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Abstract 

There are currently available many approaches aimed at tracking objects moving 

in sequences of images. These approaches can suffer in occlusion and noise, and often 

require initialisation. These factors can be handled by techniques that extract objects 

from image sequences, especially when phrased in terms of evidence gathering. As 

yet, the newer approaches to arbitrary shape extraction avoid discretisation affects but 

do not include motion. The moving-object evidence gathering approach has yet to 

include arbitrary shapes and can require high order description for complex motions. 

Since the template approach is proven for arbitrary shapes, we re-deploy it for 

moving arbitrary shapes, but in a way aimed to avoid discretisation problems. As the 

template approach has already been seen to reduce computational demand in the 

extraction of arbitrary shapes, we further deploy it to describe the motion of moving 

arbitrary shapes. As with the shape templates, we use Fourier descriptors for the 

motion templates, yielding an integrated framework for the representation of shape 

and motion. This prior specification of motion avoids the need to use an expensive 

parametric model to capture data that is already known. Furthermore, as the 

complexity of motion increases, a parametric model would require increasingly more 

parameters, leading to a rapid and catastrophic increase in computational 

requirements, whilst the cost and complexity of the motion template model is 

unchanged. The new approach combining moving arbitrary shape description with 

motion templates permits us to achieve the objective of low dimensionality extraction 

of arbitrarily moving arbitrary shapes with performance advantage as reflected by the 

results this new technique can achieve. 
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Symbol Meaning 
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1 General introduction and motivation 

In recent years, the primary apphcation of basic computer vision research in 

Southampton has been gait recognition. The problem has provided a spur to develop 

new technique in fields ranging from statistical description to feature extraction. This 

thesis concerns developments of the latter approach - that is, in generalised feature 

extraction. Although the work here is generic (in terms of moving shape analysis), we 

use gait recognition as the exemplar and stimulus. 

In order to be able to recognise people, knowing their approximate location is a 

prerequisite. When considering a video sequence, as required for motion-based 

recognition, it also becomes necessary to locate them in each frame. Current 

approaches to this problem tend to rely on tracking techniques - an object is located in 

one frame and followed or tracked in successive ones. Whilst these methods generally 

permit real-time implementation, they depend on good definition of the target in the 

current or recent frames and an appropriate initialisation. In noisy or occluded 

imagery, as is common with complex scenes, a substantial number of frames may be 

corrupted or unusable leading the tracking method to lose the target and perform non-

optimally. Naturally, poor initialisation also easily leads to apparent failure. 

So, tracking techniques have a number of negative characteristics in addition to 

their positive ones - particularly that they do not consider a video sequence as a 

whole, but as a linear series of images. There are obvious benefits that arise from a 

more holistic approach; especially that correlation across a sequence can be examined. 

In most cases changes happen slowly, a fact exploited in motion encoding (e.g. the 

MPEG suite [64]). Slow changes imply strong con-elation between nearby frames or 

even over many frames. 

Few algorithms in computer vision use temporal coirelation across a sequence to 

improve feature extraction. One of these is based around the Hough Transform (HT), 

giving it the strong theoretical grounding and robustness enjoyed by evidence-

gathering methods. The Velocity Hough Transform (VHT) allows sequence-based 

extraction of conic sections that are moving in a parametrically described manner (for 

example, linear or sinusoidal motion). 

Although the VHT was used previously to locate the leg of a walker, the shape 

model (a line) and motion model (sinusoidally bobbing linear motion) used were only 

adequate for the limited experiments possible at the time. The nature of the VHT 
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provided two barriers to accurate modelling - the inherently restricted generality of its 

shape and motion models. 

The first barrier to using the VHT for person location is that body shape is not 

well represented by conic sections. Limitations of the shape description in the VHT 

preclude the more complex and even arbitrary shapes that are required to give a 

reasonable reproduction of a human shape, without excessive computational 

resources. Hence, the first part of our work was to extend the VHT to allow arbitrary 

shape extraction, to give a continuous-template variant of the VHT (CVHT). We use 

Fourier-Descriptor templates to achieve efficient arbitrary shape representation. 

The second barrier is that people do not move in a simple parametric way but 

rather in a complex and situation dependent way. The motion description in both the 

VHT and CVHT suffers from the same drawbacks as the original shape description in 

the VHT - a lack of sufficient generality at a supportable level of computational 

resource usage. In the second part of our work, we alleviate this restriction also. 

Again, we use Fourier-Descriptor templates and thus gain a consistent framework 

across both shape and motion description. 

In this thesis, we present two novel developments of the evidence-gathering 

paradigm that, together, allow for efficient and robust extraction of arbitrarily moving 

arbitrary shapes. The following chapter details related work and also the foundations 

of the new developments. It ends with a more detailed discussion of the contributions 

to the field. We continue by describing our approach to arbitrary shape extraction 

with parametric motion (Chapter 3) and with arbitrary motion (Chapter 4). In each 

section and for each new technique, we discuss the issues, present theory and 

examine results of some comparative evaluation and performance analysis. Finally, 

we give conclusions and suggest directions for future research, presenting some 

initial work on these directions. 



1.1 Publications related to this work: 

There are currently four publications associated with this thesis. These are: 

• [20] A poster at the lEE colloquium in London (1999) that described early 

work on the CVHT 

• [21] An oral presentation at BMVC99 that gave a full analysis of the CVHT 

and mentioned early work on motion templates 

• [22] A poster at BMVC2000 that presented the developed motion template 

work 

• [23] A paper in Pattern Recognition that contains a complete, but excerpted, 

version of this thesis, covering the development of both CVHT and motion 

templates. Appendix 10 contains the final version of this paper. 



2 Related work and foundations 

This chapter begins by setting the historical context of the basic technique 

underlying this novel work - the Hough Transform. We continue by detailing the 

immediate foundations of the new developments and, where appropriate, indicating 

related and relevant work. The material in this chapter concentrates on the major 

developments that have direct relevance to this work - for more general reviews of 

the extensive literature relating to the HT, see the surveys by Leavers [38] or 

Illingworth [30] or books with major sections on the subject [15, 46]. 

The Hough transform [26] was originally formulated to detect lines in an image -

its first application was to automatically detect tracks from pictures of bubble 

chambers. The implementation used the slope-intercept parameterisation of a line, 

which has an unbounded parameter space since the parameters can have an infinite 

range. The algorithm was later introduced to the computer vision research community 

[53]. Its principal advantage is that it produces optimal results since it is an efficient 

form of template matching [57], which is optimal in Gaussian noise. 

The slope-intercept formulation's unbounded parameter space made the HT for 

lines impractical for general scenarios until the transform was extended [17] to use the 

normal parameterisation. This adjustment puts bounds on the maximum size of the 

parameter space and makes line detection using the HT technique viable. The two 

parameters are constrained: the angle component's range is limited to ±n radians and 

the distance component is restricted to the length of the image diagonal in pixels. 

In the same paper, Duda and Hart also described how the HT algorithm could be 

modified to detect any analytically defined shape, showing the example of a circle in 

detail. Following this, the HT was extended to conic sections (circles [33] and ellipses 

[58]). These extensions were possible and fairly simple because the essence of the HT 

algorithm is to match feature points (e.g. edge pixels, vertices or depth values) to 

parameters of a constraining equation - not just to match pixels to a line's parameters. 

So, the constraining equation can be changed from a description of a line to that of a 

circle or a more complex shape. A formalisation of the HT [52], which brings out 

these properties, is adumbrated in Appendix 8.1. 

Early adaptations of the standard HT increased the complexity of the constraining 

shape equation and thus the dimensionality of the HT - lines require a 2D parameter 



space, circles a 3D space, ellipses a 5D space, etc. Extrapolation suggests that for a 

parametrically defined arbitrary shape (effectively a high- or infinite-order 

polynomial) the standard approach would require a nearly infinite dimensional 

parameter space. In contrast with such an approach [37], which required an exorbitant 

accumulator space, an arbitrary shape HT actually only needs to accumulate for the 

(relatively few) appearance parameters, provided that the shape to be located is 

already specified [4]. Instead of searching for the best fit to the parameters of an 

arbitrary polynomial, the only parameters that need examination are those that tug and 

stretch a template shape until it matches the target - such as position, rotation and 

scale. We will later see how templates can be used efficaciously not only in shape 

extraction, but also in motion extraction and description. 

2.1 Generalised Hough Transform 

Merlin and Farber [39] first considered general-shape detection using the HT but 

their method provided no means for detecting rotated or scaled shapes. Ballard 

developed the full mapping [8] for arbitrary shapes with rotation and scale invariance 

- the Generalised Hough Transform (GHT). The GHT replaces the analytic 

parametric constraints in the HT with a non-analytic tabular representation of an 

arbitrary shape. This table (the "R-table") describes the position of feature points in 

the template, or target, shape relative to a reference point and is indexed by the 

gradient direction information at each feature point. Compared with Merlin and 

Farber's method, this table also increases the efficiency of the algorithm by reducing 

the number of feature points under consideration to those that fit the additional 

gradient direction constraint. Merlin and Farber trace entire instances of the template 

shape in the accumulator, whereas the GHT only adds particular points from the 

template contour to the accumulator. In the GHT, the lower number of votes cast 

reduces the amount of noise in the accumulator generated by false votes (provided 

that the gradient data is of good quality [7]) and can also improve the computational 

speed. 



2.2 Fourier-descriptor template representation 

Discretisation or quantisation errors are one of the areas of the HT that has been 

frequently researched, producing analyses of the source of the error, its consequences 

and algorithms to minimise or remove it [34, 47, 59]. However, the GHT in particular 

introduces an additional source of error - the non-analytic shape representation. The 

problems with the GHT's R-table representation have been described in the literature, 

most recently and in greatest detail in [5] although Crimson's work is better known 

[24]. They essentially derive from the fact that it is a discrete representation sampled 

at a particular resolution. When the template is scaled or rotated, there can be 

problems with aliasing and rounding errors. Figure 1 shows the effects of scaling and 

rotating the discrete set of points comprising the original shape (Figure la, shown as 

scaled by 1.0, with no rotation). Figure Ib-d shows the set of points at different 

orientations, whilst Figure le-h and Figure li-1 repeat the rotations at two larger 

scales, double and quadruple respectively. Clearly, there is missing data in the new 

sets of points - the points in the original have become separated due to inadequate 

sampling at the new scale. Furthermore, the effects of discretisation are particularly 

evident in the rotated instances where points have moved from their true position due 

to rounding errors. If the shape had been shrunk, the points in the original would 

merge, effectively oversampling the shape. Civen higher (or multiple) resolutions this 

error can be minimised, but it will always be present. Also, additional/alternative 

resolutions are frequently unavailable. 

