Redox cycling and increased oxygen utilization contribute to diquat-induced oxidative stress and cytotoxicity in Chinese hamster ovary cells overexpressing NADPH-cytochrome P450 reductase


Fussell, Karma C., Udasin, Ronald G., Gray, Joshua P., Mishin, Vladimir, Smith, Peter J.S., Heck, Diane E. and Laskin, Jeffrey D. (2011) Redox cycling and increased oxygen utilization contribute to diquat-induced oxidative stress and cytotoxicity in Chinese hamster ovary cells overexpressing NADPH-cytochrome P450 reductase. Free Radical Biology and Medicine, 50, (7), 874-882. (doi:10.1016/j.freeradbiomed.2010.12.035). (PMID:21215309).

Download

[img] PDF
Restricted to System admin

Download (1051Kb)

Description/Abstract

Diquat and paraquat are nonspecific defoliants that induce toxicity in many organs including the lung, liver, kidney, and brain. This toxicity is thought to be due to the generation of reactive oxygen species (ROS). An important pathway leading to ROS production by these compounds is redox cycling. In this study, diquat and paraquat redox cycling was characterized using human recombinant NADPH-cytochrome P450 reductase, rat liver microsomes, and Chinese hamster ovary (CHO) cells constructed to overexpress cytochrome P450 reductase (CHO-OR) and wild-type control cells (CHO-WT). In redox cycling assays with recombinant cytochrome P450 reductase and microsomes, diquat was 10-40 times more effective at generating ROS compared to paraquat (K(M)=1.0 and 44.2μM, respectively, for H(2)O(2) generation by diquat and paraquat using recombinant enzyme, and 15.1 and 178.5μM, respectively for microsomes). In contrast, at saturating concentrations, these compounds showed similar redox cycling activity (V(max)≈6.0nmol H(2)O(2)/min/mg protein) for recombinant enzyme and microsomes. Diquat and paraquat also redox cycle in CHO cells. Significantly more activity was evident in CHO-OR cells than in CHO-WT cells. Diquat redox cycling in CHO cells was associated with marked increases in protein carbonyl formation, a marker of protein oxidation, as well as cellular oxygen consumption, measured using oxygen microsensors; greater activity was detected in CHO-OR cells than in CHO-WT cells. These data demonstrate that ROS formation during diquat redox cycling can generate oxidative stress. Enhanced oxygen utilization during redox cycling may reduce intracellular oxygen available for metabolic reactions and contribute to toxicity

Item Type: Article
ISSNs: 0891-5849 (print)
Subjects: Q Science > Q Science (General)
R Medicine > R Medicine (General)
Divisions: University Structure - Pre August 2011 > Other
ePrint ID: 190493
Date Deposited: 13 Jun 2011 10:44
Last Modified: 27 Mar 2014 19:42
URI: http://eprints.soton.ac.uk/id/eprint/190493

Actions (login required)

View Item View Item