Groups possessing extensive hierarchical decompositions
Januszkiewicz, T., Kropholler, P.H. and Leary, I.J. (2010) Groups possessing extensive hierarchical decompositions. Bulletin of the London Mathematical Society, 42, (5), 896904. (doi:10.1112/blms/bdq045).
Download
Full text not available from this repository.
Description/Abstract
The class HF is the smallest class of groups that contains all finite groups and is closed under the following operator: whenever G admits a finitedimensional contractible GCWcomplex in which all stabilizers are in HF, then G is itself in HF. The class HF admits a natural filtration by the ordinals. For each countable ordinal we show that there is a countable group that is in HF but has not arisen by stage alpha of this filtration. Previously this result was known only for alpha equal to 0, 1, and 2. The groups that we construct contain torsion. We also review the construction of a torsionfree countable group in HF that is not in stage 2 of the filtration.
Item Type:  Article 

Digital Object Identifier (DOI):  doi:10.1112/blms/bdq045 
ISSNs:  00246093 (print) 14692120 (electronic) 
Subjects:  Q Science > QA Mathematics 
Divisions:  Faculty of Social and Human Sciences > Mathematical Sciences > Pure Mathematics 
ePrint ID:  199421 
Date Deposited:  18 Oct 2011 11:01 
Last Modified:  29 Jul 2015 11:38 
Projects: 
Topics in Geometric Group Theory
Funded by:
National Science Foundation
(0706259)
1 July 2007 to 30 June 2011
Cohomology, curvature, classifying spaces and symmetry
Funded by:
National Science Foundation
(0804226)
15 July 2008 to 30 June 2011

URI:  http://eprints.soton.ac.uk/id/eprint/199421 
Actions (login required)
View Item 