Cape Verde). None of most common haplotypes were restricted to any 

of the populations and no specific clades seem to exist confirming the FST results of no 

apparent genetic differentiation between geographic areas. The general star-shaped 

phylogenies of the network are consistent with recent population expansion.  

 
Haplotype networks were inconclusive for D-loop and were excluded from this section as a 

result of high variability and high level of homoplasy amongst sequences. 

 

 
 
Fig.7.4 – B.splendens cyt b minimum spanning network analysis of haplotypes for all populations. 
Circles sizes are relative to haplotype number. Black= Azores, Dark Grey= Cape Verde and Light 
Grey= Madeira.   
 
 
7.4.2 Beryx decadactylus 

 

Control region variation 

 
Considerably less variation was found among B. decadactylus mtDNA control region than 

among B. splendens. From a total of 60 individuals, 24 haplotypes were defined by 21 

divergent sites in 421bp of the control region 5’-end. No indels were detected and only 4 

transversions were found in a total of 22 substitutions.  

Haplotype diversity (h= 0.892) was still high but relatively lower compared to alfonsino and 

to other teleost marine fish control region sequences. Results were more consistent with 
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haplotype diversity values found for other more conservative regions of the mtDNA, e.g. cyt 

b. 

Only three haplotypes were shared among individuals from different localities, the most 

common haplotype was shared by 19 specimens (7 from Azores, 3 from Cape Verde and 9 

from Madeira) and is presented in Fig.7.5. 17 haplotypes (around 71%) were unique. 

Fig.7.5 – Beryx decdactylus. Control region. Most common haplotype. 

 

Cyt B variation  

 

The mitochondrial cyt b region (313 bp) of Beryx decadactylus was sequenced for 30 

individuals from the different sampled sites.  No more individuals were sequenced because 

haplotype diversity was very low, showing that genetic diversity of cyt b for this species is 

insufficient for it to be used as a variable molecular marker for studies of genetic 

differentiation. This result was expected given the low variation of the control region, which 

usually has the highest mutation rate of the mitochondrial genome. Consequently, for 

imperador mtDNA cyt b region was considered to be uninformative and dropped from this 

analysis. 

 

Geographic variation and population structuring of Beryx decadactylus 

 

Analysis of molecular variance (Table 7.4) showed that 9.38% of the total variation was 

partitioned among populations (P<0.001). 

 

 

 

 

 

 

5’-GGATTCTAAACTAAACTATTCTCTGCCGCCCCAGCCCGCGCCCACATATA 

TGTCCTAGAAAGCTAATATAGACATATATGTATTAACACCATGAATCGA

ATTTAACCATTTCTAATAGTGCCCTGGGACATACCTGAACTATCAACAC

ATGTCGAGATTAAACATTCATACATCAACACAAATACAAAGGTGGACAT

AAAGCAATACTGAAATATCTAACAGATTGATGACTTCATGTGATATCCG

ACATTTAAGACCGAACACAACTCGCATTGGTTAAGTTATACCACGAATC

CAACATCTCGTCAACCCTCAGATTCTCAAGTGTAGTAAGAAACCACCAT

CAGTTGATTCCTTAATGCATATCATGCTTGATGGTCAGGGACAAGTGGT

CGTGGGGGTTTCACTTAGTGAACTATTT - 3’ 
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Source of variation %Total Variance Fixation indices P- value 

1.One gene pool 
Among populations 9.38 0.0938 <0.001 
Within populations 90.62   
 
2. Four gene pools (Madeira, Peniche, Cape Verde, Azores) 
Among groups 11.59 FCT= 0.1159 <0.05 
Among populations 
 within groups 

-0.46 FSC= -0.0053 <0.001 

Within populations 88.88 FST= 0.1112 <0.001 
      

Table 7.4 – Beryx decadactylus. Control region. Analysis of Molecular variance (AMOVA) results. 

 
 

 

Statistically significant differences in haplotype frequencies were found in two out of the 

three pairwise comparisons (Table 7.5).  The Cape Verde sample was highly differentiated 

from the other two (P<0.001; even after sequential Bonferroni correction). 

 

 

FST Azores Cape Verde Madeira 

Azores - - - 

Cape Verde 0.135** - - 

Madeira -0.024 0.164** - 

 
Table 7.5 – Beryx decadactylus. Control region. Pairwise FST  values between 3 populations.*** = 
significant at P<0.001 (after sequential Bonferroni correction) 
 
 
The results presented above showed a clear differentiation between Cape Verde imperadors 

and the other two Macaronesian archipelagos. Consequently, it was decided to perform a 

more detailed analysis of the population structure of this species including additional 

samples that would permit a finer-scale geographical analysis. 

 

Pairwise comparisons of FST between populations confirmed the results obtained earlier by 

showing significant statistical differences between Cape Verde sample and all the other 

populations (Table 7.6). However, significant values for population differentiation were also 

found between Peniche (mainland Portugal) and one of the Azorean sub-samples (Central 

group). There was no significant heterogeneity among samples within the Azores 

archipelago permitting samples to be pooled according to major geographic areas in a 

subsequent analysis.  
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FST 
Ocidental G Oriental G Seamounts Central G Peniche Madeira  Cape Verde 

Ocidental G - 0.4144 0.6306 0.8468 0.0991 0.8288 0.0000 
Oriental G -0.0006 - 0.3784 0.2072 0.0360 0.6126 0.0000 
Seamounts -0.0119 0.0049 - 0.3606 0.1531 0.5135 0.0000 
Central G -0.0219 0.0108 0.0063 - 0.0000 0.8919 0.0000 
Peniche 0.0355 0.0621 0.0194 0.0909*** - 0.01802 0.0000 
Madeira  -0.0227 -0.0119 -0.0099 -0.0279 0.0811 - 0.0000 
Cape Verde 0.1680*** 0.1901*** 0.1851*** 0.2205*** 0.2602*** 0.1643*** - 

 
Table 7.6 – Beryx decadactylus.Control region. Pairwise FST (below diagonal) and associated P values 
(above diagonal) among populations. *** = significant at P<0.001 (after sequential Bonferroni 
correction) 
 
An analysis of molecular variance based on the partitioning of variation across the four 

major geographical areas sampled (Cape Verde, Madeira, Peniche and Azores  (Table 7.4), 

showed that most of the variation  (88.88%) was within samples, but there remained a 

significant portion (11.59%; P<0.05) as a result of differences between regions. 

