
University of Southampton Research Repository

ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other 
copyright owners. A copy can be downloaded for personal non-commercial 
research or study, without prior permission or charge. This thesis cannot be 
reproduced or quoted extensively from without first obtaining permission in writing 
from the copyright holder/s. The content must not be changed in any way or sold 
commercially in any format or medium without the formal permission of the 
copyright holders.
  

 When referring to this work, full bibliographic details including the author, title, 
awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name 
of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk

http://eprints.soton.ac.uk/


UNIVERSITY OF SOUTHAMPTON

FACULTY OF PHYSICAL AND APPLIED SCIENCES

School of Physics and Astronomy

Southampton High Energy Physics Group

Phenomenological Aspects

of the E6SSM

by

Jonathan Peter Hall

Presented for the degree of

Doctor of Philosophy

November 2011





UNIVERSITY OF SOUTHAMPTON

ABSTRACT
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Doctor of Philosophy

PHENOMENOLOGICAL ASPECTS OF THE E(6)S.S.M.

by Jonathan Peter Hall

The work in this thesis explores various phenomenological aspects of the E6SSM

with a particular focus on the inert neutralino sector of the model and on the dark

matter implications. The E6SSM is a string theory inspired supersymmetric

extension to the Standard Model with an E6 grand unification group. The model

provides a solution to the hierarchy problem of the Standard Model, provides an

explanation for neutrino mass, and has automatic gauge anomaly cancellation.

The inert neutralino sector of the E6SSM and the dark matter that naturally

arises from this sector is studied for the first time. Limits on the parameter space

from experimental and cosmological observations relating to the inert neutralino

dark matter are explored and the consequences for Higgs boson phenomenology are

investigated. In plausible scenarios it is found that the couplings of the lightest

inert neutralinos to the SM-like Higgs boson are always rather large. This has

major implications for Higgs boson collider phenomenology and leads to large

spin-independent LSP-nucleon cross-sections. Because of the latter, scenarios in

which E6SSM inert neutralinos account for all of the observed dark matter are now

severely challenged by recent dark matter direct detection experiment analyses. In

plausible scenarios consistent with observations from both cosmology and LEP the

lightest inert neutralino is required to have a mass around half of the Z boson mass

if it contributes to cold dark matter and this means that tan(β) cannot be too large.

A new variant of the E6SSM called the E6Z
S
2 SSM is also presented in which the

dark matter scenario is very different to the inert neutralino cold dark matter

scenario and in which the presence of supersymmetric massless states in the early

universe modifies the expansion rate of the universe prior to Big Bang

Nucleosynthesis. The new dark matter scenario is consistent with current

observations and the modified expansion rate provides a better explanation of

various data than the SM prediction. The prospects for a warm dark matter

scenario in the E6SSM are also briefly discussed.
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inert neutral Higgsinos Ñ2 and Ñ3 and a chargino C̃1 into which Ñ1

inelastically scatters during freeze-out, resulting in a relic density con-

sistent with observation. The predicted values ofmZ2
and Neff are also

shown, as is the spin-independent Ñ1-nucleon direct detection cross-
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Overview

In chapter 1 we present an introduction to the SM with a focus on EWSB and other

aspects relevant for subsequent chapters such as gauge anomaly cancellation and the

invisible decay width of the Z boson. Motivations for extensions of the SM such as

the hierarchy problem and neutrino mass are explored and various notation is fixed.

In chapter 2 we motivate TeV scale softly broken supersymmetry as a possible

extension to the SM. A summary of supersymmetric Lagrangians is presented and

various notation is fixed. Further concepts such as grand unification and

universality of soft mass parameters are introduced.

In chapter 3 the E6SSM is motivated and introduced. This chapter contains

previous work that has been carried out on the subject of the E6SSM and provides

background information relevant for chapters 5, 6, and 7.

In chapter 4 the subject of dark matter is introduced. Information about the

thermal dark matter relic density calculation relevant for chapters 5, 6, and 7 is

provided. We also provide an introduction to thermal relic dark matter in

supersymmetric models.

Chapter 5 contains work that was first published in paper I. This work

represents a first study of the inert neutralino sector of the E6SSM and the dark

matter that naturally arises from this sector.

Chapter 6 contains work that was first published in paper II. This work

represents a more in-depth study of the inert neutralino and chargino sectors with a

particular focus on physics relating to the Higgs boson. In plausible scenarios it is

found that the couplings of the lightest inert neutralinos to the SM-like Higgs boson

1



are always rather large. This has major implications for Higgs boson collider

phenomenology and leads to large spin-independent LSP-nucleon cross-sections.

Because of the latter, scenarios in which E6SSM inert neutralinos account for all of

the observed dark matter are now severely challenged by recent dark matter direct

detection experiment analyses. In plausible scenarios consistent with observations

from both cosmology and LEP the lightest inert neutralino is required to have a

mass around half of the Z boson mass if it contributes to cold dark matter and this

means that tan(β) cannot be too large.

Chapter 7 contains work that was first published in paper III with the

exception of section 7.5 which contains work that is original to this thesis. In this

chapter a new variant of the E6SSM called the E6Z
S
2 SSM is presented in which the

dark matter scenario is very different to the inert neutralino CDM scenario and in

which the presence of supersymmetric massless states in the early universe modifies

the expansion rate of the universe prior to BBN. The dark matter scenario is

consistent with current observations and the modified expansion rate provides a

better explanation of various data than the SM prediction. In section 7.5 the

prospects for a warm dark matter scenario in the E6SSM are briefly discussed.

Summary and conclusions are found in sections 5.5, 6.4, and 7.6 and in chapter 8.

Notation relating to Weyl, Majorana, and Dirac Spinors and to the doublet

representation of SU(2) is fixed in appendices A and B.
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Chapter 1

The Standard Model

The SM is an effective QFT describing the known particles and their interactions

with the known forces of Nature excluding gravity. It is not currently known how to

construct a consistent theory that unifies quantum field theory with our current

best understanding of gravity which is the classical theory of general relativity. One

candidate for the fully quantum description of gravity describing Nature is string

theory, but whatever the correct description corrections due to the effects of

quantum gravity are not expected to become relevant unless the energies involved

in a process approach the Planck scale MP ∼ 1018 GeV, or alternatively unless one

wishes to consider length or time intervals as small as M−1
P . We therefore expect to

be able to use QFT, neglecting the effects of quantum gravity, at energies far below

the Planck scale. Whilst the general framework of QFT is not expected to be valid

above the Planck scale, the SM is itself only an effective QFT and is expected only

to be valid below roughly the TeV scale — the energy scale currently being probed

at the LHC. The reasons for this are outlined in section 1.6.

The SM contains our current best understanding of the observed particles and

forces excluding gravity. The observed mesons and baryons that we observe are

bound states of SM quarks, which are charged under the strong nuclear force

described by QCD and there are also SM leptons which are free fundamental

particles such as the electron. In terms of forces, the SM comprises the strong force

of QCD as well the GWS theory of EWSB describing both QED and the weak force
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responsible for nuclear decay. The description of the SM given in this chapter is

largely based on the one given in ref. [6].

1.1 Gauge Symmetry and Matter Content

The SM is a Yang-Mills QFT with a gauge symmetry group

GSM = SU(3)c ⊗ SU(2)L ⊗ U(1)Y . (1.1)

Is it is a direct product of the SU(3) gauge symmetry describing QCD and the

SU(2)× U(1) gauge symmetry of the electroweak theory — the unified theory

describing both electromagnetism (QED) and the weak nuclear force. The observed

fermionic matter of the SM can be described by LH Weyl spinors in 3 + 1

dimensions forming chiral representations of GSM as shown in table 1.1. A RH Weyl

spinor may be expressed as a LH one using the CP conjugation (charge conjugation

and parity) operation. The notation for spinors used throughout is explained in

appendix A.

The SM also includes a fundamental complex scalar doublet field known as the

Higgs doublet whose VEV is responsible for the spontaneous breaking of

SU(2)L × U(1)Y down to the U(1)EM of QED, as per the GWS theory of

EWSB [7, 8, 9], and for the generation of fermion masses. Although the evidence

for ESWB is overwhelming (for a review see ref. [10]), the mechanism for this

symmetry breaking is currently unknown, although it must have the correct

custodial symmetry leading to the observed mass relation between the heavy

electroweak W and Z gauge bosons. The SM assumes the GWS theory in which

electroweak symmetry is spontaneously broken by the VEV of a fundamental

complex scalar field — the Higgs doublet H [11, 12, 13, 14]. The VEV of this field

is also able to generate masses for all of the SM fermions.

The three components of the fundamental (3) and antifundamental (3)

antitriplets of SU(3)c are known as colours (red, green, and blue) and anticolours

(antired, antigreen, and antiblue) respectively. Since the EWSB vacuum respects
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SU(3)c SU(2)L U(1)Y
LH quark doublet QL 3 2 +1/6

RH down-type quark dcR 3̄ 1 +1/3
RH up-type quark ucR 3̄ 1 −2/3
LH lepton doublet LL 1 2 −1/2
RH charged lepton ecR 1 1 +1

Higgs doublet H 1 2 +1/2

Table 1.1: The SU(3)c and SU(2)L representations and the
U(1)Y charges (hypercharges) of the SM matter fields, as LH Weyl
spinors, and of the SM Higgs doublet H.

SU(3)c, redefinitions of the three colours and three anticolours by SU(3)c

transformations does not change the description of the physics. The SU(2)L gauge

symmetry, however, is spontaneously broken by the vacuum and it makes sense to

label the components separately. We define the third direction of weak isospin T 3

such that the Higgs VEV is an eigenstate of τ3 with eigenvalue −1/2. Here we use

T a for generators of a general SU(2)L representation and τa for the generators of

the 2 representation specifically. Since the direction in SU(2)L space of the Higgs

VEV defines which direction will be uncharged under the unbroken U(1)EM, electric

charge will then commute with T 3. This choice of direction for the Higgs VEV is

arbitrary and has no effect on the physics, since any other equivalent choice would

be related by a SU(2)L gauge transformation that leaves the Lagrangian invariant.

Choosing the Higgs VEV to be an eigenstate of τ3, the upper and lower

components of the doublet in the standard basis τa = σa/2 are then eigenstates of

electric charge. We write the quark doublet QL and lepton doublet LL as

QL =







uL

dL






and LL =







ν

eL






. (1.2)

The upper component is an eigenstate of τ3 with eigenvalue +1/2 and the lower

component an eigenstate of τ3 with eigenvalue −1/2. The charge under the

unbroken U(1)EM of a field can be written

Q = T 3 + Y, (1.3)

where T 3 is understood to stand for the relevant eigenvalue. This is because it is the

5



gauge transformation with this combination of generators H → (1 + idα(T 3 + Y ))H

that leaves the Higgs VEV 〈H〉 invariant, i.e. 〈H〉 is uncharged under this

combination of generators which must then represent the unbroken U(1).

With one copy of each of the fields listed in table 1.1 we can describe what is

known as the first generation of SM matter. This comprises the strongly interacting

up and down quarks — two colour triplet Dirac fermions that are formed from the

four Weyl spinor colour triplets of one copy of QL, uR, and dR — and also the

electron — a Dirac fermion formed from eL and eR — and a LH neutrino ν, or

equivalently the RH antineutrino νc.

The Lagrangian of the SM for this first generation, including all possible

renormalisable, gauge invariant, and Lorentz invariant terms1 is

L = −1

4
AaµνAa

µν + ψ†
i iσ̄

µDµψi + LYukawa + LHiggs, (1.4)

where

LYukawa = −hDd†RH†QL − hUu†RH.QL − hLe†RH
†LL + c.c. (1.5)

and LHiggs contains the gauge invariant kinetic term and scalar potential of the

Higgs scalar field shown in section 3.3. ψ†
i iσ̄

µDµψi is the gauge invariant kinetic

term for all LH Weyl spinors ψi, with Dµ the relevant gauge covariant derivative for

each field ψi. For the gauge kinetic term

Aa
µν = ∂µA

a
ν − ∂νA

a
µ + g(a)fabcAbµA

c
ν (1.6)

and the adjoint index a runs over all of the generators of GSM. The gauge coupling

g(a) can have a different value for each of the three simple subgroups of GSM and

1We do not address the strong CP problem and will consistently neglect terms of the form
Ã

µν
Aµν . The contribution to this term from electroweak gauge bosons is always a total derivative

and has no effect on the observable physics. However, the contribution to this term from QCD
eventually, after chiral matter phase rotations removing 5 of the 6 arbitrary complex phases of CKM
matrix, has an independent and arbitrary coefficient. This coefficient should be very close to zero in
order for the theory to be consistent with the non-observation of CP -violating effects from the QCD
sector, such as an electric dipole moment for the neutron, but theoretically the smallness of this
coefficient is not explained in the SM in a natural way. This is known as the strong CP problem —
an unsolved problem in particle physics.
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the gauge group structure function fabc vanishes when a, b, and c do not belong to

the same simple subgroup. The dot stands for the SU(2) invariant contraction of

two SU(2) doublets given in (B.4)







↑1
↓1






.







↑2
↓2






= ↓1↑2 − ↑1↓2 . (1.7)

The vacuum state of the Higgs potential is supposed to spontaneously break

SU(2)L × U(1)Y so that classically expanding around the true electroweak vacuum,

rather than H = 0, we can write

H = 〈H〉+ φ, (1.8)

where the Higgs VEV

〈H〉 =
1√
2







0

v






(1.9)

and is an eigenstate of τ3 with eigenvalue −1/2 (Q = 0).

It is important to note that the unbroken gauge symmetry of the SM does not

allow for any fermion mass terms — either Dirac or Majorana. However, in the

EWSB vacuum the VEV of the Higgs doublet will generate Dirac fermion mass

terms proportional to the Yukawa couplings h in (1.5) for all fermions other than

the LH neutrino

LYukawa =

(

−h
Dv√
2
d†RdL − hUv√

2
u†RuL − hLv√

2
e†ReL + c.c.

)

+ · · · . (1.10)

In the SM the Higgs VEV generates Dirac masses for all of the observed Dirac

fermions, but does not induce any neutrino masses.

Below the EWSB scale, one can integrate out the W± and Z electroweak gauge

bosons that acquire masses from EWSB and write an effective theory with the

gauge symmetry SU(3)c × U(1)EM. The Lagrangian for one generation contains the
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EWSB-induced mass terms of (1.10). Each mass term couples a LH and RH spinor

together into a massive Dirac state. With both the LH and RH component of each

Dirac spinor taken together, each Dirac spinor forms a real representation of

SU(3)c × U(1)EM. The LH neutrino forms a real representation on its own since it

is a singlet — completely uncharged under the effective gauge group. Since this

effective theory is non-chiral, containing pairs of LH and RH spinors that are

equally charged under the gauge group, it is invariant under parity P and charge

conjugation C separately. At low energy left- and right-handedness are only

distinguished fundamentally in weak nuclear decay processes which violate

separately both C and P maximally since the massive W± bosons only couple to

LH states.

1.2 Gauge Anomaly Cancellation, Generations, and the

Invisible Z Boson Decay Width as Measured at

LEP

In Nature we observe that there are in fact at least three complete copies, known as

generations, of the Weyl fields listed in table 1.1. The particle content of three

complete generations has now been directly observed and there exists evidence,

outlined in this section, that indicates that there are no more generations of any of

the SM representations beyond these three. We shall label these three generations

with the Roman indices i, j, etc., with the notation for the particles in these

generations as complied in table 1.2.

1.2.1 Gauge anomalies

Anomalies are quantum mechanical effects that violate one or more symmetries of

the classical Lagrangian. A gauge anomaly is a quantum mechanical effect that

violates some gauge symmetry. QFTs with gauge anomalies are inconsistent since

gauge symmetry is required to cancel the unphysical degrees of freedom of the

massless gauge bosons — the longitudinal space-like and time-like polarisations. In
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Basis Flavour Mass

LH down quark d′L1 = d′L dL1 = dL
LH strange quark d′L2 = s′L dL2 = sL
LH bottom quark d′L3 = b′L dL3 = bL
RH down quark dR1 = dR
RH strange quark dR2 = sR
RH bottom quark dR3 = bR

LH up quark uL1 = uL
LH charm quark uL2 = cL
LH top quark uL3 = tL
RH up quark uR1 = uR

RH charm quark uR2 = cR
RH top quark uR3 = tR
LH electron eL1 = eL
LH muon eL2 = µL

LH tau lepton eL3 = τL
RH electron eR1 = eR
RH muon eR2 = µR

RH tau lepton eR3 = τR
LH electron neutrino ν ′1 = νe
LH muon neutrino ν ′2 = νµ
LH tau neutrino ν ′3 = ντ
Light neutrino 1 ν1
Light neutrino 2 ν2
Light neutrino 3 ν3

Table 1.2: The notation for the three generations of fermionic
matter of the SM. Where the flavour and mass eigenstate columns
are combined the flavour and mass eigenstates are equal by def-
inition. In the down quark sector the mass eigenstates are then
rotated with respect to the flavour eigenstates by the CKM ma-
trix. In the neutrino sector the mass eigenstates are rotated with
respect to the flavour eigenstates by the PMNS matrix, which is
analogous to the CKM matrix of the quark sector. The CKM ma-
trix is relatively close to the identity, whereas the PMNS is close to
tribimaximal form, meaning that the mass and flavour eigenstate
bases are very different from each other.
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4-dimensional QFTs such as the SM, gauge anomalies arise at one-loop level via

triangle diagrams of the form

































a

b

c

































∝ Aabc = tr[T a{T b, T c}], (1.11)

where T a is the group generator corresponding to the adjoint index a of the gauge

boson labelled a. The trace is a sum over all LH Weyl spinors running around the

loop, each in some representation, and also a trace over the generator indices of the

relevant representation. The anticommutator comes from considering each Weyl

fermion running around the loop in both directions. Such diagrams must sum to

zero for all combinations of different gauge boson external legs in order for the QFT

to be consistent.

Instead of any given RH spinor in the representation r, one may consider the CP

conjugate state which is a LH spinor in the representation r̄ (see appendix A). This

gives a contribution to Aabc equal to tr[T ar̄ {T br̄ , T cr̄ }]. Since T ar = −T aTr̄ this

contribution is in fact equal to −tr[T ar {T br , T cr }], which is minus the contribution

from a LH spinor in the representation r. So, if one has an equal number of LH

spinors in each of the representations r and r̄ of the entire gauge group, or

equivalently an equal number of LH and RH spinors in the representation r, then

these states, which taken together from the real representation r ⊕ r̄, do not

contribute to the gauge anomaly. If the representation r is explicitly real then this

condition is automatically satisfied. This is the case in the SU(3)c × U(1)EM

effective theory.

However, since the SM is a chiral theory, meaning that the fermionic matter

cannot be written as above in terms of their representations under GSM, it takes

some more work to compute the gauge anomalies in (1.11) associated with the
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various combinations of SM gauge bosons. Eventually one computes that if one has

a complete generation of the chiral fermions listed in table 1.1 then all of the gauge

anomalies do indeed cancel, but this is not the case for just the leptons or for just

the quarks separately [6]. We therefore conclude that the SM is gauge-anomaly-free

as long as it contains only complete generations of matter, i.e. it contains the same

number of generations of quarks and leptons.

1.2.2 The effective number of neutrinos contributing to the

invisible Z boson decay width

The best evidence for the number of generations comes from the number of

neutrinos as inferred from the invisible decay width of the Z boson measured at

LEP, i.e. the partial decay width of the Z boson into particles that do not show up

in the detector. The effective number of neutrinos at LEP NLEP
eff is defined by

Γ(Z → invisible) = NLEP
eff Γ(Z → ν̄ν) (1.12)

where the decay width on the left is measured and the decay width on the right is

calculated assuming that ν is a massless LH neutrino. ν̄ is the corresponding RH

antineutrino νc. The result from LEP [15] is

NLEP
eff = 2.984± 0.008 (1-sigma), (1.13)

leading to the conclusion that the number of neutrinos is 3, this being the closest

integer to the central measured value and 2-sigma away. This means that there is

no fourth generation neutrino with a mass lower than about half of the Z boson

mass. This is taken as evidence for there being only three generations of leptons

and, since the numbers of generations of quarks and leptons should be equal in

order to have gauge anomaly cancellation, only three generations of quarks also.
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1.3 The Higgs Potential and GWS EWSB

In the SM EWSB is caused by the non-zero VEV of a single Higgs scalar doublet

H. The most general gauge invariant and renormalisable form of LHiggs appearing

in (1.4) is

LHiggs = (DµH)†(DµH)− V (H), (1.14)

with

V (H) = m2H†H + λ(H†H)2. (1.15)

The parameter λ must be positive in order for the Higgs potential to be bounded

from below. If the mass-squared parameter m2 is also positive, or zero, then

classically V (H) has a minimum at H = 0. In this case H = 0 is the true vacuum

and GSM remains unbroken. If, however, m2 is negative, then the degenerate

minima of V (H) occur on the surface given by

H†H =
−m2

2λ
, (1.16)

points on which are related by arbitrary SU(2)L gauge transformations. Using our

earlier definition of the Higgs VEV (1.9) we can then identify

v =

√

−m2

λ
. (1.17)

In this case in the EWSB vacuum GSM is spontaneously broken to

SU(3)c × U(1)EM. SU(3)c remains unbroken since H is a singlet under this group.

Since it is a scalar particle, it is also a singlet under the Lorentz group and its VEV

therefore does not spontaneously break Lorentz symmetry.

The covariant derivative acting on H is given by

DµH = (∂µ − ig2W
a
µτ

a − 1/2g′Bµ)H (1.18)

12



where W a are the three SU(2)L gauge bosons, τa are the generators of SU(2)L

(T a) for the fundamental doublet representation (τa = σa/2), and Bµ is the gauge

boson for U(1)Y under which H has charge +1/2. g2 and g′ are the SU(2)L and

U(1)Y gauge coupling constants respectively. Expanding the kinetic term around

the Higgs VEV as in (1.8) we find that in the EWSB breaking vacuum we generate

the gauge boson mass terms

LHiggs =
1

2

v2

4

[

g22(W
1
µ)

2 + g22(W
1
µ)

2 +
(

g2W
3
µ − g′Bµ

)2
]

+ · · · . (1.19)

It is useful to define the positively and negatively charged SU(2)L gauge bosons

W±
µ =

1√
2
(W 1

µ ∓ iW 2
µ) (1.20)

as well as the usual T± = T 1 ± iT 2. In the EWSB vacuum we read off that these

particles have a mass

mW = g2
v

2
. (1.21)

The (correctly normalised) mass eigenstate

Zµ =
1

ḡ
(g2W

3
µ − g′Bµ), (1.22)

where

ḡ =
√

g22 + g′2, (1.23)

has a mass

mZ = ḡ
v

2
, (1.24)

leaving the orthogonal combination

Aµ =
1

ḡ
(g′W 3

µ + g2Bµ) (1.25)
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massless. This is the photon — the gauge boson of the unbroken U(1)EM which

corresponds to the the unbroken combination of generators Q = T 3 + Y .

The general covariant derivative, neglecting the SU(3)c gluon terms,

Dµ = ∂µ − ig2W
a
µT

a − Y g′Bµ (1.26)

can then be written in terms of the gauge boson mass eigenstates as

Dµ = ∂µ − i
g2√
2
W+
µ T

+ − i
g2√
2
W−
µ T

−

− i
g22T

3 − g′2Y

ḡ
Zµ − i

g2g
′

ḡ

(

T 3 + Y
)

Bµ

= ∂µ − i
g2√
2
W+
µ T

+ − i
g2√
2
W−
µ T

−

− i
g2
cW

(

T 3 − s2WQ
)

Zµ − ieQBµ, (1.27)

where

e =
g2g

′

ḡ
,

cW ≡ cos(ϑW ) =
g2
ḡ
, and (1.28)

sW ≡ sin(ϑW ) =
g′

ḡ
,

implying that mZ = mW /cW .

In the unbroken theory the Higgs complex scalar doublet has four real degrees of

freedom. After EWSB the three massive gauge bosons each acquire one extra

degree of freedom from the complex scalar doublet, corresponding to the

longitudinal polarisation that exists for a massive vector boson, but not for a

massless one. The remaining one degree of freedom belongs to a real scalar, known

as the SM Higgs boson.

We can work in the unitarity gauge in which the three Goldstone modes of the
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Higgs doublet are set to zero and we expand around the EWSB vacuum

H =
1√
2







0

v + h






, (1.29)

where h is the (canonically normalised) real scalar known as the Higgs boson. Since

in the basis that we have chosen v appears in the real part of the lower component

of H, this is also the direction corresponding to the massive boson state h. The

other directions are flat and correspond to the massless Goldstone modes whose

degrees of freedom contribute to those of the massive gauge bosons.

We can expand V (H) in the unitarity gauge in order to find the mass of the

Higgs boson h. We find

V (H) =
m2

2
h2 +

3λv2

2
h2 + · · ·

=
1

2
(−2m2)h2 + · · · , (1.30)

from which we read off a mass-squared for the real scalar h

m2
h = −2m2 = 2λv2. (1.31)

Like the induced fermion masses, the mass of the Higgs boson itself is proportional

to the Higgs VEV v, but also to an unknown coupling constant λ. The value of

v = 246 GeV is determined from the masses of the W± and Z bosons, but although

in the GWS theory this combination of m2 < 0 and λ > 0 are determined, the

individual values of these parameters are not determined unless the Higgs boson

mass is known. At the time of writing the Higgs boson is currently the only particle

of the SM yet to be discovered. By looking for the process e+e− → Zh at LEP, a

lower limit on the SM Higgs boson mass of 114.4 GeV is obtained [10]. Recent LHC

analyses from CMS [16] and ATLAS [17, 18, 19, 20, 21] between them exclude the

existence of a SM Higgs boson with a mass between 145 and 288 GeV or between

296 and 466 GeV at a 95% confidence level.
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1.4 Induced Dirac Fermion Masses, the CKM Matrix,

and Neutrino Mass

Including all three generations of SM matter, (1.10) becomes

LYukawa = − v√
2

(

hDijd
†
RidLj + hUiju

†
RiuLj + hEije

†
RieLj + c.c.

)

+ · · · . (1.32)

The Yukawa coupling matrices hD, hU , and hE may be made diagonal if one

performs unitary transformations on the fermion fields in flavour space, i.e.

ψi → Uijψj (1.33)

for each of the fields dRi, dLi, uRi, uLi, eRi, and eLi. Specifically for the LH quarks

we write

dLi → UDij dLj and uLi → UUij uLj . (1.34)

This is biunitary diagonalisation of each of the three Yukawa coupling matrices and

the basis where these matrices are diagonal is the mass eigenstate basis. In the

gauge invariant fermion kinetic term in the Lagrangian these transformations leave

everything invariant apart from the couplings of the fermions to the heavy W±

bosons coming from the covariant derivative (1.27). If one begins with non-diagonal

Yukawa coupling matrices and then transforms to the mass eigenstate basis that

diagonalises them, the Lagrangian term coupling quarks to W± bosons transforms

u†Liiσ̄
µ g2√

2
W+dLi + c.c. → u†Liiσ̄

µ g2√
2
W+VijdLj + c.c., (1.35)

producing a non-diagonal, unitary flavour mixing matrix

V = UU†UD (1.36)

known as the CKM [22, 23] matrix.

As well as the mass eigenstate basis we also define a flavour eigenstate basis in
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which the couplings to the heavy W± are diagonal. By convention we choose the

up-quark flavour basis to be equal to the mass eigenstate basis. The down-type

quark flavour basis is then

d′Li = Vijdj . (1.37)

This convention is summarised in table 1.2. The most general form of V can

contain three angles and six complex phases. However, complex phases in (1.33)

cancel out of (1.32) and therefore complex phases in (1.34) can be defined to

remove five of these six phases. (One of the six phases in (1.34) can be

parametrised as an overall phase for all six transformations which cancels out of the

right hand side of (1.35).) The SM CKM matrix can therefore be parametrised by

three angles and one complex phase. This complex phase, which is responsible for

CP -violating effects, is quite small. Although the CKM matrix is close to being the

identity, the flavour eigenstates of the quark sector are not quite equal to the mass

eigenstates. This means that there is a non-zero probability amplitude for a W±

boson to couple together quark mass eigenstates of different generations. The W±

bosons therefore contribute to FCCCs. The Z boson and the photon (and also the

gluons) do not contribute to FCNCs since the transformations (1.33) leave terms

coupling neutral bosons to fermions, from (1.27), invariant.

1.4.1 Neutrino mass and the type-I see-saw mechanism

In the SM, which does not include RH neutrinos, LH neutrinos are exactly massless

since both explicit mass terms and renormalisable terms coupling them to the Higgs

VEV are forbidden by the gauge symmetry. However, in Nature we now know that

neutrinos oscillate [10, 24] — a mechanism that requires them to have different

masses, with the mass eigenstates being rotated with respect to the flavour

eigenstates. There should be a mixing matrix for the lepton sector, analogous to

the CKM matrix of the quark sector, known as the PMNS [25, 26, 27] matrix.

If we define the charged lepton mass eigenstates to be the eigenstates of flavour

then the neutrino mass eigenstates will be rotated with respect to the flavour
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eigenstates by the PMNS matrix. Neutrinos that are produced in some flavour

eigenstate will then be in a superposition of mass eigenstates. If the mass

differences involved are small enough, as they must be since the masses themselves

are small, then the neutrino will propagate coherently as this superposition, but

with each mass eigenstate component evolving at a different rate, causing

interference. Therefore a neutrino that is produced as one flavour and propagates

for some distance may, when it eventually participates in another charged weak

current interaction, be measured as a different flavour with some probability.

Whereas the CKM matrix is relatively close to the identity, neutrino oscillation

data indicates that the PMNS matrix is close to tribimaximal form [28, 24], meaning

that the mass and flavour eigenstate bases are very different from each other.

