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Abstract

There are currently available many approaches aimed at tracking objects moving
in sequences of images. These approaches can suffer in occlusion and noise, and often
require initialisation. These factors can be handled by techniques that extract objects
from image sequences, especially when phrased in terms of evidence gathering. As
yet, the newer approaches to arbitrary shape extraction avoid discretisation affects but
do not include motion. The moving-object evidence gathering approach has yet to
include arbitrary shapes and can require high order description for complex motions.

Since the template approach is proven for arbitrary shapes, we re-deploy it for
moving arbitrary shapes, but in a way aimed to avoid discretisation problems. As the
template approach has already been seen to reduce computational demand in the
extraction of arbitrary shapes, we further deploy it to describe the motion of moving
arbitrary shapes. As with the shape templates, we use Fourier descriptors for the
motion templates, yielding an integrated framework for the representation of shape
and motion. This prior specification of motion avoids the need to use an expensive
parametric model to capture data that is already known. Furthermore, as the
complexity of motion increases, a parametric model would require increasingly more
parameters, leading to a rapid and catastrophic increase in computational
requirements, whilst the cost and complexity of the motion template model is
unchanged. The new approach combining moving arbitrary shape description with
motion templates permits us to achieve the objective of low dimensionality extraction
of arbitrarily moving arbitrary shapes with performance advantage as reflected by the

results this new technique can achieve.
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Nomenclature

Symbol Meaning

cx(s) and cy(s) A shape-template curve to be described by FDs

A, b Fourier Descriptors of x component of cy(s)

FD. Vector of FD harmonics (x part)

v, (S,ﬁx) x component of curve reconstructed from FD.

a; Vector of shape scale and rotation

R.(s,a;) Scaled and rotated reconstructed curve

Ter A temporal co-ordinate in a sequence (e.g. frame number)
I(p, ref) Image sequence, P is a co-ordinate in the spatial image

I} (S,Tre N RN ) Accumulator vote pattern, with various parameters

including velocity v, and v,,

A, Accumulator vote pattern, offset from an image co-
ref
ordinate
M (c—, d ) Matching function — defines how votes are placed in an

accumulator ¢, according to a point in the vote-pattern set

d
MT(T,.) and MT(T,;) A motion template curve to be described

MTFD. Vector of FD harmonics (x part) describing a motion
template
m, (T, ,MTFD:) x component of reconstructed motion template
X ref ? -
(5.7, Tp0,) Reconstructed shape template with motion template-

derived time-dependent rotation and scaling factors

an Vector of motion template rotation and scale — transforms
the motion template globally

u,(s,T,.T,.a,,a,) Reconstructed shape template, motion compensated for
time Ter

0(s, ;. T,5,0r,2,,3,) Motion template vote pattern



1 General introduction and motivation

In recent years, the primary application of basic computer vision research in
Southampton has been gait recognition. The problem has provided a spur to develop
new technique in fields ranging from statistical description to feature extraction. This
thesis concerns developments of the latter approach - that is, in generalised feature
extraction. Although the work here is generic (in terms of moving shape analysis), we
use gait recognition as the exemplar and stimulus.

In order to be able to recognise people, knowing their approximate location is a
prerequisite. When considering a video sequence, as required for motion-based
recognition, it also becomes necessary to locate them in each frame. Current
approaches to this problem tend to rely on tracking techniques - an object is located in
one frame and followed or tracked in successive ones. Whilst these methods generally
permit real-time implementation, they depend on good definition of the target in the
current or recent frames and an appropriate initialisation. In noisy or occluded
imagery, as is common with complex scenes, a substantial number of frames may be
corrupted or unusable leading the tracking method to lose the target and perform non-
optimally. Naturally, poor initialisation also easily leads to apparent failure.

So, tracking techniques have a number of negative characteristics in addition to
their positive ones - particularly that they do not consider a video sequence as a
whole, but as a linear series of images. There are obvious benefits that arise from a
more holistic approach; especially that correlation across a sequence can be examined.
In most cases changes happen slowly, a fact exploited in motion encoding (e.g. the
MPEG suite [64]). Slow changes imply strong correlation between nearby frames or
even over many frames.

Few algorithms in computer vision use temporal correlation across a sequence to
improve feature extraction. One of these is based around the Hough Transform (HT),
giving it the strong theoretical grounding and robustness enjoyed by evidence-
gathering methods. The Velocity Hough Transform (VHT) allows sequence-based
extraction of conic sections that are moving in a parametrically described manner (for
example, linear or sinusoidal motion).

Although the VHT was used previously to locate the leg of a walker, the shape
model (a line) and motion model (sinusoidally bobbing linear motion) used were only

adequate for the limited experiments possible at the time. The nature of the VHT



provided two barriers to accurate modelling - the inherently restricted generality of its
shape and motion models.

The first barrier to using the VHT for person location is that body shape is not
well represented by conic sections. Limitations of the shape description in the VHT
preclude the more complex and even arbitrary shapes that are required to give a
reasonable reproduction of a human shape, without excessive computational
resources. Hence, the first part of our work was to extend the VHT to allow arbitrary
shape extraction, to give a continuous-template variant of the VHT (CVHT). We use
Fourier-Descriptor templates to achieve efficient arbitrary shape representation.

The second barrier is that people do not move in a simple parametric way but
rather in a complex and situation dependent way. The motion description in both the
VHT and CVHT suffers from the same drawbacks as the original shape description in
the VHT - a lack of sufficient generality at a supportable level of computational
resource usage. In the second part of our work, we alleviate this restriction also.
Again, we use Fourier-Descriptor templates and thus gain a consistent framework
across both shape and motion description.

In this thesis, we present two novel developments of the evidence-gathering
paradigm that, together, allow for efficient and robust extraction of arbitrarily moving
arbitrary shapes. The following chapter details related work and also the foundations
of the new developments. It ends with a more detailed discussion of the contributions
to the field. We continue by describing our approach to arbitrary shape extraction
with parametric motion (Chapter 3) and with arbitrary motion (Chapter 4). In each
section and for each new technique, we discuss the issues, present theory and
examine results of some comparative evaluation and performance analysis. Finally,
we give conclusions and suggest directions for future research, presenting some

initial work on these directions.



1.1 Publications related to this work:

There are currently four publications associated with this thesis. These are:

[20] A poster at the IEE colloquium in London (1999) that described early
work on the CVHT

[21] An oral presentation at BMVC99 that gave a full analysis of the CVHT
and mentioned early work on motion templates

[22] A poster at BMVC2000 that presented the developed motion template
work

[23] A paper in Pattern Recognition that contains a complete, but excerpted,
version of this thesis, covering the development of both CVHT and motion

templates. Appendix 10 contains the final version of this paper.



2 Related work and foundations

This chapter begins by setting the historical context of the basic technique
underlying this novel work - the Hough Transform. We continue by detailing the
immediate foundations of the new developments and, where appropriate, indicating
related and relevant work. The material in this chapter concentrates on the major
developments that have direct relevance to this work — for more general reviews of
the extensive literature relating to the HT, see the surveys by Leavers [38] or
Illingworth [30] or books with major sections on the subject [15, 46].

The Hough transform [26] was originally formulated to detect lines in an image —
its first application was to automatically detect tracks from pictures of bubble
chambers. The implementation used the slope-intercept parameterisation of a line,
which has an unbounded parameter space since the parameters can have an infinite
range. The algorithm was later introduced to the computer vision research community
[53]. Its principal advantage is that it produces optimal results since it is an efficient
form of template matching [57], which is optimal in Gaussian noise.

The slope-intercept formulation’s unbounded parameter space made the HT for
lines impractical for general scenarios until the transform was extended [17] to use the
normal parameterisation. This adjustment puts bounds on the maximum size of the
parameter space and makes line detection using the HT technique viable. The two
parameters are constrained: the angle component’s range is limited to 7 radians and
the distance component is restricted to the length of the image diagonal in pixels.

In the same paper, Duda and Hart also described how the HT algorithm could be
modified to detect any analytically defined shape, showing the example of a circle in
detail. Following this, the HT was extended to conic sections (circles [33] and ellipses
[58]). These extensions were possible and fairly simple because the essence of the HT
algorithm is to match feature points (e.g. edge pixels, vertices or depth values) to
parameters of a constraining equation - not just to match pixels to a line’s parameters.
So, the constraining equation can be changed from a description of a line to that of a
circle or a more complex shape. A formalisation of the HT [52], which brings out
these properties, is adumbrated in Appendix &.1.

Early adaptations of the standard HT increased the complexity of the constraining

shape equation and thus the dimensionality of the HT — lines require a 2D parameter
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space, circles a 3D space, ellipses a 5D space, etc. Extrapolation suggests that for a
parametrically defined arbitrary shape (effectively a high- or infinite-order
polynomial) the standard approach would require a nearly infinite dimensional
parameter space. In contrast with such an approach [37], which required an exorbitant
accumulator space, an arbitrary shape HT actually only needs to accumulate for the
(relatively few) appearance parameters, provided that the shape to be located is
already specified [4]. Instead of searching for the best fit to the parameters of an
arbitrary polynomial, the only parameters that need examination are those that tug and
stretch a template shape until it matches the target — such as position, rotation and
scale. We will later see how templates can be used efficaciously not only in shape

extraction, but also in motion extraction and description.

2.1 Generalised Hough Transform

Merlin and Farber [39] first considered general-shape detection using the HT but
their method provided no means for detecting rotated or scaled shapes. Ballard
developed the full mapping [8] for arbitrary shapes with rotation and scale invariance
— the Generalised Hough Transform (GHT). The GHT replaces the analytic
parametric constraints in the HT with a non-analytic tabular representation of an
arbitrary shape. This table (the "R-table") describes the position of feature points in
the template, or target, shape relative to a reference point and is indexed by the
gradient direction information at each feature point. Compared with Merlin and
Farber’s method, this table also increases the efficiency of the algorithm by reducing
the number of feature points under consideration to those that fit the additional
gradient direction constraint. Merlin and Farber trace entire instances of the template
shape in the accumulator, whereas the GHT only adds particular points from the
template contour to the accumulator. In the GHT, the lower number of votes cast
reduces the amount of noise in the accumulator generated by false votes (provided
that the gradient data is of good quality [7]) and can also improve the computational

speed.



2.2 Fourier-descriptor template representation

Discretisation or quantisation errors are one of the areas of the HT that has been
frequently researched, producing analyses of the source of the error, its consequences
and algorithms to minimise or remove it [34, 47, 59]. However, the GHT in particular
introduces an additional source of error — the non-analytic shape representation. The
problems with the GHT's R-table representation have been described in the literature,
most recently and in greatest detail in [5] although Grimson’s work is better known
[24]. They essentially derive from the fact that it is a discrete representation sampled
at a particular resolution. When the template is scaled or rotated, there can be
problems with aliasing and rounding errors. Figure 1 shows the effects of scaling and
rotating the discrete set of points comprising the original shape (Figure 1la, shown as
scaled by 1.0, with no rotation). Figure Ib-d shows the set of points at different
orientations, whilst Figure le-h and Figure 1i-1 repeat the rotations at two larger
scales, double and quadruple respectively. Clearly, there is missing data in the new
sets of points - the points in the original have become separated due to inadequate
sampling at the new scale. Furthermore, the effects of discretisation are particularly
evident in the rotated instances where points have moved from their true position due
to rounding errors. If the shape had been shrunk, the points in the original would
merge, effectively oversampling the shape. Given higher (or multiple) resolutions this
error can be minimised, but it will always be present. Also, additional/alternative
resolutions are frequently unavailable.

Distortions are inevitable when working with discrete systems. Nevertheless, the
worst effects can be mitigated by maintaining a continuous representation for as much
of the process as possible. Using an analytically defined curve as the template
representation makes it possible to defer discretisation until after rotation and scaling.
Elliptic Fourier Descriptors (FDs) [35] have been deployed in an adaptation of the
GHT [4] to give such a continuous representation. Instead of recovering vote co-
ordinates from an R-table, they are instead calculated from the FDs. This avoids the
extra quantisation step inserted by the GHT (discretisation occurs in template
transformations and again in the accumulation phase), thereby restoring the
robustness of the original, analytic, HT formulation. In support of this, Aguado [5]

found that extraction using FDs was possible with greater than 90% noise/signal (the
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ratio of the number of image points to the number of points that define the shape)

whilst the GHT generated prominent false peaks for values close to 70%.
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Figure 1: Discrete shape representation (GHT) at varying scales and orientations

The FDs are primarily used to provide a continuous representation of the original
template shape but there are other benefits. For example, they also serve to in-fill
between points from the original specification of the template, effectively performing
an interpolating function when oversampling. Clearly, if the original template is at a
smaller scale than the reconstructed one, there will be no additional detail provided by
the FDs, just interpolation of the initial data. Interestingly, selecting particular bands
of harmonics (thus under-sampling the FDs) can extract “significant” natural scales
(i.e. a fundamental part of the structure) from a model [54]. Figure 2 gives Fourier
described samples of the shape in Figure 1. Here, a continuous set of points is derived
at different scales and orientations, and remains as contiguous and continuous as the
original shape. Note that truncation of the Fourier series leads to rounding effects in
regions of high curvature, a factor more noticeable at increased scale. However, in the
figure, most of the rounded comers are artefacts resulting from the generation of the
FDs from an eight-neighbour chain code (giving diagonals rather than right-angles at
the corners). Other benefits of Elliptic Fourier Descriptors are their completeness,

simple geometric interpretation, access to frequency information and the fact that they



can be easily produced from a chain code of the contour. For all these reasons they
were suitable for this work. However, other analytic representations could equally

have been used (e.g. cubic B-splines as in [61]).
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Figure 2: Continuous shape representation (FDs) at varying scales and orientations

Elliptic Fourier Descriptors encode a contour as two Fourier decompositions by
considering the x and y components separately. The decompositions contain a number
of frequencies limited by the number of harmonics used. The two Fourier components
can be recombined and viewed as a series of linked, rotating ellipses - one for each
harmonic frequency. The speed of rotation is defined by this frequency, the size of the
ellipse by the maximum magnitudes of each Fourier component and the initial
orientation of the long axis by the relation between the components.

One important implementation concern that quickly arises is the number of
harmonics to use when representing a shape. Evidently, the more harmonics used, the
better the reconstruction will be. In most cases, this 1s an asymptotic improvement and
a balance must be struck between accuracy, computational costs and the requirements
of the application. Here, we are using the FDs in the context of digital (thus discrete)
image processing and hence there will be a limit defined by the pixel granularity and
scale beyond which additional harmonics have no perceivable effect. This limit is

dependent on the fineness of the pixel grid and the complexity of the shape



represented. Kuhl [35] specifies a simple procedure for analysing the maximum error
of a representation from the original for a given number of harmonics, thus providing
means of determining the number of harmonics for a given error automatically.
Another initial concern with FDs was that of disjoint or non-contiguous contours
(i.e. one with gaps), since the method requires complete, cyclic curves. In the simplest
case, that of a non-cyclic open curve, the recommended procedure is to loop back
along the curve when one end is reached thus producing a full cyclic curve. However,
the discontinuities at the end of the open curve mandate use of a larger number of
descriptors than is usually required for closed shapes and this method fails in more
complex cases with multiple breaks in the contour. A more general solution is to
generate FDs that produce a shape without gaps and then use a masking function that

causes the regeneration phase to ignore points that would fill in the gaps.

2.2.1 Theory

A curve defined by two sets of orthogonal co-ordinates, c.(s) and cy(s),

parameterised by se [0,27) has elliptic Fourier Descriptors as follows:

a, = % [* c.(s)cos(ks)ds and b, :%fﬂ ¢, (s)sin(ks)ds (1)

with a similar equation for the y descriptors, where k is the harmonic number. The
range of k defines the number of ellipses used to represent a model shape and thus
how accurate the shape representation is (up to the practical limits mentioned above).

To reconstruct the original shape from the FDs, they must be converted from the
frequency domain to vectors in the spatial domain. n FDs can be converted to vectors

(along x- and y-axes) from the origin to a point on the curve by:
U, (s,FDx) =Y (ay cos(ks) + by sin(ks)) 2)

where FDx ={a,,b,,a,,,b,,...,a,,,b,,} ,with complementary equations in y.

xn>
The DC bias can be omitted by not summing the DC (k=0) terms. If they are
included, they translate the origin so that it is the same as that used in the co-ordinate
frame when the curve was originally sampled into FDs. When using chain codes, as
we are, the origin is the start point of the chain. It is more intuitive in implementation
(and has no appreciable effect on the HT) to omit the DC bias, moving the origin of a

reconstructed shape template to the centre of mass. This tends to be more central in



the template than the start point of its chain code and thus makes it easier to visually

interpret planes of an accumulator because peaks will be near the centre of the target.

2.3 Temporal evidence gathering

There is a substantial literature on the problem of tracking shapes in a sequence,
for example the tracking of humans has recently been admirably surveyed [2]. Other
surveys of interest include [1, 12, 18, 28, 40]. The surveys listed all deal with motion
and thus, by implication, sequences of images. It is well known that most image
sequences contain significant correlation across many frames - a fact commonly
utilised by machine vision and video compression algorithms amongst many others.
Earlier research has ranged from optic flow [32] to Kalman filters [10] and includes
temporal templates, a form of which we use later in this thesis. Although much work
has been done with spatio-temporal structures, the first evidence-gathering based
technique to exploit this correlation for concurrent structure and motion analysis was
the VHT [43]. The original implementation of the VHT extracted the optimum
parameters describing a conic section moving with linear velocity. With simple
extensions, it handles a subset of rigid motions that can be described parametrically.
Hence, the nature of both the shape and motion is known a priori - a fact that is
important for later chapters. To take advantage of the inter-frame correlation, the
VHT collects evidence from the whole sequence into a single accumulator,
concurrently extracting optimal structural and motion parameters. As a consequence
of the additional information collated, the VHT appears to be more robust than a
standard frame-by-frame tracking implementation, especially when the target is
occluded or noisy. Any missing or damaged structural information in one frame can
be compensated for by redundant data in others (for example, structural information
from the target shape is often repeated in each frame).

Due to the global scope of the VHT, there is no need to initialise the algorithm to
search in a specific area (although limiting the extent of the search is a possible
optimisation). Another common motion estimation problem avoided by the VHT is
that of correspondence. Points in different frames do not need to be matched since all
the possible correspondences are examined implicitly in the accumulation phase. By
the nature of evidence gathering, the best correspondences produce the highest

accumulator peaks.
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The motion mode] is parametric and thus can be extended from linear velocity by
including extra terms. In this respect, an extension to the VHT [44] that found
walking subjects using an articulation model required thirteen parameters. As
illustrated by this example, the major disadvantage of the parametric motion model is
that any extension increases the dimensionality of the accumulator and, thus, the
computational resources required. In summary, the VHT enables the use of temporal
correlation in an evidence-gathering framework, resulting in a powerful and robust
extraction algorithm. Unfortunately, the modelling of both shape and motion is

seriously restricted.

2.3.1 Implementing the Velocity HT

The VHT was originally formulated as an extension to the HT for circles [17],
adding a velocity component and extending the single input image to a sequence.
When casting votes in the accumulator, the HT for circles uses the following formulae
as a part of its kernel:

a,=c, +r-cos@)

a,=c, +r- sin(9) &)

where a, and a, are the co-ordinates of a vote in the accumulator, ¢, and ¢, are

centre co-ordinates of the circle to be drawn in the accumulator (i.e. the co-ordinates
of the feature point, e.g. an edge pixel). r is the radius of the circle being searched for
and O is the polar parameter of the circle. The accumulator is three-dimensional and
stores ay, a,, and r. To extract the parameters of a circle in linear motion, the
equations describing the points in a circle need only include a linear motion term, as:
a,=c,+r-cos(@)+v, -t

X

a,=c, + r-sin(@)+ v, -t

4)

where ¢, and ¢, are the circle's centre co-ordinates, v, and v, are the velocities of
the circle along the x- and y-axes, and ¢ is the time reference of the frame relative to
time ¢ = 0 (normally the initial frame). These equations calculate the vote co-ordinates
in an accumulator (now five-dimensional and storing a,, ay, r, v, and v,) for a feature
point in a given frame of a sequence. After processing, the highest peak in the
accumulator represents the best estimates of the moving circle’s parameters and its

centre co-ordinates at time ¢ = 0.
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The time reference of each frame is used to calculate the offset back along the path
of motion for each vote. For example, if a circle moves forward at 1 pixel per frame,
at time 7=3 the circle has moved forward 3 pixels. In order to focus all the votes for
the circle onto one peak, votes in the accumulator plane representing a velocity of 1
pixel/frame should be moved 3 pixels back to compensate. The velocity compensation
is illustrated for a moving circle in Figure 3, which depicts the three-dimensional
accumulator space x, y, vy. Votes are drawn, centred on an edge pixel co-ordinate at
several different frame times (shown as crosses). They are adjusted for the x velocity
that is relevant to the plane of the accumulator in which they appear. The topmost set

of circles has the correct velocity because the circles of votes all intersect at a point.

A Velocity in X

Intersection in accumulator of
. vote loci for edge points

Edge point at Edge point at
tg =0 L >t

N
) !
\ Edge point at @
Lo ="t >0

.
Ll

Accumulator X position

Figure 3: View of a VHT accumulator for a moving circle
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Pseudocode for the VHT for circles algorithm (allowing linear x and y motion and

a range of possible circle radii) 1s given below:

For (f = first frame -> last frame)
For (all edge pixels ex,e, in frame f)
For (r = r_min -> r_max)
For (vx = Ve min => vy max)
For (vy = v, min -> v, max)
For (theta = 0 -> 359)
ax = ex — vx * time[f] - r * cos(theta)
ay = e, — vy * time[f] - r * sin(theta)

accumulatorlax, ay, ¥, Vx, Vy] ++
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2.4 Optimisation

No development involving the HT is complete without at least a brief examination
of optimisation techniques. Since the process that guarantees optimality is a form of
exhaustive search (albeit efficiently implemented), the computational resources
required by the algorithm will always be greater than those used by less
comprehensive algorithms. As a result of these requirements, there is a substantial
body of work directed towards alleviating the computational burden. The approaches
fall into three basic responses to the problem: architectural, pragmatic and analytic.

