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Doctor of Philosophy
PHENOMENOLOGICAL ASPECTS OF THE E(6)S.S.M.
by Jonathan Peter Hall

The work in this thesis explores various phenomenological aspects of the FgSSM
with a particular focus on the inert neutralino sector of the model and on the dark
matter implications. The EgSSM is a string theory inspired supersymmetric
extension to the Standard Model with an Fg grand unification group. The model
provides a solution to the hierarchy problem of the Standard Model, provides an

explanation for neutrino mass, and has automatic gauge anomaly cancellation.

The inert neutralino sector of the FgSSM and the dark matter that naturally
arises from this sector is studied for the first time. Limits on the parameter space
from experimental and cosmological observations relating to the inert neutralino
dark matter are explored and the consequences for Higgs boson phenomenology are
investigated. In plausible scenarios it is found that the couplings of the lightest
inert neutralinos to the SM-like Higgs boson are always rather large. This has
major implications for Higgs boson collider phenomenology and leads to large
spin-independent LSP-nucleon cross-sections. Because of the latter, scenarios in
which FgSSM inert neutralinos account for all of the observed dark matter are now
severely challenged by recent dark matter direct detection experiment analyses. In
plausible scenarios consistent with observations from both cosmology and LEP the
lightest inert neutralino is required to have a mass around half of the Z boson mass

if it contributes to cold dark matter and this means that tan(3) cannot be too large.

A new variant of the FgSSM called the Eng SSM is also presented in which the
dark matter scenario is very different to the inert neutralino cold dark matter
scenario and in which the presence of supersymmetric massless states in the early
universe modifies the expansion rate of the universe prior to Big Bang
Nucleosynthesis. The new dark matter scenario is consistent with current
observations and the modified expansion rate provides a better explanation of
various data than the SM prediction. The prospects for a warm dark matter

scenario in the EgSSM are also briefly discussed.



ii



Dedicated to my friends and family

and to those whom we have lost.

iii



v



Contents

List of Figures ix
List of Tables xi
Author’s Declaration XV
Acknowledgements xvii
Abbreviations and Conventions xix
Overview 1
1 The Standard Model 3
1.1 Gauge Symmetry and Matter Content . . . . . ... ... ... .... 4

1.2  Gauge Anomaly Cancellation, Generations, and the Invisible Z Boson
Decay Width as Measured at LEP . . . . ... .. ... ........ 8
1.2.1 Gauge anomalies . . . . . .. ... L L 8
1.2.2 The effective number of neutrinos contributing to the invisible

Z boson decay width . . . . . ... ... ... ... ... ..., 11

1.3 The Higgs Potential and GWS EWSB . . . . .. .. ... ... .... 12

1.4 Induced Dirac Fermion Masses, the CKM Matrix, and Neutrino Mass 16

1.4.1 Neutrino mass and the type-I see-saw mechanism . . . . . . . . 17

1.5 Baryon and Lepton Number Conservation . . . . . ... ... ... .. 19
1.6 The Hierarchy Problem of the SM . . . . . ... .. ... ... .... 20
1.7 Unsolved Problems in Particle Physics . . . . . .. ... ... .. ... 24

2 Supersymmetry and Grand Unification 27



2.1 Superpotentials . . . . . . ... L 29

2.2 The Matter Content of the MSSM . . . . . .. ... ... ....... 30
221 R-parity . . . . .o 32
2.2.2  The p problem of the MSSM . . . . . . ... ... ... ... 33

2.3 Soft Supersymmetry Breaking . . . . . ... ..o 34

2.4 Grand Unification . . . ... .. .. . o 37
2.4.1 Unification of SSBmasses . . . . .. . ... ... ... ... .. 39

The EgSSM 41

3.1 Gauge Symmetry and Matter Content . . . . . . ... ... ... ... 42
3.1.1 Discrete symmetries of the superpotential . . . . . .. ... .. 45
3.1.2 Non-Higgs supermultiplets and RH neutrinos . . . . ... ... 47

3.2 U(1) Gauge Boson and Gaugino Mixing, EWSB Scale Gaugino Mass

Relations, and Z-Z' Mixing . . . . . . . . . . 48
3.2.1 Soft Gaugino Masses . . . . . . . . . . .. 49
322 Z-Z'mixing . . . .. ... 49
3.3 EWSB and the Active Higgs Boson Mass Figenstates . . . . . . . . .. 51
Thermal Relic Dark Matter 55
4.1 The Boltzmann Equation . . . .. ... ... ... ... ... ... 56
4.2 The Freeze-Out Temperature . . . . . . . .. .. ... ... .. .... 58
4.3 Supersymmetric Dark Matter . . . . . .. ... .. ... ... .. ... 61
Dark Matter in the EgSSM 63
5.1 The Trilinear Higgs Yukawa Couplings . . . . . . . .. ... ... ... 64
5.2 The Neutralino and Chargino Mass Matrices . . . .. ... ... ... 66
5.3 Analytical Discussion . . . . . . . . . ... 68
5.3.1 The neutralino masses and mixing for one inert generation . . 69
5.3.2  Annihilation Channels . . . . . .. ... . ... ... ...... 71
5.4 Numerical Analysis . . . . . . . .. ... 74
5.4.1 The parameter space of the model . . . . . ... .. ... ... 75
5.4.2 The neutralino and chargino spectra . . . . . . . .. ... ... 76
5.4.3 The dark matter relic density . . . . . .. .. .. .. ... ... 78

vi



5.4.4 Deviations from the considered parametrisation . . . . . . . .. 82

5.5 Summary and Conclusions . . . . . . . . .. .. .. ... ... ..... 83

6 Novel Higgs Decays in the EzSSM 85
6.1 Inert Charginos and Neutralinos . . . . ... ... ... ... ..... 87
6.1.1 The diagonal inert Yukawa coupling approximation . . . . . . . 89

6.1.2 Asg; and pseudo-Dirac lightest inert neutralino states . . . . . . 91

6.1.3 The couplings of Higgs bosons to inert neutralinos . . . . . .. 93

6.2 Novel Higgs Decays and Dark Matter. . . . . . ... ... ... .... 96
6.3 Benchmarks, Constraints, and Predictions . . . . . .. ... ... ... 98
6.3.1 Benchmark scenarios . . . . . . .. ... .o 102

6.3.2 Neutralino and chargino collider limits . . . . . . ... ... .. 107

6.3.3 Dark matter direct detection . . . . . ... ... ... L. 109

6.4 Summary and Conclusions . . . . . . .. .. ... ..., 112

7 Dark Matter and Big Bang Nucleosynthesis in the E6Z§SSM 115
7.1 The EgZSSSM . . . oo oo 117
7.1.1 The neutralinos of the EgZ5SSM . . . . . ... ... ...... 118

7.2 Dark Matter in the cEgZ5SSM . . . . . . . ... 120
7.2.1 The dark matter calculation . . . . . . .. .. .. ... ... .. 121

7.2.2  The cEsZ5SSM dark matter scenario . . . . . ......... 121

7.3 The Inert Singlinos and their Contribution to the Effective Number of

Neutrinos prior to BBN . . . . .. ... .. oo 125

7.3.1 The calculation of Negg . . . . . . . . . . . ... 127

7.3.2 The inert singlino decoupling temperature . . . . . . .. .. .. 129

733 Neginthe EgZ5SSM . . . . . . . ... 132

7.4 Benchmark Points . . . ... ... ... ... ... ... .. ..., 133
7.5 Warm Inert Singlino Dark Matter in the EgSSM . . . . .. .. .. .. 137
7.6 Summary and Conclusions . . . . . . . . ... ... Lo 139

8 Summary and Conclusions 141
A Weyl, Majorana, and Dirac Spinors in 3 + 1 Dimensions 145

vil



B The Pseudoreality of the Spinor Representation of SU(2) 149

Bibliography 151

viii



List of Figures

1.1

2.1

5.1
5.2
5.3

5.4

5.5

5.6

A diagram for a neutrinoless double beta decay process induced by the

existence of a Majorana neutrinomass. . . . . . . .. ... ... .... 20
A proton decay diagram using the couplings ££9? and ¢4 in (2.6). . 33
S-channel LSP annihilation diagrams. . . . . .. ... ... ... ... 71
T-channel LSP annihilation diagrams. . . . . ... ... ... ... .. 73

Inert chargino masses (magnitude only) against A’ with f =1, e = 0.1,

tan(B) = 1.5, s = 3000 GeV, and ZI-breaking Aijk couplings set to

Inert neutralino masses (magnitude only) against ' with f =1, € =
0.1, tan(B8) = 1.5, s = 3000 GeV, and ZZ -breaking \;j; couplings set
t0 0.01. . . . e 78
The component structure of the LSP in terms of the inert interaction
states against A with f = 1, e = 0.1, tan(8) = 1.5, s = 3000 GeV,
and Z% -breaking Aiji couplings set to 0.01. . . . ... ... ... ... 79
Contour plot of the LSP mass and relic density Qxh2 regions in the
(XN, tan(f))-plane with s = 3000 GeV, € = 0.1, and f = 1. The red
region is where the prediction for 2, h? is consistent with the measured
1-sigma range of Qpyh?. In the region to the right of the hatched line

the LSP mass is less than half of the Z boson mass. . . ... ... .. 79

X



5.7

6.1

7.1

7.2

7.3

7.4

Contour plot of the LSP mass and relic density Qxh2 regions in the
(N, f)-plane with s = 3000 GeV, ¢ = 0.1, and tan(8) = 1.5. The red
region is where the prediction for QXh2 is consistent with the measured
1-sigma range of Qpyth?. In the region to the right of the hatched line

the LSP mass is less than half of the Z boson mass. . . . .. ... ..

Contour plots of (X74)2 and various regions in the (f,tan(3))-plane
with s = 2400 GeV, fina = fuaa = Aaa = 0 Vo, foo1 = f, fu21 =
fao1/a, farz = 1.02f421, furz = 0.98fu21, and Aa1 = A12 = 0.06, im-
plying that me,, = 101.8 GeV. The upper plot is for a = 0.75 +
0.25tan(f) and in the lower plot is for @ = 0.5 4+ 0.5 tan(/3). The red
region is where the prediction for QXh2 is consistent with the mea-
sured 1-sigma range of Qpyh? given in (4.2). The dark green region
corresponds to D < 3 while the pale green region represents the part
of the parameter space in which D is between 3 and 4. The grey area
indicates that D > 4. D is defined in (6.30). The blue region corre-
sponds to myg, > myz /2 while the dark blue region to the right is ruled
out by the requirement that perturbation theory remains valid up to

the GUT scale. . . . . . . . . .

The form of diagrams for the up-scattering of the bino dominated
DMP N off of SM particles X into the pseudo-Dirac inert Higgsino
states No and Na. .« . o oo oo
Full-weak-strength coannihilations of the pseudo-Dirac inert Higgsino
states ]\72 and ]\73. .............................
Electroweak interactions responsible for keeping the light neutrinos in
equilibrium in the early universe. For all the light neutrinos there are
the the processes on the left. For the electron neutrinos there is also
the additional process on the right. . . . . . ... ... ... ... ...
Interaction processes responsible for keeping the inert singlinos in equi-

librium in the early universe. . . . . ... ... .. ... ... .....



List of Tables

1.1

1.2

2.1

3.1

3.2

The SU(3). and SU(2), representations and the U(1)y charges (hy-
percharges) of the SM matter fields, as LH Weyl spinors, and of the
SM Higgs doublet H. . . . . . . . . . .. ... ...
The notation for the three generations of fermionic matter of the SM.
Where the flavour and mass eigenstate columns are combined the
flavour and mass eigenstates are equal by definition. In the down
quark sector the mass eigenstates are then rotated with respect to the
flavour eigenstates by the CKM matrix. In the neutrino sector the
mass eigenstates are rotated with respect to the flavour eigenstates by
the PMNS matrix, which is analogous to the CKM matrix of the quark
sector. The CKM matrix is relatively close to the identity, whereas
the PMNS is close to tribimaximal form, meaning that the mass and

flavour eigenstate bases are very different from each other. . . . . . . .

The SU(3). and SU(2)y, representations and the U(1)y charges of the

supermultiplets of the MSSM. . . . . . .. ... .. ... ... .....

The SU(3). and SU(2)r, representations and the Eg GUT normalised
U(1)y and U(1)y charges of the supermultiplets of the FgSSM. . . . .
The charges of the fields of the EgSSM superpotential under various
exact and approximate Zo symmetries that the superpotential may or
may not obey. Zé‘/f is already a symmetry due to gauge invariance.
Either Z& or Z is imposed in order to avoid rapid proton decay. Z&

is an approximate flavour symmetry. i € {1,2,3} and o € {1,2}. . . .

xi

44

46



5.1

6.1

6.2

6.3

7.1

The abbreviated notation for the A;;, couplings. . . . ... ... ...

Benchmark scenarios for my, ~ 133-135 GeV. The branching ratios
and decay widths of the lightest Higgs boson; the masses of the active
Higgs bosons, inert neutralinos, and charginos; and the couplings of the
inert neutralinos Nj and Ny are calculated for s = 2400 GeV, A = 0.6,
Ay = 1600 GeV, mg = m, = Mg = 700 GeV, and X; = v/6Mj,
corresponding to mp, = mz, ~ 890 GeV. ANGLHEP and D are defined
in (6.28) and (6.30) respectively. . . . .. ... ... L.
Benchmark scenarios for my, ~ 114-116 GeV. The branching ratios
and decay widths of the lightest Higgs boson; the masses of the active
Higgs bosons, inert neutralinos, and charginos; and the couplings of
the inert neutralinos Nl and Ng are calculated for s = 2400 GeV,
A = g] = 0468, A\, = 600 GeV, mg = m, = My = 700 GeV, and
X; = v/6Mj, corresponding to my,, =~ myz, ~ 890 GeV. ANeLHEP and D
are defined in (6.28) and (6.30) respectively. Continued in table 6.3 .
Continued from table 6.2, more benchmark scenarios for my, ~ 114-
116 GeV. Again, the branching ratios and decay widths of the lightest
Higgs boson; the masses of the active Higgs bosons, inert neutralinos,
and charginos; and the couplings of the inert neutralinos Ny and Ny
are calculated for s = 2400 GeV, A = ¢; = 0.468, A, = 600 GeV,
mg = my, = My = 700 GeV, and X; = V6My, corresponding to
mp, & mz, ~ 890 GeV. ANLFY and D are defined in (6.28) and

(6.30) respectively. . . . . ...

The charges of the fields of the Fg Zg SSM superpotential under various
exact and approximate Zs symmetries that the superpotential may or
may not obey. Zéw is already a symmetry due to gauge invariance.
Either Z& or Z% is imposed in order to avoid rapid proton decay.
734 is an approximate flavour symmetry. In the E()ZQS SSM the extra
symmetry Zg is imposed, forcing the inert singlinos to be massless and

decoupled. i € {1,2,3} and « € {1,2}. . . . . . ... ...

xil

. 100



7.2 The input parameters of the three CE6Z2S SSM benchmark points. . . . 133
7.3 The low energy neutralino and chargino masses and associated parame-
ters of the three benchmark points. The DMP is the lightest neutralino
N; which is predominantly bino in nature. There is a nearby pair of
inert neutral Higgsinos Ny and N3 and a chargino C} into which N;
inelastically scatters during freeze-out, resulting in a relic density con-
sistent with observation. The predicted values of myz, and Neg are also
shown, as is the spin-independent Nj-nucleon direct detection cross-
SECtion O8I, .« v v o o e e e e 134

7.4 The remaining particle spectrum of the three benchmark points. . . . 135

xiii



Xiv



Author’s Declaration

I declare that this thesis has been composed by myself and constitutes work
completed by myself wholly while I was in candidature for a research degree at the
University of Southampton. Where the published work of others has been consulted
or quoted from this is always clearly attributed and all main sources of help have

been acknowledged.

I make no claim of originality for the work in chapters 1-4 and appendices A and B.
These chapters present background information compiled from a variety of sources
that have been referenced in the text. Chapter 5 contains work that was previously
published in paper I. This work was carried by myself out under the supervision of
my Ph.D. supervisor Steve King. Chapter 6 contains work that was previously
published in paper II. This work was a collaborative effort between the authors. I
was directly responsible for the calculation of the dark matter relic density using
micrOMEGAs and for the generation of the benchmark points in tables 6.1 and 6.2
and of the plots in figure 6.1 and directly worked on the RG and direct detection
analyses. Chapter 7 contains work that was previously published in paper III with
the exception of section 7.5 which contains work that is original to this thesis. This

work was carried out by myself under the supervision of Steve King.

Signed:

Date:

XV



Paper 1

Paper 11

Paper II1

J. P. Hall and S. F. King, Neutralino dark matter with inert
higgsinos and singlinos, Journal of High Energy Physics 2009
(Aug., 2009) 088088 [arXiv/0905.2696]. 1]
J. P. Hall, S. F. King, R. Nevzorov, S. Pakvasa and M. Sher,
Nowel Higgs decays and dark matter in the exceptional
supersymmetric standard model, Physical Review D 83 (Apr.,
2011) 39 [arXiv/1012.5114]. [2]
J. P. Hall and S. F. King, Bino dark matter and big bang
nucleosynthesis in the constrained E6SSM with massless inert
singlinos, Journal of High Energy Physics 2011 (June, 2011)

24 [arXiv/1104.2259)]. (3]

xvi



Acknowledgements

First of all I would like to thank my supervisor Steve King for his knowledge, time,

encouragement, and motivation.

I am grateful to Jonathan Roberts for his help with the writing of LanHEP code in
2008. The LanHEP codes used for the work detailed in this thesis are extended from
his USSM LanHEP code which was used for the study in ref. [4] and I would like to
thank Jonathan Roberts and Jan Kalinowski for donating this code and for
critically reading a draft of paper I. I would like to thank Peter Athron for

donating his cEgSSM RG code which was used for the study in ref. [5].
I would also like to thank Alexander Belyaev for valuable discussions.
I am thankful to the STFC for providing studentship funding.

I am also thankful to David Miller and Stefano Moretti for suggesting corrections to

this thesis.

xvii



I would like to thank everyone in the group for making my time at Southampton
such an enjoyable part of my life. I am glad to have known you all. I would
particularly like to thank James French and Thomas Rae for all of the support and
comradeship over the years; Colin Whaymand, Matthew Brown, and James Lyon
for being such great housemates; George Weatherill for amusing me greatly; and
Tain Cooper, Jason Hammett, Shane Drury, and Thomas Rae again for the all of
the many enjoyable lunches and games of Hobo Blackjack. I would also like to
thank Jad Marouche and Tain Cooper again for the fun times in California and

Germany respectively.

I would like to thank my dad and brother for their constant support and my

grandparents for giving me a quiet place to live while writing up much of this thesis.

Finally, I would like to thank my secondary school maths teacher Trevor Phillips for

teaching me in his own time and for the inspiration and encouragement.

xviil



Abbreviations and Conventions

ADM
BBN
CDM
CKM
CMB
DMP
EM
EWSB
FCCCs
FCNCs
GUT
GWS
LEP
LH
LHC
LSP
NLSP
PQ
PMNS
QCD
QED
QFT
RG

Asymmetric Dark Matter

Big Bang Nucleosynthesis

Cold Dark Matter
Cabibbo-Kobayashi-Maskawa
Cosmic Microwave Background
Dark Matter Particle
ElectroMagnetism

ElectroWeak Symmetry Breaking
Flavour Changing Charged Currents
Flavour Changing Neutral Currents
Grand Unified Theory
Glashow-Weinberg-Salam

Large Electron-Positron (collider)
Left-Handed

Large Hadron Collider

Lightest Supersymmetric Particle
Next-to-Lightest Supersymmetric Particle
Peccei-Quinn
Pontecorvo-Maki-Nakagawa-Sakata
Quantum ChromoDynamics
Quantum ElectroDynamics
Quantum Field Theory

Renormalisation Group

Xix



RGEs

Renormalisation Group Equations

RH Right-Handed

SSB Soft Supersymmetry Breaking

VEV Vacuum Expectation Value

WDM Warm Dark Matter

WMAP Wilkinson Microwave Anisotropy Probe

SM Standard Model (of particle physics)

SSM Supersymmetric (extension to the) SM
MSSM Minimal SSM

NMSSM Next-to-Minimal (SM-singlet extended) SSM
USSM U(1) extended SSM (NMSSM with a gauged PQ symmetry)
E¢SSM Exceptional SSM (Eg grand unified SSM)
E@Z? SSM EgSSM with massless inert singlinos

cMSSM GUT scale constrained MSSM

cEgSSM GUT scale constrained FgSSM

CE6Z§SSM GUT scale constrained E6Z§SSM

We work in the natural system of units throughout where what is written is what is

meant multiplied by factors of ¢ and A until it has the dimensions displayed. We

consistently refer to the Lagrangian density as the Lagrangian. The conventions for

spinor notation are found in appendix A.

XX



Overview

In chapter 1 we present an introduction to the SM with a focus on EWSB and other
aspects relevant for subsequent chapters such as gauge anomaly cancellation and the
invisible decay width of the Z boson. Motivations for extensions of the SM such as

the hierarchy problem and neutrino mass are explored and various notation is fixed.

In chapter 2 we motivate TeV scale softly broken supersymmetry as a possible
extension to the SM. A summary of supersymmetric Lagrangians is presented and
various notation is fixed. Further concepts such as grand unification and

universality of soft mass parameters are introduced.

In chapter 3 the EgSSM is motivated and introduced. This chapter contains
previous work that has been carried out on the subject of the EgSSM and provides

background information relevant for chapters 5, 6, and 7.

In chapter 4 the subject of dark matter is introduced. Information about the
thermal dark matter relic density calculation relevant for chapters 5, 6, and 7 is
provided. We also provide an introduction to thermal relic dark matter in

supersymmetric models.

Chapter 5 contains work that was first published in paper I. This work
represents a first study of the inert neutralino sector of the EgSSM and the dark

matter that naturally arises from this sector.

Chapter 6 contains work that was first published in paper II. This work
represents a more in-depth study of the inert neutralino and chargino sectors with a
particular focus on physics relating to the Higgs boson. In plausible scenarios it is

found that the couplings of the lightest inert neutralinos to the SM-like Higgs boson



are always rather large. This has major implications for Higgs boson collider
phenomenology and leads to large spin-independent LSP-nucleon cross-sections.
Because of the latter, scenarios in which EgSSM inert neutralinos account for all of
the observed dark matter are now severely challenged by recent dark matter direct
detection experiment analyses. In plausible scenarios consistent with observations
from both cosmology and LEP the lightest inert neutralino is required to have a
mass around half of the Z boson mass if it contributes to cold dark matter and this

means that tan(f) cannot be too large.

Chapter 7 contains work that was first published in paper III with the
exception of section 7.5 which contains work that is original to this thesis. In this
chapter a new variant of the EgSSM called the EGZg SSM is presented in which the
dark matter scenario is very different to the inert neutralino CDM scenario and in
which the presence of supersymmetric massless states in the early universe modifies
the expansion rate of the universe prior to BBN. The dark matter scenario is
consistent with current observations and the modified expansion rate provides a
better explanation of various data than the SM prediction. In section 7.5 the

prospects for a warm dark matter scenario in the EgSSM are briefly discussed.
Summary and conclusions are found in sections 5.5, 6.4, and 7.6 and in chapter 8.

Notation relating to Weyl, Majorana, and Dirac Spinors and to the doublet

representation of SU(2) is fixed in appendices A and B.



Chapter 1

The Standard Model

The SM is an effective QFT describing the known particles and their interactions
with the known forces of Nature excluding gravity. It is not currently known how to
construct a consistent theory that unifies quantum field theory with our current
best understanding of gravity which is the classical theory of general relativity. One
candidate for the fully quantum description of gravity describing Nature is string
theory, but whatever the correct description corrections due to the effects of
quantum gravity are not expected to become relevant unless the energies involved
in a process approach the Planck scale Mp ~ 10'® GeV, or alternatively unless one
wishes to consider length or time intervals as small as Mp 1. We therefore expect to
be able to use QFT, neglecting the effects of quantum gravity, at energies far below
the Planck scale. Whilst the general framework of QFT is not expected to be valid
above the Planck scale, the SM is itself only an effective QFT and is expected only
to be valid below roughly the TeV scale — the energy scale currently being probed

at the LHC. The reasons for this are outlined in section 1.6.

The SM contains our current best understanding of the observed particles and
forces excluding gravity. The observed mesons and baryons that we observe are
bound states of SM quarks, which are charged under the strong nuclear force
described by QCD and there are also SM leptons which are free fundamental
particles such as the electron. In terms of forces, the SM comprises the strong force

of QCD as well the GWS theory of EWSB describing both QED and the weak force



responsible for nuclear decay. The description of the SM given in this chapter is

largely based on the one given in ref. [6].

1.1 Gauge Symmetry and Matter Content

The SM is a Yang-Mills QFT with a gauge symmetry group

Gsm = SUB).@SU2),@U(1)y. (1.1)

Is it is a direct product of the SU(3) gauge symmetry describing QCD and the
SU(2) x U(1) gauge symmetry of the electroweak theory — the unified theory
describing both electromagnetism (QED) and the weak nuclear force. The observed
fermionic matter of the SM can be described by LH Weyl spinors in 3 + 1
dimensions forming chiral representations of Ggy as shown in table 1.1. A RH Weyl
spinor may be expressed as a LH one using the C'P conjugation (charge conjugation
and parity) operation. The notation for spinors used throughout is explained in

appendix A.

The SM also includes a fundamental complex scalar doublet field known as the
Higgs doublet whose VEV is responsible for the spontaneous breaking of
SU(2)r x U(1)y down to the U(1)gm of QED, as per the GWS theory of
EWSB [7, 8, 9], and for the generation of fermion masses. Although the evidence
for ESWB is overwhelming (for a review see ref. [10]), the mechanism for this
symmetry breaking is currently unknown, although it must have the correct
custodial symmetry leading to the observed mass relation between the heavy
electroweak W and Z gauge bosons. The SM assumes the GWS theory in which
electroweak symmetry is spontaneously broken by the VEV of a fundamental
complex scalar field — the Higgs doublet H [11, 12, 13, 14]. The VEV of this field

is also able to generate masses for all of the SM fermions.

The three components of the fundamental (3) and antifundamental (3)
antitriplets of SU(3). are known as colours (red, green, and blue) and anticolours

(antired, antigreen, and antiblue) respectively. Since the EWSB vacuum respects



SUB). SU@)L Uy

LH quark doublet @ 3 2 +1/6
RH down-type quark d5 3 1 +1/3
RH up-type quark  uf 3 1 —2/3
LH lepton doublet L, 1 2 —1/2
RH charged lepton  e% 1 1 +1
Higgs doublet H 1 2 +1/2

Table 1.1: The SU(3). and SU(2); representations and the
U(1)y charges (hypercharges) of the SM matter fields, as LH Weyl
spinors, and of the SM Higgs doublet H.

SU(3)e, redefinitions of the three colours and three anticolours by SU(3).
transformations does not change the description of the physics. The SU(2)r gauge
symmetry, however, is spontaneously broken by the vacuum and it makes sense to
label the components separately. We define the third direction of weak isospin 73
such that the Higgs VEV is an eigenstate of 72 with eigenvalue —1/2. Here we use
T for generators of a general SU(2)r, representation and 7¢ for the generators of
the 2 representation specifically. Since the direction in SU(2)y, space of the Higgs
VEV defines which direction will be uncharged under the unbroken U (1)gn, electric
charge will then commute with 7%. This choice of direction for the Higgs VEV is
arbitrary and has no effect on the physics, since any other equivalent choice would
be related by a SU(2)r, gauge transformation that leaves the Lagrangian invariant.
Choosing the Higgs VEV to be an eigenstate of 72, the upper and lower
components of the doublet in the standard basis 7¢ = 0% /2 are then eigenstates of

electric charge. We write the quark doublet (), and lepton doublet Lj, as

QL= and Ly = . (1.2)

The upper component is an eigenstate of 73 with eigenvalue +1/2 and the lower
component an eigenstate of 73 with eigenvalue —1/2. The charge under the

unbroken U(1)gym of a field can be written

Q = T3+, (1.3)

where T3 is understood to stand for the relevant eigenvalue. This is because it is the



gauge transformation with this combination of generators H — (1 + ida(T2 +Y))H
that leaves the Higgs VEV (H) invariant, i.e. (H) is uncharged under this

combination of generators which must then represent the unbroken U(1).

With one copy of each of the fields listed in table 1.1 we can describe what is
known as the first generation of SM matter. This comprises the strongly interacting
up and down quarks — two colour triplet Dirac fermions that are formed from the
four Weyl spinor colour triplets of one copy of Qr, ur, and dg — and also the
electron — a Dirac fermion formed from e;, and eg — and a LH neutrino v, or

equivalently the RH antineutrino v°.

The Lagrangian of the SM for this first generation, including all possible

L

renormalisable, gauge invariant, and Lorentz invariant terms" is
Ez-&ﬂwﬁw+ﬁW@WﬁImwﬁ%m% (1.4)
where
Lyuewa = —hPdLHIQ, —hVul,H.Q, —htel, HTL, +c.c. (1.5)

and Lyiggs contains the gauge invariant kinetic term and scalar potential of the
Higgs scalar field shown in section 3.3. wg 10+ D7), is the gauge invariant kinetic
term for all LH Weyl spinors v;, with D,, the relevant gauge covariant derivative for

each field ¢;. For the gauge kinetic term
a _ a a a) rabc Ab gc
Al = 0,AL—0,A% + gl fbeAb AC (1.6)

and the adjoint index a runs over all of the generators of Ggy. The gauge coupling

¢'@ can have a different value for each of the three simple subgroups of Ggy and

"We do not address the strong C'P problem and will consistently neglect terms of the form
Ar YA,uu. The contribution to this term from electroweak gauge bosons is always a total derivative
and has no effect on the observable physics. However, the contribution to this term from QCD
eventually, after chiral matter phase rotations removing 5 of the 6 arbitrary complex phases of CKM
matrix, has an independent and arbitrary coefficient. This coefficient should be very close to zero in
order for the theory to be consistent with the non-observation of C P-violating effects from the QCD
sector, such as an electric dipole moment for the neutron, but theoretically the smallness of this
coefficient is not explained in the SM in a natural way. This is known as the strong C'P problem —
an unsolved problem in particle physics.



the gauge group structure function f®¢ vanishes when a, b, and ¢ do not belong to
the same simple subgroup. The dot stands for the SU(2) invariant contraction of

two SU(2) doublets given in (B.4)

T T2

: = Jite — T2 (1.7)
b 12

The vacuum state of the Higgs potential is supposed to spontaneously break

SU(2), x U(1)y so that classically expanding around the true electroweak vacuum,

rather than H = 0, we can write

where the Higgs VEV
H) = — (1.9)

and is an eigenstate of 75 with eigenvalue —1/2 (Q = 0).