One may in principle add to the SM model matter content some number of RH

neutrinos N that couple to the Higgs field and lepton doublet, inducing Dirac mass

terms after EWSB. Such RH neutrinos would have to be uncharged under GSM in

order for the term N
†H.LL to be gauge invariant. This in turn means that

Majorana mass terms for the RH neutrino could also be added to the SM

Lagrangian. These RH neutrino masses would be unrelated to EWSB — their scale

associated with some new physics. Let us assume that these Majorana masses are

much larger than the Dirac neutrino masses induced by EWSB. For one generation

we may write a neutrino mass term

LNν =

(

N
† νc†

)







M m

m 0













N
c

ν






, (1.38)

where M is the RH neutrino Majorana mass, and m is the Dirac mass equal to

some Yukawa coupling times v. For M ≫ m there is one eigenvalue approximately

equal to M and another approximately equal to m
2/M. In this case there is then a

light mass eigenstate that is almost, but not quite, ν and that has a Majorana mass

that is suppressed relative to the EWSB scale. This is the type-I see-saw

mechanism [29, 30]. The principle still holds for three generations of RH and LH

neutrinos, with three of the states arising from the 6× 6 mass matrix having
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non-zero, but suppressed, masses.

1.5 Baryon and Lepton Number Conservation

The renormalisable SM Lagrangian, without RH neutrinos, is invariant under two

extra U(1) global symmetries known as U(1)B and U(1)L, corresponding to baryon

and lepton number conservation respectively. Quark fields QL, dR, and uR have

baryon number B = +1/3 and lepton number L = 0, with the CP conjugate

antiquark fields having B = −1/3 and L = 0. The lepton fields LL and eR have

B = 0 and L = +1, with antileptons having L = −1. Both B and L are conserved

by the classical renormalisable Lagrangian, but are anomalous if gauged and are

violated non-perturbatively. However, the global symmetry U(1)B−L, corresponding

to the conservation of the combination B − L, happens to be anomaly free in the

SM if gauged and globally is conserved even non-perturbatively.

U(1)B−L is, however, broken explicitly by Majorana neutrino mass terms.

Majorana mass terms for the light neutrino mass eigenstates imply (and are implied

by) the existence of neutrinoless double beta decay [31, 32] (see figure 1.1) — a

process in which baryon number remains unchanged but lepton number is changed

by 2. Experiments searching for neutrinoless double beta decay (see for example

CUORE [33], EXO [34], GERDA [35], MAJORANA [36], NEXT [37], and

SNO+ [38]) will eventually determine the nature of neutrino mass — Dirac or

Majorana. Because of the smallness of physical neutrinos masses, this

U(1)B−L-breaking effect if the neutrino is Majorana in nature would be

corresponding rather small, with the physical Majorana mass appearing in the

matrix element of any such process.

To date no processes violating either baryon or lepton number have ever been

directly observed. In addition to neutrinoless double beta decay, another example of

such a process would be proton decay — the decay of a proton with B = +1 into a

final state with B = 0. This is a process which, unlike neutrinoless double beta

decay, needs not necessarily violate U(1)B−L.
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dL

Majorana neutrino mass

uL

uL

eLW−

W− eL

Figure 1.1: A diagram for a neutrinoless double beta decay pro-
cess induced by the existence of a Majorana neutrino mass.

1.6 The Hierarchy Problem of the SM

As previously stated, the Higgs boson mass in the SM is not determined by the

other known parameters of the model. There do, however, exist various theoretical

bounds [39]. From (1.31) we see that the Higgs boson mass-squared is proportional

to the self-coupling λ. The running coupling λ in the loop-corrected potential is

required to remain positive in order for the EWSB vacuum to be stable. For low

values of the running coupling λ the coupling decreases with increasing energy

scale. Depending on the cut-off energy scale Λ that one requires the model to be

valid up to the vacuum stability requirement puts a lower bound on the SM Higgs

boson mass — a bound that increases with Λ [40]. At the same time, for larger

values of λ the coupling increases with energy. Too large values of λ below some

cut-off energy scale Λ therefore render the perturbation theory invalid. Here there

exist uncertainties associated with the using of perturbation theory to try to assess

where perturbation remains valid, but nonetheless the requirement that there is no

Landau pole in λ below Λ puts an upper bound on the Higgs mass — a bound that

decreases with Λ. This large Higgs mass effect can also be seen non-perturbatively

in Lattice calculations [41, 42]. Furthermore, too large Higgs boson masses lead to a

non-unitarity of the S-matrix for certain processes where unitarity is preserved via

cancellations between divergent diagrams involving virtual Higgs bosons and

divergent diagrams involving virtual longitudinal polarisations of massive weak

gauge bosons such as WW scattering. Unitarity bounds should not be violated in

renormalisable theories [43].
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Because of these various upper bounds the SM Higgs boson should have a mass

below around the TeV scale in order for the theory to be valid. This however

introduces a naturalness problem into the theory — the unnatural hierarchy

between the EWSB scale and the Planck scale which is about 16 orders of

magnitude greater. The reason why this is considered unnatural is because in the

SM the Higgs doublet is a doublet of fundamental complex scalars. (They are

fundamental scalars as opposed to composite scalars which would be expected only

to appear in some effective theory of the constituent particles that one would only

expect to be valid up to some energy scale associated with the confinement.)

Fundamental scalars are a problem in non-supersymmetric theories, because their

masses receive radiative corrections proportional to the masses of any particles that

they couple to [44, 45]. Their self-energy Feynman diagrams are quadratically

sensitive to the highest mass scales in the theory.

For example, let us consider the one-loop contribution to the self-energy diagram

of a fundamental scalar that couples to a fermion of mass mF with a Yukawa

coupling λF using dimensional regularisation with a mass scale parameter µ

−iA2
F =



























−iλF
q



























(1.39)

= −iλ2F
∫

dα
1

(4π)2
∆2

F

[

−2

ε
− γ + 1− ln

(

4πµ2

∆2
F

)

+Oε
]

, (1.40)

where ∆2
F = m2

F − α(1− α)q2 and the number of dimensions d = 4− ε. This

contribution contains a part that has a pole at the 4-dimensional limit ε→ 0 and

additional finite parts including a part proportional to m2
F. The coefficient of ∆2

F in

A2
F is proportional to the logarithm which is order one.

If we define the renormalised scalar propagator to have a pole where the energy
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equals the renormalised mass q2 =M2
R then we have

0 = Σ2

∣

∣

∣

∣

q2=M2

R

=

[

A2 + (ZM − 1) + (Z − 1)q2
]

q2=M2

R

, (1.41)

where Σ2 is the total correction to the scalar mass-squared in the propagator from

loop corrections to and counter term insertions in the scalar propagator at one-loop

order. ZM and Z are the scalar mass term and wavefunction renormalisations

respectively and −iA2 is the total one-loop correction to the scalar self-energy

diagram.

If the SM were valid up to arbitrarily large energy scales, with no new physics

existing at higher energy scales, then there would be no problem. The

renormalisation constants may be defined to cancel the poles in ε of the constant

and q2 coefficients and, since the theory is renormalisable, such poles would then be

cancelled by counter terms at all orders in perturbation theory. The additional

finite corrections would be at most of order the top quark mass.

However, this is not the case. Even if no physics comes in earlier the SM cannot

be valid above the Planck scale where contributions from quantum gravity should

become important. This being the case, it is not clear that using dimensional

regularisation and integrating momenta up to infinity is a valid prescription, but if

one alternatively uses a cut-off regulator, with a momentum cut-off at some energy

scale where the theory ceases to be valid, then one still obtains the generic result

−iA2
F = −iλ2F

[

pole + CFm
2
F + · · ·

]

, (1.42)

where CF is some order one coefficient and the ‘pole’ is now of order the cut-off

scale squared. If the scalar also couples to another scalar of mass mS with a

coupling constant λS then this also gives a contribution of the generic form

−iA2
S = iλS

[

pole + CSm
2
S + · · ·

]

. (1.43)

Regardless of the physical interpretation, it is still the case that if these pole parts

are cancelled by the renomalisation constants at this level then, since the theory is
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renormalisable, the poles will still be cancelled by counter terms at all orders. This,

however, cannot be said of any large finite corrections proportional to boson or

fermion masses associated with some new high energy physics [45].

If one requires the renormalised mass to be much smaller than such large

additional finite contributions to A2 then one one may also define the

renomalisation constants to almost completely cancel these additional finite terms,

leaving the small desired mass, at fixed order. The unnaturalness arises when one

then goes to higher order in perturbation theory. While the new poles that arise at

this order will be exactly cancelled if one also includes all diagrams containing

counter terms up the relevant order, new large finite corrections will also arise that

will not in general be cancelled by the finite parts of the counter terms. The

renormalised mass is therefore expected to be of order the largest mass scale in the

theory unless the finite parts of the counter terms are carefully retuned at every

order in perturbation theory.

The SM Higgs mass is thus sensitive to any new physics that might exist at or

below the Planck scale. Since we know that QFT itself is not expected valid at the

Planck scale, it is unreasonable to assume that there is not some new physics at

some scale far higher than the EWSB scale. If the Higgs boson couples to this new

physics at all then the Higgs boson mass should be at least of order this scale unless

one is willing to accept large tunings at every order in perturbation theory to make

it such that the large contributions cancel, leaving a Higgs mass of order the EWSB

scale. This is the hierarchy problem of the SM.

If, for example, we include radiative contributions from RH neutrinos with

masses of order 1014 GeV, then the additional finite corrections to the Higgs boson

self-energy of order 1028 GeV2 should be tuned to almost cancel leaving a physical

Higgs boson mass-squared 24 orders of magnitude smaller.

This hierarchy problem leads us to conclude that some new physics must exist at

or around the TeV scale to stabilise the Higgs mass. The most common theories

motivated to solve the hierarchy problem have solved it by assuming that the Higgs

boson is a composite, as in the case of technicolour theories; by assuming that the
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Planck scale is in fact around the TeV scale, as in the case of large extra

dimensions; or by assuming that the Higgs mass is stabilised by supersymmetry, as

in the theories that we shall introduce in chapters 2 and 3. All of these theories

involve the existence of new physics at the TeV scale.

1.7 Unsolved Problems in Particle Physics

Although the main motivation for new physics, particularly at the TeV scale

currently being probed by the LHC, is the hierarchy problem, there are many other

questions left unanswered by the SM. We shall briefly mention some of them in this

section. Neutrino mass has already been discussed, but many other questions about

fundamental fermion mass also remain unanswered. Although the induced fermion

masses are allowed in the SM, the Yukawa couplings are measured and not

predicted. Theories that attempt to explain the sizes and values of these Yukawa

couplings as well as the striking difference between the CKM and PMNS matrices

are known as theories of flavour. These typically invoke some new symmetry known

as flavour symmetry with the spontaneous breaking of flavour symmetry producing

the observed patterns of Yukawa couplings (see for example refs. [46, 47, 48]).

In the SM there are also three independent and unexplained gauge couplings.

Grand unification (introduced in section 2.4) proposes that the SM gauge group is

in fact the remnant of some larger spontaneously broken gauge group with a single

gauge coupling. In such a scenario the SM gauge couplings, running up in energy,

should unify to the same value at some energy scale associated the breaking of the

larger GUT group. In the SM the couplings do not in fact unify, but they do in the

supersymmetric models introduced in the next chapter.

The baryon asymmetry of the universe is another problem. It is not known why

the universe appears to be made almost entirely of matter and not antimatter.

Although the SM technically satisfies the Sakharov conditions [49] — conditions

required for the existence of baryogenesis processes that could have created this

asymmetry — of baryon number non-conservation (non-perturbatively) and CP
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violation (via the CKM matrix), the small CP -violating phase of the CKM matrix

is not thought to be large enough to have been the origin of the observed baryon

asymmetry.

Although most of the baryonic mass in the universe is to some extent

understood (being mostly due to QCD colour confinement rather than the Higgs

mechanism), dark matter, discussed in chapter 4, and dark energy are completely

unaccounted for in the SM.

The strong CP problem (see footnote 1 in section 1.1) is another unsolved

problem.

The origin of the gauge group, matter representation, and number of space-time

dimensions is also not understood, although the theory must be consistent with

respect to gauge anomaly cancellation and the existence of stable atoms and stable

gravitational orbits is obviously necessary for our existence.
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Chapter 2

Supersymmetry and Grand

Unification

The description of supersymmetry given in this chapter is largely based on the

descriptions in refs. [50, 45]. The notation for fermion spinors used is given in

appendix A.

Supersymmetry is a symmetry relating particles of different spin. In a theory

with some amount of supersymmetry each particle, possessing a given spin and

other internal quantum numbers, necessarily comes as part of what is known as a

supermultiplet — an association of particles that have different spins but all other

quantum numbers the same. The particles in these supermultiplets are then

transformed into each other by supersymmetry transformations that leave the

supersymmetric Lagrangian invariant. The size of the supermultiplets describing

the theory depends on the number of conserved supercharges N of the

supersymmetry algebra. If the supersymmetry is preserved by the vacuum then the

particles of different spin that make up a supermultiplet are all degenerate in mass

as well as having all other quantum numbers the same.

Plausible low energy models for physics beyond the SM can be constructed using

N = 1 supersymmetry. This theory contains the following types of supermultiplet:

A chiral supermultiplet containing a complex scalar and a LH (for a left chiral
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supermuliplet, RH for a right chiral supermultiplet) Weyl spinor; a vector

supermultiplet containing a spin-1 real vector and a Weyl spinor; and a graviton

supermultiplet containing the spin-2 graviton and a spin-3/2 gravitino. Each of

these supermultiplets separately contains the same number of physical bosonic and

fermionic degrees of freedom. The (as we will see is necessary, multiple) Higgs

scalars whose VEVs are responsible for EWSB must then be part of chiral

supermultiplets containing the same number of fermionic degrees of freedom in the

form of spin-1/2 fields. These fermions are known as Higgsinos. Each Weyl fermion

matter field of the SM must be part of either a chiral or vector supermultiplet and

in plausible models they are all contained in chiral supermultiplets. The scalar

superpartners of the quarks and leptons are known as squarks and sleptons

respectively. In supersymmetric gauge theories the massless gauge bosons form

vector supermultiplets along with Weyl fermions known as gauginos.

Although not the original motivation for supersymmetry itself [51], the main

motivation for what is known as TeV scale softly broken supersymmetry (see for

example ref. [52]) is that it provides a solution to the hierarchy problem of the SM.

In supersymmetric theories scalar self-energies do not have the quadratic sensitivity

to high energy scales that are the origin of the SM hierarchy problem. The

quadratic terms due to fermions in loops such as (1.39) are cancelled by quadratic

terms due to the bosons from the same supermultiplet. These boson terms have the

opposite sign since they do not have the extra minus sign associated with a fermion

loop. In another sense, the non-existence of this quadratic sensitivity comes about

because the Higgs scalar itself is part of a supermultiplet and must remain

degenerate in mass with its non-scalar superpartners. For N = 1 chiral

supermultiplets the complex scalar must remain degenerate with the Weyl fermion.

Since Weyl fermions do not have the quadratic sensitivity to high energy scales, the

quadratic contributions to the scalar self-energy must necessarily cancel.

Clearly the scenario described contradicts observation if supersymmetry is

preserved by the vacuum since it invokes the existence of many new unobserved

particles that are degenerate in mass with observed particles and have similar

interactions. In realistic models supersymmetry, and this mass relation, must be
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broken. We will see that the TeV scale soft breaking scenario provides a solution to

the hierarchy problem, but predicts that there should be observable superpartners

with masses not too far above the TeV scale.

2.1 Superpotentials

The renormalisable Lagrangian of an N = 1 supersymmetric gauge theory is

specified by specifying the gauge group, the gauge group representations of the

chiral supermultiplets, and what is known as the superpotential W. The

superpotential is a chiral object, being a dimension-3 holomorphic function of

complex scalars from either purely left or purely right chiral supermultiplets. Here

we will work purely with left chiral supermultiplets as is canonical.

Let a supersymmetric gauge theory contain left chiral supermultiplets, labelled

with i, each containing a complex scalar φi and a LH Weyl spinor ψi. Furthermore,

let the superpotential

W =
1

2
mijφiφj +

1

6
λijkφiφjφk, (2.1)

with mij = mji and λijk similarly symmetric in all of its indices. Terms in the

superpotential with mass dimension greater than 3 are non-renormalisable. The

renormalisable, supersymmetric, gauge invariant Lagrangian1 is then

L = −1

4
AaµνAa

µν + Ãac†iσµDµÃ
ac + ψ†

i iσ̄
µDµψi + (Dµφi)

†(Dµφi)

+ i
√
2g(a)

[

φ†iT
aÃac†ψi − ψ†

i Ã
acT aφi

]

− 1

2
DaDa

− 1

2

[

mijψ
c†
i ψj + λijkψ

c†
i ψjφk + c.c.

]

− F †
i Fi, (2.2)

where

Fi =
∂W
∂φi

= −mijφj −
1

2
λijkφjφk (2.3)

1We do not address non-renormalisable operators in supersymmetric theories. Although the
effects of dimension-5 operators are interesting and potentially important, they have not been sys-
tematically studied in the E6SSM.
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and

Da = −g(a)φ†iT aφi. (2.4)

The gaugino Ãa with adjoint index a is a LH Weyl spinor, so Ãac is a RH Weyl

spinor. If the gauge group is a direct product of simple subgroups then the gauge

coupling constant g(a) can have a different value for each of these subgroups.

2.2 The Matter Content of the MSSM

The MSSM is minimal in the sense that it introduces as few new particles as

possible to the particles of the SM. To this end one begins by simply assigning all of

the fields in table 1.1 to left chiral supermultiplets. This immediately creates a

number of problems and in the MSSM these are solved in a way that introduces as

few new fields as possible.

Firstly there are two problems related to the assigning of the Higgs doublet H to

a chiral supermultiplet, but both have the same solution. The first of these

problems is that the Weyl fermion superpartner of the Higgs scalar doublet

contributes to the gauge anomaly (1.11). The inclusion of this field gives extra

non-zero contributions to gauge anomalies and therefore makes the gauge theory

anomalous. The second of these two problems is that, since the superpotential must

be a holomorphic function of complex scalars from purely left (by convention,

alternatively right) chiral supermultiplets, superpotential terms coupling H to

down-like squarks and charged sleptons are forbidden by the U(1)Y gauge

symmetry. This means that the mass inducing couplings to down-like quarks and

charged leptons that appear in (1.5) cannot be present in the supersymmetric

Lagrangian. The minimal solution to both of these problems is the same and it is to

have two Higgs scalar doublets as in table 2.1.

The extra contributions to gauge anomalies from the Higgsinos then cancel since

their charges are opposite and together they from a real representation of GSM.

(We choose to write all SU(2) antidoublets as doublets since they are equivalent, as
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Supermultiplet Boson Fermion SU(3)c SU(2)L U(1)Y
LH quark doublet chiral Q̃L QL 3 2 +1/6

LH down-type antiquark chiral d̃cR dcR 3 1 +1/3
LH up-type antiquark chiral ũcR ucR 3 1 −2/3

LH lepton doublet chiral L̃L LL 1 2 −1/2
LH charged antilepton chiral ẽcR ecR 1 1 +1

Down-type Higgs doublet chiral Hd H̃d 1 2 −1/2

Up-type Higgs doublet chiral Hu H̃u 1 2 +1/2

Gluon vector Gµ Gluino G̃ 8 1 0

SU(2)L gauge vector Wµ Wino W̃ 1 3 0

U(1)Y gauge vector Bµ Bino B̃ 1 1 0

Table 2.1: The SU(3)c and SU(2)L representations and the
U(1)Y charges of the supermultiplets of the MSSM.

shown in appendix B.) The contribution to the gauge anomaly due to gauginos is

automatically zero since gauginos are necessarily in the adjoint representation

which is real. Since LL and Hd have the same quantum numbers one might think

that a more minimal solution would be to declare these fields to be part of the same

supermultiplet, but in practice such models prove unrealistic.

The most general renormalisable and gauge invariant superpotential containing

the fields in table 2.1 is

W = µHd.Hu + hUij ũ
c
RiHu.Q̃Lj

− hDij d̃
c
RiHd.Q̃Lj − hEij ẽ

c
RiHd.L̃Lk +∆W, (2.5)

where

∆W =
1

2
ξLLeijk L̃Li.L̃Lj ẽ

c
Rk + ξLQdijk L̃Li.Q̃Lj d̃

c
Rk

+ ζLHi L̃Li.H̃u +
1

2
ξuddijk ũ

c
Rid̃

c
Rj d̃

c
Rk. (2.6)

If both of the Higgs scalars acquire VEVs

〈Hd〉 =
1√
2







vd

0






and 〈Hu〉 =

1√
2







0

vu






(2.7)
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then this superpotential yields Dirac mass terms equivalent to those in (1.32)

LYukawa = − 1√
2

(

hDijvdd
†
RidLj + hUijvuu

†
RiuLj

+ hLijvde
†
RieLj + c.c.

)

+ · · · . (2.8)

In order for the W± and Z boson masses to be the same as their SM values we

require

v2 = v2d + v2u. (2.9)

We therefore define an angle β such that

tan(β) =
vu
vd

(2.10)

⇒ vd = v cos(β) and

vu = v sin(β).

The Yukawa coupling matrices hD, hU , and hL must then be multiplied with

respect to those of the SM by factors of 1/ cos(β), 1/ sin(β), and 1/ cos(β)

respectively. With increasing tan(β) the hierarchy between the top and bottom

Yukawa couplings is lessened, but all of these Yukawa couplings are greater than

their SM values for all angles β.

2.2.1 R-parity

The terms in ∆W, however, are dangerous since they all violate either lepton or

baryon number conservation. Most importantly they lead to Lagrangian terms that

allow protons to decay into final states with zero baryon number. These decays are

mediated by squarks and require both baryon and lepton violating terms from ∆W

(see figure 2.1). The most common solution in the MSSM is to impose an

additional discrete Z2 symmetry on the fields in the superpotential. This is known

as R-parity, which we denote Z
M
2 , and is defined such that the Higgs scalars are
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d̃cR

QcL
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Figure 2.1: A proton decay diagram using the couplings ξLQd

and ξudd in (2.6).

even and all of the matter scalars (squarks and sleptons) are odd. When interpreted

as a symmetry of the Lagrangian, angular momentum conservation implies that the

fermionic superpartners have opposite R-parity. The gauge bosons must be

Z
M
2 -even and the gauginos are then Z

M
2 -odd. Oddness under ZM2 is the meaning of

the tilde over the squark, slepton, Higgsino, and gaugino fields.

The imposition of ZM2 forbids all of the terms in ∆W and makes the

renormalisable MSSM Lagrangian invariant under global U(1)B and U(1)L. In the

SM only gauge invariance is required in order for these to be global symmetries

since the squarks the sleptons do not exist. The Z
M
2 -odd particles, denoted with a

tilde thoughout, are known as the supersymmetric particles and the imposition of

Z
M
2 means that the lightest supersymmetric particle is absolutely stable. It is

therefore the case that in the MSSM a discrete symmetry imposed in order to

prevent rapid proton decay also leads to the existence of a new stable particle that

may be a plausible candidate for dark matter.

2.2.2 The µ problem of the MSSM

The other problem with W in (2.5) is that it contains the bilinear mass term µ.

This is a supersymmetry respecting parameter that a priori has no relation to

either the EWSB or supersymmetry breaking scales. The problem is that in order

to achieve EWSB, with v of the correct magnitude, the parameter µ should be of

order the EWSB scale. In the MSSM as written, however, it is not clear why it

should not be either of order the Planck scale or zero. The µ problem refers to a

fine-tuning that has to be imposed on the µ parameter once. Supersymmetry does
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at least mean that the parameter is stable at the EWSB scale under radiative

corrections, even as it is not explained.

2.3 Soft Supersymmetry Breaking

Although unbroken supersymmetry is easily ruled out, even in the case of

spontaneously broken supersymmetry the relationship

tr[M2
φ] = 2tr[M2

ψ], (2.11)

where M2
φ is the mass-squared matrix for all real scalars and M2

ψ is the

mass-squared matrix for all Weyl spinors in chiral supermultiplets, still holds at

tree level in the absence of gauge anomalies [45]. It is trivially satisfied in the case

of unbroken supersymmetry since the two real scalars and Weyl spinor from each

chiral supermultiplet are degenerate. Because of this relation it has not been

possible to create a realistic model for supersymmetry breaking in the MSSM

without introducing extra physics.

In order to create realistic models one usually invokes the existence of some

other sector, known as the hidden sector, in which supersymmetry is spontaneously

broken. In this hidden sector scenario the visible sector (containing SM matter,

here the MSSM sector) does not itself cause spontaneous supersymmetry breaking,

but supersymmetry breaking effects are communicated to it somehow from the

hidden sector.

In this hidden sector scenario it is useful to parametrise the kinds of

modifications to the visible sector Lagrangian that spontaneous supersymmetry

breaking in the hidden sector can cause in ignorance of the exact mechanism of

supersymmetry breaking. It is therefore useful to list the gauge invariant mass

terms that may be induced in the visible sector. Firstly one can have SSB masses

for all scalars φ of the form

−φ†m2φ. (2.12)
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If there is more than one copy of a scalar with the same quantum numbers,

i.e. there is more than one generation, then there can be more structure to the mass

matrix. For example, for the LH slepton2 doublets one can have

−L̃†
Lim

2
LijL̃Lj (2.13)

and for the RH charged sleptons one can have

−ẽ†Rim
2
eij ẽRj , (2.14)

whereas the only possible soft scalar mass-squared term involving the down-type

Higgs doublet is

−H†
dm

2
Hd
Hd. (2.15)

Note that L̃L and Hd do not have the same quantum numbers since L̃L is ZM2 -odd.

Secondly one can have SSB masses for gauginos

−1

2

[

M (a)Ãac†Ãa + c.c.
]

. (2.16)

If the gauge group is a direct product of subgroups, then in general the gauginos

associated with each subgroup can have a different gaugino mass. For example, for

the SM gauge group one can have soft gaugino mass terms

−1

2

[

M3G̃
ac†G̃a +M2W̃

ac†W̃ a +M1B̃
ac†B̃a + c.c.

]

. (2.17)

These mass terms always exist for gauginos since they are necessarily in real

representations of the gauge group. They do not exist for chiral fermions. Thirdly

one can have SSB trilinear terms. For each trilinear term that is allowed to appear

in the superpotential

λijkφiφjφk (no sum on i, j, k) (2.18)

2Since sleptons are scalars there is no concept of slepton handedness. The handedness refers to
the handedness of the fermionic superpartner.
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one can have the soft supersymmetry breaking Lagrangian term

λijkAλijkφiφjφk (no sum on i, j, k), (2.19)

where A has mass dimension 1. In fact it is the case that for any term that can

appear in the superpotential one can have a corresponding SSB Lagrangian term

that is equal to the superpotential term multiplied by some new supersymmetry

breaking parameter with mass dimension 1. In the MSSM there then exists the SSB

breaking term corresponding to the µ term

µBHd.Hu. (2.20)

There terms are known as soft since they only involve new parameters that have

positive-definite mass dimension. The supersymmetric relationships between the

dimensionless couplings involving bosons and fermions that lead to the cancellation

of the quadratic sensitivity of fundamental scalars to arbitrarily high scales are

preserved. If these new parameters with the dimensions of mass are roughly of

order some scale associated with SSB then the consequences are the following:

Firstly, while the observed quarks and leptons only acquire masses proportional to

the EWSB scale, the unobserved gauginos, squarks, and sleptons acquire masses

proportional to the SSB scale, allowing their current non-observation to be

naturally explained. Secondly, contributions to the finite radiative corrections to

the Higgs boson self-energy will be at most of order the SSB scale since this is the

scale of differences between bosonic and fermionic masses within supermultiplets.

Therefore if the SSB scale is not too far above the EWSB scale then the hierarchy

problem is still solved. It is therefore believed that if supersymmetry is the solution

to the hierarchy problem then the squarks, sleptons and gauginos, while currently

unobserved, should not have masses too far above the TeV scale and should

therefore be discovered at the LHC. This is what is known as TeV scale softly

broken supersymmetry.

If the squarks and sleptons are present at or not too far above the TeV scale
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then these soft supersymmetry breaking terms can in general lead to FCNCs in

contradiction with observation. This problem can be avoided if each of the 3× 3

soft scalar mass-squared matrices, such as those in (2.13) and (2.14) — namely

m2
Qij , m

2
dij , m

2
uij , m

2
Lij , and m

2
eij — are proportional to the identity and if for each

of the 3× 3 Yukawa matrices — hUij , h
D
ij , and h

E
ij — all nine associated soft trilinear

couplings are equal. Explicitly this means

m2
Fij = m2

F δij ∀ F ∈ {Q, d, u, L, e} and (2.21)

AhGij
= AG ∀ i, j ∀ G ∈ {U,D,E}. (2.22)

The SSB gaugino masses and trilinear couplings may also in general have large

phases that lead to large CP -violating effects, again in contradiction with

observation. The actual restrictions on and relationships between these soft mass

parameters will depend on the nature of the SSB mechanism.

2.4 Grand Unification

Grand unification is the idea that just like U(1)EM is a remnant of the

spontaneously broken electroweak gauge symmetry group, so the SM gauge

symmetry group GSM is a remnant of some still larger group that is spontaneously

broken by some mechanism at some GUT scale. The further assumption is that this

GUT group should not be a direct product of simple groups, as GSM is, but should

itself be simple, with a single gauge coupling. Grand unified theories can offer an

explanation for the charges of the observed SM particles and for the observed values

of the three gauge couplings at low energies. The three gauge couplings would be

equal to some single GUT group gauge coupling at the GUT scale and below the

GUT scale, where the GUT symmetry is spontaneously broken, the three couplings

would then run, with different beta functions, to the low energy values that we

observe. Grand unification therefore makes the prediction that, running to higher

energy, the three gauge couplings should unify at some scale. Since we know the

values of the couplings at low energy, if we know the beta functions in some theory
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then this prediction can be tested — the beta functions depending on the whatever

new physics exists between the EWSB scale and the GUT scale.