The first, architectural, is the simplest and depends on the availability of faster
computers. This takes the form of parallel architectures or reliance on Moore's Law,
the general trend of doubling of computing power about every eighteen months. The
HT is known to be well suited to parallel implementation, with many options for
splitting the processing (e.g. by image, by region of an image, by ranges of parameter
values, etc). Leavers’ survey [38] has a good summary of parallel implementations of
the HT. With other application domains, the increase of available computing power
has eventually caught up with demands, proving this solution to be an adequate one in
some cases, albeit one that requires a measure of patience. In many respects, the ever-
increasing speed of computers has made this research possible - only a few years ago,
the computational requirements would have placed it beyond the reach of all but the
most well equipped (or patient!) organisations.

The second approach, pragmatism, involves applying heuristics, speed-ups, and
memory-reduction techniques that may undermine the underlying principle of
exhaustive search and hence the robustness of the algorithm. For example, multi-stage
processing, “pyramidal” methods (e.g. the Adaptive HT [29], Hierarchical HT
[51,62]), random sampling algorithms such as the Randomised HT [60] and genetic
algorithms (Section 5.2) fall into this category.

Probably the most common and effective method is to reduce the number of points
to be considered. This can be done robustly and simply by discarding any points that
definitely will not contribute to a meaningful analysis (e.g. highly isolated single
pixels when searching for lines). Removing meaningless feature points has the

twofold benefit of reducing accumulator noise due to false votes and reducing the
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search space, resulting in a general speed improvement proportional to the number of
points rejected.

One of the most prominent uses of robust point reduction is the GHT. The gradient
direction of a point in the search image constrains the parts of the template shape
drawn into the accumulator to just those with a matching gradient direction. Before
the GHT, each feature point matched, and voted for, all points in a template.

Points can also be discarded in a non-robust way by, for example, using a
probabilistic strategy that picks a random subset of feature points (e.g. the
Randomised Hough Transform [60]). This method will still give dependable results
provided that the sample size is large enough and random enough to gather sufficient
evidence to identify features in the noise. The size of the feature under detection is a
significant factor in the reliability of probabilistic strategies - as the ratio of feature
size to noise decreases, random picking of points is more likely to miss the (relatively
few) important feature points. One of the problems with this technique is deciding
when enough data has been considered to give an accurate result (the stopping
criterion). Balancing the speed of execution with accuracy can be difficult and is often
heuristic.

Other pragmatic improvements can be made purely in the implementation domain.
For example, the space requirements of the accumulator can be reduced by using
sparse arrays or linked lists, which only allocate space for array cells that are in use,
and computation times can often be significantly reduced by caching important data
structures, etc.

Finally, the analytic approach tries to reduce the computation requirements by
using extra information to make the problem simpler (decomposing it), often shifting
some of the work to pre- or post-processing stages (also common in pragmatic
approaches). One approach to parameter space decomposition uses sets of points to
constrain voting. For example, in [3], Aguado describes a method where two points
are picked at random and a third point found along a line perpendicular to one of the
endpoints of a baseline between the two points. These three points, along with some
stored angular information, form a geometric invariant that can locate the correct vote
point for the template shape. A disadvantage is that since multiple points are required
per vote, the processing burden for each vote increases considerably. Furthermore, all
three points must belong to the same shape or any votes cast are just noise.

“Windowing” is a partial solution to this problem — points are selected from a local
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region to increase the chance that they will all belong to the same primitive. Finally,
as the complexity of the transformations applied increases, geometric invariants
become more and more general, requiring more processing to produce. For example,
an affine transform destroys the relationship between angles of a triangle and

invalidates Aguado’s method, which is limited to similarity-transformed shapes.

2.5 Contributions

We will describe a new technique for extracting moving arbitrary shapes, which
has been created by fusing the two evidence-gathering techniques, the VHT and
Fourier-descriptor template representation. Uniting these techniques unifies their
unique and complementary advantages. The Fourier Descriptors provide a continuous
template representation, minimising discretisation error in the algorithm, and the VHT
component exploits the temporal correlation across a sequence, mitigating the effects
of noise and occlusion. The new algorithm does not require initialisation or training
and avoids the need to solve the correspondence problem, inheriting these
characteristics from the VHT. For illustration, Figure 4 shows frames of a sequence
where the location, velocity and acceleration parameters of a Space-Shuttle booster

during launch were correctly extracted by the new technique. See Section 3.4.6 for a

fuller breakdown of this extraction.

(a) Frame 0 (b) Frame 10 (c) Frame 18 (d) Frame 26

Figure 4: Space-Shuttle launch with extracted template (of the booster)

superimposed in white

However, the CVHT (for convenience, we will refer to the continuous-template
variant of the VHT as the CVHT) is still limited by its parameterised motion model. If
the Shuttle imagery included a parabolic trajectory, this more complex motion would
have to be incorporated into the motion model and would boost the dimensionality

considerably. Hence, the simplistic approach to improving the generality of the
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motion model is to increase the complexity of the HT kemnel to represent an
increasingly complex motion path. Consequently, an accurate polynomial description
of an arbitrary path will require a large or even infinite number of terms, massively
increasing the dimensionality of the problem. There are parallels to this
parameterisation of motion in the earlier parameterisation of shape, where
increasingly complex shapes were represented by more complex parameterisations
and a commensurately larger dimensionality. The solution to this dimensional
explosion was found in the use of templates, which allowed an efficient and low
dimensional parameterisation of any shape. The cost of this approach is that the
method loses the (debatable) flexibility of finding all descriptions of all possible
shapes in a scene. Following this historical parallel, the remaining part of our new
approach is to describe the motion by a template, like the shape itself. These “motion
templates” extend the use of templates in the HT from the spatial domain into the
temporal. This ameliorates the punitive computational burden associated with
increasing dimensionality since the aim changes from finding the potentially
unlimited set of parameters that characterise a particular motion to finding the limited
set of parameters that locate the object undergoing the specified motion.

These novel developments clearly add significant functionality and flexibility to
the VHT — removing the limitations of shape modelling by analytically described
conic sections and parametric motion modelling. Adding the capability to extract non-
analytic arbitrary shapes that move arbitrarily increases the utility of the algorithm to
a range of applications that require more general shape and motion models. In
particular, these developments have opened the door to the use of the HT for human

gait analysis.
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3 Continuous VHT

In this chapter, we will illustrate the implementation of the continuous VHT
(CVHT) with some visualisations, present some theory describing the implementation
and discuss results showing its performance in varying circumstances. We then test it

in comparative evaluation with GHT-based techniques.

3.1.1 Implementation

In order to add arbitrary shape extraction to the VHT, the Fourier descriptor
version of the GHT is extended in the same way as the HT for circles was extended
into the original VHT - by introducing velocity terms to the shape description. Instead
of drawing a motion-compensated circle in the accumulator (as in the VHT), the
Fourier descriptors are used to trace a locus of votes in the form of the template shape,
adjusted for the estimated motion of the object. The accumulation process for the
sequence in Figure 5a is illustrated in Figure 5b-g, with votes increasing as more
frames are added. Here we use Merlin and Farber's [39] variant of the voting process
— voting for all the points in the template rather than a restricted set such as in the
GHT. Figure 5b-d shows the plane of the accumulator for the correct estimate of
velocity while Figure 5e-g shows a plane with an incorrect velocity (x = 0). Reflected
instances of the template shape are generated in the accumulator, centred on motion-
compensated edge pixel co-ordinates from the frame being processed. Shapes drawn
in the accumulator planes are reflected because co-ordinates describing the template
are subtracted from the co-ordinate of the edge pixel. This is because we are reversing
the vector from the reference point to the edge point so that we can locate the
reference point from the edge pixel. The net effect is that a template shape is reflected

around both axes when drawn in the accumulator planes.
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Figure 5: Simulated sequence and accumulator planes deriving from it

The motion compensation mentioned above is simply back-projection along the
expected line of motion, thus converting the co-ordinates to the same temporal frame
of reference as the initial frame (at frame time ¢ = 0). Hence, votes for a particular
edge pixel in frame 5 fall in the same place as those for frame 1. Once the voting

process is complete, intersections of template shapes in the accumulator form peaks
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that indicate the location (at frame time ¢#=0) of an instance of the shape in the
sequence. The more coincidences that occur (whether due to correct velocity
estimates or chance), the stronger the resulting peak.

The dimensionality of the algorithm can be considered in two sections. The shape
section of the CVHT requires four parameters - x and y offsets, scale and rotation -
allowing it to cope with shapes that have undergone a similarity transform. The
number of parameters required for the motion section varies with the complexity of
the model. The motion model used by the CVHT may be changed by altering the
kernel of the HT (see equation 6 for a linear velocity kernel). Here, we have generally
used one of the simplest models - linear velocity in one or two axes - in order to limit
the dimensionality of the problem. More complex motion models may require more
parameters to be searched for. For example, to accurately extract an object that has
linear velocity and acceleration requires two parameters per axis (velocity and
acceleration). As the number of parameters rises, dimensionality increases
proportionally. In terms of visualising the extraction process (as in Figure 5),
changing the motion model alters the motion compensation stage to perform a more
complex back-projection of the anticipated motion (e.g. from linear back-projection to

linear with acceleration back-projection).

3.1.2 Computational cost

The computational complexity of the CVHT is dependent on the motion model
chosen. The basic linear velocity variant is of order O(N°) in terms of algorithmic
complexity or, in terms of the number of operations, O(#points X #s X #r X #v, X #v,),
where #points is the number of feature points (e.g. thresholded edge-pixels in a 2D
image) in the sequence, #s and #r are the number of discrete steps in the parameter
ranges for initial shape scale and rotation and #v, and #v, are the number of discrete
steps in the parameter ranges for velocity in the x- and y-axes respectively. It may be
more useful to consider the algorithmic complexity as consisting of two parts: the
shape description part — O(N*) - and the motion description part - O(N?) for a linear
velocity kernel. Combining these gives the previous result O(N* x N*) = O(N°). Note
that the CVHT has fixed costs for the shape description part due to the template-based
modelling — only the motion description has variable cost. In other words, any shape
(including affine transformations) can be represented in the same size of accumulator

(i.e. in four dimensions), but different forms of motion require different numbers of
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accumulator dimensions (e.g. two dimensions for linear x and y velocity, two more
dimensions to include x and y acceleration, etc).

The CVHT has the normal penalties of being derived from the HT - namely high
memory and computational requirements. In mitigation, the optimisation procedures
described in Section 2.4 are applicable and can bring the cost to a reasonable level.
The crucial difficulty with the CVHT is that the dimensionality of the problem
increases with the complexity of the motion model, a problem we address in Chapter

4 with motion templates.

3.2 Theory

The theory presented in this section is developed from the Fourier-descriptor
variant of the GHT [4] discussed earlier.

In order to develop the voting mechanism, we require an arbitrary-curve
parameterisation for shapes. As stated previously, we have chosen elliptic Fourier

descriptors for this purpose (see Section 2.2.1 for some relevant theory). The curve
shall be represented by the vectors Ux(sj:ﬁx) and vy(s,ﬁy) (as defined in

equation 2, but omitting the DC bias as discussed in Section 2.2.1). The shape
template's scale and rotation is given by as=[l; p,l, so the scaled and rotated shape can

be described as
R, (s,a,)=1,0,(s,FDx)cos(p,)—1,v, (s, FD,)sin(p,) (5)

with a similar equation for R,. Now, we require a kernel that defines the shape of
votes to be cast in the accumulator for each feature point (e.g. an edge pixel). This is a
combination of curves, each with its origin on the reference point to be voted for
(typically at the centre of the template shape) but offset by the velocity, and at a
number of orientations and scales (for similarity transform invariance). This

combination of curves can be obtained from:

o (s, T, L p,v,sv, )= R (5,1, 0)U + R (5,1, p)U + T v U, +T v U, — (6)

ref+bs ref ' x ref Uy

where v, and v, are respectively the x centre and y centre velocity parameters, U,
and U, are two orthogonal vectors defining the x- and y- axis respectively and T} is a
time reference relative to the arbitrary start point (e.g. frame number versus frame 0).
This curve is inserted into the accumulator by offsetting it from the co-ordinates of

each feature point in the image sequence IS, defined by:

s ={%(p.1,, ) PeD,,T, cD,} (7)
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Here, Z(P,Tref) is a function that defines the points in the image sequence for a

frame time T, where a suffix on the domain indicates its extent (here, Dp is the
domain of the pixels in an image in the sequence and Dy is the domain of the frame
times (i.e. number) in the sequence). The accumulator vote-pattern expression is then:

Ay, = (P.T, )-@(.T,;.1,p.v,,v,)s€e D,}Pe D, T,, €D, (8

These equations describe the concept of the HT but do not formalise the actual
technique used, namely the accumulation phase. The parameter space can be mapped
into an accumulator by using a matching function, which determines whether a point,

¢, in parameter space should be incremented for a point, d , in the set A,,,T/ . The

equation below defines the simplest accumulation strategy, namely incrementing an
accumulator cell by unity for each match. Changing the matching function M can
accommodate more complex strategies (e.g. the Fuzzy HT’s more complicated voting
strategy that casts multiple points in parameter space for each parameter set). In this

thesis, we have exclusively used the simple case.

_ if c=d
M(c—,d)zg Mg ©)

This function simply maps points from the set Apr. (1.e. the vote-pattern, offset

from a particular feature point) to their exactly corresponding co-ordinates in

arameter space. Next, this function is applied to A for a range of parameter
p p pp P, g p

values. This defines the continuous form of the CVHT, accumulating evidence in a

parameter space Scvur according to:
Seur B.Lp.vov, )= [[[M G, Ap.T,, )-@(s.T,,.1.p.v,.v,)ds aPdT (10)

where b is the translation vector (i.e. the location of the reference point). Finally,
this parameter space is sampled into a discrete multidimensional array Spcvyr, which

is expressed by:

SDCVHT (b_’l’p’vx’vy> Z Z ZM<b Z(P u[) (S TrL/’ ’p V\,V ))(11)

T,€ Dy PEDp s€ D,

This expression gives an accumulation strategy for finding moving arbitrary
shapes. For each edge pixel in a frame, a locus of votes is calculated from the Fourier

description of the template shape and entered into the unified accumulator. The co-
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ordinates of the loci are adjusted to allow for the predicted motion of the shape,

dependent on the frame index, as in the VHT.

3.3 Pseudo-code algorithm

The algorithm that describes the CVHT voting process 1is:

For (frame f of the sequence)
For (edge pixels ey, ey)
For (scale=scale_min -> scale max)
For (angle=angle min -> angle max)
For (t=0 =-> 2*PI)
Generate vector (ax,ay) from FD (t)
Rotate and scale (ax,ay) vector
For (vx=vx _min => vy _max)
For (vy,=vy min => v, max)
Offset (ax, ay) vector from (ex, ey)
Calculate velocity offset from f, vx and vy
Subtract offset from (ax, a,) vector

accumlax, ay, scale, angle, Vvx, Vy] ++
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3.4 Results

3.4.1 A short note on pre-processing

While a considerable proportion of the test sequences used in this thesis are
synthetic (in order to highlight the particular analysis that is being pursued), some are
from real-world cameras and have been pre-processed. Typically they are edge-
detected using the Canny operator [11], with an appropriate set of parameters for the
sequence in question (i.e. judged by eye to give moderately clean edges around the
central object of interest without excessive noise from small intensity gradients).
Normally, these parameters tend to be as follows: low hysteresis threshold = 0.4
(maximum intensity is 1.0), high threshold = 0.6, standard deviation of the Gaussian
kernel = 1.5.

An additional pre-processing step used below is the addition of artificial noise.
Whilst most noise models are explained in the text appropriate to the context, the
addition of Gaussian image noise may cause confusion because two forms are used. In
this thesis, image noise is typically generated by adding a Gaussian-distributed value
to individual pixels, often with a uniform random variable defining how much of the
image is affected (in the results below, this uniform random variable is normally
reported as the quantity of noise added, e.g. “40%”, meaning approximately 40% of
the pixels will have been corrupted). However, the resulting pixel value may be
beyond the acceptable range. In this case, we have two models: clipped and wrap-
around.

“Clipped” Gaussian noise means that out-of-range pixel values are clipped to the
nearest limit, so a pixel value of 1.4 (whiter than white) would be clipped to 1.0 (full
white) and a value of —0.3 would be clipped to 0.0 (full black). When this type of
noise is applied to binary images (such as edge images), there is a better than 50%
chance that a pixel will be unchanged because of the combination of this clipping
operation and the binary nature of the image. If the original pixel is full white and
more white is added (50% chance due to the mean of the Gaussian being 0), then the
clipping will reduce the pixel value back to full white (i.e. unchanged). If “black”
noise is added to a full white pixel, then the amount added must be greater than the

binarisation threshold required to flip the pixel to full black - typically a halfway
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threshold at 0.5 (mid-grey). A similar problem occurs if the original pixel is full
black.

“Wrap-around” Gaussian noise partially solves this problem by joining the pixel-
value range at both extremes. So, an out-of-range pixel with a value of 1.4 becomes a
pixel with a value of 0.0. The consequence of this noise model is that pixel values are
unlikely to remain the same in over 50% of cases. In fact, there is a slight tendency
for pixel values to become inverted. Degradation of edge-based algorithms, such as
the ones presented in this thesis, is far worse with this noise model because, at 100%
noise, there is a high probability that the majority of the original edges will have been
inverted. Effectively, useful edges tend to be removed whilst false ones appear.

The reason for these two models is that, during the original work on the CVHT,
the “clipped” model was found to provide sufficient noise levels for testing. Later
work with motion templates improves on the CVHT to the extent that the “clipped”
model’s 100% noise was insufficient to cause extraction errors, hence the requirement
for more powerful noise. While this is to some extent an artificial situation, it is true
to say that many noise models do not bear much resemblance to real-world noise. In
this thesis, we were mainly interested in finding the limits of the techniques tested,

and used noise models appropriate to this requirement.

3.4.2 Simulated image noise

The CVHT was run on a small five-frame sequence (0% noise line in Figure 6
below) showing a shape moving linearly along the x-axis at a velocity of one pixel per
frame. The low resolution (20 x 20) was chosen to make practical computation of
large-scale tests. Noise was added at random to each frame of the sequence at eleven
noise levels from 0% to 100% random coverage of the frame, in steps of 10%. The
noise distribution was zero-mean Gaussian with a standard deviation of three and used

3

clipping when a pixel value exceeded the maximum allowable (i.e. “clipped”
Gaussian noise was used). Examples of the effects of the increasing noise levels can
be seen in Figure 6. The grey-level images produced by the application of noise are
shown in the original state before being thresholded by the algorithm. For comparison
to a standard technique, we have generated results for the normal GHT tracking
algorithm (i.e. a standard GHT is applied to each frame of the sequence separately and

the results are combined using linear regression to calculate the velocity terms). The

test conditions were as described above.
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The graph (Figure 7) shows that the CVHT is significantly more accurate (in terms
of exact extraction accuracy) than the GHT-based technique. The vertical axis on the
graph is hit rate, or the percentage of correct extractions for multiple (100 in this case)
trials with different random noise at each image-noise level. Whilst the GHT-based
technique starts to lose accuracy at 30% noise, 15% more noise can be added before
the CVHT begins to lose accuracy. Although both techniques fail in extreme noise as
expected, the CVHT is still reasonably successful at 80% noise whereas the GHT-
based technique fails completely. It is interesting to note that while the shape in the
static pictures in Figure 6 appears hard to perceive to human vision at 60% noise,
when it is presented in an animated form it is actually perceivable at noise levels of
80%. This effect is exploited by the new technique when it accumulates temporally
correlated evidence, enabling it to handle noise levels that are approximately twenty
percent greater than the GHT comparator. The GHT based technique is limited to the
amount of evidence available in a single frame. When the noise becomes sufficient to
mask out the correct peak in a single frame, the GHT technique is left with effectively
random results to process for velocity terms. In intermediate noise levels, some of the
results for each frame may be incorrect and this will tend to throw off the final
regression step. The integrated approach taken by the new algorithm is more global

and is not so susceptible to corrupt frames as 1s demonstrated strongly in the occlusion
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testing later. This is consistent with earlier observations comparing the VHT to the

HT with linear regression [43].

3.4.3 Simulated occlusion

Frame

Width

12

Figure 8: A sample sequence showing several levels of occlusion

28




A simple test of the effects of occlusion was carried out on the five-frame
sequence shown above. No image noise was added to the sequence since this is purely
a test of simulated occlusion. Instead, a varying number of vertical lines of pixels
starting from column two were blanked out. In effect, the generated sequences will
show the target shape emerging from increasingly serious occlusion. With the HT, it
does not make any difference whether the shape starts occluded or passes into

occlusion — the net effect is the same; a certain percentage of the sequence is
obscured. Figure 8 shows example frames from the occluded sequence with varying
widths of occlusion bar (the bar is shown in grey to make it visible although normally

it would be black to blank out the occluded columns). Again, we have used the
standard GHT tracking algorithm as a comparator.
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Figure 9: Occlusion Tests (dashed line with triangles = GHT-based, solid line
with squares = CVHT)

The results shown in Figure 9 reveal that the new technique keeps track of the
shape until the blanking is eleven pixels wide — almost obscuring the shape entirely at
the start of the sequence, and showing only a few pixels of it for the remainder of the
sequence. Surviving this level of occlusion is an excellent result but unsurprising

since, due to the synthetic nature of the sequence, the target is surrounded by empty
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space. Therefore the only competing noise in the accumulator comes from the shape
itself.

The GHT based algorithm failed as soon as any blanking was introduced. This
failure reveals more about the algorithm’s implementation than about its resilience to
occlusion. The current implementation uses the estimated location of the template
shape in every frame as an input to the linear regression stage. Therefore, when a
frame is corrupted and gives an incorrect result, the output of the linear regression
stage is affected causing a global estimation error. A more sophisticated
implementation might include a heuristic that ignores frames giving evidence
inconsistent with the majority of frames.