Phylogenetic relationships of haplotypes represented in a network form also show a quite 

high rate of haplotypic diversity and homoplasy. The most common haplotypes are not 

exclusive for any population. The higher number of representatives of the Azores population 

is mainly the result of a higher number of individuals sampled for this site, as all 

subpopulations were pooled together for this analysis. However, a small clade with 

predominantly of Cape Verde exclusive haplotypes is present in the network, supporting the 

isolation of the Cape Verde population from the rest of the samples as shown by the FST 

analysis (Fig. 7.6). 

 

 
 
Fig.7.6 – B.decadactylus control region minimum spanning network analysis of haplotypes for all 
populations. Circles sizes are relative to haplotype number. Black= Azores, Dark Grey= Cape Verde 
and Light Grey= Madeira and White= Peniche.   
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7.4.3 Demographic History patterns 
 

Beryx splendens 

 

 Since no evidence of genetic differentiation was observed for B.splendens, all samples were 

grouped as one to conduct tests of selective neutrality and demographic story. Pairwise 

mismatch distributions and results of Tajima’s D test performed for each mtDNA region on 

this species are given in Figure 7.7.  
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Fig. 7.7 – B.splendens.Control region and Cyt b. Mismatch distributions and Tajima’s D-test results 
for the NE Atlantic population. 
 

The cyt b haplotypic network shows no evidence of population structure for alfonsino 

population in the North Atlantic has haplotypes from different regions do not group in 

specific clades, instead, they are spread randomly throughout the entire network. However, 

the star-shape of the network clearly shows a sudden expansion probably following a 

bottleneck in this population’s history (Fig.7.6). 
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Mismatch distribution analysis was performed and a poisson distribution of pairwise 

differences was found for both mitochondrial regions, indicating the possibility of expansion 

of the population in the past. This results from the rate of the accumulation of new mutations 

which is greater than the loss of variation through drift. However, only for cyt b was 

Tajima’s D-value significantly negative, indicating more rare polymorphic nucleotide sites 

than would be expected under a neutral model of evolution, and indicating that a sudden 

expansion in population size may have occurred (P<0.05). 

An approximate time of expansion was calculated for alfonsinos of the NE Atlantic using cyt 

b data suggesting that the sudden expansion in population size occurred around 1 million 

years ago.   

Mismatch distribution analysis and tests for selective neutrality were also performed on each 

population separately in case the pooling of data masked bottlenecks in individual 

populations. No indication of this was observed (data not shown). 

 

 B.decadactylus 

 

For B.decadactylus mismatch distribution analysis was performed separately for each 

population because evidence of genetic population structure was found. 

Pairwise mismatch distributions and results of Tajima’s D test for B.decadactylus mtDNA 

control region are given in Figure 7.7. 

 

All mismatch distributions were close to a Poisson curve but none presented significantly 

negative values for Tajima’s D-test. The Oriental group population could not be fitted to an 

expansion model, while for the Cape Verde population Tajima’s D-test was not negative and 

distribution was closer to a bimodal curve.  

The assumption of genetic “equilibrium” was also tested by pooling all samples 

irrespectively of their geographic origin and by pooling all the Azores sub-samples into one 

for Tajima’s D test. Unambiguously, all tests indicated the same pattern, no significant 

departures from the equilibrium hypothesis were found (data not shown). 

 

 

 

 

 



 Alfonsinos – Population structure using MtDNA sequences 
 

 127

Oriental Group

0

50

100

1 2 3 4 5 6 7 8 9

Seamounts

0

50

100

1 2 3 4 5 6 7 8 9

Central Group

0

100

200

P
ai

rw
is

e
m

is
m

at
ch

es

Madeira

0
10
20
30
40
50

1 2 3 4 5 6 7 8 9

Cape Verde

0
10
20
30
40

1 2 3 4 5 6 7 8 9

Peniche

0
100
200

1 2 3 4 5 6 7 8 9

Nº of pairwise differences

123456789

Ocidental Group

0

50

100

150

1 2 3 4 5 6 7 8 9

Observed
simulated

D=-1.356
P=0.0086

D=--0.486
P=0.335

D=-1.003
P=0.169

D=-0.854
P=0.216

D=0.414
P=0.343

D=-0.676
P=0.269

 

Fig 7.7 - Mismatch distributions and Tajima’s D-test results for B.decadactylus populations. 
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7.5 Discussion 

 
This study provides a comprehensive genetic analysis and comparison of the Northeast 

Atlantic populations of alfonsino and imperador. 

It is the first work determining population genetic structure of B.decadactylus and expands 

previous work by Stockley (2001) and Horau & Borsa (2001) on B.splendens. 

 

7.5.1 B.splendens vs B.decadactylus; genetic variation and distribution 

 

 
Overall, conclusions point to differences in the genetic variability and phylogeography 

between these two closely- related species.  

Summary statistics showed clear differences in the molecular variation of alfonsinos and 

imperadors. Nucleotide and haplotype diversity indices in B.splendens were consistent with 

those found in other marine fish species, including orange roughy (Smith, 1986; Elliott et al., 

1994), grenadier (Wilson & Waples, 1980) and mackerel (Nesbo et al., 2000; Zardoya et al., 

2004). However, B.decadactylus showed lower genetic diversity at the intra- and inter-

specific level. The variation of the mtDNA regions was much lower when compared to 

B.splendens and with other demersal fish species, such as hoki (Baker et al., 1995) and 

bluemouth (Aboim et al., 2005) for example.   

