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Abstract

The aim of an experiment is often to enable discrimination between competing
forms for a response model. We consider this problem when there are two com-
peting generalized linear models (GLMSs) for a binomial response. These models are
assumed to have a common link function with the linear predictor of one model nes-
ted within that of the other. We consider selection of a continuous design for use in a
non-sequential strategy and investigate a new criterion, Tg-optimality, based on the
difference in the deviances from the two models. A comparison is made with three
existing design selection criteria, namely T-, D¢- and D-optimality. Issues are raised
through the study of two examples in which designs are assessed using simulation
studies of the power to reject the null hypothesis of the simpler model being correct,
when the data are generated from the larger model. Parameter estimation for these
designs is also discussed and a simple method is investigated of combining designs
to form a hybrid design to achieve both model discrimination and estimation. Such a
method may offer a computational advantage over the use of a compound criterion
and the similar performance of the resulting designs is illustrated in an example.
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1 Introduction

When an experiment results in a binary outcome, the relationship between the
k independent variables x4, . .., z; and the response may be approximated by a
generalized linear model (GLM) as described, for example, by McCullagh and
Nelder (1989). In such models, the number, Y}, of successes at the jth distinct

design point follows a binomial distribution Bin(my;,;), for j = 1,...,n.
Further, the success probability 7; is related to the jth treatment (combination
of variable values) x; = (z1;,...,2x;) through

g(m;) = f(z;)'B,

where ¢(-) is the link function and n; = f(x;)'B is the linear predictor, with
f(z;) a ¢ x 1 vector of known functions and 8 a ¢ x 1 vector of unknown para-
meters. Thus the link function relates the success probability, 7;, to the linear
predictor. Examples of link functions are the logit, n; = log (7;/(1 — 7;)); the
probit, n; = ®'(m;), where ® is the normal cumulative distribution func-
tion; and the complementary log-log link, n(x;) = log{—log (1 — m;)}. It is
assumed that observations from an experiment are independent and that a
single observation is made on each of the N = 7 ; m; experimental units.
Also, the units are assumed to be exchangeable in the sense that the distribu-
tion of the response to a treatment does not depend on the unit to which the
treatment is applied.

Most work in the literature has focused on finding designs for GLMs that
allow accurate estimation of the unknown model parameters; see, for example,
Firth and Hinde (1997) and Woods, Lewis, Eccleston, and Russell (2005).
However, earlier experimentation may aim to choose between two or more
models, each of which offers a plausible description of the response. As an
example, suppose that two models differ by one or more interaction terms.
Then the ability to choose between these alternatives in an early experiment
has an important impact on the effective design of subsequent investigations.
For such model discrimination experiments, different designs may be required
from those for parameter estimation. To find designs for linear or nonlinear
models, Atkinson and Fedorov (1975a,b) proposed the T-optimality criterion.
They showed that, for two competing models, T-optimal designs lead to the
most powerful F-test for the lack of fit of one arbitrarily chosen model, under
the assumption that the other model is “true”. Recent work on designs for
model discrimination includes the sequential approach for linear models of
Dette and Kwiecien (2004) and methods for multi-response nonlinear models
by Ucinski and Bogacka (2005).

For discrimination designs for GLMs, Ponce de Leon and Atkinson (1992) for-



mulated the T-optimality criterion in terms of the deviance, where the use of
the deviance as a goodness-of-fit test statistic is equivalent to the use of an
F-test for a linear model. A weighted sum of deviances was used by Miiller and
Ponce de Leon (1996a) to find sequential designs for model discrimination for
binomial data. They used a simulation study to assess designs for discrimin-
ating between GLMs with logit and probit link functions and the same linear
predictors. As the logit and probit link functions are almost linearly related
over most of their common domain, the problem of discrimination between the
corresponding GLMs is usually of less practical importance than that of dis-
crimination between models with a common link function and differing linear
predictors.

In this paper, we investigate a variety of optimality criteria for choosing designs
to discriminate between two nested GLMSs for binomial data; that is, between
models M; and M, with the linear predictor for M; nested within that for M.
We consider the set = of all possible continuous designs, defined by probability
measures on X = [—1, 1], the space of possible design points. Each design &
has n distinct, or support, points and is represented as

mle...wn
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where the vector x; holds the values of the k variables at the jth support
point. The weight w; € [0, 1] represents the proportion of the total experi-
mental effort expended on the jth support point, so that 377, w; =1 (see,
for example, Fedorov and Hackl, 1997).