Distortions are inevitable when working with discrete systems. Nevertheless, the 

worst effects can be mitigated by maintaining a continuous representation for as much 

of the process as possible. Using an analytically defined curve as the template 

representation makes it possible to defer discretisation until after rotation and scaling. 

Elliptic Fourier Descriptors (FDs) [35] have been deployed in an adaptation of the 

CHT [4] to give such a continuous representation. Instead of recovering vote co-

ordinates from an R-table, they are instead calculated from the FDs. This avoids the 

extra quantisation step inserted by the CHT (discretisation occurs in template 

transformations and again in the accumulation phase), thereby restoring the 

robustness of the original, analytic, HT formulation. In support of this, Aguado [5] 

found that extraction using FDs was possible with greater than 90% noise/signal (the 



ratio of the number of image points to the number of points that define the shape) 

whilst the GHT generated prominent false peaks for values close to 70%. 
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Figure 1: Discrete shape representation (GHT) at varying scales and orientations 

The FDs are primarily used to provide a continuous representation of the original 

template shape but there are other benefits. For example, they also serve to in-fill 

between points from the original specification of the template, effectively performing 

an interpolating function when oversampling. Clearly, if the original template is at a 

smaller scale than the reconstructed one, there will be no additional detail provided by 

the FDs, just interpolation of the initial data. Interestingly, selecting particular bands 

of harmonics (thus under-sampling the FDs) can extract "significant" natural scales 

(i.e. a fundamental part of the structure) from a model [54]. Figure 2 gives Fourier 

described samples of the shape in Figure 1. Here, a continuous set of points is derived 

at different scales and orientations, and remains as contiguous and continuous as the 

original shape. Note that truncation of the Fourier series leads to rounding effects in 

regions of high curvature, a factor more noticeable at increased scale. However, in the 

figure, most of the rounded comers are artefacts resulting from the generation of the 

FDs from an eight-neighbour chain code (giving diagonals rather than right-angles at 

the comers). Other benefits of Elliptic Fourier Descriptors are their completeness, 

simple geometric inteipretation, access to frequency information and the fact that they 
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can be easily produced from a chain code of the contour. For all these reasons they 

were suitable for this work. However, other analytic representations could equally 

have been used (e.g. cubic B-splines as in [61]). 
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Figure 2: Continuous shape representation (FDs) at varying scales and orientations 

Elliptic Fourier Descriptors encode a contour as two Fourier decompositions by 

considering the x and y components separately. The decompositions contain a number 

of frequencies limited by the number of harmonics used. The two Fourier components 

can be recombined and viewed as a series of linked, rotating ellipses - one for each 

harmonic frequency. The speed of rotation is defined by this frequency, the size of the 

ellipse by the maximum magnitudes of each Fourier component and the initial 

orientation of the long axis by the relation between the components. 

One important implementation concern that quickly arises is the number of 

harmonics to use when representing a shape. Evidently, the more harmonics used, the 

better the reconstruction will be. In most cases, this is an asymptotic improvement and 

a balance must be struck between accuracy, computational costs and the requirements 

of the application. Here, we are using the FDs in the context of digital (thus discrete) 

image processing and hence there will be a limit defined by the pixel granularity and 

scale beyond which additional harmonics have no perceivable effect. This limit is 

dependent on the fineness of the pixel grid and the complexity of the shape 
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represented. Kuhl [35] specifies a simple procedure for analysing the maximum eiTor 

of a representation from the original for a given number of harmonics, thus providing 

means of determining the number of harmonics for a given error automatically. 

Another initial concern with FDs was that of disjoint or non-contiguous contours 

(i.e. one with gaps), since the method requires complete, cyclic curves. In the simplest 

case, that of a non-cyclic open curve, the recommended procedure is to loop back 

along the curve when one end is reached thus producing a full cyclic curve. However, 

the discontinuities at the end of the open curve mandate use of a larger number of 

descriptors than is usually required for closed shapes and this method fails in more 

complex cases with multiple breaks in the contour. A more general solution is to 

generate FDs that produce a shape without gaps and then use a masking function that 

causes the regeneration phase to ignore points that would fill in the gaps. 

2.2.1 Theory 

A curve defined by two sets of orthogonal co-ordinates, c^is) and Cy(5), 

parameterised by sE [0,2n) has elliptic Fourier Descriptors as follows: 

with a similar equation for the y descriptors, where k is the harmonic number. The 

range of k defines the number of ellipses used to represent a model shape and thus 

how accurate the shape representation is (up to the practical limits mentioned above). 

To reconstruct the original shape from the FDs, they must be converted from the 

frequency domain to vectors in the spatial domain, n FDs can be converted to vectors 

(along %- and y-axes) from the origin to a point on the curve by; 

cos(^^) + 6^ sin(A:̂ )) (2) 

where FDx = , <3^2'̂ x2'•••, with complementary equations in y. 

The DC bias can be omitted by not summing the DC {k=0) terms. If they are 

included, they translate the origin so that it is the same as that used in the co-ordinate 

frame when the curve was originally sampled into FDs. When using chain codes, as 

we are, the origin is the start point of the chain. It is more intuitive in implementation 

(and has no appreciable effect on the HT) to omit the DC bias, moving the origin of a 

reconstructed shape template to the centre of mass. This tends to be more central in 



the template than the start point of its chain code and thus makes it easier to visually 

interpret planes of an accumulator because peaks will be near the centre of the target. 

2.3 Temporal evidence gathering 

There is a substantial literature on the problem of tracking shapes in a sequence, 

for example the tracking of humans has recently been admirably surveyed [2]. Other 

surveys of interest include [1, 12, 18, 28, 40]. The surveys listed all deal with motion 

and thus, by implication, sequences of images. It is well known that most image 

sequences contain significant correlation across many frames - a fact commonly 

utilised by machine vision and video compression algorithms amongst many others. 

Earlier research has ranged from optic flow [32] to Kalman filters [10] and includes 

temporal templates, a form of which we use later in this thesis. Although much work 

has been done with spatio-temporal structures, the first evidence-gathering based 

technique to exploit this correlation for concurrent structure and motion analysis was 

the VHT [43]. The original implementation of the VHT extracted the optimum 

parameters describing a conic section moving with linear velocity. With simple 

extensions, it handles a subset of rigid motions that can be described parametrically. 

Hence, the nature of both the shape and motion is known a priori - a fact that is 

important for later chapters. To take advantage of the inter-frame correlation, the 

VHT collects evidence from the whole sequence into a single accumulator, 

concurrently extracting optimal structural and motion parameters. As a consequence 

of the additional information collated, the VHT appears to be more robust than a 

standard frame-by-frame tracking implementation, especially when the target is 

occluded or noisy. Any missing or damaged structural infonnation in one frame can 

be compensated for by redundant data in others (for example, structural information 

from the target shape is often repeated in each frame). 

Due to the global scope of the VHT, there is no need to initialise the algorithm to 

search in a specific area (although limiting the extent of the search is a possible 

optimisation). Another common motion estimation problem avoided by the VHT is 

that of correspondence. Points in different frames do not need to be matched since all 

the possible correspondences are examined implicitly in the accumulation phase. By 

the nature of evidence gathering, the best correspondences produce the highest 

accumulator peaks. 
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The motion model is parametric and thus can be extended from linear velocity by 

including extra terms. In this respect, an extension to the VHT [44] that found 

walking subjects using an articulation model required thirteen parameters. As 

illustrated by this example, the major disadvantage of the parametric motion model is 

that any extension increases the dimensionality of the accumulator and, thus, the 

computational resources required. In summary, the VHT enables the use of temporal 

correlation in an evidence-gathering framework, resulting in a powerful and robust 

extraction algorithm. Unfortunately, the modelling of both shape and motion is 

seriously restricted. 

2.3.1 Implementing the Velocity HT 

The VHT was originally formulated as an extension to the HT for circles [17], 

adding a velocity component and extending the single input image to a sequence. 

When casting votes in the accumulator, the HT for circles uses the following formulae 

as a part of its kernel: 

a ^ = c ^ + r - cos(0) 
(3) 

y RiniH I = c + r •sin(0) 

where and Uy are the co-ordinates of a vote in the accumulator, c ,̂ and Cy are 

centre co-ordinates of the circle to be drawn in the accumulator (i.e. the co-ordinates 

of the feature point, e.g. an edge pixel), r is the radius of the circle being searched for 

and 6 is the polar parameter of the circle. The accumulator is three-dimensional and 

stores Ujc, ay, and r. To extract the parameters of a circle in linear motion, the 

equations describing the points in a circle need only include a linear motion term, as: 

a,, = c+ r • cos(0)+ v,, • t 
X X \ / X 

a^, = Cy + r • sin (0 )+ -t 

where and Cy are the circle's centre co-ordinates, and Vy are the velocities of 

the circle along the x- and y-axes, and t is the time reference of the frame relative to 

time t = 0 (normally the initial frame). These equations calculate the vote co-ordinates 

in an accumulator (now five-dimensional and storing a^, ay, r, and v )̂ for a feature 

point in a given frame of a sequence. After processing, the highest peak in the 

accumulator represents the best estimates of the moving circle's parameters and its 

centre co-ordinates at time t - 0. 
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The time reference of each frame is used to calculate the offset back along the path 

of motion for each vote. For example, if a circle moves forward at 1 pixel per frame, 

at time t-3 the circle has moved forward 3 pixels. In order to focus all the votes for 

the circle onto one peak, votes in the accumulator plane representing a velocity of 1 

pixel/frame should be moved 3 pixels back to compensate. The velocity compensation 

is illustrated for a moving circle in Figure 3, which depicts the three-dimensional 

accumulator space x, y, Vx. Votes are drawn, centred on an edge pixel co-ordinate at 

several different frame times (shown as crosses). They are adjusted for the x velocity 

that is relevant to the plane of the accumulator in which they appear. The topmost set 

of circles has the correct velocity because the circles of votes all intersect at a point. 

Velocity in X 

Intersection in accumulator of 
f vote loci for edge points 

Accumulator Y position 

Edge point at 

Edge point at 
to =0 

Edge point at 

Accumulator X position 

Figure 3: View of a VHT accumulator for a moving circle 
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Pseudocode for the VHT for circles algorithm (allowing linear x and y motion and 

a range of possible circle radii) is given below: 

For (f = first frame -> last frame) 

For (all edge pixels ê , Gy in frame f) 

For (r = r_min -> r_max) 

For (Vx = Vj^min -> v^max) 

For (vy = Vy_min -> Vy_max) 

For {theta - 0 -> 359) 

ax = Ox - Vx * t i m e [ f ] - r * c o s ( t h e t a ) 

ay = Gy - Vy * t i m e [ f ] - r * s i n ( t h e t a ) 

accumulator [Bx, By, r, Vx, Vy] + + 
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2.4 Optimisation 

No development involving the HT is complete without at least a brief examination 

of optimisation techniques. Since the process that guarantees optimality is a form of 

exhaustive search (albeit efficiently implemented), the computational resources 

required by the algorithm will always be greater than those used by less 

comprehensive algorithms. As a result of these requirements, there is a substantial 

body of work directed towards alleviating the computational burden. The approaches 

fall into three basic responses to the problem: architectural, pragmatic and analytic. 