A U(1) gauge theory is of course invariant under a rescaling of the gauge

coupling as long as the charges are also appropriately rescaled, but if the U(1) is a

remnant from some spontaneously broken larger group then the U(1) charges of the

particles, forming some representation under the larger group, will then be fixed.

In the SM, with no new physics coming in above the EWSB scale, the couplings

do not unify. They do, however, unify if one assumes supersymmetry spontaneously

broken at the TeV scale. In the MSSM the scale of this unification is around

1016 GeV (see for example ref. [45]).

The smallest possible GUT group is SU(5) [53]. SM matter can arise from 10

and 5 representations which decompose under

SU(5) → SU(3)c ⊗ SU(2)L ⊗ U(1)Y (2.23)

as

10 →
(

3, 2,+

√

3

5

1

6

)

⊕
(

3, 1,−
√

3

5

2

3

)

⊕
(

1, 1,+

√

3

5

)

(2.24)

5 →
(

3, 1,+

√

3

5

1

3

)

⊕
(

1, 2,−
√

3

5

1

2

)

. (2.25)

This is one generation of SM quarks and leptons as long as one uses the correctly

GUT normalised U(1)Y gauge coupling, which we can read off as

g1 =

√

5

3
g′. (2.26)

The two Higgs doublets of the MSSM, however, do not form a complete

representation of SU(5). If they are from 5 and 5 representations then one must

explain why the colour triplets from these representations are not present at low

energy while the Higgs doublets are. This is known as the doublet-triplet splitting

problem.
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2.4.1 Unification of SSB masses

At the GUT scale in order for the soft gaugino mass terms to be gauge invariant

under the GUT group all soft gaugino masses, like all gauge couplings, must be

equal. This GUT scale soft gaugino mass is known as M1/2. Grand unified gauge

symmetry implies that these soft gaugino masses should be unified at the GUT

scale, but the further assumption is sometimes made that not only should the

unifications (2.21) and (2.22) be imposed at the GUT scale for phenomenological

reasons, but that all of the soft scalar masses in (2.21) should be equal to a unified

soft scalar mass m0 and that all of the soft trilinear couplings in (2.22) should be

equal to a unified trilinear coupling A0. This this known as the constrained scenario

or sometimes gravity mediated supersymmetry breaking. In the MSSM this

constrained scenario is known as the cMSSM.

Gravity mediated supersymmetry breaking assumes that supersymmetry

breaking is communicated to the visible sector only by non-renormalisable

operators that are suppressed by the Planck mass. If the supersymmetry breaking

scale in the hidden sector is MS then the visible sector SSB masses will be of order

the gravitino mass m3/2 ∼M2
S/MP [50]. A further assumption is that the

non-renormaliasable operators should be completely flavour blind and that the SSB

parameters should be unified at the Planck scale. In the constrained scenario,

however, the unification relations are all applied at the nearby GUT scale.

One success of this scenario is that if the soft Higgs masses start off equal to m0

at the high scale then they will typically be driven negative by radiative corrections

on the way down to the EWSB scale, allowing for EWSB if one also has an

appropriate µ parameter. Whether in a constrained scenario or not, this is known

as radiative EWSB. The soft Higgs masses will be of the correct order of magnitude

for EWSB since they will be of order the SSB scale.
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Chapter 3

The E6SSM

The main theoretical shortcoming of the MSSM as a model describing TeV scale

softly broken supersymmetry is the µ problem. The model also predicts the tree

level result that the lightest Higgs boson must have a mass smaller than

mZ | cos(2β)|. Large loop corrections must then push the Higgs mass above the LEP

limit in order for the model not to be ruled out. In practice when this is done the

model is quite fine-tuned [54]. In light of the shortcomings of the minimal model, it

is worth considering supersymmetric models that have a non-minimal structure at

the TeV scale.

The E6SSM [55, 56, 57] is a string theory inspired supersymmetric model based

on an E6 GUT group. The low energy gauge group contains an extra U(1), called

U(1)N , under which the RH neutrinos that arise in the model are not charged. This

means that the RH neutrinos may acquire large intermediate scale Majorana

masses. This choice, that the low energy gauge group is GSM ⊗ U(1)N , defines the

model. The U(1)N gauge symmetry is spontaneously broken at low energy by a

SM-singlet field — charged under the extra U(1)N , but a singlet under GSM. This

field radiatively acquires a VEV which is naturally of order the SSB scale, meaning

that there is Z ′ boson with an induced mass of order the TeV scale. This SM-singlet

VEV also induces an effective µ parameter, also naturally of order the SSB scale,

with the µ term of the MSSM being forbidden by the enlarged gauge symmetry.

Although E6 is not a group without complex representations, complete
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representations of E6 are nonetheless free of gauge anomalies. In the E6SSM

automatic gauge anomaly cancellation is thereby ensured by allowing three

complete 27 representations of E6 to survive down to the low energy scale. These

three 27s contain the three generations of known matter, however they also contain

the VEV acquiring Higgs doublets and SM-singlet. This means that there are two

extra copies of the Higgs doublets and SM-singlet in the low energy particle

spectrum. Whereas in the MSSM the Higgs doublets do not form a complete

representation of the potential SU(5) GUT group, in the E6SSM supermultiplets

with the quantum numbers of Higgs doublets are contained within each of the

fundamental 27 representations of the GUT group that also each contain one

generation of SM matter.

In the E6SSM only one generation of Higgs doublets and SM-singlets, defined to

be the third, acquires the required VEVs and is known as ‘active’. The other two

generations, the first and second, of Higgs doublets and SM-singlets do not acquire

VEVs and these are known as ‘inert’. Furthermore, in the E6SSM it is assumed

that the inert generations have suppressed Yukawa couplings to SM matter,

suppressed due to some flavour symmetry. This means that new FCNCs from the

enlarged Higgs sector are suppressed and also explains why the inert generations do

not radiatively acquire VEVs.

3.1 Gauge Symmetry and Matter Content

The subgroups of the E6 GUT group may be written

E6 ⊃ SO(10)⊗ U(1)ψ

⊃ SU(5)⊗ U(1)χ ⊗ U(1)ψ

⊃ SU(3)c ⊗ SU(2)L ⊗ U(1)Y ⊗ U(1)χ ⊗ U(1)ψ. (3.1)
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In the E6SSM E6 is spontaneously broken at the GUT scale directly to

SU(3)c ⊗ SU(2)L ⊗ U(1)Y ⊗ U(1)N , where

U(1)N = cos(ϑ)U(1)χ + sin(ϑ)U(1)ψ (3.2)

and tan(ϑ) =
√
15. This is such that the RH neutrinos that appear in the theory

are completely uncharged. Three complete 27 representations of E6 then survive

down to low energy in order to ensure gauge anomaly cancellation. They

decompose under the SU(5)⊗ U(1)N subgroup as [58]

27 →
(

10,
1√
40

)

⊕
(

5,
2√
40

)

⊕
(

5,− 3√
40

)

⊕
(

5,− 2√
40

)

⊕
(

1,
5√
40

)

⊕
(

1, 0

)

. (3.3)

The first two terms contain normal matter, whereas the final term, which is a singlet

under the entire low energy gauge group, contains the RH neutrino, or technically

the LH antineutrino N
c. The second-to-last term, which is charged only under

U(1)N , contains the SM-singlet S. The third generation SM-singlet acquires a VEV

〈S3〉 =
s√
2

(3.4)

which, as we shall see, generates the effective µ term and spontaneously breaks

U(1)N leading to a mass for the Z ′ boson. The remaining two terms contain the

down- and up-type Higgs doublets Hd and Hu, but also contain SU(3)c triplets.

These exotic coloured states are known as D̄ and D — the antitriplet from 5 and

the triplet from 5 respectively. Only the third generation of Higgs doublets acquires

VEVs

〈H0
d3〉 =

vd√
2
=

v√
2
cos(β) and

〈H0
u3〉 =

vu√
2
=

v√
2
sin(β). (3.5)
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Supermultiplet Boson Fermion rc rL
√

5/3QY
√
40QN

LH quark doublet chiral Q̃L QL 3 2 +1/6 +1

LH down-type antiquark chiral d̃cR dcR 3 1 +1/3 +2
LH up-type antiquark chiral ũcR ucR 3 1 −2/3 +1

LH lepton doublet chiral L̃L LL 1 2 −1/2 +2
LH charged antilepton chiral ẽcR ecR 1 1 +1 +1

LH antineutrino chiral Ñ c N c 1 1 0 0

Down-type Higgs doublet chiral Hd H̃d 1 2 −1/2 −3

Up-type Higgs doublet chiral Hu H̃u 1 2 +1/2 −2

SM-singlet chiral S Singlino S̃ 1 1 0 +5

Exotic colour antitriplet chiral D̄ ˜̄D 3 1 +1/3 −3

Exotic colour triplet chiral D D̃ 3 1 −1/3 −2

Gluon vector Gµ Gluino G̃ 8 1 0 0

SU(2)L gauge vector Wµ Wino W̃ 1 3 0 0

U(1)Y gauge vector Bµ Bino B̃ 1 1 0 0

U(1)N gauge vector B′µ Bino′ B̃′ 1 1 0 0

Table 3.1: The SU(3)c and SU(2)L representations and the E6

GUT normalised U(1)Y and U(1)N charges of the supermultiplets
of the E6SSM.

The charge assignments of the matter of the supermultiplets of the E6SSM are

summarised in table 3.1.

The low energy gauge invariant superpotential

W = W0 +W1 +W2, (3.6)

where

W0 = λijkSiHdj .Huk + κijkSiD̄jDk + hNijkÑ
c
iHuj .L̃k

+ hUijkũ
c
RiHuj .Q̃Lk + hDijkd̃

c
RiHdj .Q̃Lk + hEijkẽ

c
RiHdj .L̃Lk, (3.7)

W1 = gQijkDiQ̃Lj .Q̃Lk + gqijkD̄id̃
c
Rj ũ

c
Rk, and (3.8)

W2 = gNijkÑ
c
iDj d̃

c
Rk + gEijkẽ

c
RiDj ũ

c
Rk + gDijkQ̃Li.L̃LjD̄k. (3.9)

It is now clear that the effective µ parameter is given by

µ =
λ333s√

2
, (3.10)
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generating the term µHd3.Hu3 in the superpotential. The µ problem is solved since

s is of order the SSB scale and λ333 is perturbative.

3.1.1 Discrete symmetries of the superpotential

It should be noted that simply due to gauge invariance the superpotential of the

E6SSM is already invariant under the Z
M
2 imposed on the MSSM provided that the

exotic D̄ and D bosons and the SM-singlet bosons are interpreted as being Z
M
2 -even

along with the Higgs doublets. The squarks and sleptons, including the RH

sneutrinos, are Z
M
2 -odd. The U(1)B−L-violating terms of the MSSM superpotential

that matter parity is invoked to forbid are never present in the renormalisable

E6SSM superpotential since they would violate the extra surviving U(1)N gauge

symmetry. Importantly, all of the U(1)B−L-preserving MSSM terms are gauge

invariant with the exception of the µ term. Again the Z
M
2 -odd states are known as

the supersymmetric particles and in the E6SSM the LSP is automatically stable.

In order for non-diagonal flavour transitions arising from the Higgs sector to be

suppressed, the superpotential is assumed to obey an approximate Z2 symmetry

known as ZH2 . Under this symmetry all of the fields in the superpotential other

than S3, Hd3, and Hu3 are odd. It is this approximate symmetry that distinguishes

between the active and inert generations of Higgs doublets and SM-singlets, with

the inert generations having suppressed couplings to matter and not radiatively

acquiring VEVs. This approximate symmetry suppresses λijk couplings of the

forms λα33, λ3α3, λ33α, and λαβγ , where α, β, γ ∈ {1, 2}, indexing the inert

generations only. Such an approximate Z
H
2 symmetry, with a stable hierarchy of

couplings, can be realised in E6SSM flavour theories such as the one proposed in

ref. [59]. The symmetry cannot be exact or else the lightest of the exotic coloured

states would be absolutely stable. The existence of such stable coloured exotics

contradicts observation [60].

Although the U(1)B−L-violating terms of the MSSM are forbidden by gauge

symmetry, since the Z
H
2 cannot be exact another exact discrete symmetry must be

imposed on the superpotential in order to avoid rapid proton decay caused by the
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Z
M
2 Z

L
2 Z

B
2 Z

H
2

Sα, Hdα, Huα + + + −

S3, Hd3, Hu3 + + + +

Q̃Li, d̃
c
Ri, ũ

c
Ri − + + −

L̃Li, ẽ
c
Ri, Ñ

c
i − − − −

D̄i, Di + + − −

Table 3.2: The charges of the fields of the E6SSM superpoten-
tial under various exact and approximate Z2 symmetries that the
superpotential may or may not obey. Z

M
2 is already a symmetry

due to gauge invariance. Either Z
L
2 or Z

B
2 is imposed in order to

avoid rapid proton decay. ZH
2 is an approximate flavour symmetry.

i ∈ {1, 2, 3} and α ∈ {1, 2}.

terms in the W1 and W2 that involve the exotic coloured states. There are two

ways to impose an appropriate Z2 symmetry on W that lead to baryon and lepton

number conservation. The first option is to impose a symmetry called Z
L
2 under

which only the sleptons, including the RH sneutrinos, are odd. In this case the

superpotential is equal to W0 +W1 and the model is known as the E6SSM-I. U(1)B

and U(1)L are symmetries of the renormalisable superpotential if the exotic

coloured states D̄ and D are, respectively, diquarks and antidiquarks, with B = ±2/3

and L = 0. The second option is to impose a symmetry called Z
B
2 under which both

the sleptons and the exotic D̄ and D bosons are odd. In this case the superpotential

is equal to W0 +W2 and the model is is known as the E6SSM-II. U(1)B and U(1)L

are symmetries of the superpotential if the exotic coloured states D̄ and D are,

respectively, antileptoquarks and leptoquarks, with B = ∓1 and L = ∓1.

All of these potential exact and approximate discrete symmetries of the

superpotential (3.6) are summarised in table 3.2.

It should be noted that, although the matter that survives down to low energy

form three complete 27 representations of the broken E6, with the exception of the

uncharged RH neutrinos, to ensure anomaly cancellation, the imposed exact

discrete symmetries and approximate flavour symmetries do not commute with E6.
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3.1.2 Non-Higgs supermultiplets and RH neutrinos

It is known that in the model as presented thus far the gauge couplings, though on

course to unify, do not unify below the Plank scale. The beta functions above the

SSB scale are modified compared to those of the MSSM by the existence of the

extra matter. For example, above the SSB scale the QCD beta function is in fact

zero at one-loop order. This issue can be solved by having the E6 GUT group be

broken to an intermediate group before being broken finally to GSM ⊗ U(1)N as

shown in ref. [61].

The canonical solution [55, 56, 57], however, is to introduce into the

superpotential a bilinear term involving extra fields, known as non-Higgs fields,

from extra incomplete 27 and 27 representations known as 27′ and 27′

W ′ = µ′H ′H̄ ′, (3.11)

where H ′ is the Hd field from 27′ and H̄ ′ is the corresponding field from 27′. These

supermultiplets taken together do not spoil gauge anomaly cancellation. To some

extent this solution reintroduces the µ problem, but µ′ is not required to be related

to the EWSB scale and in order to observe satisfactory gauge coupling unification it

is only required that µ′ . 100 TeV. The unification of the gauge couplings in the

E6SSM can then be achieved for any phenomenologically acceptable value of α3 at

the EWSB scale consistent with the measured low energy central value. This is

unlike in the MSSM where significantly higher values of α3 are required at the

EWSB scale, well above the central measured value [57].

Since RH neutrinos are completely uncharged they can acquire very heavy

Majorana masses, allowing for a type-I see-saw mechanism. Furthermore, in the

early universe the heavy RH neutrinos, which can each decay into final states with

lepton number either +1 or −1, can create a lepton asymmetry, leading to

successful leptogenesis [62].
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3.2 U(1) Gauge Boson and Gaugino Mixing, EWSB

Scale Gaugino Mass Relations, and Z-Z ′ Mixing

In the low energy Lagrangian of the E6SSM as well as the U(1) gauge boson kinetic

terms contained in (2.2)

−1

4
BµνBµν −

1

4
B′µνB′

µν , (3.12)

where the first term is the kinetic term for the U(1)Y gauge boson B, with

Bµν = ∂µBν − ∂νBµ, and the second term is the kinetic term for the U(1)N gauge

boson B′, the term

−sin(χ)

2
BµνB′

µν (3.13)

is also gauge invariant. At the GUT scale the coefficient sin(χ) must be equal to

zero since this kinetic mixing term violates the E6 gauge symmetry. Furthermore,

this E6-breaking mixing term is not induced by radiative corrections as long as only

complete representations of E6 survive down to low energy. If the non-Higgs

supermultiplets are present, however, a non-zero sin(χ) can be induced [55].

Making the change of variables [63]

Bµ → Bµ −B′
µ tan(χ),

B′
µ →

B′
µ

cos(χ)
(3.14)

the mixing term (3.13) is eliminated from the Lagrangian, but in the covariant

derivative one must make the substitution

g′1Q
NB′ →

(

g′1
QN

cos(χ)
− g1Q

Y tan(χ)

)

B′ = geff1 QeffB′, (3.15)
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using an effective g′1 coupling and effective QN charges

geff1 =
g′

cos(χ)
and

Qeff = QN − g1
g′1
QY sin(χ). (3.16)

However, even in the presence of non-Higgs doublets the EWSB scale relations

geff1 = g′1 = g1 and Qeff = QN are expected to be satisfied at one-loop level to within

one-loop accuracy [55].

3.2.1 Soft Gaugino Masses

In the SSB breaking part of the Lagrangian the E6-violating soft mass term

M11B̃
ac†B̃′a + c.c. (3.17)

can also be induced at low energy, even though it is forbidden at the GUT scale.

Along with the gauge kinetic mixing, however, this soft gaugino mass maxing is also

expected to be small [4].

If at the GUT scale the soft gaugino masses M3 =M2 =M1 =M ′
1 =M1/2 and

M11 = 0, as required by E6 gauge invariance, then, due to the RGEs, at the EWSB

scale one expects M ′
1 ≈M1 ≈ 1/2M2 ≫M11 [55].

3.2.2 Z-Z ′ mixing

The three VEVs vd, vu, and s do not just induce diagonal masses for the Z and Z ′

bosons, but also induce a mixing term. The induced Z-Z ′ mass-squared matrix is







m2
Z m2

ZZ′

m2
ZZ′ m2

Z′






, (3.18)
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where

m2
Z =

ḡ2

4
v2,

m2
ZZ′ =

ḡg′1
2
v2
(

QNd cos2(β)−QNu sin2(β)

)

, and

m2
Z′ = g′21 v

2

(

QN2
d cos2(β) +QN2

u sin2(β)

)

+ g′21 Q
N2
S s2, (3.19)

with QNd,u,S the U(1)N charges a down-type Higgsinos, up-type Higgsinos and

singlinos respectively, given in table 3.1. The mass eigenstates are then

Z1 = Z cos(αZZ′) + Z ′ sin(αZZ′) and

Z2 = −Z sin(αZZ′) + Z ′ cos(αZZ′), (3.20)

where

αZZ′ =
1

2
arctan

(

2m2
ZZ′

m2
Z′ −m2

Z

)

. (3.21)

Experimental limits on the Z2 boson mass and on the mixing angle αZZ′ are

model dependant since in different models that involve a Z ′ boson the couplings of

that Z ′ will depend on the model. In the E6SSM the most recent limit on the Z2

boson, set by the ATLAS collaboration [64], searching for dilepton resonances, is

mZ2
> 1520 GeV at a confidence level of 95%. This analysis is for a Z ′ boson

associated with the extra U(1)N of the E6SSM, but neglects any other matter

beyond that of the SM. When decays of the Z2 boson into inert neutralinos (inert

Higgsino and singlino dominated mass eigenstates) are considered the Z2 width

tends to increase by a factor of about 2 [65]. This then means that the branching

ratio into leptons is decreased by a factor of about 2. Estimating the effect of

halving this expected branching ratio on the analysis in ref. [64] one can read off a

95% confidence level lower bound of around 1350 GeV. At the times of the

publications of papers I, II, and III the most recent available limits were
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mZ2
> 861 GeV [66], mZ2

> 865 GeV [67], and mZ2
> 892 GeV [68] respectively, all

at confidence levels of 95%. Limits on the angle αZZ′ typically require it be less

than order 10−3 [69]. This means that neglecting αZZ′ and setting mZ1
= mZ and

mZ2
= mZ′ ≈ g′1Q

N
S s is in most cases an excellent approximation.

3.3 EWSB and the Active Higgs Boson Mass

Eigenstates

The EWSB active Higgs potential of the two active Higgs doublets Hd ≡ Hd3 and

Hu ≡ Hu3 and the active SM-singlet S ≡ S3 is

V (Hd, Hu, S) = λ2|S|2
(

|Hd|2 + |Hu|2
)

+ λ2|Hd.Hu|2

+
g22
2

(

H†
dτ

aHd +H†
uτ

aHu

)(

H†
dτ

aHd +H†
uτ

aHu

)

+
g′2

8

(

|Hd|2 − |Hu|2
)2

+
g′21
2

(

QNd |Hd|2 +QNu |Hu|2 +QNS |S|2
)2

+m2
S |S|2 +m2

d|Hd|2 +m2
u|Hu|2

+
[

λAλSHd.Hu + c.c.
]

+∆, (3.22)

where mS , md, and mu are the soft scalar masses for S, Hd, and Hu respectively

and ∆ represents the contributions from loop corrections. Once again τa = σa/2 in

SU(2)L doublet space and Hd.Hu = H−
d H

+
u −H0

dH
0
u. We define λ ≡ λ333 and Aλ is

then the corresponding SSB parameter.

Initially this EWSB sector involves ten degrees of freedom. Four of these,

however, are massless Goldstone modes which provide the longitudinal polarisations

of the massive W±, Z1, and Z2 bosons. When CP invariance is preserved the other

six degrees of freedom form one charged complex scalar, one CP -odd pseudoscalar,

and three CP -even real Higgs states. The masses of the charged and pseudoscalar
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Higgs bosons are

m2
H± =

√
2λAλ

sin(2β)
s− λ2

2
v2 +m2

W +∆± and (3.23)

m2
A =

√
2λAλ

sin(2ϕ)
v +∆A, (3.24)

where ∆± and ∆A are loop corrections and

tan(ϕ) =
v

2s
sin(2β). (3.25)

The CP -even active Higgs sector comprises ReH0
d , ReH0

u and ReS. In the

field-space basis

(

h H N

)T

,

rotated by β with respect to the standard interaction basis such that

ReH0
d =

1√
2

(

h cos(β)−H sin(β) + vd

)

,

ReH0
u =

1√
2

(

h sin(β) +H cos(β) + vu

)

, and

ReS =
1√
2

(

N + s
)

, (3.26)

the mass matrix for the CP -even Higgs sector is [5]



















∂2V

∂v2
1

v

∂2V

∂v∂β

∂2V

∂v∂s

1

v

∂2V

∂v∂β

1

v2
∂2V

∂2β

1

v

∂2V

∂s∂β

∂2V

∂v∂s

1

v

∂2V

∂s∂β

∂2V

∂2s



















=















M2
11 M2

12 M2
13

M2
12 M2

22 M2
23

M2
13 M2

23 M2
33















, (3.27)
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where

M2
11 =

λ2

2
v2 sin2(2β) +

ḡ2

4
v2 cos2(2β) + g′21 v

2
(

QNd cos2(β) +QNu sin2(β)
)2

+∆11,

M2
12 =

(

λ2

4
− ḡ2

8

)

v2 sin(4β)

+
g′21
2
v2
(

QNu −QNd

)(

QNd cos2(β) +QNu sin2(β)
)

sin(2β) + ∆12,

M2
22 =

√
2λAλ

sin(2β)
s+

(

ḡ2

4
− λ2

2

)

v2 sin2(2β) +
g′21
4

(

QNu −QNd

)2
v2 sin2(2β) + ∆22,

M2
23 = −λAλ√

2
v cos(2β) +

g′21
2

(

QNu −QNd

)

QNS vs sin(2β) + ∆23,

M2
13 = −λAλ√

2
v sin(2β) + λ2vs+ g′21

(

QNd cos2(β) +QNu sin2(β)
)

QNS vs+∆13, and

M2
33 =

λAλ

2
√
2

v2

s
sin(2β) +m2

Z′ +∆33. (3.28)

In (3.28) ∆ij are the contributions from loop corrections which in the leading

one-loop approximation are rather similar to the ones calculated in the NMSSM.

Explicit expressions for ∆ij in the leading one-loop approximation are given in

ref. [5]. Since the smallest eigenvalue of the mass-squared matrix (3.27) is always

less than its smallest diagonal element, at least one Higgs scalar in the CP -even

sector, approximately h, always remains light, i.e. m2
h1

.M2
11. In the leading

two-loop approximation the mass of the lightest Higgs boson in the E6SSM does

not exceed about 150–155 GeV. The field-space state h has couplings to SM matter

identical to those of the SM Higgs boson for all values of tan(β).

When the visible sector SSB mass scale and the active SM-singlet VEV s are

considerably larger than the EWSB scale, the mass-squared matrix (3.27) has a

hierarchical structure and the masses of the heaviest Higgs bosons are closely

approximated by the diagonal entries M2
22 and M2

33 [55]. As a result the mass of

one of the two heavier CP -even Higgs bosons, predominantly H, is approximately

mA while the mass of the other, predominantly N , is approximately mZ′ . When

λ & g′1 vacuum stability requires mA to be considerably larger than mZ′ and the

EWSB scale so that the qualitative pattern of the Higgs spectrum is rather similar

to the one that arises in the PQ-symmetric NMSSM [70]. In this limit the heaviest

CP -even, the CP -odd, and the charged states are almost degenerate with masses
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around mA [55].
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Chapter 4

Thermal Relic Dark Matter

Non-baryonic dark matter is an unknown form of matter that is believed to make

up the majority of the matter energy density of the universe. It interacts either

very weakly or not at all electromagnetically. The existence of dark matter was first

proposed when analysis of orbital motion within the Coma galaxy cluster using the

virial theorem implied that there was more mass present than just that of the

visible baryonic matter [71].

Currently the evidence for the existence of cosmological dark matter is very

strong. Its existence is inferred from galactic rotation curves [72] and from various

measurements of galaxy clusters (see for example ref. [73]). There is also evidence

from observations of mass inferred from gravitational lensing (see for example

refs. [74, 75]), but our best measurements of the amount of cosmological dark matter

come from fits to CMB data in the context of the standard cosmological model

ΛCDM (CDM plus dark energy). Such fits to WMAP data [76] in particular give

ΩBh
2 = 0.0227± 0.0006 (1-sigma) (4.1)

for the present baryon energy density and

ΩDMh
2 = 0.110± 0.006 (1-sigma) (4.2)

for dark, non-baryonic matter, where h ≈ 0.73 is the reduced Hubble parameter and
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Ω is the energy density divided by the critical density ρc. It is thought that the

majority of dark matter must be non-relativistic in order for the observed large

structure formation to be explained.

A standard assumption for pre-BBN cosmology is that the DMP was at some

time prior to BBN in thermal and chemical equilibrium with the photon and other

species still themselves in equilibrium with the photon. At some time in the past it

would have then decoupled from equilibrium and under this assumption one can

predict the relic density today of the DMP in some model if one knows all of the

model parameters. The chemical decoupling happens roughly when the particle’s

inelastic interaction rate (maintaining chemical equilibrium) becomes less than the

expansion rate of the universe H = ȧ/a. When this freeze-out occurs the number

density of the frozen-out species typically remains much larger than it would have

been if the species had remained in equilibrium with the photon as the universe

cooled. If such a thermal relic particle has a freeze-out temperature TF that is

much less than the mass of the particle such that the particle was non-relativistic at

freeze-out then it is known as CDM.

4.1 The Boltzmann Equation

Let us assume that in some model some number of particle species, labelled with i

in order of ascending mass mi, are odd under some symmetry Z
D
2 such that the

lightest one is stable and the DMP. The evolution of the cosmological number

density ni of a Z
D
2 -odd particle species in the early universe can be expressed as

ṅi = −3Hni −
∑

j

〈σijvij〉
(

ninj − neqi n
eq
j

)

−
∑

j 6=i

[

Γij
(

ni − neqi
)

− Γji
(

nj − neqj
)

]

−
∑

j 6=i

∑

X

[

〈σ′XijviX〉
(

ninX − neqi n
eq
X

)

− 〈σ′XjivjX〉
(

njnX − neqj n
eq
X

)

]

. (4.3)
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The first term accounts for Hubble expansion and the second term accounts for

annihilations with other ZD2 -odd particles, including self-annihilations. The third

term represents the decays of ZD2 -odd particles i into other ZD2 -odd species j as

well as decays of other ZD2 -odd species into species i. The final term represents the

inelastic scattering of supersymmetric particles i off of ZD2 -even particles X into

other ZD2 -odd species j and vice versa [77, 78].

Summing up these equations yields the somewhat simpler expression

ṅ ≡
∑

i

ṅi = −3Hn−
∑

i

∑

j

〈σijvij〉
(

ninj − neqi n
eq
j

)

. (4.4)

It should be noted that, assuming that all heavier ZD2 -odd particles decay into the

DMP with not too long a lifetime, after thermal freeze-out the relic DMP number

density will subsequently becomes equal to n.

