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Screening Strategies in the Presence of Interactions
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1Battelle Memorial Institute, King Avenue, Columbus, OH 43201, USA
2Southampton Statistical Sciences Research Institute, University of Southampton, Southampton,

SO17 1BJ, UK
3Department of Statistics, The Ohio-State University, Columbis, OH 43201, USA

Product and process improvement can involve a large number of factors which must be varied
simultaneously. Understanding how factors interact is a key step in identifying those factors that
have a substantial impact on the response. This paper assesses and compares screening strategies
for interactions using supersaturated designs, group screening, and a variety of data analysis
methods including shrinkage regression and Bayesian methods. Novel methodology is developed
to allow application of Bayesian methods in two-stage group screening. Insights on using the
strategies are provided through a variety of simulation scenarios and open issues are discussed.

KEY WORDS: Bayesian model selection; Bayesian D-optimality; Gauss-Dantzig Selector; Group
screening; Shrinkage regression; Supersaturated designs.

1. SCREENING

In the discovery and development of high quality products and processes, it is increasingly
common for screening experiments to be run. Screening involves sifting through a large number
of potentially important factors to search, as economically and effectively as possible, for the few
active factors. These are factors whose influence on the measured response is sufficiently large
to be of value in improving the system. The active factors are followed up in later studies for
building detailed models for prediction and optimization. In complex systems, where generally
there are several aspects which must function efficiently together, studies are needed to discover
how factors interact. It is then vital that a screening strategy can identify active interactions as
well as main effects (see Lewis and Dean, 2001; Phoa, Wong, and Xu, 2009b).

Examples of recent screening studies include: (a) a two-stage group screening experiment at
Jaguar Cars to find factors that could be used to improve cold start performance (see Vine,
Lewis, Dean, and Brunson, 2008); (b) a 28-run supersaturated design at the specialty chemical
company, the Lubrizol Corporation, for determining factors in motor oil that affect the coefficient
of friction (Scinto, Wilkinson, and Lin, 2011); and (c) an 18-run experiment on 31 factors to
identify those factors that influence the yield from a chemical reaction (Rais, Kamoun, Chaabouni,
Claeys-Bruno, Phan-Tan-Luu, and Sergent, 2009). Further applications in analytical chemistry
are reviewed by Dejaegher and Vander Heyden (2008).

Traditional experimentation for product and process improvement begins by examining factor
main effects only, and uses further experimentation to examine interactions between factors with
main effects judged important from the stage 1 results (see, for example, Box, Hunter, and Hunter,
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2005, chs. 6 and 7). This approach requires a firm belief in strong effect heredity (Hamada and
Wu, 1992; Chipman, 1996) which states that interactions occur only between those factors with
active main effects. Practical applications provide evidence that strong effect heredity fails to
hold quite frequently; see Moore and Epps (1992), Vine et al. (2008), and Scinto et al. (2011).
Consequently our preferred method of screening is to include two-factor interactions in the earliest
stage of experimentation to screen out interactions of little importance as quickly as possible.

The purpose of this paper is to explore, extend and compare screening strategies that allow
investigation of interactions to give insights into how the approaches might work in practice.
Strategies that use supersaturated designs and group screening are investigated, together with
several methods of shrinkage regression and Bayesian analysis. The novel work presented is an
assessment and comparison of these screening strategies as well as the development of prior dis-
tributions for a Bayesian analysis of two-stage group screening experiments.

The remainder of this section discusses specific considerations in screening studies. Approaches
to design are described in Section 2; regression shrinkage and Bayesian methods for analyzing data
are described in Section 3, together with choice of tuning parameters or prior hyperparameters.
In Section 4, strategies are compared that use supersaturated designs and group screening with
analysis methods from Section 3 through a simulation of the entire screening process, involving
design selection, analysis of data, and decisions on the active effects. Issues are raised in Section 5
to stimulate further discussion, development and application of screening methods.

1.1. Choice of factor levels and model

Most experiments for screening a large number of factors examine only two factor levels (‘high’
and ‘low’). We concentrate on this situation, with the intention that a further experiment would
use additional factor levels to estimate a more detailed predictive model as needed. We assume that
a reasonable approximation, over the region of interest, of the major features of the relationship
between a response variable and the main effects of the f independent factors and their f(f−1)/2
two-factor interactions is provided by the following linear model

Y = 1nβ0 +Xβ + ε , (1)

where Y is an n × 1 response vector, the corresponding error vector ε is assumed to follow a
N(0n, Inσ

2) distribution with In the n × n identity matrix and 0n the zero n-vector, X is an
n× p matrix with p = f + f(f − 1)/2, β0 is the unknown intercept, and β = (β1, . . . , βp)

′ holds p
unknown regression parameters. Each column of X corresponds to a factorial effect. Since, in this
paper, each factor has two levels, the column corresponding to the main effect of the jth factor
has a “−1” in every row for which the jth factor is observed at its low level, and a “+1” when the
factor is observed at its high level. The column corresponding to the interaction between the kth
and lth factors is an elementwise product of the kth and lth main effect columns. Throughout
this paper, we refer to the regression parameters as main effects and interactions.

To identify the active or “large” effects in the model (see Section 1.2), we use a p-vector γ with
first f entries γj = 1 if the jth main effect is large and 0 otherwise (j = 1, . . . , f), and last p− f
entries γkl defined similarly for the interaction between factors k and l (1 ≤ k < l ≤ f). Then the
set AT of truly active effects has size γ ′1p, where 1p is the unit p-vector.
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1.2. Detection of active factors

In many applications, it is possible to elicit from subject experts the minimum difference, ∆, of
substantive interest between two responses. In this paper, we define a factorial effect of a two-level
factor as active, and hence an element of AT , if the corresponding βu (u = 1, . . . , p) in (1) is larger
in absolute value than a threshold t, where the value of t is application-dependent. We set the
threshold as though each individual βu were the only non-zero regression parameter. Suppose,
for example, that β1 6= 0 and βu = 0 for u = 2, . . . , p. Then the elicited value of ∆ represents
E(YHL...L) − E(YLL...L) = 2β1 where, for example, YHL...L is the response when the first factor is
set to its high level (H) and all the remaining factors are set to their low levels (L). It follows
that the threshold for β1 being active is t = ∆/2.

A factor is defined as active if its main effect is active or if it is involved in an active inter-
action. Thus the analysis of data from a screening experiment can be viewed as using model
selection techniques to decide which of the factorial effects (main effects and interactions) satisfy
the definition of active. We denote the set of these selected or declared active effects by AS.

Typically, a screening experiment has many more effects to be examined than observations
that can be taken within available resources. The data analysis is then likely to be successful only
when there are few active effects and, consequently, few active factors. Even in this situation of
factor sparsity (Box and Meyer, 1986), it may not be possible to discover all the active factors from
among a large set of possibilities without making errors; see, for example, Abraham, Chipman,
and Vijayan (1999), Li and Lin (2003), and Marley and Woods (2010) for main effects screening.
Thus the goal for a screening strategy is to minimize the probability of making mistakes.