The first, architectural, is the simplest and depends on the availability of faster 

computers. This takes the form of parallel architectures or reliance on Moore's Law, 

the general trend of doubling of computing power about every eighteen months. The 

HT is known to be well suited to parallel implementation, with many options for 

splitting the processing (e.g. by image, by region of an image, by ranges of parameter 

values, etc). Leavers' survey [38] has a good summary of parallel implementations of 

the HT. With other application domains, the increase of available computing power 

has eventually caught up with demands, proving this solution to be an adequate one in 

some cases, albeit one that requires a measure of patience. In many respects, the ever-

increasing speed of computers has made this research possible - only a few years ago, 

the computational requirements would have placed it beyond the reach of all but the 

most well equipped (or patient!) organisations. 

The second approach, pragmatism, involves applying heuristics, speed-ups, and 

memory-reduction techniques that may undermine the underlying principle of 

exhaustive search and hence the robustness of the algorithm. For example, multi-stage 

processing, "pyramidal" methods (e.g. the Adaptive HT [29], Hierarchical HT 

[51,62]), random sampling algorithms such as the Randomised HT [60] and genetic 

algorithms (Section 5.2) fall into this category. 

Probably the most common and effective method is to reduce the number of points 

to be considered. This can be done robustly and simply by discarding any points that 

definitely will not contribute to a meaningful analysis (e.g. highly isolated single 

pixels when searching for lines). Removing meaningless feature points has the 

twofold benefit of reducing accumulator noise due to false votes and reducing the 
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search space, resulting in a general speed improvement proportional to the number of 

points rejected. 

One of the most prominent uses of robust point reduction is the GHT. The gradient 

direction of a point in the search image constrains the parts of the template shape 

drawn into the accumulator to just those with a matching gradient direction. Before 

the GHT, each feature point matched, and voted for, all points in a template. 

Points can also be discarded in a non-robust way by, for example, using a 

probabilistic strategy that picks a random subset of feature points (e.g. the 

Randomised Hough Transform [60]). This method will still give dependable results 

provided that the sample size is large enough and random enough to gather sufficient 

evidence to identify features in the noise. The size of the feature under detection is a 

significant factor in the reliability of probabilistic strategies - as the ratio of feature 

size to noise decreases, random picking of points is more likely to miss the (relatively 

few) important feature points. One of the problems with this technique is deciding 

when enough data has been considered to give an accurate result (the stopping 

criterion). Balancing the speed of execution with accuracy can be difficult and is often 

heuristic. 

Other pragmatic improvements can be made purely in the implementation domain. 

For example, the space requirements of the accumulator can be reduced by using 

sparse arrays or linked lists, which only allocate space for array cells that are in use, 

and computation times can often be significantly reduced by caching important data 

structures, etc. 

Finally, the analytic approach tries to reduce the computation requirements by 

using extra information to make the problem simpler (decomposing it), often shifting 

some of the work to pre- or post-processing stages (also common in pragmatic 

approaches). One approach to parameter space decomposition uses sets of points to 

constrain voting. For example, in [3], Aguado describes a method where two points 

are picked at random and a third point found along a line peipendicular to one of the 

endpoints of a baseline between the two points. These three points, along with some 

stored angular information, form a geometric invariant that can locate the correct vote 

point for the template shape. A disadvantage is that since multiple points are required 

per vote, the processing burden for each vote increases considerably. Furthermore, all 

three points must belong to the same shape or any votes cast are just noise. 

"Windowing" is a partial solution to this problem - points are selected from a local 
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region to increase the chance that they will all belong to the same primitive. Finally, 

as the complexity of the transformations applied increases, geometric invariants 

become more and more general, requiring more processing to produce. For example, 

an affine transform destroys the relationship between angles of a triangle and 

invalidates Aguado's method, which is limited to similarity-transformed shapes. 

2.5 Contributions 

We will describe a new technique for extracting moving arbitrary shapes, which 

has been created by fusing the two evidence-gathering techniques, the VHT and 

Fourier-descriptor template representation. Uniting these techniques unifies their 

unique and complementary advantages. The Fourier Descriptors provide a continuous 

template representation, minimising discretisation error in the algorithm, and the VHT 

component exploits the temporal correlation across a sequence, mitigating the effects 

of noise and occlusion. The new algorithm does not require initialisation or training 

and avoids the need to solve the correspondence problem, inheriting these 

characteristics from the VHT. For illustration. Figure 4 shows frames of a sequence 

where the location, velocity and acceleration parameters of a Space-Shuttle booster 

during launch were correctly extracted by the new technique. See Section 3.4.6 for a 

fuller breakdown of this extraction. 

(a) Frame 0 (b) Frame 10 (c) Frame 18 (d) Frame 26 

Figure 4: Space-Shuttle launch with extracted template (of the booster) 

superimposed in white 

However, the CVHT (for convenience, we will refer to the continuous-template 

variant of the VHT as the CVHT) is still limited by its parameterised motion model. If 

the Shuttle imagery included a parabolic trajectory, this more complex motion would 

have to be incorporated into the motion model and would boost the dimensionality 

considerably. Hence, the simplistic approach to improving the generality of the 
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motion model is to increase the complexity of the HT kernel to represent an 

increasingly complex motion path. Consequently, an accurate polynomial description 

of an arbitrary path will require a large or even infinite number of terms, massively 

increasing the dimensionality of the problem. There are parallels to this 

parameterisation of motion in the earlier parameterisation of shape, where 

increasingly complex shapes were represented by more complex parameterisations 

and a commensurately larger dimensionality. The solution to this dimensional 

explosion was found in the use of templates, which allowed an efficient and low 

dimensional parameterisation of any shape. The cost of this approach is that the 

method loses the (debatable) flexibility of finding all descriptions of all possible 

shapes in a scene. Following this historical parallel, the remaining part of our new 

approach is to describe the motion by a template, like the shape itself. These "motion 

templates" extend the use of templates in the HT from the spatial domain into the 

temporal. This ameliorates the punitive computational burden associated with 

increasing dimensionality since the aim changes from finding the potentially 

unlimited set of parameters that characterise a particular motion to finding the limited 

set of parameters that locate the object undergoing the specified motion. 

These novel developments clearly add significant functionality and flexibility to 

the VHT - removing the hmitations of shape modelling by analytically described 

conic sections and parametric motion modelling. Adding the capability to extract non-

analytic arbitrary shapes that move arbitrarily increases the utility of the algorithm to 

a range of applications that require more general shape and motion models. In 

particular, these developments have opened the door to the use of the HT for human 

gait analysis. 
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3 Continuous VHT 

In this chapter, we will illustrate the implementation of the continuous VHT 

(CVHT) with some visualisations, present some theory describing the implementation 

and discuss results showing its performance in varying circumstances. We then test it 

in comparative evaluation with GHT-based techniques. 

3.1.1 Implementation 

In order to add arbitrary shape extraction to the VHT, the Fourier descriptor 

version of the GHT is extended in the same way as the HT for circles was extended 

into the original VHT - by introducing velocity terms to the shape description. Instead 

of drawing a motion-compensated circle in the accumulator (as in the VHT), the 

Fourier descriptors are used to trace a locus of votes in the form of the template shape, 

adjusted for the estimated motion of the object. The accumulation process for the 

sequence in Figure 5a is illustrated in Figure 5b-g, with votes increasing as more 

frames are added. Here we use Merlin and Farber's [39] variant of the voting process 

- voting for all the points in the template rather than a restricted set such as in the 

GHT. Figure 5b-d shows the plane of the accumulator for the correct estimate of 

velocity while Figure 5e-g shows a plane with an incorrect velocity (x = 0). Reflected 

instances of the template shape are generated in the accumulator, centred on motion-

compensated edge pixel co-ordinates from the frame being processed. Shapes drawn 

in the accumulator planes are reflected because co-ordinates describing the template 

are subtracted from the co-ordinate of the edge pixel. This is because we are reversing 

the vector from the reference point to the edge point so that we can locate the 

reference point from the edge pixel. The net effect is that a template shape is reflected 

around both axes when drawn in the accumulator planes. 
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Time 

Frame 10 

5 

(a) Simulated sequence of linearly moving arbitrary shape (star = start point) 

(b) Accumulator plane 

for correct velocity after 

processing frame 1 

(c) Accumulator plane 

for correct velocity after 

processing frame 5 

(d) Accumulator plane 

for correct velocity after 

processing frame 10 

_ r-. 
1^ 

— ^ \ } 
- 7 \ / -.y 

(e) Accumulator plane 

for incoiTect x velocity 

after processing frame 1 

(f) Accumulator plane 

for incorrect x velocity 

(g) Accumulator plane 

for incorrect x velocity 

after processing frame 5 after processing frame 10 

Figure 5: Simulated sequence and accumulator planes deriving from it 

The motion compensation mentioned above is simply back-projection along the 

expected line of motion, thus converting the co-ordinates to the same temporal frame 

of reference as the initial frame (at frame time t = 0). Hence, votes for a particular 

edge pixel in frame 5 fall in the same place as those for frame 1. Once the voting 

process is complete, intersections of template shapes in the accumulator form peaks 
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that indicate the location (at frame time f = 0) of an instance of the shape in the 

sequence. The more coincidences that occur (whether due to correct velocity 

estimates or chance), the stronger the resulting peak. 

The dimensionality of the algorithm can be considered in two sections. The shape 

section of the CVHT requires four parameters - x and y offsets, scale and rotation -

allowing it to cope with shapes that have undergone a similarity transfonn. The 

number of parameters required for the motion section varies with the complexity of 

the model. The motion model used by the CVHT may be changed by altering the 

kernel of the HT (see equation 6 for a linear velocity kernel). Here, we have generally 

used one of the simplest models - linear velocity in one or two axes - in order to limit 

the dimensionality of the problem. More complex motion models may require more 

parameters to be searched for. For example, to accurately extract an object that has 

linear velocity and acceleration requires two parameters per axis (velocity and 

acceleration). As the number of parameters rises, dimensionality increases 

proportionally. In terms of visualising the extraction process (as in Figure 5), 

changing the motion model alters the motion compensation stage to perform a more 

complex back-projection of the anticipated motion (e.g. from linear back-projection to 

linear with acceleration back-projection). 