It is important to note that the unbroken gauge symmetry of the SM does not
allow for any fermion mass terms — either Dirac or Majorana. However, in the
EWSB vacuum the VEV of the Higgs doublet will generate Dirac fermion mass
terms proportional to the Yukawa couplings h in (1.5) for all fermions other than
the LH neutrino
_ @ t Vv t htv

— eEeL—}—c.c.) +---.  (1.10)

Lyukawa = ( \/§ RAL \/iuRuL_%

In the SM the Higgs VEV generates Dirac masses for all of the observed Dirac

fermions, but does not induce any neutrino masses.

Below the EWSB scale, one can integrate out the W* and Z electroweak gauge
bosons that acquire masses from EWSB and write an effective theory with the

gauge symmetry SU(3). x U(1)gm. The Lagrangian for one generation contains the



EWSB-induced mass terms of (1.10). Each mass term couples a LH and RH spinor
together into a massive Dirac state. With both the LH and RH component of each
Dirac spinor taken together, each Dirac spinor forms a real representation of
SU(3). x U(1)gm. The LH neutrino forms a real representation on its own since it
is a singlet — completely uncharged under the effective gauge group. Since this
effective theory is non-chiral, containing pairs of LH and RH spinors that are
equally charged under the gauge group, it is invariant under parity P and charge
conjugation C separately. At low energy left- and right-handedness are only
distinguished fundamentally in weak nuclear decay processes which violate
separately both C' and P maximally since the massive W bosons only couple to

LH states.

1.2 Gauge Anomaly Cancellation, Generations, and the
Invisible 7 Boson Decay Width as Measured at

LEP

In Nature we observe that there are in fact at least three complete copies, known as
generations, of the Weyl fields listed in table 1.1. The particle content of three
complete generations has now been directly observed and there exists evidence,
outlined in this section, that indicates that there are no more generations of any of
the SM representations beyond these three. We shall label these three generations
with the Roman indices i, j, etc., with the notation for the particles in these

generations as complied in table 1.2.

1.2.1 Gauge anomalies

Anomalies are quantum mechanical effects that violate one or more symmetries of
the classical Lagrangian. A gauge anomaly is a quantum mechanical effect that
violates some gauge symmetry. QFTs with gauge anomalies are inconsistent since
gauge symmetry is required to cancel the unphysical degrees of freedom of the

massless gauge bosons — the longitudinal space-like and time-like polarisations. In



Basis Flavour Mass
LH down quark diy=d; | d,=d,
LH strange quark | dj, =5} | d; o =5,
LH bottom quark ha =07 | dps =g
RH down quark dp, = dp
RH strange quark dpy = Sp
RH bottom quark dps = bp
LH up quark Uy, = Up,
LH charm quark Upy = Cf
LH top quark Ups =1t
RH up quark Up, = Up
RH charm quark Upy = Cp
RH top quark Ups =tp
LH electron €, = ey
LH muon €ro = U,
LH tau lepton €r3 =T,
RH electron €p1 = €pR
RH muon €ro = Hp
RH tau lepton €ps = TR
LH electron neutrino | 4 =,
LH muon neutrino | v =v,
LH tau neutrino v =u,
Light neutrino 1 vy
Light neutrino 2 Uy
Light neutrino 3 Vg

Table 1.2: The notation for the three generations of fermionic
matter of the SM. Where the flavour and mass eigenstate columns
are combined the flavour and mass eigenstates are equal by def-
inition. In the down quark sector the mass eigenstates are then
rotated with respect to the flavour eigenstates by the CKM ma-
trix. In the neutrino sector the mass eigenstates are rotated with
respect to the flavour eigenstates by the PMNS matrix, which is
analogous to the CKM matrix of the quark sector. The CKM ma-
trix is relatively close to the identity, whereas the PMNS is close to
tribimaximal form, meaning that the mass and flavour eigenstate
bases are very different from each other.



4-dimensional QFTs such as the SM, gauge anomalies arise at one-loop level via

triangle diagrams of the form

a o A% = tr[T{T? T}, (1.11)

where T is the group generator corresponding to the adjoint index a of the gauge
boson labelled a. The trace is a sum over all LH Weyl spinors running around the
loop, each in some representation, and also a trace over the generator indices of the
relevant representation. The anticommutator comes from considering each Weyl
fermion running around the loop in both directions. Such diagrams must sum to
zero for all combinations of different gauge boson external legs in order for the QFT

to be consistent.

Instead of any given RH spinor in the representation r, one may consider the C'P
conjugate state which is a LH spinor in the representation 7 (see appendix A). This
gives a contribution to A%¢ equal to tr[T2{T?, T¢}]. Since T¢ = —T¢7T this
contribution is in fact equal to —tr[T2{T?, T<}], which is minus the contribution
from a LH spinor in the representation r. So, if one has an equal number of LH
spinors in each of the representations r and 7 of the entire gauge group, or
equivalently an equal number of LH and RH spinors in the representation r, then
these states, which taken together from the real representation r @ 7, do not
contribute to the gauge anomaly. If the representation r is explicitly real then this
condition is automatically satisfied. This is the case in the SU(3). x U(1)gm

effective theory.

However, since the SM is a chiral theory, meaning that the fermionic matter
cannot be written as above in terms of their representations under Gsyr, it takes

some more work to compute the gauge anomalies in (1.11) associated with the
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various combinations of SM gauge bosons. Eventually one computes that if one has
a complete generation of the chiral fermions listed in table 1.1 then all of the gauge
anomalies do indeed cancel, but this is not the case for just the leptons or for just

the quarks separately [6]. We therefore conclude that the SM is gauge-anomaly-free
as long as it contains only complete generations of matter, i.e. it contains the same

number of generations of quarks and leptons.

1.2.2 The effective number of neutrinos contributing to the

invisible Z boson decay width

The best evidence for the number of generations comes from the number of
neutrinos as inferred from the invisible decay width of the Z boson measured at
LEP, i.e. the partial decay width of the Z boson into particles that do not show up

in the detector. The effective number of neutrinos at LEP NeLffEP is defined by

[(Z — invisible) = NYEPT(Z = v) (1.12)

€

where the decay width on the left is measured and the decay width on the right is
calculated assuming that v is a massless LH neutrino. 7 is the corresponding RH

antineutrino v°. The result from LEP [15] is

NP — 29844 0.008 (1-sigma), (1.13)

€

leading to the conclusion that the number of neutrinos is 3, this being the closest
integer to the central measured value and 2-sigma away. This means that there is
no fourth generation neutrino with a mass lower than about half of the Z boson
mass. This is taken as evidence for there being only three generations of leptons
and, since the numbers of generations of quarks and leptons should be equal in

order to have gauge anomaly cancellation, only three generations of quarks also.
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1.3 The Higgs Potential and GWS EWSB

In the SM EWSB is caused by the non-zero VEV of a single Higgs scalar doublet
H. The most general gauge invariant and renormalisable form of Lyjggs appearing

in (1.4) is

Litiges = (DMH)'(D,H) - V(H), (1.14)
with

V(H) = m?H'H+ \NH'H)% (1.15)

The parameter A must be positive in order for the Higgs potential to be bounded
from below. If the mass-squared parameter m? is also positive, or zero, then
classically V(H) has a minimum at H = 0. In this case H = 0 is the true vacuum

2

and Ggy remains unbroken. If, however, m® is negative, then the degenerate

minima of V(H) occur on the surface given by

2

—m
HH = — 1.16
oy (1.16)

points on which are related by arbitrary SU(2)r gauge transformations. Using our

earlier definition of the Higgs VEV (1.9) we can then identify

v o= . (1.17)

In this case in the EWSB vacuum Ggyy is spontaneously broken to
SU3)e x U(1)gm. SU(3). remains unbroken since H is a singlet under this group.
Since it is a scalar particle, it is also a singlet under the Lorentz group and its VEV

therefore does not spontaneously break Lorentz symmetry.

The covariant derivative acting on H is given by

DyH = (9, —igoWSir® —1)2¢'B,)H (1.18)
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where W® are the three SU(2)1 gauge bosons, 7@ are the generators of SU(2),
(T*) for the fundamental doublet representation (7* = ¢%/2), and B, is the gauge
boson for U(1)y under which H has charge +1/2. g2 and ¢’ are the SU(2), and
U(1)y gauge coupling constants respectively. Expanding the kinetic term around
the Higgs VEV as in (1.8) we find that in the EWSB breaking vacuum we generate
the gauge boson mass terms

1 v? 2
Lhiges = 5 |5V + (W) + (0:Wi - g'B,) } +o (119)

It is useful to define the positively and negatively charged SU(2);, gauge bosons

1 .
Wy = E(W/} TiW2) (1.20)

as well as the usual 7T = T! 4+ iT2. In the EWSB vacuum we read off that these

particles have a mass

v
mwo = g5 (1.21)
The (correctly normalised) mass eigenstate
— 1 3 /
Zy = 5(92% —4'B,), (1.22)

where

g = \/g%—l—g’z, (1.23)

has a mass

(1.24)

NS

leaving the orthogonal combination

1
A, = g(g,Wj’—i—gQBM) (1.25)
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massless. This is the photon — the gauge boson of the unbroken U(1)gy which

corresponds to the the unbroken combination of generators @Q = T2 + Y.

The general covariant derivative, neglecting the SU(3). gluon terms,
D, = 0y —ig2W,T" — Y¢'B, (1.26)
can then be written in terms of the gauge boson mass eigenstates as

. 4 . g2 o
DN = w fWu T — ZEWN T

3 /
1" —g"Y ;929 (T3+Y>B#

g g

_ ot -
— - \fWuT - TWMT
—i—(T3—sWQ) Z, —ieQB,, (1.27)
cw
where
Y
€ - —
g
— 92
cw =cos(Vy) = 7 and (1.28)
g/
sw =sin(dw) = =,
g

implying that myz = my /cw.

In the unbroken theory the Higgs complex scalar doublet has four real degrees of
freedom. After EWSB the three massive gauge bosons each acquire one extra
degree of freedom from the complex scalar doublet, corresponding to the
longitudinal polarisation that exists for a massive vector boson, but not for a
massless one. The remaining one degree of freedom belongs to a real scalar, known

as the SM Higgs boson.

We can work in the unitarity gauge in which the three Goldstone modes of the

14



Higgs doublet are set to zero and we expand around the EWSB vacuum

H LY (1.29)
V2 v+ h

where h is the (canonically normalised) real scalar known as the Higgs boson. Since
in the basis that we have chosen v appears in the real part of the lower component
of H, this is also the direction corresponding to the massive boson state h. The
other directions are flat and correspond to the massless Goldstone modes whose

degrees of freedom contribute to those of the massive gauge bosons.

We can expand V' (H) in the unitarity gauge in order to find the mass of the
Higgs boson h. We find
m? 3?2

V(H) = —h*+

he ...
2 2 +

1
= 5(—2m?)h2 4+ (1.30)
from which we read off a mass-squared for the real scalar h
mi; = —2m?* =2\ (1.31)

Like the induced fermion masses, the mass of the Higgs boson itself is proportional
to the Higgs VEV v, but also to an unknown coupling constant A. The value of

v = 246 GeV is determined from the masses of the W and Z bosons, but although
in the GWS theory this combination of m? < 0 and A > 0 are determined, the
individual values of these parameters are not determined unless the Higgs boson
mass is known. At the time of writing the Higgs boson is currently the only particle
of the SM yet to be discovered. By looking for the process ete™ — Zh at LEP, a
lower limit on the SM Higgs boson mass of 114.4 GeV is obtained [10]. Recent LHC
analyses from CMS [16] and ATLAS [17, 18, 19, 20, 21] between them exclude the
existence of a SM Higgs boson with a mass between 145 and 288 GeV or between

296 and 466 GeV at a 95% confidence level.
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1.4 Induced Dirac Fermion Masses, the CKM Matrix,

and Neutrino Mass

Including all three generations of SM matter, (1.10) becomes

v

Lyviukawa = 7 (hgd};idLj + hgu;rﬁuLj + h{?e;ﬁem + C.C.) +---. (1.32)

The Yukawa coupling matrices h”, RV, and h¥ may be made diagonal if one

performs unitary transformations on the fermion fields in flavour space, i.e.
i — Ui, (1.33)

for each of the fields dg;, dr;, ur;, uLi, €ri, and er;. Specifically for the LH quarks
we write
dLi - Uz?

iy and  up; — UguLj. (1.34)

This is biunitary diagonalisation of each of the three Yukawa coupling matrices and
the basis where these matrices are diagonal is the mass eigenstate basis. In the
gauge invariant fermion kinetic term in the Lagrangian these transformations leave
everything invariant apart from the couplings of the fermions to the heavy W+
bosons coming from the covariant derivative (1.27). If one begins with non-diagonal
Yukawa coupling matrices and then transforms to the mass eigenstate basis that

diagonalises them, the Lagrangian term coupling quarks to W* bosons transforms

et Zwrdy, e - ulie" WV dy + e, (1.35)

V2 V2

producing a non-diagonal, unitary flavour mixing matrix
v = vYlyP (1.36)

known as the CKM [22, 23] matrix.

As well as the mass eigenstate basis we also define a flavour eigenstate basis in

16



which the couplings to the heavy W* are diagonal. By convention we choose the
up-quark flavour basis to be equal to the mass eigenstate basis. The down-type
quark flavour basis is then

i = Vid;. (1.37)

LV

This convention is summarised in table 1.2. The most general form of V' can
contain three angles and six complex phases. However, complex phases in (1.33)
cancel out of (1.32) and therefore complex phases in (1.34) can be defined to
remove five of these six phases. (One of the six phases in (1.34) can be
parametrised as an overall phase for all six transformations which cancels out of the
right hand side of (1.35).) The SM CKM matrix can therefore be parametrised by
three angles and one complex phase. This complex phase, which is responsible for
C P-violating effects, is quite small. Although the CKM matrix is close to being the
identity, the flavour eigenstates of the quark sector are not quite equal to the mass
eigenstates. This means that there is a non-zero probability amplitude for a W=+
boson to couple together quark mass eigenstates of different generations. The W*
bosons therefore contribute to FCCCs. The Z boson and the photon (and also the
gluons) do not contribute to FCNCs since the transformations (1.33) leave terms

coupling neutral bosons to fermions, from (1.27), invariant.

1.4.1 Neutrino mass and the type-I see-saw mechanism

In the SM, which does not include RH neutrinos, LH neutrinos are exactly massless
since both explicit mass terms and renormalisable terms coupling them to the Higgs
VEV are forbidden by the gauge symmetry. However, in Nature we now know that
neutrinos oscillate [10, 24] — a mechanism that requires them to have different
masses, with the mass eigenstates being rotated with respect to the flavour
eigenstates. There should be a mixing matrix for the lepton sector, analogous to

the CKM matrix of the quark sector, known as the PMNS [25, 26, 27] matrix.

If we define the charged lepton mass eigenstates to be the eigenstates of flavour

then the neutrino mass eigenstates will be rotated with respect to the flavour

17



eigenstates by the PMNS matrix. Neutrinos that are produced in some flavour
eigenstate will then be in a superposition of mass eigenstates. If the mass
differences involved are small enough, as they must be since the masses themselves
are small, then the neutrino will propagate coherently as this superposition, but
with each mass eigenstate component evolving at a different rate, causing
interference. Therefore a neutrino that is produced as one flavour and propagates
for some distance may, when it eventually participates in another charged weak

current interaction, be measured as a different flavour with some probability.

Whereas the CKM matrix is relatively close to the identity, neutrino oscillation
data indicates that the PMNS matrix is close to tribimaximal form [28, 24], meaning

that the mass and flavour eigenstate bases are very different from each other.

One may in principle add to the SM model matter content some number of RH
neutrinos 9 that couple to the Higgs field and lepton doublet, inducing Dirac mass
terms after EWSB. Such RH neutrinos would have to be uncharged under Ggyr in
order for the term MTH.Ly, to be gauge invariant. This in turn means that
Majorana mass terms for the RH neutrino could also be added to the SM
Lagrangian. These RH neutrino masses would be unrelated to EWSB — their scale
associated with some new physics. Let us assume that these Majorana masses are
much larger than the Dirac neutrino masses induced by EWSB. For one generation

we may write a neutrino mass term

M m ne
Ly, = <mT VCT) , (1.38)
m 0 v

where 901 is the RH neutrino Majorana mass, and m is the Dirac mass equal to
some Yukawa coupling times v. For 9t > m there is one eigenvalue approximately
equal to 91 and another approximately equal to m? /9. In this case there is then a
light mass eigenstate that is almost, but not quite, v and that has a Majorana mass
that is suppressed relative to the EWSB scale. This is the type-I see-saw
mechanism [29, 30]. The principle still holds for three generations of RH and LH

neutrinos, with three of the states arising from the 6 x 6 mass matrix having
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non-zero, but suppressed, masses.

1.5 Baryon and Lepton Number Conservation

The renormalisable SM Lagrangian, without RH neutrinos, is invariant under two
extra U(1) global symmetries known as U(1)p and U(1)r, corresponding to baryon
and lepton number conservation respectively. Quark fields Qr, dr, and up have
baryon number B = +1/3 and lepton number L = 0, with the C'P conjugate
antiquark fields having B = —1/3 and L = 0. The lepton fields L;, and er have

B =0 and L = +1, with antileptons having L = —1. Both B and L are conserved
by the classical renormalisable Lagrangian, but are anomalous if gauged and are
violated non-perturbatively. However, the global symmetry U(1)p_r,, corresponding
to the conservation of the combination B — L, happens to be anomaly free in the

SM if gauged and globally is conserved even non-perturbatively.

U(1)p—r is, however, broken explicitly by Majorana neutrino mass terms.
Majorana mass terms for the light neutrino mass eigenstates imply (and are implied
by) the existence of neutrinoless double beta decay [31, 32] (see figure 1.1) — a
process in which baryon number remains unchanged but lepton number is changed
by 2. Experiments searching for neutrinoless double beta decay (see for example
CUORE [33], EXO [34], GERDA [35], MAJORANA [36], NEXT [37], and
SNO+ [38]) will eventually determine the nature of neutrino mass — Dirac or
Majorana. Because of the smallness of physical neutrinos masses, this
U(1)p—r-breaking effect if the neutrino is Majorana in nature would be
corresponding rather small, with the physical Majorana mass appearing in the

matrix element of any such process.

To date no processes violating either baryon or lepton number have ever been
directly observed. In addition to neutrinoless double beta decay, another example of
such a process would be proton decay — the decay of a proton with B = 41 into a
final state with B = 0. This is a process which, unlike neutrinoless double beta

decay, needs not necessarily violate U(1)p_r.
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dy, ur,

WL .,

Majorana neutrino mass

€L

dy, ur,

Figure 1.1: A diagram for a neutrinoless double beta decay pro-
cess induced by the existence of a Majorana neutrino mass.

1.6 The Hierarchy Problem of the SM

As previously stated, the Higgs boson mass in the SM is not determined by the
other known parameters of the model. There do, however, exist various theoretical
bounds [39]. From (1.31) we see that the Higgs boson mass-squared is proportional
to the self-coupling A\. The running coupling A in the loop-corrected potential is
required to remain positive in order for the EWSB vacuum to be stable. For low
values of the running coupling A the coupling decreases with increasing energy
scale. Depending on the cut-off energy scale A that one requires the model to be
valid up to the vacuum stability requirement puts a lower bound on the SM Higgs
boson mass — a bound that increases with A [40]. At the same time, for larger
values of A\ the coupling increases with energy. Too large values of A below some
cut-off energy scale A therefore render the perturbation theory invalid. Here there
exist uncertainties associated with the using of perturbation theory to try to assess
where perturbation remains valid, but nonetheless the requirement that there is no
Landau pole in A below A puts an upper bound on the Higgs mass — a bound that
decreases with A. This large Higgs mass effect can also be seen non-perturbatively
in Lattice calculations [41, 42]. Furthermore, too large Higgs boson masses lead to a
non-unitarity of the S-matrix for certain processes where unitarity is preserved via
cancellations between divergent diagrams involving virtual Higgs bosons and
divergent diagrams involving virtual longitudinal polarisations of massive weak
gauge bosons such as WW scattering. Unitarity bounds should not be violated in

renormalisable theories [43].
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Because of these various upper bounds the SM Higgs boson should have a mass
below around the TeV scale in order for the theory to be valid. This however
introduces a naturalness problem into the theory — the unnatural hierarchy
between the EWSB scale and the Planck scale which is about 16 orders of
magnitude greater. The reason why this is considered unnatural is because in the
SM the Higgs doublet is a doublet of fundamental complex scalars. (They are
fundamental scalars as opposed to composite scalars which would be expected only
to appear in some effective theory of the constituent particles that one would only
expect to be valid up to some energy scale associated with the confinement.)
Fundamental scalars are a problem in non-supersymmetric theories, because their
masses receive radiative corrections proportional to the masses of any particles that
they couple to [44, 45]. Their self-energy Feynman diagrams are quadratically

sensitive to the highest mass scales in the theory.

For example, let us consider the one-loop contribution to the self-energy diagram
of a fundamental scalar that couples to a fermion of mass mp with a Yukawa

coupling Ar using dimensional regularisation with a mass scale parameter u

—iAZ = | o THAR e x (1.39)

, 1 2 47
= —z)\%/da(4ﬂ)2A% [—8—74-1—111( AZ >+(’)5], (1.40)

where AZ = m% — (1 — a)¢? and the number of dimensions d = 4 — . This

contribution contains a part that has a pole at the 4-dimensional limit € — 0 and
additional finite parts including a part proportional to m% The coefficient of A% in

A% is proportional to the logarithm which is order one.

If we define the renormalised scalar propagator to have a pole where the energy
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equals the renormalised mass ¢% = ME{ then we have

0=1Y2

- {Az +(Zu = 1) +(Z = 1)¢? , (1.41)

qzzMé q2=M§

where ¥? is the total correction to the scalar mass-squared in the propagator from
loop corrections to and counter term insertions in the scalar propagator at one-loop
order. Z); and Z are the scalar mass term and wavefunction renormalisations
respectively and —iA? is the total one-loop correction to the scalar self-energy

diagram.

If the SM were valid up to arbitrarily large energy scales, with no new physics
existing at higher energy scales, then there would be no problem. The
renormalisation constants may be defined to cancel the poles in € of the constant
and ¢? coefficients and, since the theory is renormalisable, such poles would then be
cancelled by counter terms at all orders in perturbation theory. The additional

finite corrections would be at most of order the top quark mass.

However, this is not the case. Even if no physics comes in earlier the SM cannot
be valid above the Planck scale where contributions from quantum gravity should
become important. This being the case, it is not clear that using dimensional
regularisation and integrating momenta up to infinity is a valid prescription, but if
one alternatively uses a cut-off regulator, with a momentum cut-off at some energy

scale where the theory ceases to be valid, then one still obtains the generic result
—iA3 = —i)} [pole + Cpm¥ +---], (1.42)

where CF is some order one coefficient and the ‘pole’ is now of order the cut-off
scale squared. If the scalar also couples to another scalar of mass mg with a

coupling constant Ag then this also gives a contribution of the generic form
—iA% = i\g[pole+ Cgm+---]. (1.43)

Regardless of the physical interpretation, it is still the case that if these pole parts

are cancelled by the renomalisation constants at this level then, since the theory is
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renormalisable, the poles will still be cancelled by counter terms at all orders. This,
however, cannot be said of any large finite corrections proportional to boson or

fermion masses associated with some new high energy physics [45].

If one requires the renormalised mass to be much smaller than such large
additional finite contributions to A? then one one may also define the
renomalisation constants to almost completely cancel these additional finite terms,
leaving the small desired mass, at fixed order. The unnaturalness arises when one
then goes to higher order in perturbation theory. While the new poles that arise at
this order will be exactly cancelled if one also includes all diagrams containing
counter terms up the relevant order, new large finite corrections will also arise that
will not in general be cancelled by the finite parts of the counter terms. The
renormalised mass is therefore expected to be of order the largest mass scale in the
theory unless the finite parts of the counter terms are carefully retuned at every

order in perturbation theory.

The SM Higgs mass is thus sensitive to any new physics that might exist at or
below the Planck scale. Since we know that QFT itself is not expected valid at the
Planck scale, it is unreasonable to assume that there is not some new physics at
some scale far higher than the EWSB scale. If the Higgs boson couples to this new
physics at all then the Higgs boson mass should be at least of order this scale unless
one is willing to accept large tunings at every order in perturbation theory to make
it such that the large contributions cancel, leaving a Higgs mass of order the EWSB

scale. This is the hierarchy problem of the SM.

If, for example, we include radiative contributions from RH neutrinos with
masses of order 10'* GeV, then the additional finite corrections to the Higgs boson
self-energy of order 10%® GeV? should be tuned to almost cancel leaving a physical

Higgs boson mass-squared 24 orders of magnitude smaller.

This hierarchy problem leads us to conclude that some new physics must exist at
or around the TeV scale to stabilise the Higgs mass. The most common theories
motivated to solve the hierarchy problem have solved it by assuming that the Higgs

boson is a composite, as in the case of technicolour theories; by assuming that the
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Planck scale is in fact around the TeV scale, as in the case of large extra
dimensions; or by assuming that the Higgs mass is stabilised by supersymmetry, as
in the theories that we shall introduce in chapters 2 and 3. All of these theories

involve the existence of new physics at the TeV scale.

1.7 Unsolved Problems in Particle Physics

Although the main motivation for new physics, particularly at the TeV scale
currently being probed by the LHC, is the hierarchy problem, there are many other
questions left unanswered by the SM. We shall briefly mention some of them in this
section. Neutrino mass has already been discussed, but many other questions about
fundamental fermion mass also remain unanswered. Although the induced fermion
masses are allowed in the SM, the Yukawa couplings are measured and not
predicted. Theories that attempt to explain the sizes and values of these Yukawa
couplings as well as the striking difference between the CKM and PMNS matrices
are known as theories of flavour. These typically invoke some new symmetry known
as flavour symmetry with the spontaneous breaking of flavour symmetry producing

the observed patterns of Yukawa couplings (see for example refs. [46, 47, 48]).

In the SM there are also three independent and unexplained gauge couplings.
Grand unification (introduced in section 2.4) proposes that the SM gauge group is
in fact the remnant of some larger spontaneously broken gauge group with a single
gauge coupling. In such a scenario the SM gauge couplings, running up in energy,
should unify to the same value at some energy scale associated the breaking of the
larger GUT group. In the SM the couplings do not in fact unify, but they do in the

supersymmetric models introduced in the next chapter.

The baryon asymmetry of the universe is another problem. It is not known why
the universe appears to be made almost entirely of matter and not antimatter.
Although the SM technically satisfies the Sakharov conditions [49] — conditions
required for the existence of baryogenesis processes that could have created this

asymmetry — of baryon number non-conservation (non-perturbatively) and C'P
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violation (via the CKM matrix), the small C' P-violating phase of the CKM matrix
is not thought to be large enough to have been the origin of the observed baryon

asymmetry.

Although most of the baryonic mass in the universe is to some extent
understood (being mostly due to QCD colour confinement rather than the Higgs
mechanism), dark matter, discussed in chapter 4, and dark energy are completely

unaccounted for in the SM.

The strong C'P problem (see footnote 1 in section 1.1) is another unsolved

problem.

The origin of the gauge group, matter representation, and number of space-time
dimensions is also not understood, although the theory must be consistent with
respect to gauge anomaly cancellation and the existence of stable atoms and stable

gravitational orbits is obviously necessary for our existence.
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Chapter 2

Supersymmetry and Grand

Unification

The description of supersymmetry given in this chapter is largely based on the
descriptions in refs. [50, 45]. The notation for fermion spinors used is given in

appendix A.

Supersymmetry is a symmetry relating particles of different spin. In a theory
with some amount of supersymmetry each particle, possessing a given spin and
other internal quantum numbers, necessarily comes as part of what is known as a
supermultiplet — an association of particles that have different spins but all other
quantum numbers the same. The particles in these supermultiplets are then
transformed into each other by supersymmetry transformations that leave the
supersymmetric Lagrangian invariant. The size of the supermultiplets describing
the theory depends on the number of conserved supercharges N of the
supersymmetry algebra. If the supersymmetry is preserved by the vacuum then the
particles of different spin that make up a supermultiplet are all degenerate in mass

as well as having all other quantum numbers the same.

Plausible low energy models for physics beyond the SM can be constructed using
N =1 supersymmetry. This theory contains the following types of supermultiplet:

A chiral supermultiplet containing a complex scalar and a LH (for a left chiral
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supermuliplet, RH for a right chiral supermultiplet) Weyl spinor; a vector
supermultiplet containing a spin-1 real vector and a Weyl spinor; and a graviton
supermultiplet containing the spin-2 graviton and a spin-3/2 gravitino. Each of
these supermultiplets separately contains the same number of physical bosonic and
fermionic degrees of freedom. The (as we will see is necessary, multiple) Higgs
scalars whose VEVs are responsible for EWSB must then be part of chiral
supermultiplets containing the same number of fermionic degrees of freedom in the
form of spin-1/2 fields. These fermions are known as Higgsinos. Each Weyl fermion
matter field of the SM must be part of either a chiral or vector supermultiplet and
in plausible models they are all contained in chiral supermultiplets. The scalar
superpartners of the quarks and leptons are known as squarks and sleptons
respectively. In supersymmetric gauge theories the massless gauge bosons form

vector supermultiplets along with Weyl fermions known as gauginos.

