Chunks are not enough: the insufficiency of feature frequency-based explanations of artificial grammar learning (in special issue on music cognition and performance)


Higham, Philip A. (1997) Chunks are not enough: the insufficiency of feature frequency-based explanations of artificial grammar learning (in special issue on music cognition and performance). Canadian Journal of Experimental Psychology, 51, (2), 126-137.

Download

Full text not available from this repository.

Description/Abstract

Two experiments tested chunk frequency explanations of artificial grammar learning which hold that classification performance is dependent on some metric derived from the frequency with which certain features occur within the letter string stimuli. Experiment 1 revealed that classification performance was affected by close graphemic similarity between specific training (e.g., MXRVXT) and test strings (e.g., MXRMXT), despite the fact that similar strings did not contain frequently occurring features (e.g., bigrams or trigrams). This effect was replicated in Experiment 2a and Experiment 2b demonstrated that substituting letters to make the consonant strings pronounceable (e.g., substituting X, R, and T, in the consonant string MXRMXT with Y, A, I, to produce MYAMYI) affected classification performance, despite the fact that objective measures of feature frequency were not altered. It is argued that models of classification that focus entirely on the frequency of features within the literal stimulus are insufficient, and that some allowance must be made for how the stimulus is encoded.

Item Type: Article
Additional Information: Special issue edited by Mark A. Schmuckler
Related URLs:
Subjects: B Philosophy. Psychology. Religion > BF Psychology
P Language and Literature > P Philology. Linguistics
Divisions: University Structure - Pre August 2011 > School of Psychology > Division of Cognition
ePrint ID: 18313
Date Deposited: 06 Mar 2006
Last Modified: 27 Mar 2014 18:08
URI: http://eprints.soton.ac.uk/id/eprint/18313

Actions (login required)

View Item View Item