3.1.2 Computational cost 

The computational complexity of the CVHT is dependent on the motion model 

chosen. The basic linear velocity variant is of order 0(1^) in terms of algorithmic 

complexity or, in terms of the number of operations, 0(#points x#s x#rx #Vx x #Vy), 

where #pomts is the number of feature points (e.g. thresholded edge-pixels in a 2D 

image) in the sequence, #s and #r are the number of discrete steps in the parameter 

ranges for initial shape scale and rotation and #Vx and #Vj, are the number of discrete 

steps in the parameter ranges for velocity in the x- and y-axes respectively. It may be 

more useful to consider the algorithmic complexity as consisting of two parts; the 

shape description part - 0(hf) - and the motion description part - O(N^) for a linear 

velocity kernel. Combining these gives the previous result 0(N^ x N^) = Note 

that the CVHT has fixed costs for the shape description part due to the template-based 

modelling - only the motion description has variable cost. In other words, any shape 

(including affine transformations) can be represented in the same size of accumulator 

(i.e. in four dimensions), but different forms of motion require different numbers of 
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accumulator dimensions (e.g. two dimensions for linear % and y velocity, two more 

dimensions to include x and y acceleration, etc). 

The CVHT has the normal penalties of being derived from the HT - namely high 

memory and computational requirements. In mitigation, the optimisation procedures 

described in Section 2.4 are applicable and can bring the cost to a reasonable level. 

The crucial difficulty with the CVHT is that the dimensionality of the problem 

increases with the complexity of the motion model, a problem we address in Chapter 

4 with motion templates. 

3.2 Theory 

The theory presented in this section is developed from the Fourier-descriptor 

variant of the GHT [4] discussed earlier. 

In order to develop the voting mechanism, we require an arbitrary-curve 

parameterisation for shapes. As stated previously, we have chosen elliptic Fourier 

descriptors for this purpose (see Section 2.2.1 for some relevant theory). The curve 

shall be represented by the vectors i)^(s,FDx) and Vy(s,FDy) (as defined in 

equation 2, but omitting the DC bias as discussed in Section 2.2.1). The shape 

template's scale and rotation is given by a^=[/g Pg], so the scaled and rotated shape can 

be described as 

(^, a J = (^, ) cos(Pg) - (^, FD y) sin(Pg) (5) 

with a similar equation for Ry. Now, we require a kernel that defines the shape of 

votes to be cast in the accumulator for each feature point (e.g. an edge pixel). This is a 

combination of curves, each with its origin on the reference point to be voted for 

(typically at the centre of the template shape) but offset by the velocity, and at a 

number of orientations and scales (for similarity transform invariance). This 

combination of curves can be obtained from: 

m 7;,^, Z, p, V J - (^, Z, + 7?̂  (^, Z, p)[/y + (6) 

where Vĵ  and Vy are respectively the x centre and y centre velocity parameters, Ux 

and Uy are two orthogonal vectors defining the x- and y- axis respectively and is a 

time reference relative to the arbitrary start point (e.g. frame number versus frame 0). 

This curve is inserted into the accumulator by offsetting it from the co-ordinates of 

each feature point in the image sequence IS, defined by: 

IS = )| P e D,.T„, e D J (7) 
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Here, is a function that defines the points in the image sequence for a 

frame time Tref, where a suffix on the domain indicates its extent (here. Dp is the 

domain of the pixels in an image in the sequence and D j is the domain of the frame 

times (i.e. number) in the sequence). The accumulator vote-pattern expression is then: 

CO ,1, s e E Dp,T^^,^e Dj (8) 

These equations describe the concept of the HT but do not formalise the actual 

technique used, namely the accumulation phase. The parameter space can be mapped 

into an accumulator by using a matching function, which determines whether a point, 

c, in parameter space should be incremented for a point, d , in the set . The 

equation below defines the simplest accumulation strategy, namely incrementing an 

accumulator cell by unity for each match. Changing the matching function M can 

accommodate more complex strategies (e.g. the Fuzzy HT's more complicated voting 

strategy that casts multiple points in parameter space for each parameter set). In this 

thesis, we have exclusively used the simple case. 

/ h if c = d 1 

if F . d l 

This function simply maps points from the set (i.e. the vote-pattern, offset 

from a particular feature point) to their exactly corresponding co-ordinates in 

parameter space. Next, this function is applied to for a range of parameter 

values. This defines the continuous form of the CVHT, accumulating evidence in a 

parameter space SCVHT according to: 

ScvHT J J J m (&, ?iP,T^^^)-aT{s,T^^^,l,p,v^,Vy))ds dPclT (10) 

where b is the translation vector (i.e. the location of the reference point). Finally, 

this pai'ameter space is sampled into a discrete multidimensional array Socvirr, which 

is expressed by: 

D/ PEDJ, seD^ 

This expression gives an accumulation strategy for finding moving arbitrary 

shapes. For each edge pixel in a frame, a locus of votes is calculated from the Fourier 

description of the template shape and entered into the unified accumulator. The co-
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ordinates of the loci are adjusted to allow for the predicted motion of the shape, 

dependent on the frame index, as in the VHT. 

3.3 Pseudo-code algorithm 

The algorithm that describes the CVHT voting process is: 

For (frame f of the sequence) 

For (edge pixels ê , ey) 

For [scale-seale_min -> scale_max) 

For [ angle-angle__min -> angle_max) 

For ( t = 0 - > 2 * P I ) 

Generate vector (a*,ay) from FD (t) 

Rotate and scale [ax,ay) vector 

For {vx=v^min -> Vx_Taax) 

For (vy=vy_min -> Vy_max) 

Offset {ax, ay) vector from (ex, Gy) 

Calculate velocity offset from f, Vx and vy 

Subtract offset from (a*, By) vector 

accum[ax, ay, scale, angle, Vx, vy] + + 
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3.4 Results 

3.4.1 A short note on pre-processing 

While a considerable proportion of the test sequences used in this thesis are 

synthetic (in order to highlight the particular analysis that is being pursued), some are 

from real-world cameras and have been pre-processed. Typically they are edge-

detected using the Canny operator [11], with an appropriate set of parameters for the 

sequence in question (i.e. judged by eye to give moderately clean edges around the 

central object of interest without excessive noise from small intensity gradients). 

Normally, these parameters tend to be as follows: low hysteresis threshold = 0.4 

(maximum intensity is 1.0), high threshold = 0.6, standard deviation of the Gaussian 

kernel = 1.5. 

An additional pre-processing step used below is the addition of artificial noise. 

Whilst most noise models are explained in the text appropriate to the context, the 

addition of Gaussian image noise may cause confusion because two forms are used. In 

this thesis, image noise is typically generated by adding a Gaussian-distributed value 

to individual pixels, often with a uniform random variable defining how much of the 

image is affected (in the results below, this unifonn random variable is normally 

reported as the quantity of noise added, e.g. "40%", meaning approximately 40% of 

the pixels will have been corrupted). However, the resulting pixel value may be 

beyond the acceptable range. In this case, we have two models: clipped and wrap-

around. 

"Clipped" Gaussian noise means that out-of-range pixel values are clipped to the 

nearest limit, so a pixel value of 1.4 (whiter than white) would be clipped to 1.0 (full 

white) and a value of -0.3 would be clipped to 0.0 (full black). When this type of 

noise is applied to binary images (such as edge images), there is a better than 50% 

chance that a pixel will be unchanged because of the combination of this clipping 

operation and the binary nature of the image. If the original pixel is full white and 

more white is added (50% chance due to the mean of the Gaussian being 0), then the 

clipping will reduce the pixel value back to full white (i.e. unchanged). If "black" 

noise is added to a full white pixel, then the amount added must be greater than the 

binarisation threshold required to flip the pixel to full black - typically a halfway 
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threshold at 0.5 (mid-grey). A similar problem occurs if the original pixel is full 

black. 

"Wrap-around" Gaussian noise partially solves this problem by joining the pixel-

value range at both extremes. So, an out-of-range pixel with a value of 1.4 becomes a 

pixel with a value of 0.0. The consequence of this noise model is that pixel values are 

unlikely to remain the same in over 50% of cases. In fact, there is a slight tendency 

for pixel values to become inverted. Degradation of edge-based algorithms, such as 

the ones presented in this thesis, is far worse with this noise model because, at 100% 

noise, there is a high probability that the majority of the original edges will have been 

inverted. Effectively, useful edges tend to be removed whilst false ones appear. 

The reason for these two models is that, during the original work on the CVHT, 

the "clipped" model was found to provide sufficient noise levels for testing. Later 

work with motion templates improves on the CVHT to the extent that the "clipped" 

model's 100% noise was insufficient to cause extraction errors, hence the requirement 

for more powerful noise. While this is to some extent an artificial situation, it is true 

to say that many noise models do not bear much resemblance to real-world noise. In 

this thesis, we were mainly interested in finding the limits of the techniques tested, 

and used noise models appropriate to this requirement. 

3.4.2 Simulated image noise 

The CVHT was run on a small five-frame sequence (0% noise line in Figure 6 

below) showing a shape moving linearly along the x-axis at a velocity of one pixel per 

frame. The low resolution (20 X 20) was chosen to make practical computation of 

large-scale tests. Noise was added at random to each frame of the sequence at eleven 

noise levels from 0% to 100% random coverage of the frame, in steps of 10%. The 

noise distribution was zero-mean Gaussian with a standard deviation of three and used 

clipping when a pixel value exceeded the maximum allowable (i.e. "clipped" 

Gaussian noise was used). Examples of the effects of the increasing noise levels can 

be seen in Figure 6. The grey-level images produced by the application of noise are 

shown in the original state before being thresholded by the algorithm. For comparison 

to a standard technique, we have generated results for the normal GHT tracking 

algorithm (i.e. a standard GHT is applied to each frame of the sequence separately and 

the results are combined using linear regression to calculate the velocity terms). The 

test conditions were as described above. 
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Figure 6: Artificial sequence with added Gaussian noise 
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Figure 7: Noise performance (dashed Une with triangles = GHT-based, solid line 

with squares= CVHT) 

The graph (Figure 7) shows that the CVHT is significantly more accurate (in terms 

of exact extraction accuracy) than the GHT-based technique. The vertical axis on the 

graph is hit rate, or the percentage of correct extractions for multiple (100 in this case) 

trials with different random noise at each image-noise level. Whilst the GHT-based 

technique starts to lose accuracy at 30% noise, 15% more noise can be added before 

the CVHT begins to lose accuracy. Although both techniques fail in extreme noise as 

expected, the CVHT is still reasonably successful at 80% noise whereas the GHT-

based technique fails completely. It is interesting to note that while the shape in the 

static pictures in Figure 6 appears hard to perceive to human vision at 60% noise, 

when it is presented in an animated form it is actually perceivable at noise levels of 

80%. This effect is exploited by the new technique when it accumulates temporally 

correlated evidence, enabling it to handle noise levels that are approximately twenty 

percent greater than the GHT comparator. The GHT based technique is limited to the 

amount of evidence available in a single frame. When the noise becomes sufficient to 

mask out the conect peak in a single frame, the GHT technique is left with effectively 

random results to process for velocity terms. In intermediate noise levels, some of the 

results for each frame may be incorrect and this will tend to throw off the final 

regression step. The integrated approach taken by the new algorithm is more global 

and is not so susceptible to corrupt frames as is demonstrated strongly in the occlusion 
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testing later. This is consistent with earlier observations comparing the VHT to the 

HT with linear regression [43]. 