In Section 2 we discuss four criteria for design selection: a T-optimality cri-
terion based on deviance, Dg-optimality, D-optimality under the larger model,
M,, and a new criterion, Tg-optimality, for discriminating between nested
models which is based on the difference between the deviances for the models.
A critical comparison of the criteria is made and their effectiveness examined
through simulation studies of power in Section 3. This is the first study for
GLMs, to the best of our knowledge, that compares criteria in this way. In
Section 4, we consider designs which have the dual aim of both estimating
models M; and M, and discriminating between them. These hybrid designs,
which are found by amalgamating a design for discrimination and a design
for estimation, are compared with designs found using a compound objective
criterion proposed by Atkinson (2005).



2 Criteria

The criteria discussed in this section are motivated by two closely related
objectives: first, the testing of the assertion that model M is correct (T- and
Tg-optimality); secondly, the estimation of some or all of the model parameters
in model M, as accurately as possible (D- and Dg-optimality).

2.1 Deviance-based T'-optimality

The deviance is an often-used measure of the goodness-of-fit of a GLM to the
observed responses y obtained from design £. For model M; (i = 1,2), it is
defined by

Dz(f,y) = 21(’57y7y) - 2l(§77}27y) ) (1>
where 7; = (71, ...,7n;) 18 the estimate of @ = (my,...,m,)" obtained by
using maximum likelihood estimates of the ¢; unknown parameters, 3, of
model M;, and

&7, y) = N w;[rjlogy; + (1 — 7)) log(1 — ;)] (2)

J=1

is a log-likelihood function for v = 7 or 7;, with 7; = y;/m; and m; = Nw;
(7 = 1,...,n). The maximum value of (2), corresponding to the saturated
model, is [(£, 7;y) and is achieved when the estimates and observations coin-
cide.

A T-optimal design & for discriminating between models M; and M, max-
imizes the deviance of M; when M is assumed to be the true model, that
is,

Di(&r, o) = max Di(€, o), (3)

see Ponce de Leon and Atkinson (1992). In this equation, p, is the vector
of expected responses under M, having jth entry mjgfl(n](?) ), where 77]@ is
the value of the linear predictor at the jth support point for model M; (i =
1,2;7=1,...,n). As u, depends on the value of 3,, & is a locally optimal
design. The observed response y is unknown prior to experimentation and

hence the expected response under model M, is used in (3).



A potential disadvantage of T-optimality is that the deviance D;(§,Y’) may
not follow the Xf%ql distribution given by asymptotic theory, particularly for
sparse data, see McCullagh and Nelder (1989, p.119-121). A particular concern
is that a large deviance is not necessarily evidence against the null hypothesis
that the data are adequately described by model M;. Sparseness may be par-
ticularly acute for data from designed experiments (see Woods et al., 2005, for
an example) and may also lead to other problems, such as non-convergence
of the iterative procedures in maximum likelihood estimation (for example,
Firth, 1993).

2.2 Tg-optimality

For nested GLMs, a more useful measure of the adequacy of M; is to test
the hypothesis that M; is the correct model against the alternative that M,
is correct, using the reduction in deviance achieved by fitting Ms to the data
compared with fitting M; (as discussed, for example, by Agresti, 2002, p.141).
For a given design &, the reduction in deviance is the value of the likelihood
ratio test statistic given by

R<£7y> - Dl(ga y) - D2(§7 y)

Under the null hypothesis, R(£,Y) follows asymptotically a x? distribution
on (ga — q1) degrees of freedom. For a finite number of support points, this
approximation is regarded as being quite accurate for the difference in devi-
ance, even though a y? distribution may be an inadequate approximation for
the deviance itself.

The Tg-optimality objective function is the expected value of R(£,Y ). Thus
a design &7, is Tp-optimal if

E{R(&1,,Y)} = max B{R(§,Y)}. (5)

The use of the random variable Y (as opposed to its expected value, as in T-
optimality) recognizes that, even if M, provides a good approximation to the
observed response, observations are likely to include noise. In the degenerate
case when Y has mean p, and variance-covariance matrix 0, the Tg-criterion
reduces to the T-criterion.



