The University of Southampton
University of Southampton Institutional Repository

Characterisation of carbon nanotube variability and application in solar cells

Characterisation of carbon nanotube variability and application in solar cells
Characterisation of carbon nanotube variability and application in solar cells
Photovoltaic solar cells (PVs) are now recognised as the world’s fastest growing energy technology, yet, they only account for a mere fraction of current global renewable power capacity. It is acknowledged that this inadequate market penetration has been largely a result of the technology’s excessive cost. Researchers have therefore endeavoured to find innovative, economic solutions with the aim of either cutting back on the active material quantity or improving power efficiencies to abate operating expenditure. Both approaches, however, have presented a cost vs. performance trade-off, which some believe may be surmounted by the employment of Nanotechnology. Amongst the many potential nano-materials proposed for PV conversion is the Carbon Nanotube (CNT) due to its low material utilisation, superior carrier transport properties and most notably; a tunable band-gap. This thesis investigates the theoretical performance of a range of CNT based solar cells, and in doing so, novel computational methodologies are formulated towards characterising the related electronic and optical properties with respect to the CNT structural variability.

The first part of this thesis addresses the issue concerning the differentiation of metallic and semiconducting CNTs. As an outcome, a simulation-efficient and experimentally validated analytical model is developed to distinguish the nanotubes and predict the band-gap of semiconducting CNTs. In addition, a model that approximates the semiconducting CNT’s carrier effective mass is presented.

The key challenge affecting CNT’s at present resides in the uncertainty of the structural characteristics realised using existing synthesis techniques. Thus, the second part of this thesis aims to statistically model the variation in band-gap and carrier effective mass as a function of typical geometric distributions. This work offers a valuable insight into the optimisation of CNT diameter related process parameters towards suppressing electronic variability.

The final part of this thesis initially focuses on modelling the optical absorption of CNTs where the photo-generated current and quantum efficiency responses are derived for various tube geometries when exposed to laser illumination. The established models are later exploited in combination with an equivalent PV circuit model to evaluate the performance metrics of a variety of isolated CNT based PV devices under solar radiation. A proposed set of multi-band-gap CNT PV devices are also analysed where the optimized CNT structures for PV conversion are outlined.

Within the confines of the assumptions made in this study, it is concluded that only specific types of CNTs may yield competitive PV conversion efficiencies compared to other nanotechnology based solar cells. However, reservations are maintained on whether CNTs could outperform bulk PV materials, even when a multiple band-gap scheme is considered
El Shabrawy, Karim
32d77902-a950-47a0-9247-357f78dc076a
El Shabrawy, Karim
32d77902-a950-47a0-9247-357f78dc076a
Maharatna, Koushik
93bef0a2-e011-4622-8c56-5447da4cd5dd

El Shabrawy, Karim (2011) Characterisation of carbon nanotube variability and application in solar cells. University of Southampton, School of Electronics and Computer Science, Doctoral Thesis, 196pp.

Record type: Thesis (Doctoral)

Abstract

Photovoltaic solar cells (PVs) are now recognised as the world’s fastest growing energy technology, yet, they only account for a mere fraction of current global renewable power capacity. It is acknowledged that this inadequate market penetration has been largely a result of the technology’s excessive cost. Researchers have therefore endeavoured to find innovative, economic solutions with the aim of either cutting back on the active material quantity or improving power efficiencies to abate operating expenditure. Both approaches, however, have presented a cost vs. performance trade-off, which some believe may be surmounted by the employment of Nanotechnology. Amongst the many potential nano-materials proposed for PV conversion is the Carbon Nanotube (CNT) due to its low material utilisation, superior carrier transport properties and most notably; a tunable band-gap. This thesis investigates the theoretical performance of a range of CNT based solar cells, and in doing so, novel computational methodologies are formulated towards characterising the related electronic and optical properties with respect to the CNT structural variability.

The first part of this thesis addresses the issue concerning the differentiation of metallic and semiconducting CNTs. As an outcome, a simulation-efficient and experimentally validated analytical model is developed to distinguish the nanotubes and predict the band-gap of semiconducting CNTs. In addition, a model that approximates the semiconducting CNT’s carrier effective mass is presented.

The key challenge affecting CNT’s at present resides in the uncertainty of the structural characteristics realised using existing synthesis techniques. Thus, the second part of this thesis aims to statistically model the variation in band-gap and carrier effective mass as a function of typical geometric distributions. This work offers a valuable insight into the optimisation of CNT diameter related process parameters towards suppressing electronic variability.

The final part of this thesis initially focuses on modelling the optical absorption of CNTs where the photo-generated current and quantum efficiency responses are derived for various tube geometries when exposed to laser illumination. The established models are later exploited in combination with an equivalent PV circuit model to evaluate the performance metrics of a variety of isolated CNT based PV devices under solar radiation. A proposed set of multi-band-gap CNT PV devices are also analysed where the optimized CNT structures for PV conversion are outlined.

Within the confines of the assumptions made in this study, it is concluded that only specific types of CNTs may yield competitive PV conversion efficiencies compared to other nanotechnology based solar cells. However, reservations are maintained on whether CNTs could outperform bulk PV materials, even when a multiple band-gap scheme is considered

Text
Characterisation_of_Carbon_Nanotube_Variability_and_Application_in_Solar_Cells.pdf - Other
Download (9MB)

More information

Published date: January 2011
Organisations: University of Southampton

Identifiers

Local EPrints ID: 183169
URI: http://eprints.soton.ac.uk/id/eprint/183169
PURE UUID: 87c51f5a-fb1a-467b-8e03-5c36fea95e3c

Catalogue record

Date deposited: 23 May 2011 13:34
Last modified: 14 Mar 2024 03:03

Export record

Contributors

Author: Karim El Shabrawy
Thesis advisor: Koushik Maharatna

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×