3.4.3 Simulated occlusion 

Frame 

Width 
0 

12 

Figure 8: A sample sequence showing several levels of occlusion 
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A simple test of the effects of occlusion was carried out on the five-frame 

sequence shown above. No image noise was added to the sequence since this is purely 

a test of simulated occlusion. Instead, a varying number of vertical lines of pixels 

starting from column two were blanked out. In effect, the generated sequences will 

show the target shape emerging from increasingly serious occlusion. With the HT, it 

does not make any difference whether the shape starts occluded or passes into 

occlusion - the net effect is the same; a certain percentage of the sequence is 

obscured. Figure 8 shows example frames from the occluded sequence with varying 

widths of occlusion bar (the bar is shown in grey to make it visible although normally 

it would be black to blank out the occluded columns). Again, we have used the 

standard GHT tracking algorithm as a comparator. 

1 
I 
U 
q-, O 

-§ 

Width of occlusion bar (pixels) 

Figure 9: Occlusion Tests (dashed line with triangles = GHT-based, solid line 

with squares = CVHT) 

The results shown in Figure 9 reveal that the new technique keeps track of the 

shape until the blanking is eleven pixels wide - almost obscuring the shape entirely at 

the start of the sequence, and showing only a few pixels of it for the remainder of the 

sequence. Surviving this level of occlusion is an excellent result but unsurprising 

since, due to the synthetic nature of the sequence, the target is surrounded by empty 
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space. Therefore the only competing noise in the accumulator comes from the shape 

itself. 

The GHT based algorithm failed as soon as any blanking was introduced. This 

failure reveals more about the algorithm's implementation than about its resilience to 

occlusion. The current implementation uses the estimated location of the template 

shape in every frame as an input to the linear regression stage. Therefore, when a 

frame is corrupted and gives an incorrect result, the output of the linear regression 

stage is affected causing a global estimation error. A more sophisticated 

implementation might include a heuristic that ignores frames giving evidence 

inconsistent with the majority of frames. 

The earlier results [43] relating to the VHT should also be applicable to the new 

technique since the underlying characteristics are essentially unchanged. These results 

indicate that VHT derived algorithms are capable of handling even extreme occlusion 

due to the global integration of evidence across the entire sequence. 

3.4.4 Real-world imagery: finding people 

We now apply the CVHT to locate a moving human body in a sequence of 

images. The current implementation of the new technique locates rigid shapes moving 

with linear velocity. Clearly, its formulation is general so shape deformation could be 

included, as it was for pulsating arteries in the original VHT fonnulation [43], but this 

would be considerably more complex. In the case of a human walking, the torso is 

approximately a constant shape and, if the camera is far enough away, the bobbing 

motion of gait is small enough to be compensated for by the resilience of the evidence 

gathering approach. Consequently, it is possible to detect people using the technique 

in its current form by searching for the torso. However, no meaningful gait data can 

be gathered from just the location of the torso so this method of locating a human 

silhouette is only useful as a primer for later (gait) analysis. Nonetheless, using the 

CVHT to locate a human demonstrates empirically that it is applicable to real world 

images. 

Self-occlusion of the body due to the motion of the arms and legs is a problem that 

affects the performance of many person-tracking algorithms. By the nature of 

evidence gathering, the new algorithm copes with occlusions that do not reduce the 

correct peak below the level of noise in the accumulator. As a result, there is no 

immediate need for special precautions. 
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(a) Frame 1 (b) Frame 2 (c) Frame 3 

- " . - y-

(d) Frame 4 (e) Frame 5 (f) Frame 6 

'I' 

(g) Frame 7 (h) Frame 8 (i) Frame 9 

(j) Frame 10 (k) Frame 11 (1) Frame 12 

(m) Frame 13 (n) Frame 14 (o) Shape template 

Figure 10: Extraction of MPl sequence using a linear velocity model 

31 



(p) Edge-detected frame 1 (q) Edge-detected frame 8 (r) Edge-detected frame 14 

Figure 11: Sample edge-detected frames from the MPl sequence 

Figure lOo shows a reconstructed template of a walker's torso, which was 

originally created by manually tracing the torso in the first frame of the sequence. 

Also shown in Figure lOa-n are several frames of the MPl walker sequence with the 

template superimposed on the extracted locations. Processing was actually performed 

on edge-detected instances of the images (some examples in Figure llp-r), but the 

original images are shown here for clarity. 

During the first part of the sequence, the walker's location is accurately extracted -

the initial location is exact and the extracted speed (thirteen pixels per second) is 

correct. Shortly after frame seven the walker rises up on his leg (vertically, there is a 

rise of fifteen pixels), which will cause the votes to "miss" in the accumulator, since 

this movement has not been accommodated in the evidence gathering strategy. He 

also slows down slightly and this breaks the assumption of linear velocity and 

consequently the template "overtakes" the walker - frame 10 shows it some pixels 

ahead. 

If noise is added, as in Section 3.4.1, or occlusion, as in Section 3.4.3, the 

performance drops off rapidly due to the large number of missed votes arising from 

the lack of modelling of the bobbing or vertical motion of gait. Under simulated 

addition of noise, as in Section 3.4.1 (Figure 7), the decline in accuracy is similar to 

that of the synthetic sequences. However, accuracy drops away at a lower noise level 

since the level of background noise is higher due to the surrounding scenery. Figure 

14 shows the performance curve for a short range of tests (the curve is not smooth 

because practical concerns limit the number of trials that can be run) on a sequence of 

another walker (CAl). The CAl sequence is particularly suitable for this analysis as 

the subject does not "bob" much. See Figure 12 for some typical frames from the CAl 

sequence, and see Figure 13 for the result of various levels of (Gaussian wraparound) 

noise applied to the edge-detected first frame. 
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(a) Frame 0 (b) Frame 10 (c) Frame 20 

(d) Frame 40 (e) Frame 50 (f) Frame 49 

Figure 12: Frames from the CAl sequence 

0% noise 10% noise 20% noise 30% noise 

40% noise 50% noise 60% noise 70% noise 

80% noise 90% noise 100% noise 

Figure 13: Frame 0 of edge-detected CAl sequence with varying levels of 

wraparound Gaussian image noise 
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40 60 

Image noise (%) 

Figure 14: Gaussian noise tests on CAl sequence 

When the earlier comparison between GHT-based and CVHT extraction (Figure 

7) is contrasted with Figure 14, it is clear that the former shows better performance 

than the latter. The threshold for good performance on simulated imagery was around 

70% noise, whereas it has now dropped below 60%. This is simply because the results 

above are derived from a real-world sequence whereas the earlier results came from 

processing a synthetic sequence. In real-world imagery, non-target features increase 

the background noise in the accumulator and thus reduce the maximum noise 

tolerance before failure. With synthetic imagery, this factor can be excluded by 

removing any non-target objects. 

3.4.5 Simulated time-lapse imagery 

Here we have tested the performance of the CVHT in conditions that simulate 

time-lapse (i.e. infrequently sampled) video, as commonly used to store long periods 

of recorded footage. Time-lapse video can be viewed as regular occlusion of the target 

and, as such, will cause severe problems for techniques that suffer in occlusion. The 

CVHT has shown itself to be robust in occluded circumstances (Section 3.4.3) and 

demonstrates this again in these tests. 

The first 20 frames of the CAl sequence were used as the test sequence (see 

Figure 14 for the image noise analysis of this sequence). Time-lapse sequences were 
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simulated by discarding frames from the complete sequence. This is the same as 

keeping one of every N frames or only taking one frame for each time period that N 

full-rate frames would have occupied. Table 1 shows the relation between the number 

of frames kept and the percentage missing, which can be considered a measure of the 

degree of occlusion. Note that the percentage is variable - the "tends to" percentages 

are correct only if the number of frames in a sequence is an exact multiple of 

whatever N is required; e.g. a sequence with 3,628,800 frames (approx 40 hours at 25 

frames per second) will be exact for all the values of N in Table 1. So for a seven-

frame sequence, keeping one frame from every seven will give 85.71% missing (one 

kept and six of seven discarded). In the worst case, an eight-frame sequence, keeping 

one frame from every seven gives 75% missing (two kept and six of eight discarded). 

However, as the number of frames in a sequence increases, the percentages will 

approximate more and more accurately the numbers given below. 

Number of Percentage of Percentage for Percentage for 

frames kept frames missing CAl sequence CAl sequence 

(tends to) (using 20 frames) (using 40 frames) 

1 in 1 0% 0% 0% 

1 in 2 50% 50% 50% 

l i n 3 66.7% 65% 66% 

1 in 4 75% 75% 74% 

1 in 5 80% 80% 80% 

1 in 6 83.3% 80% 82% 

1 in 7 85.7% 85% 84% 

1 in 8 87.5% 85% 86% 

1 in 9 88.9% 85% 88% 

1 in 10 90% 90% 90% 

Table 1: Relation between frames discarded and the percentage of occlusion 
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Frames removed (%) 

Figure 15: Simulated time-lapse for 20 frames of CAl sequence 

The performance curve in Figure 15 show that time-lapse does not have a 

significant effect until between 50 and 70% of the sequence is occluded. This equates 

to a failure occurring between losing half and two thirds of the frames. In addition to 

this test, we have examined the performance of the CVHT with noisy time-lapse 

video (i.e. time-lapsed noisy video). 

As before, image noise is additive Gaussian noise (of the wrap-around form) with 

a mean of zero and a standard deviation of one applied to a uniform random 

percentage of the pixels. The number of trials is necessarily low due to time and 

computation constraints, resulting in unsmooth graphs. However, the number of trials 

varies across the spread of results with the majority of effort concentrated in the 

transition zones between guaranteed 100% misses and guaranteed 100% hits. 
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Hit rate (%) 
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Figure 16: Two views of CVHT performance in simulated time-lapse imagery with 

varying levels of noise. 
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The graphs in Figure 16 show the performance of the CVHT for various levels of 

image noise on top of the occlusion caused by the time-lapse simulation. With the 

additional effect of noise, the CVHT's performance is affected much more quickly by 

the time-lapse occlusion with total collapse reached at 50% image noise for all levels 

of occlusion and partial failure occurring earlier at lower occlusion levels than the 

tests without noise. 