In Section 4, we use the following measures to evaluate and compare screening methods: (i)
Sensitivity: the proportion of active main effects and interactions that are successfully detected,
(ii) False Discovery Rate (FDR): the proportion of effects declared active that are actually inactive,
(iii) Type I error rate: the proportion of inactive main effects and interactions that are incorrectly
declared active. If there are no active effects (AT = ∅), then sensitivity is defined as 1; if no effects
are selected as active (AS = ∅), then FDR is defined as 0 (see Benjamini and Hochberg, 1995). A
further comparison uses the difference, |AS| − |AT |, between the sizes of the selected active and
truly active sets of effects. This quantity is called the Active Set-size Discrepancy (ASD).

1.3. Elicitation of Prior Information

Prior information is routinely obtained from subject specialists and from pilot runs during
the scientific planning of any experiment (Meyer and Booker, 2001; Dupplaw, Brunson, Vine,
Please, Lewis, Dean, Keane, and Tindall, 2004; Vine et al., 2008). This includes information on
which factors to investigate, their levels, the available budget, and any physical randomization
restrictions. In many experiments, for example in engineering and chemistry, experts are often
able to provide information on the “direction” of each main effect based on scientific knowledge
or previous experience; then the high level of each factor can be set at the level which is most
likely to result in the higher response. For group screening (see Section 2.2), a higher rate of
detection of active effects can often be achieved when the factor levels are set accordingly. Elicited
prior knowledge on the direction and size of effects may be incorporated into the Bayesian design
and/or the analysis of an experiment (see, for example, Chipman, Hamada, and Wu, 1997).
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2. DESIGNS FOR SCREENING STRATEGIES

Much research has been concerned with designs for screening small or moderate numbers of
factorial effects. Recent developments in fractional factorial and non-regular designs have been
presented by Wu and Hamada (2009). Other methods include search designs (Srivastava, 1975)
which allow a pre-specified set of effects to be estimated, together with a small number of possibly
important additional effects (see also DuMouchel and Jones, 1994) and designs that maximize the
number of different models that can be fitted, a criterion known as estimation capacity (Cheng,
Steinberg, and Sun, 1999). Li (2006) and Jones, Li, Nachtsheim, and Ye (2007) suggested selection
of designs with high estimation capacity, followed by application of criteria based on distances
between pairs of potential models.

Several authors have developed Bayesian approaches to design for model selection. Box and Hill
(1967) proposed a design selection criterion based on the Kullbeck-Liebler distance between the
posterior predictive distributions for pairs of models; see also Meyer, Steinberg, and Box (1996). A
similar criterion using the Heillinger distance was investigated by Bingham and Chipman (2007).
A decision-theoretic approach to this problem was developed by Rose (2008). All of these Bayesian
approaches require the specification of a prior probability for each model and a prior distribution
for the model parameters, and are more computationally intensive than the frequentist methods.

Two design strategies for screening a large number of factorial effects with far fewer observations
are now briefly reviewed and are then evaluated in Section 4.

2.1. Supersaturated designs

We define a supersaturated design as having fewer runs than effects to be estimated. Although
the factorial effects cannot all be estimated simultaneously, a variety of submodels will be identifi-
able. Selection of a models from these submodels is achieved by the methods of analysis discussed
in Section 3. For experiments where main effects only models are assumed, the first system-
atic construction of supersaturated designs was provided by Booth and Cox (1962) via computer
search. These authors proposed E(s2) and rmax, the respective average and maximum correlation
between columns of X, as measures of performance of supersaturated designs. Other measures
include the average D-optimality of subdesigns (Wu, 1993), the number of zero correlations (Liu
and Dean, 2004), the probability of correct selection of active effects (Allen and Bernshteyn, 2003)
and the AM -criterion which combines estimation efficiency with low dependencies within subsets
of columns of X (Marley, 2010). In the literature, most of the supersaturated designs selected
using the above criteria have been for main effects only models; for example Lin (1993), Nguyen
(1996), Li and Wu (1997), Ryan and Bulutoglu (2007), and Georgiou, Draguljić, and Dean (2009).

Very little work has been done on the construction of supersaturated designs for the estimation
of factor interactions. As far as we are aware, the only methods that lend themselves to this setting
are those of Wu (1993), Liu, Ruan, and Dean (2007), and Jones, Lin, and Nachtsheim (2008). The
latter authors used Bayesian D-optimality to find supersaturated designs; we have adopted and
extended their method to obtain designs suitable for estimating interactions for the comparison
of methodologies in Section 4. Their criterion selects a design that maximises the determinant

|X ′X +K(1/η2)| , (2)
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where η2 is the variance of the common prior distribution for the regression coefficients, and

K =

[
0 0′p
0p Ip

]
.

This criterion provides flexibility in choice of design size and, when combined with a suitable
optimization algorithm, is easily incorporated within the framework of a large simulation study.

2.2. Group screening for large numbers of effects

Group screening was introduced by Dorfman (1943) in the context of screening in blood samples
and was extended to factor screening by Watson (1961); Morris (2006) has given a review of
generalizations and extensions of these ideas.

In two-stage group screening of two-level factors, the f factors are partitioned into g groups
at the first stage of experimentation, where the jth group contains gj ≥ 1 factors (j = 1, . . . , g).
High and low levels for each of the g grouped factors are defined by setting all the individual
factors in a group to either their high level or to their low level simultaneously. The first stage
of experimentation is performed on the relatively small number of grouped factors. The grouped
factors found to have active main effects or to be involved in active interactions are declared active
and are carried forward to the second stage, where an experiment is run on the individual factors
which constitute the active groups. In the second stage, main effects and interactions between
the individual factors within each active group are examined. Where the first stage has identified
an active interaction between two grouped factors, the interactions between pairs of individual
factors, one from each group, are also investigated. This is the IGS procedure of Lewis and Dean
(2001) (see also Vine, Lewis, and Dean, 2005).

3. ANALYSIS STRATEGIES

We now give an overview of various methods for analyzing data arising from experiments that
have fewer observations than effects to be estimated: LASSO, SCAD, Gauss-Dantzig Selector and
Bayesian model selection and maximum a posteriori (MAP) estimation. These methods will be
applied in Section 4 for the supersaturated and group screening designs. In each analysis, to
ensure that every model contains the intercept β0, we use a centered response vector and centered
explanatory variables (main effects and interactions) so that y′1n = 0 and X ′1n = 0p.