2.8 D- and Ds-optimality

A D-optimal design for a GLM estimates the model parameters with minimum
asymptotic generalized variance. Under model M; (i = 1,2), the objective
function is given by

op(&, M;) = | XWXy, (6)

where X; is the n x ¢; model matrix for M; and W; is a diagonal weight matrix
with (7, 7)th element

A design &7, is D-optimal if

¢D(€Ea Mz) = r?eaEX ¢D(€7 Mz) ;

where &7, is dependent on the parameters of M;, that is, £}, is only locally
optimal. See Firth and Hinde (1997) and Woods et al. (2005) for methods of

overcoming this limitation.

The D,-optimality criterion seeks a design which estimates a particular subset
of the parameters of a given model as accurately as possible and hence may
be applied to the nested models M; and M,. In order to find a Ds-optimal
design £}, for the additional parameters in Ms, the objective function is

Opg (&, My, M) = | X3 Wo X5 — X3 WXy (X{Wo X)) ' X{Wo X5,

where Xy = [X1]|X;] and X is the n X (¢ — ¢1) matrix with columns corres-
ponding to the additional parameters in M,. A Dj-optimal design £7, max-
imizes this function, that is,

qus (g*Dén Mla MQ) = r?ea:X ¢Ds (57 Mla MQ) .

The aim of accurate estimation of those terms that distinguish between the
two models suggests that D,-optimality might serve well as a criterion for
selecting a design to discriminate between them, as proposed by Atkinson
and Cox (1974) for linear models. See Miiller and Ponce de Leon (1996b) for



an application of Ds-optimality for probit models in the design of a study in
€Cconomics.

2.4 Implementation

In order to compare the above criteria, each has been implemented in search
algorithms to find designs. For the T-, D- and D,-criterion, the BFGS Quasi-
Newton method (Dennis and Schnabel, 1983) was used in the search. To im-
plement the Tg-criterion, the expectation of R(,Y") is required, see (5), which
is analytically intractable. Hence the objective function was approximated us-
ing Monte Carlo simulation (see, for example, Gentle, 2003, ch.7), with the
binomial success probability at support point j obtained from independent
draws from Beta(u;,v;) distributions, for j = 1,...,n. The parameters u; and
v; were chosen to make the mean of the jth Beta distribution equal to the
probability of success, 7TJ(»2), under M, and the variance proportional to the
mean. That is,

U;v;
(uj +v5)2(uj +v; + 1)

2 Uj
7-(]. = —
Uj + ’Uj

and  enP(1—7?) =

where ¢ > 0 is a constant of proportionality. When the additional parameters
have only small impact on the predicted response, then a small value of ¢
should be used. This is because it is only possible to distinguish between
closely similar models using a prediction-based criterion when negligible noise
can be assumed. Note that the T-optimality criterion assumes zero noise. This
issue is illustrated in Example 2 of Section 3.

The embedding of Monte Carlo function evaluation within design search al-
gorithms has been successful in several areas of design; for example, Hamada,
Martz, Reese, and Wilson (2001) and Woods (2005). Our implementation uses
a simulated annealing algorithm (see, for example, Spall, 2003, ch.8) which has
proved useful in optimizing noisy functions in a wide range of applications.
Our algorithm used 1000 independent draws for the success probabilities for
every function evaluation in order to achieve satisfactory control of the Monte
Carlo error.

3 Comparison of criteria

A method of assessing the effectiveness of the four criteria is to evaluate the
designs selected using an estimate of the power of a test of the null hypothesis
Hy: M, is correct against the alternative hypothesis H4: M, is correct, where



the estimate is obtained using data from simulated experiments with a range
of experiment sizes. In this section, we apply this method to investigate the
criteria on two examples and use the difference in deviance between the two
models as a test statistic. A hypothesis test against a specified alternative is
preferred to a lack-of-fit test for M; based on the deviance, not only because of
the previously discussed unreliable distributional properties of the deviance,
but also because of the ambiguity in the number of degrees of freedom for the

deviance according to whether the data are viewed as grouped or ungrouped
(Davison, 2003, p.491-492).

For each criterion, a continuous design is obtained by search algorithm. An
observation is generated for the jth support point as a random draw from a
Bin(mj,w(?)) distribution, where m; is approximated by integer rounding of
Nw; (j = 1,...,n). Both models M; and M, are fitted to the data set and
the difference in deviance is compared with the Xfl_a)7(q2_ @) percentile. This
process is repeated ngy times and the proportion of times that Hj is rejected

is recorded.

