Accurate and precise determination of stable Cr isotope compositions in carbonates by double spike MC-ICP-MS

Bonnand, Pierre, Parkinson, Ian J., James, Rachael H., Karjalainen, Anne-Mari and Fehr, Manuela A. (2011) Accurate and precise determination of stable Cr isotope compositions in carbonates by double spike MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 26, (3), 528-535. (doi:10.1039/c0ja00167h).


Full text not available from this repository.


Techniques for the separation of small quantities of Cr from carbonate material and for the analysis of stable Cr isotopes in carbonates by MC-ICP-MS are presented in this study. In comparison with previously published methods, we have developed a one-step Cr separation procedure that is relatively simple, and has a low blank (0.12–0.20 ng). Moreover, careful optimisation of the desolvating sample introduction system allows a significant increase in the sensitivity of our MC-ICP-MS technique compared to previous studies. Instrumental mass bias effects and fractionation of Cr isotopes during Cr separation are corrected using a carefully optimised 50Cr–54Cr double-spike method. Novel numerical simulations demonstrate that the effects of potential isobaric interferences from Ti, Fe and V are negligible, even if they are isotopically fractionated. Small deviations in the d53Cr value of the NBS 979 standard between different analytical sessions are due to small deviations from exponential mass fractionation behaviour. The long-term reproducibility of d53Cr for a spiked NBS 979 Cr isotope reference material is ?0.031& (2 S.D., n ¼ 147). Analyses of carbonates reveal that they have d53Cr values of 0.747 to 1.994&, distinctly heavier than ontinental crust and the terrestrial mantle. The carbonates record Cr isotopic fractionation that may be used to understand redox reactions in the oceans. Although this study focuses on carbonate samples, our mass spectrometry technique can be applied to the analysis of any samples with low levels of Cr, including river waters and seawater.

Item Type: Article
Digital Object Identifier (DOI): doi:10.1039/c0ja00167h
ISSNs: 0267-9477
Subjects: Q Science > QE Geology
Divisions : University Structure - Pre August 2011 > National Oceanography Centre (NERC)
National Oceanography Centre (NERC) > Marine Geoscience
ePrint ID: 178921
Accepted Date and Publication Date:
Date Deposited: 28 Mar 2011 15:50
Last Modified: 31 Mar 2016 13:34

Actions (login required)

View Item View Item