The earlier results [43] relating to the VHT should also be applicable to the new
technique since the underlying characteristics are essentially unchanged. These results
indicate that VHT derived algorithms are capable of handling even extreme occlusion

due to the global integration of evidence across the entire sequence.

3.4.4 Real-world imagery: finding people

We now apply the CVHT to locate a moving human body in a sequence of
images. The current implementation of the new technique locates rigid shapes moving
with linear velocity. Clearly, its formulation is general so shape deformation could be
included, as it was for pulsating arteries in the original VHT formulation [43], but this
would be considerably more complex. In the case of a human walking, the torso is
approximately a constant shape and, if the camera is far enough away, the bobbing
motion of gait is small enough to be compensated for by the resilience of the evidence
gathering approach. Consequently, it is possible to detect people using the technique
in its current form by searching for the torso. However, no meaningful gait data can
be gathered from just the location of the torso so this method of locating a human
silhouette is only useful as a primer for later (gait) analysis. Nonetheless, using the
CVHT to locate a human demonstrates empirically that it is applicable to real world
images.

Self-occlusion of the body due to the motion of the arms and legs is a problem that
affects the performance of many person-tracking algorithms. By the nature of
evidence gathering, the new algorithm copes with occlusions that do not reduce the
correct peak below the level of noise in the accumulator. As a result, there is no

immediate need for special precautions.
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(a) Frame 1 (c) Frame 3

(d) Frame 4

(f) Frame 6

{

(g) Frame 7 (h) Frame 8 (i) Frame 9

(j) Frame 10 (k) Frame 11 (1) Frame 12

(m) Frame 13 (n) Frame 14 (o) Shape template

Figure 10: Extraction of MP1 sequence using a linear velocity model
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(p) Edge-detected frame 1  (q) Edge-detected frame 8 (r) Edge-detected frame 14

Figure 11: Sample edge-detected frames from the MP1 sequence

Figure 100 shows a reconstructed template of a walker's torso, which was
originally created by manually tracing the torso in the first frame of the sequence.
Also shown in Figure 10a-n are several frames of the MP1 walker sequence with the
template superimposed on the extracted locations. Processing was actually performed
on edge-detected instances of the images (some examples in Figure 11p-r), but the
original images are shown here for clarity.

During the first part of the sequence, the walker's location is accurately extracted -
the initial location is exact and the extracted speed (thirteen pixels per second) is
correct. Shortly after frame seven the walker rises up on his leg (vertically, there is a
rise of fifteen pixels), which will cause the votes to "miss" in the accumulator, since
this movement has not been accommodated in the evidence gathering strategy. He
also slows down slightly and this breaks the assumption of linear velocity and
consequently the template "overtakes" the walker - frame 10 shows it some pixels
ahead.

If noise is added, as in Section 3.4.1, or occlusion, as in Section 3.4.3, the
performance drops off rapidly due to the large number of missed votes arising from
the lack of modelling of the bobbing or vertical motion of gait. Under simulated
addition of noise, as in Section 3.4.1 (Figure 7), the decline in accuracy is similar to
that of the synthetic sequences. However, accuracy drops away at a lower noise level
since the level of background noise is higher due to the surrounding scenery. Figure
14 shows the performance curve for a short range of tests (the curve is not smooth
because practical concerns limit the number of trials that can be run) on a sequence of
another walker (CA1). The CAl sequence is particularly suitable for this analysis as
the subject does not “bob” much. See Figure 12 for some typical frames from the CAl
sequence, and see Figure 13 for the result of various levels of (Gaussian wraparound)

noise applied to the edge-detected first frame.
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(d) Frame 40 (e) Frame 50 (f) Frame 49

Figure 12: Frames from the CA1 sequence

10% noise

40% noise 50% noise

80% noise 90% noise 100% noise

Figure 13: Frame 0 of edge-detected CAl sequence with varying levels of

wraparound Gaussian image noise
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Figure 14: Gaussian noise tests on CA1 sequence

When the earlier comparison between GHT-based and CVHT extraction (Figure
7) is contrasted with Figure 14, it is clear that the former shows better performance
than the latter. The threshold for good performance on simulated imagery was around
70% noise, whereas it has now dropped below 60%. This is simply because the results
above are derived from a real-world sequence whereas the earlier results came from
processing a synthetic sequence. In real-world imagery, non-target features increase
the background noise in the accumulator and thus reduce the maximum noise
tolerance before failure. With synthetic imagery, this factor can be excluded by

removing any non-target objects.

3.4.5 Simulated time-lapse imagery

Here we have tested the performance of the CVHT in conditions that simulate
time-lapse (i.e. infrequently sampled) video, as commonly used to store long periods
of recorded footage. Time-lapse video can be viewed as regular occlusion of the target
and, as such, will cause severe problems for techniques that suffer in occlusion. The
CVHT has shown itself to be robust in occluded circumstances (Section 3.4.3) and
demonstrates this again in these tests.

The first 20 frames of the CAl sequence were used as the test sequence (see

Figure 14 for the image noise analysis of this sequence). Time-lapse sequences were
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simulated by discarding frames from the complete sequence. This is the same as
keeping one of every N frames or only taking one frame for each time period that N
full-rate frames would have occupied. Table 1 shows the relation between the number
of frames kept and the percentage missing, which can be considered a measure of the
degree of occlusion. Note that the percentage is variable - the "tends to" percentages
are correct only if the number of frames in a sequence is an exact multiple of
whatever N is required; e.g. a sequence with 3,628,800 frames (approx 40 hours at 25
frames per second) will be exact for all the values of N in Table 1. So for a seven-
frame sequence, keeping one frame from every seven will give 85.71% missing (one
kept and six of seven discarded). In the worst case, an eight-frame sequence, keeping
one frame from every seven gives 75% missing (two kept and six of eight discarded).
However, as the number of frames in a sequence increases, the percentages will

approximate more and more accurately the numbers given below.

linl 0% 0% 0%

lin2 50% 50% 50%
l1in3 66.7% 65% 66%
lin4 75% 75% 74%
lin5 80% 80% 80%
1in6 83.3% 80% 82%
lin7 85.7% 85% 84%
1in8 87.5% 85% 86%
1in9 88.9% 85% 88%
1in 10 90 % 90% 90%

Table 1: Relation between frames discarded and the percentage of occlusion
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Figure 15: Simulated time-lapse for 20 frames of CA1l sequence

The performance curve in Figure 15 show that time-lapse does not have a
significant effect until between 50 and 70% of the sequence is occluded. This equates
to a failure occurring between losing half and two thirds of the frames. In addition to
this test, we have examined the performance of the CVHT with noisy time-lapse
video (i.e. time-lapsed noisy video).

As before, image noise is additive Gaussian noise (of the wrap-around form) with
a mean of zero and a standard deviation of one applied to a uniform random
percentage of the pixels. The number of trials is necessarily low due to time and
computation constraints, resulting in unsmooth graphs. However, the number of trials
varies across the spread of results with the majority of effort concentrated in the

transition zones between guaranteed 100% misses and guaranteed 100% hits.
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Figure 16: Two views of CVHT performance in simulated time-lapse imagery with

varying levels of noise.
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The graphs in Figure 16 show the performance of the CVHT for various levels of
image noise on top of the occlusion caused by the time-lapse simulation. With the
additional effect of noise, the CVHT's performance is affected much more quickly by
the time-lapse occlusion with total collapse reached at 50% image noise for all levels
of occlusion and partial failure occurring earlier at lower occlusion levels than the
tests without noise.

An interesting effect occurs in the 20-50% image noise, >70% occlusion band
where the CVHT begins to correctly detect the target in conditions where, with low
image noise, it previously failed. It is probable that the occlusion has, by chance,
removed some frames that caused problems for the full sequence extraction. Due to
the linear motion model attempting to represent a non-linear motion, it is likely that
there are significant portions of the sequence that qualify as "bad" frames. Removing
some of these troublesome frames brings the algorithm to a close balance where the
hit rate was only just 0%. The further addition of image noise then tips this balance
towards a low hit rate. This conjecture is supported by the graphs in Figure 17 below,
which are identical to those above but show near misses instead of just direct hits. A
near miss is defined as a peak in the accumulator that is less than approximately three
pixels (within an Euclidean distance of 3) from the correct peak. This includes direct
hits. In the transition area discussed above (the 20-50% image noise, >70% occlusion
region), the algorithm can be seen to be returning near misses as anticipated.

In summary, the CVHT can handle reasonable levels of occlusion and noise.
Beginning when the occlusion destroys more than half of the data, the algorithm's
performance enters a graceful decline, returning mostly near misses and occasional
hits. Only when the majority of the data is consumed by the occlusion does

performance collapse completely.
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Figure 17: Two views of near miss performance in a simulated time-lapse sequence

with varying levels of image noise
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3.4.6 Real-world imagery: alternative motion models (Shuttle)

To illustrate the feasibility of alternative motion models, we have used the CVHT
to extract parameters describing the launch of a Space Shuttle. Since we only consider
the initial part of the launch phase, a linear velocity and acceleration model can
approximate the movement. The sequence analysis begins on ignition of the rocket in
order to avoid introducing extra parameters (higher-order differentials of acceleration,
e.g. change in acceleration over time, etc) describing the pre-ignition phase where
there is no acceleration at all. Despite this, the Shuttle appears to be static for the first
three frames and then becomes airborne in the fourth. In addition to travelling
upwards, the Shuttle also slips slightly to the right as it takes off. Whether this is a
deliberate part of the trajectory or merely a minor deviation on launch is unknown.

The location, velocity and acceleration parameters of a booster during launch were
correctly extracted by the new technique. Figure 18 and Figure 19 show the launch
sequence with the correctly extracted booster highlighted in white. Interestingly, there
should be a second significant peak in the accumulator at y velocity = 0 due to the
slow initial take-off phase. This was not looked for at the time — only the largest peak
was examined.

Whilst this example is empirical proof that the motion model is changeable, the
CVHT is still limited by its parameterised nature. If the Shuttle sequence had included
its full parabolic trajectory, this more complex motion would have to be incorporated
into the accumulation phase, requiring many more parameters and possibly becoming

computationally impractical.
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Frame 13 Frame 14

Frame 12
Figure 18: (part 1 of 2) Space-Shuttle launch with extracted template (of the

booster) superimposed in white
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Figure 19: (part 2 of 2) Space-Shuttle launch with extracted template (of the

booster) superimposed in white, and some edge-detected example frames
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3.5 Conclusions

In this chapter, we have developed the concept of the VHT as a moving object
extraction algorithm, adding the capability to efficiently detect arbitrary shapes. This
additional capability is provided by using a shape template - avoiding the exponential
dimensional increase that parametric shape description brings. We chose to use
Fourier descriptors for shape representation since they are continuous, complete and
provide easy access to frequency content; furthermore, they have been proven in an
earlier single-frame technique. The VHT brings the following characteristics to the
union of techniques: it utilises temporal correlation to underpin evidence-gathering
across a sequence, it does not call for initialisation or training and it employs the HT
to implicitly solve the correspondence problem. Theory has been expounded and an
evaluation made of the resulting implementation.

A comparative study of the new technique with a GHT-based frame-by-frame
approach showed significant improvements in accuracy of extraction, particularly in
conditions simulating high noise or occlusion. These improvements result from the
reduction of quantisation noise (owing to continuous shape models) and integration of
the whole sequence in the accumulation phase. Further experimentation explored
performance characteristics of the new algorithm, concluding that the CVHT was
usable with real-world imagery and (simulated) time-lapse video. For verification of
the flexibility of the CVHT, an alternative motion model was implemented and used
to correctly extract a booster from a launch sequence of a Space Shuttle.

In conclusion, adding arbitrary shape extraction (using a continuous
representation) to the VHT has extended the generality of the algorithm without
compromising its original robustness. In fact, using a continuous shape representation
is an improvement on the robustness offered by a non-analytic (GHT-like)
representation. The link between shape description and accumulator parameterisation
has been broken by using templates, avoiding massive computational costs that are an
inevitable consequence of extracting complex shapes with the VHT. However this
dependency remains with motion description - the cost of the algorithm is still directly

tied to the complexity of the motion model.
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4 Motion Templates

4.1 Discussion

The earlier approaches to moving shape extraction are limited by the nature of the
parameterised motion model - specifically its high dimensionality and hence reduced
practical descriptive capability. For a complex motion, an explicit parameterisation
system leads to an accumulator space approaching infinite dimensionality, a problem
earlier alleviated in shape extraction by the use of shape templates. Following this
eariier example, the motion of the shape could also be stored in template form - i.e.
using motion templates to describe the movement of the target. Such a change
removes the dimensionality limitation and enables the extraction of arbitrary shapes
undergoing arbitrary motion. Storing motion information in this way is a form of a
temporal template. Temporal templates are a technique for representing the movement
of bodies through a sequence of images by encoding a motion trajectory. The
encoding takes many forms - for example, there are many algorithms that combine
spatial and temporal information into an XYT space to enable detection of particular
movement patterns (e.g. detection of repetitive motion using temporal textures [50]).
Other instances of the temporal template technique include a neural network based
human motion tracker [61] that combines positional displacements with spatial
templates of a human contour. The system contains several of these state vectors and
is capable of tracking and predicting transitions between them. Similar efforts have
been made using dynamic programming to track state transitions in gesture
recognition [9].

With these templates it is no longer necessary to accumulate for the parameters
describing the motion since, clearly, they are already known. It may be useful to
imagine the motion template as an infinite dimensional parametric motion model
where all the parameters have a fixed value. Naturally, the motion templates require a
priori knowledge concerning the target object's path before analysis can begin. Since,
by definition, tracking precludes the possession of this information, it is important to
observe that the niche for motion templates, in the context of evidence gathering, is
extraction or recognition (an example application might be searching a video
database). Motion templates make it possible to robustly and efficiently extract

parameters describing a shape that is following a specified trajectory. It can even be
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argued that a limited prediction capability exists if the motion template covers a larger
time span than is analysed (or if the motion is repetitive) since it is assumed that the
extracted target will continue to follow the specified path.

As a result of the requirement for detailed prior knowledge, the new algorithm will
be of use in cases where the general path of motion 1s known (e.g. cars turning at
traffic lights will follow roughly the same path). However, there may be difficulties in
real world imagery since not all objects will follow exactly the same path. The
forgiving nature of an evidence-gathering approach should abate this concern
provided the deviations are not excessive. If they are, the voting or peak detection
algorithms can be arranged to handle the uncertainty, (e.g. as in the Fuzzy HT [25]).

Motion templates must encode the relative position of the target object at all times.
This will automatically describe properties of the motion such as speed, acceleration,
change in acceleration, etc. Motion templates should also record changes in scale and
rotation over time since many moving objects rotate (e.g. a car when viewed from
above rotates as it corners) and scale (e.g. due to perspective effects). Note that this
additional detail will not cause any increase in accumulator dimensionality — the
complexity of the algorithm is the same, only the complexity of the motion template
itself has increased. More information relating to time-structured changes in the
model shape (e.g. changing shape models throughout the sequence to represent
deformations) may be recorded, but position, orientation and scale (temporal and
spatial) are a minimal base set. These basic parameters exist in the implementation
used for this thesis, but have not been sufficiently tested to document here.

The representation of the motion templates should be continuous so as to avoid
the problems of discrete representations (Section 2.2). As such, it seems prudent to
use Fourier descriptors for both motion and shape templates since these descriptors
are well understood and Fourier approaches can handle many situations (e.g. irregular
path sampling). An additional advantage is access to frequencies in the motion
template, which may be of use in certain applications (for example, gait analysis may
benefit from this characteristic - see Section 5.1). Furthermore, we have a consistent
framework for the representation of both arbitrary shape and motion.

To encode the path for input to an implementation, it is convenient to specify a
series of waypoints to encode the path, rather than use a smooth and complete
description of the motion. The representation chosen must be able to take this data

and interpolate it in a smooth fashion. Fourier descriptors have been designed to do
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this and only need minimal modification to work with variable time periods between
waypoints (required since movements may be quick or slow). One problem with this
approach lies in under-sampling the path with too few waypoints. In this case, it 1s
possible to over-fit the FDs and reproduce this under-sampled path too exactly. If
desired, the waypoints may be filtered to generate a smoother-flowing path.

The introduction of motion templates into the HT requires no additional
parameters to be searched for in the accumulation phase beyond the standard shape
deformation parameters. However, such an inflexible implementation would
excessively restrict the functionality. We consider that the essential parameters are
rotation of the motion template in its spatial dimensions and scaling in both spatial
and temporal dimensions. The scaling in the spatial axes does not need to be
independent (i.e. it can be uniform scaling) since, we will consider only affine
transformations initially. Scaling in the temporal axis adjusts the time taken to
traverse the motion template and thus the speed with which an object must move to be
identified as the target. Using the previous example, this would allow the algorithm to
locate cars that are cornering either quickly or slowly. Finally, we must add an offset
or phase parameter to separate the time encoded in a motion template from that used
in a sequence. This is a temporal offset that corresponds with the spatial offsets
already present in the HT (x and y position in an image). Without an offset parameter,
time zero in the motion template must equate to frame time zero in the sequence;
consequently, the algorithm would be unable to correctly extract parameters for a
sequence that began with the target object part-way through its trajectory. Hence, the
time-scale parameter provides temporal scale invariance and the offset parameter
gives temporal translation invariance. Rotation invariance is not required since time is
one-dimensional.

One probable candidate parameter that has not been included is a “direction” flag,
indicating whether the motion template should be traversed forwards or backwards (a
two-state variable, which would therefore doubling the parameter space size). This
was omitted partly because the direction of motion was known in our test cases and
partly because it is simple to reverse the motion template and re-run a test, thus
avoiding additional complications in implementation.

Accordingly, the use of motion templates adds four extra parameters to the four
required for shape extraction (as in the CVHT), giving in total an eight—dimensional

accumulator. While this will cause a large increase in the computational requirements,
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it is much less than the dimensional explosion threatened by polynomial extension.
Clearly, the ability to extract, optimally and robustly, arbitrary shapes following an

arbitrary path is well worth the additional computational resources.

4.1.1 Computational cost

The algorithm is of order O(N®) in terms of complexity or O(#points X #s X #r X
#mt_s X #mit_r X #t_off X #t_s) in terms of the number of operations required, where
#points is the number of feature points (e.g. thresholded edge-pixels) in the sequence
and #s, #r, #mt_s, #mt_r, #t_off and #t_s are the number of discrete steps in the
parameter ranges for initial shape scale and rotation, scale and rotation of the motion
template and temporal offset (phase) and scaling respectively. Hence, the new
approach inherits the usual computational cost penalty of the HT: the accumulator is
eight-dimensional and can require significant resources. However, most of the speed-
up and memory-reduction modifications to HT-related techniques [38] are applicable
— see Section 2.4.

As before, the complexity can be split into a shape and motion components. Like
the CVHT, this algorithm has a fixed cost shape description - O(N*) - but, unlike the
CVHT, it also has a fixed cost motion description - again O(N*). The crucial
difference is that the complexity of the motion description part is fixed for any type of

motion, thus giving better scaling of the algorithm to real-world situations.

4.1.2 An example motion template

As an example of the information that may be encoded in a motion template,
Figure 20 shows the changes in the x and y positions and the angle of the left foot of
the walker, pictured as he walks across the sequence. This is a simple case showing
only three components of the encoded data. A more direct (or unified) visualisation of
a motion template than that shown in the component graphs below is difficult to
produce because it must encode multiple dimensions of data (e.g. x, y, rotation, time),
not to mention the possibility of the path looping back on itself. This overlapping of
the path only occurs when one reduces the dimensionality of a motion template for
visualisation purposes. It is not possible for this to occur in the motion template itself
because there can only be one sample for any point in time, hence all points can be
uniquely distinguished. The use of an additional dimension to separate otherwise

interfering components is a well-established technique (e.g. [9]).
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The measurements were made manually with the x and y positions being recorded
for the rear of the heel of the left foot and the angle being estimated by eye (where a
negative angle indicates the heel is up and the toe down). This illustrates the
information that a motion template might have to record, in this case for extracting the
location of a foot (a better description of the gait cycle may be found in [42]). Figure
20a shows the initial frame of the twenty-frame sequence that was examined. Figure
20c and Figure 20d contain the x and y components, which behave as expected - x
increases as the foot swings forward and plateaus when it is placed on the ground so
that the right foot can be raised; y goes through an arc as the foot is raised, swung and
makes contact, then remains steady whilst the foot is pivoted upon. More
interestingly, the angle component, Figure 20b, follows a more complex trajectory as
the foot goes up onto tiptoe for the push-off phase of the gait cycle, follows a slow
rotation until heel impact at frame 14 and quickly reverts to level with the floor as the

weight of the body pushes the foot down.

Angle (degrees)

0 2 4 6 8 10 12 14 16 18

Time (frame number)

(a) Initial frame (b) Motion template angle component
450 | D 70
400 | ] T
L 350} ] L 0T
o o
2 300 g 407
o o
a L 2 30 f
= 250 e
200 t 1 20 ¢
150 t 1 10 t
oo b I .
0 2 4 6 8 10 12 14 16 18 0 2 4 6 8 10 12 14 16 18
Time (frame number) Time (frame number)
(c) Motion template X component (d) Motion template ¥ component

Figure 20: Changes in x and y positions and rotation of a walker's foot angle
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These three measures could be collected together to describe the anticipated
motion of the foot. This then becomes the motion template that, when combined with
a spatial template of a foot, would support extraction of human feet from a sequence
of images.

In the person-extraction results presented below, we have continued to use the
static torso rather than utilising the more advanced capabilities of the motion template
algorithm to search for legs or other parts of the body. This has the advantage of
retaining the comparability with earlier results and also avoids the issues of

articulation and difficult edge extraction around the legs.

4.2 Theory

Before the theory, it may be helpful (as an aid to visualisation) to have a brief
description of the processes performed by the motion template algorithm. For a given
feature point (e.g. an edge pixel in a frame), a locus of points is plotted through the
eight-dimensional accumulator space. This locus is constructed from the shape and
motion descriptors, which are used to create transformed (scaled, rotated and
translated) instances of the template shape. The transformations are intended to
compensate for the expected motion of the object relative to the time reference of
each frame and the anticipated scale and orientation of the object. Each of these
instances is then traced into the accumulator in the two-dimensional x-y plane
appropriate for the values of the various parameters. Once the voting process is
complete, peaks in the accumulator indicate the location, rotation, scale, etc (at time
t = 0) of an instance of the target shape moving along the specified path.