An interesting effect occurs in the 20-50% image noise, >70% occlusion band 

where the CVHT begins to correctly detect the target in conditions where, with low 

image noise, it previously failed. It is probable that the occlusion has, by chance, 

removed some frames that caused problems for the full sequence extraction. Due to 

the linear motion model attempting to represent a non-linear motion, it is likely that 

there are significant portions of the sequence that qualify as "bad" frames. Removing 

some of these troublesome frames brings the algorithm to a close balance where the 

hit rate was only just 0%. The further addition of image noise then tips this balance 

towards a low hit rate. This conjecture is supported by the graphs in Figure 17 below, 

which are identical to those above but show near misses instead of just direct hits. A 

near miss is defined as a peak in the accumulator that is less than approximately three 

pixels (within an Euclidean distance of 3) from the correct peak. This includes direct 

hits. In the transition area discussed above (the 20-50% image noise, >70% occlusion 

region), the algorithm can be seen to be returning near misses as anticipated. 

In summary, the CVHT can handle reasonable levels of occlusion and noise. 

Beginning when the occlusion destroys more than half of the data, the algorithm's 

performance enters a graceful decline, returning mostly near misses and occasional 

hits. Only when the majority of the data is consumed by the occlusion does 

performance collapse completely. 
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Figure 17: Two views of near miss performance in a simulated time-lapse sequence 

with varying levels of image noise 
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3.4.6 Real-world imagery: alternative motion models (Shuttle) 

To illustrate the feasibility of alternative motion models, we have used the CVBTT 

to extract parameters describing the launch of a Space Shuttle. Since we only consider 

the initial part of the launch phase, a linear velocity and acceleration model can 

approximate the movement. The sequence analysis begins on ignition of the rocket in 

order to avoid introducing extra parameters (higher-order differentials of acceleration, 

e.g. change in acceleration over time, etc) describing the pre-ignition phase where 

there is no acceleration at all. Despite this, the Shuttle appears to be static for the first 

three frames and then becomes airborne in the fourth. In addition to travelling 

upwards, the Shuttle also slips slightly to the right as it takes off. Whether this is a 

deliberate part of the trajectory or merely a minor deviation on launch is unknown. 

The location, velocity and acceleration parameters of a booster during launch were 

correctly extracted by the new technique. Figure 18 and Figure 19 show the launch 

sequence with the correctly extracted booster highlighted in white. Interestingly, there 

should be a second significant peak in the accumulator at y velocity = 0 due to the 

slow initial take-off phase. This was not looked for at the time - only the largest peak 

was examined. 

Whilst this example is empirical proof that the motion model is changeable, the 

CVHT is still limited by its parameterised nature. If the Shuttle sequence had included 

its full parabolic trajectory, this more complex motion would have to be incorporated 

into the accumulation phase, requiring many more parameters and possibly becoming 

computationally impractical. 

40 



Frame 0 

Frame 3 

Frame 6 

Frame 9 

Frame 1 Frame 2 

Frame 4 

Frame 7 

Frame 10 

Frame 5 

Frame 8 

Frame 11 

Frame 12 Frame 13 Frame 14 

Figure 18: (part 1 of 2) Space-Shuttle launch with extracted template (of the 

booster) superimposed in white 
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Frame 15 Frame 16 

Frame 18 

Frame 21 

Frame 24 

Frame 19 

Frame 22 

Frame 25 

Frame 17 

Frame 20 

Frame 23 

Frame 26 

Edge-detected frame 0 Edge-detected frame 13 Edge-detected frame 26 

Figure 19: (part 2 of 2) Space-Shuttle launch with extracted template (of the 

booster) superimposed in white, and some edge-detected example frames 
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3.5 Conclusions 

In this chapter, we have developed the concept of the VHT as a moving object 

extraction algorithm, adding the capability to efficiently detect arbitrary shapes. This 

additional capability is provided by using a shape template - avoiding the exponential 

dimensional increase that parametric shape description brings. We chose to use 

Fourier descriptors for shape representation since they are continuous, complete and 

provide easy access to frequency content; furthermore, they have been proven in an 

earlier single-frame technique. The VHT brings the following characteristics to the 

union of techniques: it utilises temporal correlation to underpin evidence-gathering 

across a sequence, it does not call for initialisation or training and it employs the HT 

to implicitly solve the correspondence problem. Theory has been expounded and an 

evaluation made of the resulting implementation. 

A comparative study of the new technique with a GHT-based frame-by-frame 

approach showed significant improvements in accuracy of extraction, particularly in 

conditions simulating high noise or occlusion. These improvements result from the 

reduction of quantisation noise (owing to continuous shape models) and integration of 

the whole sequence in the accumulation phase. Further experimentation explored 

performance characteristics of the new algorithm, concluding that the CVHT was 

usable with real-world imagery and (simulated) time-lapse video. For verification of 

the flexibihty of the CVHT, an alternative motion model was implemented and used 

to correctly extract a booster from a launch sequence of a Space Shuttle. 

In conclusion, adding arbitrary shape extraction (using a continuous 

representation) to the VHT has extended the generality of the algorithm without 

compromising its original robustness. In fact, using a continuous shape representation 

is an improvement on the robustness offered by a non-analytic (GHT-like) 

representation. The link between shape description and accumulator parameter!sation 

has been broken by using templates, avoiding massive computational costs that are an 

inevitable consequence of extracting complex shapes with the VHT. However this 

dependency remains with motion description - the cost of the algorithm is still directly 

tied to the complexity of the motion model. 
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4 Motion Templates 

4.1 Discussion 

The earlier approaches to moving shape extraction are limited by the nature of the 

parameter!sed motion model - specifically its high dimensionality and hence reduced 

practical descriptive capability. For a complex motion, an explicit parameterisation 

system leads to an accumulator space approaching infinite dimensionality, a problem 

earlier alleviated in shape extraction by the use of shape templates. Following this 

earlier example, the motion of the shape could also be stored in template form - i.e. 

using motion templates to describe the movement of the target. Such a change 

removes the dimensionality limitation and enables the extraction of arbitrary shapes 

undergoing arbitrary motion. Storing motion information in this way is a form of a 

temporal template. Temporal templates are a technique for representing the movement 

of bodies through a sequence of images by encoding a motion trajectory. The 

encoding takes many forms - for example, there are many algorithms that combine 

spatial and temporal information into an XYT space to enable detection of particular 

movement patterns (e.g. detection of repetitive motion using temporal textures [50]). 

Other instances of the temporal template technique include a neural network based 

human motion tracker [61] that combines positional displacements with spatial 

templates of a human contour. The system contains several of these state vectors and 

is capable of tracking and predicting transitions between them. Similar efforts have 

been made using dynamic programming to track state transitions in gesture 

recognition [9]. 

With these templates it is no longer necessary to accumulate for the parameters 

describing the motion since, clearly, they are already known. It may be useful to 

imagine the motion template as an infinite dimensional parametric motion model 

where all the parameters have a fixed value. Naturally, the motion templates require a 

priori knowledge concerning the target object's path before analysis can begin. Since, 

by definition, tracking precludes the possession of this information, it is important to 

observe that the niche for motion templates, in the context of evidence gathering, is 

extraction or recognition (an example application might be searching a video 

database). Motion templates make it possible to robustly and efficiently extract 

parameters describing a shape that is following a specified trajectory. It can even be 
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ai'gued that a limited prediction capability exists if the motion template covers a larger 

time span than is analysed (or if the motion is repetitive) since it is assumed that the 

extracted target will continue to follow the specified path. 

As a result of the requirement for detailed prior knowledge, the new algorithm will 

be of use in cases where the general path of motion is known (e.g. cars turning at 

traffic lights will follow roughly the same path). However, there may be difficulties in 

real world imagery since not all objects will follow exactly the same path. The 

forgiving nature of an evidence-gathering approach should abate this concern 

provided the deviations are not excessive. If they are, the voting or peak detection 

algorithms can be arranged to handle the uncertainty, (e.g. as in the Fuzzy HT [25]). 

Motion templates must encode the relative position of the target object at all times. 

This will automatically describe properties of the motion such as speed, acceleration, 

change in acceleration, etc. Motion templates should also record changes in scale and 

rotation over time since many moving objects rotate (e.g. a car when viewed from 

above rotates as it comers) and scale (e.g. due to perspective effects). Note that this 

additional detail will not cause any increase in accumulator dimensionality - the 

complexity of the algorithm is the same, only the complexity of the motion template 

itself has increased. More information relating to time-structured changes in the 

model shape (e.g. changing shape models throughout the sequence to represent 

deformations) may be recorded, but position, orientation and scale (temporal and 

spatial) are a minimal base set. These basic parameters exist in the implementation 

used for this thesis, but have not been sufficiently tested to document here. 

The representation of the motion templates should be continuous so as to avoid 

the problems of discrete representations (Section 2.2). As such, it seems prudent to 

use Fourier descriptors for both motion and shape templates since these descriptors 

are well understood and Fourier approaches can handle many situations (e.g. irregular 

path sampling). An additional advantage is access to frequencies in the motion 

template, which may be of use in certain applications (for example, gait analysis may 

benefit from this characteristic - see Section 5.1). Furthermore, we have a consistent 

framework for the representation of both arbitrary shape and motion. 

To encode the path for input to an implementation, it is convenient to specify a 

series of waypoints to encode the path, rather than use a smooth and complete 

description of the motion. The representation chosen must be able to take this data 

and interpolate it in a smooth fashion. Fourier descriptors have been designed to do 
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this and only need minimal modification to work with variable time periods between 

waypoints (required since movements may be quick or slow). One problem with this 

approach lies in under-sampling the path with too few waypoints. In this case, it is 

possible to over-fit the FDs and reproduce this under-sampled path too exactly. If 

desired, the waypoints may be filtered to generate a smoother-flowing path. 

The introduction of motion templates into the HT requires no additional 

parameters to be searched for in the accumulation phase beyond the standard shape 

deformation parameters. However, such an inflexible implementation would 

excessively restrict the functionality. We consider that the essential parameters are 

rotation of the motion template in its spatial dimensions and scaling in both spatial 

and temporal dimensions. The scaling in the spatial axes does not need to be 

independent (i.e. it can be uniform scaling) since, we will consider only affine 

transformations initially. Scaling in the temporal axis adjusts the time taken to 

traverse the motion template and thus the speed with which an object must move to be 

identified as the target. Using the previous example, this would allow the algorithm to 

locate cars that are cornering either quickly or slowly. Finally, we must add an offset 

or phase parameter to separate the time encoded in a motion template from that used 

in a sequence. This is a temporal offset that corresponds with the spatial offsets 

already present in the HT (x and y position in an image). Without an offset parameter, 

time zero in the motion template must equate to frame time zero in the sequence; 

consequently, the algorithm would be unable to conectly extract parameters for a 

sequence that began with the target object part-way through its trajectory. Hence, the 

time-scale parameter provides temporal scale invariance and the offset parameter 

gives temporal translation invariance. Rotation invariance is not required since time is 

one-dimensional. 