3.1. Frequentist methods

3.1.1. Shrinkage methods These methods (see, for example, Hastie, Tibshirani, and Friedman,
2009, ch. 3) achieve variable selection by biasing, or shrinking, estimated regression coefficients to-
wards zero. The biased estimators typically have lower variance than estimators obtained through
ordinary least squares. Most shrinkage techniques can be expressed as a penalized regression
problem which seeks estimates of β1, . . . , βp that minimize
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n∑
i=1

(
yi −

p∑
u=1

xiuβu

)2

+ λ

p∑
u=1

φ(βu) , (3)

where φ(·) is a non-negative penalty function and λ is a constant that controls the relative impor-
tance of the penalty term and thus the degree of shrinkage.

In applying shrinkage methods, it is necessary to select values for various different tuning
parameters. Selection methods include cross-validation (see Hastie et al., 2009, ch. 7), gener-
alised cross-validation, GCV (Craven and Wahba, 1979) and the Akaike Information Criterion,
AIC (for example, Burnham and Anderson, 2002, p. 63). In our study, where the designs are
highly structured and the number of possible regression coefficients greatly exceeds the number
of observations, we found that cross-validation performed poorly (see also Yuan, Joseph, and Lin,
2007). Following Fan and Li (2001), we used generalized cross-validation with SCAD, and AIC
with all other procedures with the effective degrees of freedom approximated by the number of
nonzero estimated regression coefficients (as suggested by Zou, Hastie, and Tibshirani, 2007). For
the number of parameters, p, close or equal to the number of runs, n, the standard AIC penalty
(2p) can lead to models that severely overfit the data, see Burnham and Anderson (2002, p. 66).
Hence, as suggested by Hurvich and Tsai (1989), we used AIC with a modified penalty,

AIC = n log

(
RSS

n

)
+

2pn

n− p
, for p < n , (4)

where RSS denotes the residual sum of squares. The modified penalty behaves similarly to the
standard penalty for p << n, and tends to infinity as p→ n (when RSS→ 0).

Bridge regression and the LASSO : Bridge regression (Frank and Friedman, 1993) is a broad
class of shrinkage regression methods with penalty in (3) of the form φ(βu) = |βu|γ. The choice
γ = 2 gives ridge regression and γ = 1 gives the LASSO (Least Absolute Shrinkage and Selection
Operator; Tibshirani, 1996). Lin (1995) found that ridge regression performed poorly for main
effects models when the number of factors was considerably larger than the number of runs.
Unlike ridge regression, LASSO estimates are nonlinear functions of the data and may be found
as the solution to a quadratic programming problem. LASSO regression also has the advantage
of shrinking some coefficient estimates to zero for suitable choice of λ. In our simulation study,
we declared any non-zero effect to be active if its estimated coefficient value exceeded threshold
t, where t was set as described in Section 4.3. In practice, the value of t would be elicited from
subject experts (see Section 1.2).

SCAD: Fan and Li (2001) developed SCAD (Smoothly Clipped Absolute Deviation) regression
in which φ(·) in (3) is defined through its first derivative

∂φ(βu)

∂βu
= θ1

{
I(βu≤θ1) +

(θ2θ1 − βu)
(θ2 − 1)θ1

I(βu>θ1)

}
, for u = 1, . . . , p ,

where θ1 and θ2 are tuning parameters, and I(a>b) is an indicator function taking value 1 if a > b
and 0 otherwise. SCAD achieves subset selection in the same way as the LASSO, by allowing
estimates β̂u, found via iterative fitting of ridge regressions, to be shrunk to zero. Li and Lin
(2002, 2003) gave an example of where SCAD regression for the analysis of a supersaturated
design performed well compared with stepwise regression and the Bayesian strategy of Beattie,
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Fong, and Lin (2002) under a main effects model. In our SCAD implementation, initial values of
βu for the estimation algorithm were obtained using stepwise regression with αin = αout = 0.10;
θ2 = 3.7 (Fan and Li, 2001); θ1 was chosen using GCV; threshold t was applied as in the LASSO.

Dantzig Selector: Phoa, Pan, and Xu (2009a) suggested using the Dantzig Selector (Candes
and Tao, 2007) for the analysis of supersaturated designs where β̂ is chosen to satisfy

min
β̂∈Rp

p∑
u=1

|β̂u| subject to ||X ′(y −Xβ̂)||∞ ≤ s ,

with s a tuning constant and ||a||∞ = max |ai|, a′ = (a1, . . . , ap). We selected the value of s
using (4), since our initial studies showed that the modification of AIC adopted by Phoa et al.
(2009a) returned too few active effects.

Candes and Tao (2007) applied the Dantzig Selector to choose a subset of potentially active
effects, and then used standard least squares to fit a reduced linear model. The terms in this
model whose coefficient estimates exceeded threshold t were declared active. This procedure is
known as the Gauss-Dantzig Selector.

3.1.2. Non-shrinkage regression for the first stage of group screening A regular fractional fac-
torial design may be selected for the first stage of group screening so that traditional analysis
of variance or linear regression methods apply. As noted by Abraham et al. (1999), Li and Lin
(2002), and others, non-shrinkage regression methods such as forward selection and stepwise re-
gression methods may not be successful for supersaturated designs. These methods may also have
problems when there are no truly active effects, see for example Draguljić (2010, Section 3.6.4)
and Marley and Woods (2010).

In our simulation, we have included a modification of a forward selection procedure for analysis
of group screening designs, as follows. We performed individual one-parameter regressions for each
main effect and interaction parameter βu and ordered these by their p-values. For h = 1, . . . , n−1,
the hth largest estimated parameter was added into the model if its inclusion increased R2 by at
least R2

inc = 0.99/dm+ 1e, where m is the expected number of active effects for a given number of
factors and given probabilities of main effects and interactions being active, and dm+ 1e denotes
the smallest integer greater than m+ 1.

We compared two different analysis methods for group screening. The first used the above
procedure for selecting the active grouped effects at stage 1, and the active individual effects
from the corresponding groups at stage 2. A final threshold t was applied so that effects with
estimated effects less than t were screened out. The second analysis method used the Dantzig
Selector (Section 3.1.1) at both stages of group screening.

3.2. Bayesian methods

Screening via model selection fits naturally within the Bayesian paradigm, where posterior
probabilities for individual models of the form (1) can be calculated and compared (see, for
example, O’Hagan and Forster, 2004). In this section, we describe Bayesian model selection for
screening experiments and a choice of hyperparameters for the prior distributions necessary for
implementation. Each possible model may be described by a p-vector γ with entries 1 or 0
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according to whether or not the corresponding effect is active (see Section 1.1). Given data y, the
screening problem of identifying which of the p effects should be classified as active and which as
inactive can then be viewed as selecting the best choice of γ.

