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COMPARISON OF TWO PROBABILISTIC METHODS FOR FINITE
ELEMENT ANALYSIS OF TOTAL KNEE REPLACEMENT

C.T.C Arsene’, M.A. Strickland?, P.J. Laz® and M. Taylor*

1. ABSTRACT

Probabilistic Finite Element (FE) models have recently been developed to assess the
impact of experimental variability present in knee wear simulator on predicted Total
Knee Replacement (TKR) mechanics by determining the performance envelope of joint
kinematics and contact mechanics. The gold standard for this type of analysis is
currently the Monte Carlo method, however, this requires a larger number of trials and
is therefore computationally expensive. Alternatively, probabilistic methods exist, such
as response surface methods that can offer considerable savings in computational cost.
The aim of the current study was to compare the performance envelopes obtained for
three metrics (Anterior-Posterior (AP) translation, Internal-External (IE) rotation and
peak Contact Pressure (CP)) for a FE model of TKR mechanics using two different
probabilistic methods: the Monte Carlo technique and the Response Surface Method
(RSM), implemented with PamCrash FE solver and PamOpt optimization/probabilistic
software. The influence of implant alignment was considered, based on a study from the
literature. The results of a 1000 trial Monte Carlo analysis were compared to predictions
from 25, 50 and 100 trial response surface calculations. Overall, the Response Surface
Method (RSM) was capable of predicting similar results to the Monte Carlo method, but
with a substantially reduced computational cost (RSM-50 4 hours as compared to 4 days
with the Monte Carlo method).

2. INTRODUCTION

Computer methods in bioengineering have been used since the late 1970s and one of the
methods of choice has been the finite element (FE) technique (Huiskes and Chao, 1983;
Prendergast, 1997; Mackerle, 1992). Many orthopedic studies using implicit or explicit
FE modeling techniques have been implemented (Lee, 1987; Godest et al., 2002).
Modeling of TKR with the explicit FE method has allowed the simultaneous calculation
of joint kinematics and contact mechanics during a gait cycle and under force-controlled
loading conditions (Godest et al 2002, Halloran et al., 2005a; Halloran et al., 2005b).
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However, individual deterministic FE studies cannot include the influence of input
variability on the outputs of the FE model.

The application of probabilistic techniques in combination with FE modeling has the
potential to assess the performance envelope of joint replacements under the influence
of input variability such as implant positioning, loading and soft tissue (muscle, tendon
and ligament) properties. Probabilistic FE techniques were initially applied in the
assessment of structural reliability (Melis et al., 1999; Zhang and Liu, 2002) and more
recently in the reliability of orthopedic components (Nicolella et al., 2001; Browne et
al., 1999; Dar et al., 2002; Laz et al., 2006).

The aim of this paper is to compare the performance envelopes obtained for three
mechanical ‘output” metrics for total knee replacement (Anterior-Posterior (AP)
translation, Internal-External (IE) rotation and peak Contact Pressure (CP)) using
explicit FE analysis in combination with two different probabilistic methods: the Monte
Carlo technique and the Response Surface Method (RSM). The influence of implant
alignment will be the primary source of input variability. The results of a 1000 trial
Monte Carlo analysis will be compared to predictions from 25, 50 and 100 trial RSM
calculations. The FE model of TKR will be implemented with the PamCrash FE solver
(ESI, France) and the Monte Carlo method will be implemented with the PamOpt
optimization/probabilistic software. The RSM will use the regress function from
Matlab, which implements a linear regression.

2. DETERMINISTIC FE MODEL OF TKR
The three dimensional explicit FE model of a PFC Sigma DePuy International, Leeds,
UK) was analyzed. The loading and boundary conditions represent the force-controlled
knee wear simulator (Walker et al., 1997; 1SO Standard 14243-1, 2000).
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Fig 1. Finite element model of TKR illustrating the study parameters.
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Both the femoral component and the tibial polyethylene insert were modeled as rigid
bodies using four-noded shell elements (Fig. 1). An advanced penalty method based
contact algorithm was used to model the contact between the two components (Godest
et al., 2002).

Eight input experimental parameters dealing with component alignment were evaluated.
The input parameters included four translations (standard deviation 0.5 mm) and four
rotations (standard deviation 1°) of the femoral component and tibial insert with the
notations and the values adopted from the original study by Laz et al. (2006).The values
represent estimates of the uncertainties in the knee simulator experimental setup, but a
similar approach could be used to assess surgical positioning variability. They define
the position of the femoral component and tibial insert relative to the fixed rotational
axes. The mean values were the deterministic values representing the neutral position of
the implant in the Stanmore knee simulator.