The analysis in this section is derived from the CVHT theory (Section 3.2), so
there are similarities between the theory supporting motion templates and that of the
CVHT. As one might expect, the changes to the CVHT theory are confined to
implementing motion templates as the motion model. Hence the shape
parameterisation is unchanged, so Equations 1 through 5 in Section 3.2 describe the
shape template as before. Having parameterised the shape template, we must now
parameterise the motion template, encoding the changing position, rotation and scale
parameters. There are two major differences in the definition of the motion template
from that of the shape parameterisation. The first is that the DC terms of the FDs are
retained and used in the reconstruction. Removing them would effectively translate

reconstructed co-ordinates relative to some arbitrary origin (i.e. the centre of mass of
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the template), which would destroy the utility of the sequence by moving the start
point. With motion templates, the start point is crucial to proper motion backtracking.
Secondly, and relevant in terms of implementation or specifics of template definition
only, the offsets used are not derived from chain codes, which have fixed x, y and ¢
values, but come from a list of waypoints and thus can instead specify larger
increments.

Here we recapitulate the FD definitions, but adapted to representing the motion
template: A curve defined by two orthogonal components MT(T,.) and MTy(T,.p),
representing the motion template M7, is parameterised by a normalised time reference

T,er € [0,27) as follows:

a, = /E J:MTX(TMf)cos(kTref)dT and b, = A f_”ﬂMTx(T,ef)sin(kzef)dT (12)

with matching equations for the y component, where & is the harmonic number. As
before, the larger k is, the more accurate the representation will be (up to some limit
defined by the application scenario). Co-ordinates are recovered from the Fourier

description using;:

m. (T, )+ by, sin(kT,,,)) (13)

o MTFDx) = ZZZO (axk cos(kT,

ef

where MTFD. ={a,,b,.a.,,b,,....a

x12%x1>

b} (the FD components of MT), again

>
with a matching equation in y. Note the inclusion of the DC component (k=0).

So, in terms of theory, the motion templates are essentially identical to the shape
representation FDs. In terms of implementation, there is the one significant difference
mentioned above. In the shape description, the curve is piecewise linear and described
with chain codes prior to Fourier encoding; in contrast, the waypoint structure
describing the motion template is not an eight-way neighbour-connected chain but
more of a directed graph. Each waypoint is specified by intermediate links detailing
how far in the x, y and ¢ dimensions to move in order to reach the next point — chain
codes always indicate a movement of 0 or 1 units in x and y, and, in Kuhl’s theory
[35], the change in ¢ is set by the assumption of a fixed traversal speed and the
Pythagorean length of the combined x and y components. In adapting Kuhl’s theory of
elliptic Fourier Descriptors, the change in x or y (Ax or Ay) has become variable rather
than fixed to 1 or V2 and the change in time (Af) is user selectable (thus allowing

variable speeds at different points on the path). This breaks Kuhl’s constant speed
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assumption but causes no difficulties with the rest of the algorithm because this

assumption was only used to calculate At for particular Ax or Ay values.

We now have my(T,y) and m(T,y) (assuming an implicit MTFD parameter),
which are functions that decode a set of motion template FDs to recover a co-ordinate
(for x position and y position respectively) for a particular frame time T, (normalised
to 0 to 27 for FD reconstruction). In addition, let m, (T, and my(T,,;) be functions
that take a frame time 7,.r and recover rotation and scale co-ordinates. As orthogonal
components (i.e. with no direct relation), these are defined in the same way as 1y(T.y)
and my(T,.s) above.

The composite entity created by using these co-ordinate recovery functions
together gives us a motion template. This motion template is now used to transform
the co-ordinates calculated from the shape descriptors. These co-ordinates have
already been globally scaled and rotated (i.e. we are using R, and R, from Equation 5)
to adjust for possible initial scales and orientations. They are then further scaled and
rotated according to the stored values in the motion template, thus allowing for
changes during motion:

S (8L Tpa) =my (L, T, )R (s,a, )costn, (T, —T,;.)
—-m (Tref _Taff)Ry (S’as)Sinan (Tref _Y:;ﬁ))

with a similar equation for y co-ordinates and where s is a free variable specifying

(14)

a point on the shape template and a; is a vector of the shape template’s rotation and
scale parameters. T}, is the time reference (frame number) of the current image and
Ty 18 a phase parameter that offsets any mismatch between the frame times in the
sequence and in the motion template. my(T,.f - Tog) and my( T,,p - T,yp) recover scale
and rotation, respectively, for time T,.s - T,y from the motion template. These rotated
and scaled co-ordinates now represent the shape at the expected orientation and scale.
Next, they are translated to compensate for the object's expected motion. However,

the path of expected motion is also scaled and rotated, requiring parameters
am :[lm plll]’

lux (S’Trcf ’Y:)f ’am ’as) = 5}( (S’Y—;ef ”Tnff ’a.\*)

. : (15)
+ lm nzx (Y;ej' - T;Jff ) COS(pm ) - lln ’ny (Yref - T;)jf ) S1n (pm )

again with a similar equation in y and where my(T . - T,y) and my(T,os - T,yy) are the
x and y offsets recovered from the motion template at time 7, - T, We can now

form the kernel that defines the shape of votes in the accumulator. This is a multi-
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dimensional combination of the template at a number of translations, orientations and

scales, and can be obtained from:

a)(s, ref 3 oﬁ,lT,am,a )= u (s, (Tref 1), T off > a ,a)U, (16)
+ U (5, (T 1) T 02,2 0U,

One final parameter, Ir, has been added to perform temporal scaling on the motion
template, thereby allowing adjustment of the speed at which the path is traversed. To
ensure that the locus drawn in the accumulator passes through the reference point, the
kernel is offset from the image co-ordinates of each feature point. Hence, for an image

sequence IS (first defined in Equation 7 but repeated here for convenience), the votes

are placed in the accumulator as A;:

s ={(p,T, )| PeD,,T, D, } 17)

APTe/:{I(P ref) w(s ref’ l a,a)

se D }VPe D,.,T,, € D, (18)

As before, a suffix on the domain indicates its extent (here, Dp is the domain of an
image in the sequence and Dr is the set of frame times in the sequence). A( rcf)

retrieves feature points from the sequence. Again, as before, the parameter space
formed by the application of the expression above is mapped into an accumulator by
the use of a matching function M (Equation 9). This multi-dimensional accumulator

space is sampled into a discrete parameter space Spyr given by:

DMT(b I, Tg.a,.a)= 2 Z ZM(E’Z(P T)~ (s, Ty Tylria,,a)) (19)

s€ D, PEDy T,y Dy

where b is a vector of the image x and y co-ordinates at time O, Ir is the time
scale-factor, T 1s the time offset (phase) and a,, and a; contain scale and rotation
parameters that respectively transform the motion template’s path and transform the
initial orientation of the target shape. This expression gives an accumulation strategy
for finding arbitrary shapes moving arbitrarily. It allows extraction of the optimal
parameters describing an arbitrary (but specified) shape of unknown orientation,
position and scale that is following an arbitrary (but specified) path of unknown
orientation and scale, which takes an unknown time to traverse.

The new algorithm currently traces the entire template shape in the accumulator
for each feature point and for each parameter combination. The GHT places a
restriction on which template points are drawn - only those with the same gradient

direction as the edge pixel being processed are added to the accumulator so that only
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the relevant fractions of the template are traced. With accurate gradient direction data,
this restriction removes many unnecessary votes (and hence noise) from the
accumulator. The voting algorithm may be changed to perform the same reduction of
votes as in the GHT by incorporating a function that calculates the gradient direction
at a point on the Fourier-described curve. This value would then be compared against
edge pixel gradient direction to restrict votes cast into the accumulator. Depending on
the computational cost of the gradient direction calculation, this reduction in voting

may result in a linear speed improvement.

4.3 Pseudo-code algorithm

The algorithm that describes the motion template HT voting process is:

For (frame f of the sequence)
For (edge pixels ey, e, exceeding threshold value)
For (time_scale=timescale min -> timescale_max)
For (phase=phase_min -> phase_max)
time=timescale * frame_time(f) + phase
Recover my,my,my,my from MT(time)
For (scale=scale min -> scale_max)
For (angle=angle _min =-> angle_max)
For (t=0 =-> 2*PI)
Generate vector from FD (t)
Rotate vector by (angle + mp)
Scale vector by (scale + m;)
For (mt_global_angle= mt_global_angle min ->
mt_global_angle max)
For (mt_global scale= mt_global_scale min =->
mt_global scale _max)
Rotate (my,my,) by mt_global_angle
Scale (my,my) by mt_global_scale
Offset FD vector by (mx, my)
Offset FD vector from (ex, ey)
Result is final co-oxds (ax,ay)
accumlax, a,, scale, angle, timescale, phase,

mt_global_angle, mt_global_ scale] ++
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4.4 Results

It is usually prudent to compare new techniques with contemporary or equivalent
approaches. This appears unfeasible in this case since the most appropriate
comparator technique is the GHT, but with interpolation, or tracking. The suitable
form of this interpolation for the GHT (or the motion model for tracking) is actually
the motion template, the very subject of these results. The alternative would be a fully
representative parametric motion model that, as explained previously, is
computationally intractable due to its infinite dimensionality. Consequently, the
comparison that would be made is that of a frame-by-frame extraction process with a
non-analytic template representation against an integrated multi-frame extraction
process with an analytic template representation. This comparison has already been
made in Section 3.4, which examined the earlier approach to moving arbitrary-shape
extraction (without motion templates but with a linear motion model) and
consequently fails to test the subject of this section - the motion template in an
evidence gathering context.

Comparison with other techniques that use similar knowledge of motion (such as
the neural network based human motion tracker [61] or the spatio-temporal repetitive
motion detector using temporal textures [SO] mentioned earlier) is not comparing like
with like. Neither is comparison with other spatio-temporal based techniques (e.g. a
snake that operates in a spatio-velocity space [49]) since they too are dissimilar at a
core level. In the case of techniques that are as dissimilar as a tracker and an extractor,
the comparison is best made on application-dependent qualitative requirements or on
the basis of each technique's features (e.g. optimality vs. on-line performance), rather
than a quantitative performance analysis. In light of these difficulties, we have
examined the performance of the new technique in terms of noise affecting each
component of the system rather than attempt to make direct comparisons with other
distantly related approaches. We believe that such analysis will enable the
aforementioned choice based on requirements or features.

The short note on pre-processing and noise models in Section 3.4.1 applies to this

section also.
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4.4.1 Image-noise performance on synthetic sequences

Frame

Noise

0%

20%

40%

60%

80%
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‘;‘-g}%?“'-'

Figure 21: Full synthetic sequence with Gaussian noise

The new algorithm was run on a nine-frame synthetic sequence based on a small
(50%50) image, Figure 21 (0% row), moving along the path shown in Figure 22a.
The path was regularly sampled (in time) for this illustration and the grey-levels show
the time taken to traverse each section of the path (the darker the pixel, the more time
was spent traversing it; i.e. the slower the movement). The cross on the left edge of
the motion template indicates the starting point with motion proceeding clockwise
along the path shown. The motion template was given perfect co-ordinates since we
are examining the response to image noise in the input sequence, not noise in the
motion template. Again, a small image was chosen to make practical computation of
large-scale tests. Noise (Gaussian wraparound) was added at random to each frame of
the sequence at eleven noise levels from 0% random coverage to 100% random

coverage of the frame, with pixel values wrapping rather than being clipped when the
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addition of noise took the values out of range. The noise distribution was zero-mean
Gaussian with a standard deviation of one. This noise function is harsher than that
found in Section 3.4.1 because wrapping pixel values ensures that the data is changed
- just thresholding an addition of noise to a white pixel may leave it unchanged. The
noise function was altered when preliminary results using the original function
indicated excellent performance at 100% noise! Examples of the effects of the
increasing noise levels can be seen in Figure 21. The grey-level images produced are
thresholded by the algorithm, although Figure 21 shows images prior to thresholding.
Note that the shape is completely obliterated at the maximum noise level and that at

around 50% noise it is nearly impossible to distinguish the shape by human vision.

(a) Motion template (small cross at far (b) Frame 0 of sequence with

left is start point) superimposed motion template

Figure 22: Motion trajectory of "legs" shape

Again, the new technique is shown to be capable of coping with significant levels
of noise. The performance curve in Figure 23 is similar to those for previous VHT-
derived techniques. This is accordance with earlier studies that found that the VHT-
based techniques are able to handle noise levels that are approximately twenty percent

greater than a comparable GHT-based frame-by-frame technique.
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Figure 23: Noise performance for synthetic imagery

Contrasting these results with the earlier ones for the CVHT (Section 3.4.2) shows
a similar but steeper performance curve. The CVHT began to lose accuracy at lower
noise levels (40% versus 50%) and gradually declined to total failure at some point
after 90% whilst the failure point for the motion template implementation is earlier at
approximately 75%. On the face of it, this indicates the CVHT is more resilient but it
must be noted that the noise function used here produces stronger damage to the edge-
pixel data than that used for the CVHT tests. Above, we stated that using the motion
template technique with the previous noise function returned excellent accuracy even
at 100% noise. As explained above, the "clipped" noise function used for the CVHT
tests may retain an edge-pixel at the correct level whilst the harsher "wrap-around"
function guarantees to alter this information. So, with this taken into account, it
suggests that the motion template implementation can tolerate significantly higher

noise levels for similar conditions.
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4.4.2 Image-noise performance on real-world sequences

Ultimately, the intention is to apply the new techniques to the analysis of human
motion. For this purpose, and to substantiate the applicability to real-world imagery,
we have evaluated the performance of motion templates when locating a walking
person viewed from the side, as with the CVHT in Section 3.4.4. For each image in
the sequence, co-ordinates specifying the particular motion of the walker were
gathered by selecting a reference point on the body and estimating its position by eye.
Since these measurements are likely to contain inaccuracies, the motion template
itself is not perfect and will be another source of errors and peak-spread in the
accumulator. Again, as with the CVHT, owing to the robustness of its formulation

there is no need for exceptional precautions in the new technique.

—— L — —

(a) Torso and head  (b) Motion template (begins at the small cross on the far right)

template

Figure 24: Shape and motion templates for CA1 sequence.

Again, we have used the torso rather than legs in these tests, despite the new
technique being more capable of handling the more complex motion. This is in part
because of the difficulties of extracting legs cleanly (self-occlusion and bad edge-
detection due to shadows). More importantly, using the same part of the body allows
us to retain the capability to make a limited comparison with the earlier CVHT tests.
Figure 24 shows a reconstructed template of a walker's (CA1) torso and head, which
was created by manual tracing from a typical frame in the sequence. Also shown is a
plot of the x and y components of the motion template used. Figure 25-Figure 27
displays the frames of the walker sequence CA1 after a successful extraction; both the

extracted shape and motion templates are superimposed on each image.
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Frame 4 Frame 5 Frame 6

Frame 7 Frame 8 Frame 9

Frame 13 Frame 14 Frame 15

Figure 25: (part 1 of 3) Frames of sequence CA1 with superimposed templates.
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Frame 16 Frame 17

Frame 19 Frame 20 Frame 21

Frame 22 Frame 23 Frame 24

Frame 28 Frame 29 Frame 30

Figure 26: (part 2 of 3) Frames of sequence CA1 with superimposed templates.
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Frame 31 Frame 32 Frame 33

Frame 35 Frame 36

Frame 37 Frame 38 Frame 39

Figure 27: (part 3 of 3) Frames of sequence CA1 with superimposed templates.

The noise model used in Section 4.4.1 (analysis of noisy synthetic imagery —
wraparound Gaussian noise) was applied to each frame of the CA1l sequence, with
examples of the different noise levels shown in Figure 13 (Section 3.4.4). The
sequence processed here is identical both in content and in the type of noise added to
it as that used in Section 3.4.4. Figure 13 shows the walker can be difficult to perceive
in a single frame when the noise exceeds 40%. In fact, this is the point at which
automatic extraction starts to fail, slightly earlier than for the synthesised imagery.
The test results displayed in Figure 28 show the beginnings of accuracy loss at 40%
noise, dropping off smoothly and missing the target completely above 80% noise. The
difference between these results and those for synthetic imagery can be attributed to
the imperfect conditions prevalent in the real world; e.g. the cluttered and noisy
background and the imperfect shape and motion templates. Comparing it with the
earlier CVHT result for this sequence, it can be seen that there has been a minor

improvement. Since the CAl subject walks quite “flatly”, with minimal bobbing
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motion, it seems that CVHT linear velocity motion model managed a good extraction

result, similar to that of the motion template.

Hit rate (10 trials)

0 ! 1 L - |
0 20 40 60 80 100

Image noise (%)

Figure 28: Extraction accuracy in increasing Gaussian noise for CA1 sequence
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4.4.3 Image-occlusion performance on real-world sequences

A simple test of the effects of occlusion was carried out on the walker sequence
CA1 described above. No noise was added to the sequence since this would be an
unnecessary complicating factor. Instead, vertical lines of pixels were blanked out and
the algorithm was run on the resulting images. The results revealed (Figure 29) that
the new technique correctly extracts the walker until the blanking is 175 pixels wide —
completely obscuring the walker for approximately 70% of the duration of the entire
sequence. Furthermore (although this is not shown on the graph), the extracted peak is
within one pixel of the true peak for another thirty pixels, indicating there is a
measure of peak spreading. Like the CVHT, the new technique is capable of handling
high levels of occlusion owing to the global integration of evidence across the entire
sequence. This result is similar to the earlier CVHT synthetic occlusion tests (Section

3.4.3).
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Figure 29: Occlusion tests on CA1 sequence
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4.4.4 Effects of noise in the motion template

To determine the resilience to noise in the motion template, a percentage of co-
ordinates calculated from it were perturbed by uniform noise. Note that adjusting
these co-ordinates is equivalent to moving the target shape in the image sequence by
the same amount. There are two dimensions to the noise: first, how many of the co-
ordinates are affected; second, the maximum distance (in pixels) that would be added
to each co-ordinate. These tests were performed on the synthetic sequence and motion
template in Section 4.4.1. An example of this corruption can be seen in Figure 30
below (as before, the darker the pixel, the more time spent traversing that section of
the path). The corrupted motion template displayed in Figure 30b and Figure 30d had
a 100% probability of a co-ordinate being affected, with a maximum offset from the

true path of 1 pixel.

“ |
s
%‘ 2 .
|
(a) Original, uncorrupted (b) Corrupted motion
motion template template

(c) 3D plot of original, (d) 3D plot of corrupted

uncorrupted motion template motion template

Figure 30: A corrupted motion template
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The results show that as the percentage of co-ordinates corrupted increases, so the
performance declines. Figure 31a shows the hit rate from 100 trials at each noise
level, with a drop beginning after approximately 40% of motion template co-ordinates
have been corrupted, and declining to total failure when all have been affected. The
pixel distance added has no effect when its value is below 1 since quantisation in the
accumulator removes any effect. Once the value is above 1, the effect cannot be
negated and performance declines as described. Figure 31b shows the inverse of
Figure 31a, the rising number of misses as a function of the two noise components. It
is interesting to note that the drop-away in performance is fairly (although not
completely) constant across the range of max-pixel-distances-added, perhaps because
there is little competing noise in the synthetic sequence.

The mechanism for performance decline can be attributed to a "peak-spreading”
effect common to all HT-derived techniques. As the accuracy of the input data
decreases, the peaks in the accumulator become less defined (smaller and more spread
out) and the background noise level rises. To begin with, the HT-algorithm will find
the correct parameters but, as noise increases and the definition of the correct peak
becomes smoother, the parameter estimates slip gradually from their true values. This
continues until the spreading of the peak weakens it to the point where the algorithm
is attracted to other potential sites. It is made clear that this is occurring by comparing
the graphs in Figure 32a and Figure 32b, which show near misses (in the immediate
neighbourhood of the target). At lower noise levels, the graphs show a constant hit
rate, indicating that the output peak is within the ranges specified on the graphs, and
demonstrating that slippage is occurring rather than a radically different peak location
being selected. As the noise increases, the location of the peak moves by
approximately the same amount as the pixel distance noise being added to the motion
template. Ultimately, as the correct peak sinks into background noise in the

accumulator, the algorithm’s output moves to more distant and incorrect peaks.
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Figure 31: Hits and total misses with percentage of corrupted co-ordinates in

motion template
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Figure 32: Nearby misses with percentage of corrupted co-ordinates in motion

template
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In real situations, only some portions of the motion template are significant - it is a
continuous representation being used with a discrete data set (the frames in a
sequence). Consequently, each sequence will only exercise certain co-ordinates in the
motion template - those with a time reference matching the time references of the
frames in the sequence analysed. The effect of this on the validity of the results as a
whole is negligible since noise is applied randomly and uniformly with many trials,
thus averaging out any effects. However, since it is entirely possible to have a high
corruption rate without necessarily affecting the particular co-ordinates that are vital
to a sequence, the graphs show a smooth decline rather than a plunge.

The graphs all show a plateau effect where the “maximum pixel distance” value is
below a threshold (one pixel for Figure 31a and Figure 32a, two pixels for Figure
32b). This occurs when the noise is less than the "hit" threshold. It is due to two
effects: the discretisation process of accumulation rounds out the errors to within one
pixel of accuracy and the post-processing that determines whether a hit has occurred
flattens any other errors up to the hit threshold.

In summary, the motion template is sensitive to noise only when the points
significant for the sequence being processed are affected by noise, and if their number

is sufficient to overwhelm the in-built resilience of the evidence-gathering approach.

4.4.5 Simulated time-lapse imagery

Replicating the earlier CVHT (Section 4.4.1) tests, this section tests motion
template performance in conditions that simulate time-lapse video. Previously, it was
stated that time-lapse video can be viewed as regular occlusion of the target and, as
such, will cause severe problems for techniques that suffer in occlusion. It was found
that the CVHT was successful with 50% of the sequence removed (a time-lapse where
one frame in two is kept) but failed thereafter. It is likely that this failure was due to
the inaccurate modelling of the motion of the target, a factor that is shown to have
been eliminated by the motion template technique.