Bayesian model selection methods can be applied directly to supersaturated designs, as demon-
strated by Chipman et al. (1997). For two-stage group screening, the application requires the
derivation of first-stage prior distributions for the grouped effects (see Section 3.2.1). Model se-
lection is via interrogation of the (approximated) posterior density. In this paper, we take two
approaches, using (i) model selection and (ii) model averaging:

(i) We identify the subset of models (values of γ) that have high posterior probabilities, and
then declare as active the effects that occur in these models. In Section 4, we select the effects
from models whose posterior probabilities exceed one third the probability of the posterior
modal model(s), a procedure that gives a more reasonable trade-off between sensitivity and
Type I error rate than similar empirical alternatives. More formal methods such as cross-
validation or the use of intrinsic Bayes factors (as applied by Beattie et al., 2002) could
be employed to identify a subset of effects from the high probability models. However, as
these methods subdivide the data into training and test sets, they work best with larger
experiments or smaller numbers of truly active effects. Also, the column correlations in the
model matrices for training and test subsets may become undesirably large.

(ii) We find, for each βu, an approximation to the marginal distribution (a model-averaged mix-
ture t-distribution) by using a posterior sample from MCMC and kernel density estimation.
We then select as active those effects whose regression coefficients have maximum a posteriori
(MAP) estimates greater than threshold t. These MAP estimates correspond to a 0-1 loss
function for βu. Alternatively, a squared or absolute error loss function could be employed
with a comparison of the model-averaged posterior mean or median, respectively, with the
threshold. MAP estimation is used because it is analogous to the shrinkage methods of
Section 3.1.1 but with possibly different shrinkage parameters for each βu; see Lu and Zhang
(2007) for a similar frequentist approach.

In our study, the specification of conjugate prior distributions for γ, σ2 and β follows that of
George and McCulloch (1997). The prior distribution for σ2 is an inverse gamma, IG(ν/2, νλ/2),
with ν > 0 and λ > 0; i.e. νλ/σ2 ∼ χ2

ν . The conditional prior distribution for β is a mixture of
Normal distributions, β|γ, σ2 ∼ N(0, DRDσ2). Here D is a p × p diagonal matrix with entries
Duu = auτu, with au = 1 if the uth entry in γ is 0 and au = cu > 1 otherwise, and R is the
p × p prior correlation matrix for β. This choice gives each active effect a more diffuse (larger
variance) prior distribution than each inactive effect. Hence, an effect corresponding to a large
regression coefficient has a higher prior probability of being active. The choice of τu and cu is
ideally informed by threshold t (Section 1.2), see details below and also George and McCulloch
(1993). The hyperparameters ν, λ and π are chosen to reflect prior beliefs.

For main effects, we take the prior distribution for γj to be Bernoulli with parameter 0 ≤ πj ≤ 1,
for j = 1, . . . , f . Prior interaction probabilities can be assigned via the effect heredity principle
(as described by Chipman, 1996) which allows the probability of an interaction being active to
depend upon whether or not each of the two “parent” main effects is active:

8



P (γkl = 1|γk, γl) = πkl =


π

(00)
kl if γk = γl = 0

π
(10)
kl if γk = 1, γl = 0

π
(01)
kl if γk = 0, γl = 1

π
(11)
kl if γk = γl = 1 .

(5)

The prior probability for γ is then p(γ) =
∏f

j=1 π
γj

j (1 − πj)1−γj
∏

k<l π
γkl

kl (1 − πkl)1−γkl . The
posterior densities, updated in light of observed data, are available in closed form, together with
unnormalised posterior probabilities for each model. When p and hence the number of competing
models is large, a numerical search of the model space is more efficient than complete enumeration.
Samples from the posterior distributions can be obtained via a Gibbs sampling algorithm (see
George and McCulloch, 1993, 1997).

In this paper, all the regression parameters are assigned the same prior distributions, with
τu = τ and cu = c (u = 1, . . . , p). As described below, τ and c may be treated as tuning
parameters and chosen by graphical investigation of the following conditional distribution for γu:

P (γu = 1|γ(u),β, σ
2) =

P (γu = 1,γ(u))

P (γu = 1,γ(u)) + P (γu = 0,γ(u))r(γ,β, σ
2)
, (6)

where γ(u) is formed from γ by deletion of entry γu (u = 1, . . . , p), and

r(γ,β, σ2) =
f(β|γu = 0,γ(u), σ

2)

f(β|γu = 1,γ(u), σ
2)
.

Under the prior distribution for β|γ, σ2 with R = I, the latter ratio simplifies to

r(γ,β, σ2) = c exp
[
−β2

u(1− c−2)/(2τ 2σ2)
]
. (7)

The graphical procedure for selecting τ and c begins with examination of (6) for βu = t (the
threshold) and an initial value of σ2; values of τ and c are selected to make the conditional
posterior probability for an active effect close to 1, and cτ ≥ 1. This constraint reduces the
influence of shrinkage on the coefficients of the active effects which is particularly important for
MAP estimation. The shrinkage arises from the conditional posterior distribution, β|γ, σ2,y ∼
N(AX ′y, Aσ2) with A = [X ′X+D−2]−1. In practice, a variety of σ2 values should be explored of
sufficient size to reflect the inflated residual sum of squares due to the exclusion of inactive effects
of moderate size from the model.

The chosen values of τ and c are fine-tuned by investigating (6) as the value of βu approaches
t. As an illustration, suppose that t = 17, the prior probability of an effect being active is 0.1, and
σ2 = 1. Inspection of the contours in Figure 1(a) suggests a value of τ = 3, where the posterior
probability of the uth effect being declared active when βu = t exceeds 0.9. A wide range of
possible values of c achieves high conditional posterior probability and cτ ≥ 1. Plots such as that
shown in Figure 1(b) enable a final choice of c to be made. Selection of a higher value of c will
result in a steeper curve and hence a lower Type I error rate but may also reduce sensitivity. The
choice of c = 10, as shown, gives a high probability (> 0.9) of declaring the uth effect to be active
when the value of βu is close to the threshold of 17.
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Figure 1: Investigation of choices for τ and c: (a) contour plot of conditional posterior probabil-
ity (6) obtained using (7), as a function of c and τ ; (b) probability (6) as a function of βu.

3.2.1. Bayesian analysis of a two-stage group screening experiment This section describes the
key steps in our Bayesian analysis of the first stage of group screening; particularly, the construction
of prior distributions for the grouped factor effects from those of the individual effects.

Suppose that, at stage 1, the individual factors are labelled so that the first g1 factors are in
group 1, the second g2 factors are in group 2, and so on, where f =

∑g
j=1 gj. Suppose also that

factor levels x1i, . . . , xfi are applied in the ith run of the first stage experiment. Define s1 = 0,
sh = sh−1 + gh−1 (h = 2, . . . , g + 1). Then the level of the jth grouped factor in the ith run is

xGji = x(sj+1)i = . . . = x(sj+gj)i , i = 1, . . . , n; j = 1, . . . , g .

