Zinc selenide optical fibers


Sparks, Justin R., He, Rongrui, Healy, Noel, Krishnamurthi, Mahesh, Peacock, Anna C., Sazio, Pier J.A., Gopalan, Venkatraman and Badding, John V. (2011) Zinc selenide optical fibers. Advanced Materials, 23, (14), 1647-1651. (doi:10.1002/adma.201003214).

Download

Full text not available from this repository.

Description/Abstract

Semiconductor waveguide fabrication for photonics applications is usually performed in a planar geometry. However, over the past decade a new field of semiconductor-based optical fiber devices has emerged. The drawing of soft chalcogenide semiconductor glasses together with low melting point metals allows for meters-long distributed photoconductive detectors, for example.[1,2] Crystalline unary semiconductors (e.g., Si, Ge) have been chemically deposited at high pressure into silica capillaries,[3,4] allowing the optical and electronic properties of these materials to be exploited for applications such as all-fiber optoelectronics.[5-7] In contrast to planar rib and ridge waveguides with rectilinear cross sections that generally give rise to polarization dependence, the cylindrical fiber waveguides have the advantage of a circular, polarization-independent cross section. Furthermore, the fiber pores, and thus the wires deposited in them, are exceptionally smooth[8] with extremely uniform diameter over their entire length. The high-pressure chemical vapor deposition (HPCVD) technique is simple, low cost, and flexible so that it can be modified to fill a range of capillaries with differing core dimensions, while high production rates can be obtained by parallel fabrication of multiple fibers in a single deposition. It can also be extended to fill the large number of micro- and nanoscale pores in microstructured optical fibers (MOFs), providing additional geometrical design flexibility to enhance the potential application base of the fiber devices.[9] Semiconductor fibers fabricated via HPCVD in silica pores also retain the inherent characteristics of silica fibers, including their robustness and compatibility with existing optical fiber infrastructure, thus presenting considerable advantages over fibers based on multicomponent soft glasses

Item Type: Article
ISSNs: 0935-9648 (print)
1521-4095 (electronic)
Related URLs:
Keywords: ZnSe, optical fibers, high pressure deposition, templated growth
Subjects: Q Science > QC Physics
T Technology > TK Electrical engineering. Electronics Nuclear engineering
Divisions: University Structure - Pre August 2011 > Optoelectronics Research Centre
ePrint ID: 180775
Date Deposited: 13 Apr 2011 11:25
Last Modified: 27 Mar 2014 19:34
Projects:
Fiberized Silicon: A New Platform for Nonlinear Photonics Devices
Funded by: EPSRC (EP/G051755/1)
Led by: Anna Peacock
1 January 2010 to 31 December 2012
NSF Materials World Network: Semiconductor photonic materials inside microstructured optical fibers
Funded by: EPSRC (EP/I035307/1)
Led by: Pier Sazio
1 January 2012 to 31 December 2014
URI: http://eprints.soton.ac.uk/id/eprint/180775

Actions (login required)

View Item View Item