Although not the original motivation for supersymmetry itself [51], the main
motivation for what is known as TeV scale softly broken supersymmetry (see for
example ref. [52]) is that it provides a solution to the hierarchy problem of the SM.
In supersymmetric theories scalar self-energies do not have the quadratic sensitivity
to high energy scales that are the origin of the SM hierarchy problem. The
quadratic terms due to fermions in loops such as (1.39) are cancelled by quadratic
terms due to the bosons from the same supermultiplet. These boson terms have the
opposite sign since they do not have the extra minus sign associated with a fermion
loop. In another sense, the non-existence of this quadratic sensitivity comes about
because the Higgs scalar itself is part of a supermultiplet and must remain
degenerate in mass with its non-scalar superpartners. For A’ = 1 chiral
supermultiplets the complex scalar must remain degenerate with the Weyl fermion.
Since Weyl fermions do not have the quadratic sensitivity to high energy scales, the

quadratic contributions to the scalar self-energy must necessarily cancel.

Clearly the scenario described contradicts observation if supersymmetry is
preserved by the vacuum since it invokes the existence of many new unobserved
particles that are degenerate in mass with observed particles and have similar

interactions. In realistic models supersymmetry, and this mass relation, must be
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broken. We will see that the TeV scale soft breaking scenario provides a solution to
the hierarchy problem, but predicts that there should be observable superpartners

with masses not too far above the TeV scale.

2.1 Superpotentials

The renormalisable Lagrangian of an N’ = 1 supersymmetric gauge theory is
specified by specifying the gauge group, the gauge group representations of the
chiral supermultiplets, and what is known as the superpotential WW. The
superpotential is a chiral object, being a dimension-3 holomorphic function of
complex scalars from either purely left or purely right chiral supermultiplets. Here

we will work purely with left chiral supermultiplets as is canonical.

Let a supersymmetric gauge theory contain left chiral supermultiplets, labelled
with ¢, each containing a complex scalar ¢; and a LH Weyl spinor v;. Furthermore,

let the superpotential

1 1
W= 5mij¢idj + g Aijrdidi P, (2.1)
with m;; = mj; and \;j; similarly symmetric in all of its indices. Terms in the
superpotential with mass dimension greater than 3 are non-renormalisable. The

renormalisable, supersymmetric, gauge invariant Lagrangian' is then

1 apy Aa 1act : Tac .
L= —AMAY,, + AighD, A% + glic Dy + (DV6:)! (Dudr)
- - 1
+iv2g) gl Aty — pl AT, | - S D" D"
1 C C
— 5 [+ AT + e — BT F, (2.2)

where

ow 1
F, = 90; —Mijd; — 5>\¢jk¢j¢k (2.3)

"We do not address non-renormalisable operators in supersymmetric theories. Although the
effects of dimension-5 operators are interesting and potentially important, they have not been sys-
tematically studied in the FgSSM.
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and
D* = —gWolTug, (24)

The gaugino A® with adjoint index a is a LH Weyl spinor, so A% is a RH Weyl
spinor. If the gauge group is a direct product of simple subgroups then the gauge

coupling constant ¢(® can have a different value for each of these subgroups.

2.2 The Matter Content of the MSSM

The MSSM is minimal in the sense that it introduces as few new particles as
possible to the particles of the SM. To this end one begins by simply assigning all of
the fields in table 1.1 to left chiral supermultiplets. This immediately creates a
number of problems and in the MSSM these are solved in a way that introduces as

few new fields as possible.

Firstly there are two problems related to the assigning of the Higgs doublet H to
a chiral supermultiplet, but both have the same solution. The first of these
problems is that the Weyl fermion superpartner of the Higgs scalar doublet
contributes to the gauge anomaly (1.11). The inclusion of this field gives extra
non-zero contributions to gauge anomalies and therefore makes the gauge theory
anomalous. The second of these two problems is that, since the superpotential must
be a holomorphic function of complex scalars from purely left (by convention,
alternatively right) chiral supermultiplets, superpotential terms coupling H to
down-like squarks and charged sleptons are forbidden by the U(1)y gauge
symmetry. This means that the mass inducing couplings to down-like quarks and
charged leptons that appear in (1.5) cannot be present in the supersymmetric
Lagrangian. The minimal solution to both of these problems is the same and it is to

have two Higgs scalar doublets as in table 2.1.

The extra contributions to gauge anomalies from the Higgsinos then cancel since
their charges are opposite and together they from a real representation of Ggyy.

(We choose to write all SU(2) antidoublets as doublets since they are equivalent, as
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Supermultiplet Boson Fermion | SU3). SU(2)r U(l)y
LH quark doublet chiral Qr Q 3 2 +1/6
LH down-type antiquark chiral d% d% 3 1 +1/3
LH up-type antiquark chiral ufp u% 3 1 —2/3
LH lepton doublet chiral L, L, 1 2 —1/2
LH charged antilepton chiral €R eh 1 1 +1
Down-type Higgs doublet chiral — Hy Hy 1 2 —1/2
Up-type Higgs doublet chiral H, H, 1 2 +1/2
Gluon vector GH Gluino G 8 1 0
SU(2)r, gauge vector Wt Wino W 1 3 0
U(1)y gauge vector BH Bino B 1 1 0

Table 2.1: The SU(3), and SU(2); representations and the
U(1)y charges of the supermultiplets of the MSSM.

shown in appendix B.) The contribution to the gauge anomaly due to gauginos is
automatically zero since gauginos are necessarily in the adjoint representation
which is real. Since L and Hy have the same quantum numbers one might think
that a more minimal solution would be to declare these fields to be part of the same

supermultiplet, but in practice such models prove unrealistic.

The most general renormalisable and gauge invariant superpotential containing

the fields in table 2.1 is

W = pHyH,+ hijisH,.Qr;

- hgcz%in-QLj - hfjé%in.ELk + AW, (2.5)
where
1 pes + o rods A -
AW = §5z‘LjéeLLi'LLj6Rk+§ijg Lp;-Qrjdpy,
. 1 .
+ ¢ MLy H, + §§%i:du§%i 7Rk (2.6)

If both of the Higgs scalars acquire VEVs

(Hy) = — and  (H,) =

1
il il (2.7)

31



then this superpotential yields Dirac mass terms equivalent to those in (1.32)

1 D T U T
Lyukawa = G (hijvddRidLj + hijuutipu,;
+ hfjwdegiem + C.C.) +oe (2.8)

In order for the W= and Z boson masses to be the same as their SM values we

require

We therefore define an angle 5 such that

tan(8) = % (2.10)
= wvg = wcos(f) and
v, = wsin(f).

The Yukawa coupling matrices h”, hY, and A" must then be multiplied with
respect to those of the SM by factors of 1/ cos(8), 1/sin(5), and 1/ cos(f)
respectively. With increasing tan(f) the hierarchy between the top and bottom
Yukawa couplings is lessened, but all of these Yukawa couplings are greater than

their SM values for all angles 5.

2.2.1 R-parity

The terms in AW, however, are dangerous since they all violate either lepton or
baryon number conservation. Most importantly they lead to Lagrangian terms that
allow protons to decay into final states with zero baryon number. These decays are
mediated by squarks and require both baryon and lepton violating terms from AW
(see figure 2.1). The most common solution in the MSSM is to impose an
additional discrete Zis symmetry on the fields in the superpotential. This is known

as R-parity, which we denote Zé\/l , and is defined such that the Higgs scalars are
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UR Ly
Figure 2.1: A proton decay diagram using the couplings ¢@¢
and ¢4 in (2.6).
even and all of the matter scalars (squarks and sleptons) are odd. When interpreted
as a symmetry of the Lagrangian, angular momentum conservation implies that the
fermionic superpartners have opposite R-parity. The gauge bosons must be
73! -even and the gauginos are then Z3’-odd. Oddness under Z3! is the meaning of

the tilde over the squark, slepton, Higgsino, and gaugino fields.

The imposition of Z3! forbids all of the terms in AW and makes the
renormalisable MSSM Lagrangian invariant under global U(1)p and U(1)y. In the
SM only gauge invariance is required in order for these to be global symmetries
since the squarks the sleptons do not exist. The Zé\/l -odd particles, denoted with a
tilde thoughout, are known as the supersymmetric particles and the imposition of
Zé\/l means that the lightest supersymmetric particle is absolutely stable. It is
therefore the case that in the MSSM a discrete symmetry imposed in order to
prevent rapid proton decay also leads to the existence of a new stable particle that

may be a plausible candidate for dark matter.

2.2.2 The p problem of the MSSM

The other problem with W in (2.5) is that it contains the bilinear mass term u.
This is a supersymmetry respecting parameter that a priori has no relation to
either the EWSB or supersymmetry breaking scales. The problem is that in order
to achieve EWSB, with v of the correct magnitude, the parameter p should be of
order the EWSB scale. In the MSSM as written, however, it is not clear why it
should not be either of order the Planck scale or zero. The p problem refers to a

fine-tuning that has to be imposed on the u parameter once. Supersymmetry does
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at least mean that the parameter is stable at the EWSB scale under radiative

corrections, even as it is not explained.

2.3 Soft Supersymmetry Breaking

Although unbroken supersymmetry is easily ruled out, even in the case of

spontaneously broken supersymmetry the relationship
2 2

where ./\/li is the mass-squared matrix for all real scalars and Mi is the
mass-squared matrix for all Weyl spinors in chiral supermultiplets, still holds at
tree level in the absence of gauge anomalies [45]. It is trivially satisfied in the case
of unbroken supersymmetry since the two real scalars and Weyl spinor from each
chiral supermultiplet are degenerate. Because of this relation it has not been
possible to create a realistic model for supersymmetry breaking in the MSSM

without introducing extra physics.

In order to create realistic models one usually invokes the existence of some
other sector, known as the hidden sector, in which supersymmetry is spontaneously
broken. In this hidden sector scenario the visible sector (containing SM matter,
here the MSSM sector) does not itself cause spontaneous supersymmetry breaking,
but supersymmetry breaking effects are communicated to it somehow from the

hidden sector.

In this hidden sector scenario it is useful to parametrise the kinds of
modifications to the visible sector Lagrangian that spontaneous supersymmetry
breaking in the hidden sector can cause in ignorance of the exact mechanism of
supersymmetry breaking. It is therefore useful to list the gauge invariant mass
terms that may be induced in the visible sector. Firstly one can have SSB masses

for all scalars ¢ of the form
—oim?¢. (2.12)
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If there is more than one copy of a scalar with the same quantum numbers,
i.e. there is more than one generation, then there can be more structure to the mass

matrix. For example, for the LH slepton? doublets one can have

= 2
—Lym}, L, (2.13)
and for the RH charged sleptons one can have
~ 2 ~
—egimmjem, (2.14)

whereas the only possible soft scalar mass-squared term involving the down-type

Higgs doublet is
2
—Hlm3, H,. (2.15)

Note that L . and H; do not have the same quantum numbers since L L is ZQJ -odd.

Secondly one can have SSB masses for gauginos
1 (a) gact ga
-5 [M Art 4o fcel. (2.16)

If the gauge group is a direct product of subgroups, then in general the gauginos
associated with each subgroup can have a different gaugino mass. For example, for

the SM gauge group one can have soft gaugino mass terms
1 I L o
-5 M3G*TG® + MyWTW® + M, BT B + c.c.| . (2.17)

These mass terms always exist for gauginos since they are necessarily in real
representations of the gauge group. They do not exist for chiral fermions. Thirdly
one can have SSB trilinear terms. For each trilinear term that is allowed to appear

in the superpotential

)\Z]kqslgbj(bk (IlO su on i,j, k) (2.18)

2Since sleptons are scalars there is no concept of slepton handedness. The handedness refers to
the handedness of the fermionic superpartner.
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one can have the soft supersymmetry breaking Lagrangian term

)\ijkA/\ijk¢i¢j¢k (IIO sum on ia.jv k)v (219)

where A has mass dimension 1. In fact it is the case that for any term that can
appear in the superpotential one can have a corresponding SSB Lagrangian term
that is equal to the superpotential term multiplied by some new supersymmetry
breaking parameter with mass dimension 1. In the MSSM there then exists the SSB

breaking term corresponding to the p term

(BHy.H,. (2.20)

There terms are known as soft since they only involve new parameters that have
positive-definite mass dimension. The supersymmetric relationships between the
dimensionless couplings involving bosons and fermions that lead to the cancellation
of the quadratic sensitivity of fundamental scalars to arbitrarily high scales are
preserved. If these new parameters with the dimensions of mass are roughly of
order some scale associated with SSB then the consequences are the following:
Firstly, while the observed quarks and leptons only acquire masses proportional to
the EWSB scale, the unobserved gauginos, squarks, and sleptons acquire masses
proportional to the SSB scale, allowing their current non-observation to be
naturally explained. Secondly, contributions to the finite radiative corrections to
the Higgs boson self-energy will be at most of order the SSB scale since this is the
scale of differences between bosonic and fermionic masses within supermultiplets.
Therefore if the SSB scale is not too far above the EWSB scale then the hierarchy
problem is still solved. It is therefore believed that if supersymmetry is the solution
to the hierarchy problem then the squarks, sleptons and gauginos, while currently
unobserved, should not have masses too far above the TeV scale and should
therefore be discovered at the LHC. This is what is known as TeV scale softly

broken supersymmetry.

If the squarks and sleptons are present at or not too far above the TeV scale
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then these soft supersymmetry breaking terms can in general lead to FCNCs in
contradiction with observation. This problem can be avoided if each of the 3 x 3

soft scalar mass-squared matrices, such as those in (2.13) and (2.14) — namely

2 2 2
MQizs Migigr Mayigo

2

m%l-j, and mg;; — are proportional to the identity and if for each

of the 3 x 3 Yukawa matrices — h%, hi?, and hg — all nine associated soft trilinear

couplings are equal. Explicitly this means

mpy; = mpdy VFe€{Q,du,Le} and (2.21)

A = Ag VYi,j VGe{UD,E}. (2.22)
ij

The SSB gaugino masses and trilinear couplings may also in general have large
phases that lead to large C P-violating effects, again in contradiction with
observation. The actual restrictions on and relationships between these soft mass

parameters will depend on the nature of the SSB mechanism.

2.4 Grand Unification

Grand unification is the idea that just like U(1)gy is a remnant of the
spontaneously broken electroweak gauge symmetry group, so the SM gauge
symmetry group Gsy is a remnant of some still larger group that is spontaneously
broken by some mechanism at some GUT scale. The further assumption is that this
GUT group should not be a direct product of simple groups, as Gsy is, but should
itself be simple, with a single gauge coupling. Grand unified theories can offer an
explanation for the charges of the observed SM particles and for the observed values
of the three gauge couplings at low energies. The three gauge couplings would be
equal to some single GUT group gauge coupling at the GUT scale and below the
GUT scale, where the GUT symmetry is spontaneously broken, the three couplings
would then run, with different beta functions, to the low energy values that we
observe. Grand unification therefore makes the prediction that, running to higher
energy, the three gauge couplings should unify at some scale. Since we know the

values of the couplings at low energy, if we know the beta functions in some theory
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then this prediction can be tested — the beta functions depending on the whatever

new physics exists between the EWSB scale and the GUT scale.

A U(1) gauge theory is of course invariant under a rescaling of the gauge
coupling as long as the charges are also appropriately rescaled, but if the U(1) is a
remnant from some spontaneously broken larger group then the U(1) charges of the

particles, forming some representation under the larger group, will then be fixed.

In the SM, with no new physics coming in above the EWSB scale, the couplings
do not unify. They do, however, unify if one assumes supersymmetry spontaneously
broken at the TeV scale. In the MSSM the scale of this unification is around

106 GeV (see for example ref. [45]).

The smallest possible GUT group is SU(5) [53]. SM matter can arise from 10

and 5 representations which decompose under
SUB) — SUB).@SU2)U1)y (2.23)

as

10 — <3,2,+\/§é> ® (3,1,—\@3) @ (1,1,+\/§> (2.24)
5 — (3,1,+\/§;> @ (1,2,—\/§;> ) (2.25)

This is one generation of SM quarks and leptons as long as one uses the correctly

GUT normalised U(1)y gauge coupling, which we can read off as
no= /39 (2.26)

The two Higgs doublets of the MSSM, however, do not form a complete
representation of SU(5). If they are from 5 and 5 representations then one must
explain why the colour triplets from these representations are not present at low
energy while the Higgs doublets are. This is known as the doublet-triplet splitting

problem.
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2.4.1 Unification of SSB masses

At the GUT scale in order for the soft gaugino mass terms to be gauge invariant
under the GUT group all soft gaugino masses, like all gauge couplings, must be
equal. This GUT scale soft gaugino mass is known as M /5. Grand unified gauge
symmetry implies that these soft gaugino masses should be unified at the GUT
scale, but the further assumption is sometimes made that not only should the
unifications (2.21) and (2.22) be imposed at the GUT scale for phenomenological
reasons, but that all of the soft scalar masses in (2.21) should be equal to a unified
soft scalar mass mg and that all of the soft trilinear couplings in (2.22) should be
equal to a unified trilinear coupling Ag. This this known as the constrained scenario
or sometimes gravity mediated supersymmetry breaking. In the MSSM this

constrained scenario is known as the cMSSM.

Gravity mediated supersymmetry breaking assumes that supersymmetry
breaking is communicated to the visible sector only by non-renormalisable
operators that are suppressed by the Planck mass. If the supersymmetry breaking
scale in the hidden sector is Mg then the visible sector SSB masses will be of order
the gravitino mass my o ~ M2 /Mp [50]. A further assumption is that the
non-renormaliasable operators should be completely flavour blind and that the SSB
parameters should be unified at the Planck scale. In the constrained scenario,

however, the unification relations are all applied at the nearby GUT scale.

One success of this scenario is that if the soft Higgs masses start off equal to myg
at the high scale then they will typically be driven negative by radiative corrections
on the way down to the EWSB scale, allowing for EWSB if one also has an
appropriate p parameter. Whether in a constrained scenario or not, this is known
as radiative EWSB. The soft Higgs masses will be of the correct order of magnitude

for EWSB since they will be of order the SSB scale.
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Chapter 3

The EgSSM

The main theoretical shortcoming of the MSSM as a model describing TeV scale
softly broken supersymmetry is the p problem. The model also predicts the tree
level result that the lightest Higgs boson must have a mass smaller than
mz|cos(23)|. Large loop corrections must then push the Higgs mass above the LEP
limit in order for the model not to be ruled out. In practice when this is done the
model is quite fine-tuned [54]. In light of the shortcomings of the minimal model, it
is worth considering supersymmetric models that have a non-minimal structure at

the TeV scale.

The EgSSM [55, 56, 57] is a string theory inspired supersymmetric model based
on an Fg GUT group. The low energy gauge group contains an extra U(1), called
U(1)n, under which the RH neutrinos that arise in the model are not charged. This
means that the RH neutrinos may acquire large intermediate scale Majorana
masses. This choice, that the low energy gauge group is Gsy ® U(1)y, defines the
model. The U(1)x gauge symmetry is spontaneously broken at low energy by a
SM-singlet field — charged under the extra U(1)y, but a singlet under Ggyg. This
field radiatively acquires a VEV which is naturally of order the SSB scale, meaning
that there is Z’ boson with an induced mass of order the TeV scale. This SM-singlet
VEV also induces an effective p parameter, also naturally of order the SSB scale,

with the p term of the MSSM being forbidden by the enlarged gauge symmetry.

Although FEg is not a group without complex representations, complete
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representations of Eg are nonetheless free of gauge anomalies. In the FgSSM
automatic gauge anomaly cancellation is thereby ensured by allowing three
complete 27 representations of Eg to survive down to the low energy scale. These
three 27s contain the three generations of known matter, however they also contain
the VEV acquiring Higgs doublets and SM-singlet. This means that there are two
extra copies of the Higgs doublets and SM-singlet in the low energy particle
spectrum. Whereas in the MSSM the Higgs doublets do not form a complete
representation of the potential SU(5) GUT group, in the EgSSM supermultiplets
with the quantum numbers of Higgs doublets are contained within each of the
fundamental 27 representations of the GUT group that also each contain one

generation of SM matter.

In the EgSSM only one generation of Higgs doublets and SM-singlets, defined to
be the third, acquires the required VEVs and is known as ‘active’. The other two
generations, the first and second, of Higgs doublets and SM-singlets do not acquire
VEVs and these are known as ‘inert’. Furthermore, in the EgSSM it is assumed
that the inert generations have suppressed Yukawa couplings to SM matter,
suppressed due to some flavour symmetry. This means that new FCNCs from the
enlarged Higgs sector are suppressed and also explains why the inert generations do

not radiatively acquire VEVs.

3.1 Gauge Symmetry and Matter Content

The subgroups of the Fg GUT group may be written

Es D SO(10) @ U(1)y
S5 SUB)@U1)y ® ULy

5 SUB)e®SUQ2), @ U1)y @ U(1)y ® U(1)y. (3.1)
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In the E4SSM Ejg is spontaneously broken at the GUT scale directly to
SU(?))C &® SU(2)L &® U(l)y &® U(I)N, where

Uy = cos(@)U(1)y + sin(0)U (1), (3.2)

and tan(¢) = v/15. This is such that the RH neutrinos that appear in the theory
are completely uncharged. Three complete 27 representations of Eg then survive
down to low energy in order to ensure gauge anomaly cancellation. They

decompose under the SU(5) ® U(1)y subgroup as [58]

1 - 2
27 —» 10, —~= | @ (5, —
< vV 40) ( vV 40)
_ 3 2 5
G5 —=)B |5 —|P|(l,—=|P(1,0]). 3.3
C-7)e )= (bm)e () o9
The first two terms contain normal matter, whereas the final term, which is a singlet
under the entire low energy gauge group, contains the RH neutrino, or technically

the LH antineutrino 91¢. The second-to-last term, which is charged only under

U(1)n, contains the SM-singlet S. The third generation SM-singlet acquires a VEV

@w:% (3.4)

which, as we shall see, generates the effective i term and spontaneously breaks
U(1)n leading to a mass for the Z’ boson. The remaining two terms contain the
down- and up-type Higgs doublets Hy and H,, but also contain SU(3). triplets.
These exotic coloured states are known as D and D — the antitriplet from 5 and

the triplet from 5 respectively. Only the third generation of Higgs doublets acquires

VEVs
= E = L COS all
(HY) = %= sin(g) (3.5)
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Supermultiplet Boson  Fermion |r¢ rk \/%QY VaoN
LH quark doublet chiral Q I Q. 3 2 +1/6 +1
LH down-type antiquark chiral d% d% 3 1 +1/3 +2
LH up-type antiquark chiral 1}% UG 3 1 —2/3 +1
LH lepton doublet chiral L, L, 1 2 —1/3 +2
LH charged antilepton chiral €R eh 1 1 +1 +1
LH antineutrino chiral N¢ N¢ 1 1 0 0
Down-type Higgs doublet chiral Hy Hy 1 2 —1/2 -3
Up-type Higgs doublet chiral H, H, 1 2 +1/2 -2
SM-singlet chiral S Singlino Sl1 1 0 +5
Exotic colour antitriplet chiral D D 3 1 +1/3 -3
Exotic colour triplet chiral D D 3 1 —1/3 —2
Gluon vector G* Gluino G | 8 1 0 0
SU(2)r gauge vector WH WinoW |1 3 0 0
U(1)y gauge vector BH BinoB |1 1 0 0
U(1)n gauge vector B* Binod B’ |1 1 0 0

Table 3.1: The SU(3). and SU(2), representations and the Eg
GUT normalised U(1)y and U(1)y charges of the supermultiplets

of the FgSSM.

The charge assignments of the matter of the supermultiplets of the EgSSM are

summarised in table 3.1.

The low energy gauge invariant superpotential

W

where

U

U ~ ~ D i ~ E -~ =
+ bt Hyy Qi + hijdriHa-Qri + hijr€rif gLk

Wi = gg-kDiQLj-QLk + ggjkDiJchﬂch, and
N dyep E - . DA 7 A
Wo = g0 Didgy + 9i1€Ri Djugy + 9551 Qri- LDy

It is now clear that the effective p parameter is given by

Wy + Wi + W,

3335

R
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(3.6)

(3.8)

(3.9)

(3.10)




generating the term uHgs.H,3 in the superpotential. The u problem is solved since

s is of order the SSB scale and A333 is perturbative.

3.1.1 Discrete symmetries of the superpotential

It should be noted that simply due to gauge invariance the superpotential of the
E¢SSM is already invariant under the Zy imposed on the MSSM provided that the
exotic D and D bosons and the SM-singlet bosons are interpreted as being Z3!-even
along with the Higgs doublets. The squarks and sleptons, including the RH
sneutrinos, are Zéw -odd. The U(1)p_r-violating terms of the MSSM superpotential
that matter parity is invoked to forbid are never present in the renormalisable
E¢SSM superpotential since they would violate the extra surviving U(1)y gauge
symmetry. Importantly, all of the U(1)p_r-preserving MSSM terms are gauge
invariant with the exception of the x term. Again the Z)'-odd states are known as

the supersymmetric particles and in the EgSSM the LSP is automatically stable.

In order for non-diagonal flavour transitions arising from the Higgs sector to be
suppressed, the superpotential is assumed to obey an approximate Zs symmetry
known as ng . Under this symmetry all of the fields in the superpotential other
than Ss, Hys, and Hy3 are odd. It is this approximate symmetry that distinguishes
between the active and inert generations of Higgs doublets and SM-singlets, with
the inert generations having suppressed couplings to matter and not radiatively
acquiring VEVs. This approximate symmetry suppresses \;jx couplings of the
forms Aa33, A3a3, A33a, and Mgy, where o, 5,7 € {1,2}, indexing the inert
generations only. Such an approximate Zg symmetry, with a stable hierarchy of
couplings, can be realised in EgSSM flavour theories such as the one proposed in
ref. [59]. The symmetry cannot be exact or else the lightest of the exotic coloured
states would be absolutely stable. The existence of such stable coloured exotics

contradicts observation [60].

Although the U(1)p_-violating terms of the MSSM are forbidden by gauge
symmetry, since the Z2 cannot be exact another exact discrete symmetry must be

imposed on the superpotential in order to avoid rapid proton decay caused by the
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zy' 7y 7y 7§
Sodea’Huoc + + + -

S37 Hd37 H, + + + +
Quivdiy, iy | —  + + -

~c \TC
Ly;, exi N, - - - -

D,D;,| + + — -

Table 3.2: The charges of the fields of the EgSSM superpoten-

tial under various exact and approximate Zsy symmetries that the

superpotential may or may not obey. ZJ! is already a symmetry

due to gauge invariance. Either Z% or Z¥ is imposed in order to

avoid rapid proton decay. Z& is an approximate flavour symmetry.

i€{1,2,3} and o € {1,2}.
terms in the W; and W, that involve the exotic coloured states. There are two
ways to impose an appropriate Zs symmetry on W that lead to baryon and lepton
number conservation. The first option is to impose a symmetry called Z% under
which only the sleptons, including the RH sneutrinos, are odd. In this case the
superpotential is equal to Wy + W; and the model is known as the EgSSM-1. U(1)p
and U(1)y, are symmetries of the renormalisable superpotential if the exotic
coloured states D and D are, respectively, diquarks and antidiquarks, with B = +2/3
and L = 0. The second option is to impose a symmetry called Z& under which both
the sleptons and the exotic D and D bosons are odd. In this case the superpotential
is equal to Wy + W, and the model is is known as the EgSSM-II. U(1)p and U(1)r,

are symmetries of the superpotential if the exotic coloured states D and D are,

respectively, antileptoquarks and leptoquarks, with B = 1 and L = F1.

All of these potential exact and approximate discrete symmetries of the

superpotential (3.6) are summarised in table 3.2.

It should be noted that, although the matter that survives down to low energy
form three complete 27 representations of the broken Fg, with the exception of the
uncharged RH neutrinos, to ensure anomaly cancellation, the imposed exact

discrete symmetries and approximate flavour symmetries do not commute with FEg.
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3.1.2 Non-Higgs supermultiplets and RH neutrinos

It is known that in the model as presented thus far the gauge couplings, though on
course to unify, do not unify below the Plank scale. The beta functions above the
SSB scale are modified compared to those of the MSSM by the existence of the
extra matter. For example, above the SSB scale the QCD beta function is in fact
zero at one-loop order. This issue can be solved by having the Fg GUT group be
broken to an intermediate group before being broken finally to Ggy ® U (1) n as

shown in ref. [61].

The canonical solution [55, 56, 57], however, is to introduce into the
superpotential a bilinear term involving extra fields, known as non-Higgs fields,

from extra incomplete 27 and 27 representations known as 27’ and 27’

W =iy HH, (3.11)

where H' is the Hy field from 27’ and H' is the corresponding field from 27’. These
supermultiplets taken together do not spoil gauge anomaly cancellation. To some
extent this solution reintroduces the p problem, but y/ is not required to be related
to the EWSB scale and in order to observe satisfactory gauge coupling unification it
is only required that p’ < 100 TeV. The unification of the gauge couplings in the
EgSSM can then be achieved for any phenomenologically acceptable value of a at
the EWSB scale consistent with the measured low energy central value. This is
unlike in the MSSM where significantly higher values of a3 are required at the

EWSB scale, well above the central measured value [57].