A linear model for the response Yi at stage 1 may be expressed as follows:

Yi = β0 +

f∑
j=1

xjiβj +

f−1∑
k=1

f∑
l=k+1

xkixliβkl + εi

=

β0 +

g∑
j=1

sj+1−1∑
q=sj+1

sj+1∑
r=q+1

βqr

+

g∑
j=1

xGji

 sj+1∑
t=sj+1

βt

+

g−1∑
k=1

g∑
l=k+1

xGkix
G
li

[
sk+1∑

q=sk+1

sl+1∑
r=sl+1

βqr

]

= βG0 +

g∑
j=1

xGjiβ
G
j +

g−1∑
k=1

g∑
l=k+1

xGkix
G
liβ

G
kl + εi , (8)

which shows the deliberate aliasing of regression coefficients resulting from factor grouping. The
vector of pG = (g + g2)/2 grouped regression coefficients is βG = (βG1 , . . . , β

G
g , β

G
12, . . . , β

G
(g−1)g)

′.

Each possible model is defined by γG = (γG1 , . . . , γ
G
g , γ

G
12, . . . , γ

G
(g−1)g) whose entries are pG indicator
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variables with uth entry equal to 1 if and only if the uth grouped effect is active. Prior probabilities
for each γGj (j = 1, . . . , g) are obtained from the relationships between individual and grouped
probabilities, see Vine et al. (2005, Section 2). Prior probabilities for γGkl (1 ≤ k < l ≤ g) are
obtained using the heredity principle as in (5) and, in Section 4.3, we assume the same conditional
probabilities as for the individual interactions.

Setting γsj+1 = . . . = γsj+gj
= γGj and γ(sk+1)(sl+1) = . . . = γ(sk+gk)(sl+gl) = γGkl, to ensure

that individual factors involved in the same active grouped effect are all brought forward to the
second stage, and setting R = Ip in the prior density for β, results in the following conditional
prior distributions derived using (8): βGj |γG, σ2 ∼ N

(
0, gjτ

2σ2[γGj c
2 + (1− γGj )]

)
and βGkl|γG, σ2 ∼

N
(
0, gkglτ

2σ2[γGklc
2 + (1− γGkl)]

)
. Gibbs sampling can be used to generate a posterior sample from

the joint distribution for γ (George and McCulloch, 1997) and hence to approximate the posterior
model probabilities. Marginal posterior probabilities for each factorial effect can be approximated
by the proportion of visited models that include the effect. To decide which individual effects are
investigated at the second stage, we declare active those grouped effects contained in a subset of
models with high posterior probability, see (i) above. Individual factors are carried forward to
stage 2 if they are in groups having a declared active grouped main effect or involved in a declared
active grouped interaction.

The outcome of the first-stage experiment is a realization of the random vector γ, which
is represented by the p-vector γ̃ with p2 entries equal to 1 (corresponding to each of the p2

individual effects selected as active) and p − p2 entries 0. The p2 selected individual effects are
then investigated in the stage 2 experiment. The analysis uses the stage 1 prior distributions to
calculate the posterior densities using Gibbs sampling or, for small numbers of effects, explicit
calculations. The closed-form stage 1 posterior distributions for β and σ2, conditional on γ̃,
are not used to construct second stage prior distributions. This is because complete aliasing of
individual effects at stage 1 creates ambiguities in the data analysis and interpretation due to high
correlations in the prior distribution for β.

4. EMPIRICAL COMPARISON OF STRATEGIES

We compared the performance of screening strategies using single-stage supersaturated designs
and two-stage group screening procedures together with the analysis methods described in Sec-
tion 3. The smallest number of factors investigated was f = 10, leading to 10 main effects and
45 two-factor interactions to be screened (a total of 55 factorial effects). We also investigated
screening with f = 15 factors (120 factorial effects) and f = 20 factors (210 factorial effects).
Interactions between three or more factors were set to zero.

4.1. Designs used in the simulation

For the first stage of the two-stage group screening procedure, the f factors were divided
into five equal-sized groups and a 25−1

V fraction was selected with 16 runs and defining relation
I = G1G2G3G4G5, where Gi is the label of the ith group; the IGS procedure of Lewis and Dean
(2001) was used, as described in Section 2.2. The required total number of observations in the
stage 2 design was set equal to the number of effects to be estimated plus five extra observations
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to avoid a saturated design. The decision to use five groups for the stage 1 design was based on
minimizing the probabilities of missing active effects, as calculated through the GiSEL software
(Dupplaw et al., 2004).

To allow dynamic construction of designs of various different sizes for estimating particular sets
of effects at stage 2, the algorithm of Jones et al. (2008) was used to generate Bayesian D-optimal
designs. This method was used regardless of the type of analysis undertaken due to its flexibility
in generating designs within a large simulation. For the frequentist analysis, η2 = 0 in (2) was
used to generate a standard D-optimal design. For the Bayesian analysis, the prior distribution
suggested by Jones et al. (2008) was employed, with η2 = 5.

For the one-stage supersaturated design with f factors, the number of runs was chosen to be
similar to the number required by group screening. This number was found by calculating the
median number of runs used by group screening in the simulation study (see below). In this study,
all main effects are assumed to have the same probability, qme, of being active, with interaction
probabilities calculated using effect heredity (5). A compromise was made in the run sizes resulting
from the four different values of qme used in the simulation and this resulted in 32, 58, and 94 runs
for f = 10, 15 and 20 factors respectively. Bayesian D-optimal supersaturated designs for these
sizes were found using η2 = 5. An E(s2)-optimal supersaturated design (Section 2.1) could have
been used instead, and the findings of Marley and Woods (2010) suggest that similar results would
have been obtained. For each f , a single generation of the design was used for all the simulations.
The pairwise main effect and interaction column correlations for each of the f = 10, 15, 20 designs
were small, with 50% of correlations below 0.071, 0.069, 0.048, and 95% below 0.31, 0.24, 0.17,
respectively, and with maximum pairwise column correlations of 0.45, 0.41 and 0.40, respectively.
Our view is that it is not necessary to have zero correlations for effective screening, provided the
correlations are sufficiently small (c.f. Chen and Lin, 1998; Liu et al., 2007).

4.2. Data generation

At the start of each “batch” of 1,000 runs of the simulation, the value for the probabil-
ity of each main effect being active was set equal to the common value qme, selected from
{0.0, 0.05, 0.1, 0.15, 0.2} and held constant throughout the batch of runs. The probability of a
two-factor interaction being active was determined in two ways:

(i) given the activity status of the constituent main effects, the interaction probability was
calculated using relaxed weak heredity (Chipman, 1996) as in (5) with values

π(00) = 0.005, π(01) = π(10) = 0.125, π(11) = 0.25 ; (9)

(ii) marginal interaction probabilities qint were calculated usingthe conditional probabilities
in (9). Each interaction was then set active with probability qint independently of the status
of the main effects.