One probable candidate parameter that has not been included is a "direction" flag, 

indicating whether the motion template should be traversed forwards or backwards (a 

two-state variable, which would therefore doubling the parameter space size). This 

was omitted partly because the direction of motion was known in our test cases and 

partly because it is simple to reverse the motion template and re-run a test, thus 

avoiding additional complications in implementation. 

Accordingly, the use of motion templates adds four extra parameters to the four 

required for shape extraction (as in the CVHT), giving in total an eight-dimensional 

accumulator. While this will cause a large increase in the computational requirements, 
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it is much less than the dimensional explosion threatened by polynomial extension. 

Clearly, the ability to extract, optimally and robustly, arbitrary shapes following an 

arbitrary path is well worth the additional computational resources. 

4.1.1 Computational cost 

The algorithm is of order in terms of complexity or 0(#points x #s x #r x 

#mt_s X #mt_r X x #t_j) in terms of the number of operations required, where 

#points is the number of feature points (e.g. thresholded edge-pixels) in the sequence 

and #s, #r, #mt_r, #t_ojf and #t_s are the number of discrete steps in the 

parameter ranges for initial shape scale and rotation, scale and rotation of the motion 

template and temporal offset (phase) and scaling respectively. Hence, the new 

approach inherits the usual computational cost penalty of the HT: the accumulator is 

eight-dimensional and can require significant resources. However, most of the speed-

up and memory-reduction modifications to HT-related techniques [38] are applicable 

- see Section 2.4. 

As before, the complexity can be split into a shape and motion components. Like 

the CVHT, this algorithm has a fixed cost shape description - O(N^) - but, unlike the 

CVHT, it also has a fixed cost motion description - again O(N^). The crucial 

difference is that the complexity of the motion description part is fixed for any type of 

motion, thus giving better scaling of the algorithm to real-world situations. 

4.1.2 An example motion template 

As an example of the information that may be encoded in a motion template, 

Figure 20 shows the changes in the x and y positions and the angle of the left foot of 

the walker, pictured as he walks across the sequence. This is a simple case showing 

only three components of the encoded data. A more direct (or unified) visualisation of 

a motion template than that shown in the component graphs below is difficult to 

produce because it must encode multiple dimensions of data (e.g. x, rotation, time), 

not to mention the possibility of the path looping back on itself. This overlapping of 

the path only occurs when one reduces the dimensionality of a motion template for 

visualisation purposes. It is not possible for this to occur in the motion template itself 

because there can only be one sample for any point in time, hence all points can be 

uniquely distinguished. The use of an additional dimension to separate otherwise 

interfering components is a well-established technique (e.g. [9]). 
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The measurements were made manually with the ;c and y positions being recorded 

for the rear of the heel of the left foot and the angle being estimated by eye (where a 

negative angle indicates the heel is up and the toe down). This illustrates the 

information that a motion template might have to record, in this case for extracting the 

location of a foot (a better description of the gait cycle may be found in [42]). Figure 

20a shows the initial frame of the twenty-frame sequence that was examined. Figure 

20c and Figure 20d contain the x and y components, which behave as expected - x 

increases as the foot swings forward and plateaus when it is placed on the ground so 

that the right foot can be raised; y goes through an arc as the foot is raised, swung and 

makes contact, then remains steady whilst the foot is pivoted upon. More 

interestingly, the angle component. Figure 20b, follows a more complex trajectory as 

the foot goes up onto tiptoe for the push-off phase of the gait cycle, follows a slow 

rotation until heel impact at frame 14 and quickly reverts to level with the floor as the 

weight of the body pushes the foot down. 

< 
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Figure 20: Changes in % and y positions and rotation of a walker's foot angle 
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These three measures could be collected together to describe the anticipated 

motion of the foot. This then becomes the motion template that, when combined with 

a spatial template of a foot, would support extraction of human feet from a sequence 

of images. 

In the person-extraction results presented below, we have continued to use the 

static torso rather than utilising the more advanced capabilities of the motion template 

algorithm to search for legs or other parts of the body. This has the advantage of 

retaining the comparability with earlier results and also avoids the issues of 

articulation and difficult edge extraction around the legs. 

4.2 Theory 

Before the theory, it may be helpful (as an aid to visualisation) to have a brief 

description of the processes performed by the motion template algorithm. For a given 

feature point (e.g. an edge pixel in a frame), a locus of points is plotted through the 

eight-dimensional accumulator space. This locus is constructed from the shape and 

motion descriptors, which are used to create transformed (scaled, rotated and 

translated) instances of the template shape. The transformations are intended to 

compensate for the expected motion of the object relative to the time reference of 

each frame and the anticipated scale and orientation of the object. Each of these 

instances is then traced into the accumulator in the two-dimensional x-y plane 

appropriate for the values of the various parameters. Once the voting process is 

complete, peaks in the accumulator indicate the location, rotation, scale, etc (at time 

r = 0) of an instance of the target shape moving along the specified path. 

The analysis in this section is derived from the CVHT theory (Section 3.2), so 

there are similarities between the theory supporting motion templates and that of the 

CVHT. As one might expect, the changes to the CVHT theory are confined to 

implementing motion templates as the motion model. Hence the shape 

parameterisation is unchanged, so Equations 1 through 5 in Section 3.2 describe the 

shape template as before. Having parameterised the shape template, we must now 

parameterise the motion template, encoding the changing position, rotation and scale 

parameters. There are two major differences in the definition of the motion template 

from that of the shape parameterisation. The first is that the DC terms of the FDs are 

retained and used in the reconstruction. Removing them would effectively translate 

reconstructed co-ordinates relative to some arbitrary origin (i.e. the centre of mass of 
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the template), which would destroy the utility of the sequence by moving the start 

point. With motion templates, the start point is crucial to proper motion backtracking. 

Secondly, and relevant in terms of implementation or specifics of template definition 

only, the offsets used are not derived from chain codes, which have fixed x, y and t 

values, but come from a list of waypoints and thus can instead specify larger 

increments. 

Here we recapitulate the FD definitions, but adapted to representing the motion 

template: A curve defined by two orthogonal components MTx(Tref) and MTy(T,ef), 

representing the motion template MT, is parameterised by a normalised time reference 

Tre/e [0,271:) as follows: 

<',^=y„f_MT,(T„,)cos(kT,^)dT and = j / £ M r , ( r „ , ) s i n ( * : r „ , ) d T (12) 

with matching equations for the y component, where k is the harmonic number. As 

before, the larger k is, the more accurate the representation will be (up to some limit 

defined by the application scenario). Co-ordinates are recovered from the Fourier 

description using: 

,MZFDx) = cos(A:7;^) + 6^ sin(^7;,y)) (13) 

where MZFD;[ = { , . . . , , 6 ^ } (the FD components of MT), again 

with a matching equation in y. Note the inclusion of the DC component (k-O). 

So, in terms of theory, the motion templates are essentially identical to the shape 

representation FDs. In terms of implementation, there is the one significant difference 

mentioned above. In the shape description, the curve is piecewise linear and described 

with chain codes prior to Fourier encoding; in contrast, the waypoint structure 

describing the motion template is not an eight-way neighbour-connected chain but 

more of a directed graph. Each waypoint is specified by intermediate links detailing 

how far in the x, _y and t dimensions to move in order to reach the next point - chain 

codes always indicate a movement of 0 or 1 units in x and y, and, in Kuhl's theory 

[35], the change in t is set by the assumption of a fixed traversal speed and the 

Pythagorean length of the combined x and y components. In adapting Kuhl's theory of 

elliptic Fourier Descriptors, the change in x or y {Ax or Ay) has become variable rather 

than fixed to 1 or V2 and the change in time {At) is user selectable (thus allowing 

variable speeds at different points on the path). This breaks Kuhl's constant speed 
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assumption but causes no difficulties with the rest of the algorithm because this 

assumption was only used to calculate At for particular Ax or Ay values. 

We now have mx(Tref) and my(Tref) (assuming an implicit MTFD parameter), 

which are functions that decode a set of motion template FDs to recover a co-ordinate 

(for X position and y position respectively) for a particulai" frame time Tref (normalised 

to 0 to 271 for FD reconstruction). In addition, let nip (T,-ef) and m.i(Tref) be functions 

that take a frame time Tref and recover rotation and scale co-ordinates. As orthogonal 

components (i.e. with no direct relation), these are defined in the same way as jnJTref) 

and my(Tref) above. 

The composite entity created by using these co-ordinate recovery functions 

together gives us a motion template. This motion template is now used to transform 

the co-ordinates calculated from the shape descriptors. These co-ordinates have 

already been globally scaled and rotated (i.e. we are using and Ry from Equation 5) 

to adjust for possible initial scales and orientations. They are then further scaled and 

rotated according to the stored values in the motion template, thus allowing for 

changes during motion: 

with a similar equation for y co-ordinates and where 5 is a free variable specifying 

a point on the shape template and Hg is a vector of the shape template's rotation and 

scale parameters. Tref is the time reference (frame number) of the current image and 

Toff is a phase parameter that offsets any mismatch between the frame times in the 

sequence and in the motion template. mi(Tref - Tgff) and mp( Tref - Toff) recover scale 

and rotation, respectively, for time Tref - Toff from the motion template. These rotated 

and scaled co-ordinates now represent the shape at the expected orientation and scale. 

