Instance-based learning algorithms


Aha, David W., Kibler, Dennis and Albert, Marc K. (1991) Instance-based learning algorithms. Machine Learning, 6, (1), 37-66. (doi:10.1007/BF00153759).

Download

Full text not available from this repository.

Original Publication URL: http://dx.doi.org/10.1007/BF00153759

Description/Abstract

Storing and using specific instances improves the performance of several supervised learning algorithms. These include algorithms that learn decision trees, classification rules, and distributed networks. However, no investigation has analyzed algorithms that use only specific instances to solve incremental learning tasks. In this paper, we describe a framework and methodology, called instance-based learning, that generates classification predictions using only specific instances. Instance-based learning algorithms do not maintain a set of abstractions derived from specific instances. This approach extends the nearest neighbor algorithm, which has large storage requirements. We describe how storage requirements can be significantly reduced with, at most, minor sacrifices in learning rate and classification accuracy. While the storage-reducing algorithm performs well on several real-world databases, its performance degrades rapidly with the level of attribute noise in training instances. Therefore, we extended it with a significance test to distinguish noisy instances. This extended algorithm's performance degrades gracefully with increasing noise levels and compares favorably with a noise-tolerant decision tree algorithm.

Item Type: Article
ISSNs: 0885-6125 (print)
Related URLs:
Keywords: supervised concept learning, instance-based concept descriptions, incremental learning, learning theory, noise, similarity
Subjects: L Education > LB Theory and practice of education
Q Science > QA Mathematics > QA75 Electronic computers. Computer science
B Philosophy. Psychology. Religion > BF Psychology
Divisions: University Structure - Pre August 2011 > School of Psychology > Division of Cognition
ePrint ID: 18494
Date Deposited: 03 Mar 2006
Last Modified: 27 Mar 2014 18:08
URI: http://eprints.soton.ac.uk/id/eprint/18494

Actions (login required)

View Item View Item