Since RH neutrinos are completely uncharged they can acquire very heavy
Majorana masses, allowing for a type-I see-saw mechanism. Furthermore, in the
early universe the heavy RH neutrinos, which can each decay into final states with
lepton number either +1 or —1, can create a lepton asymmetry, leading to

successful leptogenesis [62].
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3.2 U(1) Gauge Boson and Gaugino Mixing, EWSB

Scale Gaugino Mass Relations, and Z-7' Mixing

In the low energy Lagrangian of the EgSSM as well as the U(1) gauge boson kinetic
terms contained in (2.2)

1 1
T N 0
4 S|

- (3.12)

where the first term is the kinetic term for the U(1)y gauge boson B, with
B, = 0,B, — 0,B,,, and the second term is the kinetic term for the U(1)x gauge
boson B’, the term

_51n2(X) B’“’B:W (3.13)

is also gauge invariant. At the GUT scale the coefficient sin(y) must be equal to
zero since this kinetic mixing term violates the Fg gauge symmetry. Furthermore,
this Eg-breaking mixing term is not induced by radiative corrections as long as only
complete representations of Fg survive down to low energy. If the non-Higgs

supermultiplets are present, however, a non-zero sin(x) can be induced [55].

Making the change of variables [63]

/ W
B, — (3.14)

the mixing term (3.13) is eliminated from the Lagrangian, but in the covariant

derivative one must make the substitution

N
! AN o/ / Q Y ! eff ~eff o/
Q"B — —g1Q" t B = QB 3.15
9 <91 cos(x) 91 an(X)> 91 ) ( )
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using an effective g} coupling and effective QV charges

/

eff g
= cos(x) and
QF = QN — QY sin(y). (3.16)

91

However, even in the presence of non-Higgs doublets the EWSB scale relations
g‘fﬁ =g = ¢, and Q°ff = QN are expected to be satisfied at one-loop level to within

one-loop accuracy [55].

3.2.1 Soft Gaugino Masses

In the SSB breaking part of the Lagrangian the Eg-violating soft mass term
M1 B*“TB" 4+ c.c. (3.17)

can also be induced at low energy, even though it is forbidden at the GUT scale.
Along with the gauge kinetic mixing, however, this soft gaugino mass maxing is also

expected to be small [4].

If at the GUT scale the soft gaugino masses My = My, = M, = M| = M, ), and
M, = 0, as required by Eg gauge invariance, then, due to the RGEs, at the EWSB

scale one expects M| ~ M, ~ 1/2M, > M, [55].

3.2.2 Z-7' mixing

The three VEVs vy, vy, and s do not just induce diagonal masses for the Z and Z’

bosons, but also induce a mixing term. The induced Z-Z’ mass-squared matrix is

2 2
m m
Z zz'
: (3.18)
mQZZ, mQZ/
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where

m2ZZ’ = g—g/lv2 <Q1dv COSQ(ﬁ) — ny sin2(ﬁ)), and

my = g’fv2< év%os?(ﬁ)w%in%ﬂ))+g’f 9257, (3.19)

with Qév w.s the U(1)n charges a down-type Higgsinos, up-type Higgsinos and

singlinos respectively, given in table 3.1. The mass eigenstates are then

Zy = Zcos(azzg)+ Z'sin(azz) and
Zy = —Zsin(agy)+ Z' cos(azz), (3.20)
where
1 2m?%
azy = —arctan % . (3.21)
2 my, —msy

Experimental limits on the Zs boson mass and on the mixing angle a2/ are
model dependant since in different models that involve a Z’ boson the couplings of
that Z’ will depend on the model. In the EgSSM the most recent limit on the Z5
boson, set by the ATLAS collaboration [64], searching for dilepton resonances, is
myz, > 1520 GeV at a confidence level of 95%. This analysis is for a Z’' boson
associated with the extra U(1)y of the EgSSM, but neglects any other matter
beyond that of the SM. When decays of the Z5 boson into inert neutralinos (inert
Higgsino and singlino dominated mass eigenstates) are considered the Zs width
tends to increase by a factor of about 2 [65]. This then means that the branching
ratio into leptons is decreased by a factor of about 2. Estimating the effect of
halving this expected branching ratio on the analysis in ref. [64] one can read off a
95% confidence level lower bound of around 1350 GeV. At the times of the

publications of papers I, II, and III the most recent available limits were
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myz, > 861 GeV [66], mz, > 865 GeV [67], and mz, > 892 GeV [68] respectively, all
at confidence levels of 95%. Limits on the angle a7 typically require it be less
than order 1072 [69]. This means that neglecting aizz and setting mz, = myz and

mz, = my ~ ¢;Q¥Y s is in most cases an excellent approximation.

3.3 EWSB and the Active Higgs Boson Mass

Eigenstates

The EWSB active Higgs potential of the two active Higgs doublets Hy; = Hg3 and

H, = H,3 and the active SM-singlet S = S is

V(Hy iy S) = NSP (| HP + [H,P) + X H, 1
2
+ 2 (HyrH, + 8, ) (B0, + B H,)
9" 2 N2 | 9 (AN 2 N 2 N\
+ T (1 = 1H,2) + D (QN1H P + QN |, + QF15P?)
+mE|S|> + m3|H,* + m| H,|*

+ [MNSH, H, + o] + A, (3.22)

where mg, my, and m,, are the soft scalar masses for S, Hy, and H,, respectively
and A represents the contributions from loop corrections. Once again 7% = 0%/2 in
SU(2)r, doublet space and H;.H,, = Hd_HI — HgHg. We define A = A333 and A, is

then the corresponding SSB parameter.

Initially this EWSB sector involves ten degrees of freedom. Four of these,
however, are massless Goldstone modes which provide the longitudinal polarisations
of the massive W*, Z;, and Z5 bosons. When C'P invariance is preserved the other
six degrees of freedom form one charged complex scalar, one C' P-odd pseudoscalar,

and three C'P-even real Higgs states. The masses of the charged and pseudoscalar
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Higgs bosons are

V2AAN N2
mi. = Sn(25) s — ?1)2 +m?, + Ay and (3.23)
my = sin(2g0)v + Ay, (3.24)

where A4 and A4 are loop corrections and

tan(p) = % sin(28). (3.25)

The C'P-even active Higgs sector comprises Re HY, Re HY and Re S. In the

field-space basis

(o n )

rotated by S with respect to the standard interaction basis such that

Ne HY = \2 (h cos(8) — H sin(B) + vd>,
ReH) = \2 (h sin(f8) + H cos(B) + vu), and
ReS = \}5 (N + S) , (3.26)

the mass matrix for the C'P-even Higgs sector is [5]

o’V 10V 9V
2 vdB  uds M2 M2, M2
1 0%V 10°V 10%*V
vovdB v2 028 v dsdB
o’V 10V 9*V M2, MZ MX
Oovds v 0s0f 0%s

Mpy Mz Mgy |, (3:27)
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where

A, G> ' 2
M121 = ?vz sm2(2ﬂ) + ngQ 0052(26) + g’lzv2 (Qév cosz(ﬁ) + ny smz(ﬁ)) + A1,
2 _ (AT g\ 2.
Miy, = ( 1 3 > v-sin(45)
9’2 2( AN N N 2 N . 2
+ 202 (Q) - Q) (QN cos?(8) + QN sin?(8)) sin(28) + Az,
V2MA > A\ _ 2 2
oy = T (2 ) om0 it 5
2 AA 932 N N\ AN .
M = =" Zocos(28) + G- (QY - Q) Q¥ vssin(26) + Aas
M123 = —>:;1§’\v sin(2p) + Aus + g'12 (Qé\] COSQ(,B) + ny siHQ(B))Qéyvs + A1z, and
A, 02
M2, = W%% sin(28) + m%, + Ass. (3.28)

In (3.28) A;; are the contributions from loop corrections which in the leading
one-loop approximation are rather similar to the ones calculated in the NMSSM.
Explicit expressions for A;; in the leading one-loop approximation are given in
ref. [5]. Since the smallest eigenvalue of the mass-squared matrix (3.27) is always
less than its smallest diagonal element, at least one Higgs scalar in the C'P-even
sector, approximately h, always remains light, i.e. m%l < M. In the leading
two-loop approximation the mass of the lightest Higgs boson in the EgSSM does
not exceed about 150-155 GeV. The field-space state h has couplings to SM matter

identical to those of the SM Higgs boson for all values of tan(g).

When the visible sector SSB mass scale and the active SM-singlet VEV s are
considerably larger than the EWSB scale, the mass-squared matrix (3.27) has a
hierarchical structure and the masses of the heaviest Higgs bosons are closely
approximated by the diagonal entries M3, and M3 [55]. As a result the mass of
one of the two heavier C P-even Higgs bosons, predominantly H, is approximately
m 4 while the mass of the other, predominantly N, is approximately m . When
A 2 g} vacuum stability requires m4 to be considerably larger than my and the
EWSB scale so that the qualitative pattern of the Higgs spectrum is rather similar
to the one that arises in the PQ-symmetric NMSSM [70]. In this limit the heaviest

C P-even, the C'P-odd, and the charged states are almost degenerate with masses
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around my [55].
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Chapter 4

Thermal Relic Dark Matter

Non-baryonic dark matter is an unknown form of matter that is believed to make
up the majority of the matter energy density of the universe. It interacts either
very weakly or not at all electromagnetically. The existence of dark matter was first
proposed when analysis of orbital motion within the Coma galaxy cluster using the
virial theorem implied that there was more mass present than just that of the

visible baryonic matter [71].

Currently the evidence for the existence of cosmological dark matter is very
strong. Its existence is inferred from galactic rotation curves [72] and from various
measurements of galaxy clusters (see for example ref. [73]). There is also evidence
from observations of mass inferred from gravitational lensing (see for example
refs. [74, 75]), but our best measurements of the amount of cosmological dark matter
come from fits to CMB data in the context of the standard cosmological model

ACDM (CDM plus dark energy). Such fits to WMAP data [76] in particular give
Qph® = 0.0227+0.0006 (1-sigma) (4.1)
for the present baryon energy density and
Qpmh? = 0.110£0.006 (1-sigma) (4.2)

for dark, non-baryonic matter, where h = 0.73 is the reduced Hubble parameter and
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Q) is the energy density divided by the critical density p.. It is thought that the
majority of dark matter must be non-relativistic in order for the observed large

structure formation to be explained.

A standard assumption for pre-BBN cosmology is that the DMP was at some
time prior to BBN in thermal and chemical equilibrium with the photon and other
species still themselves in equilibrium with the photon. At some time in the past it
would have then decoupled from equilibrium and under this assumption one can
predict the relic density today of the DMP in some model if one knows all of the
model parameters. The chemical decoupling happens roughly when the particle’s
inelastic interaction rate (maintaining chemical equilibrium) becomes less than the
expansion rate of the universe H = a/a. When this freeze-out occurs the number
density of the frozen-out species typically remains much larger than it would have
been if the species had remained in equilibrium with the photon as the universe
cooled. If such a thermal relic particle has a freeze-out temperature T'F that is
much less than the mass of the particle such that the particle was non-relativistic at

freeze-out then it is known as CDM.

4.1 The Boltzmann Equation

Let us assume that in some model some number of particle species, labelled with ¢
in order of ascending mass m;, are odd under some symmetry Z% such that the
lightest one is stable and the DMP. The evolution of the cosmological number

density n; of a Zg) -odd particle species in the early universe can be expressed as

n; = —3Hn;— Z<Uz‘jvij>(ninj B niqnj'q)
J
- [Fm‘ (n; = ng®) = Tji(n; = ”j'q)}
JF

=22 [<03(ijviX> (niny —ni*n)

J#Fr X

— (U’inUjX>(nan — njqnf;?)}. (4.3)
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The first term accounts for Hubble expansion and the second term accounts for
annihilations with other Zé) -odd particles, including self-annihilations. The third
term represents the decays of Z-odd particles i into other Z-odd species j as
well as decays of other ZQD -odd species into species i. The final term represents the
inelastic scattering of supersymmetric particles ¢ off of ZQD -even particles X into

other Z%-odd species j and vice versa [77, 78].

Summing up these equations yields the somewhat simpler expression
n= Z n; = —3Hn-— Z Z(aijvij> (nn; —ninS?). (4.4)
i i

It should be noted that, assuming that all heavier Zé) -odd particles decay into the
DMP with not too long a lifetime, after thermal freeze-out the relic DMP number

density will subsequently becomes equal to n.

During thermal freeze-out the annihilation rates of the Z%-odd particles become
small compared to the expansion rate of the universe and their number densities
become larger than their (non-relativistic) equilibrium values. The universe
expands too fast for the number densities to track their equilibrium values. Let us
assume, however, that these states inelastically scatter off of SM states X
frequently enough that the ratios of the number densities of the ZZ-odd particles
do maintain their equilibrium values during the time of thermal freeze-out. We

shall refer to this as condition A and assuming that it is satisfied we have

n. ne.q n. n?q
L= = 2= (4.5)
n, N Neq
which allows us to rewrite (4.4) as
n = —3Hn— (ov) (n2 - ngq), (4.6)

where neq = in?q and the effective cross-section
e e
°q, eq

<0‘U> = ZZ<O’”UIJ>nzni2] (47)

eq
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Here we see that much heavier Z%-odd states, with correspondingly smaller
non-relativistic equilibrium number densities, would be present in smaller numbers
during the DMP’s thermal freeze-out and annihilation cross-sections involving them

would be less important.

4.2 The Freeze-Out Temperature

The energy density of one relativistic species of {boson, fermion} is

2
s
pPi = 91{177/8}%Ti47 (4.8)

where T; is the temperature of that species and g; is the number of degrees of
freedom. We define an effective number of relativistic degrees of freedom geg for the

whole system by writing

’7'('2 4
P = geff%T, (49)

where p is the total density of relativistic matter and 7' = T/, is the photon
temperature. The effective number of degrees of freedom geg takes into account the
factor of 7/s for fermions and also takes into account the fact that some species no
longer in equilibrium with the photon may have a different temperature. The

entropy density of a single species of {boson, fermion} with temperature 7T; is

92 2
s = gL (4.10)

and similarly an effective number of relativistic degrees of freedom heg for the

whole system is defined by
S = heﬁ‘iT"B. (4'11)

The numbers heg as gog Will differ when any species 7 has a different temperature to
the photon, with heg containing factors of (7;/T)3 and geg containing factors of

(T;/T)*. The number density of a non-relativistic species, which the cold DMP
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should be at freeze-out, is

T\ 3/2 .
ni = g <W;r’> exp( ZT’) (4.12)
K2

and the energy density is simply

In a radiation dominated universe the expansion rate is then given by

8rG 1 473
H2 = TP = WgeHETAL = k%geHT47 (414)
P

where we define the constant k; for future convenience. We can approximate the
freeze-out temperature T by equating an effective DMP interaction rate with the

radiation dominated expansion rate
F F (TF)? [4m3
mt o) = e\ s (4.15)

It is useful to scale the temperature by the DMP mass and define

r = . (4.16)

One can then use the expression for the non-relativistic DMP number density to

derive the transcendental equation

Foo_ 1
YT WEMmi (ov)F) — Yaln(aF)’ (4.17)

1 | 45
= —/—=. 4.18
¢ 473 29(5;lr ( )

To see how n evolves after freeze-out we first note that for isentropic expansion

where

the total entropy density of the system s oc a3, where a is the scale factor of the
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universe. This means that §/s = —3H. Defining

y = % (4.19)
we find
j—i = 3%(%@@ (v* = vea)
= \/Zg*Mml(aw (y2 - ygq) ; (4.20)
where

(4.21)

g = heff |:1+ T dheff:|'

\/ Geft 3heff dr

This equation can be used to find the relic density today numerically.

By integrating from z = 2% today to z = z¥" at freeze-out one can determine the

value of y today y° and the current DMP relic density is
myy°s®

Q = . 4.22
Pc ( )

The entropy density today s” is dominated by the cosmic microwave and neutrino
backgrounds. The CMB temperature is measured and the neutrino temperature

can then be calculated as in section 7.3.

The freeze-out temperature z¥" depends only logarithmically on the effective
cross-section, as in (4.18), but (ov)! is critical to determining how small y is driven
during the time around freeze-out, before interactions become negligible.
Subsequently, after the period of thermal freeze-out, y approximately remains

constant as the universe expands.
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4.3 Supersymmetric Dark Matter

In supersymmetric theories with R-parity Zé” this Zé\/l plays the role of Zf and the
DMP is the LSP [79]. In such theories the LSP is typically either the lightest
neutralino or the gravitino, depending on the nature of the SSB mechanism which
determines the typical scale of the gravitino mass relative to the visible sector SSB
masses. In gravity mediated supersymmetry breaking the LSP is typically the

lightest neutralino.

A sub-weak-strength interacting neutralino is generally considered a good
candidate for LSP dark matter [80, 81]. Neutralinos do not typically form Dirac
states and as such a neutralino DMP’s relic abundance in standard cosmology is
determined by thermal freeze-out and not by matter-antimatter asymmetry as in

the case of baryons.

Thermal relic neutralino dark matter has been widely studied in the
MSSM [82, 83, 84, 85] and cMSSM [86, 87, 88, 89, 90]. A successful dark matter
scenario may be realised if the LSP is the lightest neutralino and there are various
successful regions of parameter space that have different dominant annihilation
mechanisms. For example there is the bulk region, which involves annihilation via
t-channel slepton exchange; the focus point region, which involves annihilation via
t-channel chargino exchange; and the funnel region, which involves annihilation via
s-channel Higgs boson exchange. There are also regions corresponding to

coannihilation with staus or stops.

Typically in these scenarios 2 ~ 1/20, meaning that the dark matter is indeed
cold. Since, again, the freeze-out temperature is only logarithmically dependent on
the effective cross-section, as in (4.18), this approximate value does not vary
significantly for a wide variety of sub-weak-strength interacting neutralino dark

matter scenarios, including the EgSSM scenarios described in chapters 5, 6, and 7.
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Chapter 5

Dark Matter in the EgSSM

In this chapter, which contains work that was first published in paper I, we
present a study of neutralino dark matter in the presence of inert Higgsinos and
singlinos, using the extended neutralino sector of the E4SSM as an example. The
study here should be compared to the study of dark matter in the USSM in ref. [4].
The particle content of the USSM, in addition to the states of the MSSM, also
contains a SM-singlet S and a Z’ boson together with their fermionic superpartners
the singlino S and the gaugino B’. The existence of these interaction states can
modify the nature of the neutralino LSP. In this study we include the above states
of the USSM and also the extra inert doublet Higgsinos and singlinos predicted by
the EgSSM, but not included in the USSM — Hyo, Hy1, Hyz, Hy1, S2, and Sq. We
do not, however, include the corresponding inert scalars which do not play a role in
the heavy inert scalar limit. We also do not include any of the exotic coloured D
and D states since in general we would not expect them to play a significant role in

the calculation of the dark matter relic abundance.

We study neutralino dark matter in the EgSSM, as defined above, both
analytically and numerically, using micrOMEGAs [91]. We find that results for the
relic abundance in the EgSSM are radically different from those of both the MSSM
and the USSM. This is because the two inert generations of doublet Higgsinos and
singlinos predicted by the EgSSM provide an almost decoupled neutralino sector

with a naturally light LSP that can account for the CDM relic abundance
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somewhat independently of the rest of the model. In plausible scenarios the LSP

annihilates predominantly through an s-channel Z boson.

Imposing the conditions that the LSP has a mass greater than half of the Z
boson mass, so that the LSP does not contribute at all to the Z boson invisible
decay width, and accounts for all of the observed dark matter implies that tan(g)
must be less than about 2. Apart from this requirement on tan(/3), the very
stringent constraints on MSSM or USSM parameter space that come from requiring
that the model explains the observed dark matter relic density become completely
relaxed since in the EgSSM the neutralino dark matter depends almost exclusively
on the parameters of the almost decoupled inert neutralino sector. We expect
similar results to apply to any singlet extended supersymmetric model with an
almost decoupled inert neutralino sector comprising extra generations of inert

Higgsinos and singlinos.

In section 5.1 we discuss the inert neutralino sector of the EgSSM, introduce the
effective model that we study, and highlight the most important couplings for our
analysis of the LSP dark matter relic density. In section 5.2 we display the
complete neutralino and chargino mass matrices of the FgSSM. In section 5.3 we
present some analytical results that provide useful insights into the new inert sector
physics. These results are subsequently used to understand and interpret the results
of the full numerical dark matter relic density calculation using micrOMEGAs which

are presented in section 5.4. The conclusions are summarised in section 5.5.

5.1 The Trilinear Higgs Yukawa Couplings

The most important couplings in our analysis are the trilinear couplings between
the three generations of down- and up-type Higgs doublets and SM-singlets

contained in the superpotential of the EgSSM (3.7)
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The trilinear coupling tensor A;j; consists of 27 numbers which play various roles.
The purely third family coupling A = Ass3 is very important, because it is the
combination p = As/v/2 that plays the role of an effective p term in this theory.
Some other neutralino mass terms, such as those involving S, are also proportional
to A. The couplings of the inert Higgs doublets to the third generation SM-singlet
AaB = A3qp directly contribute to neutralino and chargino mass terms for the inert
Higgsino doublets. fga3 = Aa3g and fuap = Aaps directly contribute to neutralino

mass terms coupling an inert doublet Higgsino to an inert singlino.

The 13 Higgs trilinear couplings mentioned thus far are the only couplings that
obey the proposed Zg symmetry. This approximate flavour symmetry is proposed
in order to prevent FCNCs in the SM matter sector by eliminating non-diagonal
flavour transitions originating from the Higgs sector. The ZZ cannot be exact as
discussed in subsection 3.1.1. If \;jx obeyed Zéf exactly then, as we will see below,
the neutralino mass matrix (and also the chargino mass matrix) would be
decoupled into two independent systems and the lightest from each sector would be
absolutely stable. We shall refer to the Zf -breaking couplings involving two third
generation fields as Tgo = A3a3, Tua = A33a, and z4, = Aag3. The notation for the

Aijr couplings used is compiled in table 5.1.

ijk | 333 3af @38 «af3 33a 3a3 «33
)\ijk A Aaﬁ fdaﬁ fua,B Tda Tua Zoy

Table 5.1: The abbreviated notation for the A;;; couplings.

The 8 remaining Zg -breaking couplings A,g, are of less importance for our
study. As long as only the third generation Higgs doublets and SM-singlet acquire
VEVs then these couplings do not appear in the neutralino or chargino mass
matrices. Additionally, they only appear in Feynman rules that involve the inert
Higgs scalars and we assume that these are given SSB masses that are heavy enough
such that these particles do not contribute to any processes relevant for this study.
Similarly we neglect the exotic coloured D and D states since we expect them to be

too heavy to play a significant role in the dark matter relic density calculation.
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5.2 The Neutralino and Chargino Mass Matrices

In the MSSM there are four neutralino interaction states — the neutral wino, the
bino, and the two neutral Higgsinos. In the USSM [4] two extra states are added —

the singlino and the bino’. In the conventional USSM interaction basis
B T
USsm = ( B W* HY HY § B > (5.2)

and neglecting bino-bino’ mixing, as justified in ref. [4] (see also subsection 3.2.1),

the USSM neutralino mass matrix

M, 0 —%g/vd %g’vu 0 0
0 M, %gvd —%gvu 0 0
M{ssn = _}?/vd ;lgvd ’ N _2\75 Qi giva ,(5.3)
390y —59vu  —p 0 4 Qi giv
0 0 —de Xy 0 QYgs
0 0 QYdiva QYVgiva QFdis  M]

where M;, M,, and M are the soft gaugino masses and Q7Y ¢ are the U(1)y
charges of down-type Higgsinos, up-type Higgsinos, and singlinos respectively, given
in table 3.1. In the EgSSM this is extended. We take the full basis of neutralino

interaction states to be
T
\7int o ~ ~ ~ ~ ~ -
N - <N%?StSTM ng H32 Sy Hc(l)l Hgl 51> . (5.4)

The final six states are the extra inert doublet Higgsinos and singlinos that appear
in the full EgSSM. Under the assumption that only the third generation Higgs

doublets and singlet acquire VEVs the full Majorana mass matrix is then

M{ssy B, B
Bl Agl All
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where the submatrices involving the inert interaction states are given by

0 AajBs Jupavsin(fB)
1
Aaﬂ:AEa = —ﬁ ABaS 0 fdgaUCOS(B) (5.6)
Juapvsin(B)  faapvcos(f) 0

and the Z# -breaking submatrices by

0 0 0
0 0 0
1 0 TdaS zZqusin(f
By = —— “ avsin(F) (5.7)
V2 Tuas 0 2 cos(3)
Tuavsin(f)  xg4qv cos(f) 0
0 0 0
Similarly we take our basis of chargino interaction states to be
cr
e = fil , (5.8)
int
where
s i
. H} N H;
ch=1 " and .= ¢ | (5.9)
iy iy,
Hyy Hy
The corresponding mass matrix is then
PT
MC = : (5.10)

P
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where

M, V2myy sin(B) 0 0

P V2myy cos(3) 1 %xdgs %wdls (5.11)
0 %mugs %)\225 %/\213
0 %wuls %)\125 %)\118

One can already see from (5.6) from that a typical feature of the EgSSM is that
the LSP is composed mainly of inert singlino and ends up being typically very light.
One can see this by inspecting the submatrices A, and assuming a hierarchy of the
form Aaps > [y a)apv- This is a natural assumption since we already require that
s > v in order to satisfy the experimental limits on the Zs boson mass. At the time
of the publication of paper I the experimental lower limit was 861 GeV, from

ref. [66]. The current limit is around 1350 GeV as discussed in subsection 3.2.2.

For both the neutralinos and the charginos we see that if the Zf -breaking
couplings are exactly zero then the inert parts of the neutralino and chargino mass
matrices becomes decoupled from the USSM parts. However, as previously
discussed, although approximate decoupling is expected, exact decoupling is not

and will therefore not be considered.

5.3 Analytical Discussion

It will be useful to get some analytical understanding of the calculation of the dark
matter relic abundance coming from the new neutralino/chargino physics of the
EsSSM before looking at the results of the full numerical simulation. To this end,
in this section, we consider just one inert generation consisting of two inert Higgs
doublets and one inert SM-singlet. We label this generation as the first generation.
We shall assume that the Z&-breaking Yukawa couplings of the first Higgs
generation to the third conventional Higgs generation are large enough to allow the
neutralino/chargino states of the USSM to decay into the LSP, formed mostly from

inert neutralino interaction states, but also small enough such that we can consider
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the inert neutralinos to be approximately decoupled from the rest of the neutralino
mass matrix for the purposes of obtaining an analytical estimate of the mass
eigenstates. This all amounts to considering the single block Ay of the extended

neutralino mass matrix (5.5).

5.3.1 The neutralino masses and mixing for one inert generation

Within the first generation we use the basis
T
vint ; ; &
v~ (A A S ) 5.12)
and the neutralino mass matrix is then, from (5.6),

0 Ns fuvsin B
1
A=Ay = —— Ns 0 favcosB | (5.13)

V2
fuvsin B fqucosf 0

where N = A1 = A\311, fa = fa11 = M131, and f, = fu11 = A13. As discussed earlier,
it is natural to assume that X's > fv and this will lead to a light, mostly first

generation singlino lightest neutralino.

Finding the eigenvalues of the matrix A amounts to solving a reduced cubic
equation. Expanding in fv/)\s the three neutralino masses from the first

generation are

2
my = \}ﬁfifuzsin(m)ju---, (5.14)

my = —=——+---, and (5.15)

my = —o-——4..., (5.16)

The lightest state Ny, with mass m1, is mostly singlino (as we will confirm below)

and the two heavier states have nearly degenerate masses, split by m;. At =0 or
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/2 the lightest neutralino becomes massless. This is when only one of the third

generation active Higgs doublets has a VEV.

We shall define the neutralino mixing matrix N by

Ni“MabN]b = m;0;; (no sum on %) (5.17)

IAEY]

with superscripts indexing the interaction states and subscripts indexing the mass
eigenstates. The lightest state is then made up of the following superposition of

interaction states:
Ny = N{HY + N2H?, + N}S,. (5.18)

Again expanding in fv/\N's

_% Cos(ﬁ) 4+ ..

N, = —Msinﬂ+-~- : (5.19)
Ns

=5 (50 [F3cos?(8) + £25in2(9)] + -+

confirming that the LSP is mostly singlino in this limit. The other eigenvectors,

which determine the composition of neutralinos 2 and 3, are

a;
N, = a?+b§2+ b; (no sum on 1), (5.20)
1
where
—by=ay = )\v’s [facos(B) — fusin(B)] ™' +--- and (5.21)
bs=03 = % [facos(B) + fusin(B)] ™" +--- . (5.22)
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]\7 1 N 1
Figure 5.1: S-channel LSP annihilation diagrams.

Note that a,b > 1 and that as and by flip sign at f;cos(5) = f, sin(3) whereas as

and b3 are always positive. Very approximately these eigenvectors are then

—1
Ny = 1 1 | sign(fusg — facg) +--- and (5.23)
V2
0
1
Ny o= e (5.24)
V2
0

Under the assumptions of this section the chargino from the first generation is

the first generation charged Higgsino with mass \'s//2.

5.3.2 Annihilation Channels

From (5.14) it can be seen that the LSP mass m; is proportional to v?/s and so is
naturally small since v < s. To understand this, recall that Z-Z’ mixing leads to
two mass eigenstates — Zo ~ Z’ and Z; ~ Z — and limits on Z-Z’ mixing and on
the Z5 mass place lower limits on s that imply that v < s must be satisfied. For
example, when s = 3000 GeV the Z; mass is about 1100 GeV and v?/s =~ 20 GeV.
The LSP mass further decreases as s becomes larger in the considered limit. In
practice it is quite difficult to arrange the parameters such that the LSP mass
exceeds about 100 GeV, although this depends on the sizes of Yukawa couplings

that one is willing to accept (an issue explored more thoroughly in chapter 6).
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In view of the above discussion the LSP is expected to be relatively light. When
determining the important early universe annihilation channels we therefore begin
by looking at s-channel annihilation, which can result in lighter mass final states.
The most important diagrams are shown in figure 5.1 and it will turn out that the
most important of these annihilations are those with a Z boson in the s-channel.
The Z-N;-N; coupling in this diagram is suppressed by a factor

5 (o) [725in2(8) = f cos?(B)] + -+

relative to the Z-neutrino-neutrino coupling under the assumptions of this section
since the LSP only couples through its small Higgsino components. This coupling
vanishes completely at fgcos(8) = fysin(f3), which is when the LSP contains a
completely symmetric combination of I:Ig1 and ﬁgl. While in the MSSM a Higgsino
dominated LSP would be expected to be such a symmetric combination of
down-type and up-type (active) Higgsino, with mass around p, an inert neutralino
LSP in the EgSSM a priori has no reason to be close to such a symmetric

combination.

