Potential action of copper surfaces on meticillin-resistant Staphylococcus aureus


Weaver, L., Noyce, J.O., Michels, H.T and Keevil, C.W. (2010) Potential action of copper surfaces on meticillin-resistant Staphylococcus aureus. Journal of Applied Microbiology, 109, (6), 2200-2205. (doi:10.1111/j.1365-2672.2010.04852.x). (PMID:21040269).

Download

Full text not available from this repository.

Description/Abstract

Aims: atudies to date have shown rapid killing of bacterial cells when exposed to copper surfaces. The mechanistic action of copper on bacterial cells is so far unknown.

Methods and results: to investigate potential mechanisms involved, meticillin-resistant Staphylococcus aureus (MRSA) cells (107 CFU) were inoculated onto coupons of copper or stainless steel and stained with either the viability fluorophore 5-cyano-2,3-ditolyl tetrazolium (CTC), to detect respiration, or BacLight™ (SYTO9/propidium iodide), to determine cell wall integrity. Coupons were then observed in-situ using epifluorescence microscopy. In addition, DNA from cells inoculated onto either copper or stainless steel surfaces was isolated and analysed by agarose gel electrophoresis. An effect on cellular respiration with CTC reduction was evident but no effect on cell membrane integrity (BacLight™) was observed. Results from the DNA isolation indicated a copper-induced detrimental effect on MRSA genomic material as no bands were observed after exposure to copper surface.

Conclusions: the results indicate that exposure to copper surfaces rapidly kills MRSA by compromising cellular respiration and damaging DNA, with little effect on cell membrane integrity.

Significance and impact of the study: this research provides a mechanistic explanation in support of previous suggestions that although copper surfaces do not affect membrane integrity of cells, there is still a rapid antimicrobial effect

Item Type: Article
ISSNs: 1364-5072 (print)
1365-2672 (electronic)
Subjects: Q Science > QR Microbiology
Divisions: Faculty of Natural and Environmental Sciences > Biological Sciences
ePrint ID: 209299
Date Deposited: 27 Jan 2012 14:31
Last Modified: 27 Mar 2014 19:50
URI: http://eprints.soton.ac.uk/id/eprint/209299

Actions (login required)

View Item View Item