When the data from the simulated experiments give proportions near 0 or 1,
the problem of infinite or unstable parameter estimates may arise. Although
this clearly presents a problem for parameter estimation and prediction, it
does not necessarily imply a poor fitting model as, usually, the fitted values,
and therefore the deviance, converge to their limiting values (McCullagh and
Nelder, 1989, p.117). Rather, this problem is indicative of the inability of the
models to distinguish between “large” and “very large” values of the linear
predictor, and similarly between “small” and “very small” values. These situ-
ations result in fitted probabilities of 1 or 0 respectively. This problem is par-
ticularly acute for the probit link. When this problem arises in the simulated
experiments, we have not excluded fitted models with unstable parameters, as
might be considered in an investigation concerning parameter estimation.

The following examples illustrate this method of evaluation and allow com-
parison of the criteria. As the T-, D- and Dg-optimality criteria find locally
optimal designs, values of the parameters in M need to be specified for each
example. These parameters are also used to determine the Beta distribution
used to evaluate the Tg-objective function. The parameters in M; are not
needed, as the D-optimal design is only found for the larger model.

FExample 1. Logistic regression with two factors: M; has an additive linear
predictor with three parameters (¢ = 3); M, also includes the interaction
term (ga = 4). Thus, the linear predictors are

77(1) = B + Puz1 + Baza,
77(2) = Bo2 + Braz1 + Baoxa + Bsaz122 .
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Fig. 1. Discrimination designs for four different values of additional parameter (3o
in Example 1. The size of each plotted symbol is proportional to the weight assigned
to the corresponding support point.

Four choices of parameter values for M, were investigated, namely [y = 1,
Bz =1, B2 =2 and B3 € {—2,-1,1,2}.

Example 2: Probit regression with one factor: M; has a first-order linear pre-
dictor (¢1 = 2); M, is a second order model (¢go = 3). Thus the linear predictors
are

77(1) = Bo1 + Buz,
77(2) = [Bo2 + P2 + 5229U2 .

Again, four choices of parameter values are considered: Gys = 1, B2 = —2 and
B € {—2,-1,1,2}.
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Fig. 2. Discrimination designs for four different values of additional parameter Bao
in Example 2. The size of each plotted symbol is proportional to the weight assigned
to the corresponding support point.

For each example, a design was found for each of the four criteria and for each
of the four values of the additional parameter. The support points for these
designs are shown in Figures 1 and 2, with the size of each plotted symbol
proportional to the weight assigned to the support point. All the Tg-optimal
designs were found using ¢ = 0.1, except for the design in Figure 2(c) for
which ¢ = 0.01. For this set of parameter values, the random variation in the
simulated response with ¢ = 0.1 dominates the differences in the predictions
from the two similar models. Hence, the Tg-optimality criterion with ¢ = 0.1
produced a degenerate design with all the support points at, or very near to,
x = 1, the point at which the variation in the response from model 2 was at its
greatest. The choice of ¢ = 0.01 allowed the difference between the expected
responses from the two models to be distinguished from the noise and resulted
in the design shown in Figure 2(c). For each example, and choice of model
parameters, the locations of the support points are broadly similar for the
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Fig. 3. Power for testing Hy against H 4, against experiment size IV, for four values
of the additional parameter (335 in Example 1.

designs found from the four criteria. However, the locations differ according
to the sign of the additional model parameter in each example.

The performances of the 16 designs were compared for each example using the
estimated power of the test of Hy against H 4 for experiment sizes ranging from
N = 10to N = 200 runs. For each experiment, the power was approximated by
simulating ng = 1000 sets of experimental data and performing the test with
a significance level of o = 0.05. Figures 3 and 4 show how the power for each
of the designs found from the four criteria is related to the number of runs in
the design for Examples 1 and 2, respectively. The curves have been smoothed
using a normal kernel smoother (Eubank, 1999, ch.4), with bandwidth equal
to 20 and chosen by eye to reduce the impact of Monte Carlo error.