During thermal freeze-out the annihilation rates of the Z
D
2 -odd particles become

small compared to the expansion rate of the universe and their number densities

become larger than their (non-relativistic) equilibrium values. The universe

expands too fast for the number densities to track their equilibrium values. Let us

assume, however, that these states inelastically scatter off of SM states X

frequently enough that the ratios of the number densities of the Z
D
2 -odd particles

do maintain their equilibrium values during the time of thermal freeze-out. We

shall refer to this as condition A and assuming that it is satisfied we have

nj
ni

=
neqj
neqi

⇒
ni
n

=
neqi
neq

, (4.5)

which allows us to rewrite (4.4) as

ṅ = −3Hn− 〈σv〉
(

n2 − n2eq
)

, (4.6)

where neq ≡∑i n
eq
i and the effective cross-section

〈σv〉 =
∑

i

∑

j

〈σijvij〉
neqi n

eq
j

n2eq
. (4.7)
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Here we see that much heavier ZD2 -odd states, with correspondingly smaller

non-relativistic equilibrium number densities, would be present in smaller numbers

during the DMP’s thermal freeze-out and annihilation cross-sections involving them

would be less important.

4.2 The Freeze-Out Temperature

The energy density of one relativistic species of {boson, fermion} is

ρi = gi{1, 7/8}
π2

30
T 4
i , (4.8)

where Ti is the temperature of that species and gi is the number of degrees of

freedom. We define an effective number of relativistic degrees of freedom geff for the

whole system by writing

ρ = geff
π2

30
T 4, (4.9)

where ρ is the total density of relativistic matter and T ≡ Tγ is the photon

temperature. The effective number of degrees of freedom geff takes into account the

factor of 7/8 for fermions and also takes into account the fact that some species no

longer in equilibrium with the photon may have a different temperature. The

entropy density of a single species of {boson, fermion} with temperature Ti is

si = gi{1, 7/8}
2π2

45
T 3
i (4.10)

and similarly an effective number of relativistic degrees of freedom heff for the

whole system is defined by

s = heff
2π2

45
T 3. (4.11)

The numbers heff as geff will differ when any species i has a different temperature to

the photon, with heff containing factors of (Ti/T )
3 and geff containing factors of

(Ti/T )
4. The number density of a non-relativistic species, which the cold DMP
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should be at freeze-out, is

ni = gi

(

miTi
2π

)3/2

exp

(−mi

Ti

)

(4.12)

and the energy density is simply

ρi = mini. (4.13)

In a radiation dominated universe the expansion rate is then given by

H2 =
8πG

3
ρ =

1

M2
P

geff
4π3

45
T 4 ≡ k21geffT

4, (4.14)

where we define the constant k1 for future convenience. We can approximate the

freeze-out temperature TF by equating an effective DMP interaction rate with the

radiation dominated expansion rate

neqF1 〈σv〉F =
√
geff

(TF )2

MP

√

4π3

45
. (4.15)

It is useful to scale the temperature by the DMP mass and define

x =
T

m1
. (4.16)

One can then use the expression for the non-relativistic DMP number density to

derive the transcendental equation

xF =
1

ln(ξMm1〈σv〉F )− 1/2 ln(xF )
, (4.17)

where

ξ =
1

4π3

√

45

2gFeff
. (4.18)

To see how n evolves after freeze-out we first note that for isentropic expansion

the total entropy density of the system s ∝ a−3, where a is the scale factor of the
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universe. This means that ṡ/s = −3H. Defining

y =
n

s
(4.19)

we find

dy

dx
=

1

3H

ds

dx
〈σv〉

(

y2 − y2eq
)

=

√

π

45
g∗Mm1〈σv〉

(

y2 − y2eq
)

, (4.20)

where

g∗ =
heff√
geff

[

1 +
T

3heff

dheff
dT

]

. (4.21)

This equation can be used to find the relic density today numerically.

By integrating from x = x0 today to x = xF at freeze-out one can determine the

value of y today y0 and the current DMP relic density is

Ω =
m1y

0s0

ρc
. (4.22)

The entropy density today s0 is dominated by the cosmic microwave and neutrino

backgrounds. The CMB temperature is measured and the neutrino temperature

can then be calculated as in section 7.3.

The freeze-out temperature xF depends only logarithmically on the effective

cross-section, as in (4.18), but 〈σv〉F is critical to determining how small y is driven

during the time around freeze-out, before interactions become negligible.

Subsequently, after the period of thermal freeze-out, y approximately remains

constant as the universe expands.
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4.3 Supersymmetric Dark Matter

In supersymmetric theories with R-parity Z
M
2 this ZM2 plays the role of ZD2 and the

DMP is the LSP [79]. In such theories the LSP is typically either the lightest

neutralino or the gravitino, depending on the nature of the SSB mechanism which

determines the typical scale of the gravitino mass relative to the visible sector SSB

masses. In gravity mediated supersymmetry breaking the LSP is typically the

lightest neutralino.

A sub-weak-strength interacting neutralino is generally considered a good

candidate for LSP dark matter [80, 81]. Neutralinos do not typically form Dirac

states and as such a neutralino DMP’s relic abundance in standard cosmology is

determined by thermal freeze-out and not by matter-antimatter asymmetry as in

the case of baryons.

Thermal relic neutralino dark matter has been widely studied in the

MSSM [82, 83, 84, 85] and cMSSM [86, 87, 88, 89, 90]. A successful dark matter

scenario may be realised if the LSP is the lightest neutralino and there are various

successful regions of parameter space that have different dominant annihilation

mechanisms. For example there is the bulk region, which involves annihilation via

t-channel slepton exchange; the focus point region, which involves annihilation via

t-channel chargino exchange; and the funnel region, which involves annihilation via

s-channel Higgs boson exchange. There are also regions corresponding to

coannihilation with staus or stops.

Typically in these scenarios xF ∼ 1/20, meaning that the dark matter is indeed

cold. Since, again, the freeze-out temperature is only logarithmically dependent on

the effective cross-section, as in (4.18), this approximate value does not vary

significantly for a wide variety of sub-weak-strength interacting neutralino dark

matter scenarios, including the E6SSM scenarios described in chapters 5, 6, and 7.
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Chapter 5

Dark Matter in the E6SSM

In this chapter, which contains work that was first published in paper I, we

present a study of neutralino dark matter in the presence of inert Higgsinos and

singlinos, using the extended neutralino sector of the E6SSM as an example. The

study here should be compared to the study of dark matter in the USSM in ref. [4].

The particle content of the USSM, in addition to the states of the MSSM, also

contains a SM-singlet S and a Z ′ boson together with their fermionic superpartners

the singlino S̃ and the gaugino B̃′. The existence of these interaction states can

modify the nature of the neutralino LSP. In this study we include the above states

of the USSM and also the extra inert doublet Higgsinos and singlinos predicted by

the E6SSM, but not included in the USSM — H̃d2, H̃d1, H̃u2, H̃u1, S̃2, and S̃1. We

do not, however, include the corresponding inert scalars which do not play a role in

the heavy inert scalar limit. We also do not include any of the exotic coloured D̄

and D states since in general we would not expect them to play a significant role in

the calculation of the dark matter relic abundance.

We study neutralino dark matter in the E6SSM, as defined above, both

analytically and numerically, using micrOMEGAs [91]. We find that results for the

relic abundance in the E6SSM are radically different from those of both the MSSM

and the USSM. This is because the two inert generations of doublet Higgsinos and

singlinos predicted by the E6SSM provide an almost decoupled neutralino sector

with a naturally light LSP that can account for the CDM relic abundance
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somewhat independently of the rest of the model. In plausible scenarios the LSP

annihilates predominantly through an s-channel Z boson.

Imposing the conditions that the LSP has a mass greater than half of the Z

boson mass, so that the LSP does not contribute at all to the Z boson invisible

decay width, and accounts for all of the observed dark matter implies that tan(β)

must be less than about 2. Apart from this requirement on tan(β), the very

stringent constraints on MSSM or USSM parameter space that come from requiring

that the model explains the observed dark matter relic density become completely

relaxed since in the E6SSM the neutralino dark matter depends almost exclusively

on the parameters of the almost decoupled inert neutralino sector. We expect

similar results to apply to any singlet extended supersymmetric model with an

almost decoupled inert neutralino sector comprising extra generations of inert

Higgsinos and singlinos.

In section 5.1 we discuss the inert neutralino sector of the E6SSM, introduce the

effective model that we study, and highlight the most important couplings for our

analysis of the LSP dark matter relic density. In section 5.2 we display the

complete neutralino and chargino mass matrices of the E6SSM. In section 5.3 we

present some analytical results that provide useful insights into the new inert sector

physics. These results are subsequently used to understand and interpret the results

of the full numerical dark matter relic density calculation using micrOMEGAs which

are presented in section 5.4. The conclusions are summarised in section 5.5.

5.1 The Trilinear Higgs Yukawa Couplings

The most important couplings in our analysis are the trilinear couplings between

the three generations of down- and up-type Higgs doublets and SM-singlets

contained in the superpotential of the E6SSM (3.7)

λijkSiHdj .Huk = λijk(SiH
−
djH

+
uk − SiH

0
djH

0
uk). (5.1)
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The trilinear coupling tensor λijk consists of 27 numbers which play various roles.

The purely third family coupling λ ≡ λ333 is very important, because it is the

combination µ = λs/
√
2 that plays the role of an effective µ term in this theory.

Some other neutralino mass terms, such as those involving S̃, are also proportional

to λ. The couplings of the inert Higgs doublets to the third generation SM-singlet

λαβ ≡ λ3αβ directly contribute to neutralino and chargino mass terms for the inert

Higgsino doublets. fdαβ ≡ λα3β and fuαβ ≡ λαβ3 directly contribute to neutralino

mass terms coupling an inert doublet Higgsino to an inert singlino.

The 13 Higgs trilinear couplings mentioned thus far are the only couplings that

obey the proposed Z
H
2 symmetry. This approximate flavour symmetry is proposed

in order to prevent FCNCs in the SM matter sector by eliminating non-diagonal

flavour transitions originating from the Higgs sector. The Z
H
2 cannot be exact as

discussed in subsection 3.1.1. If λijk obeyed Z
H
2 exactly then, as we will see below,

the neutralino mass matrix (and also the chargino mass matrix) would be

decoupled into two independent systems and the lightest from each sector would be

absolutely stable. We shall refer to the Z
H
2 -breaking couplings involving two third

generation fields as xdα ≡ λ3α3, xuα ≡ λ33α, and zα ≡ λα33. The notation for the

λijk couplings used is compiled in table 5.1.

ijk 333 3αβ α3β αβ3 33α 3α3 α33

λijk λ λαβ fdαβ fuαβ xdα xuα zα

Table 5.1: The abbreviated notation for the λijk couplings.

The 8 remaining Z
H
2 -breaking couplings λαβγ are of less importance for our

study. As long as only the third generation Higgs doublets and SM-singlet acquire

VEVs then these couplings do not appear in the neutralino or chargino mass

matrices. Additionally, they only appear in Feynman rules that involve the inert

Higgs scalars and we assume that these are given SSB masses that are heavy enough

such that these particles do not contribute to any processes relevant for this study.

Similarly we neglect the exotic coloured D̄ and D states since we expect them to be

too heavy to play a significant role in the dark matter relic density calculation.
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5.2 The Neutralino and Chargino Mass Matrices

In the MSSM there are four neutralino interaction states — the neutral wino, the

bino, and the two neutral Higgsinos. In the USSM [4] two extra states are added —

the singlino and the bino′. In the conventional USSM interaction basis

Ñ int
USSM =

(

B̃ W̃ 3 H̃0
d H̃0

u S̃ B̃′
)T

(5.2)

and neglecting bino-bino′ mixing, as justified in ref. [4] (see also subsection 3.2.1),

the USSM neutralino mass matrix

MN
USSM =

































M1 0 −1
2g

′vd
1
2g

′vu 0 0

0 M2
1
2gvd −1

2gvu 0 0

−1
2g

′vd
1
2gvd 0 −µ −λvu√

2
QNd g

′
1vd

1
2g

′vu −1
2gvu −µ 0 −λvd√

2
QNu g

′
1vu

0 0 −λvu√
2

−λvd√
2

0 QNS g
′
1s

0 0 QNd g
′
1vd QNu g

′
1vu QNS g

′
1s M ′

1

































,(5.3)

where M1, M2, and M
′
1 are the soft gaugino masses and QNd,u,S are the U(1)N

charges of down-type Higgsinos, up-type Higgsinos, and singlinos respectively, given

in table 3.1. In the E6SSM this is extended. We take the full basis of neutralino

interaction states to be

Ñ int =

(

Ñ intT
USSM H̃0

d2 H̃0
u2 S̃2 H̃0

d1 H̃0
u1 S̃1

)T

. (5.4)

The final six states are the extra inert doublet Higgsinos and singlinos that appear

in the full E6SSM. Under the assumption that only the third generation Higgs

doublets and singlet acquire VEVs the full Majorana mass matrix is then

MN =













MN
USSM B2 B1

BT
2 A22 A21

B1 AT
21 A11













, (5.5)
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where the submatrices involving the inert interaction states are given by

Aαβ = AT
βα = − 1√

2













0 λαβs fuβαv sin(β)

λβαs 0 fdβαv cos(β)

fuαβv sin(β) fdαβv cos(β) 0













(5.6)

and the Z
H
2 -breaking submatrices by

Bα = − 1√
2

































0 0 0

0 0 0

0 xdαs zαv sin(β)

xuαs 0 zαv cos(β)

xuαv sin(β) xdαv cos(β) 0

0 0 0

































. (5.7)

Similarly we take our basis of chargino interaction states to be

C̃int =







C̃+
int

C̃−
int






, (5.8)

where

C̃+
int =



















W̃+

H̃+
u

H̃u2
+

H̃+
u1



















and C̃−
int =



















W̃−

H̃−
d

H̃−
d2

H̃−
d1



















. (5.9)

The corresponding mass matrix is then

MC =







PT

P






, (5.10)
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where

P =



















M2

√
2mW sin(β) 0 0

√
2mW cos(β) µ 1√

2
xd2s

1√
2
xd1s

0 1√
2
xu2s

1√
2
λ22s

1√
2
λ21s

0 1√
2
xu1s

1√
2
λ12s

1√
2
λ11s



















. (5.11)

One can already see from (5.6) from that a typical feature of the E6SSM is that

the LSP is composed mainly of inert singlino and ends up being typically very light.

One can see this by inspecting the submatrices Aαβ and assuming a hierarchy of the

form λαβs≫ f(u,d)αβv. This is a natural assumption since we already require that

s≫ v in order to satisfy the experimental limits on the Z2 boson mass. At the time

of the publication of paper I the experimental lower limit was 861 GeV, from

ref. [66]. The current limit is around 1350 GeV as discussed in subsection 3.2.2.

For both the neutralinos and the charginos we see that if the Z
H
2 -breaking

couplings are exactly zero then the inert parts of the neutralino and chargino mass

matrices becomes decoupled from the USSM parts. However, as previously

discussed, although approximate decoupling is expected, exact decoupling is not

and will therefore not be considered.

5.3 Analytical Discussion

It will be useful to get some analytical understanding of the calculation of the dark

matter relic abundance coming from the new neutralino/chargino physics of the

E6SSM before looking at the results of the full numerical simulation. To this end,

in this section, we consider just one inert generation consisting of two inert Higgs

doublets and one inert SM-singlet. We label this generation as the first generation.

We shall assume that the Z
H
2 -breaking Yukawa couplings of the first Higgs

generation to the third conventional Higgs generation are large enough to allow the

neutralino/chargino states of the USSM to decay into the LSP, formed mostly from

inert neutralino interaction states, but also small enough such that we can consider
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the inert neutralinos to be approximately decoupled from the rest of the neutralino

mass matrix for the purposes of obtaining an analytical estimate of the mass

eigenstates. This all amounts to considering the single block A11 of the extended

neutralino mass matrix (5.5).

5.3.1 The neutralino masses and mixing for one inert generation

Within the first generation we use the basis

Ñ int =

(

H̃0
d1 H̃0

u1 S̃1

)T

(5.12)

and the neutralino mass matrix is then, from (5.6),

A = A11 = − 1√
2













0 λ′s fuv sinβ

λ′s 0 fdv cosβ

fuv sinβ fdv cosβ 0













, (5.13)

where λ′ = λ11 ≡ λ311, fd = fd11 ≡ λ131, and fu = fu11 ≡ λ113. As discussed earlier,

it is natural to assume that λ′s≫ fv and this will lead to a light, mostly first

generation singlino lightest neutralino.

Finding the eigenvalues of the matrix A amounts to solving a reduced cubic

equation. Expanding in fv/λ′s the three neutralino masses from the first

generation are

m1 =
1√
2

fdfu
λ′

v2

s
sin(2β) + · · · , (5.14)

m2 =
λ′s√
2
− m1

2
+ · · · , and (5.15)

m3 = −λ
′s√
2
− m1

2
+ · · · . (5.16)

The lightest state Ñ1, with mass m1, is mostly singlino (as we will confirm below)

and the two heavier states have nearly degenerate masses, split by m1. At β = 0 or
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π/2 the lightest neutralino becomes massless. This is when only one of the third

generation active Higgs doublets has a VEV.

We shall define the neutralino mixing matrix N by

Na
i M

abN b
j = miδij (no sum on i) (5.17)

with superscripts indexing the interaction states and subscripts indexing the mass

eigenstates. The lightest state is then made up of the following superposition of

interaction states:

Ñ0
1 = N1

1 H̃
0
d1 +N2

1 H̃
0
u1 +N3

1 S̃1. (5.18)

Again expanding in fv/λ′s

N1 =



























−fdv
λ′s

cos(β) + · · ·

−fuv
λ′s

sinβ + · · ·

1− 1

2

( v

λ′s

)2 [

f2d cos
2(β) + f2u sin

2(β)
]

+ · · ·



























, (5.19)

confirming that the LSP is mostly singlino in this limit. The other eigenvectors,

which determine the composition of neutralinos 2 and 3, are

Ni =

√

1

a2i + b2i + · · ·













ai

bi

1













(no sum on i), (5.20)

where

−b2 = a2 =
λ′s

v
[fd cos(β)− fu sin(β)]

−1 + · · · and (5.21)

b3 = a3 =
λ′s

v
[fd cos(β) + fu sin(β)]

−1 + · · · . (5.22)
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Ñ1

H1

Figure 5.1: S-channel LSP annihilation diagrams.

Note that a, b≫ 1 and that a2 and b2 flip sign at fd cos(β) = fu sin(β) whereas a3

and b3 are always positive. Very approximately these eigenvectors are then

N2 =
1√
2













−1

1

0













sign(fusβ − fdcβ) + · · · and (5.23)

N3 =
1√
2













1

1

0













+ · · · . (5.24)

Under the assumptions of this section the chargino from the first generation is

the first generation charged Higgsino with mass λ′s/
√
2.

5.3.2 Annihilation Channels

From (5.14) it can be seen that the LSP mass m1 is proportional to v2/s and so is

naturally small since v ≪ s. To understand this, recall that Z-Z ′ mixing leads to

two mass eigenstates — Z2 ≈ Z ′ and Z1 ≈ Z — and limits on Z-Z ′ mixing and on

the Z2 mass place lower limits on s that imply that v ≪ s must be satisfied. For

example, when s = 3000 GeV the Z2 mass is about 1100 GeV and v2/s ≈ 20 GeV.

The LSP mass further decreases as s becomes larger in the considered limit. In

practice it is quite difficult to arrange the parameters such that the LSP mass

exceeds about 100 GeV, although this depends on the sizes of Yukawa couplings

that one is willing to accept (an issue explored more thoroughly in chapter 6).
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In view of the above discussion the LSP is expected to be relatively light. When

determining the important early universe annihilation channels we therefore begin

by looking at s-channel annihilation, which can result in lighter mass final states.

The most important diagrams are shown in figure 5.1 and it will turn out that the

most important of these annihilations are those with a Z boson in the s-channel.

The Z-Ñ1-Ñ1 coupling in this diagram is suppressed by a factor

1

2

( v

λ′s

)2
[

f2u sin
2(β)− f2d cos

2(β)
]

+ · · ·

relative to the Z-neutrino-neutrino coupling under the assumptions of this section

since the LSP only couples through its small Higgsino components. This coupling

vanishes completely at fd cos(β) = fu sin(β), which is when the LSP contains a

completely symmetric combination of H̃0
d1 and H̃0

u1. While in the MSSM a Higgsino

dominated LSP would be expected to be such a symmetric combination of

down-type and up-type (active) Higgsino, with mass around µ, an inert neutralino

LSP in the E6SSM a priori has no reason to be close to such a symmetric

combination.

Full gauge coupling strength s-channel Z boson annihilations tend to leave a

relic density that is too low to account for the observed amount of dark matter, but

in this model the coupling of the mostly singlino LSP to the Z boson is typically

suppressed, as it only couples through its doublet Higgsino admixture, leading to an

increased relic density. As λ′s decreases the proportion of the LSP that is made up

of inert doublet Higgsino, rather than inert singlino, increases. This can be seen in

(5.19). This then increases the strength of the overall Z-Ñ1-Ñ1 coupling. The

inclusive cross-section for s-channel annihilation through a Z-boson is therefore

highly dependent on λ′s, which affects both the coupling and the LSP mass m1.

The effect of independently increasing the coupling is always to increase the

cross-section, but the effect of independently increasing the LSP mass can be to

either increase or decrease the cross-section, depending on which side of the Z

boson resonance the centre-of-mass energy is on in typical collisions during the

period of thermal freeze-out. S-channel annihilation through the lightest Higgs

72



Ñ1
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Ñ1

Ñ1
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Figure 5.2: T-channel LSP annihilation diagrams.

boson will also become important if typical LSP collisions are on resonance.

The most important of the potential t-channel processes are shown in figure 5.2.

In practice these channels will not play a significant role compared to the s-channel

annihilations considered previously, but we discuss them for completeness. The

t-channel particle for these processes is one of the neutralinos or the chargino of the

first generation. In the first diagram — t-channel annihilation to active third

generation Higgs scalars — the couplings are approximately just f couplings of the

first generation and appropriate mixing matrix elements. With the inert chargino

or with inert neutralino 2 or 3 in the t-channel the diagram is approximately inert

singlinos annihilating with an inert doublet Higgsino in the t-channel and the

couplings are approximately just fd and fu for producing Hd and Hu interaction

states respectively. The LSP mass is smaller than the other masses by a factor of

order v2/s2. With the LSP itself in the t-channel the first diagram therefore receives

an enhancement of order s2/v2 for the t-channel propagator at low momentum, but

has a suppression of order v2/s2 in the couplings due to the LSP only containing

doublet type first generation Higgsinos with amplitudes of order v/s.

The second diagram in figure 5.2 represents annihilation to massive gauge

bosons. To very good approximation these bosons only couple to weak isospin

doublets and not to SM-singlets (since Z-Z ′ mixing must be very small). These

diagrams therefore have a suppression of order v2/s2 relative to the full gauge

interaction strength due to the couplings even with an inert chargino or with inert

neutralino 2 or 3 in the t-channel. On top of this suppression these diagrams also

receive an additional suppression of order v2/s2 in the couplings, but an

enhancement of order s2/v2 in the propagator when the LSP is in the t-channel.
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This second type of diagram has a greater chance of being kinematically allowed

than the first.

As previously stated, inert Higgs scalars are assumed heavy and annihilation to

and/or through these particles is not considered. It should be noted though that

these particles have suppressed couplings to SM matter due to the approximate Z
H
2

symmetry and diagrams for the annihilation of LSPs into SM matter that involve

these particles would be suppressed by these couplings.

5.4 Numerical Analysis

We now turn to the full model, in which the LSP is determined from the neutralino

mass matrix in (5.5). There are two copies of the inert generation considered in the

previous section as well as six unknown mixing parameters between the two

generations. In general, after rotation to the mass eigenstate basis, we expect that

two states are much lighter than the rest — both inert-singlino-like in the λ′s≫ fv

limit1.

In this section we use numerical methods to predict the relic density. We first

diagonalise the neutralino, chargino, and Higgs scalar mass matrices numerically.

Having done this micrOMEGAs 2.2 [91] is then used to numerically compute the

present day relic density, including the relevant annihilation and coannihilation

channel cross-sections and the LSP freeze-out temperature xF . micrOMEGAs

achieves this by calculating all of the relevant tree level Feynman diagrams using

CalcHEP. The CalcHEP model files for the considered model are generated using

LanHEP [92]. The micrOMEGAs relic density calculation assumes standard cosmology

in which the LSP dark matter was in equilibrium with the photon at some time in

the past, numerically solving (4.20).

1An exception to this would be the large M ′
1 limit in which the LSP could originate from the

lower-right block of the USSM neutralino mass matrix (5.3) due to a mini see-saw mechanism as
discussed in ref. [4].
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5.4.1 The parameter space of the model

As justified in section 3.2 we assume that differences between the GUT normalised

couplings of the two U(1) gauge groups U(1)Y and U(1)N , as well as the mixing

between the two groups, is negligible, giving g′1 ≈ 0.46. The free parameters are

then the trilinear Higgs couplings λijk, the singlet VEV s, tan(β), the soft λ333

coupling Aλ, and the soft gaugino masses. It will turn out that the soft gaugino

masses usually have little effect on the dark matter physics. One can see this by

observing the neutralino mass matrix (5.5) where the USSM terms coming from the

soft gaugino masses do not directly mix with terms from the new E6SSM inert

sector. The active scalar Higgs doublet and SM-singlet SSB masses are determined

from the minimisation conditions of the scalar potential (3.22) given s, v, tan(β),

and Aλ.

In the following analysis we shall choose s = 3000 GeV and µ = 400 GeV which

gives λ = 2
√
2 /15 ≈ 0.19 and makes the Z2 mass about 1100 GeV. Although much

of the physics is highly dependent on s, this specific choice of s does not limit the

generality of the results obtained since s always appears multiplied by a Yukawa

coupling. This is explained in more detail below. We also choose

M1 =M ′
1 =M2/2 = 250 GeV. These relations between the SSB gaugino masses are

motivated by their RG running from the GUT scale (see subsection 3.2.1), but the

value is not. In this analysis the squarks and sleptons will not play a significant role

in the calculation of dark matter relic abundance since the LSP will always be much

lighter. We choose equal SSB sfermion masses Ms = 800 GeV and set the stop

mixing parameter Xt, defined by

Xt = At −
µ

tan(β)
, (5.25)

where At is the SSB parameter associated with the top Yukawa coupling, to be

equal to
√
6Ms, resulting in large loop corrections to the lightest CP -even (SM-like)

Higgs mass as in ref. [55]. This is known as the maximal mixing scenario and

results in a lightest CP -even Higgs mass in excess of 114 GeV for all parameter

space considered. The SSB λ coupling Aλ is set by choosing the pseudo-scalar
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Higgs mass mA, from (3.24). We choose mA = 500 GeV.

We initially assume the Z
H
2 -breaking λijk couplings to be small (0.01) for the

following analysis. The main properties of the physics can then be seen by varying

the three parameters λ′ = λ22 = λ11, f = fd22 = fu22 = fd11 = fu11, and tan(β).

The first and second generation mixing couplings are set such that λ21,12 = ǫλ′ and

f(d,u)(21,12) = ǫf . Assuming this parameter choice the sub-matrices of the neutralino

mass matrix (5.6) become

A22 = A11 = − 1√
2













0 λ′s fv sin(β)

λ′s 0 fv cos(β)

fv sin(β) fv cos(β) 0













and (5.26)

A21 = ǫA22. (5.27)

This simple parametrisation is sufficient for illustrating the generic properties of the

physics. Deviations from this parametrisation are discussed afterwards.

With the above parametrisation, the two generations are approximately

degenerate when the mixing terms are not very large. In this case the LSP and the

NLSP will each contain approximately equal contributions from each interaction

basis generation.

Finally, it is worth remarking that, assuming the above parametrisation, the

effect on the neutralino and chargino inert sectors of changing s is simply equivalent

to that of changing λ′ (although the Z2 mass will depend on s). This means that

the following results are applicable for any experimentally consistent values of s as

long as one accordingly scales λ′.

5.4.2 The neutralino and chargino spectra

Figure 5.3 shows how the spectrum of chargino masses varies with λ′. Although the

plot is for tan(β) = 1.5, as one can see from (5.11) the inert sector of the chargino

mass matrix has no dependence on tan(β), with the mass terms just being

proportional to the SM-singlet VEV. The almost constant masses are those mass
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Figure 5.3: Inert chargino masses (magnitude only) against λ′

with f = 1, ǫ = 0.1, tan(β) = 1.5, s = 3000 GeV, and Z
H
2 -breaking

λijk couplings set to 0.01.

eigenvalues coming mostly from the USSM sector — the third generation charged

Higgsino and the wino. The charginos coming mostly from the inert sector vary

with λ′ as expected and drop below the LEP lower limit around 100 GeV [93] at

some value of λ′, depending on the value of s. The effect of the ǫ = 0.1 mixing

between generations can be seen in the splitting between the two inert sector

charginos. Where lines cross in figure 5.3 the chargino masses are of opposite sign.

When chargino mass lines of the same sign approach each other, they veer away

from each other at the would-be crossing point due to interference.

Figure 5.4 shows how the spectrum of neutralino masses varies with λ′. The inert

neutralino spectrum is dependent on tan(β), but each of the qualitative features

can be understood. We see the two light neutralino states that become heavier as λ′

decreases from unity until the approximation λ′s≫ fv breaks down. At this point

fv sin(β) begins to dominate and the LSP mass decreases with decreasing λ′ as the

dominance of fv sin(β) becomes greater. In this low λ′ region the LSP is no longer

mostly inert singlino, but is mostly inert up-type Higgsino. The six almost

unvarying neutralino masses are those mostly from the USSM sector, which is not

mixing very much with the inert sector. We have already seen that the inert sector
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Figure 5.4: Inert neutralino masses (magnitude only) against λ′

with f = 1, ǫ = 0.1, tan(β) = 1.5, s = 3000 GeV, and Z
H
2 -breaking

λijk couplings set to 0.01.

chargino masses continue to be set by λ′ as we go down into the low λ′ region,

resulting in light charginos in this region. By contrast, the four heavier inert sector

neutralinos begin to be governed by the fv terms rather than the λ′s terms in the

low λ′ region and therefore approach a constant value in this region.