Results obtained using the first method are included in this paper.
The success of identifying active factors correctly is highly dependent upon which columns of

the supersaturated design are assigned to these factors. Thus, in a departure from many other

12



Table 1: Distributions for data generation and choice of prior distribution hyperparameters for
the analysis of supersaturated designs and stage 2 group screening

Distributions Prior
Setting Active Effect Inactive Effect Error τ c

1 N(6, 1) N(0, 1) N(0, 1) 0.4 10
2 N(12, 4) N(0, 1) N(0, 1) 0.7 20
3 N(24, 4) N(0, 1) N(0, 1) 3 10
4 N(24, 4) N(0, 16) N(0, 1) 3 10

papers (for example, Phoa et al., 2009a; Li and Lin, 2002), the designation of active effects in our
simulation is not fixed throughout each batch of runs, nor are the effect values. In addition, the
non-active main effects and two-factor interactions are not set to zero, but are selected from the
distributions listed in Table 1. This means that the success rates for detecting active effects in
our simulations tend to be lower than those in other published studies.

For a batch of 1000 runs, values of f , qme and one of the four sets of effect and error distributions
in Table 1 were selected. For each run in a batch, a binary vector δ was created to indicate the
activity or non-activity of each effect. For the uth effect, δu was set equal to 1.0 with probability
qme or via heredity as appropriate, and set equal to zero otherwise. Values, β?u, for each main
effect and interaction parameter were then generated from the selected effect distributions to give
a vector of true regression coefficients β?. For main effects, the direction of the effects was assumed
known and hence each β?u was generated as the absolute value of a draw from N(µact, σ

2
act); for

the interactions, each parameter value was drawn from N(µinact, σ
2
inact) or from N(−µinact, σ2

inact)
with equal probabiliity. There was a very small probability that, on any given run, the generated
value |β?u| of an active (inactive) effect would be less than (greater than) the chosen threshold t,
and hence violate the definition of an active (inactive) effect; in such cases, β?u was regenerated.

A vector of observations y was then generated from the model

y = Xβ? + ε, ε ∼ N(0, 1) ,

where X is a model matrix (excluding an intercept column) corresponding to the design used.
For single-stage supersaturated designs and at the first stage of group screening, this matrix has
columns corresponding to each of the individual main effects and interactions (including completely
aliased effects for the group screening designs). At stage 2 of group screening, X corresponds to a
Bayesian D-optimal design in the individual effects brought forward to the second stage; for any
grouped factor declared non-active at the end of stage 1, we set the constituent individual factors
to their nominal levels, labeled 0, for the second-stage experiment and include the corresponding
constant columns in X.

4.3. Choice of tuning parameters for the analyses

For the shrinkage analysis methods, the tuning parameters were chosen as described in Sec-
tion 3.1.1. The threshold, throughout, was set as t = µact − 3.5σact, so that it was linked to the
active effect distribution on each run of the simulation. For the Bayesian analysis of supersatu-
rated designs and stage 2 group screening, the values of τ and c, given in Table 1, were chosen for
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each of the four settings of active and inactive effects using the graphical methods of Section 3.2
to compromise between sensitivity and Type I error rate. For each of these choices, the marginal
probability of declaring the uth effect active when βu > t is equal to, or very close to, one. Note
that this does not take account of how the correlations between the columns of X, and other
aspects of the design, affects the posterior distribution of β. For stage 1 of group screening, we
recommend a choice of τ and c that gives less conservative results to avoid excessive screening of
effects; we applied the default values of τ = 1/6 and c = 10 (see Chipman, 2006).

For the inverse gamma prior distribution for σ2, we chose ν = 5 and, following an empirical
investigation and in the same spirit as Chipman et al. (1997), set λ = s/5, where s2 is the sample
variance from the data. In an investigation not reported here, we found that the simulation results
were fairly robust to the values of ν and λ used.

4.4. Results from the study

We used the four measures sensitivity, false discovery rate (FDR), Type I error rate, and active
set size discrepancy (ASD), defined in Section 1.2, to compare the various strategies. Empirical
distributions of these measures were obtained for each procedure using the 1000 simulations of
each setting. Figures 2–4 show boxplots of results, mainly for more challenging cases where there
is less separation between the active and inactive effect distributions. For clarity in the ASD
plots, the range has been chosen so that up to 1.5% of values in the tails of the distribution
are excluded. The occurrence of any grossly outlying values is discussed in the text. The nine
screening strategies are five frequentist methods labelled SS-SCAD, SS-LASSO, and SS-DS (Gauss-
Dantzig Selector) as in Section 3.1 for the supersaturated designs, GS-DS and GS-R2 (group
screening with 5 equal-sized groups at stage 1 using the Gauss-Dantzig Selector or using R2

analysis, respectively) as in Section 2.2, and four Bayesian methods SS-BMS, SS-MAP, GS-BMS,
and GS-MAP (using, respectively, a supersaturated design with model selection and with MAP
estimation, group screening with 5 groups and model selection, and group screening with MAP
estimation; see Section 3.2).

We first discuss results from two relatively easy settings: active and inactive effect distribution
pairs N(12, 4), N(0, 1) and N(24, 4), N(0, 1). Our results show that SS-SCAD, SS-LASSO, SS-DS,
GS-DS, SS-BMS and SS-MAP all tend to perform well, regardless of the number of factors and val-
ues of other simulation parameters. The SS-SCAD and SS-BMS methods tend to have somewhat
larger FDR values resulting from overestimation of the true model size. Group screening without
the Gauss-Dantzig Selector (GS-R2, GS-BMS and GS-MAP) tends to have lower sensitivity than
the other procedures. For these settings, GS-DS has slightly lower sensitivity than SS-DS and
SS-LASSO for 15 and 20 factors, see Figures 3(a) and 4(a), which is possibly due to the larger
group sizes. In contrast, for the harder settings discussed below, GS-DS is consistently the most
sensitive method.

The difficult settings in the study were the N(6, 1), N(0, 1) and N(24, 4), N(0, 16) cases
(for example, Figures 2(a), 2(b), 3(b) and 4(b)) where there is least separation between active
and inactive effects. Generally, and not surprisingly, higher sensitivity is often accompanied by
an over-fitting of the model, so that FDR and Type I error rate are non-zero. However, most
screening procedures keep the Type I error rate under control (< 0.25 for all procedures, and
< 0.1 for GS-DS) regardless of the setting. The exception is for SS-BMS where, for f = 15 and all
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Figure 2: Performance measures for screening strategies for f = 10 factors; for strategy labels, see
Section 4.4
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Figure 3: Performance measures for screening strategies for f = 15 factors
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Figure 4: Performance measures for screening strategies for f = 20 factors
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Figure 5: Performance measures for screening strategies with no active effects (qme = 0.0)
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(b) f = 20, Inactive N(0, 16), t = 17

values of qme, the procedure declares all, or nearly all, effects active for the N(6,1), N(0,1) setting;
for f = 20, SS-BMS declares most effects active for both the difficult settings. Hence this method
has been removed from Figure 4(b). This tendency occurs to a far lesser extent for other settings,
for example, in less than 1.5% of the simulated experiments summarised in Figures 3(b) and 4(a).
The choice of scale for Type I error rate and ASD in these plots excludes the corresponding points.
In general, for these difficult cases, the Bayesian methods with either supersaturated designs or
group screening experience a greater drop in performance than the frequentist methods.