All the designs led to higher power for a given N when there is a greater dif-
ference between M; and M, and hence an easier discrimination problem. This

11



(a) [322:_2 (b) 622:_1

o e
i -
[ee) [ee)
<3 o 7]
© ]
g oS 7 g oS 7
3 3
[ A —— D-optimal [ A
e - - Ds-optimal °
---- T-optimal
g - ---- Tg—optimal g -
o ] Q]
° 5 T T T T e N T T T T
0 50 100 150 200 0 50 100 150 200
N N
(€) Bo=1
o _] 4
i -
o] o]
o 7] <
© [le]
& o 7 g oS 7
: -
o < | o ¥ |
o o
N N
o 7] o 7]
o ] o ]
° N T T T T ° N T T T T
0 50 100 150 200 0 50 100 150 200
N N

Fig. 4. Power for testing Hy against H 4, against experiment size IV, for four values
of the additional parameter (329 in Example 2.

occurs for the larger absolute values of (335 (Example 1) and (5 (Example 2).
For the more challenging problems, there are greater differences between the
performances of the designs, see Figures 3(b) and 4(c), with the D-optimal
designs generally having the poorest performance. For every comparison, the
T-optimal design consistently gives the greatest increase in power for increas-
ing N. The Tg-optimal designs generally have very similar performance to

the T-optimal designs, with the power curves virtually indistinguishable in
Figures 3(c) and 3(d).

4 Parameter estimation

Designs tailored to model discrimination may be inefficient for parameter es-
timation for either, or both of, M; and Ms. Indeed, T- and D -optimal designs

12



may not even allow estimation of the parameters in My, particularly if there
is a considerable difference between the two models, such as more than one
additional term. In this section, we describe a selection criterion for designs for
estimating parameters in two models. We then investigate a method of com-
bining designs for discrimination and estimation to provide designs capable of
both efficient estimation and discrimination.

4.1 Compound estimation criterion

In order to produce designs for efficient estimation of the parameters in two
models, M; and My, Atkinson and Cox (1974) suggested maximization of the
objective function

¢C(€7 My, MQ) = (¢D(£a Ml))l/ql ((bD(f’ M2))1/q2 ) (7>

where ¢p is defined in (6). This is a special case of the criterion in the seminal
work of Lauter (1974) and has recently been used to find designs for GLMs
by Woods et al. (2005).

4.2 Hybrid designs

We consider hybrid designs which are capable of both discrimination and para-
meter estimation. Such a design is formed as a “weighted sum” of a discrimin-
ation design &%, such as a T- or Tg-optimal design with ng support points, and
a design £¢ for estimation, such as a design maximizing (7) with n. support
points. A hybrid design &" is defined as

" =1~ a)¢’ + ag*

d d e e
B x o x;, x§ x;
1—a)wd...(1—-a)wt aws...aws ’
1 .. nd 1 DY ne
where az?, xf{ and w;-i, wi (7=1,...,nq; L =1,...,n) are the support points

and corresponding weights of the discrimination and estimation designs re-
spectively, and 0 < a < 1. The choice of a allows adjustment of the relative
importance of discrimination and estimation: a = 0 gives the discrimination
design; a = 1 gives the estimation design.

Previous work on designing experiments for the dual purpose of discrimination
and estimation, ranging from Léauter (1974) to Atkinson (2005), has focused

13



on compound and constrained criteria which combine the two objectives. The
use of hybrid designs offers a computational advantage over these alternative
approaches, as it is not required to carry out a separate design search for
several values of a in order to investigate designs offering different trade-offs
between discrimination and estimation. This is a considerable benefit if a
simulation-based criterion, such as Tg-optimality, is used for discrimination.

We investigate the performance of hybrid designs formed from a T-optimal
design and an estimation design for the models in Example 1. The T-optimal
designs are those discussed in Section 3 and the estimation designs were ob-
tained by design search through maximization of (7). For 101 equally spaced
values of a in [0,1], hybrid designs were assessed through (i) power, as de-
scribed in Section 3, with N chosen to be 100, and (ii) through their D-
efficiency under model 7, defined as

1/q;

_ [op(&h, M) /i

Effp, = | 7——F—< ,

¢D <£z ’ Ml)

where ¢p is defined in (6) and & is the D-optimal design under model M; (i =

1,2). Parameter values for M; were obtained by fitting M; to data generated

from model M, using the T-optimal design. Alternatively, any available prior
knowledge of the parameters in M; could be used.

The results of the investigation are shown in Figure 5, where the curves for
power have been smoothed using a kernel smoother with bandwidth equal to
0.1. The trade-off between discrimination and estimation ability as a varies
depends upon the difference between the models. When a large difference ex-
ists, such as when 335 = 2, high D-efficiency, under both M; and M,, and
high power can be achieved simultaneously through setting a = 0.8, see Fig-
ure 5(d). When there is less difference between the models, maximum perform-
ance for both estimation and discrimination cannot be achieved and a sub-
stantial trade-off between the two requirements is necessary, see Figure 5(b).