As in the case of the charginos, the effect of the ǫ = 0.1 mixing can be seen in

the splitting between the two light neutralinos and the four heavier inert

neutralinos which are both split by this mixing and further split by the light

neutralino mass as predicted in the previous section.

Figure 5.5 shows how the composition of the LSP in terms of the inert

interaction states varies with λ′. The behaviour in the λ′s≫ fv limit is as

predicted in (5.19). We also see how the dominant component of the LSP changes

from inert singlino to inert up-type Higgsino in the low λ′ region.

5.4.3 The dark matter relic density

Using the parametrisation in (5.26) and (5.27) we use micrOMEGAs 2.2 to

numerically compute the present day relic density. Figure 5.6 shows a contour plot
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Figure 5.5: The component structure of the LSP in terms of the
inert interaction states against λ′ with f = 1, ǫ = 0.1, tan(β) = 1.5,
s = 3000 GeV, and Z

H
2 -breaking λijk couplings set to 0.01.
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Figure 5.6: Contour plot of the LSP mass and relic density Ωχh
2

regions in the (λ′, tan(β))-plane with s = 3000 GeV, ǫ = 0.1, and
f = 1. The red region is where the prediction for Ωχh

2 is consistent
with the measured 1-sigma range of ΩDMh

2. In the region to the
right of the hatched line the LSP mass is less than half of the Z
boson mass.
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Figure 5.7: Contour plot of the LSP mass and relic density Ωχh
2

regions in the (λ′, f)-plane with s = 3000 GeV, ǫ = 0.1, and
tan(β) = 1.5. The red region is where the prediction for Ωχh

2

is consistent with the measured 1-sigma range of ΩDMh
2. In the

region to the right of the hatched line the LSP mass is less than
half of the Z boson mass.

of the LSP mass and predicted relic density Ωχh
2 regions in the (λ′, tan(β))-plane,

with s = 3000 GeV, ǫ = 0.1, and f = 1. We focus on small values of λ′ < 0.4 since

for large λ′ the LSP is a very light, predominantly inert singlino state which does

not annihilate very efficiently through any channel, leading to a too high relic

density Ωχh
2 > ΩDMh

2. (Such regions are shaded dark green.) As λ′ is decreased

below 0.3 the LSP mass increases and approaches about half of the Z boson mass

and there is a region where the prediction for Ωχh
2 is consistent with the measured

1-sigma range of ΩDMh
2. (Such regions are shaded red.) When the LSP mass is

around 40 GeV it contains enough inert doublet Higgsino such that s-channel

annihilation via the Z boson becomes strong enough to account for the observed

relic density. As the LSP mass is increased further from 40 GeV and approaches

45 GeV, the annihilations before freeze-out become on resonance for annihilation

with a Z boson in the s-channel and the predicted relic density becomes lower than

that observed. (Such regions are shaded light green.)

In the regions where the LSP mass is less than half of the Z boson mass the LSP
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will contribute to the effective number of neutrinos as inferred from the invisible Z

boson width at LEP defined in (1.13). The same couplings that lead to a successful

relic density, via annihilations through an s-channel Z boson, also mean that there

may be a significant contribution to the invisible Z boson width. For the present

discussion it is assumed that such points, with an LSP mass lower that half of the

Z mass, are unsafe from an experimental point of view. A detailed discussion of the

validity of such points is postponed until chapter 6. Note that in the MSSM this

issue does not arise since either the LSP is bino-like, and so does not couple to the

Z, or is Higgsino- or Wino-like in which case it would have accompanying almost

degenerate charginos and therefore must have a mass greater than about 100 GeV

in any case. Here we can have an inert Higgsino/singlino LSP with a mass lower

than half of the Z boson mass while still having experimentally consistent

inert-doublet-Higgsino-like charginos.

We note at this point that the requirement that the LSP mass exceeds 45 GeV

implies low tan(β) and this is the reason for the restricted range of tan(β) in

figure 5.6. This can be seen from (5.14) where we found that the LSP mass should

be approximately proportional to sin(2β), i.e. to the product of the two doublet

Higgs VEVs, which is maximized at sin(2β) = 1, corresponding to tan(β) = 1. In

the E6SSM an experimentally acceptable lightest Higgs mass can be achieved even

with tan(β) as low as about 1.2 [55], so having low tan(β) is not a problem in such

models.

Decreasing λ′ further results in LSP masses above 45 GeV and to the left of the

hatched line in figure 5.6 other successful relic density regions (shaded in red)

appear. These regions are punctuated by the light Higgs resonance, leading to the

interesting double loop shape of the successful red regions to the left of the hatched

line in figure 5.6. In these regions the LSP can have a mass significantly larger than

half of the Z boson mass, moving far enough off the Higgs and Z boson resonances

that annihilation is weakened just enough to give the observed relic density.

However, another effect is observed as λ′ decreases. The composition of the LSP

changes from being singlino dominated to being Higgsino dominated. For low λ′ the
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cross-section begins to increase with decreasing λ′, even where this still corresponds

to increasing LSP mass, leading to a lower relic density. This is because the inert

doublet Higgsino components in the LSP rapidly grow, as can be seen in figure 5.5.

At low λ′, when the LSP is largely inert doublet Higgsino, annihilation is too

strong, leading to the predicted relic density being lower than that observed (as

indicated by the light green shading in figure 5.6). The effects of the t-channel W

and then Z pair production channels can also be seen as they each become relevant.

Furthermore, for the entire successful region to the left of the hatched line in

figure 5.6 the lightest chargino is heavy enough to be consistent with experiment, as

can be seen on figure 5.3. This result will be recreated for all high enough values of

s. For larger values of s the successful regions and corresponding inert chargino

masses are shifted down by the corresponding amount in λ′.

When λ′s≫ fv lowering f results in a lower LSP mass, as in (5.14). It also

extends the range of λ′ in which this approximation is valid, i.e. it moves the

boundary of the previously discussed low λ′ region to be further down in λ′.

Figure 5.7 shows the LSP mass and predicted present day relic density for different

values of λ′ and f with ǫ = 0.1 and tan(β) = 1.5. The shifting of the successful

region, where the LSP mass is above mZ/2, down in λ′ at lower values of f is

apparent. At lower values of tan(β) this successful region extends further down in

f . It should be noted that in order to predict the correct dark matter relic density,

λ′ should be much smaller than f and that this disparity becomes greater if s is

increased. Increasing s effectively just shifts all of the features on figures 5.6 and 5.7

to the left.

5.4.4 Deviations from the considered parametrisation

Breaking the relation fu(22,11) = fd(22,11) can have similar effects to those of

changing tan(β). However, because these parameters cannot be too high (in order

for the theory to be perturbative up to the GUT scale) and because lowering them

to much less than unity makes the LSP too light, tan(β) can be varied much more

freely than the fu/fd ratio.
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The effect of increasing the inert generation mixing parameter ǫ is to increase

the various mass splittings between similar inert mass eigenstates. Increasing the

mixing between the first and second generations thus results in a lighter LSP,

shrinking the successful region, and a lighter lightest chargino, potentially

inconsistent with current chargino non-observation.

The physics of the inert sector when deviating from the currently considered

parametrisation is studied much more carefully in chapter 6.

As long as the LSP is still mostly from the inert sector, as considered here, other

parameters do not greatly affect the dark matter physics and are effectively free.

Squark and slepton parameters do not affect the dark matter physics of the

considered model. Top and stop loops can have a significant effect on the lightest

Higgs mass, but as long as this mass is experimentally allowed then these

parameters are also not constrained by the requirement that the model produce

successful dark matter.

5.5 Summary and Conclusions

In this work we studied inert neutralino dark matter arising in supersymmetric

models with extra inert Higgsinos and singlinos. As an example we considered the

extended neutralino sector of the E6SSM. This work represents a first study of the

inert neutralino sector of the E6SSM and it is found that in this model the LSP

does typically arise from this sector. We studied this novel dark matter scenario

both analytically and numerically, using micrOMEGAs.

The dark matter scenario differs greatly from those of the MSSM and USSM

since the two inert neutralino generations provide an almost decoupled neutralino

sector with a naturally light LSP that can account for the CDM relic abundance

somewhat independently of the rest of the model. Although the E6SSM has two

inert generations, the presence of the second inert generation is not crucial to the

dark matter scenario.

In the successful regions where the observed dark matter relic density is
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reproduced the neutralino mass spectrum is well described by the analytical results

of section 5.3. In this region the LSP is mostly inert singlino and has a mass

approximately proportional to v2/s, as in (5.14), and as λ′s is decreased the LSP

becomes heavier and also less inert singlino dominated, picking up significant inert

doublet Higgsino contributions.

To avoid potential conflict with high precision LEP data we considered the case

where the LSP mass is above half of the Z boson mass. Since the LSP mass in

(5.14) is proportional to fdfu sin(2β), we found that such regions of parameter

space in which the dark matter relic density prediction is consistent with

observation require low values of tan(β) — less than about 2. Depending on the

value of the singlet VEV s, the f(u,d)αβ trilinear Higgs coupling parameters should

also be reasonably large compared to the λαβ ones.

One of the main messages arising from this work is that neutralino dark matter

could arise from an almost decoupled sector of inert Higgsinos and singlinos and

that if it does then the parameter space of the rest of the model is completely

opened up. For example, if such a model is regarded as an extension of the MSSM

then the lightest MSSM-like supersymmetric particle is not even required to be a

neutralino and could even be a sfermion. In the E6SSM the lightest MSSM-like

supersymmetric particle can decay into the inert LSP via Z
H
2 -breaking λijk

couplings that need not be extremely small.

Similar results should apply to any singlet extended SSM with one or more

extra, inert generations of Higgsinos and singlinos with a trilinear Higgs coupling

tensor equivalent to that in (5.1).
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Chapter 6

Novel Higgs Decays in the

E6SSM

The discovery of the Higgs boson, the last remaining undiscovered particle of the

SM, is one of the main goals of the LHC. The strategy for Higgs searches depends

on the decay branching fractions of the Higgs boson into different channels. Physics

beyond the SM may affect the Higgs decay rates to SM particles and give rise to

new Higgs decay channels necessitating a drastic change in the strategy for Higgs

boson searches. (For recent reviews of non-standard Higgs boson decays see

refs. [94, 95, 96].) In particular there exist several extensions to the SM in which

the Higgs boson can decay with a substantial branching fraction into particles that

cannot be directly detected.

These invisible Higgs boson decays can occur in supersymetry, with the lighest

Higgs boson decaying into neutralino LSPs. In some regions of MSSM parameter

space the lightest Higgs boson decays into the lightest neutralino with a relatively

large branching ratio, giving rise to invisible final states if R-parity is

conserved [97]. LEP and Tevatron data allow the neutralino LSP to be sufficiently

light such that the decays of the lightest Higgs boson into these neutralinos is

kinematically allowed and such light neutralinos can annihilate efficiently through a

Z boson pole resulting in a reasonable density of dark matter.

85



The presence of invisible decays considerably modifies Higgs boson searches and

makes discovery much more difficult. If the Higgs boson is mainly invisible then the

usual visible branching ratios will be dramatically reduced, preventing detection in

the much studied channels at the LHC and Tevatron. In the case where invisible

Higgs boson decays dominate it is impossible to fully reconstruct a resonance and it

is very challenging to identify the Higgs boson at collider experiments, i.e. the

quantum numbers remain unknown. At e+e− colliders, the problems relating to the

observation of an invisible Higgs boson are less severe [98, 99, 100] since it can be

tagged through the recoiling Z. The LEP exclusion of Higgs boson masses up to

114.4 GeV applies even in the case of invisibly decaying Higgs bosons [101] and

similar limits could apply to Higgs bosons decaying into soft lepton pairs some

fraction of the time, as happens for some of the novel Higgs decay scenarios

discussed in this chapter.

Higgs boson searches at hadron colliders, however, are more difficult in the

presence of such invisible decays. Previous studies have analysed Zh and Wh

associated production [102, 103, 104] as well as tt̄h production [105, 106] and tt̄V V

and bb̄V V production [107] as promising channels, where h is the Higgs boson and

the V s stand for vector bosons. The possibility of observing an invisible Higgs

boson in central exclusive diffractive production at the LHC was studied in [108].

Another proposal is to observe such an invisible Higgs in inelastic events with large

missing transverse energy and two high ET jets. In this case the Higgs boson is

produced by V V fusion and has a large transverse momentum resulting in a signal

with two quark jets with distinctive kinematic distributions compared to Zjj and

Wjj backgrounds [109, 104, 110].

In this chapter, which contains work that was first published in paper II, we

consider novel decays of the lightest Higgs boson and associated collider signatures

within the E6SSM. If the Yukawa couplings of the inert neutralino sector are

required to be small enough such that perturbation theory remains valid up to the

GUT scale then the masses of the two lightest inert neutralino states are expected

to be smaller than about 60–65 GeV. As a result the lightest inert neutralino tends

to be the LSP. As noted in the previous chapter such an inert neutralino can give
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an appropriate contribution to the dark matter density, consistent with recent

observations, if it has a mass around 35–50 GeV. In this case the lightest Higgs

boson decays predominantly into inert neutralino states and the usual Higgs boson

branching ratios to SM particles are less than a few percent.

In section 6.1 we look in more detail at the inert sector of the model and the

couplings of the inert neutralinos, inert charginos, and active Higgs bosons are

specified. Novel decays of the lightest CP -even Higgs state and dark matter

constraints are discussed in section 6.2. In section 6.3 we specify some benchmark

points and discuss the experimental constraints and predictions. The conclusions

are summarised in section 6.4.

6.1 Inert Charginos and Neutralinos

In our analysis we will assume that ZH2 -violating couplings are small and can be

neglected. This assumption can be justified if one takes into account that the

Z
H
2 -violating operators can give an appreciable contribution to the amplitude of

K0-K̄0 oscillations and give rise to new muon decay channels such as µ→ e−e+e−.

In order to suppress processes with non-diagonal flavour transitions the Yukawa

couplings of the exotic particles to the quarks and leptons of the first two

generations should be smaller than 10−3–10−4. Such small ZH2 -violating couplings

can be neglected in the first approximation.

In this approximation, and given the assumption that only Hu, Hd, and S

acquire non-zero VEVs, the charged components of the inert Higgsinos do not mix

with the MSSM-like chargino states. The neutral components of the inert Higgsinos

and inert singlinos also do not mix with the USSM-like neutralino states. If ZH2

symmetry was exact then both the lightest state in the ordinary neutralino sector

and the lightest inert neutralino would be absolutely stable. Therefore although

Z
H
2 -violating couplings are expected to be rather small we shall assume that they

are large enough to allow either the lightest USSM-like neutralino state or the

lightest inert neutralino state to decay within a reasonable time — the lighter of the
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two being the stable LSP and the dark matter candidate.

In the basis

Ñ int
inert =

(

H̃0
d2 H̃0

u2 S̃2 H̃0
d1 H̃0

u1 S̃1

)T

(6.1)

the inert part of the neutralino mass matrix is given by

MN
inert =







A22 A21

AT
21 A11






, (6.2)

with the submatrices given in (5.6). The inert part of the chargino mass matrix P ,

given in (5.11), may be written

P inert
αβ =

1√
2
λαβ . (6.3)

From (6.2) and (6.3) one can see that in the exact ZH2 symmetry limit the

spectrum of the inert neutralinos and charginos in the E6SSM can be parametrised

in terms of λαβ , fdαβ , fuαβ , tan(β), and s. In other words the masses and couplings

of the inert neutralinos are determined by 12 Yukawa couplings, which can in

principle be complex, tan(β), and s. Four of the Yukawa couplings mentioned

above — λαβ — as well as the VEV of the SM singlet field s set the masses and

couplings of the inert chargino states. Six off-diagonal Yukawa couplings define the

mixing between the two generations of inert Higgsinos and singlinos.

In the following analysis the VEV of the active SM-singlet field is chosen to be

large enough (s & 2400 GeV) so that experimental constraints from ref. [67] on the

Z2 boson mass (m
Z2
> 892 GeV) and Z-Z ′ mixing are satisfied. Since the

publication of paper II the limit on the Z2 mass in the E6SSM has increased as

discussed in subsection 3.2.2. In order to avoid the LEP lower limit on the masses

of inert charginos [93] the Yukawa couplings λαβ are chosen such that all inert

chargino states are heavier than 100 GeV. In addition, we also require the validity

of perturbation theory up to the GUT scale and this constrains the allowed range of

all Yukawa couplings.
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The theoretical and experimental restrictions specified above set very strong

limits on the masses and couplings of the lightest inert neutralinos. In particular,

our numerical analysis indicates that the lightest and second lightest inert

neutralinos are always light. They typically have masses below 60–65 GeV. These

neutralinos are predominantly inert singlino in nature. From our numerical analysis

it follows that the lightest and second lightest inert neutralinos might have rather

small couplings to the Z boson so that any possible signal that these neutralinos

could give rise to at LEP would be extremely suppressed. As a consequence such

inert neutralinos would remain undetected. At the same time four other inert

neutralinos, which are approximately linear superpositions of neutral components of

inert doublet Higgsinos, are normally heavier than 100 GeV.

6.1.1 The diagonal inert Yukawa coupling approximation

In order to clarify the results of our numerical analysis it is useful to consider a few

simple cases that give some analytical understanding of our calculations. The

simplest case is when all of the Yukawa coupling from the off-diagonal blocks of

(6.2) are zero such that

λαβ = λαδαβ ,

fdαβ = fdαδαβ, and

fuαβ = fαδαβ (no sum on α). (6.4)

This leads to two decoupled generations with the properties studied in section 5.3.

The mass matrix of inert neutralinos (6.2) reduces to block diagonal form while the

masses of the inert charginos are given by

mC̃α
=

λα√
2
s. (6.5)

When fα = fdα = fuα one can prove using the method proposed in ref. [111] that

there are theoretical upper bounds on the masses of the lightest and second lightest
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inert neutralino states. The theoretical restrictions are |mÑα
|2 . µ2α, where

µ2α =
1

2



|mC̃α
|2 + f2αv

2

2

(

1 + sin2(2β)
)

−
√

(

|mC̃α
|2 + f2αv

2

2

(

1 + sin2(2β)
)

)2

− f4αv
4 sin2(2β)



 . (6.6)

The value of µα decreases with increasing |mC̃α
| and tan(β), approaching its

maximum value

µα → fα√
2
v (6.7)

as mC̃α
→ 0 and tan(β) → 1.

The upper bound on the mass of the lightest inert neutralino also depends on

the values of the Yukawa couplings fdα and fuα. The theoretical restrictions on

these couplings due to the requirement that the theory should remain perturbative

up to the GUT scale become weaker with increasing tan(β). At large values of

tan(β) the upper bounds on |mC̃α
| from (6.6) becomes rather small and as tan(β)

tends to unity the upper bounds on |mC̃α
| again become rasther small, because

theoretical constraints on fdα and fuα become rather stringent. Taking both of

these effects in account the upper bounds on |mC̃α
| achieve their maximum values

around tan(β) ≈ 1.5. For this value of tan(β) the requirement of the validity of

perturbation theory up to the GUT scale implies that for f = fd1 = fu1 = fd2 = fu2

f must be less than about 0.6. As a consequence the lightest inert neutralinos are

lighter than around 60–65 GeV for |mC̃α
| > 100 GeV.

Using the results from section 5.3 for the compositions of the light neutralinos

from each inert generation one can derive the couplings of these states to the Z

boson. We define RZαβ couplings such that the Z-Ñα-Ñβ coupling is equal to RZαβ

times the Z-ν-ν coupling

RZαβ = N1
αN

1
β −N2

αN
2
β +N4

αN
4
β −N5

αN
5
β , (6.8)
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where Na
i is the neutralino mixing matrix element corresponding to mass eigenstate

i and inert interaction state a in the basis (6.1).

In the case where the off-diagonal inert Yukawa coupling blocks vanish while

λαs≫ f(u,d)αv the relative couplings of the lightest and second lightest inert

neutralino states to the Z boson are given by

RZαβ = RZααδαβ (no sum on α), (6.9)

where

RZαα =
v2

2m2
C̃α

(

f2dα cos
2(β)− f2uα sin

2(β)

)

. (6.10)

This demonstrates that the couplings of Ñ1 and Ñ2 to the Z boson can be very

strongly suppressed. It becomes zero when |fdα| cos(β) = |fuα| sin(β), which is when

Ñα contains a completely symmetric combination of H̃0
dα and H̃0

uα. (6.10) also

indicates that the couplings of Ñ1 and Ñ2 to the Z boson are always small if the

inert charginos are rather heavy or if fdα and fuα are small, i.e. the masses of Ñ1

and Ñ2 are small.

6.1.2 ∆27 and pseudo-Dirac lightest inert neutralino states

In order to provide an explanation for the origin of the approximate Z
H
2 symmetry

that singles out the third generation of Higgs doublets and SM-singlets, and to

account for tribimaximal mixing and other features of the quark and lepton spectra,

a ∆27 flavour symmetry may be applied to the E6SSM [59]. The addition of the

∆27 flavour symmetry implies an inert neutralino mass matrix with A11 ≈ A22 ≈ 0,

leading to approximately degenerate lightest neutralino states with a pseudo-Dirac

(see appendix A) structure.

When all flavour diagonal Yukawa couplings λαα, fdαα, and fuαα exactly vanish,

i.e. A11 = A22 = 0, the inert neutralinos form Dirac states. In this limit the

Lagrangian of the E6SSM is invariant under an extra U(1) global symmetry. Under
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this symmetry the fermionic components of the inert supermultiplets transform

S̃2 → eiαS̃2,

H̃d2 → eiαH̃d2,

H̃u2 → eiαH̃u2,

S̃1 → e−iαS̃1,

H̃d1 → e−iαH̃d1,

H̃u1 → e−iαH̃u1. (6.11)

In the above limiting case the lightest inert neutralino is a Dirac state formed

predominantly from S̃1 and S̃2. In this case the LSP and its antiparticle have

opposite charges with respect to the extra global U(1) and this could lead to the

scenario known as asymmetric dark matter [112, 113, 114, 115]. The ADM scenario

supposes that there could be an asymmetry between the density of dark matter

particles and their antiparticles in the early universe similar to that for baryons.

This could have a considerable effect on the relic density calculations. In particular,

if an asymmetry exists between the number densities of dark matter particles and

their antiparticles in the early universe then one can get an appreciable dark matter

density even if the dark matter particle-antiparticle annihilation cross section is

very large, like in the case of baryons. Furthermore, if most of the dark matter

antiparticles are eliminated by annihilation with their particles then such an ADM

scenario does not have the usual indirect signatures associated with the presence of

dark matter. For example, there would be no high energy neutrino signal from

annihilations in the Sun. At the same time, a relatively high concentration of dark

matter particles can build up in the Sun, altering heat transport in the solar

interior and affecting low energy neutrino fluxes [115].

In practice the ∆27 scenario tells us that we are somewhat away from the above

limiting case, with a broken global U(1) symmetry leading to almost degenerate

pseudo-Dirac lightest neutralinos, where the relic density of the LSP can be

calculated by standard methods. It will turn out that the LSP cannot be too light

(must be of order mZ/2) in order not to have a too high cosmological relic density.
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At the same time we will see that the two lightest neutralinos cannot be too heavy

in order for perturbation theory to be valid up to the GUT scale. In practice this

means that in realistic scenarios the two lightest inert neutralino states are rather

close in mass. The ∆27 scenario provides an explanation for this feature of the

successful neutralino mass pattern.

It is worth noting that the results from the previous section can be reinterpreted

in terms of this scenario. Specifically in the case where A11 = A22 = 0 and

A21 = A12 a block diagonalisation of the inert neutralino mass matrix (6.2) results

in

A22 → A′
22 = −A21, and A11 → A′

11 = A21, (6.12)

with A21 = A12 → A′
21 = A′

12 = 0. This only corresponds to a redefinition of the

generations 1 and 2 and does not mix fields of different hypercharge. This provides

a dictionary between these two scenarios

−λ′22 = λ′11 = λ21,

−f ′d22 = f ′d11 = fd21, (6.13)

−f ′u22 = f ′u11 = fu21. (6.14)

Rewriting the inert neutralino mass matrix in this block diagonal form also makes

it clear that the RZ12 coupling vanishes in this limit in the same way that it did for

the diagonal case in subsection 6.1.1.

6.1.3 The couplings of Higgs bosons to inert neutralinos

The presence of light inert neutralinos in the particle spectrum of the E6SSM

makes possible the decays of the Higgs bosons into these final states. Now and in

the next section we argue that such decays may result in the modification of the

SM-like Higgs signal at current and future colliders. Since our main concern in this

work is the decays of the SM-like lightest Higgs boson, we shall ignore the effects of

the inert Higgs scalars and pseudoscalars which do not mix appreciably with the

active scalar sector responsible for EWSB. We also assume that all of the inert
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bosons are heavier than the lightest CP -even Higgs boson.

If all other Higgs boson states are much heavier than the lightest CP -even Higgs

boson then the lightest Higgs state, approximately given by h, as defined in (3.26),

manifests itself in interactions with SM gauge bosons and fermions as a SM-like

Higgs boson. Since within the E6SSM the mass of this state is predicted to be

relatively low, its production cross section at the LHC should be large enough so

that it can be observed in the near future. In this context it is particularly

interesting and important to analyse the decay modes of the lightest CP -even Higgs

state. Furthermore, we concentrate on the decays of the SM-like Higgs boson into

the lightest and second lightest inert neutralinos.

The couplings of the Higgs states to the inert neutralinos originate from the

interactions of Hu, Hd, and S with the inert Higgs fields in the superpotential.

Using (3.26) one can express ReH0
d , ReH0

u, and ReS in terms of the field-space

basis states h, H, and N . The components of the field-space basis are related to the

physical CP -even mass eigenstates by a unitary transformation













h1

h2

h3













= U













h

H

N













. (6.15)

Combining all these expressions together one obtains an effective Lagrangian term

that describes the interactions of the inert neutralinos with the CP -even Higgs

mass eigenstates

Xhm
ij hmÑ

c†
i Ñj + c.c., (6.16)

where

Xhm
ij = − 1√

2
UNhmΛij −

1√
2

(

Uhhm cos(β)− UHhm sin(β)
)

Fdij

− 1√
2

(

Uhhm sin(β) + UHhm cos(β)
)

Fuij , (6.17)
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with

Λij = λ11N
4
i N

5
j + λ12N

4
i N

2
j + λ21N

1
i N

5
j + λ22N

1
i N

2
j , (6.18)

Fdij = fd11N
6
i N

5
j + fd12N

6
i N

2
j + fd21N

3
i N

5
j + fd22N

3
i N

2
j , and (6.19)

Fuij = fu11N
6
i N

5
j + fu12N

6
i N

2
j + fu21N

3
i N

5
j + fu22N

3
i N

2
j . (6.20)

The expressions for the couplings of the active CP -even Higgs scalars to the

inert neutralinos become much simpler in the case where the Higgs spectrum has

the usual hierarchical structure. In this case U is almost the identity. As a

consequence the couplings of the SM-like Higgs boson to the lightest and second

lightest inert neutralino states are approximately given by

Xh1
αβ = − 1√

2

(

Fdαβ cos(β) + Fuαβ sin(β)
)

. (6.21)

In the case of the diagonal inert Yukawa coupling limit defined in subsection 6.1.1

and if λαs≫ f(d,u)αv one can use the expression (5.19) to find values for Na
1 and

Na
2 and derive approximate formulae for Xh1

αβ . Substituting into (6.21) one obtains

Xh1
αβ =

mÑα

v
δαβ + · · · (no sum on α). (6.22)

This simple analytical expression for the couplings of the SM-like Higgs boson to

the lightest and second lightest inert neutralinos is not as surprising as it may first

appear. When the Higgs spectrum is hierarchical, with s≫ v, the VEV of the

lightest CP -even state v is responsible for all light fermion masses in the E6SSM.

As a result we expect that their couplings to the SM-like Higgs can be written as

usual as being proportional to the mass divided by the VEV. We see that this is

exactly what is found in the limit of mÑα
being small.
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6.2 Novel Higgs Decays and Dark Matter

The interaction Lagrangian (6.16) gives rise to decays of the lightest Higgs boson

into inert neutralino pairs with partial widths given by

Γ(h1 → ÑαÑβ) =
∆αβ

16πmh1

(

Xh1
αβ +Xh1

βα

)2[

m2
h1 − (mÑα

−mÑβ
)2
]

√

√

√

√

√



1−
m2
Ñα

m2
h1

−
m2
Ñβ

m2
h1





2

− 4
m2
Ñα
m2
Ñβ

m4
h1

, (6.23)

where ∆αβ = {1, 2} for {α = β, α 6= β}.

The partial widths associated with these inert decays of the SM-like Higgs boson

(6.23) have to be compared to decay rates into SM particles. When the SM Higgs

boson is relatively light (less than about 140 GeV) it decays predominantly into b

quark and τ lepton pairs. The partial decay width of the lightest CP -even Higgs

boson into Dirac fermion pairs is given by [116]

Γ(h1 → ff̄) = Nc

g22

32π

m2
f

m2
W

g2h1ffmh1

(

1− 4
m2
f

m2
h1

)3/2

. (6.24)

For the case of the decays into τ leptons the coupling of the lightest CP -even Higgs

state to the τ lepton normalised to the corresponding SM coupling

gh1ττ =
1

cos(β)

(

Uhh1 cos(β)− UHh1 sin(β)

)

. (6.25)

For a final state that involves b quarks one has to include the QCD corrections.