The same CA1 sequence (but with 40 frames, not 20) has been examined with the
same time-lapse and noise (Gaussian wrap-around) models. As before, the number of

trials were limited by practical concerns and focussed in areas of interest.
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Figure 33: Simulated time-lapse sequence for 40 frames of CA1l sequence

The results in Figure 33 above show that time-lapse does not affect the extraction,
even at the highest levels tested (naturally, 100% time-lapse must fail and thus was
not included above). The motion template technique models the motion of the target
well enough that any one frame is normally sufficient for accurate extraction.
Considered another way, when the motion template implementation is given only one
frame, it will degenerate to a single frame processor, like the GHT. The only
difference is that the motion template algorithm’s output will be time-corrected, so
that parameters are reported relative to time zero, rather than applying directly to the
frame processed as with the GHT. Naturally, the level of trust that can be placed in
extractions from very short sequences is limited due to the small amounts of evidence
accumulated. However, the motion template technique will always return the best fit
for the data provided, even if that quantity of data is insufficient for a trustworthy

analysis.
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Figure 34: Two views (from different angles) of performance when using

simulated time-lapse imagery in varying levels of noise.
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A fully successful extraction in all conditions (as above) does not reveal much
about the performance of the technique. Consequently, and as with the CVHT tests,
image noise is introduced in addition to time-lapse to give a more meaningful
performance test. The graphs in Figure 34 indicate that the motion template technique
performs appreciably better than the CVHT. Compared to the earlier algorithm
(Section 4.4.1), total collapse is reached after 10-20% more image noise is applied
(approximately 60-70% image noise), with excellent performance in highly time-
lapsed sequences. For the majority of the time-lapse range, the image noise
performance curve is notably similar to that displayed in the CAl real-world tests in
Section 4.4.2 above.

Looking at near misses (Figure 35), we see the motion template algorithm has a
gently declining period where the output is close to the correct result before errors
become prevalent. The period of grace is smaller than that of the CVHT, giving a
sharper drop-off. This must be weighed against the fact that the motion template
technique is robust in the lower noise levels where the CVHT fails (contrast Figure 35
with Figure 17 in Section 4.4.1). Here, however, noise levels must be significantly
higher to produce terminal failure - a flawless hit rate is maintained until
contamination by noise is quite excessive (60% image noise with 80% time-lapse).
Collapse occurs by 80% image noise at all levels of time-lapse, which is in line with
the tests on non-time-lapsed imagery in Section 4.4.1.

These results show the motion template algorithm is significantly more robust than
the CVHT, enjoying notable endurance to high levels of time-lapse combined with
substantial image noise. The credit for the improved extraction is likely due to the

accurate motion model employed, which allows exact extraction on very limited data.
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4.4.6 Finding people with motion templates

Further tests were performed to check the repeatability of human walker
extraction. Three extra image sequences of walkers (MA1, SG1 and VHI) were
correctly extracted as shown in Figure 36, Figure 37 and Figure 38. Also shown in
these figures are the results of attempting to extract the same walker - using the shape
and motion templates from the original sequence - but tested on a second sequence
(MA3, SG3 and VH3 respectively). This experiment is the beginnings of a study as to
whether the shape and motion templates are appreciably similar for a person at
different times, or indeed, whether a single generic template can be used for a general

walker extraction technique.

(a) MA1 frame 0 (b) MA1 frame 20 (c) MA1 frame 40

(d) MA3 frame 0 (e) MA3 frame 20 (f) MA3 frame 40

q—-—___—_h____l‘__—r—__—_r‘-—-___w_———————_\_ _______g—\..r'ﬂ-

(g) Motion template (starts on left)

Figure 36: MA1 and MA3 extracted with the same templates

As can be seen, MA3 (Figure 36) has been correctly extracted using the MAI
templates. Using the template from SGI, the extraction of SG3 (Figure 37) begins
promisingly but loses accuracy towards the end of the sequence. Examining the full
sequence (Appendix 9) shows that the subject moves faster than the motion template

predicts in the latter half of the sequence, thus outpacing the template. Close
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examination of the second half of the SG1 motion template shows a change from the

pattern established in the first half - the subject slows down after he reaches the

midpoint of the sequence.

(b) SG1 frame 20 (c) SG1 frame 40

(d) SG3 frame 0 (e) SG3 frame 20 (f) SG3 frame 40

(g) Motion template (starts on right)

Figure 37: SG1 and SG3 extracted with the same templates

Figure 38 (VH3) demonstrates the same difficulty when using the template for
VH1, but the algorithm manifests the location error at the beginning of the sequence.
This is due to some problems towards the end of the sequence with poor edges (and
hence a corrupted motion template) resulting from height of the subject causing
interaction with the lighting in the room.

The algorithm, as expected, performs the best extraction possible given the
constraints placed upon it. Even when the motion and shape templates do not
accurately match the sequence being examined the algorithm has successfully
extracted parameters that best match the problem - locating the walker accurately for
as much of the sequence as is possible. Given greater computational facilities (or
perhaps the genetic algorithm implementation discussed in the future work - Section
5.2), it would have been interesting to allow the algorithm more flexibility in its

matching by permitting it to use a range of scaling factors, etc. Since the results are
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either very accurate or fairly close, this offers hope for a future attempt at locating
humans with a "standard walk" motion template and a suitable range of scaling

parameters. This has not yet been attempted due to the computational requirements.

(a) VHI frame O (b) VH1 frame 20 (c) VHI frame 40

&

(d) VH3 frame 0 (e) VH3 frame 20 (f) VH3 frame 40

(g) Motion template (starts on left)

Figure 38: VH1 and VH3 extracted with the same templates

Complete image sequences of the subjects studied in this section, with
superimposed shape and motion templates, and some example edge-detected images,

may be found in Appendix 9.
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4.5 Conclusions

This chapter has addressed the issue posed by the CVHT's difficulty with complex
motion - namely, that the complexity of the algorithm is proportional to the
complexity of the motion model. The central reason for the development of the CVHT
was to avoid this very problem, but in the context of shape description rather than
motion description. Accordingly, applying the same solution to the motion model was
appropriate —i.e. use the template approach to set limits on the complexity.

We have introduced the notion of motion templates as a means for description of a
trajectory in order to efficiently integrate arbitrary motion into an evidence-gathering
framework. The compromise made is the requirement for prior knowledge of the form
of the motion. As argued, the literature has already successfully made a case for shape
representation with prior knowledge and the proposition is equally valid for motion
representation, given an appropriate application.

Motion templates are a form of temporal template that has been re-interpreted in
the HT setting. They have been used to encode multiple components of movement in
a fixed cost representation. Thereby, accumulator complexity is constrained to a fixed
magnitude regardless of the complexity of the motion. Fourier Descriptors were
chosen as the particular form of implementation, although other basis types are
equally valid. FDs are especially appropriate in this case since they provide access to
the frequency components of the template (a significant factor when examining
periodic motion) and, with the CVHT using the same representation for shape, we
gain an integrated and consistent framework for the description of both shape and
motion. We have provided a theoretical underpinning for this development.

As with the CVHT, we have examined the performance of the new approach in a
variety of situations: a set of synthetic circumstances, designed to examine particular
characteristics, and a number of real-world test scenarios, in order to ensure the
results from synthetic analysis generalise. As before, applying noise (both Gaussian
and occlusion) to source images and processing them demonstrated excellent
resilience - in fact, the performance was an improvement on the CVHT, necessitating
the use of a more vigorous noise function in order to acquire useful results. Similarly,
time-lapse studies showed improvements on the CVHT, paralleling those of the noise

results. Examination of real-world sequences confirmed that the new algorithm
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generalises without significant degradation. It seems likely that the improved
performance can be attributed to the extra information possessed by the motion
template technique, which facilitates enhanced resolving power in complex scenarios
by focussing the peaks in the accumulator.

With the introduction of the motion template, there is a new opportunity for noise
to enter the system - noise in the motion template itself. We also examined this source
of errors and found performance results consistent with the HT roots of the algorithm.
Increasing noise initially has no effect, and then location accuracy suffers from local
jitters as the peak in the accumulator begins to spread before finally noise levels cross
a threshold and the algorithm fails.

Finally, we have examined the effects of using shape and motion templates on
sequences that they were not generated from. This investigation was intended to
explore the possibility of using generic templates for particular scenarios and allowing
the algorithm to adapt them to the situation. The results showed that the idea has
promise; it has excellent accuracy in one case and reasonable success in a further two
tests. The limiting factor was the amount of processing required, a solution to which is
perhaps a GA, described in the next chapter.

In summary, introducing templates to describe motion gives us a robust, optimal
and (within the constraints of an evidence-gathering implementation) efficient

algorithm capable of extracting arbitrarily moving arbitrary shapes.
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5 Further work

Our suggestions for future development concentrate on two main areas:
applications and the algorithm.

In the application domain, we intend to integrate current gait research with the
new techniques (see Section 5.1). This is likely to require articulated objects, a simple
extension, and the use of optimisation procedures in order to make practical searches
on larger parameter spaces with current technology. Consequently, a genetic
algorithm version of the motion template technique has been implemented, and is
described in Section 5.2.

On the algorithm development side, it would be useful to partly relax the rigid
shape requirement in order to further generalise the approach. A possible approach
might allow the motion template to specify different models for different parts of the
sequence, perhaps with some form of interpolation or morphing between models that
is loosely based on the HT for natural shapes (HTNS) [55]. The HTNS uses the set
difference (in the mathematical sense) of the two extremes of a shape as the vote
pattern, rather than the contour of one shape. In a motion template context, a model is
selected for each waypoint in the motion template (e.g. two models may be used, one
for waypoint 0 — frame O — and one for waypoint 1 — frame 10), and the vote pattern
for a particular frame between two waypoints could be derived from an interpolation
of the models based on the HTNS principle. Figure 1 illustrates the concept, with
Figure 1d showing the proposed accumulator vote pattern for a point in time between
the two models in Figure 1b and Figure lc. The dark areas indicate where votes are
cast, with larger areas signifying more uncertainty in the exact location of the true
edge. The major disadvantage to this vote pattern is that it assigns more votes (and
thus more weight) to areas of uncertainty, therefore increasing the likelihood of
distorting the peak.

An alternative to the suggested HTNS development might use a different method
to generate the appropriate vote pattern. For example, a traditional computer-graphics
“morph” might be used, where the location of particular points on an image are
interpolated from the old location to the new, warping the image they are attached to,

and whilst the original image is faded out and the new one faded in.
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(a) A Mycenaean jug

(b) Vote pattern for jug at 0° (c) Vote pattern for jug at 15°

5

~

(d) Combined vote pattern

Figure 39: Suggested means of representing uncertainty for a changing model
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5.1 Q@Gait Recognition

An emerging application of computer vision techniques is that of person
identification (e.g. ATM machines using iris recognition, fingerprint or face
recognition for unlocking screensavers and doors, see [31] for more examples). Many
of the biometric collection mechanisms require close proximity or even contact. They
may also be vulnerable to deception (e.g. holding a photograph of someone’s face in
front of the camera).

Gait is a useful biometric because it can be measured non-invasively, remotely and
with no easy means of disguise (since changing or hiding one’s walk normally makes
one conspicuous). Human motion analysis [2,18] has existed for some time, but there
are presently only two means of calculating gait biometrics — statistically and using
model based techniques [45].

The first method uses statistical techniques such as moments to measure changes
in an image sequence of a walking person and derives a recognisable metric from this.
This method does not directly use the motion of walking to aid in the location or
identification of the person but rather uses the motion content of the images (or a
region of them) as a whole. Some examples of statistical techniques are [27,41, 48].

The second approach uses models to identify regions on the body (e.g. the legs)
and to make measurements directly upon these extracted regions (e.g. hip rotation
cycles). One particular variant, described by Cunado [13], embodies the VHT to
extract the locations of a leg in a sequence and, by analysing the angular motion,
automatically generates gait signatures for recognition. By combining magnitude and
phase components that were calculated from Fourier analysis of hip rotation, Cunado
achieved 100% recognition from a database of 10 subjects — admittedly a database of
insufficient size for statistical significance.

The new techniques developed here can fit into either recognition category. For
model-based recognition, we intend that they will be used to extract the location and
orientation of legs, a gait signature as discussed later. For statistical-based
recognition, the approaches isolate the moving human body, as such giving a primer
to extract features for statistical based techniques, and thus extending the limited
stock of techniques for this purpose.

One possible development branch is to introduce articulation to the CVHT, so that
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two legs can be tracked. This would enable a gait signature to be calculated from hip
rotation cycles and would improve on the work in [13] since it would be possible to
model the legs directly rather than with straight lines. However, the dimensionality of
the problem remains high.

A second branch would be to attempt to locate individuals using a motion template
that describes a generic walking-pattern, ready for further processing to identify the
person in question. Given that the representation of motion templates is inherently
suited to describing periodic motion such a template should be easy to create. More
ambitiously, it might be possible to look for specific individuals using a motion
template to describe a person’s unique walking motion. This will require an
investigation of whether a motion template of a walking pattern is unique to an
individual. Alternatively, in combination with an articulated leg model as described
above, motion templates could be used to extract both legs for a more detailed
description of the motion.

A further twist to this idea is that since the motion template is implemented using
Fourier descriptors, which allow access to frequency information, it may be possible
to integrate Cunado’s work into the motion template framework. The question to be
resolved is whether gait signatures are encoded or can be encoded within motion
templates. If this were possible, it would allow for an efficient and exact search of a

sequence for a particular individual whose signature is known.

5.2 Genetic Algorithms

Genetic algorithms (GAs) [19] attempt to harness the evolutionary principle to
achieve rapid but approximate answers to a problem. The technique improves on the
gradient descent search algorithm by introducing an element of random change and a
survival of the fittest strategy. Each solution is evaluated for its “fitness” (defined by
the problem space and a fitness function) and this metric is used to select out the
weaker solutions and combine the stronger. Over many generations or iterations, a
population of solutions will tend towards greater, though not necessarily optimal,
fitness. The random component (both in the choice of combination of and in mutating
the genomes) is intended to prevent populations becoming trapped in Jocal minima by
occasionally exploring a totally unconnected part of the search space. This is a little
like simulated annealing for gradient descent algorithms but without the “kick” being

tied to a specific start point.
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In the general case, a genetic algorithm version of any particular HT must encode
(in a genome) the parameters that normally describe the accumulator space (e.g. x and
y offset, angle and scale factor for a GHT). For examples of the approaches taken see
[63] for a GA circle-HT or [56] for a GA GHT-like algorithm. The values of these
parameters are then allowed to vary under the action of the GA. The genetic operators
— selection, crossover (combination) and mutation — allow prior knowledge to be
applied to direct the evolutionary pressure. Given a good understanding of the
problem, operators can be crafted that maximise the likelihood of improving a
genome by excluding those changes that manifestly will fail or be meaningless.
However, even without special purpose operators, GAs provide an effective means of
searching a large solution space.

At this point in time, computational power is insufficient for truly large-scale
processing with the new algorithms above — the search spaces, while constrained, are
still too expansive. Consequently, the way to real-world use of this work now is to
apply an optimisation technique like a GA. The robustness and optimality of the
newly developed HT techniques will be traded for speed by using a GA since it will
no longer be performing an exhaustive search. Instead, a genetic algorithm version of
any HT effectively reverts to a template-matching implementation. Particular
solutions (e.g. the values of x and y offset) are generated by initialisation or
combination operators for each member of the population (a genome) and their fitness
evaluated for the search space in question. In this instance, the fitness evaluation is
made by calculating the number of matches between the outcome predicted by each
genome and the actual data in question — 1.e. a template match.

We have made a preliminary implementation of a genetic algorithm variant of the
motion template HT described in Chapter 4. A brief examination of its performance
has been made by attempting to extract the “legs” shape first seen in Section 4.4.1,
and shown again in Figure 40a below. As before, we ran multiple trials at several
noise levels (100 trials at 11 noise levels). The noise model used was unchanged-
Gaussian noise (wrap-around, with a standard deviation of 1 and a mean of 0) added
to each pixel. The probability of noise being added to any one pixel was varied

between 0% and 100%, in 10% steps.
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(a) Sharp edges (b) Smoothed edges (5 x 5 Gaussian blur)

Figure 40: A frame from the “legs” sequence with sharp and blurred edges
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Figure 41: GA performance on sharp-edged sequence in increasing noise (exact

hits in 100 trials)

Figure 41 shows the hit rate (defined as an exact match of the location output from
the algorithm and the known ground truth). The algorithm is successful in
approximately 35%=+10% of the trials for the first 7 noise steps (up to 60% noise)
before declining to total failure at 80% noise. The shape of this performance curve

matches that of the “pure” HT implementation (Section 4.4.1) albeit with a lower
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ceiling (~35% versus 100%). This lower ceiling is probably due to the non-optimal
nature of genetic algorithms — unfortunate initialisation and getting trapped in local
minima will inevitably blight some of the results. Pseudo-random characteristics like
initialisation will also account for the fluctuation of the results about the 35% mark.
That said, it is worth noting that the GA does far better than chance in attaining the
35% result. Pure chance would give a hit rate of approximately 4% for this test (a
small parameter space with a 50 X 50 accumulator and 100 genomes). The graphs
below show the hit rates including near misses within one unit by a Euclidean
measure (approximately one pixel) - Figure 42 - and three units (approximately three
pixels) of the target - Figure 43. They indicate that when the GA misses, it gives a

nearby result in 50% of the trials.
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Figure 42: GA performance on sharp-edged sequence in increasing noise - near

misses within approx. one pixel of target (includes Figure 41 results)

In comparison with the pure HT implementation, this does not seem impressive.
However, the strengths of GAs lie not in their optimality but in their ability to
examine a large search space in a practical time. While standard HTs give better
results, it is not possible to use them in the more complicated scenarios where the GA

compromise remains feasible.
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This GA implementation uses standard operators for mutation and crossover. A
well-known optimisation is to develop operators specialised for the problem domain.
By building in knowledge of the problem, non-beneficial mutations or crossovers can
be avoided and the focus of the GA improved. In terms of this algorithm, it may be
worth implementing operators that avoid crossover of unrelated parameters. The other
area of a GA that has a crucial impact on the solution finding capability is the fitness
function. As it stands, the fitness function is merely the result of a template match on
the source images for the particular range of parameters encoded in each genome. An
alternative function could take account of local curvature (in order to account for

spread peaks).

100 T . T .

80

(o)
o

Hit rate (%)

oS
o

20

O ] 1 1 1
0 20 40 60 80 100

Image noise (%)

Figure 43: GA performance on sharp-edged sequence in increasing noise - near

misses within approx. three pixels of target (includes Figure 42 results)

Cunado [14] has suggested that presenting the GA with a smooth search space aids
peak finding by encouraging incremental improvements. He achieved this by using a
Sobel edge detector on the source images, thus avoiding the sharp edges of a Canny
operator [11]. In the accumulator space (the search space), this is similar to an
averaging filter. However, most accumulator spaces show a reasonable degree of
continuity due to the nature of the template-matching/HT process; edge pixels in

image space contribute to a locus of points in the accumulator, only one of which i1s
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the true peak point. With the loci from many edge pixels converging on a single point
in the accumulator, there will inevitably be a “hill” effect from the increasing co-
incidences of the loci.

So, the implementation requirements of GAs are very different to those of a HT -
as an optimisation procedure, the conditions in which it runs are critical. The nature of
GAs implies that they improve incrementally by ascending gradients in the search
space to reach maxima. A smooth search space facilitates this ascent by providing
“foothills” for the GA to follow up to the main peak. In contrast, the HT is at its best
when it has a tightly focussed peak with minimal surrounding vote spread. This
conjecture has been briefly examined by applying a Gaussian blur (5 x 5 kernel) to
the source images — see Figure 40b for an exemplar image. The blurring of the source
images leads to a spreading effect in parameter space, which makes for a smoother

ascent for the GA.
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Figure 44: GA performance on smooth-edged sequence in increasing noise (exact

hits in 100 trials)

Re-running the trials above gives improved results — see the graphs in Figure 44,
Figure 45 and Figure 46. The exact hit performance is approximately [5% higher than
before, while near misses within a pixel are approximately 25% higher and near

misses within three pixels average 90%, 10% higher than without smoothing.
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This brief experiment has shown that GAs, while sub-optimal, are capable of
producing the correct result when several trials are made. The performance curve
matches that of the pure HT implementation despite operating with a lower peak hit
rate. The most significant factor in their favour is that they are a practical way of

exploring parameter spaces that are too large for a pure HT implementation.
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Figure 45: GA performance on smooth-edged sequence in increasing noise - near

misses within approx. one pixel of target (includes Figure 44 results)
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Figure 46: GA performance on smooth-edged sequence in increasing noise - near

misses within approx. three pixels of target (includes Figure 45 results)

88



6 Concluding remarks

6.1 Application scenarios

One of the significant features of this work is the extensive use of a priori
information regarding target shape and motion. In a number of applications, collecting
this information beforehand is infeasible and therefore the algorithms discussed here
cannot be used. This bootstrapping problem limits the range of scenarios to which the
CVHT and motion template techniques can be applied. However, it has so far proven
impossible to produce a totally generic machine vision system, so limitations on
applicability are commonplace in the field.

The features of an application that is likely to benefit from the new methods will
include:

e Offline, non real-time processing (unless massive computational resources
are available),

e Availability of prior knowledge of target behaviour (approximate shape
and motion)

e Significant parallelism (ideally)

e Target in a cluttered/noisy environment (take advantage of performance
attributes)

An example of an application exhibiting these features is visual database search.
The CVHT and motion template algorithms can search, ideally in parallel, a large
database of sequences (or a single large sequence that has been split up) that must be
examined for known target behaviour. So, for example, if a long sequence is known to
have a rare deviation from a norm, and the deviation is predictable in the sense that a
human operator can specify it (perhaps by sketching an approximate shape and
motion), all occurrences of this deviation can be found. This could be applied to a
range of problems — e.g. searching for rare particle tracks in high-energy physics or

locating a particular person in a crowd by their shape and motion.