4.8  DT-optimality

Atkinson (2005) described the DT-optimality criterion for estimation of, and
discrimination between, two or more models with normally distributed errors.
We extend this criterion to the comparison of two GLMs, M; and Ms, through
use of the objective function

¢DT(§7I"'2) = (1 - CL) 1Og D1(§7M’2> + a¢c(§7 M17 M2)/2’

14



(a) B32:_2 (b) [332:_1

o ] o ]
- - 7
© © =TT
> © 7] > © 7] _--7
(8] (8] -
c c -
@ © 2 © -
S o 7 S o 7
= =
T < T <
9] s — [} -
% e — Power % © \
RN - - - D-efficiency (M, RN
S 7 .- D-efficiency (My S 7]
o ] o |
° T T T T T ° T T T T T
0.0 0.2 04 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
a a
(€) Bsx=1 (d) Bs2=2
o ] o
- __._“_‘_._w.“-" ----- -
© - ©
Q Q
c c
QL 9 | o 9 _|
e o e o
= =
g < -d—\—\ g <
2 3 2 31
o [e]
o N o N
o 7] o 7]
o ] o |
° N T T T T T N T T T T T
0.0 0.2 04 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
a a

Fig. 5. The power and D-efficiency of the hybrid designs of Example 1 for 0 < a < 1.

where 0 < a < 1 again represents the relative importance of discrimination
and estimation. We use the criterion of maximizing this function to find DT-
optimal designs for the models in Example 1, for the same values of a used to
calculate the hybrid designs in Section 4.2. As for the hybrid designs, these
designs were assessed in terms of their power and D-efficiency and the results
are shown in Figure 6. These results indicate that DT-optimal designs tend
to achieve slightly lower D-efficiencies under both M; and Ms than the hybrid
designs and slightly higher power to discriminate between the models; see
also Waterhouse and Eccleston (2005) for other nonlinear models. A direct
comparison for 3o = —1 is shown in Figure 7. The differences in performance
between the hybrid and DT-optimal designs are, however, minimal and are
unlikely to influence the choice of one design over another.
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Fig. 6. The power and D-efficiency of the DT-optimal designs of Example 1 for
0<a<l.

5 Discussion

When the aim of an experiment is to maximize the probability of rejecting
the smaller of two nested models, given data generated from the larger model,
there can be advantages in using a design which is optimal for discrimination,
rather than one which is optimal under an estimation criterion. In particular,
use of a discrimination design may allow a smaller experiment to be used to
achieve some specified power.

Alternative methods for this problem apply a sequential approach, such as that
suggested by Miiller and Ponce de Leon (1996a). Although such an approach
is intuitively appealing, it is not always feasible in practice and, for linear
models, is often inferior in power to a non-sequential method, see Dette and
Kwiecien (2004).
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Fig. 7. The performance of hybrid and DT-optimal designs for Example 1 with
B32 = —1, measured by their D-efficiencies under M; and Ms, and the power to
discriminate between the two models.

An important issue in discrimination problems concerns the size of the differ-
ence between competing models. If the models are very close, in the sense of
producing very similar predictions, then the experimenter needs to consider if
there is a scientific need to discriminate between them. If the models are sub-
stantially different, then it is unlikely that a tailored design will be necessary
to distinguish between them with reasonable power.

The four criteria discussed in this paper may be ranked according to the
amount of prior information required for their implementation. For two nes-
ted GLMs, to find a D-optimal design requires knowledge of which model is
correct and the corresponding parameter values; for both T- and D,-optimal
designs, the parameter values must be known for the larger model; for a Tg-
optimal design, only knowledge of suitable prior distributions for the response
is needed.
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An advantage of a Tg-optimal design is that it is guaranteed to allow a test
of model M; against M, using the difference in deviance. Such a test is not
guaranteed to be possible for a T-optimal design, particularly when the models
differ by more than one term, when the T-optimal design may have insufficient
support points for the estimation of M.

Further research needed in this area includes investigations of methods to
overcome the dependence of T-optimal designs on the parameter values for
M, such as the approach of Ponce de Leon and Atkinson (1991). Another
interesting extension is to find designs capable of discriminating between three
or more models, as was investigated, for example, by Dette and Kwiecien
(2004) for linear models.
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