Overall, GS-DS seems to be the best performing procedure, followed by SS-LASSO and SS-DS
which performed similarly to each other. Generally, SS-SCAD and GS-R2 tend to perform less
well than the other procedures, with the latter method controlling the Type I error rate but having
poor sensitivity. In general, Type I error rate is highest for N(6, 1), N(0, 1), where there is least
distinction between the active and inactive effects; sensitivity is lowest for N(24, 4), N(0, 16),
possibly due to the large inactive effects making it hard to detect the truly active effects. For
sensitivity and Type I error, the results are poorer for larger numbers of factors.

We further evaluated the screening strategies for the separate detection of active main effects
and active interactions. We found that all procedures had higher sensitivity and lower FDR for
screening main effects than for interactions, or for screening main effects and interactions together.
An explanation for this finding is that the direction of each active main effect was assumed known
and the corresponding β?u was set positive whereas, for an active interaction, the sign of β?u was
chosen at random.
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Results obtained from the analysis procedures when there are no truly active case are shown
in Figure 5. The methods perform similarly well except that SS-BMS and, to a lesser extent,
GS-BMS have slightly poorer performance for f = 10 factors in Figure 5(a). Notice that the SS-
BMS and GS-BMS methods do not use the threshold as a hard cut-off on the estimated parameter
values and this may explain their slightly poorer performance for f = 10.

5. DISCUSSION AND OPEN ISSUES

5.1. Threshold for active effects

The threshold, t, defines the minimum absolute value for an effect to be classified as active. Its
use can improve the performance of screening strategies as it allows overfitting in model selection
to be followed by “model-pruning” to obtain low Type I error rate and FDR. In a given simulation
run, we viewed t as a common threshold that applies to each regression parameter regardless of
whether the effect is a main effect or interaction. In practice, however, one may wish to set the
threshold differently for these different types of effects.

At the first stage of group screening, we chose not to use a threshold in our frequentist analysis.
If a threshold were to be used, however, we recommend that it be adjusted for the fact that a
group effect is a sum of individual effects (see (8)). The distribution of active grouped effect values
has a larger variance than that of individual effect values and, under effect sparsity, this would
argue for a smaller threshold for this first stage.

5.2. Design issues

In group screening, main effects of individual factors in the same group are completely aliased
at stage 1, as are all two-factor interactions between factors from each of two specified groups.
As in all fractional factorial experiments, there is some danger that aliased small effects may
amalgamate, resulting in a non-active grouped factorial effect appearing to be active at stage 1.
However, a high FDR can be corrected at stage 2 through screening out individual effects that
have spuriously come forward from stage 1. There is also a small chance in group screening that
aliased active effects may cancel each other and not be taken through to stage 2. This possibility
can be minimized for main effects by matching the high and low levels of the factors (Section 1.3).

For an experiment with a moderate number of factors, an alternative may be to use a regular
resolution III or IV fractional factorial design. However, such designs often have aliasing rela-
tionships that are too complicated for the screening setting involving two-factor interactions. For
example, the 32-run regular 210−5 Resolution IV fraction listed in Table 5A.3 of Wu and Hamada
(2009) links eight of the ten factors in a single alias string, and the design listed by Montgomery
(2009) links all ten. Although these designs may be preferable for other settings, they are not ideal
for screening interactions. In contrast, for the same number of runs, group screening in conjunction
with a higher resolution fraction for the grouped factors at stage 1 links at most g2 factors together
(where g is the maximum group size), no matter how many groups are present. Our simulations
showed that a strategy of two-stage group screening and the Gauss-Dantzig Selector tended to
produce slightly better results than the single-stage supersaturated design procedures. We believe
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that its success was most likely due to the fact that sufficient unimportant factor groups were
removed at stage 1 to allow the second stage to sort through many fewer correlated effects than
the one-stage procedure.

At stage 2 of group screening, a regular fraction or, as in our simulations, a non-regular design
can be used. For a larger number of factors, it would be possible to use supersaturated designs
at both stages. Alternatively, two-stage group-screening can be extended to multiple-stage group
screening. In the extreme, one could start with only two groups, and continue subdividing the
active groups; a procedure called sequential bifurcation, (see, for example, Kleijnen, Bettonvil, and
Persson (2006), and Wan, Ankenman, and Nelson (2005)). The performances of such strategies
are topics for future study.

In practice, some effects may be of more interest than others. For example, if the experiment
involves noise factors in addition to control factors, then usually control×noise interactions are of
primary interest. Similarly, it may be possible to classify effects into classes such as “very likely”
or “less likely” to be active”. In group screening, it is advantageous to place the “very likely
active” effects into the same group and allow the observations to shed more light on the other
effects. Similarly, the groups can be formed so that effects of most interest can be estimated at
the first stage; for example, by keeping control and noise factors in different groups (c.f. Vine
et al. (2008)).

For supersaturated designs, our simulations confirmed the well-known fact that the particular
columns which happen to be assigned to active effects have a bearing on how easily the active
effects can be detected. For example, one of the situations considered by Phoa et al. (2009a) and
Li and Lin (2003) involved a supersaturated design with 14 runs and 23 factors under a main
effects model, where columns 1, 5, 9, 13 and 17 were assigned to active factors. We found that
if these five active factors are associated, instead, with columns 1-5 of the same design, then an
average of only 1.24 of the active effects were detected by the Gauss-Dantzig Selector as compared
with 4.95 for the original choice of columns.

Marley and Woods (2010) showed that active effects assigned to columns having low average
correlations with all other columns have a greater probability of being detected. Consequently,
effects of most interest should be assigned to such columns in the design. Alternatively, if a
Bayesian D-optimal supersaturated design is generated, then (more) diffuse prior distributions
with τ → 0 can be assigned to effects of greater interest to force the construction of designs that
provide more information on these effects.