However, these low levels of variability were more comparable to those found for the 

Northeast Atlantic species Pagellus bogaraveo (Stockley et al., 2005). 

In terms of genetic population structure analysis, results indicate that alfonsino is panmitic in 

the Northeast Atlantic waters, agreeing with previous works on the genetic variability of this 

species that indicated extensive gene flow and no population differentiation at inter- or intra-

oceanic scale (Horau & Borsa, 1999). Marine fishes with high dispersal capabilities and 

worldwide distributions are believed to show low levels of differentiation across oceans and 

smaller geographic scales, specially the ones associated with seamounts and other isolated 

geographic features. Alfonsino, according to the results presented here, seems to conform to 

this pattern.  

In contrast, imperador populations show statistically significant levels of genetic structuring. 

The Cape Verde population is differentiated from the other populations analysed. The 

present results agree with previous findings on genetic structuring of Helicolenus 

dactylopterus in the North Atlantic based on mtDNA sequencing and microsatellite DNA 

analysis (see Chapters 5 and 6; Aboim et al., 2005). It is interesting to note, that despite the 

cosmopolitan nature of imperador and the supposed similarities in life history with alfonsino 
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(high larval dispersal capability, external fertilization) a similar panmictic distribution is not 

found. Instead, imperador seems to be another example of a marine fish species that exhibits 

marked population structure with no apparent physical barriers to migration or dispersal and 

therefore gene flow.  

Several hypotheses might be put forward to explain the occurrence of different 

phylogeographical patterns in B.splendens and B.decadactylus but are based on limited 

information from studies on the Azores area (Menezes et al., 2001). 

Population differentiation depends directly on gene flow. Species with higher capabilities of 

dispersal and migration may across oceanographic barriers and do not show population 

differentiation whereas other species respond differently to barriers or have lower dispersal 

ability. No direct measures of dispersal ability exist for these species; however, known 

differences in terms of depth distribution may cause slightly different responses to 

hydrographical, dynamic and anthropogenic processes. B.decadactylus often occurs at 

greater depths than B.splendens occupying slightly different strata, which may lead to 

different responses to hydrographic features. 

Regarding population size, information suggests that B.splendens census size is usually 

higher than B.decadactylus as more specimens are caught during survey cruises and exist in 

higher numbers on the market. This can have an important direct influence on genetic 

variation, as in populations with lower effective sizes are more affected by random genetic 

drift and gene flow tends to decrease. This can be an explanation for the isolation of the 

Cape Verde population. Lower abundances directly influence the number of individuals that 

may be able to migrate over larger distances and permit gene-flow between regions. 

Populations with smaller effective population sizes also tend towards rapid fixation of 

haplotypes, which may be why there is a higher number of private haplotypes found in the 

Cape Verde population.  

It can also be the case that the apparent lower population sizes observed in B.decadactylus 

may be a reflection of a present day bottleneck provoked by anthropogenic factors that have 

not been detected through other methods such as demographic analysis as these studies have 

not been carried out. 

 It is also interesting to note that B.decadactylus presents a higher longevity as well as a 

mean individual weight, which is significantly higher than B.splendens. This can be 

translated in longer generation times, which can influence the way historical events influence 

the species differently. 

Finally, the fact that high genetic variation found in B.splendens can strongly influence the 

spatial genetic analysis cannot be neglected. Molecular markers with high variability may 
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require bigger sampling numbers in order to “dilute” the genetic variability found. In the 

case of B.splendens, maybe some structuring could be found if higher levels of sampling 

could be acquired. Previous genetic studies on this species (Hourau & Borsa, 2000 and 

Stockley, 2001) have also neglected that possibility.  

Although none of the available information on Beryx spp. biology seems to explain per se 

the divergent pattern observed, the incompleteness of current knowledge does not allow to 

safely exclude or hold any of the above mentioned hypotheses.  

These findings lead to the conclusion that it is important to study further the biology and 

ecology of these species, as it is likely that the life histories do exhibit some major 

differences important for the interpretation of these data. 

 

7.5.2 Demographic history 
 
Observed distribution of pairwise differences between cyt b haplotypes of Beryx splendens 

fitted the distribution predicted for a population that has experienced a major demographic 

expansion (or a reduction followed by an expansion). Haplotype and nucleotide diversity 

values also pointed to a bottleneck followed by a sudden increase in population size (Grant 

& Bowen, 1998), as well as the star-shaped haplotype network (Fig.7.4) 

If the estimated time is correct, this expansion occurred around 1 million years ago, much 

earlier than the Last Glacial Maximum (16,000 years ago). This agrees with the results 

obtained for Helicolenus dactylopterus (see Capter 4) and corroborates the suggestion that 

glaciations prior to the LMG may have had strong impacts on North Atlantic populations of 

marine species (Aboim et al., 2005; Chapter 4). Several events may have been sufficiently 

severe to strongly influence the genetic structure of marine species that are still detected 

nowadays.   

For Beryx decadactylus no significant departures from neutrality were found still mismatch 

distributions and star-shaped networks seem to point out for possible occurrence of 

bottlenecks. This might be due to the fact that current statistics seem unable to capture recent 

contractions or expansions of population sizes induced by anthropogenic factors for 

example. In the case of Beryx decadactylus the genetic variability of populations might have 

had been influenced by exploitation or still not have recovered from severe bottlenecks.     

 

But once more, the question remains, how such related species have been so influenced in 

such different ways by climatic changes and historic events. The answer continues to hide 

probably behind unknown differences in the biology, ecology and behaviour of these two 

species. 
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 7.5.3 Conservation and Fisheries management 

 

The results have important implications for fisheries management of both species in the 

Northeast Atlantic. 

Alfonsinos and imperadors are normally considered together in terms of fishery statistics. 