Full gauge coupling strength s-channel Z boson annihilations tend to leave a
relic density that is too low to account for the observed amount of dark matter, but
in this model the coupling of the mostly singlino LSP to the Z boson is typically
suppressed, as it only couples through its doublet Higgsino admixture, leading to an
increased relic density. As \'s decreases the proportion of the LSP that is made up
of inert doublet Higgsino, rather than inert singlino, increases. This can be seen in
(5.19). This then increases the strength of the overall Z-Ni-N; coupling. The
inclusive cross-section for s-channel annihilation through a Z-boson is therefore
highly dependent on \'s, which affects both the coupling and the LSP mass m.
The effect of independently increasing the coupling is always to increase the
cross-section, but the effect of independently increasing the LSP mass can be to
either increase or decrease the cross-section, depending on which side of the Z
boson resonance the centre-of-mass energy is on in typical collisions during the

period of thermal freeze-out. S-channel annihilation through the lightest Higgs

72



N1 R Hl Nl Z7W

Figure 5.2: T-channel LSP annihilation diagrams.

boson will also become important if typical LSP collisions are on resonance.

The most important of the potential t-channel processes are shown in figure 5.2.
In practice these channels will not play a significant role compared to the s-channel
annihilations considered previously, but we discuss them for completeness. The
t-channel particle for these processes is one of the neutralinos or the chargino of the
first generation. In the first diagram — t-channel annihilation to active third
generation Higgs scalars — the couplings are approximately just f couplings of the
first generation and appropriate mixing matrix elements. With the inert chargino
or with inert neutralino 2 or 3 in the t-channel the diagram is approximately inert
singlinos annihilating with an inert doublet Higgsino in the t-channel and the
couplings are approximately just fg and f, for producing Hy and H, interaction
states respectively. The LSP mass is smaller than the other masses by a factor of
order v?/s%. With the LSP itself in the t-channel the first diagram therefore receives
an enhancement of order s?/v? for the t-channel propagator at low momentum, but
has a suppression of order v?/s? in the couplings due to the LSP only containing

doublet type first generation Higgsinos with amplitudes of order v/s.

The second diagram in figure 5.2 represents annihilation to massive gauge
bosons. To very good approximation these bosons only couple to weak isospin
doublets and not to SM-singlets (since Z-Z' mixing must be very small). These
diagrams therefore have a suppression of order v?/s? relative to the full gauge
interaction strength due to the couplings even with an inert chargino or with inert
neutralino 2 or 3 in the t-channel. On top of this suppression these diagrams also
receive an additional suppression of order v?/s? in the couplings, but an

enhancement of order s2/v? in the propagator when the LSP is in the t-channel.
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This second type of diagram has a greater chance of being kinematically allowed

than the first.

As previously stated, inert Higgs scalars are assumed heavy and annihilation to
and/or through these particles is not considered. It should be noted though that
these particles have suppressed couplings to SM matter due to the approximate Zf
symmetry and diagrams for the annihilation of LSPs into SM matter that involve

these particles would be suppressed by these couplings.

5.4 Numerical Analysis

We now turn to the full model, in which the LSP is determined from the neutralino
mass matrix in (5.5). There are two copies of the inert generation considered in the
previous section as well as six unknown mixing parameters between the two
generations. In general, after rotation to the mass eigenstate basis, we expect that
two states are much lighter than the rest — both inert-singlino-like in the \'s > fv

limit!.

In this section we use numerical methods to predict the relic density. We first
diagonalise the neutralino, chargino, and Higgs scalar mass matrices numerically.
Having done this micrOMEGAs 2.2 [91] is then used to numerically compute the
present day relic density, including the relevant annihilation and coannihilation
channel cross-sections and the LSP freeze-out temperature 2. micrOMEGAs
achieves this by calculating all of the relevant tree level Feynman diagrams using
CalcHEP. The CalcHEP model files for the considered model are generated using
LanHEP [92]. The micrOMEGAs relic density calculation assumes standard cosmology
in which the LSP dark matter was in equilibrium with the photon at some time in

the past, numerically solving (4.20).

! An exception to this would be the large M limit in which the LSP could originate from the
lower-right block of the USSM neutralino mass matrix (5.3) due to a mini see-saw mechanism as
discussed in ref. [4].
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5.4.1 The parameter space of the model

As justified in section 3.2 we assume that differences between the GUT normalised
couplings of the two U(1) gauge groups U(1)y and U(1)y, as well as the mixing
between the two groups, is negligible, giving ¢} ~ 0.46. The free parameters are
then the trilinear Higgs couplings A;jx, the singlet VEV s, tan(/), the soft Az33
coupling Ay, and the soft gaugino masses. It will turn out that the soft gaugino
masses usually have little effect on the dark matter physics. One can see this by
observing the neutralino mass matrix (5.5) where the USSM terms coming from the
soft gaugino masses do not directly mix with terms from the new FEgSSM inert
sector. The active scalar Higgs doublet and SM-singlet SSB masses are determined
from the minimisation conditions of the scalar potential (3.22) given s, v, tan(/3),

and Ay.

In the following analysis we shall choose s = 3000 GeV and pu = 400 GeV which
gives \ = 2\@/15 ~ 0.19 and makes the Zs mass about 1100 GeV. Although much
of the physics is highly dependent on s, this specific choice of s does not limit the
generality of the results obtained since s always appears multiplied by a Yukawa
coupling. This is explained in more detail below. We also choose
M, = M{ = M,/2 = 250 GeV. These relations between the SSB gaugino masses are
motivated by their RG running from the GUT scale (see subsection 3.2.1), but the
value is not. In this analysis the squarks and sleptons will not play a significant role
in the calculation of dark matter relic abundance since the LSP will always be much
lighter. We choose equal SSB sfermion masses M; = 800 GeV and set the stop

mixing parameter Xy, defined by

7

Xt:At_M7

(5.25)

where Ay is the SSB parameter associated with the top Yukawa coupling, to be
equal to v/6M,, resulting in large loop corrections to the lightest C'P-even (SM-like)
Higgs mass as in ref. [55]. This is known as the maximal mixing scenario and
results in a lightest C'P-even Higgs mass in excess of 114 GeV for all parameter

space considered. The SSB A coupling Ay is set by choosing the pseudo-scalar
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Higgs mass my, from (3.24). We choose m 4 = 500 GeV.

We initially assume the Z4-breaking Aiji couplings to be small (0.01) for the
following analysis. The main properties of the physics can then be seen by varying
the three parameters N = oo = M1, f = fao2 = fu22 = fa11 = fu11, and tan(s).
The first and second generation mixing couplings are set such that Agj 12 = e\’ and
J(du)(21,12) = €f. Assuming this parameter choice the sub-matrices of the neutralino

mass matrix (5.6) become

0 Ns fusin(pB)
Ay = Apn=-—— Ns 0 fvcos(B) and  (5.26)
fusin(B)  fvcos(B) 0

A21 = €A22. (527)

This simple parametrisation is sufficient for illustrating the generic properties of the

physics. Deviations from this parametrisation are discussed afterwards.

With the above parametrisation, the two generations are approximately
degenerate when the mixing terms are not very large. In this case the LSP and the
NLSP will each contain approximately equal contributions from each interaction

basis generation.

Finally, it is worth remarking that, assuming the above parametrisation, the
effect on the neutralino and chargino inert sectors of changing s is simply equivalent
to that of changing A" (although the Z; mass will depend on s). This means that
the following results are applicable for any experimentally consistent values of s as

long as one accordingly scales \'.

5.4.2 The neutralino and chargino spectra

Figure 5.3 shows how the spectrum of chargino masses varies with \'. Although the
plot is for tan(f) = 1.5, as one can see from (5.11) the inert sector of the chargino
mass matrix has no dependence on tan(f3), with the mass terms just being

proportional to the SM-singlet VEV. The almost constant masses are those mass
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Figure 5.3: Inert chargino masses (magnitude only) against N’

with f = 1, € = 0.1, tan(3) = 1.5, s = 3000 GeV, and Z%-breaking

Aijr couplings set to 0.01.
eigenvalues coming mostly from the USSM sector — the third generation charged
Higgsino and the wino. The charginos coming mostly from the inert sector vary
with X" as expected and drop below the LEP lower limit around 100 GeV [93] at
some value of N depending on the value of s. The effect of the € = 0.1 mixing
between generations can be seen in the splitting between the two inert sector
charginos. Where lines cross in figure 5.3 the chargino masses are of opposite sign.
When chargino mass lines of the same sign approach each other, they veer away

from each other at the would-be crossing point due to interference.

Figure 5.4 shows how the spectrum of neutralino masses varies with \’. The inert
neutralino spectrum is dependent on tan(/3), but each of the qualitative features
can be understood. We see the two light neutralino states that become heavier as \’
decreases from unity until the approximation \'s > fv breaks down. At this point
fusin(B) begins to dominate and the LSP mass decreases with decreasing )\ as the
dominance of fvsin(8) becomes greater. In this low X' region the LSP is no longer
mostly inert singlino, but is mostly inert up-type Higgsino. The six almost
unvarying neutralino masses are those mostly from the USSM sector, which is not

mixing very much with the inert sector. We have already seen that the inert sector
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Figure 5.4: Inert neutralino masses (magnitude only) against \’

with f =1, € = 0.1, tan(3) = 1.5, s = 3000 GeV, and Z%-breaking

Aijr couplings set to 0.01.
chargino masses continue to be set by A as we go down into the low X region,
resulting in light charginos in this region. By contrast, the four heavier inert sector

neutralinos begin to be governed by the fv terms rather than the X's terms in the

low X region and therefore approach a constant value in this region.

As in the case of the charginos, the effect of the ¢ = 0.1 mixing can be seen in
the splitting between the two light neutralinos and the four heavier inert
neutralinos which are both split by this mixing and further split by the light

neutralino mass as predicted in the previous section.

Figure 5.5 shows how the composition of the LSP in terms of the inert
interaction states varies with \. The behaviour in the X's > fv limit is as
predicted in (5.19). We also see how the dominant component of the LSP changes

from inert singlino to inert up-type Higgsino in the low X region.

5.4.3 The dark matter relic density

Using the parametrisation in (5.26) and (5.27) we use micrOMEGAs 2.2 to

numerically compute the present day relic density. Figure 5.6 shows a contour plot
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Figure 5.5: The component structure of the LSP in terms of the
inert interaction states against X’ with f = 1, e = 0.1, tan(8) = 1.5,
s = 3000 GeV, and Z#-breaking \;;) couplings set to 0.01.
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Figure 5.6: Contour plot of the LSP mass and relic density Q,h?
regions in the (\,tan(f8))-plane with s = 3000 GeV, ¢ = 0.1, and
f = 1. The red region is where the prediction for Qxh2 is consistent
with the measured 1-sigma range of Qpyh2. In the region to the
right of the hatched line the LSP mass is less than half of the Z
boson mass.
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Figure 5.7: Contour plot of the LSP mass and relic density 2, h?
regions in the (N, f)-plane with s = 3000 GeV, ¢ = 0.1, and
tan(8) = 1.5. The red region is where the prediction for Q,h?
is consistent with the measured 1-sigma range of Qpyh?. In the
region to the right of the hatched line the LSP mass is less than
half of the Z boson mass.

of the LSP mass and predicted relic density 2, h? regions in the (X', tan(3))-plane,
with s = 3000 GeV, ¢ = 0.1, and f = 1. We focus on small values of \' < 0.4 since
for large A’ the LSP is a very light, predominantly inert singlino state which does
not annihilate very efficiently through any channel, leading to a too high relic
density Q,h% > Qpph®. (Such regions are shaded dark green.) As ) is decreased
below 0.3 the LSP mass increases and approaches about half of the Z boson mass
and there is a region where the prediction for QXh2 is consistent with the measured
I-sigma range of Qpyh2. (Such regions are shaded red.) When the LSP mass is
around 40 GeV it contains enough inert doublet Higgsino such that s-channel
annihilation via the Z boson becomes strong enough to account for the observed
relic density. As the LSP mass is increased further from 40 GeV and approaches

45 GeV, the annihilations before freeze-out become on resonance for annihilation
with a Z boson in the s-channel and the predicted relic density becomes lower than

that observed. (Such regions are shaded light green.)

In the regions where the LSP mass is less than half of the Z boson mass the LSP
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will contribute to the effective number of neutrinos as inferred from the invisible Z
boson width at LEP defined in (1.13). The same couplings that lead to a successful
relic density, via annihilations through an s-channel Z boson, also mean that there
may be a significant contribution to the invisible Z boson width. For the present
discussion it is assumed that such points, with an LSP mass lower that half of the
Z mass, are unsafe from an experimental point of view. A detailed discussion of the
validity of such points is postponed until chapter 6. Note that in the MSSM this
issue does not arise since either the LSP is bino-like, and so does not couple to the
Z, or is Higgsino- or Wino-like in which case it would have accompanying almost
degenerate charginos and therefore must have a mass greater than about 100 GeV
in any case. Here we can have an inert Higgsino/singlino LSP with a mass lower
than half of the Z boson mass while still having experimentally consistent

inert-doublet-Higgsino-like charginos.

We note at this point that the requirement that the LSP mass exceeds 45 GeV
implies low tan(/3) and this is the reason for the restricted range of tan(/3) in
figure 5.6. This can be seen from (5.14) where we found that the LSP mass should
be approximately proportional to sin(2/5), i.e. to the product of the two doublet
Higgs VEVs, which is maximized at sin(283) = 1, corresponding to tan(3) = 1. In
the EgSSM an experimentally acceptable lightest Higgs mass can be achieved even
with tan(/5) as low as about 1.2 [55], so having low tan(f) is not a problem in such

models.

Decreasing A further results in LSP masses above 45 GeV and to the left of the
hatched line in figure 5.6 other successful relic density regions (shaded in red)
appear. These regions are punctuated by the light Higgs resonance, leading to the
interesting double loop shape of the successful red regions to the left of the hatched
line in figure 5.6. In these regions the LSP can have a mass significantly larger than
half of the Z boson mass, moving far enough off the Higgs and Z boson resonances

that annihilation is weakened just enough to give the observed relic density.

However, another effect is observed as A decreases. The composition of the LSP

changes from being singlino dominated to being Higgsino dominated. For low )\ the
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cross-section begins to increase with decreasing ), even where this still corresponds
to increasing LSP mass, leading to a lower relic density. This is because the inert
doublet Higgsino components in the LSP rapidly grow, as can be seen in figure 5.5.
At low )\, when the LSP is largely inert doublet Higgsino, annihilation is too
strong, leading to the predicted relic density being lower than that observed (as
indicated by the light green shading in figure 5.6). The effects of the t-channel W

and then Z pair production channels can also be seen as they each become relevant.

Furthermore, for the entire successful region to the left of the hatched line in
figure 5.6 the lightest chargino is heavy enough to be consistent with experiment, as
can be seen on figure 5.3. This result will be recreated for all high enough values of
s. For larger values of s the successful regions and corresponding inert chargino

masses are shifted down by the corresponding amount in X'

When X's > fv lowering f results in a lower LSP mass, as in (5.14). It also
extends the range of A’ in which this approximation is valid, i.e. it moves the
boundary of the previously discussed low \ region to be further down in ).

Figure 5.7 shows the LSP mass and predicted present day relic density for different
values of \ and f with e = 0.1 and tan(3) = 1.5. The shifting of the successful
region, where the LSP mass is above mz/2, down in A at lower values of f is
apparent. At lower values of tan(f) this successful region extends further down in
f. It should be noted that in order to predict the correct dark matter relic density,
A should be much smaller than f and that this disparity becomes greater if s is
increased. Increasing s effectively just shifts all of the features on figures 5.6 and 5.7

to the left.

5.4.4 Deviations from the considered parametrisation

Breaking the relation f,(22,11) = f4(22,11) can have similar effects to those of

changing tan(f). However, because these parameters cannot be too high (in order
for the theory to be perturbative up to the GUT scale) and because lowering them
to much less than unity makes the LSP too light, tan(3) can be varied much more

freely than the f,/f; ratio.
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The effect of increasing the inert generation mixing parameter € is to increase
the various mass splittings between similar inert mass eigenstates. Increasing the
mixing between the first and second generations thus results in a lighter LSP,
shrinking the successful region, and a lighter lightest chargino, potentially

inconsistent with current chargino non-observation.

The physics of the inert sector when deviating from the currently considered

parametrisation is studied much more carefully in chapter 6.

As long as the LSP is still mostly from the inert sector, as considered here, other
parameters do not greatly affect the dark matter physics and are effectively free.
Squark and slepton parameters do not affect the dark matter physics of the
considered model. Top and stop loops can have a significant effect on the lightest
Higgs mass, but as long as this mass is experimentally allowed then these
parameters are also not constrained by the requirement that the model produce

successful dark matter.

5.5 Summary and Conclusions

In this work we studied inert neutralino dark matter arising in supersymmetric
models with extra inert Higgsinos and singlinos. As an example we considered the
extended neutralino sector of the EgSSM. This work represents a first study of the
inert neutralino sector of the FgSSM and it is found that in this model the LSP
does typically arise from this sector. We studied this novel dark matter scenario

both analytically and numerically, using micrOMEGASs.

The dark matter scenario differs greatly from those of the MSSM and USSM
since the two inert neutralino generations provide an almost decoupled neutralino
sector with a naturally light LSP that can account for the CDM relic abundance
somewhat independently of the rest of the model. Although the EgSSM has two
inert generations, the presence of the second inert generation is not crucial to the

dark matter scenario.

In the successful regions where the observed dark matter relic density is
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reproduced the neutralino mass spectrum is well described by the analytical results
of section 5.3. In this region the LSP is mostly inert singlino and has a mass
approximately proportional to v?/s, as in (5.14), and as \'s is decreased the LSP
becomes heavier and also less inert singlino dominated, picking up significant inert

doublet Higgsino contributions.

To avoid potential conflict with high precision LEP data we considered the case
where the LSP mass is above half of the Z boson mass. Since the LSP mass in
(5.14) is proportional to f;f,sin(2/3), we found that such regions of parameter
space in which the dark matter relic density prediction is consistent with
observation require low values of tan(8) — less than about 2. Depending on the
value of the singlet VEV s, the f(, g)os trilinear Higgs coupling parameters should

also be reasonably large compared to the A,z ones.

One of the main messages arising from this work is that neutralino dark matter
could arise from an almost decoupled sector of inert Higgsinos and singlinos and
that if it does then the parameter space of the rest of the model is completely
opened up. For example, if such a model is regarded as an extension of the MSSM
then the lightest MSSM-like supersymmetric particle is not even required to be a
neutralino and could even be a sfermion. In the FgSSM the lightest MSSM-like
supersymmetric particle can decay into the inert LSP via Zf -breaking A;j

couplings that need not be extremely small.

Similar results should apply to any singlet extended SSM with one or more
extra, inert generations of Higgsinos and singlinos with a trilinear Higgs coupling

tensor equivalent to that in (5.1).
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Chapter 6

Novel Higgs Decays in the
EgSSM

The discovery of the Higgs boson, the last remaining undiscovered particle of the
SM, is one of the main goals of the LHC. The strategy for Higgs searches depends
on the decay branching fractions of the Higgs boson into different channels. Physics
beyond the SM may affect the Higgs decay rates to SM particles and give rise to
new Higgs decay channels necessitating a drastic change in the strategy for Higgs
boson searches. (For recent reviews of non-standard Higgs boson decays see

refs. [94, 95, 96].) In particular there exist several extensions to the SM in which
the Higgs boson can decay with a substantial branching fraction into particles that

cannot be directly detected.

These invisible Higgs boson decays can occur in supersymetry, with the lighest
Higgs boson decaying into neutralino LSPs. In some regions of MSSM parameter
space the lightest Higgs boson decays into the lightest neutralino with a relatively
large branching ratio, giving rise to invisible final states if R-parity is
conserved [97]. LEP and Tevatron data allow the neutralino LSP to be sufficiently
light such that the decays of the lightest Higgs boson into these neutralinos is
kinematically allowed and such light neutralinos can annihilate efficiently through a

Z boson pole resulting in a reasonable density of dark matter.
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The presence of invisible decays considerably modifies Higgs boson searches and
makes discovery much more difficult. If the Higgs boson is mainly invisible then the
usual visible branching ratios will be dramatically reduced, preventing detection in
the much studied channels at the LHC and Tevatron. In the case where invisible
Higgs boson decays dominate it is impossible to fully reconstruct a resonance and it
is very challenging to identify the Higgs boson at collider experiments, i.e. the
quantum numbers remain unknown. At e*e™ colliders, the problems relating to the
observation of an invisible Higgs boson are less severe [98, 99, 100] since it can be
tagged through the recoiling Z. The LEP exclusion of Higgs boson masses up to
114.4 GeV applies even in the case of invisibly decaying Higgs bosons [101] and
similar limits could apply to Higgs bosons decaying into soft lepton pairs some
fraction of the time, as happens for some of the novel Higgs decay scenarios

discussed in this chapter.

Higgs boson searches at hadron colliders, however, are more difficult in the
presence of such invisible decays. Previous studies have analysed Zh and Wh
associated production [102, 103, 104] as well as tth production [105, 106] and ttV'V
and bbV'V production [107] as promising channels, where h is the Higgs boson and
the Vs stand for vector bosons. The possibility of observing an invisible Higgs
boson in central exclusive diffractive production at the LHC was studied in [108].
Another proposal is to observe such an invisible Higgs in inelastic events with large
missing transverse energy and two high Er jets. In this case the Higgs boson is
produced by V'V fusion and has a large transverse momentum resulting in a signal
with two quark jets with distinctive kinematic distributions compared to Zj;j and

W jj backgrounds [109, 104, 110].

In this chapter, which contains work that was first published in paper II, we
consider novel decays of the lightest Higgs boson and associated collider signatures
within the EgSSM. If the Yukawa couplings of the inert neutralino sector are
required to be small enough such that perturbation theory remains valid up to the
GUT scale then the masses of the two lightest inert neutralino states are expected
to be smaller than about 60—65 GeV. As a result the lightest inert neutralino tends

to be the LSP. As noted in the previous chapter such an inert neutralino can give
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an appropriate contribution to the dark matter density, consistent with recent
observations, if it has a mass around 35-50 GeV. In this case the lightest Higgs
boson decays predominantly into inert neutralino states and the usual Higgs boson

branching ratios to SM particles are less than a few percent.

In section 6.1 we look in more detail at the inert sector of the model and the
couplings of the inert neutralinos, inert charginos, and active Higgs bosons are
specified. Novel decays of the lightest C'P-even Higgs state and dark matter
constraints are discussed in section 6.2. In section 6.3 we specify some benchmark
points and discuss the experimental constraints and predictions. The conclusions

are summarised in section 6.4.

6.1 Inert Charginos and Neutralinos

In our analysis we will assume that Zf -violating couplings are small and can be
neglected. This assumption can be justified if one takes into account that the

Zf -violating operators can give an appreciable contribution to the amplitude of
KO- K9 oscillations and give rise to new muon decay channels such as p — e eTe™.
In order to suppress processes with non-diagonal flavour transitions the Yukawa
couplings of the exotic particles to the quarks and leptons of the first two
generations should be smaller than 1073-107%. Such small Zg -violating couplings

can be neglected in the first approximation.

In this approximation, and given the assumption that only H,, Hg, and S
acquire non-zero VEVs, the charged components of the inert Higgsinos do not mix
with the MSSM-like chargino states. The neutral components of the inert Higgsinos
and inert singlinos also do not mix with the USSM-like neutralino states. If ZZ
symmetry was exact then both the lightest state in the ordinary neutralino sector
and the lightest inert neutralino would be absolutely stable. Therefore although
Zg -violating couplings are expected to be rather small we shall assume that they
are large enough to allow either the lightest USSM-like neutralino state or the

lightest inert neutralino state to decay within a reasonable time — the lighter of the
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two being the stable LSP and the dark matter candidate.

In the basis

U

T
Nt = (my @, 5 Ay Ay S ) 6.1)
the inert part of the neutralino mass matrix is given by

Ay Ay
Mi]r\lfert = T ) (62)
Ay Ap
with the submatrices given in (5.6). The inert part of the chargino mass matrix P,
given in (5.11), may be written
: 1
nert
From (6.2) and (6.3) one can see that in the exact Z4 symmetry limit the
spectrum of the inert neutralinos and charginos in the FgSSM can be parametrised
in terms of A\og, fdap, fuap, tan(f), and s. In other words the masses and couplings
of the inert neutralinos are determined by 12 Yukawa couplings, which can in
principle be complex, tan(3), and s. Four of the Yukawa couplings mentioned
above — A,3 — as well as the VEV of the SM singlet field s set the masses and
couplings of the inert chargino states. Six off-diagonal Yukawa couplings define the

mixing between the two generations of inert Higgsinos and singlinos.

In the following analysis the VEV of the active SM-singlet field is chosen to be
large enough (s 2 2400 GeV) so that experimental constraints from ref. [67] on the
Z3 boson mass (m,, > 892 GeV) and Z-Z' mixing are satisfied. Since the
publication of paper II the limit on the Z5 mass in the EgSSM has increased as
discussed in subsection 3.2.2. In order to avoid the LEP lower limit on the masses
of inert charginos [93] the Yukawa couplings A,g are chosen such that all inert
chargino states are heavier than 100 GeV. In addition, we also require the validity
of perturbation theory up to the GUT scale and this constrains the allowed range of

all Yukawa couplings.
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The theoretical and experimental restrictions specified above set very strong
limits on the masses and couplings of the lightest inert neutralinos. In particular,
our numerical analysis indicates that the lightest and second lightest inert
neutralinos are always light. They typically have masses below 60-65 GeV. These
neutralinos are predominantly inert singlino in nature. From our numerical analysis
it follows that the lightest and second lightest inert neutralinos might have rather
small couplings to the Z boson so that any possible signal that these neutralinos
could give rise to at LEP would be extremely suppressed. As a consequence such
inert neutralinos would remain undetected. At the same time four other inert
neutralinos, which are approximately linear superpositions of neutral components of

inert doublet Higgsinos, are normally heavier than 100 GeV.

6.1.1 The diagonal inert Yukawa coupling approximation

In order to clarify the results of our numerical analysis it is useful to consider a few
simple cases that give some analytical understanding of our calculations. The
simplest case is when all of the Yukawa coupling from the off-diagonal blocks of

(6.2) are zero such that

>\a6 = )\0450467
fdaﬁ = fdaéaﬁu and
fuag = falap (nOsum on «). (6.4)

This leads to two decoupled generations with the properties studied in section 5.3.
The mass matrix of inert neutralinos (6.2) reduces to block diagonal form while the

masses of the inert charginos are given by

Aa
ms = —=S. 6.5
Co \/5 ( )

When fo, = fia = fua One can prove using the method proposed in ref. [111] that

there are theoretical upper bounds on the masses of the lightest and second lightest
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inert neutralino states. The theoretical restrictions are |m N 2 < p2, where

1 292
po= 5 |Ime, P4+ 2 (14 sin?(26))

_ \/(méa\“ 32”2 (1 +sin2(26)))2 — fAutsin?(26)] . (6.6)

The value of i, decreases with increasing |mg | and tan(), approaching its

maximum value

as mg_— 0 and tan(B) — 1.

The upper bound on the mass of the lightest inert neutralino also depends on
the values of the Yukawa couplings f4, and f,,. The theoretical restrictions on
these couplings due to the requirement that the theory should remain perturbative
up to the GUT scale become weaker with increasing tan(3). At large values of
tan(8) the upper bounds on [mg | from (6.6) becomes rather small and as tan(3)
tends to unity the upper bounds on ]méa] again become rasther small, because
theoretical constraints on fy, and f,, become rather stringent. Taking both of
these effects in account the upper bounds on \méa\ achieve their maximum values
around tan(5) ~ 1.5. For this value of tan(3) the requirement of the validity of
perturbation theory up to the GUT scale implies that for f = f31 = fu1 = fao = fuo
f must be less than about 0.6. As a consequence the lightest inert neutralinos are

lighter than around 60-65 GeV for [mg_| > 100 GeV.

Using the results from section 5.3 for the compositions of the light neutralinos
from each inert generation one can derive the couplings of these states to the Z
boson. We define Rz, couplings such that the Z-Na-N, 5 coupling is equal to Rz.g

times the Z-v-v coupling

Rzas = NANj— NZNZ+NiNj— N2N, (6.8)
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where N is the neutralino mixing matrix element corresponding to mass eigenstate

i and inert interaction state a in the basis (6.1).

In the case where the off-diagonal inert Yukawa coupling blocks vanish while
Aas > f(u,d)av the relative couplings of the lightest and second lightest inert

neutralino states to the Z boson are given by
Rza3 = Rzaabag (no sum on a), (6.9)

where
(fza cos?(8) — £ sin2<6>). (6.10)

This demonstrates that the couplings of N7 and Ny to the Z boson can be very
strongly suppressed. It becomes zero when |fj,|cos(8) = | fua|sin(8), which is when
N, contains a completely symmetric combination of I:I(ga and H? . (6.10) also
indicates that the couplings of N; and N to the Z boson are always small if the
inert charginos are rather heavy or if f;, and f,, are small, i.e. the masses of N,

and NQ are small.

6.1.2 Ay; and pseudo-Dirac lightest inert neutralino states

In order to provide an explanation for the origin of the approximate Z4 symmetry
that singles out the third generation of Higgs doublets and SM-singlets, and to
account for tribimaximal mixing and other features of the quark and lepton spectra,
a Aoy flavour symmetry may be applied to the EgSSM [59]. The addition of the
Ao7 flavour symmetry implies an inert neutralino mass matrix with A1 &= A = 0,
leading to approximately degenerate lightest neutralino states with a pseudo-Dirac

(see appendix A) structure.