A drawback of a two-level screening design is that factors with non-linear effects may not be
detected (Laycock (2001), Torsney (2001)). One remedy is to set factor levels on the same side of
an anticipated turning point (as in Vine et al., 2008), which allows an active effect with curvature
to be detected via a linear component using only two levels. Another possibility is to add a centre
point to a 2-level design which is common practice in response surface methodology. Although
a third level for such a factor could be used, this leads to an increased number of effects to be
estimated which can complicate the screening process especially in the presence of interactions.
For a rapidly evolving literature on multi-level designs that could be used for moderate numbers
of factors, see for example Cheng and Wu (2001), Jones and Nachtsheim (2010), Chen and Liu
(2008), Liu and Lin (2009).
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5.3. Simulation issues

All the methods studied in this paper are likely to be under-performing in comparison with
an expert analysis of a single data set due to the need to use, for example, automatic tuning and
decision rules. For instance, in the Bayesian model selection procedure, the choice of active factors
would be made by inspecting the posterior model probabilities, and the posterior distribution for
β. Similarly, at the end of stage 1 of group screening, a decision is made whether or not to send
each group of factors through to stage 2 (see, for example, Vine et al. (2008), where not all “active
groups” were investigated at stage 2). However, in a simulation study, this type of control is not
possible.

In comparison with other published simulations on some of the procedures studied in this
paper, our inactive effects are quite large, being selected from a N(0, 1) or N(0, 16) distribution,
rather than being set to zero. This reduces the success rate for all of the procedures. When
compared with the previous group screening simulation of Dean and Lewis (2002), the mean sizes
of the active effects are much smaller, which again reduces success rate.

Most other simulation studies in the literature fix the number of active effects, rather than the
proportion of the main effects and interactions that are active, as in our study. Consequently, we
explored a wider range of true models and our results are more variable. In particular, there will
be a number of much harder scenarios (such as more factors or smaller active effects) “hidden”
in our results, and it is for these cases that many of the methods struggle to identify the active
effects. Many published studies also fix the columns of the supersaturated design assigned to the
active effects. As illustrated in Section 5.2, the column choice affects the results greatly, and hence
we assigned columns at random to active effects in our simulations, and computed performance
measures over a large number of such column assignments.

In our study, the number of runs for the supersaturated design was set approximately equal
to the median number of runs required by the group screening procedure with the same number
of factors and five equal-sized groups. These decisions came from practical considerations. For
a single experiment experiment, the expected size of a group screening design can be calculated
theoretically (Vine et al., 2005) and a comparison made with a similar sized supersaturated design.
A future study might try to match the sizes more closely and compare the performances of the
various strategies on each individual run of the simulation.

There are various other extensions that could be made in order to encompass a wider range of
situations. For example, on any given run of the simulation, the active main effects and the active
interaction effects could be drawn from different distributions. Similarly, to mimic a scenario
where effects can be categorized in advance by their likelihood of being active, the means and
variances of the active effect distributions could be set differently for the different categories.

The Bayesian approaches of Section 3.2 are more computationally intensive than the frequentist
methods of Section 3.1. An open problem for future study is to refine the procedures so that larger
numbers of factors can be handled within the Bayesian framework.

ACKNOWLEDGEMENTS

The work of Dean and Draguljic was partly supported by grants SES-0437251 and DMS-
0806134 from the National Science Foundation. Part of the work was undertaken while Dean was

21



visiting the Southampton Statistical Sciences Research Institute. The authors thank Dr Sarah
Carnaby for help in performing the simulation studies. We note with deep regret that Dr Anna
Vine passed away before the completion of this work.

REFERENCES

Abraham, B., Chipman, H., and Vijayan, K. (1999), “Some risks in the construction and analysis
of supersaturated designs,” Technometrics, 41, 135–141.

Allen, T. T. and Bernshteyn, M. (2003), “Supersaturated designs that maximize the probability
of identifying active factors,” Technometrics, 45, 90–97.

Beattie, S. D., Fong, D. K. H., and Lin, D. K. J. (2002), “A two-stage Bayesian model selection
strategy for supersaturated designs,” Technometrics, 44, 55–63.

Benjamini, Y. and Hochberg, Y. (1995), “Controlling the false discovery rate: a practical and
powerful approach to multiple testing,” Journal of the Royal Statistical Society B, 57, 289–300.

Bingham, D. R. and Chipman, H. A. (2007), “Incorporating prior information in optimal design
for model selection,” Technometrics, 49, 155–163.

Booth, K. H. V. and Cox, D. R. (1962), “Some systematic supersaturated designs,” Technometrics,
4, 489–495.

Box, G. E. P. and Hill, W. J. (1967), “Discrimination among mechanistic models,” Technometrics,
9, 57–71.

Box, G. E. P., Hunter, J. S., and Hunter, W. G. (2005), Statistics for Experimenters: Design,
Innovation, and Discovery, Hoboken, NJ: Wiley, 2nd ed.

Box, G. E. P. and Meyer, R. D. (1986), “An analysis for unreplicated fractional factorials,”
Technometrics, 28, 11–18.

Burnham, K. P. and Anderson, D. R. (2002), Model Selection and Multimodel Inference, New
York: Springer, 2nd ed.

Candes, E. O. and Tao, T. (2007), “The Dantzig selector: statistical estimation when p is much
larger than n,” Annals of Statistics, 35, 2313–2351.

Chen, J. and Lin, D. K. J. (1998), “On the identifiability of a supersaturated design,” Journal of
Statistical Planning and Inference, 72, 99–107.

Chen, J. and Liu, M.-Q. (2008), “Optimal mixed-level k-circulant supersaturated designs,” Journal
of Statistical Planning and Inference, 138, 4151–4157.

Cheng, C.-S., Steinberg, D. M., and Sun, D. X. (1999), “Minimum aberration and model robustness
for two-level fractional factorial designs,” Journal of the Royal Statistical Society B, 61, 85–93.

22



Cheng, S.-W. and Wu, C. F. J. (2001), “Factor screening and response surface exploration (with
discussion),” Statistica Sinica, 11, 553–604.

Chipman, H. A. (1996), “Bayesian variable selection with related predictors,” The Canadian
Journal of Statistics, 24, 17–36.

— (2006), “Prior distributions for Bayesian analysis of screening experiments,” in Screening:
Methods for Experimentation in Industry, Drug Discovery, and Genetics, eds. Dean, A. M. and
Lewis, S. M., New York: Springer, pp. 235–267.

Chipman, H. A., Hamada, M. S., and Wu, C. F. J. (1997), “A Bayesian variable-selection approach
for analyzing designed experiments with complex aliasing,” Technometrics, 39, 372–381.

Craven, P. and Wahba, G. (1979), “Smoothing noisy data with spline functions,” Numerische
Mathematik, 31, 377–403.

Dean, A. M. and Lewis, S. M. (2002), “Comparison of Group Screening Strategies for Factorial
Experiments,” Computational Statistics and Data Analysis, 39, 287–297.

Dejaegher, B. and Vander Heyden, Y. (2008), “Supersaturated designs: set-ups, data interpreta-
tion, and analytical applications,” Analytical and Bioanalytical Chemistry, 390, 1227–1240.

Dorfman, R. (1943), “The detection of defective members of large populations,” Annals of Math-
ematical Science, 14, 436–440.
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