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1. ABSTRACT 
 
Probabilistic Finite Element (FE) models have recently been developed to assess the 
impact of experimental variability present in knee wear simulator on predicted Total 
Knee Replacement (TKR) mechanics by determining the performance envelope of joint 
kinematics and contact mechanics. The gold standard for this type of analysis is 
currently the Monte Carlo method, however, this requires a larger number of trials and 
is therefore computationally expensive. Alternatively, probabilistic methods exist, such 
as response surface methods that can offer considerable savings in computational cost. 
The aim of the current study was to compare the performance envelopes obtained for 
three metrics (Anterior-Posterior (AP) translation, Internal-External (IE) rotation and 
peak Contact Pressure (CP)) for a FE model of TKR mechanics using two different 
probabilistic methods: the Monte Carlo technique and the Response Surface Method 
(RSM), implemented with PamCrash FE solver and PamOpt optimization/probabilistic 
software. The influence of implant alignment was considered, based on a study from the 
literature. The results of a 1000 trial Monte Carlo analysis were compared to predictions 
from 25, 50 and 100 trial response surface calculations. Overall, the Response Surface 
Method (RSM) was capable of predicting similar results to the Monte Carlo method, but 
with a substantially reduced computational cost (RSM-50 4 hours as compared to 4 days 
with the Monte Carlo method).  
 

2. INTRODUCTION 
 
Computer methods in bioengineering have been used since the late 1970s and one of the 
methods of choice has been the finite element (FE) technique (Huiskes and Chao, 1983; 
Prendergast, 1997; Mackerle, 1992). Many orthopedic studies using implicit or explicit 
FE modeling techniques have been implemented (Lee, 1987; Godest et al., 2002). 
Modeling of TKR with the explicit FE method has allowed the simultaneous calculation 
of joint kinematics and contact mechanics during a gait cycle and under force-controlled 
loading conditions (Godest et al 2002, Halloran et al., 2005a; Halloran et al., 2005b). 
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However, individual deterministic FE studies cannot include the influence of input 
variability on the outputs of the FE model.  
The application of probabilistic techniques in combination with FE modeling has the 
potential to assess the performance envelope of joint replacements under the influence 
of input variability such as implant positioning, loading and soft tissue (muscle, tendon 
and ligament) properties. Probabilistic FE techniques were initially applied in the 
assessment of structural reliability (Melis et al., 1999; Zhang and Liu, 2002) and more 
recently in the reliability of orthopedic components (Nicolella et al., 2001; Browne et 
al., 1999; Dar et al., 2002; Laz et al., 2006).  
The aim of this paper is to compare the performance envelopes obtained for three 
mechanical ‘output’ metrics for total knee replacement (Anterior-Posterior (AP) 
translation, Internal-External (IE) rotation and peak Contact Pressure (CP)) using 
explicit FE analysis in combination with two different probabilistic methods: the Monte 
Carlo technique and the Response Surface Method (RSM). The influence of implant 
alignment will be the primary source of input variability. The results of a 1000 trial 
Monte Carlo analysis will be compared to predictions from 25, 50 and 100 trial RSM 
calculations. The FE model of TKR will be implemented with the PamCrash FE solver 
(ESI, France) and the Monte Carlo method will be implemented with the PamOpt 
optimization/probabilistic software. The RSM will use the regress function from 
Matlab, which implements a linear regression. 
 
 
2. DETERMINISTIC FE MODEL OF TKR 
 
The three dimensional explicit FE model of a PFC Sigma DePuy International, Leeds, 
UK) was analyzed. The loading and boundary conditions represent the force-controlled 
knee wear simulator (Walker et al., 1997; ISO Standard 14243-1, 2000).  
 
 

 
 
                   Fig 1. Finite element model of TKR illustrating the study parameters.  
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Both the femoral component and the tibial polyethylene insert were modeled as rigid 
bodies using four-noded shell elements (Fig. 1). An advanced penalty method based 
contact algorithm was used to model the contact between the two components (Godest 
et al., 2002).  
Eight input experimental parameters dealing with component alignment were evaluated. 
The input parameters included four translations (standard deviation 0.5 mm) and four 
rotations (standard deviation 1o) of the femoral component and tibial insert with the 
notations and the values adopted from the original study by Laz et al. (2006).The values 
represent estimates of the uncertainties in the knee simulator experimental setup, but a 
similar approach could be used to assess surgical positioning variability. They define 
the position of the femoral component and tibial insert relative to the fixed rotational 
axes. The mean values were the deterministic values representing the neutral position of 
the implant in the Stanmore knee simulator.  
 