When all flavour diagonal Yukawa couplings Ana, fiaa, and fuaa €xactly vanish,
i.e. A11 = Ago = 0, the inert neutralinos form Dirac states. In this limit the

Lagrangian of the EgSSM is invariant under an extra U(1) global symmetry. Under
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this symmetry the fermionic components of the inert supermultiplets transform

SQ — eiaSQ,

Hp — €“Hp,

Hy — e ““Hy,. (6.11)

In the above limiting case the lightest inert neutralino is a Dirac state formed
predominantly from S; and S. In this case the LSP and its antiparticle have
opposite charges with respect to the extra global U(1) and this could lead to the
scenario known as asymmetric dark matter [112, 113, 114, 115]. The ADM scenario
supposes that there could be an asymmetry between the density of dark matter
particles and their antiparticles in the early universe similar to that for baryons.
This could have a considerable effect on the relic density calculations. In particular,
if an asymmetry exists between the number densities of dark matter particles and
their antiparticles in the early universe then one can get an appreciable dark matter
density even if the dark matter particle-antiparticle annihilation cross section is
very large, like in the case of baryons. Furthermore, if most of the dark matter
antiparticles are eliminated by annihilation with their particles then such an ADM
scenario does not have the usual indirect signatures associated with the presence of
dark matter. For example, there would be no high energy neutrino signal from
annihilations in the Sun. At the same time, a relatively high concentration of dark
matter particles can build up in the Sun, altering heat transport in the solar

interior and affecting low energy neutrino fluxes [115].

In practice the As; scenario tells us that we are somewhat away from the above
limiting case, with a broken global U(1) symmetry leading to almost degenerate
pseudo-Dirac lightest neutralinos, where the relic density of the LSP can be
calculated by standard methods. It will turn out that the LSP cannot be too light

(must be of order mz/2) in order not to have a too high cosmological relic density.
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At the same time we will see that the two lightest neutralinos cannot be too heavy
in order for perturbation theory to be valid up to the GUT scale. In practice this
means that in realistic scenarios the two lightest inert neutralino states are rather
close in mass. The As7 scenario provides an explanation for this feature of the

successful neutralino mass pattern.

It is worth noting that the results from the previous section can be reinterpreted
in terms of this scenario. Specifically in the case where A;; = A = 0 and
Ag1 = Ajo a block diagonalisation of the inert neutralino mass matrix (6.2) results
in

Agg — AI22 = —Agl, and Al — A/ll = A217 (612)

with A9y = Ajp — Al = A}, = 0. This only corresponds to a redefinition of the
generations 1 and 2 and does not mix fields of different hypercharge. This provides

a dictionary between these two scenarios

—Aop = Al = A,
—fiz2 = fan = faor, (6.13)

~fuze=fin = fun. (6.14)

Rewriting the inert neutralino mass matrix in this block diagonal form also makes
it clear that the Rz1o coupling vanishes in this limit in the same way that it did for

the diagonal case in subsection 6.1.1.

6.1.3 The couplings of Higgs bosons to inert neutralinos

The presence of light inert neutralinos in the particle spectrum of the FgSSM
makes possible the decays of the Higgs bosons into these final states. Now and in
the next section we argue that such decays may result in the modification of the
SM-like Higgs signal at current and future colliders. Since our main concern in this
work is the decays of the SM-like lightest Higgs boson, we shall ignore the effects of
the inert Higgs scalars and pseudoscalars which do not mix appreciably with the

active scalar sector responsible for EWSB. We also assume that all of the inert
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bosons are heavier than the lightest C' P-even Higgs boson.

If all other Higgs boson states are much heavier than the lightest C P-even Higgs
boson then the lightest Higgs state, approximately given by h, as defined in (3.26),
manifests itself in interactions with SM gauge bosons and fermions as a SM-like
Higgs boson. Since within the EgSSM the mass of this state is predicted to be
relatively low, its production cross section at the LHC should be large enough so
that it can be observed in the near future. In this context it is particularly
interesting and important to analyse the decay modes of the lightest C'P-even Higgs
state. Furthermore, we concentrate on the decays of the SM-like Higgs boson into

the lightest and second lightest inert neutralinos.

The couplings of the Higgs states to the inert neutralinos originate from the
interactions of H,, Hy, and S with the inert Higgs fields in the superpotential.
Using (3.26) one can express Re HY, Re HY, and MRe S in terms of the field-space
basis states h, H, and N. The components of the field-space basis are related to the

physical C' P-even mass eigenstates by a unitary transformation

hy h
ho = Ul H |. (6.15)
N

ha

Combining all these expressions together one obtains an effective Lagrangian term
that describes the interactions of the inert neutralinos with the C P-even Higgs

mass eigenstates

Xl h SER, 4 e (6.16)
where
Xihjm = —LU;]Z\LAU — 1 (U,i‘m cos(B) — Uﬁl sin(ﬁ)) Fyj
V2 V2
- \2 (U, sin(8) + UL cos(8)) Fu. (6.17)
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with

Ay = AININ? + A pNENZ + Xy NINJ + Mgy NI N7, (6.18)
Fo;i = fdllNiGNj5+fd12Ni6Nj2+fd21Nz‘3Nj5+fd22Ni3Nj2> and  (6.19)
F; = fullNzGNjS + fu12Nz'6Nj2 + fu21Ni3Nj5 + fu22Ni3Nj2' (6.20)

The expressions for the couplings of the active C'P-even Higgs scalars to the
inert neutralinos become much simpler in the case where the Higgs spectrum has
the usual hierarchical structure. In this case U is almost the identity. As a
consequence the couplings of the SM-like Higgs boson to the lightest and second

lightest inert neutralino states are approximately given by

1 .
Xoh = 7 (Fias co5(8) + Fuassin(8)). (6.21)
In the case of the diagonal inert Yukawa coupling limit defined in subsection 6.1.1

and if Ao >> f(4,u)ov One can use the expression (5.19) to find values for N{" and

N§ and derive approximate formulae for X Zk Substituting into (6.21) one obtains
ha MNa
Xop = T(5a5 + .-+ (no sum on «). (6.22)

This simple analytical expression for the couplings of the SM-like Higgs boson to
the lightest and second lightest inert neutralinos is not as surprising as it may first
appear. When the Higgs spectrum is hierarchical, with s > v, the VEV of the
lightest C P-even state v is responsible for all light fermion masses in the EgSSM.
As a result we expect that their couplings to the SM-like Higgs can be written as
usual as being proportional to the mass divided by the VEV. We see that this is

exactly what is found in the limit of my_ being small.
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6.2 Novel Higgs Decays and Dark Matter

The interaction Lagrangian (6.16) gives rise to decays of the lightest Higgs boson

into inert neutralino pairs with partial widths given by

TN Aqg h h ?
I'(h1 — NoNg) = 16”;% (Xa}; +X50 ) | mi, — (my, — mNﬁ)Q
1
2 2\ 2 2 2
1— A — mNﬁ — 4% (6.23)
2 2 4 :
my. my, my,

where A,z = {1,2} for {a = 3, a # B}.

The partial widths associated with these inert decays of the SM-like Higgs boson
(6.23) have to be compared to decay rates into SM particles. When the SM Higgs
boson is relatively light (less than about 140 GeV) it decays predominantly into b
quark and 7 lepton pairs. The partial decay width of the lightest C' P-even Higgs
boson into Dirac fermion pairs is given by [116]

T'(h f) = N, g —m? 2 1 4—m} Vv 6.24
(= ff) = cﬁm%vg}“ffmhl - -3 . (6.24)

For the case of the decays into 7 leptons the coupling of the lightest C' P-even Higgs

state to the 7 lepton normalised to the corresponding SM coupling

e = iy (O cos(9) ~ Ut s ). (6.25)

For a final state that involves b quarks one has to include the QCD corrections.
In particular, the fermion mass in (6.24) should be associated with the running b
quark mass mp(p). The bulk of the QCD corrections are absorbed by using the
running b quark mass defined at the appropriate renormalisation scale — the scale
of the lightest Higgs boson mass pt = myp, in the considered case. In addition to the
corrections that are associated with the running b quark mass there are other QCD
corrections to the Higgs coupling to b quarks that should be taken into

account [117]. As a consequence, the partial decay width of the lightest C'P-even
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Higgs boson into b quark pairs can be calculated using (6.24) if one sets

N, = 3,

my = my(my,), and (6.26)

1 2
sl = (B (U;’; cos(B) — Uy Sin(ﬁ)) [1 + Dy + AH] :

where

5[3 (mhl)
7T2

_9 92 m2 1 _ 9
Ay @5\ ) (n;hl) 1.57 — =In h21 42 | el (?hl) )
™ 3 my 9 my,

Here we neglect radiative corrections that originate from loop diagrams that

Aw ~ 5675 | (3504 136N, and
T

(6.27)

Q

contain non-SM particles!.

From (6.22) one can see that in the EgSSM the branching ratios of the SM-like
Higgs state into the lightest and second lightest inert neutralinos depend rather
strongly on the masses of these particles. When the lightest inert neutralino states
are heavy relative to the b quark the lightest Higgs boson decays predominantly
into NQNB while the branching ratios for decays into SM particles are suppressed.
On the other hand if the lightest inert neutralinos have masses that are
considerably smaller than the masses of the b quark and 7 lepton then the

branching ratios of the SM-like Higgs into inert neutralino final states are small.

Constraints on the mass of the lightest inert neutralino can be obtained if we
require that this particle accounts for all or some of the observed dark matter relic
density. In the limit where all non-SM fields other than the two lightest inert
neutralinos are heavy the lightest inert neutralino state in the FgSSM is responsible
for too large a thermal relic density of dark matter. The LSP N; is composed
mainly of inert singlino and has a mass inversely proportional to the charged inert

Higgsino mass. In this limit it is typically very light with [myg | < mz. As a result

'Radiative corrections that are induced by supersymmetric particles can be very important, par-
ticularly in the case of the bottom quark at high values of tan(8). For a review see ref. [118].
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the couplings of the lightest inert neutralino to gauge bosons, the SM-like Higgs
boson, quarks, and leptons are quite small, leading to a relatively small dark matter
annihilation cross-section into SM particles and giving rise to a relic density that is
typically much larger than the measured value. Thus, in the limit considered, the
bulk of the E4SSM parameter space that leads to small inert neutralino masses is

ruled out.

The situation changes dramatically when the mass of the lightest inert
neutralino increases. In this case the Higgsino components of N; become larger and
as a consequence the couplings of Ny to the Z boson grow. A reasonable density of
dark matter can be obtained for |m Na’ ~ myz/2 when the lightest inert neutralino
states annihilate mainly through an s-channel Z boson. It is worth noting that if
Ny were pure inert Higgsino then the s-channel Z boson annihilation would proceed
with the full gauge coupling strength leaving a relic density too low to account for
the observed dark matter. In the EgSSM the LSP is mostly inert singlino so that
its coupling to the Z boson is typically suppressed, since it only couples through its
inert Higgsino admixture, leading to an increased relic density. In practice an
appropriate value of Qpyh? can be achieved even if the coupling of Nj to the Z
boson is relatively small. This happens when N; annihilation proceeds through the
Z boson resonance. Thus, scenarios that result in a reasonable inert neutralino dark
matter relic density correspond to lightest inert neutralino masses that are much
larger than my(my, ) and hence to the SM-like Higgs boson having very small

branching ratios into SM particles.

6.3 Benchmarks, Constraints, and Predictions

In order to illustrate the features of the EgSSM mentioned in the previous section
we specify the set of benchmark points in tables 6.1, 6.2, and 6.3. For each
benchmark scenario we calculate the spectra of inert neutralinos, inert charginos,
and active Higgs bosons as well as their couplings, the decay branching ratios of the
lightest C' P-even Higgs state, and the dark matter relic density. micrOMEGAs 2.2 is

used to numerically compute the present day density of dark matter.
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Benchmark i ii iii iv
tan(p) 1.5 15 1.7 1.564
mpy+ = ma ~ mp, [GeV] 1977 1977 2022 1990
mp, [GeV] 135.4 135.4 133.1 134.8
A22 0.001 0.001 0.094 0.0001
A1 0.077 0.062 0 0.06
A2 0.077 0.062 0 0.06
A1 0.001 0.001 0.059 0.0001
fazz 0.001 0.001 0.53 0.001
Jaz1 0.61 0.61 0.05 0.476
farz 0.6 0.6 0.05 0.466
fani 0.001 0.001 0.53 0.001
fu22 0.001 0.001 0.53 0.001
Ju21 0.426 0.426 0.05 0.4
Ju2 0.436 0.436 0.05 0.408
Jul1 0.001 0.001 0.53 0.001
N; mass [GeV] 41.91 47.33 33.62 -36.69
Ny mass [GeV] -42.31 -47.84 47.78 36.88
N3 mass [GeV] -129.1 -103.6 108.0 -103.11
N, mass [GeV] 132.4 107.0 -152.1 103.47
N5 mass [GeV] 171.4 151.5 163.5 139.80
Ng mass [GeV] -174.4 -154.4 -200.8 -140.35
C mass [GeV] 129.0 103.5 100.1 101.65
Cy mass [GeV] 132.4 106.9 159.5 101.99
Q. h? 0.096 0.098 0.109 0.107
Rz11 | -0.0250 -0.0407 -0.144 -0.132
Rz12 0.0040 0.0048 0.051 0.0043
Rzes | -0.0257 -0.0429 -0.331 -0.133
ANLEF 1 0.000090 0 0.0068 0.0073
D 2.011 2.000 2.85 2.91
xm 0.137 0.147 0.110 -0.114
XM+ X0 | -1.9%x10% —34x10°% 0.0136 1.15x10°°
xm -0.138 -0.148 0.125 0.115
ogr [107% cm?] | 2.6-10.5 3.0-12.1  1.7-71  2.0-82
Br(h — N1 Ny) 49.5% 49.7% 57.8% 49.1%
Br(h — NiNo) | 7.9x 10711 25x 10719 0.34% 49.2%
Br(h — NoNy) 49.0% 48.5% 39.8% 3.5 x 10"
Br(h — bb) 1.36% 1.58% 1.87% 1.59%
Br(h — 77) |  0.142% 0.165%  0.196%  0.166%
I'(h — N1 Np) [MeV] 98.3 85.1 81.7 82.9
I'(h) [MeV] 198.7 171.1 141.2 169.0

Table 6.1: Benchmark scenarios for my, ~ 133-135 GeV. The
branching ratios and decay widths of the lightest Higgs boson;
the masses of the active Higgs bosons, inert neutralinos, and
charginos; and the couplings of the inert neutralinos N; and N»
are calculated for s = 2400 GeV, A\ = 0.6, Ay = 1600 GeV,
mg = m, = M, = 700 GeV, and X; = V/6M,, corresponding
to mp, =~ mz, ~ 890 GeV. ANLEF and D are defined in (6.28)
and (6.30) respectively.
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Benchmark v vi vii
tan(/3) 1.5 1.7 1.5
Mg+ & ma ~ mp, [GeV] 1145 1165 1145
mp, [GeV] 115.9 114.4 115.9
Ao | 0.004 0.104 0.094
Ao 0.084 0 0
Az | 0.084 0 0
A1l 0.004 0.09 0.059
fo2 0.025 0.72 0.53
for 0.51 0.001 0.053
fi2 0.5 0.001 0.053
fi1 0.025 0.7 0.53
Ju22 0.025 0.472 0.53
Ju21 0.49 0.001 0.053
Ju12 0.5 0.001 0.053
Ju11 0.025 0.472 0.53
Ni mass [GeV] -35.76 41.20 35.42
N, mass [GeV] 39.63 44.21 51.77
N3 mass [GeV] | -137.8 153.1 105.3
N, mass [GeV] 151.7 176.7 -152.7
Ns mass [GeV] | 173.6 -197.3 162.0
Ng mass [GeV] | -191.3 -217.9 -201.7
C1 mass [GeV] 135.8 152.7 100.1
Cy mass [GeV 149.3 176.5 159.5
Q,h? 0.102 0.108 0.107
Rzi1 | -0.116 -0.0278  -0.115
Rzi2 | 0.0037 -0.00039  -0.045
Rzos | -0.118 -0.0455  -0.288
ANLEP T0.0049 0.00009  0.0034
D 2.62 2.011 2.43
xXml o o-0.117 0.141 0.117
XM 4+ XMl .0.000027  -0.00025  -0.0127
Xp | 0.130 0.147 0.141
ogr [107% cm?] | 3.9-15.7  54-21.9 3.5-14.2
Br(h — N1Ny) | 49.6% 53.5% 76.3%
Br(h — NiNo) | 21 x 1078 7.2x 1077  0.26%
Br(h — NoNo) | 48.4% 44.2% 20.3%
Br(h — bb) 1.87% 2.04% 2.83%
Br(h — 77) | 0.196% 0.21% 0.30%
I'(h — N\ N;) [MeV] 61.5 60.1 62.6
I'(h) [MeV] 124.1 112.2 82.0

Table 6.2: Benchmark scenarios for mp, ~ 114-116 GeV. The
branching ratios and decay widths of the lightest Higgs boson; the
masses of the active Higgs bosons, inert neutralinos, and charginos;
and the couphngs of the inert neutralinos N; and N, are cal-
culated for s = 2400 GeV, A = g} = 0.468, Ay = 600 GeV,
mg = m, = M, = 700 GeV, and X; = \/EMS7 corresponding
to mp, ~ mz, ~ 890 GeV. ANLEP and D are defined in (6.28)
and (6.30) respectively. Continued in table 6.3
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Benchmark viii ix
tan(f) 1.5 1.5
mpg+ & ma ~ mp, [GeV] 1145 1145
mp, [GeV] 115.9 115.9
Aoz 0.001 0.468
Ao 0.079 0.05
A2 0.080 0.05
A1 0.001 0.08
Ja2 0.04 0.05
fo1 0.68 0.9
J12 0.68 0.002
1 0.04 0.002
fu22 0.04 0.002
Ju21 0.49 0.002
fu12 0.49 0.05
Jul1 0.04 0.65
Ni mass [GeV] -45.08 -46.24
N, mass [GeV] 55.34 46.60
N3 mass [GeV] -133.3 171.1
N, mass [GeV] 136.9 -1714
N5 mass [GeV] 178.4 805.4
Ng mass [GeV] -192.2 -805.4
C1 mass [GeV] 133.0 125.0
Cy mass [GeV] 136.8 805.0
Q.h° 0.0324 0.00005
Rz | -0.0217 -0.0224
Rz1a | -0.0020 -0.213
Rz | -0.0524 -0.0226
ANLEP 157 x 107° 0
D | 2.0002 2.0
XMl -0.147 -0.148
XM 4+ X | -0.0000140  -0.000031
xm 0.174 0.149
osr [107* cm?] | 6.0-24.4 6.1-25.0
Br(h — N, Np) 83.4% 49.3%
Br(h — NiNo) | 7.6 x 1072 3.0 x 10~8
Br(h — NyN») 12.3% 47.9%
Br(h — bb) 3.95% 2.58%
Br(h — 77) 0.41% 0.27%
I'(h — NiN;) [MeV] 49.0 44.4
I'(h) [MeV] 58.8 90.1

Table 6.3: Continued from table 6.2, more benchmark scenarios
for my, ~ 114-116 GeV. Again, the branching ratios and decay
widths of the lightest Higgs boson; the masses of the active Higgs
bosons, inert neutralinos, and charginos; and the couplings of the
inert neutralinos Nl and NQ are calculated for s = 2400 GeV,
A =g} =0.468, A\ = 600 GeV, mg = m, = M, = 700 GeV, and
X, = v/6M,, corresponding to Mmp, =~ mz, ~ 890 GeV. ANC[;E»EP
and D are defined in (6.28) and (6.30) respectively.
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6.3.1 Benchmark scenarios

In order to construct benchmark scenarios that are consistent with cosmological
observations and collider constraints we restrict our considerations to tan(3) < 2.
The plots in figure 6.1 show that in principle an appropriate value of the dark
matter density can be obtained even when tan(8) > 2. However, larger values of
tan(/3) lead to the lightest and second lightest inert neutralinos having smaller
masses as discussed in section 5.3. As a result larger couplings of the lightest inert
neutralinos to the Z boson are required to reproduce the measured value of Qpyh?
and such light inert neutralinos with substantial couplings to Z boson give a
considerable contribution to its invisible width leading to a conflict with LEP

measurements. This is discussed in more detail in the following subsection.

Even for tan() < 2 the lightest inert neutralino states can get appreciable
masses only if at least one of the inert chargino mass eigenstates is light
me, ~ 100-200 GeV. As clarified in sections 6.1 and 5.3, the masses of the lightest
inert neutralino states decrease with increasing me, and it is therefore rather
difficult to find benchmark scenarios consistent with cosmological observations for
mea, 2 200 GeV. At the same time we demonstrate (with benchmark ix in
table 6.3) that one light inert chargino mass eigenstate is enough to ensure that the

lightest inert neutralino state gains a mass of order my /2.

To obtain the kind of inert neutralino and chargino spectra discussed above one
has to assume that the couplings A, are rather small. They are expected to be
much smaller than the largest f4,3 and f,ng couplings. On the other hand, in order
to get [mg, | ~ [mg,| ~mz/2 the Yukawa couplings faas and fuaps need to be
relatively close to their theoretical upper bounds caused by the requirement of the
validity of perturbation theory up to the GUT scale. Since gauge coupling
unification and RG flow determine the low energy value of g, the mass of the Zs
gauge boson is approximately set by the SM-singlet VEV s only. In our study we
choose s = 2400 GeV so that the Z5 mass is about 890 GeV. This value of the Zy
boson mass is just above the lower bound of 865 GeV found in ref. [67] — the most

recent limit at the time of the publication of paper II — and allows satisfaction of
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tan()
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Figure 6.1: Contour plots of (X!{)? and various regions in the
(f, tan(B))-plane with s = 2400 GeV, fina = fuaa = Aaa = 0 Va,
faor = f, fuor = fa21/a, faiz = 1.02fa21, fuiz = 0.98fu21, and
A21 = A12 = 0.06, implying that me,, = 101.8 GeV. The upper
plot is for a = 0.75 + 0.25 tan(3) and in the lower plot is for a =
0.5 4 0.5 tan(3). The red region is where the prediction for 2, h?
is consistent with the measured 1-sigma range of Qpyh? given in
(4.2). The dark green region corresponds to D < 3 while the
pale green region represents the part of the parameter space in
which D is between 3 and 4. The grey area indicates that D > 4.
D is defined in (6.30). The blue region corresponds to mg, >
mz/2 while the dark blue region to the right is ruled out by the
requirement that perturbation theory remains valid up to the GUT
scale.
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stringent limits on the Z5 mass and Z-Z' mixing that come from precision

electroweak tests [69].

Since we restrict our analysis to low values of tan(8) < 2 the mass of the SM-like
Higgs boson is very sensitive to the choice of the coupling A. Stringent LEP
constraints require A at the EWSB scale to be larger than the low energy value of
g1 ~ 0.47 and if one increases A much further then the theoretical upper bounds on
fdap and fyqp from RG running become substantially stronger. As a consequence,
it is rather difficult to find solutions with [mg | ~ [mg, | ~ mz/2. Therefore in our
analysis we concentrate on values of A at the EWSB scale less than about 0.6. In
addition we set stop SSB masses mg = m, = M, = 700 GeV and restrict our
consideration to the maximal mixing scenario with the stop mixing parameter,
defined in (5.25), X; = v/6M,. This choice of parameters limits the range of
variations of the lightest C'P-even Higgs mass. In the leading two-loop
approximation the mass of the SM-like Higgs boson varies from 115 GeV for A = ¢}
to 136 GeV for A = 0.6. From tables 6.1, 6.2, and 6.3 one can see that the large
values of A 2 ¢} that we choose in our analysis result in an extremely hierarchical
Higgs spectrum, as pointed out in section 3.3. In tables 6.1, 6.2, and 6.3 the masses
of the heavier Higgs states are computed in the leading one-loop approximation. In
the case of the lightest Higgs boson mass the leading two-loop corrections are taken

into account.

The set of benchmark points that we specify demonstrates that one can get a
reasonable dark matter density consistent with recent observations if
Img, | ~ Img,| ~mz/2. Our benchmark scenarios also indicate that in this case the
SM-like Higgs boson decays predominantly into the lightest inert neutralinos N;

and N, while the total branching ratio into SM particles varies from 2% to 4%.

Benchmarks i, ii, iv, v, and viii are motivated by the non-Abelian flavour
symmetry As7 which describes well the observed hierarchy in the quark and lepton
sectors. As was discussed in subsection 6.1.2, these scenarios imply that all flavour
diagonal Yukawa couplings Aaa, fiaa, and fuae are rather small. Due to the

approximate global U(1) symmetry (6.11) that originates from the flavour
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symmetry Aoz, the spectrum of inert neutralinos comprises a set of pseudo-Dirac
states. When the masses of the lightest and second lightest inert neutralinos are
close, or they form an exact Dirac state, then the decays hy — NN, 5 lead to
missing transverse energy in the final state. These decay channels give rise to a

large invisible branching ratio for the SM-like Higgs boson.

In tables 6.1, 6.2, and 6.3 benchmarks i, ii, iv—vi, and ix have almost
degenerate lightest and second lightest inert neutralinos. In some of these
benchmark points both lightest inert neutralinos are lighter than myz/2 and as such
the Z boson can decay into N.N 5 so that the lightest and second lightest inert
neutralino states contribute to the invisible Z boson width. In other benchmark
scenarios both of the lightest inert neutralinos have masses above my/2 and the

decays Z — No N, 5 are kinematically forbidden.

When the LSP and NLSP are close in mass, LSP-NLSP coannihilation might be
an important factor in determining the dark matter relic density. If this is the case
then the LSP-NLSP mass splitting should be an important factor. Since
annihilations of two identical neutralinos are p-wave suppressed, one should
compare SRz11 with Rz15 when trying to determine how important coannihilations
are, where f3 is the relative speed of the incoming particles, approximately 1/6
around the time of thermal freeze-out. It is useful to consider the following
situations: With the LSP and NLSP almost degenerate and with equal
self-annihilation cross-sections, but a negligible coannihilation cross-section, the
relic density of dark matter would be twice what it would have have been if the
NLSP had not been present. If, alternatively, the coannihilation cross-section was
equal to the self-annihilation cross-sections then the existence of this extra channel
would lead to a lower present day relic density. In this case it would in fact be equal
to the relic density calculated in the absence of the NLSP. In this way, in such a
scenario where coannihilations and self-annihilations are about as important as each
other, the relic density actually ends up being largely independent of the
LSP-NLSP mass splitting.

For the benchmarks i and ii this latter situation is approximately the case and
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the LSP-NLSP mass splitting turns out not to be an important factor. The mass
splitting is in fact small — about half a GeV — but if it were larger and the NLSPs
were made to have frozen-out much earlier, the relic density would only be
decreased slightly (in this case by about a tenth). In benchmark iv, even though
the LSP and NLSP are close in mass, coannihilations are unimportant due to the
small value of Rz12. In this case increasing the NLSP mass substantially while
keeping everything else fixed would lead to an approximate halving of the predicted
relic density, since the NLSP would have decoupled much earlier than, rather than
at the same time as, the LSP. The only other benchmark scenario where the LSP
and NLSP are close enough in mass for coannihilations to be potentially important
is benchmark ix. Here coannihilation is in fact the dominant process and
changing the LSP-NLSP mass splitting would have a large effect on the predicted
relic density. In fact, in this scenario if the NLSP were not present the predicted

relic density would be within the measured range.

If the mass difference between the second lightest and the lightest inert
neutralino is around 10 GeV or more then some of the decay products of a Ny that
originates from a SM-like Higgs boson decay might be observed at the LHC. In our
analysis we assume that all scalar particles, except for the lightest Higgs boson, are
heavy and that the couplings of the inert neutralino states to quarks, leptons, and
their superpartners are relatively small. As a result the second lightest inert
neutralino decays into the lightest one and a fermion-antifermion pair mainly via a
virtual Z. In our numerical analysis we did not manage to find any scenario with
Img,| — Img, | 2 20 GeV leading to reasonable values of Q,h%. Hence we do not
expect any observable jets at the LHC associated with the decay of a N, produced
through a SM-like Higgs decay. However, it might be possible to detect some
lepton-antilepton pairs coming from decays of the form hy — NaN,. In particular
we hope that p*p~ pairs coming from such decays of the lightest C'P-even Higgs

state could be observed at the LHC.

Benchmarks iii, vii, and viii can lead to such relatively energetic muon pairs
in the final states of SM-like Higgs decays. Since the Higgs branching ratios into

SM particles are rather suppressed, such decays of the lightest C'P-even Higgs state
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might play an essential role in Higgs searches.

In addition to the inert Higgs decays, the scenarios considered here imply that at
least two of the inert neutralino states that are predominantly formed from the
fermionic components of the inert Higgs doublet supermultiplets, as well as one of
the inert chargino states, should have masses below 200 GeV. Since these states are
almost inert Higgsinos they couple rather strongly to W and Z bosons. Thus at
hadron colliders the corresponding inert neutralino and chargino states could be
produced in pairs via off-shell W and Z bosons. Since they are light their
production cross-sections at the LHC would not be negligibly small. After being
produced, inert neutralino and chargino states would sequentially decay into the
LSP and pairs of quarks and leptons resulting in distinct signatures that could be

discovered at the LHC.

6.3.2 Neutralino and chargino collider limits

The remarkable signatures discussed above raise serious concerns that they could
have already been observed at the Tevatron and/or even earlier at LEP. For
example, the light inert neutralino and chargino states could have been produced at
the Tevatron. The CDF and DO collaborations have set a stringent lower bound on
chargino masses using supersymmetry searches with a trilepton signal [119, 120].
These searches ruled out chargino masses below 164 GeV. However, this lower
bound on the chargino mass was obtained by assuming that the corresponding
chargino and neutralino states decay predominantly into the LSP and a pair of
leptons. In our case, however, the inert neutralino and chargino states are expected
to decay via virtual Z and W exchange, decaying predominantly into the LSP and
a pair of quarks. As a consequence the lower limit on the mass of charginos that is
set by the Tevatron is not directly applicable to the benchmark scenarios that we
consider here. Instead, in our study, we use the 95% confidence level lower limit on

chargino masses of about 100 GeV that was set by LEP [93].

