The University of Southampton
University of Southampton Institutional Repository

Inverse analysis adjustment of the SOC air-sea flux climatology using ocean heat transport constraints

Inverse analysis adjustment of the SOC air-sea flux climatology using ocean heat transport constraints
Inverse analysis adjustment of the SOC air-sea flux climatology using ocean heat transport constraints
Results are presented from a linear inverse analysis of the Southampton Oceanography Centre (SOC) air-sea flux climatology using 10 hydrographic ocean heat transport constraints distributed throughout the Atlantic and North Pacific Oceans. A solution is found that results in an adjusted set of fluxes that is consistent with all of the available constraints within their estimated error bounds. The global mean net ocean heat loss to the atmosphere with these adjustments is -5 W m-2, compared with a gain of 30 W m-2 for the original climatology. The primary changes to the net heat flux arise from an increase of 15% to the latent heat and reduction of 9% to the shortwave flux. The analysis has been extended to include the additional constraint that the global mean net heat flux lies in the range 0 ± 2 W m-2. In the latter case, the solution is modified such that the adjustment of the latent heat increases to 19%, the reduction of the shortwave decreases to 6{percnt}, and the global mean net heat flux is -2 W m-2. The adjusted SOC fluxes with both solutions agree to within 7 W m-2 with independent large-scale area average heat flux estimates obtained from a hydrographic section at 32?S that was withheld from the analysis. Good agreement is also found with recent estimates of the global ocean heat transport obtained using residual techniques and from atmospheric model reanalyses. However, additional comparisons of the adjusted fluxes with measurements made by various Woods Hole Oceanographic Institute research buoys indicate that further improvements to the inverse analysis are still required. Modifications to the analysis scheme are suggested that may lead to further improvements to the adjusted fluxes, in particular, the explicit use of the buoy measurements as constraints.
0894-8755
3274-3295
Grist, Jeremy P.
ffea99af-f811-436f-9bac-5b02ba6dc00f
Josey, Simon A.
2252ab7f-5cd2-49fd-a951-aece44553d93
Grist, Jeremy P.
ffea99af-f811-436f-9bac-5b02ba6dc00f
Josey, Simon A.
2252ab7f-5cd2-49fd-a951-aece44553d93

Grist, Jeremy P. and Josey, Simon A. (2003) Inverse analysis adjustment of the SOC air-sea flux climatology using ocean heat transport constraints. Journal of Climate, 16 (20), 3274-3295. (doi:10.1175/1520-0442(2003)016<3274:IAAOTS>2.0.CO;2).

Record type: Article

Abstract

Results are presented from a linear inverse analysis of the Southampton Oceanography Centre (SOC) air-sea flux climatology using 10 hydrographic ocean heat transport constraints distributed throughout the Atlantic and North Pacific Oceans. A solution is found that results in an adjusted set of fluxes that is consistent with all of the available constraints within their estimated error bounds. The global mean net ocean heat loss to the atmosphere with these adjustments is -5 W m-2, compared with a gain of 30 W m-2 for the original climatology. The primary changes to the net heat flux arise from an increase of 15% to the latent heat and reduction of 9% to the shortwave flux. The analysis has been extended to include the additional constraint that the global mean net heat flux lies in the range 0 ± 2 W m-2. In the latter case, the solution is modified such that the adjustment of the latent heat increases to 19%, the reduction of the shortwave decreases to 6{percnt}, and the global mean net heat flux is -2 W m-2. The adjusted SOC fluxes with both solutions agree to within 7 W m-2 with independent large-scale area average heat flux estimates obtained from a hydrographic section at 32?S that was withheld from the analysis. Good agreement is also found with recent estimates of the global ocean heat transport obtained using residual techniques and from atmospheric model reanalyses. However, additional comparisons of the adjusted fluxes with measurements made by various Woods Hole Oceanographic Institute research buoys indicate that further improvements to the inverse analysis are still required. Modifications to the analysis scheme are suggested that may lead to further improvements to the adjusted fluxes, in particular, the explicit use of the buoy measurements as constraints.

This record has no associated files available for download.

More information

Published date: October 2003

Identifiers

Local EPrints ID: 2067
URI: http://eprints.soton.ac.uk/id/eprint/2067
ISSN: 0894-8755
PURE UUID: cabb73c8-d881-454b-ba03-d20bb5d9ad02

Catalogue record

Date deposited: 11 May 2004
Last modified: 15 Mar 2024 04:44

Export record

Altmetrics

Contributors

Author: Jeremy P. Grist
Author: Simon A. Josey

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×