 
 
3. PROBABILISTIC METHODS 
 
Using the Monte Carlo method (Metropolis and Ulam, 1949; Fishman, 1995) each input 
parameter assumes a Gaussian probability distribution from which a number of random 
samples are generated (e.g. 1000 points). For every point from the probability 
distributions, a FE simulation is carried out and the output variables are obtained. There 
are 1000 data sets for each of the output performance metrics (e.g. AP translation), in 
comparison to a single data set obtained with a single deterministic FE analysis. Going 
through the 1000 data sets at each time step of the gait cycle, appropriate statistical 
measures (e.g. mean, range, standard deviation, or specific percentile levels such as 1-
99%) can be used to express the degree of output variability observed.  
The second probabilistic method used in this study was the Response Surface Method 
(RSM) (Isukapalli et al., 2004). The RSM fits an analytic function of the input variables 
to approximate the output parameter, across the full range of the sample space. 
Typically, this will be a low-order polynomial (called the Response Surface Equation, 
RSE), and regression techniques are used to select the term coefficients. The method 
comprises three steps: first, a response vector y (i.e. AP translation, IE rotation, Peak 
Contact Pressure) is obtained from a probabilistic FE simulation which uses the Monte 
Carlo simulation with few input points X (e.g. 20, 25, 100, etc). Trials could be random, 
but a better result is achieved by distributing the trials regularly across the sample space. 
Second step, with the least square method we have:  
 
                                            ( ) yXXXb TT 1−

=                                                                (1) 
 
where b denotes the coefficients of the RSE. 
Third, the RSE (b) together with 1000 Gaussian distributed samples for each input 
variable (4 translations, 4 rotations) forming matrix X1 will generate the response vector 
of interest y1: 
 
                                             11 Xby =                                                                             (2) 
 
Similar statistical measures can be applied to the response vector y1 (e.g. mean, range, 
standard deviation, etc). This method works best when the true output is well 



represented by the analytic function, for example relatively linear, smooth and 
monotonic models can easily be fitted and the TKR model is expected to be relatively 
linear with the small perturbation range being studied here; highly non-linear functions 
are not well-represented. The higher the order of the RSE used, the more terms that are 
needed; hence the more samples needed to achieve a good fit with the regression. 
Clearly, higher order response surfaces require more runs according to the power of the 
highest polynomial term. Beyond quadratic terms this is impractical for many models. 
In this first proof of concept study we will fit the TKR behavior with a linear RSE, so 
that fewer trials (25-100) can be tested. 
 
 
 
4. RESULTS  
 
The predicted response envelopes utilizing the Monte Carlo probabilistic method is 
shown at the 1 and 99 percentile levels for each metric over the entire gait cycle (Fig. 
2).  
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                                                                      (c) 
Fig. 2 Monte Carlo model-predicted envelope (solid line) (1-99%) and deterministic FE 

simulation  (dashed line): 
a) AP translation (mm); b) IE rotation (º); c) Peak Contact Pressure (MPa). 

 
The deviations as a result of mal-positioning resulted in a maximum predicted range of 
4.52 mm for AP translation, 4.64o for IE rotation and 5.4 MPa for peak contact pressure, 
which are closed to similar predictions reported in the literature (Laz et al., 2006).   
The computation time for a single trial was approximately 5 min on a ~3 GHz Intel 
computer; the Monte Carlo results for 1000 trials required approximately 4 days. 
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The results obtained using the RSM (using either 25, 50 or 100 trials to build the 
response surface) showed similar predictions to the Monte Carlo method. For example, 
using the Monte Carlo results as the benchmark against which the RSM results were 
compared, the maximum difference between RSM-50 and Monte Carlo method was 
0.17 mm for AP translation, 0.26º for IE rotation and 2 MPa for peak CP. Overall, the 
RSM was capable of predicting similar results to the Monte Carlo method, but with a 
greatly reduced computational cost: 4 hours with RSM-50 as compared to 4 days with 
the Monte Carlo method. In cases where similar analyses need to be repeated, the RSM 
can substantially reduce the computation time, which may have potential applications 
where rapid solution times are required. 
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                                                                         (c) 
Fig. 4 Monte Carlo simulation (solid line) and RSM model-predicted envelope (1-99%) 

for 25, 50 and 100 trial response surface calculations: 
a) AP translation (mm); b) IE rotation (º); c) Peak Contact Pressure (MPa). 

 
 
 
5. CONCLUSIONS 
 
The scope of the paper was to study two probabilistic FE methods (Monte Carlo with 
FE, RSM with FE) by inspecting the performance envelope for kinematics and contact 
mechanics of TKR because of mal-alignment. The results obtained with RSM were 
close to the ones predicted with the Monte Carlo method (0.17 mm for AP translation, 



0.26º for IE rotation and 2 MPa for peak CP). It was confirmed that the performance 
envelopes of the TKR model can be predicted with a linear RSM model and a reduced 
number of points (25). In conclusion, the paper reinforces the value of probabilistic 
methods and demonstrated alternative statistical approaches for low computational-cost 
studies.  
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