In particular, the fermion mass in (6.24) should be associated with the running b

quark mass m̄b(µ). The bulk of the QCD corrections are absorbed by using the

running b quark mass defined at the appropriate renormalisation scale — the scale

of the lightest Higgs boson mass µ = mh1 in the considered case. In addition to the

corrections that are associated with the running b quark mass there are other QCD

corrections to the Higgs coupling to b quarks that should be taken into

account [117]. As a consequence, the partial decay width of the lightest CP -even
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Higgs boson into b quark pairs can be calculated using (6.24) if one sets

Nc = 3,

mf = m̄b(mh1), and (6.26)

g2h1ff =
1

cos2(β)

(

Uhh1 cos(β)− UHh1 sin(β)

)2[

1 + ∆bb +∆H

]

,

where

∆bb ≈ 5.67
ᾱs(mh1)

π
+ (35.94− 1.36Nf )

ᾱ2
s(mh1)

π2
and

(6.27)

∆H ≈ ᾱ2
s(mh1)

π2

(

1.57− 2

3
ln

(

m2
h1

m2
t

)

+
1

9
ln2

(

m̄2
b(mh1)

m2
h1

))

.

Here we neglect radiative corrections that originate from loop diagrams that

contain non-SM particles1.

From (6.22) one can see that in the E6SSM the branching ratios of the SM-like

Higgs state into the lightest and second lightest inert neutralinos depend rather

strongly on the masses of these particles. When the lightest inert neutralino states

are heavy relative to the b quark the lightest Higgs boson decays predominantly

into ÑαÑβ while the branching ratios for decays into SM particles are suppressed.

On the other hand if the lightest inert neutralinos have masses that are

considerably smaller than the masses of the b quark and τ lepton then the

branching ratios of the SM-like Higgs into inert neutralino final states are small.

Constraints on the mass of the lightest inert neutralino can be obtained if we

require that this particle accounts for all or some of the observed dark matter relic

density. In the limit where all non-SM fields other than the two lightest inert

neutralinos are heavy the lightest inert neutralino state in the E6SSM is responsible

for too large a thermal relic density of dark matter. The LSP Ñ1 is composed

mainly of inert singlino and has a mass inversely proportional to the charged inert

Higgsino mass. In this limit it is typically very light with |mÑα
| ≪ mZ . As a result

1Radiative corrections that are induced by supersymmetric particles can be very important, par-
ticularly in the case of the bottom quark at high values of tan(β). For a review see ref. [118].
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the couplings of the lightest inert neutralino to gauge bosons, the SM-like Higgs

boson, quarks, and leptons are quite small, leading to a relatively small dark matter

annihilation cross-section into SM particles and giving rise to a relic density that is

typically much larger than the measured value. Thus, in the limit considered, the

bulk of the E6SSM parameter space that leads to small inert neutralino masses is

ruled out.

The situation changes dramatically when the mass of the lightest inert

neutralino increases. In this case the Higgsino components of Ñ1 become larger and

as a consequence the couplings of Ñ1 to the Z boson grow. A reasonable density of

dark matter can be obtained for |mÑα
| ∼ mZ/2 when the lightest inert neutralino

states annihilate mainly through an s-channel Z boson. It is worth noting that if

Ñ1 were pure inert Higgsino then the s-channel Z boson annihilation would proceed

with the full gauge coupling strength leaving a relic density too low to account for

the observed dark matter. In the E6SSM the LSP is mostly inert singlino so that

its coupling to the Z boson is typically suppressed, since it only couples through its

inert Higgsino admixture, leading to an increased relic density. In practice an

appropriate value of ΩDMh
2 can be achieved even if the coupling of Ñ1 to the Z

boson is relatively small. This happens when Ñ1 annihilation proceeds through the

Z boson resonance. Thus, scenarios that result in a reasonable inert neutralino dark

matter relic density correspond to lightest inert neutralino masses that are much

larger than m̄b(mh1) and hence to the SM-like Higgs boson having very small

branching ratios into SM particles.

6.3 Benchmarks, Constraints, and Predictions

In order to illustrate the features of the E6SSM mentioned in the previous section

we specify the set of benchmark points in tables 6.1, 6.2, and 6.3. For each

benchmark scenario we calculate the spectra of inert neutralinos, inert charginos,

and active Higgs bosons as well as their couplings, the decay branching ratios of the

lightest CP -even Higgs state, and the dark matter relic density. micrOMEGAs 2.2 is

used to numerically compute the present day density of dark matter.
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Benchmark i ii iii iv

tan(β) 1.5 1.5 1.7 1.564
mH± ≈ mA ≈ mh3 [GeV] 1977 1977 2022 1990

mh1 [GeV] 135.4 135.4 133.1 134.8

λ22 0.001 0.001 0.094 0.0001
λ21 0.077 0.062 0 0.06
λ12 0.077 0.062 0 0.06
λ11 0.001 0.001 0.059 0.0001

fd22 0.001 0.001 0.53 0.001
fd21 0.61 0.61 0.05 0.476
fd12 0.6 0.6 0.05 0.466
fd11 0.001 0.001 0.53 0.001

fu22 0.001 0.001 0.53 0.001
fu21 0.426 0.426 0.05 0.4
fu12 0.436 0.436 0.05 0.408
fu11 0.001 0.001 0.53 0.001

Ñ1 mass [GeV] 41.91 47.33 33.62 -36.69

Ñ2 mass [GeV] -42.31 -47.84 47.78 36.88

Ñ3 mass [GeV] -129.1 -103.6 108.0 -103.11

Ñ4 mass [GeV] 132.4 107.0 -152.1 103.47

Ñ5 mass [GeV] 171.4 151.5 163.5 139.80

Ñ6 mass [GeV] -174.4 -154.4 -200.8 -140.35

C̃1 mass [GeV] 129.0 103.5 100.1 101.65

C̃2 mass [GeV] 132.4 106.9 159.5 101.99

Ωχh
2 0.096 0.098 0.109 0.107

RZ11 -0.0250 -0.0407 -0.144 -0.132
RZ12 0.0040 0.0048 0.051 0.0043
RZ22 -0.0257 -0.0429 -0.331 -0.133

∆NLEP
eff 0.000090 0 0.0068 0.0073
D 2.011 2.000 2.85 2.91

Xh1
11 0.137 0.147 0.110 -0.114

Xh1
12 +Xh1

21 −1.9× 10−6 −3.4× 10−6 0.0136 1.15× 10−6

Xh1
22 -0.138 -0.148 0.125 0.115

σSI [10
−44 cm2] 2.6–10.5 3.0–12.1 1.7–7.1 2.0–8.2

Br(h→ Ñ1Ñ1) 49.5% 49.7% 57.8% 49.1%

Br(h→ Ñ1Ñ2) 7.9× 10−11 2.5× 10−10 0.34% 49.2%

Br(h→ Ñ2Ñ2) 49.0% 48.5% 39.8% 3.5× 10−11

Br(h→ bb̄) 1.36% 1.58% 1.87% 1.59%
Br(h→ τ τ̄) 0.142% 0.165% 0.196% 0.166%

Γ(h→ Ñ1Ñ1) [MeV] 98.3 85.1 81.7 82.9
Γ(h) [MeV] 198.7 171.1 141.2 169.0

Table 6.1: Benchmark scenarios for mh1
≈ 133–135 GeV. The

branching ratios and decay widths of the lightest Higgs boson;
the masses of the active Higgs bosons, inert neutralinos, and
charginos; and the couplings of the inert neutralinos Ñ1 and Ñ2

are calculated for s = 2400 GeV, λ = 0.6, Aλ = 1600 GeV,
mQ = mu = Ms = 700 GeV, and Xt =

√
6Ms, corresponding

to mh2
≈ mZ2

≈ 890 GeV. ∆NLEP

eff
and D are defined in (6.28)

and (6.30) respectively.
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Benchmark v vi vii

tan(β) 1.5 1.7 1.5
mH± ≈ mA ≈ mh3 [GeV] 1145 1165 1145

mh1 [GeV] 115.9 114.4 115.9
λ22 0.004 0.104 0.094
λ21 0.084 0 0
λ12 0.084 0 0
λ11 0.004 0.09 0.059

f22 0.025 0.72 0.53
f21 0.51 0.001 0.053
f12 0.5 0.001 0.053
f11 0.025 0.7 0.53

fu22 0.025 0.472 0.53
fu21 0.49 0.001 0.053
fu12 0.5 0.001 0.053
fu11 0.025 0.472 0.53

Ñ1 mass [GeV] -35.76 41.20 35.42

Ñ2 mass [GeV] 39.63 44.21 51.77

Ñ3 mass [GeV] -137.8 153.1 105.3

Ñ4 mass [GeV] 151.7 176.7 -152.7

Ñ5 mass [GeV] 173.6 -197.3 162.0

Ñ6 mass [GeV] -191.3 -217.9 -201.7

C̃1 mass [GeV] 135.8 152.7 100.1

C̃2 mass [GeV] 149.3 176.5 159.5

Ωχh
2 0.102 0.108 0.107

RZ11 -0.116 -0.0278 -0.115
RZ12 0.0037 -0.00039 -0.045
RZ22 -0.118 -0.0455 -0.288

∆NLEP
eff 0.0049 0.00009 0.0034
D 2.62 2.011 2.43

Xh1
11 -0.117 0.141 0.117

Xh1
12 +Xh1

21 -0.000027 -0.00025 -0.0127

Xh1
22 0.130 0.147 0.141

σSI [10
−44 cm2] 3.9–15.7 5.4–21.9 3.5–14.2

Br(h→ Ñ1Ñ1) 49.6% 53.5% 76.3%

Br(h→ Ñ1Ñ2) 2.1× 10−8 7.2× 10−7 0.26%

Br(h→ Ñ2Ñ2) 48.4% 44.2% 20.3%
Br(h→ bb̄) 1.87% 2.04% 2.83%
Br(h→ τ τ̄) 0.196% 0.21% 0.30%

Γ(h→ Ñ1Ñ1) [MeV] 61.5 60.1 62.6
Γ(h) [MeV] 124.1 112.2 82.0

Table 6.2: Benchmark scenarios for mh1
≈ 114–116 GeV. The

branching ratios and decay widths of the lightest Higgs boson; the
masses of the active Higgs bosons, inert neutralinos, and charginos;
and the couplings of the inert neutralinos Ñ1 and Ñ2 are cal-
culated for s = 2400 GeV, λ = g′1 = 0.468, Aλ = 600 GeV,
mQ = mu = Ms = 700 GeV, and Xt =

√
6Ms, corresponding

to mh2
≈ mZ2

≈ 890 GeV. ∆NLEP

eff
and D are defined in (6.28)

and (6.30) respectively. Continued in table 6.3
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Benchmark viii ix

tan(β) 1.5 1.5
mH± ≈ mA ≈ mh3 [GeV] 1145 1145

mh1 [GeV] 115.9 115.9
λ22 0.001 0.468
λ21 0.079 0.05
λ12 0.080 0.05
λ11 0.001 0.08

f22 0.04 0.05
f21 0.68 0.9
f12 0.68 0.002
f11 0.04 0.002

fu22 0.04 0.002
fu21 0.49 0.002
fu12 0.49 0.05
fu11 0.04 0.65

Ñ1 mass [GeV] -45.08 -46.24

Ñ2 mass [GeV] 55.34 46.60

Ñ3 mass [GeV] -133.3 171.1

Ñ4 mass [GeV] 136.9 -171.4

Ñ5 mass [GeV] 178.4 805.4

Ñ6 mass [GeV] -192.2 -805.4

C̃1 mass [GeV] 133.0 125.0

C̃2 mass [GeV] 136.8 805.0

Ωχh
2 0.0324 0.00005

RZ11 -0.0217 -0.0224
RZ12 -0.0020 -0.213
RZ22 -0.0524 -0.0226

∆NLEP
eff 1.57× 10−6 0
D 2.0002 2.0

Xh1
11 -0.147 -0.148

Xh1
12 +Xh1

21 -0.0000140 -0.000031

Xh1
22 0.174 0.149

σSI [10
−44 cm2] 6.0–24.4 6.1–25.0

Br(h→ Ñ1Ñ1) 83.4% 49.3%

Br(h→ Ñ1Ñ2) 7.6× 10−9 3.0× 10−8

Br(h→ Ñ2Ñ2) 12.3% 47.9%
Br(h→ bb̄) 3.95% 2.58%
Br(h→ τ τ̄) 0.41% 0.27%

Γ(h→ Ñ1Ñ1) [MeV] 49.0 44.4
Γ(h) [MeV] 58.8 90.1

Table 6.3: Continued from table 6.2, more benchmark scenarios
for mh1

≈ 114–116 GeV. Again, the branching ratios and decay
widths of the lightest Higgs boson; the masses of the active Higgs
bosons, inert neutralinos, and charginos; and the couplings of the
inert neutralinos Ñ1 and Ñ2 are calculated for s = 2400 GeV,
λ = g′1 = 0.468, Aλ = 600 GeV, mQ = mu = Ms = 700 GeV, and
Xt =

√
6Ms, corresponding to mh2

≈ mZ2
≈ 890 GeV. ∆NLEP

eff

and D are defined in (6.28) and (6.30) respectively.
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6.3.1 Benchmark scenarios

In order to construct benchmark scenarios that are consistent with cosmological

observations and collider constraints we restrict our considerations to tan(β) . 2.

The plots in figure 6.1 show that in principle an appropriate value of the dark

matter density can be obtained even when tan(β) > 2. However, larger values of

tan(β) lead to the lightest and second lightest inert neutralinos having smaller

masses as discussed in section 5.3. As a result larger couplings of the lightest inert

neutralinos to the Z boson are required to reproduce the measured value of ΩDMh
2

and such light inert neutralinos with substantial couplings to Z boson give a

considerable contribution to its invisible width leading to a conflict with LEP

measurements. This is discussed in more detail in the following subsection.

Even for tan(β) . 2 the lightest inert neutralino states can get appreciable

masses only if at least one of the inert chargino mass eigenstates is light

mC̃1
≈ 100–200 GeV. As clarified in sections 6.1 and 5.3, the masses of the lightest

inert neutralino states decrease with increasing mC̃1,2
and it is therefore rather

difficult to find benchmark scenarios consistent with cosmological observations for

mC̃1
& 200 GeV. At the same time we demonstrate (with benchmark ix in

table 6.3) that one light inert chargino mass eigenstate is enough to ensure that the

lightest inert neutralino state gains a mass of order mZ/2.

To obtain the kind of inert neutralino and chargino spectra discussed above one

has to assume that the couplings λαβ are rather small. They are expected to be

much smaller than the largest fdαβ and fuαβ couplings. On the other hand, in order

to get |mÑ1
| ∼ |mÑ2

| ∼ mZ/2 the Yukawa couplings fdαβ and fuαβ need to be

relatively close to their theoretical upper bounds caused by the requirement of the

validity of perturbation theory up to the GUT scale. Since gauge coupling

unification and RG flow determine the low energy value of g′1, the mass of the Z2

gauge boson is approximately set by the SM-singlet VEV s only. In our study we

choose s = 2400 GeV so that the Z2 mass is about 890 GeV. This value of the Z2

boson mass is just above the lower bound of 865 GeV found in ref. [67] — the most

recent limit at the time of the publication of paper II — and allows satisfaction of
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Figure 6.1: Contour plots of (Xh1

11
)2 and various regions in the

(f, tan(β))-plane with s = 2400 GeV, fdαα = fuαα = λαα = 0 ∀α,
fd21 = f , fu21 = fd21/a, fd12 = 1.02fd21, fu12 = 0.98fu21, and
λ21 = λ12 = 0.06, implying that mC̃1,2

= 101.8 GeV. The upper

plot is for a = 0.75 + 0.25 tan(β) and in the lower plot is for a =
0.5 + 0.5 tan(β). The red region is where the prediction for Ωχh

2

is consistent with the measured 1-sigma range of ΩDMh
2 given in

(4.2). The dark green region corresponds to D < 3 while the
pale green region represents the part of the parameter space in
which D is between 3 and 4. The grey area indicates that D > 4.
D is defined in (6.30). The blue region corresponds to mÑ1

>
mZ/2 while the dark blue region to the right is ruled out by the
requirement that perturbation theory remains valid up to the GUT
scale.
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stringent limits on the Z2 mass and Z-Z ′ mixing that come from precision

electroweak tests [69].

Since we restrict our analysis to low values of tan(β) . 2 the mass of the SM-like

Higgs boson is very sensitive to the choice of the coupling λ. Stringent LEP

constraints require λ at the EWSB scale to be larger than the low energy value of

g′1 ≈ 0.47 and if one increases λ much further then the theoretical upper bounds on

fdαβ and fuαβ from RG running become substantially stronger. As a consequence,

it is rather difficult to find solutions with |mÑ1
| ∼ |mÑ2

| ∼ mZ/2. Therefore in our

analysis we concentrate on values of λ at the EWSB scale less than about 0.6. In

addition we set stop SSB masses mQ = mu =Ms = 700 GeV and restrict our

consideration to the maximal mixing scenario with the stop mixing parameter,

defined in (5.25), Xt =
√
6Ms. This choice of parameters limits the range of

variations of the lightest CP -even Higgs mass. In the leading two-loop

approximation the mass of the SM-like Higgs boson varies from 115 GeV for λ = g′1

to 136 GeV for λ = 0.6. From tables 6.1, 6.2, and 6.3 one can see that the large

values of λ & g′1 that we choose in our analysis result in an extremely hierarchical

Higgs spectrum, as pointed out in section 3.3. In tables 6.1, 6.2, and 6.3 the masses

of the heavier Higgs states are computed in the leading one-loop approximation. In

the case of the lightest Higgs boson mass the leading two-loop corrections are taken

into account.

The set of benchmark points that we specify demonstrates that one can get a

reasonable dark matter density consistent with recent observations if

|mÑ1
| ∼ |mÑ2

| ∼ mZ/2. Our benchmark scenarios also indicate that in this case the

SM-like Higgs boson decays predominantly into the lightest inert neutralinos Ñ1

and Ñ2 while the total branching ratio into SM particles varies from 2% to 4%.

Benchmarks i, ii, iv, v, and viii are motivated by the non-Abelian flavour

symmetry ∆27 which describes well the observed hierarchy in the quark and lepton

sectors. As was discussed in subsection 6.1.2, these scenarios imply that all flavour

diagonal Yukawa couplings λαα, fdαα, and fuαα are rather small. Due to the

approximate global U(1) symmetry (6.11) that originates from the flavour
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symmetry ∆27, the spectrum of inert neutralinos comprises a set of pseudo-Dirac

states. When the masses of the lightest and second lightest inert neutralinos are

close, or they form an exact Dirac state, then the decays h1 → ÑαÑβ lead to

missing transverse energy in the final state. These decay channels give rise to a

large invisible branching ratio for the SM-like Higgs boson.

In tables 6.1, 6.2, and 6.3 benchmarks i, ii, iv–vi, and ix have almost

degenerate lightest and second lightest inert neutralinos. In some of these

benchmark points both lightest inert neutralinos are lighter than mZ/2 and as such

the Z boson can decay into ÑαÑβ so that the lightest and second lightest inert

neutralino states contribute to the invisible Z boson width. In other benchmark

scenarios both of the lightest inert neutralinos have masses above mZ/2 and the

decays Z → ÑαÑβ are kinematically forbidden.

When the LSP and NLSP are close in mass, LSP-NLSP coannihilation might be

an important factor in determining the dark matter relic density. If this is the case

then the LSP-NLSP mass splitting should be an important factor. Since

annihilations of two identical neutralinos are p-wave suppressed, one should

compare βRZ11 with RZ12 when trying to determine how important coannihilations

are, where β is the relative speed of the incoming particles, approximately 1/6

around the time of thermal freeze-out. It is useful to consider the following

situations: With the LSP and NLSP almost degenerate and with equal

self-annihilation cross-sections, but a negligible coannihilation cross-section, the

relic density of dark matter would be twice what it would have have been if the

NLSP had not been present. If, alternatively, the coannihilation cross-section was

equal to the self-annihilation cross-sections then the existence of this extra channel

would lead to a lower present day relic density. In this case it would in fact be equal

to the relic density calculated in the absence of the NLSP. In this way, in such a

scenario where coannihilations and self-annihilations are about as important as each

other, the relic density actually ends up being largely independent of the

LSP-NLSP mass splitting.

For the benchmarks i and ii this latter situation is approximately the case and
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the LSP-NLSP mass splitting turns out not to be an important factor. The mass

splitting is in fact small — about half a GeV — but if it were larger and the NLSPs

were made to have frozen-out much earlier, the relic density would only be

decreased slightly (in this case by about a tenth). In benchmark iv, even though

the LSP and NLSP are close in mass, coannihilations are unimportant due to the

small value of RZ12. In this case increasing the NLSP mass substantially while

keeping everything else fixed would lead to an approximate halving of the predicted

relic density, since the NLSP would have decoupled much earlier than, rather than

at the same time as, the LSP. The only other benchmark scenario where the LSP

and NLSP are close enough in mass for coannihilations to be potentially important

is benchmark ix. Here coannihilation is in fact the dominant process and

changing the LSP-NLSP mass splitting would have a large effect on the predicted

relic density. In fact, in this scenario if the NLSP were not present the predicted

relic density would be within the measured range.

If the mass difference between the second lightest and the lightest inert

neutralino is around 10 GeV or more then some of the decay products of a Ñ2 that

originates from a SM-like Higgs boson decay might be observed at the LHC. In our

analysis we assume that all scalar particles, except for the lightest Higgs boson, are

heavy and that the couplings of the inert neutralino states to quarks, leptons, and

their superpartners are relatively small. As a result the second lightest inert

neutralino decays into the lightest one and a fermion-antifermion pair mainly via a

virtual Z. In our numerical analysis we did not manage to find any scenario with

|mÑ2
| − |mÑ1

| & 20 GeV leading to reasonable values of Ωχh
2. Hence we do not

expect any observable jets at the LHC associated with the decay of a Ñ2 produced

through a SM-like Higgs decay. However, it might be possible to detect some

lepton-antilepton pairs coming from decays of the form h1 → Ñ2Ñα. In particular

we hope that µ+µ− pairs coming from such decays of the lightest CP -even Higgs

state could be observed at the LHC.

Benchmarks iii, vii, and viii can lead to such relatively energetic muon pairs

in the final states of SM-like Higgs decays. Since the Higgs branching ratios into

SM particles are rather suppressed, such decays of the lightest CP -even Higgs state
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might play an essential role in Higgs searches.

In addition to the inert Higgs decays, the scenarios considered here imply that at

least two of the inert neutralino states that are predominantly formed from the

fermionic components of the inert Higgs doublet supermultiplets, as well as one of

the inert chargino states, should have masses below 200 GeV. Since these states are

almost inert Higgsinos they couple rather strongly to W and Z bosons. Thus at

hadron colliders the corresponding inert neutralino and chargino states could be

produced in pairs via off-shell W and Z bosons. Since they are light their

production cross-sections at the LHC would not be negligibly small. After being

produced, inert neutralino and chargino states would sequentially decay into the

LSP and pairs of quarks and leptons resulting in distinct signatures that could be

discovered at the LHC.

6.3.2 Neutralino and chargino collider limits

The remarkable signatures discussed above raise serious concerns that they could

have already been observed at the Tevatron and/or even earlier at LEP. For

example, the light inert neutralino and chargino states could have been produced at

the Tevatron. The CDF and D0 collaborations have set a stringent lower bound on

chargino masses using supersymmetry searches with a trilepton signal [119, 120].

These searches ruled out chargino masses below 164 GeV. However, this lower

bound on the chargino mass was obtained by assuming that the corresponding

chargino and neutralino states decay predominantly into the LSP and a pair of

leptons. In our case, however, the inert neutralino and chargino states are expected

to decay via virtual Z and W exchange, decaying predominantly into the LSP and

a pair of quarks. As a consequence the lower limit on the mass of charginos that is

set by the Tevatron is not directly applicable to the benchmark scenarios that we

consider here. Instead, in our study, we use the 95% confidence level lower limit on

chargino masses of about 100 GeV that was set by LEP [93].

In principle the LEP experiments also set constraints on the masses and

couplings of neutral particles that interact with the Z boson. As mentioned above,
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when the masses of Ñ1 and Ñ2 are below mZ/2 they are almost degenerate and

thus the decays of Z → ÑαÑβ all contribute to the invisible width of the Z boson,

changing the effective number of neutrino species NLEP
eff . The contribution of Ñ1

and Ñ2 to NLEP
eff is given by

∆NLEP
eff = a11 + 2a12 + a22, (6.28)

where

aαβ = R2
Zαβ






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Ñβ

m2
Z





2

− 4
m2
Ñα
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. (6.29)

All three terms in (6.28) contribute to ∆NLEP
eff only if 2|mÑ2

| < mZ . In the case

where only the Z boson decays into Ñ1Ñ1 are kinematically allowed a12 and a22

should be set to zero. If |mÑ1
|+ |mÑ2

| < mZ whilst 2|mÑ2
| > mZ then only a11 and

2a12 contribute.

In order to compare the measured value of NLEPexp
eff with the effective number of

neutrino species in the E6SSM NLEP
eff = 3 +∆NLEP

eff it is convenient to define the

variable

D =
NLEP

eff −NLEPexp
eff

σexp
NLEP

eff

. (6.30)

The value of D represents the deviation between the predicted and measured

effective number of neutrinos contributing to the Z boson invisible width. It is

worth pointing out that in the SM, from (1.13), D = 2. In the benchmark scenarios

presented in tables 6.1, 6.2, and 6.3 the value of D is always less than 3. The plots

in figure 6.1 also demonstrate that there is a substantial region of E6SSM

parameter space with mÑ1,2
< mZ/2 and D < 3. This indicates that relatively light

inert neutralinos with masses below mZ/2 are not necessarily ruled out by

constraints on the effective number of neutrinos set by LEP experiments. Indeed, as
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argued in section 6.1, the Yukawa couplings fdαβ and fuαβ can be chosen such that

RZαβ are very small. The couplings of the lightest and second lightest inert

neutralinos to the Z boson are relatively small anyway because of the inert singlino

admixture in these states. Nevertheless, figure 6.1 shows that scenarios with light

inert neutralinos having masses below mZ/2 and relatively small couplings to the Z

boson can lead to appropriate dark matter densities consistent with observation.

LEP has set limits on the cross-sections of e+e− → Ñ2Ñ1 and e+e− → C̃+
1 C̃

−
1 ,

where predominantly Ñ2 → qq̄Ñ1 and C̃1 → qq̄′Ñ1 respectively [121]. Unfortunately

the bounds are not directly applicable for our study because OPAL limits were set

for a relatively heavy Ñ2 or C̃1 only — greater than about 60 GeV. Nevertheless,

these bounds demonstrate that it was difficult to observe light neutralinos with

masses less than about 100 GeV if their production cross-sections

σ(e+e− → ÑαÑβ) . 0.1–0.3 pb. Since at LEP energies the cross-sections of

colourless particle production through s-channel γ/Z exchange are typically a few

picobarns, the lightest and second lightest inert neutralino states in the E6SSM

could have escaped detection at LEP if their couplings RZαβ . 0.1–0.3.

6.3.3 Dark matter direct detection

Another constraint on the couplings of the lightest inert neutralino comes from

experiments for the direct detection of dark matter. At the time of the publication

of paper II the most stringent upper limits on the DMP-nucleon elastic scattering

spin-independent cross-section came from the CDMS collaboration [122] and from

the first analysis of 11.7 days of data from the XENON100 experiment [123]. In the

low DMP mass region relevant for our study, the most stringent of these was the

XENON100 limit. In particular the XENON100 11.7 day analysis produced a limit

on the cross-section of 3.4× 10−44 cm2 for a 55 GeV DMP at a confidence level of

90%. This limit remains fairly constant for lower DMP masses and does not

increase above about 4× 10−44 cm2 for even the lowest LSP masses that are

consistent with our thermal freeze-out scenario. Currently the most stringent limits

on the spin-independent DMP-nucleon cross-section come from the more recent
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analysis of 100.9 days of data from XENON100 [124]. The best limit is

7.0× 10−44 cm2, which is for a 50 GeV DMP, again at a confidence level of 90%.

Since in the E6SSM the couplings of the lightest inert neutralino to quarks,

leptons, and their superpartners are suppressed, the spin-independent part of the

Ñ1-nucleon elastic scattering cross-section is mediated mainly by t-channel SM-like

Higgs boson exchange. Thus, in the leading approximation the spin-independent

part of Ñ1-nucleon cross-section in the E6SSM takes the form [125, 4]

σSI =
4m2

rm
2
N

πv2m4
h1

|Xh1
11F

N |2, (6.31)

where N is the nucleon,

mr =
mÑ1

mN

mÑ1
+mN

, and

FN =
∑

q=u,d,s

fNTq +
2

27

∑

Q=c,b,t

fNTG,

with

mNf
N
Tq = 〈N |mq q̄q|N〉 and

fNTG = 1−
∑

q=u,d,s

fNTq.

Here, for simplicity, we assume that the lightest Higgs state has the same couplings

as a SM Higgs boson and ignore all contributions induced by heavy Higgs boson

and squark exchange2. Due to the hierarchical structure of the active Higgs boson

spectrum and the approximate Z
H
2 symmetry this approximation works very well.

Using the experimental limits set on σSI and (6.31) one can obtain upper bounds on

2The near degeneracy of the lightest and second to lightest inert neutralinos could result in the
inelastic scattering collisions in which Ñ1 is upscattered off of a nucleus into Ñ2 and this could affect
the direct detection of Ñ1 in experiments. However, such processes may take place only if the LSP-
NLSP mass splitting is less than about 100 keV [126]. In the E6SSM mass splittings of this order
are not expected to be typical. In the benchmark scenarios considered in tables 6.1, 6.2, and 6.3
the mass splitting is substantially larger and such inelastic nuclear scattering of Ñ1 does not play a
significant role.
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Xh1
11 [127].

