Rising Arctic Ocean temperatures cause gas hydrate destabilization and ocean acidification

Biastoch, A., Treude, T., Rüpke, L.H., Riebesell, U., Roth, C., Burwicz, E.B., Park, W., Latif, M., Böning, C.W., Madec, G. and Wallmann, K. (2011) Rising Arctic Ocean temperatures cause gas hydrate destabilization and ocean acidification. Geophysical Research Letters, 38, (8), L08602. (doi:10.1029/2011GL047222).


Full text not available from this repository.


Vast amounts of methane hydrates are potentially stored in sediments along the continental margins, owing their stability to low temperature – high pressure conditions. Global warming could destabilize these hydrates and cause a release of methane (CH4) into the water column and possibly the atmosphere. Since the Arctic has and will be warmed considerably, Arctic bottom water temperatures and their future evolution projected by a climate model were analyzed. The resulting warming is spatially inhomogeneous, with the strongest impact on shallow regions affected by Atlantic inflow. Within the next 100 years, the warming affects 25% of shallow and mid?depth regions containing methane hydrates. Release of methane from melting hydrates in these areas could enhance ocean acidification and oxygen depletion in the water column. The impact of methane release on global warming, however, would not be significant within the considered time span.

Item Type: Article
Digital Object Identifier (DOI): doi:10.1029/2011GL047222
ISSNs: 0094-8276 (print)
Subjects: G Geography. Anthropology. Recreation > GC Oceanography
Divisions : University Structure - Pre August 2011 > National Oceanography Centre (NERC)
National Oceanography Centre (NERC) > Marine Systems Modelling
ePrint ID: 191591
Accepted Date and Publication Date:
Date Deposited: 22 Jun 2011 12:47
Last Modified: 31 Mar 2016 13:41
URI: http://eprints.soton.ac.uk/id/eprint/191591

Actions (login required)

View Item View Item