This is because both species are taken in the same mixed-species fisheries. Management or 

data reports often refer to both species as Beryx spp. not differentiating one from the other. 

As a result, stocks of both species are managed in the same way and often together. 

 Alfonsino is normally captured in higher quantities and sometimes is the target species of 

some small fisheries, while imperador is usually a by-catch species.  

However, while the lack of structure found in alfonsino in the Northeast Atlantic is 

consistent with a “one stock” management, the population structure found for imperador is 

quite different showing marked genetic differentiation between regions and possibly at the 

within region scale. This points to a serious flaw in current strategies for reporting and 

management of deep-sea fisheries for these species. Correct management of this resource 

must take in account the genetic evidence presented by this study that there are discrete 

genetic stocks of imperador. Hence, conservation actions should concentrate on both species 

separately, and imperador cannot be neglected towards alfonsino as it as been the case until 

now. This is especially the case, as the former species appears to have a smaller population 

size and more conservative life history than the latter. 

These results together with observation of oscillations in fish concentrations around 

seamounts after years of intensive fishing (Vinnichenko, 2002) reinforce the need for more 

studies and proposals for conservation of these habitats against overexploitation through 

mixed-species fisheries.  

More studies on the biology, behaviour and population genetics of the two species, and 

especially on B.decadactylus (from which very little is known) are needed to better 

understand the differences revealed by this study. 
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CHAPTER 8 

GENERAL DISCUSSION AND CONCLUSIONS 

 
 
8.1. Limitations to work 

 
In order to be able to correctly assess the distribution of genetic variation within and among 

populations, the temporal, spatial and quantitative nature of samples has to be carefully 

thought and defined a priori (Baverstock & Moritz, 1997). Studies should be performed on a 

species distribution scale and should include as much samples from the same place as 

possible. Associated biological and environmental data should also be collected to help 

interpreting the genetic variation whenever possible. It has already been proven that the 

combination of different nature molecular markers is more informative and permits a more 

precise analysis and complete conclusions. On another hand it should be considered that 

everyday, new models and statistical approaches are developed and published. This should 

be taken into consideration as much as possible, as sometimes classical models become 

outdated.   All this assumptions were taking into account when planning this work, however, 

some limitations were recognized but could not be overturned. 

 

8.1.1 Sampling 
 
Like most genetic studies on marine species, the biggest limitation of the present work is to 

focus only on a small number of species and/or samples and to be restricted to a certain area. 

Samples were obtained from multiple populations representing a hierarchy from closely 

spaced sites (e.g. within the Azores archipelago) to more distant geographical sites within the 

species overall distribution range (e.g. Cape Verde and NW Atlantic). However, the 

available resources did not permit that sampling was spread through the entire range of the 

species distribution. Places like the Mediterranean, the North Sea and NW Atlantic regions 

up north and south were excluded from this study because it was not possible to collect 

samples from those areas. 

Special attention was also paid to the quantity of samples collected per site, taking into 

consideration the molecular markers chosen. But again, it was not always possible to achieve 

the optimal sample size. Only one sampling cruise was carried out in the Madeira 

archipelago, and unfortunately, the obtained samples were of a number too small for an 

accurate microsatellite analysis (Ruzzante, 1998). Collection of related biological and 

environmental data was mainly restricted to the Azores archipelago, as specially 

programmed investigation cruises permitted such compilation. Samples from other places 
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were obtained on a more sole sampling cruises context, by other teams or in markets which 

was not propitious for other related data collection, hence inclusion of further analyses for 

the study. 

 

8.1.2 Molecular Markers 
 

The molecular markers used throughout this study have been chosen with basis on previous 

works of population genetics in marine species. MtDNA sequencing has been widely used 

on phylogenetic, phylogeography, population structure and evolutionary studies on diverse 

species including teleost fish. Because of that this technique was chosen to be the basis of 

this work. However, recent studies using microsatellite loci for population analysis have 

begun to reveal genetic structuring in species previously thought to be homogeneous over 

geographic ranges using MtDNA. The combination of more than one kind of molecular 

marker, specially mitochondrial and nuclear genes, have proven to be essential to deeply 

understand the genetic structure of populations as they differ in nature, variability and 

sensitivity, as we could see for the H.dactylopterus species in this work. 

However, time and monetary resources did not permit the development of microsatellite loci 

or any other nuclear DNA based technique for Beryx spp., which could proven to be very 

interesting and useful to understand these two related species differences and particularities, 

or reveal regional and local population differentiation in Beryx splendens and B.decadactylus 

respectively.  

 

8.1.3 Statistical Analysis 
 
By the time this thesis was produced, several new approaches have been developed and 

introduced for population genetics analysis.  

FST (Wright, 1951) has been the basis of population analysis in most molecular works, but its 

use has been recently criticized, especially in the case of microsatellites. The extremely high 

mutation rate of microsatellite loci does not allow for their mutation pattern to be neglected. 

Geneticists are still struggling to find the more realistic model but none seems to entirely fit 

and explain the way microsatellite work (Weber & Wong, 1993; Gaggiotti et al., 1999; 

Balloux &Lugon-Moulin, 2002; Estoup et al., 2002). 

During this work, it was decided to use two of the most discussed statistics the FST (Wright, 

1951) and RST (Slatkin, 1985) in order to have a comparable approach (Balloux & Lugon-

Moulin, 2002). Comparison of both estimates revealed some differences, nominally the fact 

that less pairwise comparisions between populations were significant for RST. This might be 
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due to the fact that some of the microsatellite loci were composed and presented a lot of 

homoplasy that cannot be detected by the Infinite Allele Model of mutation presupposed by 

FST.  