In tables 6.1, 6.2, and 6.3 we specify the interval of variations of σSI for each

benchmark scenario. As one can see from (6.31) the value of σSI depends rather

strongly on the hadronic matrix elements — the coefficients fNTq that are related to

the π-nucleon σ term and the spin content of the nucleon. The hadronic

uncertainties in the elastic scattering cross-section of DMPs and nucleons were

considered in ref. [125]. In particular, it was pointed out that fNTs could vary over a

wide range. In tables 6.1, 6.2, and 6.3 the lower limit on σSI corresponds to f
N
Ts = 0

while the upper limit corresponds to fNTs = 0.36 (see ref. [4]). From tables 6.1, 6.2,

and 6.3 and (6.31) it also becomes clear that σSI decreases substantially when mh1

grows.

Since in all of the benchmark scenarios presented in tables 6.1, 6.2, and 6.3 the

lightest inert neutralino is relatively heavy, with |mÑ1
| ∼ mZ/2, allowing for a small

enough dark matter relic density, the coupling of Ñ1 to the lightest CP -even Higgs

state is always large, giving rise to a Ñ1-nucleon spin-independent cross-section that

is of the order of, or larger than, the 90% confidence level bound of ref. [123].

The dark matter scenario detailed in the present and previous chapters is now

severely challenged by the most recent XENON100 results [124]. Although these

results appear to rule out the E6SSM as a model of dark matter, it should be noted

that they do not rule out the model per se. Scenarios similar to those in tables 6.1

and 6.2, but in which the predicted relic density is somewhat less than the

measured relic density can be consistent with direct detection experiments,

although since such scenarios would not completely explain the observed dark

matter relic density they may be considered less well motivated. In such scenarios it

needs to be assumed that the majority of the observed dark matter is not composed

of E6SSM inert neutralino LSPs, but is composed of some extra matter beyond that

of the E6SSM.
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6.4 Summary and Conclusions

In this work we considered novel decays of the SM-like Higgs boson in the E6SSM.

Particular attention was given to the dark matter that the model predicts and this

work also represents a more in-depth study of the inert neutralino and chargino

sectors of the E6SSM than the previous study presented in chapter 5 and paper I.

To satisfy LEP constraints we restricted our consideration to scenarios with

relatively heavy inert chargino states mC̃1,2
& 100 GeV. In our analysis we also

required the validity of perturbation theory up to the GUT scale which sets

stringent constraints on the values of the Yukawa couplings at low energies. Using

these restrictions we argued that the lightest and the second lightest inert

neutralinos are always light — they typically have masses below 60–65 GeV. These

neutralinos are mixtures of inert Higgsinos and singlinos. In the considered model

the lightest inert neutralino Ñ1 tends to be the LSP and play the role of dark

matter while Ñ2 tends to be the NLSP. The masses of Ñ1 and Ñ2 decrease with

increasing tan(β) > 1 and inert chargino masses.

Because the lightest inert neutralino states are predomiantly inert singlino in

nature, their couplings to the gauge bosons, active Higgs bosons, quarks, and

leptons are rather small, resulting in relatively small LSP annihilation cross-sections

and the possibility of an unacceptably large dark matter density. In the limit where

all non-SM states except for the inert neutralinos and charginos are heavy a

reasonable density of dark matter can be obtained if |mÑ1,2
| ∼ mZ/2, where the

inert LSPs annihilate mainly through an s-channel Z boson. On resonance an

appropriate value of Ωχh
2 can be achieved even for a relatively small coupling of

the LSP to the Z boson. In order to achieve plausible scenarios consistent with

both LEP and cosmological observations, requiring |mÑ1
| ∼ mZ/2 if Ñ1 contributes

to CDM, tan(β) cannot be too large.

The main message arising from this work is that within the dark matter

motivated scenario although the lightest and the second lightest inert neutralinos

can have small couplings to the Z boson their couplings to the SM-like Higgs state
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h1 are always large. Indeed, we argued that in the first approximation the couplings

of Ñ1 and Ñ2 to the lightest CP -even Higgs boson are proportional to |mÑ1
|/v and

|mÑ2
|/v respectively. Since |mÑ1,2

| must be of order mZ/2 in order for the theory

not to predict too much dark matter, these couplings are much larger than the

corresponding coupling of b quarks to the SM-like Higgs boson. Thus the SM-like

Higgs boson decays predominantly into the lightest inert neutralino states and has

very small branching ratios (2%–4%) for decays into SM particles.

The most recent XENON100 dark matter direct detection limits [124] now place

rather stringent constraints on the E6SSM inert neutralino dark matter scenario.

As an explanation for all of the observed dark matter relic density the model now

looks to be ruled out. There do, however, exist scenarios in which the E6SSM LSP

accounts for only some fraction of the observed dark matter that are consistent

with constraints from colliders and cosmology.
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Chapter 7

Dark Matter and Big Bang

Nucleosynthesis in the E6Z
S
2 SSM

In this chapter, which contains work that was first published in paper III, with

the exception of section 7.5 which contains work that is original to this thesis, we

introduce a new scenario for dark matter in the E6SSM in which the dark matter

candidate is just the usual bino. At first sight having a bino dark matter candidate

seems impossible since, as already discussed, the lightest inert neutralino mass

eigenstates, predominantly the inert singlinos S̃α, naturally have suppressed masses

and it is very difficult to make them even as heavy as half the Z mass. To overcome

this we propose that the inert singlinos are exactly massless and decoupled from the

bino, which is achieved in practice by setting the Yukawa couplings f(d,u)αβ to zero.

This is easy to do by introducing a discrete symmetry Z
S
2 under which the inert

singlet scalars Sα are odd and all other bosonic states are even — a scenario we

refer to as the E6Z
S
2 SSM.

In the E6Z
S
2 SSM the inert singlinos S̃α will be denoted as σ̃ in order to

emphasise their different (massless and decoupled) nature. The stable DMP is then

generally mostly bino and the observed dark matter relic density can be achieved

via a novel scenario in which the bino inelastically scatters off of SM matter into

heavier inert Higgsinos during the time of thermal freeze-out, keeping the bino in

equilibrium long enough to give the desired relic abundance. As long as the inert
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Higgsinos are close in mass to the bino this is always possible to arrange — the only

constraint being that the inert Higgsinos satisfy the LEP constraint of being heavier

than 100 GeV. This in turn implies that the bino must also be heavier than or close

to 100 GeV. These constraints are easy to satisfy and, unlike in the inert neutralino

LSP dark matter scenario, we find that successful relic abundance can be achieved

within a GUT scale constrained version of the model — the cE6Z
S
2 SSM —

assuming a unified soft scalar mass m0, soft gaugino mass M1/2, and soft trilinear

mass A0 at the GUT scale.

It is worth noting that studies of the cE6SSM [128, 5, 65] have hitherto

neglected to study the full 12× 12 neutralino mass matrix and only considered the

6× 6 mass matrix of the USSM [4]. Although the question of dark matter was

addressed in the USSM, the requirement of successful relic abundance was not

imposed on the cE6SSM in refs. [128, 5, 65] even though both analyses considered

the same 6× 6 neutralino mass matrix. This is because it was expected that dark

matter would arise from the inert sector of the cE6SSM which was not studied.

When cosmological constraints on inert neutralino dark matter are included in the

E6SSM certain trilinear Higgs Yukawa couplings relevant to the inert sector are

required to be large as we saw in chapters 5 and 6. In the cE6SSM these large

couplings strongly affect the RG running from the GUT scale and we have not been

able to show that having inert neutralino LSPs consistent with CDM constraints

can also be consistent with having universal (GUT scale constrained) soft mass

parameters. Here we shall consider the cE6SSM with the full 12× 12 neutralino

mass matrix, including both the USSM and inert neutralinos, under the assumption

that the fermionic components of the inert SM-singlet supermultiplets, the two

inert singlinos, are forbidden to acquire mass by an extra Z2 symmetry of the

superpotential. In practice there is then a 10× 10 neutralino mass matrix once the

two massless inert singlinos are decoupled.

In summary, the main result of this study is that bino dark matter, with nearby

inert Higgsinos and massless inert singlinos, provides a simple and consistent

picture of dark matter in the E6SSM and is consistent with GUT scale unified soft

parameters. We also consider the effect of the presence of the two massless inert
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singlinos in the E6Z
S
2 SSM on the effective number of neutrinos contributing to the

expansion rate of the universe prior to BBN, affecting 4He production. Current fits

to WMAP data [129] favour values greater than three, so the presence of additional

contributions to the effective number of neutrinos is another interesting aspect of

the E6Z
S
2 SSM. In practice we find that the additional number of effective neutrino

species is less than two, due to entropy dilution, depending on the mass of the Z ′

boson which keeps the inert singlinos in equilibrium.

The E6Z
S
2 SSM is introduced and its neutralino sector is explored in section 7.1.

The details of the dark matter calculation are presented in section 7.2. Neff is

defined and calculations of its value in the E6Z
S
2 SSM are presented in section 7.3.

Some benchmark points are presented in section 7.4. The possibility of inert singlino

WDM is discussed in section 7.5 and the conclusions are summarised in section 7.6.

7.1 The E6Z
S
2SSM

In the E6Z
S
2 SSM, as well as being invariant under ZM2 and either ZL2 or ZB2 ,

summarised in tables 3.2 and 7.1, the superpotential of the E6SSM (3.6) is also

invariant under an additional exact Z2 symmetry called Z
S
2 . Under this symmetry

only the two inert SM-singlet fields Sα are odd. The couplings of the forms λαij and

καij are therefore forbidden. This means that the fermionic superpartners of Sα —

the inert singlinos σ̃ — are forbidden to have mass and do not mix with the other

neutralinos. They interact only via their gauge couplings to the Z ′ boson which

exist since they are charged under the U(1)N gauge symmetry.

All of the exact and approximate discrete symmetries relevant to the E6Z
S
2 SSM

superpotential are summarised in table 7.1.

One may worry that the effects of the massless inert singlinos would have already

been seen in precision measurements from LEP. The inert singlinos, although not

mixing with the inert Higgsinos as they did in the E6SSM inert neutralino dark

matter scenario, still couple to the Z1 mass eigenstate because of the non-zero Z-Z ′

mixing angle αZZ′ defined in (3.21). In the following we neglect the kinetic term
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Z
M
2 Z

L
2 Z

B
2 Z

H
2 Z

S
2

Sα + + + − −

Hdα, Huα + + + − +

S3, Hd3, Hu3 + + + + +

Q̃Li, d̃
c
Ri, ũ

c
Ri − + + − +

L̃Li, ẽ
c
Ri, Ñ

c
i − − − − +

D̄i, Di + + − − +

Table 7.1: The charges of the fields of the E6Z
S
2 SSM superpoten-

tial under various exact and approximate Z2 symmetries that the
superpotential may or may not obey. Z

M
2 is already a symmetry

due to gauge invariance. Either Z
L
2 or Z

B
2 is imposed in order to

avoid rapid proton decay. Z
H
2 is an approximate flavour symme-

try. In the E6Z
S
2 SSM the extra symmetry Z

S
2 is imposed, forcing

the inert singlinos to be massless and decoupled. i ∈ {1, 2, 3} and
α ∈ {1, 2}.

mixing that is expected to be a small effect (see section 3.2). For a given mZ′ ≈ mZ2

in (3.19) m2
ZZ′ , and hence also αZZ′ , is maximised in the limit tan(β) → ∞. For

mZ2
≈ mZ′ = 892 GeV the maximum value of m2

ZZ′ is 3270 GeV2 and the

maximum value of αZZ′ is then 4.15× 10−3. The Z1-σ̃-σ̃ coupling relative to the

Z-ν-ν gauge coupling R is equal to αZZ′ . From (6.28) the change in the effective

number of neutrinos contributing to the invisible Z boson width at LEP due to the

presence of massless inert singlinos is then ∆NLEP
eff = 2R2 = 2α2

ZZ′ = 1.72× 10−5

which is well below the experimental uncertainty σexp
NLEP

eff

= 8× 10−3. When the Z2

boson mass is large enough to avoid experimental detection limits the contributions

of massless inert singlinos to the Z boson width and to other LEP precision

measurements are expected to be within the experimental error.

7.1.1 The neutralinos of the E6Z
S
2SSM

The chargino sector of the E6Z
S
2 SSM is unchanged from that of the E6SSM without

Z
S
2 . The chargino mass matrix is that given in (5.11). The same is true for the

active Higgs scalar masses and mass matrices given in section 3.3. The situation in

the neutralino sector, however, is quite different.
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In the present study of the E6Z
S
2 SSM we define the term ‘neutralino’ not to

include the massless inert singlinos which do not appear in the superpotential and

are decoupled. The neutralino mass matrix MN in the interaction basis

Ñint =

(

B̃ W̃ 3 H̃0
d3 H̃0

u3 S̃3 B̃′ H̃0
dα H̃0

uβ

)T

, (7.1)

and again neglecting the small bino-bino′ mixing, is then equal to















































M1 0 −1
2g

′vd
1
2g

′vu 0 0 0 0

0 M2
1
2gvd −1

2gvu 0 0 0 0

−1
2g

′vd
1
2gvd 0 −µ −λ333vu√

2
QNd g

′
1vd 0 −λ33βs√

2

1
2g

′vu −1
2gvu −µ 0 −λ333vd√

2
QNu g

′
1vu −λ3α3s√

2
0

0 0 −λ333vu√
2

−λ333vd√
2

0 QNS g
′
1s −λ3α3vu√

2
−λ33βvd√

2

0 0 QNd g
′
1vd QNu g

′
1vu QNS g

′
1s M ′

1 0 0

0 0 0 −λ3α3s√
2

−λ3α3vu√
2

0 0 −λ3αβs√
2

0 0 −λ33βs√
2

0 −λ33βvd√
2

0 −λ3αβs√
2

0















































,

(7.2)

where once again QNd,u,S are the U(1)N charges of down-type Higgsinos, up-type

Higgsinos, and singlinos respectively, as given in table 3.1. Typically g′1 ≈ g1 all the

way down to the low energy scale. If the soft gaugino masses are unified at the

GUT scale then we also have M ′
1 ≈M1 ≈M2/2 (see subsection 3.2.1).

The Yukawa couplings in the off-diagonal blocks, marked out by lines, are

suppressed under the approximate Z
H
2 . Given the smallness of these couplings, the

inert neutralinos in the bottom-right block are pseudo-Dirac states with an

approximately decoupled mass matrix

− s√
2



















λ322 λ321

λ312 λ311

λ322 λ312

λ321 λ311



















in the basis

(

H̃0
d2 H̃0

d1 H̃0
u2 H̃0

u1

)T

.

They are approximately degenerate with the two inert chargino Dirac states.
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The top-left block is the USSM neutralino mass matrix (5.3) and contains the

states of the MSSM supplemented by the third generation singlino and the bino′. In

the case where M1 ≈M ′
1 is small the lightest neutralino mass state will be mostly

bino. The bino′ will mix with the third generation singlino giving two mixed states

with masses around QNS g
′
1s. As M1 ≈M ′

1 increases, the bino mass will increase

relative to both the third generation Higgsino mass µ and the inert Higgsino masses

given approximately by the biunitary diagonalisation of

− 1√
2
λ3αβs.

At the same time the state mostly containing the third generation singlino will have

a decreasing mass as M ′
1 increases relative to QNS g

′
1s.

7.2 Dark Matter in the cE6Z
S
2SSM

As discussed previously, in section 3.1, there is an automatically conserved R-parity

under which the charginos, neutralinos, inert singlinos σ̃, and exotic ˜̄D and D̃

fermions, along with the squarks and sleptons, are all R-parity odd, i.e. all of the

fermions other than the quarks and leptons are R-parity odd. We shall assume that

the lightest neutralino Ñ1 is the lightest of all of the R-parity odd states excluding

the massless inert singlinos σ̃. However, Ñ1 cannot decay into σ̃ via neutralino

mixing since the inert singlinos are decoupled from the neutralino mass matrix.

Furthermore, the potential decay Ñ1 → σ̃σ, allowed by the σ-σ̃-B̃′ supersymmetric

U(1)N gauge coupling, is forbidden if Ñ1 is lighter than the inert SM-singlet scalars

σ. In fact, in this case no kinematically viable final states exist that have the same

quantum numbers as Ñ1. Therefore Ñ1 is absolutely stable and in the scenario

presented is the DMP. The lightest inert SM-singlet scalar is not stable. There are

no Yukawa couplings involving Sα, but the inert SM-singlet scalars are able to

decay via the σ-σ̃-B̃′ supersymmetric U(1)N gauge coupling.

In the successful dark matter scenario presented in this section Ñ1 is

predominantly bino, with at least one of the two pairs of pseudo-Dirac inert
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Higgsinos expected to be close in mass, but somewhat heavier, in order to achieve

the correct relic density. This is due to a novel scenario in which the DMP is

approximately the bino and inelastically scatters off of SM matter into heavier inert

Higgsinos during the time of thermal freeze-out, keeping it in equilibrium long

enough to give a successful relic density. In this section we discuss in detail how

this novel scenario comes about in this model.

7.2.1 The dark matter calculation

In the considered model the DMP is not the lightest R-parity odd state — an inert

singlino — but the lightest neutralino Ñ1. We would like to use (4.3) to describe

the evolution of R-parity odd states other than the inert singlinos — generically χ̃.

In this case we should also include in (4.3) processes involving σ and σ̃ particles

that change the number of χ̃ particles by one. Since such processes necessarily

involve inert SM-singlet scalars σ, it is valid to neglect these processes in the case

where these inert SM-singlet bosons have frozen out long before the freeze-out of

dark matter. We will call this condition B, to go along with condition A, defined

in subsection 4.1, and it should be satisfied given our assumption that the inert

SM-singlet scalar mass eigenstates are heavier than the DMP, since they only

interact via the heavy Z ′ boson. Assuming that both conditions A and B are

satisfied we can use (4.6) to describe the evolution of the number density n of

R-parity-odd states other than inert singlinos χ̃. The value of n after the thermal

freeze-out of Ñ1 depends on annihilation cross-sections involving Ñ1 and other

R-parity odd states close by in mass and n will eventually be equal to the number

density of DMPs after other χ̃ states have decayed to Ñ1.

7.2.2 The cE6Z
S
2SSM dark matter scenario

In order to carry out the dark matter analysis in the constrained version of the

model we have extended the RG code used for the study in ref. [5] [130] to include

the Yukawa parameters and soft masses of the inert sector of the E6Z
S
2 SSM. The

inputs are κ3ij and λ333 at the GUT scale, λ3αβ at the EWSB scale, s, and tan(β),
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as well as the known low energy Yukawa couplings and gauge couplings. Given

these inputs and the RGEs the algorithm attempts to find points with GUT scale

unified soft masses m0, M1/2, and A0. The low energy U(1)N gauge coupling g′1 is

set by requiring it to be equal to the other gauge couplings at the GUT scale, which

is calculated.

For consistent points in the E6SSM the lightest non-inert (USSM sector)

supersymmetric particle is typically bino dominated. For the cE6Z
S
2 SSM we find

the same thing. The masses of the inert Higgsino states depend on s and on the

Yukawa couplings λ3αβ and in the cE6Z
S
2 SSM the lightest neutralino can be either

the bino dominated state or a pseudo-Dirac inert Higgsino dominated state. In the

latter case we find that the pseudo-Dirac inert Higgsino DMPs coannihilate with

full-weak-strength interactions and lead to a too small dark matter relic density. In

the former case the bino DMP normally annihilates too weakly and yields a too

large dark matter relic density. If, however, there are inert Higgsino states close by

in mass, they contribute significantly to 〈σv〉, allowing for the observed amount of

dark matter. This relies on condition A being satisfied, i.e. the binos being

up-scattered into inert Higgsinos at a large enough rate.

Such points with an appropriate dark matter relic density can be found and

three are presented in section 7.4. Condition B is satisfied since the inert

SM-singlet scalars are so much heavier than the DMP and the Z2 boson mass is so

large compared to the regular Z boson mass. Annihilation and scattering processes

involving inert SM-singlets and singlinos must contain a virtual Z ′ boson, which is

predominantly the Z2 mass eigenstate.

To test condition A let us compare the rate for binos up-scattering into inert

Higgsinos with the inert Higgsino coannihilation rate. We shall label the mostly

bino state Ñ1 and the lightest pseudo-Dirac inert Higgsino states Ñ2 and Ñ3. The

dominant up-scattering diagrams are of the form shown in figure 7.1.

As in section 6.1 we again define RZij couplings such that the Z-Ñi-Ñj coupling
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X

Ñ1 Ñ2, Ñ3

Z

Figure 7.1: The form of diagrams for the up-scattering of the bino
dominated DMP Ñ1 off of SM particles X into the pseudo-Dirac
inert Higgsino states Ñ2 and Ñ3.

Ñ2

Ñ3

Z

Figure 7.2: Full-weak-strength coannihilations of the pseudo-
Dirac inert Higgsino states Ñ2 and Ñ3.

is equal to RZij times the Z-ν-ν coupling. In the E6Z
S
2 SSM we can write

RZij =
∑

D=3,7,9

ND
i N

D
j −

∑

U=4,8,10

NU
i N

U
j , (7.3)

where Na
i is the neutralino mixing matrix element corresponding to mass eigenstate

i and interaction state a. D and U index the down- and up-type Higgsino

interaction states respectively. For the pseudo-Dirac inert Higgsino states we have

m3 ≈ −m2 and RZ23 ≈ 1, allowing for full-weak-strength coannihilations of the

form shown in figure 7.2.

Using the notation from (4.3), the ratio of the rate for the mostly bino state

up-scattering into the lightest mostly inert Higgsino state to the inert Higgsino

coannihilation rate is given approximately by

Υ =
〈σ′X12v1X〉n

eq
1 n

eq
X

〈σ23v23〉neq2 neq3
. (7.4)

To give an idea of the size of this ratio, if the SM particle X is relativistic and
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m1 ∼ m2 ≈ m3 then

Υ ∼
(

RZ12
RZ23

)2 T 3

(|m1|T )3/2 exp(−|m1|/T )

≈ R2
Z12x

3/2e−x, (7.5)

where again

x =
T

|m1|
.

This ratio is expected to be large because of the overwhelming abundance of the

relativistic SM particle X, but it also depends on RZ12. The value of RZ12 depends

on the Z
H
2 -breaking couplings that mix the upper-left block of the neutralino mass

matrix in (7.2) — the USSM states including the bino — with the inert Higgsino

states in the lower-right block. Since this symmetry is not exact we expect these

couplings to be large enough such that we can still assume Υ ≫ 1. Explicit

examples of this parameter are included in table 7.3 in section 7.4.

With conditions A and B satisfied we use micrOMEGAs [91] to calculate the

dark matter relic density for low energy spectra consistent with the GUT scale

constrained scenario. The observed relic density of dark matter can arise in this

model and examples are shown in table 7.3 in section 7.4. The most critical factor is

the mass splitting between the bino and the lightest inert Higgsinos. Too large and

there are not enough inert Higgsinos remaining at the time of the bino’s thermal

freeze-out to have a significant enough effect. Too small and 〈σv〉 is dominated by

inert Higgsino coannihilations, leading to a too small dark matter relic density.

Since in this scenario the DMP is predominantly bino, the spin-independent

DMP-nucleon cross-section σSI is not expected to be in the range that direct

detection experiments are currently sensitive too. The spin-independent

cross-section of a pure bino is suppressed by the squark masses, but is also sensitive

to the squark mixing angles [131]. For each flavour the cross-section vanishes for

zero squark mixing. Since in practice the DMP will also have non-zero, but small,
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active Higgsino components, there are also contributions to σSI from t-channel

active Higgs scalar exchange via the bino-Higgs-Higgsino supersymmetric gauge

coupling. These contributions, though in fact dominant, are quite small, due to the

overwhelming bino nature of the DMP. Estimates of σSI, using the same proton fd,

fu, and fs parameters used in the study in ref. [132], are included in table 7.3 in

section 7.4.

7.3 The Inert Singlinos and their Contribution to the

Effective Number of Neutrinos prior to BBN

In the standard theory of BBN, which happens long after the thermal freeze-out of

dark matter, the resultant primordial abundances of the light elements depend on

two parameters — the effective number of neutrinos contributing to the expansion

rate of the radiation dominated universe Neff and the baryon-to-photon ratio η.

Whilst the primordial abundance of 4He is not the most sensitive measure of η,

it is much more sensitive to Neff than the other light element abundances. This is

because prior to nucleosynthesis, when the equilibrium photon temperature is of

order 0.1 MeV, the number of neutrons remaining, virtually all of which are

subsequently incorporated into 4He nuclei, is sensitive to the expansion rate of the

universe, which depends on Neff . The greater the expansion rate, the less time there

is for charged current weak interactions to convert neutrons into protons.

The analysis in ref. [133], using the more recent neutron lifetime measurement

from ref. [134], gives Neff = 3.80+0.80
−0.70 at 2-sigma, implying a more-than-2-sigma

tension between the measured 4He abundance and the Standard Model prediction

for Neff of about 3. Although in ref. [135] it is suggested that these errors may be

larger, similar results are also obtained for the effective number of neutrinos

contributing to the expansion rate of the universe from fits to WMAP data [129].

In the E6Z
S
2 SSM the two massless inert singlinos would have decoupled from

equilibrium at an earlier time than the light neutrinos, but nevertheless would have

contributed to Neff . Exactly when the inert singlinos would have decoupled from
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equilibrium with the photon depends on the mass of the Z2 boson which determines

the strength of an effective Fermi-like 4-point interaction vertex that would have

been responsible for keeping the inert singlinos in equilibrium. The various values

for Neff that can be achieved in this model all fit the data better than the SM value.

The implications of extra neutrino-like particles present in the early universe

have long been studied and the methods used in following analysis rely on relatively

simple physics (see for example ref. [136]).

The effective number of degrees of freedom contributing to the expansion rate of

the universe during the run-up to nucleosynthesis is defined by

g0eff = gγ + 7/8gνNeff(4/11)
4/3

= 2 + 7/4Neff(4/11)
4/3, (7.6)

where g0eff is the value of geff , as defined in (4.9), immediately prior to

nucleosynthesis. Here gγ = 2 is the number of degrees of freedom of the photon and

gν = 2 is the number of degrees of freedom of a light neutrino. The three SM

neutrinos are expected to decouple from equilibrium with the photon at a

temperature above the electron mass whereas nucleosynthesis does not happen until

the temperature is below the electron mass. When the photon/electron temperature

is around the electron mass the electrons and positrons effectively disappear from

the universe1. Their disappearance heats the photons to a higher temperature then

they would otherwise have had, but the neutrinos, having already decoupled, would

continue to cool at the full rate dictated by Hubble expansion. Because of the

neutrinos’ lower temperature at nucleosynthesis they would then contribute less to

g0eff per degree of freedom. In (7.6) Neff is defined such that in the SM Neff = 3, for

the three neutrinos decoupling above the electron mass, as we shall see. Extra

particles, such as the E6Z
S
2 SSM inert singlinos, decoupling above the muon mass

would have had even lower temperatures at the time of nucleosynthesis and would

therefore contribute to g0eff even less than light neutrinos per degree of freedom.

1A much smaller number of electrons remains due to the small lepton number asymmetry.
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7.3.1 The calculation of Neff

In the cE6Z
S
2 SSM there is a typical scenario in which the massless inert singlinos σ̃

decouple at a temperature above the colour transition temperature (when the

effective degrees of freedom are quarks and gluons rather than mesons) and above

the strange quark mass, but below the charm quark mass. This has to do with the

strength of the interactions that keep the inert singlinos in equilibrium which

depend heavily on the mass of the Z2 boson. If the inert singlinos do decouple in

this range then this leads to a definite prediction for Neff . We shall explain why the

inert singlinos typically decouple in this temperature range in the following

subsection. For now we derive the value of Neff in this scenario as an example.

We shall use the superscript 0 to denote quantities at some temperature T 0

below the electron mass and the superscript e to denote quantities at some

temperature T e above the electron mass and where all light neutrino species are

still in equilibrium. We shall use the superscript s to denote quantities at some still

higher temperature T s above the colour transition and the strange quark mass and

where the inert singlinos are still in equilibrium.

At T s the effective number of degrees of degrees of freedom contributing to the

expansion rate is

gseff = gγ + gg + 7/8(ge + gµ + gu + gd + gs + 3gν + 2gσ̃)

= 2 + 16 + 7/8(4 + 4 + 12 + 12 + 12 + 6 + 4) = 651/4 (7.7)

and at T e it becomes

geeff = 2 + 7/8

(

6 + 4

(

T eσ̃
T e

)4
)

(7.8)

and at T 0 it becomes

g0eff = 2 + 7/8

(

6

(

T 0
ν

T 0

)4

+ 4

(

T 0
σ̃

T 0

)4
)

, (7.9)

taking into account that the neutrinos and inert singlinos now have different
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temperatures. With no subscript T always refers to the photon temperature, as is

the notation throughout this thesis.

From (4.10), the entropy within a given volume V due to a relativistic {boson,

fermion} with number of degrees of freedom gi is given by

Si = {1, 7/8}gi
2π2

45
(Ti)

3V. (7.10)

Since we are assuming that the inert singlinos decouple before the strange quark

threshold, in going from T s to T e we conserve the entropy in the comoving volume

separately for the inert singlinos and for everything else. Specifically, for the inert

singlinos

(T s)3V s = (T eσ̃)
3V e (7.11)

and for everything else

[gγ + gg + 7/8(ge + gµ + gu + gd + gs + 3gν)](T
s)3V s = [gγ + 7/8(ge + 3gν)](T

e)3V e

⇒ 613/4(T s)3V s = 103/4(T e)3V e. (7.12)

This allows us to write

(T s)3V s

(T e)3V e
=

(

T eσ̃
T e

)3

=
103/4

613/4
=

43

247
. (7.13)

In going from T e to T 0 we conserve the entropy separately for the neutrinos, for the

inert singlinos again, and for everything else, giving

[gγ + 7/8ge](T
e)3V e = gγ(T

0)3V 0, (7.14)

(T e)3V e = (T 0
ν )

3V 0, and (7.15)

(T eσ̃)
3V e = (T 0

σ̃ )
3V 0. (7.16)
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Figure 7.3: Electroweak interactions responsible for keeping the
light neutrinos in equilibrium in the early universe. For all the light
neutrinos there are the the processes on the left. For the electron
neutrinos there is also the additional process on the right.