In principle the LEP experiments also set constraints on the masses and

couplings of neutral particles that interact with the Z boson. As mentioned above,
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when the masses of Nl and NQ are below my /2 they are almost degenerate and
thus the decays of Z — NaNg all contribute to the invisible width of the Z boson,
changing the effective number of neutrino species NgJﬁEP. The contribution of Ny

and N» to N g“HEP is given by

ANGT = a11 + 2a12 + ag, (6.28)
where
2 2 2 2 \?
" R2 1 my, T My myg, My B (mNa mNB)
af T TtZaB 2m?, m?% 2m?,
m2 + m2 2 m2 m2
po e TN ) (6.29)
mz mg

All three terms in (6.28) contribute to ANLEY only if 2lmy,| < mz. In the case
where only the Z boson decays into NlNl are kinematically allowed a12 and a9
should be set to zero. If |mg [+ |[mg, | < mz whilst 2|mg | > mz then only a1 and

2a19 contribute.

In order to compare the measured value of N, }EEP °XP with the effective number of
neutrino species in the EgSSM N gJHEP =3+ ANGLEEP it is convenient to define the

variable

NLEP _ NLEP exp
D = —dt__ceff : (6.30)

0 n/LEP
Neff

The value of D represents the deviation between the predicted and measured
effective number of neutrinos contributing to the Z boson invisible width. It is
worth pointing out that in the SM, from (1.13), D = 2. In the benchmark scenarios
presented in tables 6.1, 6.2, and 6.3 the value of D is always less than 3. The plots
in figure 6.1 also demonstrate that there is a substantial region of FgzSSM
parameter space with m Nio <Mz /2 and D < 3. This indicates that relatively light
inert neutralinos with masses below my /2 are not necessarily ruled out by

constraints on the effective number of neutrinos set by LEP experiments. Indeed, as
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argued in section 6.1, the Yukawa couplings fyn3 and f,qg can be chosen such that
Rzap are very small. The couplings of the lightest and second lightest inert
neutralinos to the Z boson are relatively small anyway because of the inert singlino
admixture in these states. Nevertheless, figure 6.1 shows that scenarios with light
inert neutralinos having masses below myz/2 and relatively small couplings to the Z

boson can lead to appropriate dark matter densities consistent with observation.

LEP has set limits on the cross-sections of ete~ — Ny Ny and ete™ — CCr,
where predominantly No — ¢gN; and Cy — ¢’ N1 respectively [121]. Unfortunately
the bounds are not directly applicable for our study because OPAL limits were set
for a relatively heavy Ny or C only — greater than about 60 GeV. Nevertheless,
these bounds demonstrate that it was difficult to observe light neutralinos with
masses less than about 100 GeV if their production cross-sections
o(ete” — NoNjg) < 0.1-0.3 pb. Since at LEP energies the cross-sections of
colourless particle production through s-channel v/Z exchange are typically a few
picobarns, the lightest and second lightest inert neutralino states in the EgSSM

could have escaped detection at LEP if their couplings Rz,s < 0.1-0.3.

6.3.3 Dark matter direct detection

Another constraint on the couplings of the lightest inert neutralino comes from
experiments for the direct detection of dark matter. At the time of the publication
of paper II the most stringent upper limits on the DMP-nucleon elastic scattering
spin-independent cross-section came from the CDMS collaboration [122] and from
the first analysis of 11.7 days of data from the XENON100 experiment [123]. In the
low DMP mass region relevant for our study, the most stringent of these was the
XENON100 limit. In particular the XENON100 11.7 day analysis produced a limit
on the cross-section of 3.4 x 10744 ¢cm? for a 55 GeV DMP at a confidence level of
90%. This limit remains fairly constant for lower DMP masses and does not
increase above about 4 x 1074 c¢m? for even the lowest LSP masses that are
consistent with our thermal freeze-out scenario. Currently the most stringent limits

on the spin-independent DMP-nucleon cross-section come from the more recent
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analysis of 100.9 days of data from XENON100 [124]. The best limit is
7.0 x 107** em?, which is for a 50 GeV DMP, again at a confidence level of 90%.

Since in the FgSSM the couplings of the lightest inert neutralino to quarks,
leptons, and their superpartners are suppressed, the spin-independent part of the
Ni-nucleon elastic scattering cross-section is mediated mainly by t-channel SM-like
Higgs boson exchange. Thus, in the leading approximation the spin-independent

part of Nj-nucleon cross-section in the EgSSM takes the form [125, 4]

4m m3
os1 = ﬁlX L2 (6.31)
h1
where N is the nucleon,
myg m
m, = M’ and
my, + My

with

maffy, = (NlmgaN) and

fla = 1= > fiy

q=u,d,s

Here, for simplicity, we assume that the lightest Higgs state has the same couplings
as a SM Higgs boson and ignore all contributions induced by heavy Higgs boson
and squark exchange?. Due to the hierarchical structure of the active Higgs boson
spectrum and the approximate ZZ symmetry this approximation works very well.

Using the experimental limits set on ogr and (6.31) one can obtain upper bounds on

2The near degeneracy of the lightest and second to lightest inert neutralinos could result in the
inelastic scattering collisions in which N 1 is upscattered off of a nucleus into N2 and this could affect
the direct detection of Ni in experiments. However, such processes may take place only if the LSP-
NLSP mass splitting is less than about 100 keV [126]. In the EsSSM mass splittings of this order
are not expected to be typical. In the benchmark scenarios considered in tables 6.1, 6.2, and 6.3
the mass splitting is substantially larger and such inelastic nuclear scattering of N; does not play a
significant role.
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X 127).

In tables 6.1, 6.2, and 6.3 we specify the interval of variations of og; for each
benchmark scenario. As one can see from (6.31) the value of ogr depends rather
strongly on the hadronic matrix elements — the coefficients f% that are related to
the m-nucleon o term and the spin content of the nucleon. The hadronic
uncertainties in the elastic scattering cross-section of DMPs and nucleons were
considered in ref. [125]. In particular, it was pointed out that f%vs could vary over a
wide range. In tables 6.1, 6.2, and 6.3 the lower limit on og; corresponds to f:]FVS =0
while the upper limit corresponds to f&, = 0.36 (see ref. [4]). From tables 6.1, 6.2,
and 6.3 and (6.31) it also becomes clear that ogr decreases substantially when mp,

ETows.

Since in all of the benchmark scenarios presented in tables 6.1, 6.2, and 6.3 the
lightest inert neutralino is relatively heavy, with |myg | ~ mz/2, allowing for a small
enough dark matter relic density, the coupling of N to the lightest C'P-even Higgs
state is always large, giving rise to a Ni-nucleon spin-independent cross-section that

is of the order of, or larger than, the 90% confidence level bound of ref. [123].

The dark matter scenario detailed in the present and previous chapters is now
severely challenged by the most recent XENON100 results [124]. Although these
results appear to rule out the EgSSM as a model of dark matter, it should be noted
that they do not rule out the model per se. Scenarios similar to those in tables 6.1
and 6.2, but in which the predicted relic density is somewhat less than the
measured relic density can be consistent with direct detection experiments,
although since such scenarios would not completely explain the observed dark
matter relic density they may be considered less well motivated. In such scenarios it
needs to be assumed that the majority of the observed dark matter is not composed
of EgSSM inert neutralino LSPs, but is composed of some extra matter beyond that

of the FgSSM.
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6.4 Summary and Conclusions

In this work we considered novel decays of the SM-like Higgs boson in the EgSSM.
Particular attention was given to the dark matter that the model predicts and this
work also represents a more in-depth study of the inert neutralino and chargino

sectors of the EgSSM than the previous study presented in chapter 5 and paper I.

To satisfy LEP constraints we restricted our consideration to scenarios with
relatively heavy inert chargino states me, , 2 100 GeV. In our analysis we also
required the validity of perturbation theory up to the GUT scale which sets
stringent constraints on the values of the Yukawa couplings at low energies. Using
these restrictions we argued that the lightest and the second lightest inert
neutralinos are always light — they typically have masses below 60-65 GeV. These
neutralinos are mixtures of inert Higgsinos and singlinos. In the considered model
the lightest inert neutralino N tends to be the LSP and play the role of dark
matter while ]\72 tends to be the NLSP. The masses of Nl and ]\72 decrease with

increasing tan(/5) > 1 and inert chargino masses.

Because the lightest inert neutralino states are predomiantly inert singlino in
nature, their couplings to the gauge bosons, active Higgs bosons, quarks, and
leptons are rather small, resulting in relatively small LSP annihilation cross-sections
and the possibility of an unacceptably large dark matter density. In the limit where
all non-SM states except for the inert neutralinos and charginos are heavy a
reasonable density of dark matter can be obtained if |m N1,2| ~ my /2, where the
inert LSPs annihilate mainly through an s-channel Z boson. On resonance an
appropriate value of Qxh2 can be achieved even for a relatively small coupling of
the LSP to the Z boson. In order to achieve plausible scenarios consistent with
both LEP and cosmological observations, requiring |m N1| ~ my/2 if Ni contributes

to CDM, tan(/3) cannot be too large.

The main message arising from this work is that within the dark matter
motivated scenario although the lightest and the second lightest inert neutralinos

can have small couplings to the Z boson their couplings to the SM-like Higgs state
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hy are always large. Indeed, we argued that in the first approximation the couplings
of Ny and N to the lightest C'P-even Higgs boson are proportional to |m &,1/v and
Im g, |/v respectively. Since |m N1,2‘ must be of order my/2 in order for the theory
not to predict too much dark matter, these couplings are much larger than the
corresponding coupling of b quarks to the SM-like Higgs boson. Thus the SM-like
Higgs boson decays predominantly into the lightest inert neutralino states and has

very small branching ratios (2%-4%) for decays into SM particles.

The most recent XENON100 dark matter direct detection limits [124] now place
rather stringent constraints on the EgSSM inert neutralino dark matter scenario.
As an explanation for all of the observed dark matter relic density the model now
looks to be ruled out. There do, however, exist scenarios in which the FgSSM LSP
accounts for only some fraction of the observed dark matter that are consistent

with constraints from colliders and cosmology.
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Chapter 7

Dark Matter and Big Bang
Nucleosynthesis in the E6Z§ SSM

In this chapter, which contains work that was first published in paper III, with
the exception of section 7.5 which contains work that is original to this thesis, we
introduce a new scenario for dark matter in the FgSSM in which the dark matter
candidate is just the usual bino. At first sight having a bino dark matter candidate
seems impossible since, as already discussed, the lightest inert neutralino mass
eigenstates, predominantly the inert singlinos S, naturally have suppressed masses
and it is very difficult to make them even as heavy as half the Z mass. To overcome
this we propose that the inert singlinos are exactly massless and decoupled from the
bino, which is achieved in practice by setting the Yukawa couplings f(q.u)ag to zero.
This is easy to do by introducing a discrete symmetry Zg under which the inert
singlet scalars S, are odd and all other bosonic states are even — a scenario we

refer to as the E6Z§SSM.

In the EZ3SSM the inert singlinos S, will be denoted as & in order to
emphasise their different (massless and decoupled) nature. The stable DMP is then
generally mostly bino and the observed dark matter relic density can be achieved
via a novel scenario in which the bino inelastically scatters off of SM matter into
heavier inert Higgsinos during the time of thermal freeze-out, keeping the bino in

equilibrium long enough to give the desired relic abundance. As long as the inert
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Higgsinos are close in mass to the bino this is always possible to arrange — the only
constraint being that the inert Higgsinos satisfy the LEP constraint of being heavier
than 100 GeV. This in turn implies that the bino must also be heavier than or close
to 100 GeV. These constraints are easy to satisfy and, unlike in the inert neutralino
LSP dark matter scenario, we find that successful relic abundance can be achieved
within a GUT scale constrained version of the model — the cEgZ35SSM —
assuming a unified soft scalar mass mg, soft gaugino mass M5, and soft trilinear

mass Ag at the GUT scale.

It is worth noting that studies of the cEgSSM [128, 5, 65] have hitherto
neglected to study the full 12 x 12 neutralino mass matrix and only considered the
6 x 6 mass matrix of the USSM [4]. Although the question of dark matter was
addressed in the USSM, the requirement of successful relic abundance was not
imposed on the cEgSSM in refs. [128, 5, 65] even though both analyses considered
the same 6 x 6 neutralino mass matrix. This is because it was expected that dark
matter would arise from the inert sector of the cEgSSM which was not studied.
When cosmological constraints on inert neutralino dark matter are included in the
EgSSM certain trilinear Higgs Yukawa couplings relevant to the inert sector are
required to be large as we saw in chapters 5 and 6. In the cEgSSM these large
couplings strongly affect the RG running from the GUT scale and we have not been
able to show that having inert neutralino LSPs consistent with CDM constraints
can also be consistent with having universal (GUT scale constrained) soft mass
parameters. Here we shall consider the cFEgSSM with the full 12 x 12 neutralino
mass matrix, including both the USSM and inert neutralinos, under the assumption
that the fermionic components of the inert SM-singlet supermultiplets, the two
inert singlinos, are forbidden to acquire mass by an extra Zs symmetry of the
superpotential. In practice there is then a 10 x 10 neutralino mass matrix once the

two massless inert singlinos are decoupled.

In summary, the main result of this study is that bino dark matter, with nearby
inert Higgsinos and massless inert singlinos, provides a simple and consistent
picture of dark matter in the FgSSM and is consistent with GUT scale unified soft

parameters. We also consider the effect of the presence of the two massless inert
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singlinos in the E6Z§ SSM on the effective number of neutrinos contributing to the
expansion rate of the universe prior to BBN, affecting “He production. Current fits
to WMAP data [129] favour values greater than three, so the presence of additional
contributions to the effective number of neutrinos is another interesting aspect of
the EgZs5SSM. In practice we find that the additional number of effective neutrino
species is less than two, due to entropy dilution, depending on the mass of the Z’

boson which keeps the inert singlinos in equilibrium.

The F¢Z5SSM is introduced and its neutralino sector is explored in section 7.1.
The details of the dark matter calculation are presented in section 7.2. Neg is
defined and calculations of its value in the Eng SSM are presented in section 7.3.
Some benchmark points are presented in section 7.4. The possibility of inert singlino

WDM is discussed in section 7.5 and the conclusions are summarised in section 7.6.

7.1 The E;ZSSSM

In the E6Z§ SSM, as well as being invariant under Z3! and either Z% or Z2,
summarised in tables 3.2 and 7.1, the superpotential of the EgSSM (3.6) is also
invariant under an additional exact Zso symmetry called Zg . Under this symmetry
only the two inert SM-singlet fields S, are odd. The couplings of the forms A,;; and
Kaij are therefore forbidden. This means that the fermionic superpartners of S, —
the inert singlinos ¢ — are forbidden to have mass and do not mix with the other
neutralinos. They interact only via their gauge couplings to the Z’ boson which

exist since they are charged under the U(1)y gauge symmetry.

All of the exact and approximate discrete symmetries relevant to the Eng SSM

superpotential are summarised in table 7.1.

One may worry that the effects of the massless inert singlinos would have already
been seen in precision measurements from LEP. The inert singlinos, although not
mixing with the inert Higgsinos as they did in the FgSSM inert neutralino dark
matter scenario, still couple to the Z; mass eigenstate because of the non-zero Z-Z'

mixing angle azz defined in (3.21). In the following we neglect the kinetic term
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S|+ + + - -
Hda’Hua + + + - +

Sz, Hys, Hyz |+ +  + +  +

Qrindi@h | —  + + -  +
Ly e NE| = = — =

Table 7.1: The charges of the fields of the EZ5SSM superpoten-

tial under various exact and approximate Zsy symmetries that the

superpotential may or may not obey. Z2! is already a symmetry

due to gauge invariance. Either ZZ or ZF is imposed in order to

avoid rapid proton decay. Z& is an approximate flavour symme-

try. In the EgZ5SSM the extra symmetry Z3 is imposed, forcing

the inert singlinos to be massless and decoupled. i € {1,2,3} and

a e {1,2}.
mixing that is expected to be a small effect (see section 3.2). For a given mz ~ my,
in (3.19) m%,,, and hence also azz/, is maximised in the limit tan(3) — oo. For
mz, ~ myz = 892 GeV the maximum value of m%,, is 3270 GeV? and the
maximum value of azz is then 4.15 x 1073, The Z;-6-6 coupling relative to the
Z-v-v gauge coupling R is equal to azz. From (6.28) the change in the effective
number of neutrinos contributing to the invisible Z boson width at LEP due to the
presence of massless inert singlinos is then AN gJﬁEP =2R?>=2a%, =1.72x107°
which is well below the experimental uncertainty O'?\);EEP =8 x 10732. When the Z,

eff

boson mass is large enough to avoid experimental detection limits the contributions

of massless inert singlinos to the Z boson width and to other LEP precision

measurements are expected to be within the experimental error.

7.1.1 The neutralinos of the EzZ5SSM

The chargino sector of the FgZsSSM is unchanged from that of the EgSSM without
7. The chargino mass matrix is that given in (5.11). The same is true for the
active Higgs scalar masses and mass matrices given in section 3.3. The situation in

the neutralino sector, however, is quite different.

118



In the present study of the EgZs5SSM we define the term ‘neutralino’ not to
include the massless inert singlinos which do not appear in the superpotential and

are decoupled. The neutralino mass matrix M¥ in the interaction basis

N = <B WAy A, 5, B

U

T
m, A8y ) .

and again neglecting the small bino-bino’ mixing, is then equal to

M, 0 —1gvq gy 0 0 0 0
0 M, Tgva  —3gua 0 0 0 0
A
—3q'va  gug 0 - = A‘Q’f/‘“’%)“ QY giva 0 —%gs
A s
3900 —39v.  —p 0 - Qlgju, | - 0
0 0 . )\3\3/351)“ _ >\3\3/‘%Ud 0 Qgglls _ )\3\(1/351]“ _ /\3\3/%Ud )
0 QYglva QNdvu Q¥gis M 0 0
0 0 0 v iy 0 0 —A%s
_ Asgps _ A3380d _ A3aps
0 0 e 0 o 0 neog? 0

where once again Qflv . are the U(1)y charges of down-type Higgsinos, up-type
Higgsinos, and singlinos respectively, as given in table 3.1. Typically g} ~ g, all the
way down to the low energy scale. If the soft gaugino masses are unified at the

GUT scale then we also have M| ~ M, ~ M, /2 (see subsection 3.2.1).

The Yukawa couplings in the off-diagonal blocks, marked out by lines, are
suppressed under the approximate Zfl . Given the smallness of these couplings, the
inert neutralinos in the bottom-right block are pseudo-Dirac states with an

approximately decoupled mass matrix

A322  A321

X312 A T
s 312 A3ll ) _ _ _ . _
_ﬁ in the basis < ng Hgl HY, HY, ) )

A322  A312

A321  A311

They are approximately degenerate with the two inert chargino Dirac states.
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The top-left block is the USSM neutralino mass matrix (5.3) and contains the
states of the MSSM supplemented by the third generation singlino and the bino’. In
the case where M, ~ M| is small the lightest neutralino mass state will be mostly
bino. The bino’ will mix with the third generation singlino giving two mixed states
with masses around Qg gis. As My = Mj increases, the bino mass will increase
relative to both the third generation Higgsino mass p and the inert Higgsino masses

given approximately by the biunitary diagonalisation of

1

A3a8S-
V2

At the same time the state mostly containing the third generation singlino will have

a decreasing mass as M/ increases relative to QSN gis.

7.2 Dark Matter in the cEZ5SSM

As discussed previously, in section 3.1, there is an automatically conserved R-parity
under which the charginos, neutralinos, inert singlinos ¢, and exotic D and D
fermions, along with the squarks and sleptons, are all R-parity odd, i.e. all of the
fermions other than the quarks and leptons are R-parity odd. We shall assume that
the lightest neutralino N is the lightest of all of the R-parity odd states excluding
the massless inert singlinos 6. However, N cannot decay into & via neutralino
mixing since the inert singlinos are decoupled from the neutralino mass matrix.
Furthermore, the potential decay N; — o, allowed by the o-6-B' supersymmetric
U(1)y gauge coupling, is forbidden if Ny is lighter than the inert SM-singlet scalars
o. In fact, in this case no kinematically viable final states exist that have the same
quantum numbers as Nl. Therefore Nl is absolutely stable and in the scenario
presented is the DMP. The lightest inert SM-singlet scalar is not stable. There are
no Yukawa couplings involving S, but the inert SM-singlet scalars are able to

decay via the o-6-B' supersymmetric U(1)y gauge coupling.

In the successful dark matter scenario presented in this section Ny is

predominantly bino, with at least one of the two pairs of pseudo-Dirac inert
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Higgsinos expected to be close in mass, but somewhat heavier, in order to achieve
the correct relic density. This is due to a novel scenario in which the DMP is
approximately the bino and inelastically scatters off of SM matter into heavier inert
Higgsinos during the time of thermal freeze-out, keeping it in equilibrium long
enough to give a successful relic density. In this section we discuss in detail how

this novel scenario comes about in this model.

7.2.1 The dark matter calculation

In the considered model the DMP is not the lightest R-parity odd state — an inert
singlino — but the lightest neutralino N;. We would like to use (4.3) to describe
the evolution of R-parity odd states other than the inert singlinos — generically x.
In this case we should also include in (4.3) processes involving o and & particles
that change the number of x particles by one. Since such processes necessarily
involve inert SM-singlet scalars o, it is valid to neglect these processes in the case
where these inert SM-singlet bosons have frozen out long before the freeze-out of
dark matter. We will call this condition B, to go along with condition A, defined
in subsection 4.1, and it should be satisfied given our assumption that the inert
SM-singlet scalar mass eigenstates are heavier than the DMP, since they only
interact via the heavy Z’ boson. Assuming that both conditions A and B are
satisfied we can use (4.6) to describe the evolution of the number density n of
R-parity-odd states other than inert singlinos x. The value of n after the thermal
freeze-out of Ny depends on annihilation cross-sections involving N; and other
R-parity odd states close by in mass and n will eventually be equal to the number

density of DMPs after other y states have decayed to Nj.

7.2.2 The cE¢Z5SSM dark matter scenario

In order to carry out the dark matter analysis in the constrained version of the
model we have extended the RG code used for the study in ref. [5] [130] to include
the Yukawa parameters and soft masses of the inert sector of the Eng SSM. The

inputs are k3;; and A333 at the GUT scale, Azop at the EWSB scale, s, and tan(/3),
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as well as the known low energy Yukawa couplings and gauge couplings. Given
these inputs and the RGEs the algorithm attempts to find points with GUT scale
unified soft masses mq, M/, and Ag. The low energy U(1)y gauge coupling gj is
set by requiring it to be equal to the other gauge couplings at the GUT scale, which

is calculated.

For consistent points in the EgSSM the lightest non-inert (USSM sector)
supersymmetric particle is typically bino dominated. For the CE(;Zg SSM we find
the same thing. The masses of the inert Higgsino states depend on s and on the
Yukawa couplings A3, and in the CE6Z§ SSM the lightest neutralino can be either
the bino dominated state or a pseudo-Dirac inert Higgsino dominated state. In the
latter case we find that the pseudo-Dirac inert Higgsino DMPs coannihilate with
full-weak-strength interactions and lead to a too small dark matter relic density. In
the former case the bino DMP normally annihilates too weakly and yields a too
large dark matter relic density. If, however, there are inert Higgsino states close by
in mass, they contribute significantly to (ov), allowing for the observed amount of
dark matter. This relies on condition A being satisfied, i.e. the binos being

up-scattered into inert Higgsinos at a large enough rate.

Such points with an appropriate dark matter relic density can be found and
three are presented in section 7.4. Condition B is satisfied since the inert
SM-singlet scalars are so much heavier than the DMP and the Z5 boson mass is so
large compared to the regular Z boson mass. Annihilation and scattering processes
involving inert SM-singlets and singlinos must contain a virtual Z’ boson, which is

predominantly the Z> mass eigenstate.

To test condition A let us compare the rate for binos up-scattering into inert
Higgsinos with the inert Higgsino coannihilation rate. We shall label the mostly
bino state Ny and the lightest pseudo-Dirac inert Higgsino states Ny and N3. The

dominant up-scattering diagrams are of the form shown in figure 7.1.

As in section 6.1 we again define Rz;; couplings such that the Z—Ni-Nj coupling
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N1 NQaN3

Figure 7.1: The form of diagrams for the up-scattering of the bino
dominated DMP Nj off of SM particles X into the pseudo-Dirac
inert Higgsino states No and Nj.

No

N3

Figure 7.2: Full-weak-strength coannihilations of the pseudo-
Dirac inert Higgsino states No and Nj.

is equal to Rz;; times the Z-v-v coupling. In the FE¢Z.5SSM we can write

Ruy = 5 NPNP- S NONY, 73
D=3,7,9 U=4,8,10

where N is the neutralino mixing matrix element corresponding to mass eigenstate

1 and interaction state a. D and U index the down- and up-type Higgsino

interaction states respectively. For the pseudo-Dirac inert Higgsino states we have

ms = —mg and Rzo3 =~ 1, allowing for full-weak-strength coannihilations of the

form shown in figure 7.2.

Using the notation from (4.3), the ratio of the rate for the mostly bino state
up-scattering into the lightest mostly inert Higgsino state to the inert Higgsino
coannihilation rate is given approximately by

T (o150 x)n7 'Y

= . (7.4)
(o 23”23>n§q”§q

To give an idea of the size of this ratio, if the SM particle X is relativistic and
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m1 ~ mo = mg then

~ (Rmz) T3
Rz23) (lma|T)3/2 exp(—|m1|/T)

~ Rypatle (7.5)

where again

T

r=—-"-,
[ma |

This ratio is expected to be large because of the overwhelming abundance of the
relativistic SM particle X, but it also depends on Rz12. The value of Rz1o depends
on the Z4-breaking couplings that mix the upper-left block of the neutralino mass
matrix in (7.2) — the USSM states including the bino — with the inert Higgsino
states in the lower-right block. Since this symmetry is not exact we expect these
couplings to be large enough such that we can still assume T > 1. Explicit

examples of this parameter are included in table 7.3 in section 7.4.

With conditions A and B satisfied we use micrOMEGAs [91] to calculate the
dark matter relic density for low energy spectra consistent with the GUT scale
constrained scenario. The observed relic density of dark matter can arise in this
model and examples are shown in table 7.3 in section 7.4. The most critical factor is
the mass splitting between the bino and the lightest inert Higgsinos. Too large and
there are not enough inert Higgsinos remaining at the time of the bino’s thermal
freeze-out to have a significant enough effect. Too small and (ov) is dominated by

inert Higgsino coannihilations, leading to a too small dark matter relic density.

Since in this scenario the DMP is predominantly bino, the spin-independent
DMP-nucleon cross-section ogr is not expected to be in the range that direct
detection experiments are currently sensitive too. The spin-independent
cross-section of a pure bino is suppressed by the squark masses, but is also sensitive
to the squark mixing angles [131]. For each flavour the cross-section vanishes for

zero squark mixing. Since in practice the DMP will also have non-zero, but small,

124



active Higgsino components, there are also contributions to og; from t-channel
active Higgs scalar exchange via the bino-Higgs-Higgsino supersymmetric gauge
coupling. These contributions, though in fact dominant, are quite small, due to the
overwhelming bino nature of the DMP. Estimates of ogr, using the same proton fy,
fu, and fs parameters used in the study in ref. [132], are included in table 7.3 in

section 7.4.

7.3 The Inert Singlinos and their Contribution to the

Effective Number of Neutrinos prior to BBN

In the standard theory of BBN, which happens long after the thermal freeze-out of
dark matter, the resultant primordial abundances of the light elements depend on
two parameters — the effective number of neutrinos contributing to the expansion

rate of the radiation dominated universe Neg and the baryon-to-photon ratio 7.

Whilst the primordial abundance of 4He is not the most sensitive measure of 1,
it is much more sensitive to Neg than the other light element abundances. This is
because prior to nucleosynthesis, when the equilibrium photon temperature is of
order 0.1 MeV, the number of neutrons remaining, virtually all of which are
subsequently incorporated into *He nuclei, is sensitive to the expansion rate of the
universe, which depends on Ngg. The greater the expansion rate, the less time there

is for charged current weak interactions to convert neutrons into protons.

The analysis in ref. [133], using the more recent neutron lifetime measurement
from ref. [134], gives Neg = 3.80f8:§8 at 2-sigma, implying a more-than-2-sigma
tension between the measured “He abundance and the Standard Model prediction
for Neg of about 3. Although in ref. [135] it is suggested that these errors may be
larger, similar results are also obtained for the effective number of neutrinos

contributing to the expansion rate of the universe from fits to WMAP data [129].

In the E6Z§ SSM the two massless inert singlinos would have decoupled from
equilibrium at an earlier time than the light neutrinos, but nevertheless would have

contributed to Neg. Exactly when the inert singlinos would have decoupled from
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equilibrium with the photon depends on the mass of the Zs boson which determines
the strength of an effective Fermi-like 4-point interaction vertex that would have
been responsible for keeping the inert singlinos in equilibrium. The various values

for N.g that can be achieved in this model all fit the data better than the SM value.

The implications of extra neutrino-like particles present in the early universe
have long been studied and the methods used in following analysis rely on relatively

simple physics (see for example ref. [136]).