Statistical analysis excluding some data suspected to bias the analyses in anyway should be 

performed extensively as possible. Some of those data were detected and discussed in the 

light of new analysis in the appropriate chapters, but some of those were left behind. For 

example, analysis excluding microsatellite loci propitious to null alleles was performed, 

however, the possibility of excluding individuals with mtDNA haplotypes exclusive from 

Cape Verde, hence possibly belonging to another species, was not performed because of the 

extremely time consuming process implied. 

The recent introduction or lack of support of new approaches to microsatellite analysis 

considering historical demographic/evolutionary processes also lead to the non-inclusion of 

these methods in this work (e.g. Beaumont, 1999; Dyer & Nason, 2004). 

    

 
8.2. Implications for the knowledge on population genetics of deep-sea demersal 

fish species  

 

 
Most genetic studies on deep-sea demersal fish indicate that the majority of species do not 

exhibit homogeneous populations throughout the range of their distribution, contrary to what 

has been typically assumed (reviewed in Rogers, 2003). Even though demersal fish normally 

present wide geographic distributions, potentially high mobility as adults and dispersive 

larvae, most species present intra-specific genetic differentiation and some degree of 

isolation between populations at oceanic, regional and even local scales (Dahle, 1991; Baker 

et al., 1995; Clark, 1999; Quinteiro et al., 2000; Roques et al., 2001). 

An increasing variety of molecular markers exist in the literature for population genetic 

analysis. Sequencing of mtDNA regions has been typically used to assess population genetic 

structure of several demersal fish species and to also infer facts about their demographic 

history (Arnason et al., 1992; Smith et al., 1996; Kojima et al., 2001). However, recent 

studies using microsatellite loci for population analysis, have demonstrated their usefulness 

in resolving genetic structuring at geographic scales over which species have previously 

thought to be genetically homogeneous using other genetic markers such as mtDNA 

sequence variation. Species such as cod (Ruzzante et al., 1996, 1998; Bentzen et al., 1996), 

whiting (Rico et al., 1997) and herring are examples of this phenomenon. 
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Helicolenus dactylopterus is a good example of where different markers provide different 

levels of resolution of population structure within a species (see Chapter 5 and 6). Previous 

morphological studies have suggested that bluemouth from the America and European coasts 

represent different clades or even sub-species (Echemeyer, 1969; Barsukov, 1980). 

Sequencing of two mitochondrial regions and amplification of microsatellite loci performed 

throughout this study have proven that H.dactylopterus actually presents significant genetic 

differentiation of populations located in different areas of the North Atlantic, hence separate 

clades. 

According to partial sequence data of mitochondrial regions, there is a distinct genetic 

division between NE and NW Atlantic bluemouth populations. This is also the case of other 

oceanic distributed species such as Corephaenoides rupestris (Logvinenko et al., 1983), 

Sebastes mentella (Roques et al., 2001) or intertidal species such as Asterias rubens or 

Littorina obtusata (Wares & Cunningham, 2001). 

There was also evidence of population structure at a NE Atlantic regional scale based on 

mtDNA sequences, which revealed that little or no effective gene flow occurs between Cape 

Verde bluemouths and others from the Mid-Atlantic Ridge (Azores), Madeira and European 

Continental slope (Portugal). No conclusive genetic evidence was found for intra-regional 

population structure. 

Microsatellites were isolated and developed for H.dactylopterus to assess the population 

structure of this species at a finer geographic scale. Eight loci were isolated and developed 

using a non-radioactive method and proved to be highly polymorphic and useful for 

assessing genetic variation. The levels of diversity observed were in accordance with those 

previously described for other teleost fish species (O’Connell et al., 1998; Ruzzante, 1998; 

Roques et al., 1999; Stepien, 1999). 

Microsatellite analysis revealed population differentiation not detected by mtDNA markers, 

demonstrating  isolation between the European continental slope population (Peniche) and 

the Azores archipelago. Such local differentiation has already been found in another Azorean 

demersal fish species, Pagellus bogaraveo (Stockley, 2001) but has only been detected in a 

few other cases such as with Patagonian toothfish, Dissostichus eleginoides (Shaw et al., 

2004). No evidence was revealed for the genetic isolation of the Madeira archipelago; 

however, these results have to be interpreted with some caution. This is because in this case, 

the number of samples was probably insufficient for microsatellite analysis. Hence, 

conclusions on no differentiation of this population for H.dactylopterus using these 

molecular markers cannot be assumed with certainty.  
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Evidence of some degree of differentiation at an inter-regional scale was given by variation 

in microsatellite loci. The Central group and Seamounts subpopulations showed moderate 

population differentiation for some of the performed analyses. Ideally, individuals sampled 

for the estimation of population genetic structure should belong to the same generation 

within the same breeding season, because allele frequencies vary over time in finite size 

populations  (Waples, 1998). This assumption was considered for the sampling plan; 

however, a reasonable sample size for the Central Group Azorean sub-population was 

impossible to get unless samples from different years were pooled for the microsatellite 

analysis. This may have influenced the genetic substructuring detected for this population 

but is probably unlikely given the longevity of this species. 

 

On another hand, there are a few demersal species that do present panmictic populations at 

wide geographic scales and sometimes throughout their worldwide distribution range. They 

are normally capable of long-distance migration and are successful colonizers of fragmented 

habitats and isolated topographic features such as seamounts, ridges and plateaus. Examples 

include walleye pollock from the Berigian Sea and Gulf of Alaska (Grant & Utter, 1980; 

Mulligan et al., 1992) pink snapper from the Hawaiian archipelago (Shaklee and Samollow, 

1984), pelagic armourhead from the Hawaiian Ridge (Martin et al., 1992), the wreckfish in 

the Atlantic and Southern pacific (Sedberry et al., 1996) and Beryx splendens from New 

Caledonia, New Zealand and the Galicia bank (Hoarau & Borsa, 2000).  