This gives us

(

T 0
ν

T 0

)3

=
gγ

gγ + 7/8ge
=

4

11
and (7.17)

(

T 0
σ̃

T 0

)3

=
43

247

gγ
gγ + 7/8ge

=
43

247

4

11
. (7.18)

In this case the effective number of neutrinos contributing to the expansion rate

prior to nucleosynthesis (at T 0) is then

Neff = 3 + 2

(

43

247

)4/3

≈ 3.194. (7.19)

7.3.2 The inert singlino decoupling temperature

The light neutrinos are kept in equilibrium via their electroweak interactions. The

relevant diagrams are shown in figure 7.3.

We express the cross-section for processes relevant for keeping muon and τ

neutrinos in equilibrium as

〈σνµ,ντ v〉 = k2
T 2

m4
Z

(5/3)2g41
sin4(ϑW )

X4, (7.20)

where k2, like k1 from (4.14), is a constant defined for convenience and

X4 =

(

1

2

(

−1

2
+ sin2(ϑW )

))2

+
sin4(ϑW )

4
≈ 0.031. (7.21)
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Note that we are using the GUT normalised U(1)Y gauge coupling and so

g2
cos(ϑW )

=

√

5

3

g1
sin(ϑW )

. (7.22)

The cross-section for electron neutrinos with their extra diagram is then

〈σνev〉 = k2
T 2

m4
Z

(5/3)2g41
sin4(ϑW )

Y 4, (7.23)

where

Y 4 =

(

1

2

(

1

2
+ sin2(ϑW )

))2

+
sin4(ϑW )

4
≈ 0.147. (7.24)

We express the number densities of all Weyl fermions still in equilibrium with the

photon as

neL = neR = nµL = nµR = nνe = nνµ = nντ = k3T
3 (7.25)

and the expansion rate is given by

H = k1
√

geeffT
2. (7.26)

The neutrino decoupling temperature T ν can then be approximated by

〈σνv〉nν = H

⇒ (T νµ,ντ )3 = K
√

geffe m
4
Z

sin4(ϑW )

(5/3)2g41

1

X4
and (7.27)

(T νe)3 = K
√

geffe m
4
Z

sin4(ϑW )

(5/3)2g41

1

Y 4
, (7.28)

with K = k1/k2k3. A more detailed calculation finds that in the SM (with only

neutrinos, electrons, and photons contributing to geeff) T
νµ,ντ ≈ 3.7 MeV and

T νe ≈ 2.4 MeV — the muon and τ neutrinos decoupling earlier.

At temperatures above the strange quark mass the processes relevant for keeping
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Figure 7.4: Interaction processes responsible for keeping the inert
singlinos in equilibrium in the early universe.

the inert singlinos in equilibrium are shown in figure 7.4.

The part of the Lagrangian containing all of the fermion couplings in figure 7.4,

illustrating the relevant U(1)N charges, is

−
(

L†
L ec†R Q†

L uc†R dc†R σ̃†
)

iσ̄µg′1Z
′
µ

1√
40

































(2)LL

(1)ecR

(1)QL

(1)ucR

(2)dcR

(5)σ̃

































(7.29)

and the total cross-section taking into account all of these diagrams is then

(neglecting the small Z-Z ′ mixing)

〈σσ̃v〉 = k2
T 2

m4
Z2

2g41
Z4

(40)2
, (7.30)

where

Z4 = (5)2[2(2)2 + 2(1)2 + 3(1)2 + 3(1)2 + 6(1)2 + 6(2)2 + 3(2)2]

= 1450, (7.31)
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leading to an approximate singlino decoupling temperature of

(T σ̃)3 = K
√

gseffm
4
Z2

1

g41

(40)2

Z4
(7.32)

⇒
(

T σ̃

T νe

)3

=

√

gseff
geeff

(

mZ2

mZ

)4 (40)2(5/3)2

sin4(ϑW )

Y 4

Z4
. (7.33)

The only unknown variable here affecting the inert singlino decoupling temperature

is then the Z2 boson mass mZ2
. Rearranging we find

mZ2
≈ mZ

(

T σ̃

6.60 MeV

)3/4

. (7.34)

7.3.3 Neff in the E6Z
S
2SSM

We now check which values of mZ2
are consistent with our assumption that the inert

singlinos decouple at a temperature between the strange and charm quark masses.

For T σ̃ < mc we find that we require mZ2
< 4700 GeV. For mZ2

∼ 1000 GeV the

situation is slightly more complicated. Firstly the temperature of the QCD phase

transition is not accurately known and secondly the effective number of degrees of

freedom is decreased by so much after the QCD phase transition that even if the

inert singlinos were decoupled beforehand the universe may be expanding slowly

enough afterwards that they could come back into equilibrium. After checking a

range of scenarios we find that for 1300 GeV . mZ2
< 4700 GeV our value of

Neff = 3.194 is valid. For mZ2
. 950 GeV the inert singlinos decouple at a

temperature above the muon mass, but below the pion mass, leading to a larger

prediction of Neff = 4.373. At the time of the publication of paper II the

experimental limit in the E6Z
S
2 SSM was mZ2

> 892 GeV, from ref. [68], which

would allow a Z2 boson light enough for us to predict a value for Neff = 4.373. For

Z2 masses in between these ranges the value of Neff depends on the details of the

QCD phase transition, but is somewhere between these predictions. For inert

singlinos decoupling above the pion mass, but after the QCD phase transition, we

have Neff = 4.065. All of these values are within the 2-sigma measured range

Neff = 3.80+0.80
−0.70 and closer to the central value than the SM result Neff = 3.
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Benchmark 1 2 3

tan(β) 30 10 3
s [TeV] 5 4.4 5.5

λ333 @ GUT scale -0.3 -0.37 -0.4
λ322 @ EWSB scale 0.1 0.1 0.1
λ311 @ EWSB scale 0.0293 0.0403 0.0399
κ3ii @ GUT scale 0.18 0.18 0.23

M1/2 [GeV] 590 725 908

m0 [GeV] 1533 454 1037
A0 [GeV] 1375 1002 413

Table 7.2: The input parameters of the three cE6Z
S
2 SSM bench-

mark points.

Since the publication of paper III the limit on the Z2 mass in the E6Z
S
2 SSM

has increased to around 1350 GeV as discussed in subsection 3.2.2. This leads to a

concrete prediction of Neff = 3.194 assuming that inert singlinos decouple at a

temperature below the charm quark mass, i.e. mZ2
< 4700 GeV.

7.4 Benchmark Points

In the tables 7.2, 7.3, and 7.4 we present three benchmark points in the cE6Z
S
2 SSM.

For all three points we fix λ322 = 0.1 and λ321 = λ312 = 0.0001 at the EWSB scale.

For the Z
H
2 -breaking couplings we also fix λ332 = λ323 = 0.012 and

λ331 = λ313 = 0.005 at the EWSB scale. At the GUT scale we fix

κ333 = κ322 = κ311 and κ3ij = 0 for i 6= j. The lightest (SM-like) Higgs mass is

calculated to second loop order.

We have chosen three points with quite different values of tan(β) — 30, 10, and

3. This illustrates the fact that tan(β) can be quite low in this model since the

SM-like Higgs mass is not constrained to be less than mZ | cos(2β)| at tree level as it

is in the MSSM.

The mass of the bino DMP Ñ1 is not directly constrained to be above above

100 GeV. However, the lightest pseudo-Dirac inert Higgsino neutralinos Ñ2 and Ñ3

are almost degenerate with the lightest inert Higgsino chargino C̃1 and therefore

these are constrained to heavier than 100 GeV in order to be consistent with LEP

constraints [93]. Furthermore, the thermal relic DM scenario outlined in section 7.2
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Benchmark 1 2 3

µ [GeV] -1086.7 -1189.5 -1405.5

λ322s/
√
2 [GeV] 353.55 331.13 388.91

λ311s/
√
2 [GeV] 103.59 125.38 155.17

Ñ1 mass [GeV] 94.07 114.49 143.50

Ñ2 mass [GeV] -105.12 -126.45 -156.57

Ñ3 mass [GeV] 105.14 126.47 156.62

Ñ4 mass [GeV] 167.05 203.19 255.47

Ñ5 mass [GeV] -353.77 -311.29 -389.12

Ñ6 mass [GeV] 353.78 311.30 389.13

Ñ7 mass [GeV] -1092.5 -1194.5 1409.6

Ñ8 mass [GeV] 1093.3 1194.8 -1411.2

Ñ9 mass [GeV] -1803.2 -1572.3 -1964.7

Ñ10 mass [GeV] 1899.7 1688.7 2109.9

C̃1 mass [GeV] 105.04 126.41 156.52

C̃2 mass [GeV] 167.05 203.19 255.46

C̃3 mass [GeV] 353.78 311.30 389.13

C̃4 mass [GeV] -1094.4 -1196.1 -1411.3

mZ′ [GeV] 1850.4 1628.4 2035.4
Neff 3.194 3.194 3.194

Ωχh
2 0.112 0.107 0.102
Υ 1.1× 108 2.3× 108 2.3× 108

σSI [cm
2] 4.9× 10−48 2.5× 10−48 1.2× 10−48

Table 7.3: The low energy neutralino and chargino masses and
associated parameters of the three benchmark points. The DMP is
the lightest neutralino Ñ1 which is predominantly bino in nature.
There is a nearby pair of inert neutral Higgsinos Ñ2 and Ñ3 and
a chargino C̃1 into which Ñ1 inelastically scatters during freeze-
out, resulting in a relic density consistent with observation. The
predicted values of mZ2

and Neff are also shown, as is the spin-
independent Ñ1-nucleon direct detection cross-section σSI.
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Benchmark 1 2 3

h1 mass [GeV] 122.2 114.6 115.3
h2 mass [GeV] 1145 987.1 1522
h3 mass [GeV] 1890 1664 2080
H± mass [GeV] 2106 1396 1675
A0 mass [GeV] 2103 1393 1673

mS2
,mS1

[GeV] 1547 518 1084
mHd2

,mHd1
[GeV] 1567 611 1156

mHu2
,mHu1

[GeV] 1561 599 1146

mD̃3
[GeV] 1483 503 1794

mD̃2
,mD̃1

[GeV] 1443 493 1775

m ˜̄D3

[GeV] 2864 2321 3065

m ˜̄D2

,m ˜̄D1

[GeV] 2840 2318 3052

mt̃1
[GeV] 1122 625.3 1110

mc̃1 ,mũ1 [GeV] 1817 1774 1707
mt̃2

[GeV] 1470 1069 1546

mc̃2 ,mũ2 [GeV] 1838 1224 1761
mb̃1

[GeV] 1434 1009 1512

ms̃1 ,md̃1
[GeV] 1840 1226 1763

mb̃2
[GeV] 1748 1265 1818

ms̃2 ,md̃2
[GeV] 1907 1278 1820

mτ̃1 [GeV] 1500 718.8 1259
mµ̃1 ,mẽ1 [GeV] 1655 731.3 1261

mτ̃2 [GeV] 1708 949.2 1473
mµ̃2 ,mẽ2 [GeV] 1775 952.8 1474

mν̃τ [GeV] 1705 945.6 1472
mν̃µ ,mν̃e [GeV] 1774 949.5 1472

mg̃ [GeV] 541.3 626.9 787.7

Table 7.4: The remaining particle spectrum of the three bench-
mark points.
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requires Ñ2 and Ñ3 not to be too much more massive than Ñ1. In practice the Ñ1

is predominantly bino and its mass cannot be much less than 100 GeV. In

benchmark 1, for example, it is 94 GeV.

Requiring such values for the low energy bino mass M1 and requiring consistent

EWSB in practice means that the SM-singlet VEV s cannot be too low. This in

turn means that the Z2 mass is always more than about 1.5 TeV, automatically

satisfying the most recent experimental lower limit. In these benchmarks from the

constrained scenario the effective number of neutrinos contributing to the expansion

rate of the universe prior to BBN Neff therefore takes on the lower value calculated

in section 7.3 of around 3.2. This is more consistent with data than the SM

prediction.

In all benchmark points Ñ4 and C̃2 are predominantly wino. Ñ5, Ñ6, and C̃3 are

predominantly made up of the remaining inert Higgsinos states, with masses around

λ322s/
√
2, whereas Ñ7, Ñ8 and C̃4 are predominantly made up of the active

Higgsino states, with masses around µ. Ñ9 and Ñ10 are mostly superpositions of

the active singlino and bino′.

The fact that Υ ≫ 1 indicates that the inert Higgsino components in the

predominantly bino state Ñ1, though small, are large enough such that processes

involving Ñ1 up-scattering off of a SM particle into Ñ2 happen overwhelmingly

more often than neutralino annihilation and coannihilation processes. In this way

the ratios of the number densities of these particles are able to maintain their

equilibrium values.

The spin-independent DMP-nucleon cross-section σSI, as estimated using the

results in ref. [131], is quite small for these benchmarks and is not currently

detectable by direct detection experiments. This is due to the predominantly bino

nature of the DMP as well as the large squark masses.
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7.5 Warm Inert Singlino Dark Matter in the E6SSM

A model of dark matter is inconsistent if it predicts a DMP mass that is so light

that the observed structure of the universe would have been erased. Such light dark

matter is known as hot dark matter. Although such hot dark matter is inconsistent

with observation, the dark matter also does not need to be cold, i.e. of a mass such

that it was non-relativistic at freeze-out, to be consistent with current

observations [137, 138]. The intermediate scenario is known as warm dark matter.

Limits on WDM from WMAP and Lyman-α forest data require the mass of a warm

thermal relic particle responsible for all of the observed dark matter to be greater

than 550 eV [137]. This is of the order of various other keV scale lower bounds on

WDM particles [138].

In the E6SSM, if the Z
S
2 symmetry was only approximate then the only stable

supersymmetric particle or particles would be either the lightest of or both of the

two light, predominantly inert singlino states. In this case the inert singlinos could

form WDM. It is already known that if all of the observed dark matter is made up

of gravitino WDM decoupling above GeV temperatures with geff ∼ 100 then the

gravitino mass would have to be around 100 eV, contradicting the above limit [137].

For inert singlinos decoupling at a temperature T s between the strange and charm

quark masses the singlinos would have undergone even less entropy dilution than

such gravitinos and their masses would need to be even smaller in order for the

observed dark matter relic density to be predicted.

The number density of a single species of {boson, fermion} with temperature Ti

is proportional to si ∝ T 3
i

ni = gi{1, 3/4}
ζ(3)

π2
T 3
i . (7.35)
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The number density of all three neutrino species today

3n0ν = 3
3

2

ζ(3)

π2
4

11
(T 0)3 =

9

11
n0γ

⇒ sγ + 3sν =
20

11
sγ . (7.36)

Conserving entropy between inert singlino freeze-out and today then gives

n0σ̃V
0 = nsσ̃V

s (7.37)

for inert singlinos and

(

n0γ + 3n0ν

)

V 0 =
20

11
n0γV

0 =
(

ns − 2nsσ̃

)

V s (7.38)

for everything else which means that today

n0σ̃
n0γ

=
20

11

nsσ̃
ns − 2nsσ̃

(7.39)

if the inert singlinos were relativistic at freeze-out.

For the case of two stable inert singlinos with masses m1 and m2 the relic

density today will be given by

Ωσ̃h
2 =

(

n01m1 + n02m2

)h2

ρc
=
n0γh

2

ρc

n01m1 + n02m2

n0γ
. (7.40)

If Ωσ̃ = ΩDM and n01 = n02 = n0σ̃ as derived above then this can be rearranged to give

m1 +m2 = ΩDMh
2 ρc
h2

1

n0γ

11

20

ns − 2nsσ̃
nsσ̃

. (7.41)

Using ρc = 1.05× 104h2 eVcm−3, n0γ = 410.5 cm−3 [10], and

ns − 2nsσ̃
nsσ̃

=
gγ + gg + 3/4(ge + gµ + gu + gd + gs + 3gν)

3/2
=

111

3
(7.42)
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gives

m1 +m2 = 57 eV (7.43)

in contradiction with data.

Therefore thermal WDM inert singlinos, like thermal WDM gravitinos, cannot

be responsible all of the observed dark matter. WDM inert singlinos with larger

masses could only be responsible for all of the observed dark matter is there were a

significant source of entropy dilution reheating the SM matter, but not reheating

the inert singlinos, after the time of inert singlino freeze-out. Such entropy dilution

would lower the number density of inert singlinos today relative to the known CMB

photon number density. Thermal WDM decoupling at geff ∼ 1000 could also lead to

a successful WDM scenario, but such a situation is well beyond the framework of

the E6SSM, requiring, for inert singlino WDM, a much more massive U(1)N Z ′

boson and, more importantly, the existence of many new degrees of freedom,

beyond those of the E6SSM, at some high temperature.

However, the E6SSM with an approximate Z
S
2 symmetry does allow for another

type of scenario, apart from having lightest inert neutralinos with masses of order

half of the Z boson mass, in which the supersymmetric particles of the E6SSM are

responsible for less than the observed dark matter relic density. Such scenarios are

consistent with, even if they do not explain, cosmological observations. If the Z
S
2

symmetry was only approximate and WDM inert singlinos had masses significantly

less than 57 eV then these inert singlinos would be the only stable supersymmetric

particles and would contribute less than the observed amount of dark matter.

7.6 Summary and Conclusions

The difficulty in making the predominantly inert singlinos states predicted by the

E6SSM much heavier than 60 GeV makes them natural dark matter candidates,

but has also led to a very tightly constrained scenario in which inert neutralino LSP

dark matter is now severely challenged by the most recent XENON100 analysis of
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100.9 days of data. Furthermore we have not been able to show that such a scenario

could be consistent with having universal (GUT scale constrained) soft mass

parameters.

In this work we discussed a new variant of the E6SSM called the E6Z
S
2 SSM that

involves a novel scenario for dark matter in which the DMP is predominantly the

bino with a mass close to or above 100 GeV which is fully consistent with

XENON100 data. A successful relic density is achieved via its inelastic up-scattering

into nearby heavier inert Higgsinos during the time of thermal freeze-out. The

model also predicts two massless inert singlinos which contribute to the effective

number of neutrino species at the time of BBN, depending on the mass of the Z2

boson which keeps them in equilibrium. For mZ2
> 1300 GeV we find Neff ≈ 3.2.

We presented a few benchmark points in the cE6Z
S
2 SSM to illustrate this new

scenario. The benchmark points show that it is easy to find consistent points that

satisfy the correct relic abundance as well as all other phenomenological constraints.

The points also show that the typical Z2 mass is expected to be around 2 TeV, with

the gluino having a mass around 500–800 GeV and squarks and sleptons typically

having masses around 1–2 TeV. The DMP-nucleon spin-independent direct

detection cross-sections are well below current sensitivities.

Although very light inert singlinos in the E6SSM provide a candidate for WDM,

in order to account for all of the observed dark matter thermal WDM inert

singlinos would need to be too light — lighter than would be consistent with other

cosmological observations. Inert singlino WDM contributing less than the observed

dark matter relic density would, however, provide another scenario in which the

E6SSM predicts less than the observed amount of dark matter and is consistent

with all observations.
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Chapter 8

Summary and Conclusions

In chapter 5 the first study of the inert neutralino sector of the E6SSM is presented.

It was found that in the E6SSM the dark matter naturally arises from this

approximately decoupled sector. The inert neutralino dark matter scenario was

studied both analytically and numerically. It was found that in order for the inert

neutralino LSP not to be too light and singlino dominated, leading to too large a

dark matter relic density, certain trilinear Higgs Yukawa couplings relevant to the

inert sector should be large and the ratio of Higgs VEVs tan(β) should be relatively

close to unity. If the LSP mass is allowed to increase to around half of the Z boson

mass then the LSP also contains larger inert Higgsino components and can

annihilate more efficiently in the early universe, leading to a reduced dark matter

relic density. Imposing that the LSP has a mass greater that half of the Z boson

mass, to avoid potential conflict with LEP data, and accounts for all of the

observed dark matter implies that tan(β) should be less than about 2, depending on

the sizes of various Yukawa couplings that one is willing to allow. The inert

neutralino dark matter scenario relies mostly on parameters that only affect the

inert sector physics. As a result the parameter space of the MSSM-like sector of the

E6SSM is less constrained compared that of the MSSM since in the E6SSM these

parameters are not constrained from dark matter considerations. The exception is

tan(β) which strongly affects the LSP mass, with the LSP mass being

approximately proportional to sin(2β).
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In chapter 6 a more in-depth study of the inert neutralino and chargino sectors

of the E6SSM, with a particular focus on physics relating to the Higgs boson, is

presented. The condition that Yukawa couplings remain perturbative up to the

GUT scale is imposed and the LSP and NLSP masses cannot then be made greater

than about 60 GeV. Scenarios where the LSP and NLSP masses are around half of

the Z boson mass are found that produce less than or equal to the observed amount

of dark matter. It is found that inert neutralino masses below half of the Z boson

mass can be consistent with LEP data provided that tan(β) is not too large. In

plausible scenarios consistent with observations from both cosmology and LEP it is

found that the couplings of the lightest inert neutralinos to the SM-like Higgs boson

are always rather large. This means that the SM-like Higgs boson has a large

branching ratio into invisible final states and this has major implications for Higgs

boson collider phenomenology. The branching ratio into SM particles is reduced to

around 2–4%. It also leads to large spin-independent LSP-nucleon cross-sections

and because of this scenarios in which E6SSM inert neutralino LSPs account for all

of the observed dark matter are now severely challenged by recent dark matter

direct detection experiment analyses.

In chapter 7 a new variant of the E6SSM called the E6Z
S
2 SSM is presented in

which the dark matter scenario is very different to the inert neutralino CDM

scenario and in which the presence of supersymmetric massless states in the early

universe modifies the expansion rate of the universe prior to BBN. In the dark

matter scenario the DMP is the bino and a successful relic density is achieved via

its inelastic up-scattering into nearby heavier inert Higgsinos during the time of

thermal freeze-out. The nearby pair of inert Higgsino neutralinos form a

pseudo-Dirac pair with masses approximately equal the corresponding inert charged

Higgsino Dirac mass and cannot have masses below about 100 GeV. In the

E6Z
S
2 SSM the two inert singlino states are exactly massless and contribute to the

effective number of neutrino species at the time of BBN, depending on the mass of

the Z2 boson which keeps them in equilibrium. For mZ2
> 1300 GeV we find

Neff ≈ 3.2. The dark matter scenario is consistent with having universal (GUT

scale constrained) soft mass parameters and the DMP-nucleon spin-independent
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direct detection cross-sections are well below current sensitivities.

In the E6SSM light inert singlinos contribute too much CDM if they are

non-relativistic at freeze-out — more than the observed dark matter relic density.

However, in section 7.5 we showed if the inert singlinos have masses less than

around 50 eV then they will contribute WDM less than the observed dark matter

relic density.

In the future it would be interesting to study more theoretical aspects of the

E6SSM and E6Z
S
2 SSM such as how much fine-tuning these models involve and what

the effects are of potential non-renormalisable terms in the superpotential. At the

same time, now that the LHC is taking data it is important to study the collider

phenomenological predictions of these models. Gluino cascade decays in which the

gluino sequentially decays into the DMP, giving off pairs of fermions at each stage,

is the subject of a further paper currently in preparation [139]. In this paper we try

to identify how the E6SSM could be distinguished from the MSSM at the LHC.
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Appendix A

Weyl, Majorana, and Dirac

Spinors in 3 + 1 Dimensions

We represent the Dirac gamma matrices in the Weyl basis

γµ =







0 σµ

σ̄µ 0






, (A.1)

where σ0 = σ̄0 = 1 and σ̄i = −σi and write a general Dirac spinor

Ψ =







ψL

ψR






, (A.2)

with ψL a LH Weyl spinor and ψR a RH Weyl spinor. We write a general

infinitesimal Lorentz transformation on a Dirac spinor Ψ as

Λ1/2(dϑ, dβ)







ψL

ψR






=







(

1 + 1/2idϑ.σ + 1/2dβ.σ
)

ψL
(

1 + 1/2idϑ.σ − 1/2dβ.σ
)

ψR






. (A.3)

Using the mathematical identity

σ2σ∗ = −σσ2 (A.4)
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we can see that σ2ψ∗
L transforms as RH spinor and σ2ψ∗

R transforms as a LH spinor

Λ1/2(dϑ, dβ)σ
2ψ∗

L = σ2
((

1 + 1/2idϑ.σ + 1/2dβ.σ
)

ψL

)∗

=
(

1 + 1/2idϑ.σ − 1/2dβ.σ
)

σ2ψ∗
L and

Λ1/2(dϑ, dβ)σ
2ψ∗

R = σ2
((

1 + 1/2idϑ.σ − 1/2dβ.σ
)

ψR

)∗

=
(

1 + 1/2idϑ.σ + 1/2dβ.σ
)

σ2ψ∗
R. (A.5)

We therefore define the charge conjugation operation acting on a Dirac spinor Ψ to

be

Ψc =







ωRσ
2ψ∗

R

ωLσ
2ψ∗

L






. (A.6)

Since −σ2σ2∗ = 1, applying the charge conjugation operation twice yields Ψcc = Ψ

as long as we define ωRω
∗
L = ωLω

∗
R = −1. We define ωR = −ωL = −ω implying that

|ω|2 = 1. We define the CP conjugation operation acting on a LH Weyl spinor so

that the RH spinor

ψcL = ωσ2ψ∗
L, (A.7)

and on a RH Weyl spinor so that the LH spinor

ψcR = −ωσ2ψ∗
R. (A.8)

The gauge and Lorentz invariant part of the Lagrangian for a massive Dirac

spinor with mass m

LD = Ψ†
Dγ

0
(

iγµDµ −m
)

ΨD (A.9)

= ψ†
Liσ̄

µDµψL + ψ†
Riσ

µDµψR −mψ†
RψL −mψ†

LψR. (A.10)
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This may be rewritten in terms of the two LH Weyl spinors ψL and ψcR as

LD = ψ†
Liσ̄

µDµψL + ψc†R iσ̄
µDµψ

c
R −

(

mψcc†R ψL + c.c.
)

(A.11)

up to a total derivative, revealing that a Dirac spinor with mass m is formed from

two Weyl spinors of the same handedness with a mass matrix







0 m

m 0






. (A.12)

The covariant derivative acting on ψcR in (A.11) is the complex conjugate of

covariant derivative acting on ψR so that if ψR is in some representation r of some

gauge group such that

DµψR =
(

∂µ − igAaµT
a
r

)

ψR (A.13)

then

Dµψ
c
R =

(

∂µ + igAaµT
a∗
r

)

ψcR

=
(

∂µ − igAaµT
a
r̄

)

ψcR (A.14)

and ψcR is in the conjugate representation r̄.

The Lagrangian for a single LH Weyl spinor ψ with mass m

LM = ψ†iσ̄µDµψ − m

2

(

ψc†ψ + c.c.
)

(A.15)

may be written in terms of a Majorana spinor

ΨM =







ψ

ωσ2ψ






(A.16)
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as

LM = 1/2Ψ†
Mγ

0
(

iγµDµ −m
)

ΨM . (A.17)

The Majorana spinor is nothing but a Dirac spinor that is self-charge-conjugate.

The Weyl or Majorana mass matrix for a Dirac particle (A.12) is diagonalised to







−m 0

0 m






(A.18)

in the Weyl or Majorana mass eigenstate basis. Conversely, if two mass eigenstate

Majorana spinors have equal and opposite masses and all other quantum numbers

equal then together they form a Dirac spinor. If the masses of two such Majorana

spinors are opposite, but not quite equal then together they are said to form a

pseudo-Dirac state.
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Appendix B

The Pseudoreality of the Spinor

Representation of SU(2)

Let the field ϕ form the representation (2, r) under the gauge group SU(2)⊗G so

that an infinitesimal gauge transformation acting on ϕ can be written

Ξ(dα, dβ)ϕ =
(

1− idαaτa − idβbT br

)

ϕ, (B.1)

where τa = σa/2 are the generators of 2 and T a are the generators of r. We also

define a field ϕ̄ that is in the representation (2, r̄) so that

Ξ(dα, dβ)ϕ̄ =
(

1 + idαaτa∗ + idβbT b∗r

)

ϕ̄. (B.2)

The field ϕ̄ may be redefined as the equivalent field 2ωτ2ϕ̄. Using (A.4) again,

this time in the form τ2τa∗ = −τaτ2, we see that this field transforms with

Ξ(dα, dβ)2ωτ2ϕ̄ = 2ωτ2
(

1 + idαaτa∗ + idβbT b∗r

)

ϕ̄

=
(

1− idαaτa + idβbT b∗r

)

2ωτ2ϕ̄, (B.3)

meaning that that it is in the representation (2, r̄). We have somehow managed to

redefine the field so that it transforms in the 2 rather than 2 representation of

SU(2). Therefore, even though the spinor representation is not real, the 2 and 2
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representations are somehow equivalent. This representation is sometimes called

pseudoreal.

Antidoublet representations of SU(2) can always be redefined to be doublet

representations. If two fields are in the doublet representation of SU(2), a gauge

invariant bilinear may be formed by transforming one of the two fields such that it

is in the antidoublet representation. We thus define the gauge invariant product of

two doublet representations of SU(2)







↑1
↓1






.







↑2
↓2






=

(

↑1 ↓1
)

iσ2







↑2
↓2







= ↓1↑2 − ↑1↓2 . (B.4)
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