89



6.2 Implementation issues

6.2.1 Timings

The algorithms described in this thesis were implemented in C++ and run on a
variety of machines (most recently a 512MB, 1GHz Pentium-III). Some typical times

for a basic run with this hardware setup are listed below:

e CVHT with (x and y) velocity and (x and y) acceleration, running on the
Shuttle sequence (27 frames, 240x176), with no noise added. Parameter set
in Table 2. Accumulator size = 49,420,800 cells (197,683,200 bytes).
Approximately 8,869,899,230 votes cast, taking approximately 7,000

seconds to complete.

f’ériimet'éf: ~ Numberof steps

Image co-ordinate (x) 384
Image co-ordinate (y) 256
Shape scale 1
Shape rotation 1
Velocity in x 1
Velocity in y 1
Acceleration in x 26
Acceleration in y 2

Table 2: Parameter list for CVHT with acceleration

e CVHT with (x only) linear velocity, running on the CAl sequence (50
frames, 384x256), with no noise added. Parameter set as in Table 3.
Accumulator size = 1,179,648 cells (4,718,592 bytes). Approximately
1,052,524,599 votes cast, taking approximately 800 seconds to complete.
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Number of steps

Image o ordmate (x) ) 384

Image co-ordinate (y) 256
Shape scale 1
Shape rotation 1
Velocity in x 1
Velocity in y 1

Table 3: Parameter list for CVHT with linear velocity only

Motion template HT, running on the CA1 sequence (50 frames, 384x256),
with no noise added. Parameter set as in Table 4. Accumulator size =
98,304 cells (393,216 bytes). Approximately 85,526,827 votes cast, taking
approximately 900 seconds to complete.

Motion template HT, running on the CA1 sequence (50 frames, 384x256),
with Gaussian wraparound noise (100%) added, using the same parameter
set as before (Table 4). Accumulator size = 98,304 cells (393,216 bytes).
Approximately 781,028,245 votes cast, taking approximately 8,500

seconds to complete.

"'umber of steps i

Iriape cosordinate () 384

Image co-ordinate (y) 256
Shape scale 1
Shape rotation 1
MT global rotation 1
MT global scale 1
Phase of MT 1
Temporal scaling of MT 1

Table 4: Parameter list for Motion template HT
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These timings show a range of times for typical runs. There are two interesting
points to note. The first is the factor of ten difference in times between the motion
template HT on a clean image and on a 100% noisy image (see Figure 13 for
examples). This is due to the high noise causing many more pixels to be active (i.e.
not black) and thus requiring that votes be entered into the accumulator for these
pixels. It is interesting to note that a simple change in the input image can have such a
drastic effect on the time taken to run. This also indicates that, in order to make
accurate predictions, the numbers presented here should be used in combination with
the complexity notation in Sections 3.1.2 and 4.1.1.

The second point to note is that the motion template HT on the 100% noise
sequence takes approximately the same run-time as the CVHT with acceleration,
despite the latter casting nearly nine billion votes versus the former’s 780 million.
This illustrates the impact of the motion template calculations — a fairly minor

addition, but one that is compounded over millions of votes.

6.2.2 Optimisations

Some considerable speed increases were achieved by caching important data
structures. In particular, the Fourier descriptors require a significant amount of
calculation in order to derive a list of discrete co-ordinates representing the analytic
shape at a specified scale and orientation. Once these co-ordinates have been
calculated, they will be used to cast votes into the accumulator for an edge pixel.
After the voting is complete for that pixel, the HT algorithm will move on to the next
pixel and exactly repeat the previous process of voting, including requiring exactly
the same sets of shape co-ordinates used earlier. Consequently, caching these sets of
co-ordinates means that each calculation need only be performed once for each
orientation-scale pair. Alternatively, the FD calculation must be made P times, where
P is the number of edge pixels in the full image sequence. This gives an order of
magnitude improvement, and is especially significant for detailed templates with large
numbers of FDs. A quick test confirms this — doing a simple run that took
approximately 1,000 seconds with caching was predicted to take approximately
31,000 seconds without (it was aborted after about 4,000 seconds, having processed
seven frames out of a total of fifty).

The caching optimization was also deployed for the genetic algorithm code, where

the results of expensive template matches (for the specific set of parameters encoded
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in each genome) were preserved. Although one might expect this to have little effect
because the GA is supposed to be partially searching a large space, actually the
mechanism of the GA ensures considerable overlap from one generation to the next.
Consequently, many operations can be saved and the performance improvement is
noticeable, although difficult to quantify due to the random nature of the algorithm.
The only other important design choice was in the arrangement of the nested loops
that are the core of any HT approach. Looking at the pseudo-code in Section 3.3
(CVHT) and Section 4.3 (motion template HT), one will find that the loops are
organized so that the most computationally intensive calculations (e.g. generating co-
ordinates for shape or motion templates) are in the outermost loops possible. This
prevents unnecessary and repeated calculations and keeps the inner loops as clear as

possible.

6.2.3 Implementation notes

There are some important issues in the implementation of the Fourier Descriptors
that require further detail than given in the main text. In this thesis, we have used
Kuh!’s Elliptic Fourier Descriptors [35], which are most easily constructed from a
chain code. We have used an eight-way chain code, as recommended by Kuhl, which
has some accuracy issues.

In terms of our implementation, the chain code algorithm chooses the shortest
route around a boundary, which has a tendency to round off right-angle corners. This
probably assists the FD encoding later on since there will be fewer high-frequency
components resulting from the corners. On the other hand, the implementation is
perfectly capable of handling sharp discontinuities to the required accuracy, as proven
by its ability to encode the 180° direction change at the ends of a non-cyclic curve (see
Section 2.2, final paragraph).

More seriously, there are proven accuracy issues with digital piecewise-linear
encoding of continuous curves. Most contour representations incorrectly estimate the
total contour length. The representation used here for shapes, Kuhl’s Elliptic FDs,
uses the (ne, no) characterization, which is shown to have a deviation of 6.6% [16,36].
Interestingly, the adapted “waypoint” representation used for the motion templates is
far better in the sense that it accurately specifies the exact length of the segments of
the template. With the chain codes, a curve must be built up from many short

segments of length 1 or V2, whilst the waypoint notation defines the changes from one
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waypoint to another with the same precision as the original specification (i.e. a single
large linear segment at a shallow angle is encoded as exactly that, rather than a series
of steps). As a result of this representation, the motion templates have more accurate
contour lengths than the shape templates.

As mentioned in Section 2.2, the accuracy of the representation is dependent on
the number of FD harmonics used. Obviously, using too many FDs incurs additional
and substantial computational load, whilst using too few gives a bad representation.
There is a balance to be struck between asymptotic improvement in accuracy,
computational costs and the requirements of the application.

The minimum accuracy we require here is that there must be no sign of aliasing
between waypoints at the maximum resolutions requested. An additional factor is that
the computational load has been reduced by the use of caching, which makes
reconstruction from FDs a fixed cost per sequence and parameter combination. In
view of the accuracy requirements and the efficiencies gained by caching, we have
generally chosen a constant number of FDs that has proven sufficient at the
resolutions and scales chosen. Typically, this figure is 100 FDs for shape templates
and simple motion templates. With some of the most complex motion templates, we
used 800 FDs — almost certainly overkill, but guaranteed to be enough. Figure 2
shows a motion template reconstructed with various numbers of harmonics, and
scaled up by a factor of eight to show detail. Whilst Figure 2a-c show clear evidence
of insufficient harmonics (most prominently, rounded corners), Figure 2d and Figure
2¢ are only marginally different. Figure 2e and Figure 2f are virtually
indistinguishable at this resolution, justifying the choice of a constant number of FDs.

A more automated approach might have used Kuhl’s procedure for estimating the
maximum error of a curve for a given number of FDs (referred to in Section 2.2).
Combine this with knowledge of image resolutions and the sizes of the various

scaling parameters, and one could calculate a suitable number of FDs.
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6.3 Thesis summary and overall conclusions

When the work in this thesis was begun, the state of the art in the HT arena (as
applied to moving shape extraction) was to be able to extract analytically moving,
analytic shapes using the VHT. Tandem development of a Fourier Descriptor based
HT for arbitrary shapes allowed robust extraction whilst minimising discretisation
errors.

The first novel development of this thesis was to follow the clear route to
increasing the generality of the VHT and FD-variant GHT by combining them. The
resulting algorithm, the CVHT, retains the strengths of both its parent algorithms,
permitting the optimal extraction of arbitrary shapes that move in a parametric
fashion though a sequence of images. The use of FD-based shape templates prevents
the rapid expansion of accumulator dimensionality implicit in the previous VHT
approach. Comparative tests of the CVHT and a GHT-based frame-by-frame tracking
algorithm showed the former is capable of sustaining higher levels of noise than the
latter, particularly when individual frames are seriously damaged. The integration of
the whole sequence into one accumulator permits exploitation of temporal
correlation, thus enhancing the resilience of the CVHT to noise. Experiments on
synthetic imagery demonstrated the limits on this resilience and clearly show the
importance of temporal correlation in successful extraction. Real world imagery
substantiated the results given by the synthetic tests. An alternative motion model
was used on a Shuttle launch sequence, simultaneously illustrating the generality of
the algorithm and suggesting the next area for study.

The second novel development follows directly from the problem of motion model
complexity. The CVHT represents its motion model by the same parametric process
that the VHT used for both its shape and motion models. As with the VHT, this
process directly links the complexity of the motion model (in terms of the number of
its parameters) with the complexity of the algorithm. So, a more complex motion
model increases the computational effort in an exponential fashion. To sidestep this
issue, we have introduced the motion template to the HT as a way of representing
arbitrarily complex trajectories. We used FDs again to obtain the benefits discussed
previously and to exploit synergies in a common architecture for model

representation, be it shape or motion. Of particular interest is the access to frequency
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information afforded by Fourier methods, with possible future application to periodic
motion analysis. The new algorithm has been performance tested with synthetic and
real-world imagery, using sequences that were occluded, time-lapsed and noisy (both
in the image and in the motion template). The results have shown motion templates
complement the CVHT, giving more robust extraction than the earlier technique.

Initial research into genetic algorithms to allow the use of wider ranges of
parameters on current hardware has shown preliminary success. GAs offer the hope of
extracting targets using generic templates that are adapted to the circumstance by the
algorithm.

In summary, this thesis has presented a new technique that robustly extracts
optimal structural and motion parameters for arbitrarily moving arbitrary shapes in an
image sequence. The technique requires no initialisation or training and has
demonstrated excellent tolerance to noise and occlusion. Discretisation errors are
minimised in the accumulator by using Fourier descriptors to represent templates of
both shape and motion in continuous form, which eliminates common problems to do
with rotation and scaling. Whilst the templates minimise the effects of noise in
algorithm implementation, the temporal correlation between frames is also exploited,
maximising the possibility of correct extraction. The use of motion templates is a
novel development for the HT and allows for a wide range of applications that require
a more general motion model. This new capability comes without the explosion of
parameter space dimensionality that would be inherent in current parametric

approaches.
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8 Appendix: Formal theory of GHT

This appendix reprises the work in [4] defining formal theory for the GHT. Also

noteworthy is work by the same author on the principle of duality [6].

8.1 The Generalised Hough Transform

The first formal definition of the HT was developed by Princen et al [52]. Its value
is that it facilitates a proper analysis of the behaviour of the HT by providing a
yardstick against which performance can be measured and a means of predicting the
capabilities of an algorithm. However, their definition is limited in that it only
describes parameterised versions of the HT — i.e. only those that define the features
analytically (lines, circles, ellipses, etc).

In the formal definition the value at a point in parameter space is represented as:

@)= [ p(x, o) x (20)
where p(X, £2) is the HT kernel and I(X) represents the feature space (e.g. the
image to be searched). The equation is given as an integral since both the parameter
and feature spaces are continuous. The HT kernel can be interpreted in two ways: for
a fixed value of x, the kernel describes the points in feature space that make up the
perfect instance of the parameters (£2); for a fixed value of &, the kernel describes the
point-spread function in parameter space (i.e. how the votes are cast for a particular
feature point).
I(X) is composed of Dirac delta functions in a continuous space, with each delta
function representing one feature point. Using the sifting property of the delta

function, the integral can be reduced to a summation to give a more familiar result:

@)=Y o(x,.0) @1)

j=1

where n is the number of feature points to be considered. This summation
represents the votes cast in parameter space for a particular feature point. The final
HT is the summation of H(£2) for all £, resulting in a double summation that

describes the implementation of a typical HT accumulator.
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The kernel of the HT is determined by the parameterisation used and the shape of
the cells sampling the accumulator. Princen et al determined that different cell shapes
and parameterisations have an effect on the accuracy of the voting process and can
reduce quantisation problems caused by the sampling of the feature space and the
parameter space that is necessary for implementation.

The extension of the formal definition to arbitrary shapes [4] has been summarised
below to provide context for parts of this thesis. The augmented definition covers both
analytically and non-analytically defined shapes. In essence, the extension takes
account of the fact that the GHT is the same in concept as that of the HT — the only
difference is that an R-table replaces the parameterised equation of a curve (e.g. a
circle, line, ellipse, etc). Accordingly, replacing the HT kernel with a description of an
R-table arrives at the formal definition of the GHT. With the Merlin-Farber method,
the kernel takes the form of a discrete set of points representing the template. The
GHT improves on the Merlin-Farber method by reducing the number of feature points
considered with a gradient direction constraint. Therefore the kernel appears with a

reduced set of discrete points, constrained by the first derivative at each point.

8.1.1 Definition of the HT for non-analytic shapes (general form)

Firstly, a primitive in image space is defined as the set of points in a continuous
curve 7 (s,a ), where a is a parameter vector that describes the form of the curve and
s is a parameter that specifies a point on the curve. This more general formulation is
used instead of the implicit form of a curve because it does not restrict the formalism
to a specific type of curve. In terms of implementation, Z represents the template in
the GHT, where:

z ={z(s,a)|se D,} (22)

A single point on Z, where § = §,, maps to a curve A in parameter space. A
represents the parameters of all the curves that can pass through z(s,,a). If the
function z(s,z ) is invertible then 77'(s, 7) represents a point in parameter space for
a given curve in image space.

A, = 77 (s, z7(sy. @) s€ Di}s, € D, (23)
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This is the kernel of the transform, which describes the pattern of votes to be cast

in parameter space for a specific point in image space — in this case A, . In the HT,

A, 1s defined for a set of edge points in image space 1.

If the image space only contains an instance of a shape defined by a parametric
equation 4 (¢ ), then:

1=f(¢)|re D:} (24)

and A, can be redefined as:
A ={"(2(0)se D, }te D, (25)
A, is the set of points in parameter space that represent the possible parameter
values for all of the individual edge points in image space I. For a specific instance of
a shape, Z, only one of the points in A, will be the correct parameter vector, a . If the
image contains an instance of Z, then all the edge points in that instance will generate
curves in parameter space that pass through the point a . Hence, a corresponds to

the intersection of the loci of A, for all the edge pixels in the image.

=N A (26)

e D,

In the case of noise in image space (ie. edge pixels that do not belong to the
primitive Z), loci generated by the noise will generally not pass through a and will
produce conflicting intersections elsewhere in parameter space. As discussed in more
detail below, the HT technique relies on the correlation of good data outweighing the
random effects of noise in parameter space.

The equations above describe the concept of the HT but do not formalise the
actual technique used, namely the accumulation phase. The parameter space can be
mapped into an accumulator by using a matching function, which determines whether
a point, b , in parameter space should be incremented for a point, 4 , in the set A,.
The equation below defines the simplest accumulation strategy, that of incrementing
by unity for each match. Changing the voting functional, M, can accommodate more
complex strategies.

wa)- o T o
0 ifb # d

Using this function, the HT of the function X (r) is defined as:

Sur ©)=[[ 1 & .77 (5. X ()))ds ar (28)
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The maximum of this function is a , the parameters best matching Z.
In practise the HT is discrete, not continuous, being quantised by the digitised
image and accumulator. A representation of this can be obtained by converting the

integrals to summations and changing the continuous function A (¢ ) to a discrete set
of points 1, :

Sorr €)=Y, X M .77 (. 1)) (29)

teD,seD,

8.1.2 Definition of the HT for non-analytic shapes (Merlin-Farber)

The equations above deal with a general formalism of the HT for arbitrary shapes.
However, both the Merlin-Farber algorithm and the GHT algorithm can be described
more specifically.

For each edge pixel in the input image, the Merlin-Farber algorithm draws the
template shape in parameter space, rotated by 180 degrees and with a chosen
reference point centred on the co-ordinates of the edge pixel.

First then, the representation of the primitive Z must be adapted to reflect the

method used. The template is a set of points w = {w, | B e D, } defined relative to an
arbitrarily chosen reference point R . The primitive can be expressed as:

| z={t,|z,=R+w,.Be D, } (30)

With this definition, the parameter vector (cf. @ ) to be calculated is R, the

location of the reference point. Consequently, the kernel of the HT is defined by:

R, ={%, -w,|Be D,}te D, 31)

t

In the equation above, the template points W, are translated to the image edge
point 1, and reflected in the diagonal axis (y = - x), i.e. subtracting w, from 1, . With

this kernel, the HT accumulates evidence of a rotated template, translated to the co-

ordinates of each edge pixel, as follows:

Sul)=Y Y M@ 2 -w,) (32)

te D, Be Dy

In this discrete form, it can be seen that parameter space, image space and the
template must share the same quantisation (i.e. cell size and shape) for the
accumulation process to work correctly. If the points in the template are of a different

size or shape to the cells in the accumulator, then drawing traces of the template in the
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accumulator is meaningless. This is a particular problem with rotated or scaled
templates because a rotated/scaled discrete template is effectively quantised in a
different way to the original image and accumulator. For example, a rotated discrete
template has a different cell shape because the rotation causes the square pixels to
change shape relative to the original (e.g. 45 degree rotation will give diamond shaped
cells). Similarly, scaling adjusts the cell size. Re-sampling the template into the
correct quantisation allows the template to be usable but this process loses

information since an alias may be extracted.

8.1.3 Definition of the HT for non-analytic shapes (GHT)

The GHT improves on the Merlin-Farber technique by incorporating gradient
direction, reducing the number of votes cast by using the extra information to filter
out obviously incorrect votes. In terms of the above, the template W is constrained by
the first derivative of the edge pixels in the image I when voting in parameter space.
For a vote to be cast, the gradient direction of an edge pixel in the template must be
equivalent to that of the image edge pixel being considered. Effectively, the template
is still traced out in parameter space but various implausible parts of it are masked
out. Therefore, each edge pixel in the search image will generate only a few votes in
the accumulator. Fewer votes mean less time is spent in the accumulation stage and
less false votes will be cast, reducing the noise in the accumulator.

In terms of the formalisation, this is achieved by considering a function, ¢ (P),

which returns the gradient direction G at a point P. If this function is only applied to

edge pixels in the template then, when it is inverted, it becomes a function
¢ "' (G) that returns the edge pixels in the template that match its gradient direction
parameter. This is the theoretical analogue of the R-table. Using ¢ "' (G ), the kernel

of the HT becomes:

Ro=1 0 '(W)ire D, (33)
The accumulation process of the GHT is then defined by:
Sarr €)= X M 0.7~ 07 () (34)
e D,

The second summation that is present in the earlier equation for the Merlin-Farber

algorithm voted for all of the points in the template, but here it is unnecessary because

@ ~'(G) returns all the relevant points of the template and thus replaces the second

108



summation. An alternative definition of the template can restore the second
summation:

W, =1, lo(W,)=1/.Be D, } (35)

Here the template is defined with the gradient direction constraint “built in”. The

kernel of the HT and the equation for the accumulation process are then nearly the

same as that of the Merlin-Farber method.

R, =k -w,|w,ew,} (36)
S Gur (b_>:2 ZM(b_’/T/_WB> @37
€D, wgeW,

The difference is that the equations for both the kernel and the accumulation
process do not consider the template set W to be constant, but rather that it is re-

evaluated for each edge pixel in the image being searched.
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9 Appendix: Full sequences of motion template person

extraction

9.1 MAT1 extraction with MA1 templates

Frame & Frame 9 Frame 10

Frame 15

Frame 18

Frame 20 Frame 21 Frame 22 Frame 23
Figure 48: (part 1 of 2) MAI extracted with the MA1 templates
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Frame 28 Frame 29

Frame 32 Frame 33 Frame 34

Frame 36 Frame 37 Frame 39

Edge-detected Edge-detected Edge-detected Edge-detected

frame 05 frame 15 frame 25 frame 35

Figure 49: (part 2 of 2) MAI extracted with the MA1 templates
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9.2 MAS3 extraction with MA1 templates

Frame 0 Frame 3

Frame 4 . Frame 5 Frame 6 Frame 7

Frame 8 Frame 9 Frame 10 Frame 11

Frame 12 Frame 13 Frame 14 Frame 15

Frame 16 Frame 17 Frame 19

Frame 20 Frame 21 Frame 22 Frame 23
Figure 50: (part 1 of 2) MA3 extracted with the MA1 templates
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Frame 29

Frame 32 Frame 33 Frame 34

Frame 38

Edge-detected Edge-detected Edge-detected Edge-detected

frame 05 frame 15 frame 25 frame 35

Figure 51: (part 2 of 2) MA3 extracted with the MA1 templates
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9.3 SG1 extraction with SG1 templates

Frame 13 Frame 14 Frame 15

Frame 17

Frame 20 Frame 21 Frame 22 Frame 23
Figure 52: (part 1 of 2) SG1 extracted with the SG1 templates
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Frame 25 Frame 26

Frame 28 Frame 29

Frame 31

Frame 32 Frame 33

Frame 36

Edge-detected Edge-detected Edge-detected Edge-detected

frame 05 frame 15 frame 25 frame 35

Figure 53: (part 2 of 2) SG1 extracted with the SG1 templates
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9.4 SG3 extraction with SG1 templates

Frame 10

Frame 12 Frame 13 Frame 14

Frame 16 Frame 17

Frame 20 Frame 21 Frame 22

Frame 11

Frame 15

Frame 23

Figure 54: (part 1 of 2) SG3 extracted with the SG1 templates
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Frame 25 Frame 26

Frame 28 Frame 29 Frame 30 Frame 31

Frame 32 Frame 34 Frame 35

Frame 36 Frame 38 Frame 39

Edge-detected Edge-detected Edge-detected Edge-detected

frame 05 frame 15 frame 25 frame 35

Figure 55: (part 2 of 2) SG3 extracted with the SG1 templates
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9.5 VHT1 extraction with VH1 templates

Frame 7

Frame 8 Frame 9 Frame 10 Frame 11

Frame 15

Frame 16 Frame 17 Frame 18 Frame 19

Frame 20 Frame 21 Frame 22 Frame 23

Figure 56: (part 1 of 2) VHI1 extracted with the VHI templates
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Frame 24 Frame 25

Frame 28 Frame 29 Frame 30 Frame 31

&

Edge-detected Edge-detected Edge-detected Edge-detected

frame 05 frame 15 frame 25 frame 35

Figure 57: (part 2 of 2) VHI extracted with the VH1 templates
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9.6 VH3 extraction with VH1 templates

Frame 1

Frame 10 Frame 11

Frame 12 Frame 13

Frame 16 Frame 17 Frame 18 Frame 19

Frame 20 Frame 21 Frame 22 Frame 23
Figure 58: (part 1 of 2) VH3 extracted with the VHI templates
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Frame 24 Frame 25 Frame 26 Frame 27

Frame 29 Frame 30 Frame 31

Edge-detected Edge-detected Edge-detected Edge-detected

frame 05 frame 15 frame 25 frame 35

Figure 59: (part 2 of 2) VH3 extracted with the VHI1 templates
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10 Appendix: Pattern Recognition paper (final publisher copy)
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Summary

There are currently available many approaches aimed at tracking objects moving in
sequences of images. These approaches can suffer in occlusion and noise, and often
require initialisation. These factors can be handled by techniques that extract objects
from image sequences, especially when phrased in terms of evidence gathering. As
yet, the newer approaches to arbitrary shape extraction avoid discretisation affects but
do not include motion. The moving-object evidence gathering approach has yet to
include arbitrary shapes and can require high order description for complex motions.