3. PROBABILISTIC METHODS

Using the Monte Carlo method (Metropolis and Ulam, 1949; Fishman, 1995) each input
parameter assumes a Gaussian probability distribution from which a number of random
samples are generated (e.g. 1000 points). For every point from the probability
distributions, a FE simulation is carried out and the output variables are obtained. There
are 1000 data sets for each of the output performance metrics (e.g. AP translation), in
comparison to a single data set obtained with a single deterministic FE analysis. Going
through the 1000 data sets at each time step of the gait cycle, appropriate statistical
measures (e.g. mean, range, standard deviation, or specific percentile levels such as 1-
99%) can be used to express the degree of output variability observed.

The second probabilistic method used in this study was the Response Surface Method
(RSM) (Isukapalli et al., 2004). The RSM fits an analytic function of the input variables
to approximate the output parameter, across the full range of the sample space.
Typically, this will be a low-order polynomial (called the Response Surface Equation,
RSE), and regression techniques are used to select the term coefficients. The method
comprises three steps: first, a response vector y (i.e. AP translation, IE rotation, Peak
Contact Pressure) is obtained from a probabilistic FE simulation which uses the Monte
Carlo simulation with few input points X (e.g. 20, 25, 100, etc). Trials could be random,
but a better result is achieved by distributing the trials regularly across the sample space.
Second step, with the least square method we have:

b

(X"x)"xTy (1)

where b denotes the coefficients of the RSE.

Third, the RSE (b) together with 1000 Gaussian distributed samples for each input
variable (4 translations, 4 rotations) forming matrix X; will generate the response vector
of interest y;:

Y1:bx1 (2)

Similar statistical measures can be applied to the response vector y; (e.g. mean, range,
standard deviation, etc). This method works best when the true output is well



represented by the analytic function, for example relatively linear, smooth and
monotonic models can easily be fitted and the TKR model is expected to be relatively
linear with the small perturbation range being studied here; highly non-linear functions
are not well-represented. The higher the order of the RSE used, the more terms that are
needed; hence the more samples needed to achieve a good fit with the regression.
Clearly, higher order response surfaces require more runs according to the power of the
highest polynomial term. Beyond quadratic terms this is impractical for many models.
In this first proof of concept study we will fit the TKR behavior with a linear RSE, so
that fewer trials (25-100) can be tested.

4. RESULTS

The predicted response envelopes utilizing the Monte Carlo probabilistic method is
shown at the 1 and 99 percentile levels for each metric over the entire gait cycle (Fig.
2).
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Fig. 2 Monte Carlo model-predicted envelope (solid line) (1-99%) and deterministic FE
simulation (dashed line):
a) AP translation (mm); b) IE rotation (°); ¢) Peak Contact Pressure (MPa).

The deviations as a result of mal-positioning resulted in a maximum predicted range of
4.52 mm for AP translation, 4.64° for IE rotation and 5.4 MPa for peak contact pressure,
which are closed to similar predictions reported in the literature (Laz et al., 2006).

The computation time for a single trial was approximately 5 min on a ~3 GHz Intel
computer; the Monte Carlo results for 1000 trials required approximately 4 days.



The results obtained using the RSM (using either 25, 50 or 100 trials to build the
response surface) showed similar predictions to the Monte Carlo method. For example,
using the Monte Carlo results as the benchmark against which the RSM results were
compared, the maximum difference between RSM-50 and Monte Carlo method was
0.17 mm for AP translation, 0.26° for IE rotation and 2 MPa for peak CP. Overall, the
RSM was capable of predicting similar results to the Monte Carlo method, but with a
greatly reduced computational cost: 4 hours with RSM-50 as compared to 4 days with
the Monte Carlo method. In cases where similar analyses need to be repeated, the RSM
can substantially reduce the computation time, which may have potential applications
where rapid solution times are required.
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Fig. 4 Monte Carlo simulation (solid line) and RSM model-predicted envelope (1-99%)
for 25, 50 and 100 trial response surface calculations:
a) AP translation (mm); b) IE rotation (°); ¢) Peak Contact Pressure (MPa).

5. CONCLUSIONS

The scope of the paper was to study two probabilistic FE methods (Monte Carlo with
FE, RSM with FE) by inspecting the performance envelope for kinematics and contact
mechanics of TKR because of mal-alignment. The results obtained with RSM were
close to the ones predicted with the Monte Carlo method (0.17 mm for AP translation,



0.26° for IE rotation and 2 MPa for peak CP). It was confirmed that the performance
envelopes of the TKR model can be predicted with a linear RSM model and a reduced
number of points (25). In conclusion, the paper reinforces the value of probabilistic
methods and demonstrated alternative statistical approaches for low computational-cost
studies.
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