Beryx splendens (see chapter 7) seems to be representative of the few species that exhibit a 

panmictic genetic population structure over large oceanic scales. The life history of alfonsino 

is poorly understood but potentially highly dispersive. This has been proposed as an 

adaptation to exploiting fragmented habitats separated by large tracts of open oceans. This 

maybe counter-intuitive as it is easy to believe that seamount creatures would present more 

evident reproductive and genetic isolation due to the extreme isolation of the topographic 

features they inhabit. However, this seems to be exactly the opposite case in this species. 

MtDNA sequences of both control and cyt b regions revealed no population differentiation 

between NE Atlantic populations  (see chapter 7). These results largely agree with previous 

studies on this species by Stockley (2001) and Hoarau & Borsa (2000) which, in the later 

case suggested inter-oceanic panmixia for this species.  

 

The third case considered here, Beryx decadactylus, also seems to contradict the 

generalization that oceanic species exhibit panmixia over very large geographic scales. The 

ecology and life history characteristics of B.splendens and B.decadactylus are thought to be 
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similar in many aspects, yet the species were found to differ widely in the extent and spatial 

distribution of mtDNA variation.  Contrary to the congener B.splendens, B.decadactylus 

exhibits strong population differentiation within the Northeast Atlantic. MtDNA sequences 

showed that the imperadors from Cape Verde are genetically isolated from the rest of the NE 

Atlantic populations as in Helicolenus dactylopterus and contrary to the panmitic distribution 

of Beryx splendens.  

 

But one question remains, what factors could be responsible for breakdown of gene-flow 

between populations in some demersal fish species and not in others, when both adult and/or 

larval characteristics suggest a high dispersal capability and the potential for long distance 

migration? 

It is well documented that the dynamic interaction between oceanographic features and 

specific behavioural characteristics may determine the number of distinct populations in 

marine species (Iles & Sinclair, 1982).  

Against previous conceptions of a homogeneous deep-sea environment, topographic and 

hydrographic features like oceanic gyres, currents or water masses with different physical 

characteristics such as temperature have been considered as important in structuring 

populations by producing geographical clustering and regional divergence of genotypes. The 

life-histories of deep-sea creatures can not be separated from surface phenomena. The early 

stages of their life-histories are distributed in the water column, as most species possess 

pelagic larvae, and influence of surface processes on their genetic variation, and therefore, 

evolution and demographic processes, cannot be neglected.  Surface currents, larval 

behaviour and successful recruitment thus may produce patterns in deep-sea regions, just as 

they do in shallower waters such as the continental platform. 

High mortality of adults and larvae swept out from suitable habitats by hydrodynamic events 

has been suggested as one factor responsible for genetic differentiation in some pelagic fish 

such as the Atlantic mackerel (Nesbø et al., 2000), benthopelagic fish species such as the 

walleye pollock (Bailey et al., 1997), the patagonian toothfish (Shaw et al., 2004), cod 

(Ruzzante et al., 1999 and 2000) and the benthic dover sole (Stepien, 1999). 

This is explained by the member-vagrant hypothesis of Sinclair (1988), which suggests that 

marine larvae/juveniles that survive to settle in appropriate habitats are passively and/or 

actively retained in major currents. Gene flow and genetic divergence in species with 

planktonic larvae thus may be structured by larval retention areas (oceanographical, 

physical), which are reflected in the genetic divergences among adult populations (Sinclair, 
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1988). This may be particularly important for species associated with isolated topographic 

features such as seamounts, ridges and oceanic islands. 

Larval ecology of all three species evaluated here is poorly known, however, they apparently 

have relatively high fecundity indices and long larval pelagic (near surface) phases.  The low 

dispersal observed in adults of Helicolenus dactylopterus from mark-recapture experiments 

suggests that gene flow primarily occurs during the pelagic egg and larvae stages. The 

internal fertilization characteristic of this species (Muñoz & Casadevall, 2002) along with 

retention of eggs until a later stage of development compared to other species like Beryx 

splendens and B.decadactylus, that possess external fertilization, suggests that perhaps the 

time for passive dispersal of eggs and larvae is reduced compared to the latter species.  

However, a direct relationship between the hydrodynamic events in the North Atlantic and 

the population structure proposed here does not seem to exist.  

The prevailing surface currents in the North Atlantic may provide an efficient means of 

larval retention/dispersal. The Gulf Stream seems to dominate circulation patterns within the 

North Atlantic basin and induce larval dispersal on an oceanic cyclonic pattern, but this 

would allow larvae to disperse easily between NW and NE margins, which is proven here 

not to be the case.  

The conjunction of the Azores counter-current with the Canaries current forms a cyclonic 

pattern of water circulation resulting in a possible stronger trap for larvae at the regional 

scale. The interaction of circulation with topography induces Taylor columns and other 

processes around seamounts, which can also work as small local scale retainers of larvae 

favouring local self-recruitment. But if larval retention occurs, then relationships among 

populations would be related to current and gyres pattern, which is not entirely the case. 

 

Alternatively, the patterns of genetic difference may be regulated by temperature-related 

selection on larval survival. Surface water and deep-water masses temperatures differ 

significantly in different areas and distributions of marine fish larvae appear to be sensitive 

to such boundaries. 

As theories, based only on larval drift and migration, are unconvincing and insufficient, 

other explanations have been put forward to explain population structure.  

Geographic distance is the most obvious barrier to gene flow in oceanic species. It is easy to 

understand that populations closer to each other are less isolated than populations further 

apart.  Interestingly, there are several examples where this seems not to be the case and lack 

of consistency with the isolation-by-distance model has also been revealed here. Divergence 
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between some of the more closely spaced sites and lack of divergence in others with higher 

proximity has been detected during this work.  

External factors (hydrographical, climatic, ecological) do not seem to equally affect species 

that live in the same habitats or have the same distributions or that are even sympatric. The 

inherent biological features of the species studied here must be largely responsible for the 

different population structures encountered for these species. Reproductive and feeding 

habits are important biological factors that influence the genetic diversity of species over 

time and space.  