Since the template approach is proven for arbitrary shapes, we re-deploy it for
moving arbitrary shapes, but in a way aimed to avoid discretisation problems. As the
template approach has already been seen to reduce computational demand in the
extraction of arbitrary shapes, we further deploy it to describe the motion of moving
arbitrary shapes. As with the shape templates, we use Fourier descriptors for the
motion templates, yielding an integrated framework for the representation of shape
and motion. This prior specification of motion avoids the need to use an expensive
parametric model to capture data that is already known. Furthermore, as the
complexity of motion increases, a parametric model would require increasingly more
parameters, leading to a rapid and catastrophic increase in computational
requirements, whilst the cost and complexity of the motion template model is
unchanged. The new approach combining moving arbitrary shape description with
motion templates permits us to achieve the objective of low dimensionality extraction
of arbitrarily moving arbitrary shapes with performance advantage as reflected by the

results this new technique can achieve.
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1 Introduction

Tracking and motion estimation is an area of research that has a long history. There is
a substantial literature on the problem of tracking shapes in a sequence, for example
the tracking of humans has recently been admirably surveyed [1]. Earlier research has
ranged from optic flow [2] to Kalman filters [3] and includes temporal templates,
which we use here in an adaptation of the Hough Transform (HT) [4] to enable
optimal extraction of moving arbitrary shapes.

Temporal templates are a technique for representing the movement of bodies
through a sequence of images by encoding a motion trajectory. The encoding takes
many forms - for example, there are many algorithms that combine spatial and
temporal information into an XYT space to enable detection of particular movement
patterns (e.g. detection of repetitive motion using temporal textures [5]). Other
instances of the temporal template technique include a neural network based human
motion tracker [6] that combines positional displacements with spatial templates of a
human contour. The system contains several of these state vectors and is capable of
tracking and predicting transitions between them. Similar efforts have been made
using dynamic programming to track state transitions in gesture recognition [7].

In contrast, the thrust of this work is the extraction of moving shapes in an image
sequence rather than tracking them. Extraction can be distinguished from tracking by
a more holistic view of the sequence, and frequently use of a priori knowledge and an
off-line approach. The new Velocity Hough Transform (VHT) [8] extracts conic
sections moving in a parametrically described fashion. However, the VHT has two
major restrictions: first, the shape description is limited to conic sections and, second,
the motion description is parametric, causing computational difficulties as the
complexity is increased.

Here, we propose a method that maintains optimal and efficient extraction of
targets moving in a specified arbitrary fashion (via a temporal or "motion template")
even in high levels of noise or occlusion. In addition, there is no need for initialisation
or training. These qualities are derived from the use of robust evidence-gathering
techniques and the exploitation of temporal correlation in the sequence.

In order to introduce motion templates into the HT, we have combined two other

HT-related developments, integrating continuous template representations into a



temporal correlation framework. To shed light on the approach we have taken, there

follow brief summaries of the main developments relevant to this work.

1.1 Generalised Hough Transform

Merlin and Farber [9] first considered general-shape detection using the HT but their
method provided no means for detecting rotated or scaled shapes and was
computationally expensive. Ballard developed the full mapping [10] for arbitrary
shapes with rotation and scale invariance — the Generalised Hough Transform (GHT).
The GHT replaces the analytic parametric constraints in the HT with a non-analytic
tabular representation of an arbitrary shape. This table (the "R-table") describes the
position of feature points in the template shape relative to a reference point and is
indexed by the gradient direction information at each feature point. Compared with
Merlin and Farber’s method, this table increases the efficiency of the algorithm by
reducing the number of feature points under consideration to those that fit an
additional gradient direction constraint. Merlin and Farber trace entire instances of the
template shape in the accumulator whereas the GHT only adds particular points from
the template contour to the accumulator. In the GHT, the lower number of votes cast
reduces the amount of noise in the accumulator generated by false votes (provided
that the gradient data is of good quality) and can also improve the computational
speed.

Early adaptations of the standard HT increased the complexity of the shape
equation and thus the dimensionality of the HT — lines require a 2D parameter space,
circles a 3D space, ellipses a 4D space, etc. Extrapolation suggests that for a
parametrically defined arbitrary shape (effectively a high- or infinite-order
polynomial) the standard approach would require a nearly infinite dimensional
parameter space. In contrast with such an approach [11], which required an exorbitant
accumulator space, an arbitrary shape HT actually only needs to accumulate for the
(relatively few) appearance parameters, provided that the shape to be located is
already specified. Instead of searching for the best fit to the parameters of an arbitrary
polynomial, the only parameters that need examination are those that adjust the
template shape to match the target — position, rotation and scale, for example. We will
later see how templates can be used efficaciously not only in shape extraction, but

also in motion extraction and description.



1.2 Fourier-descriptor template representation

In the GHT, the template shape is represented by an R-table, which is a discrete
lookup table. The problems with this representation are well described in the literature
(most recently and in greatest detail in [12]), but essentially derive from the fact that it
is a discrete representation sampled at a particular scale. When the template is scaled
or rotated, there can be problems with aliasing and rounding errors. Figure 1b shows
the effects of scaling and rotating the discrete set of points comprising the original
shape in Figure la. Clearly, the new sets of points have missing data (where the
points in the original have become separated due to inadequate sampling at the new
scale) and the effects of discretisation are evident. If the shape had been reduced in
scale, the points in the original would merge, effectively oversampling the shape.

Distortions are inevitable when working with discrete systems. Nevertheless, the
worst effects can be avoided by maintaining a continuous representation for as much
of the process as possible. Using an analytically defined curve makes it possible to
defer discretisation until after the rotation and scaling stages. Elliptic Fourier
descriptors (FDs) [13] have been deployed in an adaptation of the GHT [14] to give
such a continuous representation. Instead of recovering vote co-ordinates from an R-
table, they are instead calculated from the FDs. This avoids the extra quantisation step
inserted by the GHT (discretisation occurs in template transformations and again in
the accumulation phase), thereby restoring the robustness of the original, analytic, HT
formulation.

Clearly, if the original template is of a smaller scale than the reconstructed one,
there will be no additional detail provided by the FDs. The FDs merely provide a
continuous representation of the original template shape. Addressing the problem of
disjoint or non-contiguous contours (i.e. one with gaps) can be achieved by using a
masking function that causes the regeneration phase to ignore the points that would
otherwise fill in the gaps.

Elliptic Fourier descriptors were chosen for their completeness, simple geometric
interpretation, access to frequency information and the fact that they can be easily
produced from a chain code of the contour. However, other analytic representations

could equally have been used (e.g. cubic B-splines as in [6]).



1.3 Temporal evidence gathering

It is well known that most image sequences contain significant correlation between
frames - a fact commonly utilised by machine vision and video compression
algorithms amongst many others. The VHT [8] first exploited this correlation in
evidence-gathering based techniques. The original implementation of the VHT
extracted the optimum parameters describing a conic section moving with linear
velocity. With simple extensions, it handles a subset of rigid motions that can be
described parametrically - hence, the nature of the motion is known a priori. To take
advantage of the inter-frame correlation, the VHT accumulates evidence from the
whole sequence, concurrently extracting optimal structural and motion parameters. As
a consequence of the additional information provided, the VHT is more robust than a
standard frame-by-frame tracking implementation, especially when the target is
occluded or noisy. Any missing or damaged structural information in a frame can be
compensated for by redundant data in others (e.g. structural information in the target
shape that is often repeated in each frame).

Due to the global scope of the VHT, there is no need to initialise the algorithm to
search in a specific area (although limiting the extent of the search is a possible
optimisation). Another common motion estimation problem avoided by the VHT is
that of correspondence. Points in different frames do not need to be matched since all
the possible correspondences are examined implicitly in the accumulation phase. By
the nature of evidence gathering, the best correspondences produce the highest
accumulator peaks.

The motion model is parametric and thus can be extended from linear velocity by
including extra terms. In this respect, an extension to the VHT [15] to find walking
subjects using an articulation model required thirteen parameters, when moving with
constant velocity. The major disadvantage is that any extension to the motion model
increases the dimensionality of the accumulator and, thus, the computational
resources required. In summary, the VHT enables the use of temporal correlation in
an evidence-gathering framework, resulting in a powerful and robust extraction
algorithm. Unfortunately, the modelling of both shape and motion is seriously

restricted.



1.4 Contributions

We will describe a new technique for extracting moving arbitrary shapes, which has
been created by fusing the two evidence-gathering techniques, the VHT and Fourier-
descriptor template representation (for convenience, we will refer to this continuous-
template variant of the VHT as the CVHT). Uniting these techniques unifies their
unique and complementary advantages. The Fourier descriptors provide a continuous
template representation, minimising discretisation error in the algorithm, and the VHT
component exploits the temporal correlation across a sequence, mitigating the effects
of noise and occlusion. The new algorithm does not require initialisation or training
and avoids the need to solve the correspondence problem, inheriting these
characteristics from the VHT. For illustration, Figure 2 shows frames of a sequence
where the location, velocity and acceleration parameters of a Space-Shuttle booster
during launch were correctly extracted by the new technique.

However, the CVHT is still limited by its parameterised motion model. If the
shuttle imagery included its parabolic trajectory, this more complex motion would
have to be incorporated into the accumulation phase, requiring many more
parameters. Hence, the simplistic approach to improving the generality of the motion
model is to increase the complexity of the HT kernel to represent an increasingly
complex motion path. Consequently, an accurate polynomial description of an
arbitrary path will require a large or even infinite number of terms, massively
increasing the dimensionality of the problem. There are parallels to this
parameterisation of motion in the earlier parameterisation of shape, where
increasingly complex shapes were represented by more complex parameterisations
and a commensurately larger dimensionality. The solution to this dimensional
explosion was found in the use of templates, which allowed an efficient and low
dimensional parameterisation of any shape. The cost of this approach is that the
method loses the (debatable) flexibility of finding all descriptions of all possible
shapes in a scene. Following this historical parallel, the other part of our new
approach is to describe the motion by a template, like the shape itself. These “motion
templates” extend the use of templates in the HT from the spatial domain into the
temporal. This ameliorates the punitive computational burden associated with

increasing dimensionality since the aim changes from finding the potentially



unlimited set of parameters that characterise a particular motion to finding the limited
set of parameters that locate the object undergoing the specified motion.

These novel developments clearly address two core weaknesses of the VHT —
namely that it is limited to extracting analytically described conic sections only and
that the motion model is parametric. Adding the capability to extract non-analytic
arbitrary shapes that move arbitrarily increases the utility of the algorithm to a range
of applications that require more general shape and motion models.

We first describe our approach to arbitrary shape extraction with parametric
motion (Section 2.1) and with arbitrary motion (Section 2.2). We next present results
of some comparative evaluation and performance analysis in Section 3. Finally, we

give conclusions and suggest directions for future research.



2 Extracting Arbitrarily Moving Arbitrary Shapes

2.1 Continuous Velocity-HT: Extracting Moving Arbitrary Shapes

Effectively, the Fourier descriptor version of the GHT is extended in the same way as
the HT for circles was extended into the VHT - by introducing velocity terms to the
shape description. Instead of drawing a motion-compensated circle in the accumulator
(as in the VHT), the Fourier descriptors are used to trace a locus of votes in the form
of the template shape, adjusted for the estimated motion of the object relative to the
time reference of each frame. The accumulation process (Merlin and. Farber's variant)
for the sequence in Figure 3a is illustrated in Figure 3b-d with votes increasing as
more frames are added. Flipped instances of the template shape are generated in
accumulator, centred on motion-compensated edge pixel co-ordinates from the frame
being processed. The motion compensation is simply back-projection along the
expected line of motion to convert the co-ordinates to the same temporal frame of
reference as the initial frame, meaning that frame 5's votes for a particular edge pixel
fall in the same place as those for frame 1. Once the voting process is complete, some
intersections of template shapes in the accumulator form peaks that indicate the
location (at time ¢ = 0) of an instance of the shape in the sequence.

In order to develop the voting mechanism, we require an arbitrary-curve
parameterisation for shapes. A curve defined by two sets of orthogonal co-ordinates,

cx(s) and c¢,(s), parameterised by s€([0,27) has elliptic Fourier descriptors as follows:

a, = % [" co(s)costks)ds and b, = % [" e (s)sin(ks)ds (1)

with a similar equation for the y descriptors, where & is the harmonic number. The
range of k defines the number of ellipses used to represent a model shape and thus
how accurate the shape representation is. In the general case, using more harmonics
gives a more accurate representation of a shape. However, since the FDs are used in
the context of a digital (thus discrete) image, there will be a limit defined by the pixel
granularity beyond which additional harmonics have no perceivable effect. Before
FDs can be used to draw the shape in the accumulator, they must be converted from
the frequency domain to vectors in the spatial domain that specify co-ordinates on the
contour of the template shape. n FDs can be converted to vectors (along x- and y-axes)

from the origin to a point on the curve by:



0, (5, FDx)= D" (a cosks)+b,, sin(ks)) 2)

where FD ={a,.b,,a,.,,b4,.., },with complementary equations in y.

/\Il ’ A”
The DC terms have been omitted, which translates the curve so that its centre is at the
origin. The shape's initial scale and rotation is given by a,=[l, p,] and the scaled and

rotated shape itself can be described as
R,(s,a,)=1,v,(s,FDx)cos(p,)—1,0, (s, FD,)sin(p,) 3)

with a similar equation for R,. Now, we require a kernel that defines the shape of
votes to be laid down in the accumulator for each feature point (e.g. an edge pixel).
This is a combination of curves, each with its origin on the reference point to be voted
for (typically at the centre of the template shape) but offset by the velocity, and at a
number of orientations and scales (for similarity transform invariance). This
combination of curves can be obtained from:
(5. f.1,0.v,0v, )= R (10U + R, (5.1, O)U 4 o U+ U, (@)
where v, and v, are respectively the x centre and y centre velocity parameters and
U, and U, are two orthogonal vectors defining the x- and y- axis respectively. This
curve is inserted into the accumulator by offsetting it from the co-ordinates of each

feature point in the image sequence IS, defined by:
1S =%, f)lte D, feD,} 5)
Here, Z(t f) is a parametric function that defines the points in the image sequence
for a frame time f, where a suffix on the domain indicates its extent (here, D, is the

domain of an image in the sequence and Dy is the domain of the frames of the

sequence). The accumulator vote-pattern expression is then:
A, = {)T,/ —aT(s,f,l,p,vx,v), )|s€ D_\.}IE D,,fe Dy (6)
These equations describe the concept of the HT but do not formalise the actual

technique used, namely the accumulation phase. The parameter space can be mapped

into an accumulator by using a matching function, which determines whether a point,

C, in parameter space should be incremented for a point, d , in the set A,. The

equation below defines the simplest accumulation strategy, namely incrementing an
accumulator cell by unity for each match. Changing the matching function M can

accommodate more complex strategies.



v (E,T)- {1 if = E} 7

0 if c=d
Next, this function is applied to A, for a range of parameter values. This defines the

continuous form of the CVHT, accumulating evidence in a parameter space Scyur

according to:
S cvur (E’l’p’vx’vy): ”‘J.M(l; /T(t,f)—ET(S,f,Z,p,vx,vy))ds dtdf (8)

Where b is the translation vector (i.e. the location of the reference point). Finally,
this parameter space is sampled into a discrete multidimensional array Spcvur, Which

is expressed by:

S pevar (E’l’p"’x"’y): 2 > ZM(E’ ﬂt,f)—a—)‘(s,f,l,p,vx,vy)) 9

feDy 1€ Dse Dy
This expression gives an accumulation strategy for finding moving arbitrary
shapes. For each edge pixel in a frame, a locus of votes is calculated from the Fourier
description of the template shape and entered into the unified accumulator. The co-
ordinates of the loci are adjusted to allow for the predicted motion of the shape,

dependent on the frame index, as in the VHT.
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2.2 Motion Templates: Extracting Arbitrarily Moving Shapes

2.2.1 Overview

The earlier approaches to moving shape extraction are limited by the dimensionality
of the parameterised motion model. As stated, our objective is to remove this
limitation and enable the extraction of arbitrary shapes undergoing arbitrary motion
by using motion templates to describe the movement of the target. With these
templates it is no longer necessary to accumulate for the parameters describing the
motion since they are already known. It may be useful to imagine the motion template
in terms of an infinite dimensional parametric motion model where all the parameters
have a fixed value. Naturally, the motion templates require a priori knowledge
concerning the target object's path before analysis can begin. Since, by definition,
tracking precludes the possession of this information, it is important to observe that
the niche for motion templates in the context of evidence gathering is extraction or
recognition (an example application might be searching a video database). Motion
templates make it possible to robustly and efficiently extract parameters describing a
shape that is following a specified trajectory. A limited prediction capability 1s
possible if the motion template covers a larger timespan than is analysed (or in the
case of repetitive motion) since it is assumed that the extracted subject will continue
to follow the specified path.

As a result of the requirement for detailed prior knowledge, the new algorithm will
be of use in cases where the general path of motion is known (e.g. cars turning at
traffic lights will follow roughly the same path). However, there may be difficulties in
real world imagery since not all objects will follow exactly the same path. The
forgiving nature of an evidence-gathering approach should abate this concern
provided the deviations are not excessive. If they are, the voting or peak detection
algorithms can be arranged to handle the uncertainty, (e.g. as in the Fuzzy HT [16]).

Motion templates must encode the relative position of the target object at all times.
This will automatically describe properties of the motion such as speed, acceleration,
change in acceleration, etc. Motion templates should also record changes in scale and
rotation over time since, in motion, many objects rotate (e.g. a car when viewed from
above rotates as it corners) and scale (e.g. due to perspective effects). Note that this

additional detail will not cause any increase in accumulator dimensionality — the
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complexity of the algorithm is the same, only the complexity of the motion template
itself has increased. It is possible to record more information relating to time-
structured changes in the model shape (e.g. changing models as the sequence
progresses to represent deformations) but position, scale and orientation are a natural
minimum.

The representation of the motion templates should be continuous so as to avoid the
problems of discrete representations (section 1.2). As such, it seems prudent to use
Fourier descriptors for both motion and shape templates, since these descriptors are
well understood and Fourier approaches can handle many situations (e.g. non-regular
path sampling). A further advantage is access to frequencies in the motion template,
which may be of use in certain applications. Furthermore, we have a consistent
framework for the representation of arbitrary shape and motion.

To encode the path for input to an implementation, it is convenient to specify a
series of waypoints to encode the path, rather than use a smooth and complete
description of the motion. The representation chosen must be able to take this data
and interpolate it in a smooth fashion. Fourier descriptors have been designed to do
this from the start and only need minimal modification to work with variable time
periods between waypoints (required since movements may be quick or slow). The
main danger comes from under-sampling the path with too few waypoints. In this
case, it is possible to over-fit the FD and reproduce this under-sampled path too
exactly. If desired, the waypoints could be filtered to generate a more smoothly
flowing path.

The introduction of motion templates into the HT requires no additional parameters
to be searched for in the accumulation phase. However, such an inflexible
implementation would restrict the functionality excessively. Essential parameters are
rotation of the motion template in its spatial dimensions and scaling in both spatial
and temporal dimensions. The scaling in the spatial axes does not need to be
independent (i.e. it can be uniform scaling) since we will only be dealing with affine
transformations initially. Scaling in the temporal axis adjusts the time taken to
traverse the motion template and thus the speed with which an object must move to be
identified as the target. Using the previous example, this would allow the algorithm to
locate cars cornering quickly or slowly. Finally, we must add an offset or phase
parameter to separate the time encoded in a motion template from that used in a

sequence. Otherwise, the frame time zero would be tied directly to time zero in the
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motion template and the algorithm would be unable to correctly extract parameters for
a sequence that began with the target object part-way through its trajectory. Hence,
the time-scale parameter provides temporal scale invariance and the offset parameter
gives temporal translation invariance. Rotation invariance is not required since time 1s
one-dimensional.