The effective number of degrees of freedom contributing to the expansion rate of

the universe during the run-up to nucleosynthesis is defined by

QSH = gyt 7/89VNeff(4/11)4/3

= 2+ 7/4Neff(4/11)4/37 (7'6)

where ggﬁ is the value of g g, as defined in (4.9), immediately prior to
nucleosynthesis. Here g, = 2 is the number of degrees of freedom of the photon and
gy = 2 is the number of degrees of freedom of a light neutrino. The three SM
neutrinos are expected to decouple from equilibrium with the photon at a
temperature above the electron mass whereas nucleosynthesis does not happen until
the temperature is below the electron mass. When the photon/electron temperature
is around the electron mass the electrons and positrons effectively disappear from
the universe!. Their disappearance heats the photons to a higher temperature then
they would otherwise have had, but the neutrinos, having already decoupled, would
continue to cool at the full rate dictated by Hubble expansion. Because of the
neutrinos’ lower temperature at nucleosynthesis they would then contribute less to
ggﬁ per degree of freedom. In (7.6) Neg is defined such that in the SM Neg = 3, for
the three neutrinos decoupling above the electron mass, as we shall see. Extra
particles, such as the E6Z§ SSM inert singlinos, decoupling above the muon mass
would have had even lower temperatures at the time of nucleosynthesis and would

therefore contribute to ggﬂ even less than light neutrinos per degree of freedom.

' A much smaller number of electrons remains due to the small lepton number asymmetry.
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7.3.1 The calculation of N

In the cFEgZ5SSM there is a typical scenario in which the massless inert singlinos &
decouple at a temperature above the colour transition temperature (when the
effective degrees of freedom are quarks and gluons rather than mesons) and above
the strange quark mass, but below the charm quark mass. This has to do with the
strength of the interactions that keep the inert singlinos in equilibrium which
depend heavily on the mass of the Z5 boson. If the inert singlinos do decouple in
this range then this leads to a definite prediction for Nyg. We shall explain why the
inert singlinos typically decouple in this temperature range in the following

subsection. For now we derive the value of Nyg in this scenario as an example.

We shall use the superscript 0 to denote quantities at some temperature 7°
below the electron mass and the superscript e to denote quantities at some
temperature T°¢ above the electron mass and where all light neutrino species are
still in equilibrium. We shall use the superscript s to denote quantities at some still
higher temperature T above the colour transition and the strange quark mass and

where the inert singlinos are still in equilibrium.

At T% the effective number of degrees of degrees of freedom contributing to the

expansion rate is

Gog = 9y + 99+ 7/8(ge + 9u+ gu + 94+ gs + 39, + 295)

= 24+16+78(4+4+12+12+12+6+4) =651/4 (7.7)
and at T it becomes

gog = 2478 (6 +4 <£>4> (7.8)

and at TV it becomes

TO 4 TQ 4
e = 2478 (6 (TVO) +4 <T%> , (7.9)
taking into account that the neutrinos and inert singlinos now have different
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temperatures. With no subscript 17" always refers to the photon temperature, as is

the notation throughout this thesis.

From (4.10), the entropy within a given volume V' due to a relativistic {boson,

fermion} with number of degrees of freedom g; is given by
272 3
Si = {L7stgi - (T)V. (7.10)

Since we are assuming that the inert singlinos decouple before the strange quark
threshold, in going from 7 to T we conserve the entropy in the comoving volume
separately for the inert singlinos and for everything else. Specifically, for the inert

singlinos

(T*3Vs = (TE)3Vve (7.11)

and for everything else
[y + 99 + T/8(ge + gp + gu + 9a + gs + 39)/(T°)*V® = [gy + 7/8(ge + 39,)|(T)*V*
= 613/4(T°)°V* = 103/4(T°)*V". (7.12)

This allows us to write

(T5)°Ve <T§>3 _ 1031 43 (7.13)

(Te)3ve — \T® 613/4 247

In going from T° to T9 we conserve the entropy separately for the neutrinos, for the

inert singlinos again, and for everything else, giving

(97 + T/sge)(T)PVE = g,(T°)*V?, (7.14)
(T9)3ve = (T9)3V°, and (7.15)
(TE)*ve = (T2)°VO. (7.16)
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Figure 7.3: Electroweak interactions responsible for keeping the
light neutrinos in equilibrium in the early universe. For all the light
neutrinos there are the the processes on the left. For the electron
neutrinos there is also the additional process on the right.
This gives us
3
T, 9y 4
- = ———— = — and 7.17
(To) gy +7/8gc 11 (7.17)
o\ 3
T 43 Gy 43 4 (7.18)
T © 247 gy + Tfsge 247117 ‘

In this case the effective number of neutrinos contributing to the expansion rate

prior to nucleosynthesis (at T°) is then

43\ /3
Neff — 3 + 2 <247> ~ 3194 (719)

7.3.2 The inert singlino decoupling temperature

The light neutrinos are kept in equilibrium via their electroweak interactions. The

relevant diagrams are shown in figure 7.3.

We express the cross-section for processes relevant for keeping muon and 7

neutrinos in equilibrium as

T2 5/3 294
) = b o X (7.20)
z w)

where ko, like k; from (4.14), is a constant defined for convenience and

1/ 1 2 sint(®
X4 — (2 (—2 + sinQ(ﬂW)>> + SmEIW) ~ 0.031. (7.21)
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Note that we are using the GUT normalised U(1)y gauge coupling and so

92 _ \/g 91
cos(dw) 3sin(dw)’

The cross-section for electron neutrinos with their extra diagram is then

T2 (5/3)2 0
() = ko LI Iy
m7, sin®(Jw)

where

2 s 4
vt = <; (; +sin2(19w)>> + Sme) ~ 0.147.

(7.22)

(7.23)

(7.24)

We express the number densities of all Weyl fermions still in equilibrium with the

photon as

_ _ _ _ _ _ _ 3
Nep = Nep = Nyyp = Npp =Ny, =Ny, =1y, = k3T

i

and the expansion rate is given by

H = ki/gT*

The neutrino decoupling temperature 7% can then be approximated by

(oyv)n” = H
4
sin*(Yw) 1
= (T3 = Ki\/gffm}————2 - and
‘ (%/3)%g1 X*
in*(dyy) 1
@) = K\ faemmt S OW)

(5/3)2g% Y

(7.25)

(7.26)

(7.27)

(7.28)

with K = k1 /koks. A more detailed calculation finds that in the SM (with only

neutrinos, electrons, and photons contributing to g&g) 77" ~ 3.7 MeV and

TV =~ 2.4 MeV — the muon and 7 neutrinos decoupling earlier.

At temperatures above the strange quark mass the processes relevant for keeping
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Figure 7.4: Interaction processes responsible for keeping the inert
singlinos in equilibrium in the early universe.

the inert singlinos in equilibrium are shown in figure 7.4.

The part of the Lagrangian containing all of the fermion couplings in figure 7.4,

illustrating the relevant U(1)xy charges, is

- 1
_<LTL q Qp uf df 5‘T>“’“§IQZL\/ZO

and the total cross-section taking into account all of these diagrams is then

(neglecting the small Z-Z" mixing)

T2 Z4
<U&U> = kQ@QQ%Wa
where
Z4 = (5)2(2)%+2(1)2 +3(1)2 +3(1)2 +6(1)2 4+ 6(2)% + 3(2)?]

= 1450,
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leading to an approximate singlino decoupling temperature of

T = Km0 (7.32)
- geffmzzgéll 74 :

N g (mz )\ (40)%(/3)2 Y
- (R - B ey e

The only unknown variable here affecting the inert singlino decoupling temperature

is then the Zs boson mass my,. Rearranging we find

T& 3/4
~ _— . 7.34
Mz =Mz (6.60 MeV) (7:34)

7.3.3 N, in the E;Z5SSM

We now check which values of my, are consistent with our assumption that the inert
singlinos decouple at a temperature between the strange and charm quark masses.
For T% < m, we find that we require mz, < 4700 GeV. For mz, ~ 1000 GeV the
situation is slightly more complicated. Firstly the temperature of the QCD phase
transition is not accurately known and secondly the effective number of degrees of
freedom is decreased by so much after the QCD phase transition that even if the
inert singlinos were decoupled beforehand the universe may be expanding slowly
enough afterwards that they could come back into equilibrium. After checking a
range of scenarios we find that for 1300 GeV < my, < 4700 GeV our value of

Neg = 3.194 is valid. For myz, < 950 GeV the inert singlinos decouple at a

temperature above the muon mass, but below the pion mass, leading to a larger
prediction of Neg = 4.373. At the time of the publication of paper II the
experimental limit in the EZ5SSM was mz, > 892 GeV, from ref. [68], which
would allow a Zs boson light enough for us to predict a value for N.g = 4.373. For
Zo masses in between these ranges the value of Nqg depends on the details of the
QCD phase transition, but is somewhere between these predictions. For inert
singlinos decoupling above the pion mass, but after the QCD phase transition, we

have Neg = 4.065. All of these values are within the 2-sigma measured range

Negg = 3.801“8:?8 and closer to the central value than the SM result N.g = 3.
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Benchmark 1 2 3
tan(f) 30 10 3
s [TeV] 5 4.4 5.5
Asz3 @ GUT scale | -0.3 -0.37 -04
Az20 @ EWSB scale 0.1 0.1 0.1
A311 @ EWSB scale | 0.0293 0.0403 0.0399
k3 @ GUT scale | 0.18 0.18 0.23
M, s [GeV] 590 725 908
mo [GeV] | 1533 454 1037
Ap [GeV] | 1375 1002 413

Table 7.2: The input parameters of the three cEgZs5SSM bench-
mark points.

Since the publication of paper III the limit on the Z5 mass in the EﬁZg SSM
has increased to around 1350 GeV as discussed in subsection 3.2.2. This leads to a
concrete prediction of Neg = 3.194 assuming that inert singlinos decouple at a

temperature below the charm quark mass, i.e. mz, < 4700 GeV.

7.4 Benchmark Points

In the tables 7.2, 7.3, and 7.4 we present three benchmark points in the CEGZESSM.
For all three points we fix Agoo = 0.1 and Aza; = Ag12 = 0.0001 at the EWSB scale.
For the Z3!-breaking couplings we also fix A33a = A323 = 0.012 and

A331 = A313 = 0.005 at the EWSB scale. At the GUT scale we fix

K333 = K322 = k311 and kgi; = 0 for i # j. The lightest (SM-like) Higgs mass is

calculated to second loop order.

We have chosen three points with quite different values of tan(8) — 30, 10, and
3. This illustrates the fact that tan(5) can be quite low in this model since the
SM-like Higgs mass is not constrained to be less than mz| cos(2/3)| at tree level as it

is in the MSSM.

The mass of the bino DMP Nj is not directly constrained to be above above
100 GeV. However, the lightest pseudo-Dirac inert Higgsino neutralinos No and N3
are almost degenerate with the lightest inert Higgsino chargino C; and therefore
these are constrained to heavier than 100 GeV in order to be consistent with LEP

constraints [93]. Furthermore, the thermal relic DM scenario outlined in section 7.2
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Benchmark 1 2 3
p [GeV] | -1086.7 -1189.5 -1405.5
A3205/v/2 [GeV] | 353.55 331.13 388.91
A3115/v/2 [GeV] 103.59 125.38 155.17
Ni mass [GeV] 94.07 114.49 143.50
Ny mass [GeV] | -105.12 -126.45 -156.57
N3 mass [GeV] 105.14 126.47 156.62
N, mass [GeV] 167.05 203.19 255.47
Ns mass [GeV] | -353.77 -311.29 -389.12
Ng mass [GeV] | 353.78 311.30 389.13
Ny mass [GeV] | -1092.5 -1194.5 1409.6
Ng mass [GeV] | 1093.3 1194.8 -1411.2
Ny mass [GeV] | -1803.2 -1572.3 -1964.7
Nyo mass [GeV] | 1899.7 1688.7 2109.9
Cy mass [GeV] |  105.04 126.41 156.52
Cy mass [GeV] 167.05 203.19 255.46
C3 mass [GeV] | 353.78 311.30 389.13
Cy mass [GeV] | -1094.4 -1196.1 -1411.3
mz [GeV] | 1850.4 1628.4 2035.4
Neg 3.194 3.194 3.194
Q, h? 0.112 0.107 0.102
T| 1.1x10%8  23x10%  23x108
ost [em?] | 4.9 x 10748 25 x 1074 1.2 x 10748

Table 7.3: The low energy neutralino and chargino masses and
associated parameters of the three benchmark points. The DMP is
the lightest neutralino N; which is predominantly bino in nature.
There is a nearby pair of inert neutral Higgsinos N, and N3 and
a chargino C’l into which Nl inelastically scatters during freeze-
out, resulting in a relic density consistent with observation. The
predicted values of myz, and N.g are also shown, as is the spin-
independent Nl—nucleon direct detection cross-section ogy.
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Benchmark 1 2 3
hi mass [GeV] | 122.2 114.6 115.3
hy mass [GeV] | 1145 987.1 1522
hs mass [GeV] | 1890 1664 2080
H* mass [GeV] | 2106 1396 1675
A% mass [GeV] | 2103 1393 1673
mg,, ms, [GeV] | 1547 518 1084
ML, mm, [GeV] | 1567 611 1156
M., mm,, [GeV] | 1561 599 1146
mp, [GeV] | 1483 503 1794
mD2,mD1 [GeV] | 1443 493 1775
[GeV] 2864 2321 3065
[GeV] 2840 2318 3052
mt1 [GeV] | 1122 625.3 1110
mg, ,mg, [GeV] | 1817 1774 1707
m;, [GeV] | 1470 1069 1546
mCQ,mu2 [GeV] | 1838 1224 1761
5, [GeV] | 1434 1009 1512
ms,,mj [GeV] | 1840 1226 1763
mbz [GeV] | 1748 1265 1818
mas,,mg, [GeV] | 1907 1278 1820
mz [GeV] | 1500 718.8 1259
ma,,me, [GeV] | 1655 731.3 1261
ms, [GeV] | 1708 949.2 1473
Mgy, me, [GeV] | 1775 952.8 1474
mp, [GeV] | 1705 945.6 1472
mg,,mp, [GeV] | 1774  949.5 1472
mg [GeV] | 541.3 626.9 787.7

Table 7.4: The remaining particle spectrum of the three bench-
mark points.
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requires ]\72 and Ng not to be too much more massive than Nl. In practice the Nl
is predominantly bino and its mass cannot be much less than 100 GeV. In

benchmark 1, for example, it is 94 GeV.

Requiring such values for the low energy bino mass M; and requiring consistent
EWSB in practice means that the SM-singlet VEV s cannot be too low. This in
turn means that the Zs mass is always more than about 1.5 TeV, automatically
satisfying the most recent experimental lower limit. In these benchmarks from the
constrained scenario the effective number of neutrinos contributing to the expansion
rate of the universe prior to BBN Ngg therefore takes on the lower value calculated
in section 7.3 of around 3.2. This is more consistent with data than the SM

prediction.

In all benchmark points N4 and C’Q are predominantly wino. N5, Ng, and C’3 are
predominantly made up of the remaining inert Higgsinos states, with masses around
A3225/v/2, whereas N7, Ng and Cy are predominantly made up of the active
Higgsino states, with masses around pu. Ny and Nyg are mostly superpositions of

the active singlino and bino’.

The fact that T > 1 indicates that the inert Higgsino components in the
predominantly bino state Np, though small, are large enough such that processes
involving N} up-scattering off of a SM particle into No happen overwhelmingly
more often than neutralino annihilation and coannihilation processes. In this way
the ratios of the number densities of these particles are able to maintain their

equilibrium values.

The spin-independent DMP-nucleon cross-section ogy, as estimated using the
results in ref. [131], is quite small for these benchmarks and is not currently
detectable by direct detection experiments. This is due to the predominantly bino

nature of the DMP as well as the large squark masses.
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7.5 Warm Inert Singlino Dark Matter in the EgSSM

A model of dark matter is inconsistent if it predicts a DMP mass that is so light
that the observed structure of the universe would have been erased. Such light dark
matter is known as hot dark matter. Although such hot dark matter is inconsistent
with observation, the dark matter also does not need to be cold, i.e. of a mass such
that it was non-relativistic at freeze-out, to be consistent with current

observations [137, 138]. The intermediate scenario is known as warm dark matter.
Limits on WDM from WMAP and Lyman-« forest data require the mass of a warm
thermal relic particle responsible for all of the observed dark matter to be greater
than 550 eV [137]. This is of the order of various other keV scale lower bounds on

WDM particles [138].

In the EgSSM, if the Zg symmetry was only approximate then the only stable
supersymmetric particle or particles would be either the lightest of or both of the
two light, predominantly inert singlino states. In this case the inert singlinos could
form WDM. It is already known that if all of the observed dark matter is made up
of gravitino WDM decoupling above GeV temperatures with ¢ ~ 100 then the
gravitino mass would have to be around 100 eV, contradicting the above limit [137].
For inert singlinos decoupling at a temperature T between the strange and charm
quark masses the singlinos would have undergone even less entropy dilution than
such gravitinos and their masses would need to be even smaller in order for the

observed dark matter relic density to be predicted.

The number density of a single species of {boson, fermion} with temperature 7

is proportional to s; oc T}

= gy @, (7.35)

n
2
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The number density of all three neutrino species today

3¢(3)4 o3 _ 9 o
3n) = 3°22 (193 = =
M 2w )T
20
= 5y +3s, 757 (7.36)
Conserving entropy between inert singlino freeze-out and today then gives
ndV9 = pive (7.37)
for inert singlinos and
0 0 0 20 07,0 s s s
(n + 3ny)V = SV = (n - 2n5)V (7.38)
for everything else which means that today
0 s
ng 20 nZ
= ——I 7.39
ng 11ns —2ns (7.39)

if the inert singlinos were relativistic at freeze-out.

For the case of two stable inert singlinos with masses m; and ms the relic

density today will be given by
h?  nSh? ndmy + ndm,

Osh? = (nom +n0m>——
G 1M 21 e e ng

(7.40)

If Q5 = Qpum and ”(1) = ng = ng as derived above then this can be rearranged to give

gl
Using pe = 1.05 x 10*h? eVem ™3, nf = 410.5 cm ™3 [10], and
n®=2n3 gy +9,+3Uge+ 9+ 9yt 9.+ 95+39,) 111 (7.42)
ng N 3/2 -3 .

138



gives

mi+mg = bH7eV (7.43)

in contradiction with data.

Therefore thermal WDM inert singlinos, like thermal WDM gravitinos, cannot
be responsible all of the observed dark matter. WDM inert singlinos with larger
masses could only be responsible for all of the observed dark matter is there were a
significant source of entropy dilution reheating the SM matter, but not reheating
the inert singlinos, after the time of inert singlino freeze-out. Such entropy dilution
would lower the number density of inert singlinos today relative to the known CMB
photon number density. Thermal WDM decoupling at ¢°f ~ 1000 could also lead to
a successful WDM scenario, but such a situation is well beyond the framework of
the EgSSM, requiring, for inert singlino WDM, a much more massive U(1)y Z’
boson and, more importantly, the existence of many new degrees of freedom,

beyond those of the EgSSM, at some high temperature.

However, the EgSSM with an approximate Zg symmetry does allow for another
type of scenario, apart from having lightest inert neutralinos with masses of order
half of the Z boson mass, in which the supersymmetric particles of the EgSSM are
responsible for less than the observed dark matter relic density. Such scenarios are
consistent with, even if they do not explain, cosmological observations. If the Zg
symmetry was only approximate and WDM inert singlinos had masses significantly
less than 57 eV then these inert singlinos would be the only stable supersymmetric

particles and would contribute less than the observed amount of dark matter.

7.6 Summary and Conclusions

The difficulty in making the predominantly inert singlinos states predicted by the
E¢SSM much heavier than 60 GeV makes them natural dark matter candidates,
but has also led to a very tightly constrained scenario in which inert neutralino LSP

dark matter is now severely challenged by the most recent XENON100 analysis of
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100.9 days of data. Furthermore we have not been able to show that such a scenario
could be consistent with having universal (GUT scale constrained) soft mass

parameters.

In this work we discussed a new variant of the EgSSM called the Eng SSM that
involves a novel scenario for dark matter in which the DMP is predominantly the
bino with a mass close to or above 100 GeV which is fully consistent with
XENON100 data. A successful relic density is achieved via its inelastic up-scattering
into nearby heavier inert Higgsinos during the time of thermal freeze-out. The
model also predicts two massless inert singlinos which contribute to the effective
number of neutrino species at the time of BBN, depending on the mass of the Zs

boson which keeps them in equilibrium. For mz, > 1300 GeV we find Neg ~ 3.2.

We presented a few benchmark points in the CEGZ§q SSM to illustrate this new
scenario. The benchmark points show that it is easy to find consistent points that
satisfy the correct relic abundance as well as all other phenomenological constraints.
The points also show that the typical Zs mass is expected to be around 2 TeV, with
the gluino having a mass around 500-800 GeV and squarks and sleptons typically
having masses around 1-2 TeV. The DMP-nucleon spin-independent direct

detection cross-sections are well below current sensitivities.

Although very light inert singlinos in the FSSM provide a candidate for WDM,
in order to account for all of the observed dark matter thermal WDM inert
singlinos would need to be too light — lighter than would be consistent with other
cosmological observations. Inert singlino WDM contributing less than the observed
dark matter relic density would, however, provide another scenario in which the
EsSSM predicts less than the observed amount of dark matter and is consistent

with all observations.
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Chapter 8

Summary and Conclusions

In chapter 5 the first study of the inert neutralino sector of the EgSSM is presented.
It was found that in the EgSSM the dark matter naturally arises from this
approximately decoupled sector. The inert neutralino dark matter scenario was
studied both analytically and numerically. It was found that in order for the inert
neutralino LSP not to be too light and singlino dominated, leading to too large a
dark matter relic density, certain trilinear Higgs Yukawa couplings relevant to the
inert sector should be large and the ratio of Higgs VEVs tan(/3) should be relatively
close to unity. If the LSP mass is allowed to increase to around half of the Z boson
mass then the LSP also contains larger inert Higgsino components and can
annihilate more efficiently in the early universe, leading to a reduced dark matter
relic density. Imposing that the LSP has a mass greater that half of the Z boson
mass, to avoid potential conflict with LEP data, and accounts for all of the
observed dark matter implies that tan(3) should be less than about 2, depending on
the sizes of various Yukawa couplings that one is willing to allow. The inert
neutralino dark matter scenario relies mostly on parameters that only affect the
inert sector physics. As a result the parameter space of the MSSM-like sector of the
EgSSM is less constrained compared that of the MSSM since in the EgSSM these
parameters are not constrained from dark matter considerations. The exception is
tan(/) which strongly affects the LSP mass, with the LSP mass being

approximately proportional to sin(24).
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In chapter 6 a more in-depth study of the inert neutralino and chargino sectors
of the EgSSM, with a particular focus on physics relating to the Higgs boson, is
presented. The condition that Yukawa couplings remain perturbative up to the
GUT scale is imposed and the LSP and NLSP masses cannot then be made greater
than about 60 GeV. Scenarios where the LSP and NLSP masses are around half of
the Z boson mass are found that produce less than or equal to the observed amount
of dark matter. It is found that inert neutralino masses below half of the Z boson
mass can be consistent with LEP data provided that tan(5) is not too large. In
plausible scenarios consistent with observations from both cosmology and LEP it is
found that the couplings of the lightest inert neutralinos to the SM-like Higgs boson
are always rather large. This means that the SM-like Higgs boson has a large
branching ratio into invisible final states and this has major implications for Higgs
boson collider phenomenology. The branching ratio into SM particles is reduced to
around 2-4%. It also leads to large spin-independent LSP-nucleon cross-sections
and because of this scenarios in which FgSSM inert neutralino LSPs account for all
of the observed dark matter are now severely challenged by recent dark matter

direct detection experiment analyses.

In chapter 7 a new variant of the FgSSM called the E6Z§ SSM is presented in
which the dark matter scenario is very different to the inert neutralino CDM
scenario and in which the presence of supersymmetric massless states in the early
universe modifies the expansion rate of the universe prior to BBN. In the dark
matter scenario the DMP is the bino and a successful relic density is achieved via
its inelastic up-scattering into nearby heavier inert Higgsinos during the time of
thermal freeze-out. The nearby pair of inert Higgsino neutralinos form a
pseudo-Dirac pair with masses approximately equal the corresponding inert charged
Higgsino Dirac mass and cannot have masses below about 100 GeV. In the
EﬁZg SSM the two inert singlino states are exactly massless and contribute to the
effective number of neutrino species at the time of BBN, depending on the mass of
the Z boson which keeps them in equilibrium. For mgz, > 1300 GeV we find
Neg =~ 3.2. The dark matter scenario is consistent with having universal (GUT

scale constrained) soft mass parameters and the DMP-nucleon spin-independent
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direct detection cross-sections are well below current sensitivities.

In the EgSSM light inert singlinos contribute too much CDM if they are
non-relativistic at freeze-out — more than the observed dark matter relic density.
However, in section 7.5 we showed if the inert singlinos have masses less than
around 50 eV then they will contribute WDM less than the observed dark matter

relic density.

In the future it would be interesting to study more theoretical aspects of the
EgSSM and E6Z§ SSM such as how much fine-tuning these models involve and what
the effects are of potential non-renormalisable terms in the superpotential. At the
same time, now that the LHC is taking data it is important to study the collider
phenomenological predictions of these models. Gluino cascade decays in which the
gluino sequentially decays into the DMP, giving off pairs of fermions at each stage,
is the subject of a further paper currently in preparation [139]. In this paper we try

to identify how the EgSSM could be distinguished from the MSSM at the LHC.
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Appendix A

Weyl, Majorana, and Dirac

Spinors in 3 + 1 Dimensions

We represent the Dirac gamma matrices in the Weyl basis

0 o*
o= ,
a* 0
where ¢° = % = 1 and 6" = —o® and write a general Dirac spinor
(47
v = ,
VR

with ¢¥; a LH Weyl spinor and ¢ a RH Weyl spinor. We write a general

infinitesimal Lorentz transformation on a Dirac spinor ¥ as

1+ 1/2idd.o + 1/2d.
Ay /5(dd,dB) vE — ( +1/2idd.0 + /2ﬁg>1/1L
YR (1 + 1/2idd.o — 1/2dﬁ-g) YR

Using the mathematical identity

145

(A1)

(A.2)

(A.4)



we can see that 021,&2 transforms as RH spinor and 027,11} transforms as a LH spinor

Mipp(dd, dB)o*0; = o2 ((1+12idd.o +1/2dB.0 ) i)

(1 + 12iddo — 1/2@@@) o2 and

Ay (A0, dB)o%yy, = o ( (1 + 12idd.o — 1/2@@@) ¢R) ’

(1 4 12idd).o + 1/2dﬁ.g> P (A.5)

We therefore define the charge conjugation operation acting on a Dirac spinor ¥ to

be
2, /%
Wpo“Y
e = TR (A.6)
wLUsz
Since —o20%* = 1, applying the charge conjugation operation twice yields ¥ = W
as long as we define wpwy = w;wp = —1. We define wg = —wy, = —w implying that

|w|? = 1. We define the C'P conjugation operation acting on a LH Weyl spinor so

that the RH spinor
Vi = woyi, (A.7)
and on a RH Weyl spinor so that the LH spinor

U = —woi. (A.8)

The gauge and Lorentz invariant part of the Lagrangian for a massive Dirac

spinor with mass m

£y, = (i Du—m)w, (A.9)

= Yo" Dby + Uhio Dty — mik, —myl.  (A10)
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This may be rewritten in terms of the two LH Weyl spinors ¢; and ¢% as
Ly = whio" Dy, + vilio Dy — (mulv, + e (A.11)

up to a total derivative, revealing that a Dirac spinor with mass m is formed from

two Weyl spinors of the same handedness with a mass matrix

(A.12)

The covariant derivative acting on 9% in (A.11) is the complex conjugate of
covariant derivative acting on v so that if 5, is in some representation r of some

gauge group such that

Dubr = (9 —igApTe v (A.13)
then
D = (0, +igAuTe)us,
= (0 — g AT )05, (A.14)

and 1% is in the conjugate representation 7.

The Lagrangian for a single LH Weyl spinor ¢ with mass m
_ T =1 Mmoot
Ly = vlighD — 5(11} " +c.c.) (A.15)

may be written in terms of a Majorana spinor

Uy = (A.16)
wo?e

147



as
Ly = 1/21113470(i7“DH—m>‘11M. (A.17)

The Majorana spinor is nothing but a Dirac spinor that is self-charge-conjugate.

The Weyl or Majorana mass matrix for a Dirac particle (A.12) is diagonalised to
(A.18)

in the Weyl or Majorana mass eigenstate basis. Conversely, if two mass eigenstate
Majorana spinors have equal and opposite masses and all other quantum numbers
equal then together they form a Dirac spinor. If the masses of two such Majorana
spinors are opposite, but not quite equal then together they are said to form a

pseudo-Dirac state.
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Appendix B

The Pseudoreality of the Spinor
Representation of SU(2)

Let the field ¢ form the representation (2,r) under the gauge group SU(2) ® G so

that an infinitesimal gauge transformation acting on ¢ can be written
=(de, dB)p = (1 —idalr — idﬁbe><p, (B.1)

where 7% = 0%/2 are the generators of 2 and T are the generators of r. We also

define a field ¢ that is in the representation (2,7) so that

=(da,dB)p = (1+¢da%a*+id5be*)¢. (B.2)

The field ¢ may be redefined as the equivalent field 2w7r2p. Using (A.4) again,

2 2

this time in the form 7°7% = —7%r“, we see that this field transforms with

Z(da, dB)2wr?p = 2wr? (1 + ida*T* + idﬁbTTb*>¢
- (1 —idaf7® 4 idﬁbe*)mT?@, (B.3)
meaning that that it is in the representation (2,7). We have somehow managed to

redefine the field so that it transforms in the 2 rather than 2 representation of

SU(2). Therefore, even though the spinor representation is not real, the 2 and 2
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representations are somehow equivalent. This representation is sometimes called

pseudoreal.

Antidoublet representations of SU(2) can always be redefined to be doublet
representations. If two fields are in the doublet representation of SU(2), a gauge
invariant bilinear may be formed by transforming one of the two fields such that it
is in the antidoublet representation. We thus define the gauge invariant product of

two doublet representations of SU(2)

T1 T2 o T2
: = < ™ >’“7
4 d2

= hite —Til2. (B.4)
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