Feeding ecology, for example, can make populations vulnerable to natural oscillations of 

their prey species. If species have specialized feeding preferences, species may, at an 

ecological time scale, pass through different population fluctuations in effective sizes. 

Differences in swimming power, voracious behaviour of larvae and fecundity rates are other 

biological factors pointed out as possible factors influencing the sensitivity of species to 

physical barriers in the marine realm (e.g. Zardoya et al., 2004). Once more the conclusion 

that the lack of knowledge on species biology, ecology and behaviour are obstacles to the 

correct interpretation of genetic data  is an inescapable conclusion. 

 

8.3. Implications for the knowledge on deep-sea demersal fish species’ evolution 

and demographic history in the North Atlantic. 
 

More recently, historical processes have been pointed out as important influences in present 

intraspecific genetic variation and speciation among marine organisms.  

Cycles of global warming or cooling have provoked shifts in the temperature and oxygen-

minimum water layers motivating expansion or reduction of population sizes, hence, 

opportunities for speciation. 

Some past events, such as the Last Glacial Maximum (LGM), are known to have had a 

strong historical influence on the genetic population structure of demersal fish species in 

both the North Atlantic and the North Pacific. In several studies, the responsibility for the 

reduction or extermination of populations of marine organisms in the past has been attributed 

to the strong LGM 16,000 years ago (e.g. Wares & Cunningham, 2001). 

This study suggests that climate events previous to the LGM, might have been more severe 

and had more impact in shaping the population genetic structure of some demersal fish 

species in the North Atlantic.  

Analysis on the mitochondrial sequences genetic diversity based on mismatch distributions, 

diversity indices and phylogenetic networks performed to Helicolenus dactylopterus showed 

that the NW Atlantic and the Azores populations had suffered a sudden expansion in 
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effective population sizes supposedly after strong bottlenecks. The estimated time for 

expansion, ranging from 0.64 –1.02 million years ago, coincide with the Mid-Pleistocene 

Revolution, a period of major glacial cycles and shifts in ocean biochemistry that have 

extended from 900,000-650,000 years ago, much older then the LGM (Mudelsee & Schulz, 

1997; Becquey & Gersonde, 2002). An inter-oceanic colonization process through major 

currents between Atlantic margins has been proposed.  

Estimated times of expansion of around 1 million years ago for the panmitic NE Atlantic 

population of Beryx splendens based on cytochrome b data, also correspond to this period 

(Chapter 7). Further analysis with a larger number of samples from other areas would be 

necessary for further conclusions on the colonization and evolutionary history of this species. 

For B.decadactylus no evidence for sudden expansion following severe bottlenecks was 

found for any of the populations analysed. Sometimes recent demographic events may cover 

past events. B.decadactylus populations may have suffered a recent bottleneck and not 

recovered from it yet, as Beryx spp. have been hit hard by deep-sea fishing in the North 

Atlantic in recent times (Koslow et al. 2000; FAO, 2004). 

 

Assessment of species’ past history using microsatellites is more difficult as the available 

models normally assume H-W equilibrium, which is often not the case in microsatellite 

allelic frequencies. However, some new coalescent methods are being introduced.   

 
 
8.4.Implications for fisheries management and conservation 

 
Deep-sea demersal fishes are an important fisheries resource on continental slopes, oceanic 

islands and seamounts. They have been increasingly affected by expanding of deep-sea 

demersal fisheries worldwide and in many areas of the North Atlantic. 

Deep-sea fish are long-lived and highly vulnerable to modern fishing methods and the 

depletion of their stocks has been noticed at a global, regional and especially at local scales. 

Understanding the population structure, dispersal capacities and demographic history of 

species throughout their distribution range is fundamental for the generation of a sustainable 

management strategy for conservation of these species. 

 Effective management of fisheries resources requires critical information on the population 

or stock structure of the exploited species, especially because marine species have wide 

distributions and in part because jurisdictional boundaries for resource allocation frequently 

overlap. 
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Historically, information on stock structure was derived from morphological and/or life-

history data (Ihssen et al., 1981), but the use of genetic data has proven to be essential in 

revealing accurate population structuring in marine species. Genetic data have revealed sub- 

structured populations despite morphological, geographical and/or behaviour data indicating 

the occurrence of single stocks (Berst & Simon, 1981; Allendorf et al., 1987) and vice-versa 

(Kornfield & Bogdanowich, 1987; Avise et al., 1987; Martin et al., 1992).  

This study has made a significant contribution to the understanding of population genetic 

structure of three deep-sea demersal fish species exploited in the North Atlantic as well as 

the historical and hydrographical factors affecting them. All three species: Helicolenus 

dactylopterus, Beryx splendens and Beryx decadactylus, support important commercial 

fisheries in the Azores and by-catch in several other areas of the North Atlantic where 

multispecies fisheries take place.  

Like many others, the lack of knowledge on these three species implies that no delimitation 

of stocks exists; hence, that they are not regulated in any way in response to over-fishing or 

perceived population declines. 

 

Despite the fact that the demersal fishery in the Azores is mainly artesanal, a decline in 

catches of these three species has been noticed in several islands, seamounts and ridges. 

Consequently, they have recently become subject of several ecological, biological and 

fisheries studies in the area.  

For Helicolenus dactylopterus no fisheries management strategies exist, however, the 

implementation of a Total Allowed Capture (TAC) by areas has been proposed by Azorean 

researchers in the last few years in the ICES working group for demersal fisheries.  Proof of 

a separation between Continental Portugal (ICES IXa) and Azores (ICES X) found in this 

study support the application of such measures.  

For Beryx splendens, observed genetic homogeneity was interpreted as support for the 

hypothesis that the species is composed of a single, genetic panmictic unit and that gene flow 

is sufficient among the Macaronesian archipelagos and European Continental slope to 

preclude significant genetic differentiation.  

