Modelling nutrient uptake by individual hyphae of arbuscular mycorrhizal fungi: temporal and spatial scales for an experimental design

Schnepf, Andrea, Jones, Davey and Roose, Tiina (2011) Modelling nutrient uptake by individual hyphae of arbuscular mycorrhizal fungi: temporal and spatial scales for an experimental design. Bulletin of Mathematical Biology (doi:10.1007/s11538-010-9617-1). (PMID:21225357).


[img] PDF - Version of Record
Restricted to System admin

Download (2552Kb) | Request a copy


Arbuscular mycorrhizas, associations between plant roots and soil fungi, are ubiquitous among land plants. Arbuscular mycorrhizas can be beneficial for plants by overcoming limitations in nutrient supply. Hyphae, which are long and thin fungal filaments extending from the root surface into the soil, increase the volume of soil accessible for plant nutrient uptake. However, no models so far specifically consider individual hyphae. We developed a mathematical model for nutrient uptake by individual fungal hyphae in order to assess suitable temporal and spatial scales for a new experimental design where fungal uptake parameters are measured on the single hyphal scale. The model was developed based on the conservation of nutrients in an artificial cylindrical soil pore (capillary tube) with adsorbing wall, and analysed based on parameter estimation and non-dimensionalisation. An approximate analytical solution was derived using matched asymptotic expansion. Results show that nutrient influx into a hypha from a small capillary tube is characterized by three phases: Firstly, uptake rapidly decreases as the hypha takes up nutrients, secondly, the depletion zone reaches the capillary wall and thus uptake is sustained by desorption of nutrients from the capillary wall, and finally, uptake goes to zero after nutrients held on the capillary wall have been completely depleted. Simulating different parameter regimes resulted in recommending the use of capillaries filled with hydrogel instead of water in order to design an experiment operating over measurable time scales.

Item Type: Article
Digital Object Identifier (DOI): doi:10.1007/s11538-010-9617-1
ISSNs: 0092-8240 (print)
1522-9602 (electronic)
Keywords: experimental design, fungal nutrient uptake, mineral weathering, mycorhizosphere, phosphorus cycling, simulation model
Subjects: Q Science > QA Mathematics
Q Science > QH Natural history > QH301 Biology
Divisions : University Structure - Pre August 2011 > School of Engineering Sciences > Bioengineering Sciences
ePrint ID: 184659
Accepted Date and Publication Date:
12 January 2011Published
Date Deposited: 09 May 2011 08:45
Last Modified: 31 Mar 2016 13:37

Actions (login required)

View Item View Item