Accordingly, the use of motion templates adds four extra parameters, giving an
eight—dimensional accumulator. While this will cause a large increase in the
computational requirements, it is much less than the dimensional explosion presented
by polynomial extension. Clearly, the ability to extract, optimally and robustly,
arbitrary shapes following an arbitrary path is well worth the additional computational

resources.

2.2.2 Theory

The theory supporting motion templates is developed from the CVHT, which itself is
an extension to the Fourier-descriptor variant of the GHT [14]. As an aid to
visualisation, for a given feature point (e.g. an edge pixel in a frame), a locus of points
is plotted through the eight-dimensional accumulator space. This locus is constructed
from the shape and motion descriptors, which are used to trace scaled and rotated
instances of the template shape, translated to compensate for the expected motion of
the object relative to the time reference of each frame, in two-dimensional planes
taken along the x- and y-axes of the accumulator. Once the voting process is complete,
peaks in the accumulator indicate the location and other parameters (at time ¢ = 0) of
an instance of the target shape moving along the specified path.

The changes to the CVHT are confined to implementing motion templates as the
motion model. Hence the shape parameterisation is unchanged and Equations 1
through 3 in section 2.1 describe the shape template. Having parameterised the shape
template, we must now parameterise the motion template, encoding the changing x, y,
rotation and scale parameters. There are two major differences in the definition of the
motion template from that of the shape parameterisation. The first is that the DC
terms of the FDs are retained and used in the reconstruction. Removing them would
effectively translate reconstructed co-ordinates relative to some arbitrary origin (e.g.
the centre of the template), which would destroy the utility of the sequence by moving
the start point. Secondly, and relevant in terms of implementation or specifics of

template definition only, the offsets used are not derived from chain codes, which
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have fixed x, y and ¢ values, but come from a list of waypoints and thus can instead
specify larger increments.

Let my(f), my(f), my(f) and my(f) be functions that take a frame time f and recover a
co-ordinate (for x position, y position, rotation or scale respectively) from a motion
template. This motion template is now used to transform the co-ordinates calculated
from the shape descriptors. These co-ordinates have already been globally scaled and
rotated (i.e. we are using R and R, from Equation 3) to adjust for possible initial
scales and orientations. They are then scaled and rotated as:

£ (s, f.0,2) =m(f ~0)R,(5,3,) costn, (f ~0))~m(f —0)R,(5.a,)sinfn,(f~0))  (10)
with a similar equation for y co-ordinates and where f is the frame of the current
image and o is a parameter that offsets any mismatch between the frame times in the
sequence and in the motion template. my(f-0) and my(f-0) recover scale and rotation,
respectively, for time f - o from the motion template. These rotated and scaled co-
ordinates now represent the shape at the expected orientation and scale. Next, they are
translated to compensate for the object's expected motion. However, the path of

expected motion is also scaled and rotated (requiring parameters, a,, =[{,, 0,,1):

be(s, fooa,,a) =8, (s, f,0,a.) +1,m,(f —0)cos(,, ) ~L,,m,(f —o)sin(0,,)  (11)
again with a similar equation in y and where m,(f-0) and my(f-o) are the x and y
offsets recovered from the motion template at time f - 0. Now we can form the kernel
that defines the shape of votes in the accumulator. This is a multi-dimensional
combination of the template at a number of translations, orientations and scales, and

can be obtained from:
a(s,f,o,lf,am,as) =p,(s,(f-1;)0a,,a)U, +u,(s,(f-1;)0,a,,a)U, (12)
One final parameter, /5, has been added to perform temporal scaling on the motion
template, thereby allowing adjustment of the speed at which the path is traversed. To
ensure that the locus drawn in the accumulator passes through the reference point, the

kernel is offset from the image co-ordinates of each feature point. Hence, for an image

sequence IS (defined in Equation 5), the votes are placed in the accumulator as:
A =AU, f)-w(s, f,0.l,,a,,a,)se D,)Vte D, f € D, (13)

As with the CVHT, the parameter space formed by the application of the

expression above is mapped into an accumulator by the use of a matching function
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(Equation 7). This multi-dimensional accumulator space is sampled into a discrete

parameter space Spyr given by:
Spur(b,1;,0,a,,,a,) = Y ep, Deen, Dpen, MBAG, -, f,o,l;,a,,a,)) (14)

where 5 is a vector of the image co-ordinates at time O, /ris the time scale-factor, o
is the time offset (phase) and a,, and a, contain scale and rotation parameters that
respectively transform the motion template’s path and transform the initial orientation
of the target shape. /_l(t, f) retrieves feature points from the sequence. This expression
gives an accumulation strategy for finding arbitrary shapes moving arbitrarily. It
allows extraction of the optimal parameters describing an arbitrary (but specified)
shape of unknown orientation, position and scale that is following an arbitrary (but
specified) path of unknown orientation and scale, which takes an unknown time to
traverse.

The new algorithm currently traces the entire template shape in the accumulator for
each feature point and for each parameter combination. The GHT places a restriction
on which template points are drawn - only those with the same gradient direction as
the edge pixel being processed are added to the accumulator so that only the relevant
fractions of the template are traced. With accurate gradient direction data, this
restriction removes a lot of unnecessary votes (and hence noise) from the
accumulator. The voting algorithm could be changed to perform the same reduction of
votes as the GHT by incorporating a function that calculates the gradient direction at a
point on the Fourier-described curve. This value would then be compared against
edge pixel gradient direction to restrict the votes cast into the accumulator. Depending
on the computational cost of the gradient direction calculation, this reduction in

voting may result in a linear speed improvement.

2.2.3 Computational cost

The algorithm is of order O(#points * #s * #r * #mt_s * #mt_r * #t_off * #t_s), where
#points 1s the number of feature points (e.g. thresholded edge-pixels) in the sequence
and #s, #r, #mt_s, #mt_r, #t_off and #t_s are the number of discrete steps in the
parameter ranges for initial shape scale and rotation, scale and rotation of the motion
template and temporal offset (phase) and scaling respectively. Hence, the new
development inherits the usual computational cost penalty of the HT: the accumulator

is eight-dimensional and can require significant resources. This is unavoidable if the
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algorithm is to be used in its most basic form since, in the HT, the process that
guarantees optimality is an efficient form of exhaustive search. However, most of the
speed-up and memory-reduction modifications to HT-related techniques [4] are
applicable — e.g. parameter space decomposition, multi-stage processing, random
sampling algorithms or genetic algorithms. Also, the HT is known to be well suited to
parallel implementation, with multiple opportunities for splitting the processing (e.g.

by image, by region of an image, by ranges of parameter values, etc).

2.2.4 Example

As an example of the information that may be encoded in a motion template, Figure 4
shows the changes in the x and y positions and the angle of the left foot of the walker
pictured as the sequence progresses. The measurements were made manually with the
x and y positions being taken from the heel of the foot and the angle being estimated
by eye. This illustrates the information that a motion template might have to record, in
this case, for extracting the location of a foot (a better description of the gait cycle
may be found in [17]). Unfortunately, it is difficult to produce a more direct
visualisation of a motion template because it must encode multiple dimensions of data
(e.g. x, y, rotation, time), not to mention the possibility of the path looping back on

itself.
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3 Results

3.1 Continuous Velocity HT
3.1.1 Gaussian noise testing

The CVHT was run on a five-frame sequence based on a small (20 x 20 ) image (the
first image in Figure 5) moving linearly along the x-axis at a velocity of one pixel per
frame. A small image was chosen to make practical computation of large-scale tests.
Noise was added at random to each frame of the sequence at eleven noise levels from
0% random coverage to 100% random coverage of the frame. The noise distribution
was zero-mean Gaussian with a standard deviation of three and clipped when a pixel
value exceeded the maximum allowable. Examples of the effects of the increasing
noise levels can be seen in Figure 5. The grey-level images produced are thresholded
by the algorithm and are shown in the thresholded state. The results for the normal
GHT tracking algorithm were generated using a standard GHT on each frame of the
sequence and using linear regression on the results to calculate the velocity terms. The
test conditions were as described above.

The graph (Figure 6) shows the CVHT is significantly more accurate than the
GHT-based technique. By accumulating temporally correlated evidence the new
technique is able to handle noise levels that are approximately twenty percent greater
than the standard. The GHT based technique is limited to the amount of evidence
available in a single frame. When the noise becomes sufficient to mask out the correct
peak in a single frame, the GHT technique is left with effectively random results to
process for velocity terms. In intermediate noise levels, some of the results for each
frame may be incorrect and this will tend to throw off the final regression step. The
integrated approach taken by the new algorithm is more global and i1s not so
susceptible to corrupt frames as is demonstrated strongly in the occlusion testing later.
This is consistent with earlier observations comparing the VHT to the HT with linear

regression [8].

3.1.2  Occlusion testing

A simple test of the effects of occlusion was carried out on the five-frame sequence
described above. No noise was added to the sequence since this would add an

unnecessary factor. Instead, a number of vertical lines of pixels starting from column
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two were blanked out and both algorithms run on the resulting image. Figure 7 shows
example frames from the occluded sequence where the occlusion bar is five pixels
wide (the bar is shown in grey to make it visible).

The results shown in Figure 8 reveal that the new technique keeps track of the
shape until the blanking is fifteen pixels wide — which obscures the shape for the
duration of the entire sequence. The GHT based algorithm failed as soon as any
blanking was introduced. This failure reveals more about the algorithm’s
implementation than about its resilience to occlusion. The current implementation
uses the estimated location of the template shape in every frame as an input to the
linear regression stage. Therefore, when a frame is corrupted and gives an incorrect
result, the output of the linear regression stage is affected causing a global estimation
error. A more sophisticated implementation might include a heuristic that ignores
frames giving evidence inconsistent with the majority of frames.

The earlier results [8] relating to the VHT should also be applicable to the new
technique since the underlying characteristics are essentially unchanged. These results
indicate that VHT derived algorithms are capable of handling even extreme occlusion

due to the global integration of evidence across the entire sequence.

3.1.3 Finding People with the CVHT

For purposes of illustration, the CVHT is now applied to locate a moving human body
in a sequence of images. The current implementation of the new technique locates
rigid shapes moving with linear velocity. Clearly, its formulation is general so shape
deformation could be included, as it was for pulsating arteries in the original VHT
formulation [8], but this would be considerably more complex. In the case of a human
walking, the torso is approximately a constant shape and, if the camera is far enough
away, the bobbing motion of gait is small enough to be compensated for by the
resilience of the evidence gathering approach. Consequently, it is possible to detect
people using the technique in its current form by searching for the torso. However, no
meaningful gait data can be gathered from just the location of the torso so this method
of locating a human silhouette is only useful as a primer for later statistical (gait)
analysis. Nonetheless, using the CVHT to locate a human demonstrates that it is
equally applicable to real world images.

Self-occlusion of the body due to the motion of the arms and legs is a problem that

affects the performance of many person-tracking algorithms. By the nature of
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evidence gathering, the new algorithm copes with occlusions that do not reduce the
number of correct votes (from the uncorrupted remainder of the true contour across
the whole sequence) below the level of noise in the image. As a result, there is no
immediate need for special precautions.

Figure 9 shows a reconstructed template of a walker's torso, which was originally
created by manually tracing the torso in the first frame of the sequence. Also shown in
Figure 9 are several frames of the MP1l walker sequence with the template
superimposed on the extracted locations. During the first part of the sequence, the
walker's location is accurately extracted - the initial location is exact and the extracted
speed (thirteen pixels per second) is correct. Shortly after frame seven the walker rises
up on his leg (vertically, there is a rise of fifteen pixels), which will cause the votes to
"miss" in the accumulator, since this movement has not been accommodated in the
evidence gathering strategy. He also slows down slightly and this breaks the
assumption of linear velocity and consequently the template "overtakes" the walker -
frame 10 shows it some pixels ahead.

If noise is added, as in section 3.1.1 or 3.1.2, the performance drops off rapidly due
to the large number of missed votes arising from the lack of modelling of the bobbing
or vertical motion of gait. Under simulated addition of noise, as in Figure 6, the
decline in accuracy is similar to that of the synthetic sequences but drops away at a
lower noise level since the level of background noise is higher due to the surrounding

scenery.

19



3.2 Motion Templates

It is usually prudent to compare new techniques with contemporary or equivalent
approaches. This appears unfeasible in this case since the most appropriate
comparator technique is the GHT, but with interpolation, or tracking. The suitable
form of this interpolation for the GHT or the motion model for tracking is actually the
motion template, the very subject of these results. The alternative would be a fully
representative parametric motion model that, as explained previously, is
computationally intractable due to its infinite dimensionality. Consequently, the
comparison that would be made is that of a frame-by-frame extraction process with a
non-analytic template representation against an integrated multi-frame extraction
process with an analytic template representation. This comparison has already been
made in section 3.1, which examined the earlier approach to moving arbitrary-shape
extraction (without motion templates but with a linear motion model) and
consequently fails to test the subject of this section - the motion template in an
evidence gathering context.

Comparison with other techniques that use similar knowledge of motion (such as
the neural network based human motion tracker [6] or the spatio-temporal repetitive
motion detector using temporal textures [5] referred to in the introduction) is not
comparing like with like. In the case of techniques that are as dissimilar as a tracker
and an extractor, the comparison is best made on application-dependent qualitative
requirements or on the basis of each technique's features (e.g. optimality vs. on-line
performance), rather than a quantitative performance analysis. In light of these
difficulties, we have examined the performance of the new technique in terms of noise
affecting each component of the system rather than attempt to make direct
comparisons with other distantly related approaches. We believe that such analysis

will enable the aforementioned choice based on requirements or features.

3.2.1 Image-noise performance on synthetic sequences

The new algorithm was run on a nine-frame sequence based on a small (50x50)
image, Figure 10a, moving along the path shown in Figure 10e. The path was
regularly sampled (in time) for this illustration and the grey-levels show the time
taken to traverse each section of the path (the darker the pixel, the more time was

spent traversing it). The motion template used was given perfect co-ordinates since
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we are examining the response to image noise in the input sequence, not noise in the
motion template. Again, a small image was chosen to make practical computation of
large-scale tests. Noise was added at random to each frame of the sequence at eleven
noise levels from 0% random coverage to 100% random coverage of the frame, with
pixel values wrapping rather than being clipped when the addition of noise took the
values out of range. The noise distribution was zero-mean Gaussian with a standard
deviation of one. Examples of the effects of the increasing noise levels can be seen 1n
Figure 10. The grey-level images produced are thresholded by the algorithm (shown
before thresholding in Figure 10b-d). Note that the shape is completely obliterated at
the maximum noise level and that at around 50% noise it is nearly impossible to
distinguish the shape by human vision.

Again, the new technique is capable of coping with significant levels of noise. The
performance curve in Figure 11 is similar to those for previous VHT-derived
techniques and, as mentioned above, earlier studies found that the VHT-based
techniques are able to handle noise levels that are approximately twenty percent

greater than a comparable GHT-based frame-by-frame technique.

3.2.2 Image-noise performance on real-world sequences

Our current intention is to apply the new techniques to the analysis of human motion
and, eventually, for biometric use. For these purposes, and to substantiate the
applicability to real-world imagery, we have evaluated the performance of motion
templates when locating a walking person viewed from the side, as with the CVHT in
section 3.1.3. Co-ordinates specifying the particular motion of the walker were
gathered by selecting a reference point on the body and estimating its position by eye
for each image in the sequence. Since these measurements are likely to contain
inaccuracies, the motion template itself is not perfect and will be another source of
errors and peak-spread in the accumulator. Again, as with the CVHT, owing to the
robustness of its formulation there is no need for exceptional precautions in the new
technique.

Figure 12a shows a reconstructed template of a walker's torso and head, which
was created by manual tracing from one of the frames in the sequence. Also shown is
a plot of the x and y components of the motion template used (Figure 12¢) and several
frames of the walker sequence CAl with the extracted template superimposed

(Figure 12b-d). A series of Gaussian noise tests showed performance similar to those
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earlier for synthetic shapes, starting to lose accuracy at 40% noise, dropping off
smoothly and missing the target completely above 80% noise. The difference can be
attributed to the imperfect conditions prevalent in the real world, e.g. the cluttered and
noisy background and the imperfect shape and motion templates.

A simple test of the effects of occlusion was carried out on the walker sequence
CA1 described above. No noise was added to the sequence since this would be an
unnecessary complicating factor. Instead, a number of vertical lines of pixels were
blanked out and the algorithm was run on the resulting image. The results revealed
that the new technique correctly extracts the walker until the blanking is 175 pixels
wide — which completely obscures the walker for approximately 70% of the duration
of the entire sequence. Furthermore, the extracted peak is within one pixel of the true
peak for another thirty pixels, indicating there is a measure of peak spreading. As with
other VHT derived algorithms, the new technique is capable of handling even extreme

occlusion owing to the global integration of evidence across the entire sequence.

3.2.3 Effects of noise in the motion template

To determine the resilience to noise in the motion template, a percentage of co-
ordinates calculated from it were perturbed by uniform noise. Note that adjusting
these co-ordinates is equivalent to moving the target shape in the image sequence by
the same amount. The strength of the noise determined the maximum distance (in
pixels) that would be added to each co-ordinate. These tests were performed on the
synthetic sequence and motion template in section 3.2.1.

The results show that as the percentage of co-ordinates corrupted increases, so the
performance declines (Figure 13a and Figure 13d). This decline can be attributed to
a "peak-spreading” effect common to all HT-derived techniques. As the accuracy of
the input data decreases, the peaks in the accumulator become smaller and more
spread out and the background noise level rises. To begin with, the HT-algorithm will
find the correct parameters but, as noise increases and the definition of the correct
peak becomes smoother, the parameters slip gradually from their true values. This
continues until the spreading of the peak weakens it to the point that the algorithm is
attracted to other potential sites. By comparing the graphs (Figure 13b and Figure
13c), it is clear that this is occurring. As the noise increases, the location of the peak

moves in the neighbourhood by approximately the same amount as the pixel distance
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noise being added to the motion template before finally switching to other incorrect
peaks.

Only some portions of the motion template are significant - it is a continuous
representation but the only significant points are those with a time reference matching
the time references of the frames in the sequence analysed. This will have no effect on
the validity of the results since uniform noise is applied. However, since it is entirely
possible to have a high corruption rate without necessarily affecting the particular co-
ordinates that are vital to a sequence, the graphs show a smooth decline.

The graphs all show a plateau effect where the maximum pixel distance is less than
a particular amount (one pixel for the first two graphs, two pixels for the second two).
This occurs when the noise is less than the "hit" threshold (again, one pixel for the
first two graphs, etc). It is due to two effects: the discretisation process of
accumulation rounds out the errors to within one pixel of accuracy and the post-
processing for determining whether a hit has occurred flattens any other errors up to
the hit threshold.

In summary, the motion template is sensitive to noise only when the points
significant for the sequence being processed are affected by noise, and if their number

is sufficient to overwhelm the in-built resilience of the evidence-gathering approach.

3.2.4 Finding people with motion templates

Further tests were performed to check the repeatability of human walker extraction.
Three extra image sequences of walkers (MAl, SG3 and VHI!) were extracted
correctly as shown in Figure 14. Also shown are the results of attempting to extract
the same walker from a different sequence (MA3, SG3 and VH3 respectively) whilst
using the same shape and motion templates. As can be seen, MA3 and SG3 are
correctly extracted but VH3 is slightly in error. This is due to some problems towards
the end of the sequence with bad edges (and hence a bad motion template) resulting
from height of the subject and the interaction with the lighting in the room.

Since the results are generally very accurate, this offers hope for a future attempt at
locating humans with a "standard walk" motion template and a suitable range of
scaling parameters. This has not yet been attempted due to the computational

requirements but should be achievable with a genetic algorithm implementation.
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4 Conclusions and Further Work

We have presented a new technique that robustly extracts optimal structural and
motion parameters for arbitrarily moving arbitrary shapes in an image sequence. The
technique requires no initialisation or training and has demonstrated excellent
tolerance to noise and occlusion. Discretisation errors are minimised in the
accumulator by using Fourier descriptors to represent the templates of shape and
motion in continuous form, which eliminate common problems to do with rotation
and scaling. Whilst the use of templates minimises effects of noise, exploiting the
temporal correlation between frames maximises the possibility of correct extraction.
The use of motion templates is a novel development for the HT and allows for a wide
range of applications that require a more general motion model. This new capability
comes without the explosion of parameter space dimensionality that would be
inherent in current parametric approaches.

Future development will concentrate on two main areas. To further generalise the
approach, it would be useful to partly relax the rigid shape requirement. A possible
approach might allow the motion template to specify different models for different
parts of the sequence, perhaps with some form of morphing between models loosely
based on the HT for natural shapes [18]. In the application domain, we intend to
integrate current gait research with motion templates. In combination with an
articulated leg model, it may be possible to look for specific individuals using a
motion template to describe a person’s unique walking motion. This will require
investigation of whether a motion template of a walking pattern is unique to an

individual.
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(a) original shape (b) rotated and scaled versions of original shape
Figure 1 — Consequences of discrete shape representation

(a) first frame (0) (b) frame 10 (c) frame 18 (d) frame 26
Figure 2 - Space-Shuttle launch with extracted template (of the booster)
superimposed in white

(a) simulated sequence of linearly moving arbitrary shape (star = start point)
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(b) Accumulator after (c) Accumulator after (d) Accumulator after
processing frame 1 processing frame 5 processing frame 10

Figure 3 — Simulated sequence and accumulator deriving from it
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Figure 5 — Artificial sequence with added Gaussian noise
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Figure 8 - Occlusion Tests (dashed = GHT-based, solid = CVHT)

(d) frame 5 (e) frame 7 (f) frame 10
Figure 9 - Extraction of MP1 sequence using a linear velocity model
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Figure 10 — Original shape (with added Gaussian noise) and motion trajectory
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Figure 11 - Noise performance for synthetic imagery

(a) torso (b) extraction in (c) extraction in (d) extraction in
and head frame O frame 17 frame 36
template

(e) motion template (begins at the small cross on the far right)

Figure 12 - Motion template and frames of sequence CA1 with superimposed
template
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Figure 13 - Hits and misses with percentage of corrupted co-ordinates in
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Figure 14 - Extracting different subjects

(f) VH3 sequence
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