This is in agreement with the measures proposed last year of an overall TAC for Beryx spp. 

including all ICES areas of the European community. However, data obtained here on Beryx 

decadactylus completely contradicts this measure, by showing that one of the species 

included in the Beryx spp. category does present population differentiation within its 

distribution range. Despite the fact that no differentiation was found within the ICES 
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territory, some data point to a possible structure within this area that might be revealed by 

future studies with other more sensitive markers such as microsatellites.  

So, once more there’s the need of emphasize the fact that Beryx splendens and Beryx 

decadactylus must be separated and treated as different resources on research and 

management reports and measures.  

These findings also support the recent NEAFC resolution of upgrading some seamounts to 

protected areas, as there is more evidence that these unique habitats embrace several species 

with distinctive biological, ecological and genetic characteristics and need to be further 

studied before proper management strategies must be applied.  

 

8.5.Future Work 

 

The present work brought new insights on the understanding of population genetics and 

demographic history of deep-sea demersal fishes at a regional scale and also on a North 

Atlantic context. However, like most molecular studies, this work focused only upon a small 

number of species and was restricted to a certain area.  

  

It would be important to focus on other species and to enlarge the studied area to an oceanic 

or worldwide scale, in order to understand the global mechanisms, historic or life-history 

related, that influence demersal deep-sea fishes population structure.  

 

In order to better understand the genetic structure of the demersal community of the Azores 

archipelago, more species need to be studied. Genetic approaches have been previously used 

to study Pagellus bogaraveo, Beryx splendens (Stockley, 2001), Polyprion americanus 

(Sedberry et al., 1999) and were complemented here by analyses on Helicolenus 

dactylopterus, Beryx splendens and Beryx decadactylus. Studies need to be performed on 

other important representatives of the Azorean demersal community in order to achieve a 

global knowledge and understanding of this habitat and to characterize the response of 

resources to anthropological or climate changes. Not only should genetic studies be carried 

out on unstudied species in this area, such as Phycis phycis, Mora moro, Pagrus pagrus but 

more ecological and biological studies should also be iniciated for the species already 

genetically analysed to help interpret the genetic data.  

 

MtDNA and microsatellites markers were used here for Helicolenus dactylopterus. The 

conjunction of these two types of markers provided a very satisfactory approach to the 
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problems raised. However, for Beryx spp., no microsatellite loci were developed in this 

study. The screening and amplification of microsatellite loci in these species has never been 

implemented and it would be important, especially in the case of B.decadactylus, as regional 

genetic structuring of populations is likely and may be revealed by these more sensitive 

markers as in Helicolenus dactylopterus.  

The sampling areas utilized in this work are not completely representative of the overall 

geographic distribution of these species. It would be interesting to sample different areas, 

such as the Mediterranean sea, as several studies have already pointed to a separation 

between Atlantic and Mediterranean populations. Some samples for Helicolenus 

dactylopterus have already been collected from off the coast of Italy (courtesy of the IAMC-

CNR Italy) and mtDNA sequencing and microsatellite analysis will be preformed on these 

very soon. 

The highly exploited areas of the North and Norway Seas are also interesting places to 

analyse as studies on other deep-sea demersal species, closely related to those present in 

these areas, have revealed population structure (e.g. Sebastes spp. ; Roques et al., 2001). 

 

Conclusions 

 

In general, this work has brought new insights and a significant contribution to knowledge 

on three demersal fish species: Helicolenus dactylopterus, Beryx splendens and Beryx 

decadactylus, in respect of their natural populations and interactions, demographic history 

and evolution. These questions were approached trough the utilization of DNA-based 

molecular markers, and the main conclusions are: 

1) Mithocondrial cytochrome b and control regions partial sequences provided clear 

evidence for the existence of strong population differentiation between populations 

of Helicolenus dactylopterus in the North Atlantic Ocean.  

2) Isolation of the Cape Verde populations from the rest of the NE Atlantic populations 

was found for both Helicolenus dactylopterus as well as for Beryx decadactylus. 

However, a significant number of common haplotypes between these two NE 

Atlantic regions suggests that some degree of gene flow exists between populations 

of these two species within these areas or a common ancestral origin may exist.   

3) Microsatellite loci developed specifically for Helicolenus dactylopterus in this study 

revealed a very significant population differentiation at a finer geographic scale, 

separating the Continental Portugal population from Azores populations. Primers 
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developed in this study are now available for future genetic studies on this species 

for understanding of recruitment and larval ecology.  

4) Previous conclusions on the panmictic nature of Beryx splendens in the Atlantic 

were strengthened by this work as no population differentiation was found between 

samples from Cape Verde, Madeira and Azores; contrary to the other two species. 

However, further analysis is necessary  

5) The comparison of two closely related species (from the same genus and with very 

similar life-history characteristics) brought to light striking differences in their 

genetic population structure and demographic histories. 

 

All these conclusions stress the fact that it is necessary to increase knowledge on each 

deep-sea species in particular in order to be able to conserve their genetic variability and 

apply adequate management proposals in general. It is impossible to perform genetic 

studies for many species from the demersal community because of time, complexity and 

monetary resources; however, each study has to be seen as a jigsaw piece that 

contributes to a gigantic puzzle. 
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APPENDICE 1 

 

Population analysis of microsatellite excluding loci with probability of null alleles 
 
 
FST Ocidental 

Group 

Oriental 

Group 

Central 

Group 
Seamounts Madeira Peniche 

OcidentalG -      
OrientalG 0.0028 -     
CentralG -0.0026 0.0006 -    
Seamounts 0.0092* 0.0051 0.0004 -   
Madeira 0.00932 0.0007 0.0011 -0.0003 -  
Peniche 0.0201*** 0.0235*** 0.0255*** 0.0390*** 0.0182* - 
 
*  = p<0.05 and *** = p<0.0001 

Gor
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2D Multivariate analysis of genetic distances 

 

3D Multivariate analysis of genetic distances 