Next, they are translated to compensate for the object's expected motion. However, 

the path of expected motion is also scaled and rotated, requiring parameters 

~ P/;; ] ' 

'̂ rcf ' T^off'^ s ̂  ) 

-7;^ )cos(p^)-Z,,m/7;,^ -7;,^)sin(p,„) 

again with a similar equation in 3̂  and where ntxiTref- Toff) and my(Tref- Toff) are the 

X and } offsets recovered from the motion template at time Tref - Toff We can now 

form the kernel that defines the shape of votes in the accumulator. This is a multi-
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dimensional combination of the template at a number of translations, orientations and 

scales, and can be obtained from: 

'^ref ' ̂ off ' ) ~ f^x ' ̂ ref ' 4 ) ' ^ o f f ' ^ 

+ (Tref ' 4 )' '^off'' ^.s )^y 

One final parameter, Ij, has been added to perform temporal scaling on the motion 

template, thereby allowing adjustment of the speed at which the path is traversed. To 

ensure that the locus drawn in the accumulator passes through the reference point, the 

kernel is offset from the image co-ordinates of each feature point. Hence, for an image 

sequence IS (first defined in Equation 7 but repeated here for convenience), the votes 

are placed in the accumulator as A,: 

IS = . )| Fe Z5,,r„, e £>,} (17) 

(18) P,T,tf I V ' re/ ^ ' ref '' off ^ T ^ m ' 

As before, a suffix on the domain indicates its extent (here. Dp is the domain of an 

image in the sequence and DT is the set of frame times in the sequence). 

retrieves feature points from the sequence. Again, as before, the parameter space 

formed by the application of the expression above is mapped into an accumulator by 

the use of a matching function M (Equation 9). This multi-dimensional accumulator 

space is sampled into a discrete parameter space SDMT given by: 

.ve Fe D it 

where Z? is a vector of the image x and y co-ordinates at time 0, IT is the time 

scale-factor. Toff is the time offset (phase) and a,„ and a, contain scale and rotation 

parameters that respectively transform the motion template's path and transform the 

initial orientation of the target shape. This expression gives an accumulation strategy 

for finding arbitrary shapes moving arbitrarily. It allows extraction of the optimal 

parameters describing an arbitrary (but specified) shape of unknown orientation, 

position and scale that is following an arbitrary (but specified) path of unknown 

orientation and scale, which takes an unknown time to traverse. 

The new algorithm currently traces the entire template shape in the accumulator 

for each feature point and for each parameter combination. The GHT places a 

restriction on which template points are drawn - only those with the same gradient 

direction as the edge pixel being processed are added to the accumulator so that only 

52 



the relevant fractions of the template are traced. With accurate gradient direction data, 

this restriction removes many unnecessary votes (and hence noise) from the 

accumulator. The voting algorithm may be changed to perform the same reduction of 

votes as in the GHT by incorporating a function that calculates the gradient direction 

at a point on the Fourier-described curve. This value would then be compared against 

edge pixel gradient direction to restrict votes cast into the accumulator. Depending on 

the computational cost of the gradient direction calculation, this reduction in voting 

may result in a linear speed improvement. 

4.3 Pseudo-code algorithm 

The algorithm that describes the motion template HT voting process is: 

For (frame f of the sequence) 

For (edge pixels e^,ey exceeding threshold value) 

For [time_scale=timesca.le_min -> timescale_max) 

For {phase=phase_min -> phase_max) 

time^timescale * frame_time(f) + phase 

Recover nix, my, nip, mi from MT(tiiiie) 

For {scale=scale_min -> scale_max) 

For {angle=angle_min -> angle_max) 

For (t=0 -> 2*PI) 

Generate vector from FD (t) 

Rotate vector by {angle + mp) 

Scale vector by {scale + mi) 

For {mt_global_angle= mt_global_angle_min -> 

m t_gl obal_angl e_max) 

For {mt_global_scale= mt_global_scale_min -> 

mt_global_scale_max) 

Rotate {mx,my) by mt_global_angle 

Scale {mx,my) by mt_global_scale 

Offset FD vector by {m^.my) 

Offset FD vector from {ex, ey) 

Result is final co-ords (a*,ay) 

accum[ax, ay, scale, angle, timescale, phase, 

mt_global_angle, mt_global_scale] ++ 
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4.4 Results 

It is usually prudent to compare new techniques with contemporary or equivalent 

approaches. This appears unfeasible in this case since the most appropriate 

comparator technique is the GHT, but with interpolation, or tracking. The suitable 

form of this interpolation for the GHT (or the motion model for tracking) is actually 

the motion template, the very subject of these results. The alternative would be a fully 

representative parametric motion model that, as explained previously, is 

computationally intractable due to its infinite dimensionality. Consequently, the 

comparison that would be made is that of a frame-by-frame extraction process with a 

non-analytic template representation against an integrated multi-frame extraction 

process with an analytic template representation. This comparison has already been 

made in Section 3.4, which examined the earlier approach to moving arbitrary-shape 

extraction (without motion templates but with a linear motion model) and 

consequently fails to test the subject of this section - the motion template in an 

evidence gathering context. 

Comparison with other techniques that use similar knowledge of motion (such as 

the neural network based human motion tracker [61] or the spatio-temporal repetitive 

motion detector using temporal textures [50] mentioned earlier) is not comparing like 

with like. Neither is comparison with other spatio-temporal based techniques (e.g. a 

snake that operates in a spatio-velocity space [49]) since they too are dissimilar at a 

core level. In the case of techniques that are as dissimilar as a tracker and an extractor, 

the comparison is best made on application-dependent qualitative requirements or on 

the basis of each technique's features (e.g. optimality vs. on-line performance), rather 

than a quantitative performance analysis. In light of these difficulties, we have 

examined the perfoiTnance of the new technique in terms of noise affecting each 

component of the system rather than attempt to make direct comparisons with other 

distantly related approaches. We believe that such analysis will enable the 

aforementioned choice based on requirements or features. 

The short note on pre-processing and noise models in Section 3.4.1 applies to this 

section also. 
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4,4.1 Image-noise performance on synthetic sequences 

Frame 

Noise 
0 1 2 3 4 5 6 7 8 

0% 0% 0% 

20% 

M M M M M M M g g 
40% g g g 
60% 

0 g g g 
80% 

100% 

0 
Figure 21: Full synthetic sequence with Gaussian noise 

The new algorithm was run on a nine-frame synthetic sequence based on a small 

(50x50) image, Figure 21 (0% row), moving along the path shown in Figure 22a. 

The path was regularly sampled (in time) for this illustration and the grey-levels show 

the time taken to traverse each section of the path (the darker the pixel, the more time 

was spent traversing it; i.e. the slower the movement). The cross on the left edge of 

the motion template indicates the starting point with motion proceeding clockwise 

along the path shown. The motion template was given perfect co-ordinates since we 

are examining the response to image noise in the input sequence, not noise in the 

motion template. Again, a small image was chosen to make practical computation of 

large-scale tests. Noise (Gaussian wraparound) was added at random to each frame of 

the sequence at eleven noise levels from 0% random coverage to 100% random 

coverage of the frame, with pixel values wrapping rather than being clipped when the 
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addition of noise took the values out of range. The noise distribution was zero-mean 

Gaussian with a standard deviation of one. This noise function is harsher than that 

found in Section 3.4.1 because wrapping pixel values ensures that the data is changed 

- just thresholding an addition of noise to a white pixel may leave it unchanged. The 

noise function was altered when preliminary results using the original function 

indicated excellent performance at 100% noise! Examples of the effects of the 

increasing noise levels can be seen in Figure 21. The grey-level images produced are 

thresholded by the algorithm, although Figure 21 shows images prior to thresholding. 

Note that the shape is completely obliterated at the maximum noise level and that at 

around 50% noise it is nearly impossible to distinguish the shape by human vision. 

(a) Motion template (small cross at far (b) Frame 0 of sequence with 

left is start point) superimposed motion template 

Figure 22: Motion trajectory of "legs" shape 

Again, the new technique is shown to be capable of coping with significant levels 

of noise. The performance curve in Figure 23 is similar to those for previous VHT-

derived techniques. This is accordance with earlier studies that found that the VHT-

based techniques are able to handle noise levels that are approximately twenty percent 

greater than a comparable GHT-based frame-by-frame technique. 
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60 

40 60 

Image noise (%) 

Figure 23: Noise performance for synthetic imagery 

Contrasting these results with the earlier ones for the CVHT (Section 3.4.2) shows 

a similar but steeper performance curve. The CVHT began to lose accuracy at lower 

noise levels (40% versus 50%) and gradually declined to total failure at some point 

after 90% whilst the failure point for the motion template implementation is earlier at 

approximately 75%. On the face of it, this indicates the CVHT is more resilient but it 

must be noted that the noise function used here produces stronger damage to the edge-

pixel data than that used for the CVHT tests. Above, we stated that using the motion 

template technique with the previous noise function returned excellent accuracy even 

at 100% noise. As explained above, the "clipped" noise function used for the CVHT 

tests may retain an edge-pixel at the correct level whilst the harsher "wrap-around" 

function guarantees to alter this information. So, with this taken into account, it 

suggests that the motion template implementation can tolerate significantly higher 

noise levels for similar conditions. 
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4.4.2 Image-noise performance on real-world sequences 

Ultimately, the intention is to apply the new techniques to the analysis of human 

motion. For this purpose, and to substantiate the applicability to real-world imagery, 

we have evaluated the performance of motion templates when locating a walking 

person viewed from the side, as with the CVHT in Section 3.4.4. For each image in 

the sequence, co-ordinates specifying the particular motion of the walker were 

gathered by selecting a reference point on the body and estimating its position by eye. 

Since these measurements are likely to contain inaccuracies, the motion template 

itself is not perfect and will be another source of errors and peak-spread in the 

accumulator. Again, as with the CVHT, owing to the robustness of its formulation 

there is no need for exceptional precautions in the new technique. 

-K--t 

(a) Torso and head (b) Motion template (begins at the small cross on the far right) 

template 

Figure 24: Shape and motion templates for CAl sequence. 

Again, we have used the torso rather than legs in these tests, despite the new 

technique being more capable of handling the more complex motion. This is in part 

because of the difficulties of extracting legs cleanly (self-occlusion and bad edge-

detection due to shadows). More importantly, using the same part of the body allows 

us to retain the capability to make a limited comparison with the earlier CVHT tests. 

Figure 24 shows a reconstructed template of a walker's (CAl) torso and head, which 

was created by manual tracing from a typical frame in the sequence. Also shown is a 

plot of the X and y components of the motion template used. Figure 25-Figure 27 

displays the frames of the walker sequence CAl after a successful extraction; both the 

extracted shape and motion templates are superimposed on each image. 
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Frame 1 Frame 2 Frame 3 

Frame 4 Frame 5 Frame 6 

Frame 7 Frame 8 Frame 9 

Frame 10 Frame 11 Frame 12 

Frame 13 Frame 14 Frame 15 

Figure 25: (part 1 of 3) Frames of sequence CAl with superimposed templates. 
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Frame 16 Frame 17 

Frame 19 Frame 20 

Frame 22 Frame 23 

Frame 18 

Frame 21 

Frame 24 

Frame 25 Frame 26 Frame 27 

ISSe® !£'«> 'T n. 

Frame 28 Frame 29 Frame 30 

Figure 26: (part 2 of 3) Frames of sequence CAl with superimposed templates. 
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Frame 31 Frame 32 Frame 33 

; s . i - ; % : • 

— , :•—' \ / 

Frame 34 Frame 35 Frame 36 

uef«.«C"C- «s. ' a 

Frame 37 Frame 38 Frame 39 

Figure 27: (part 3 of 3) Frames of sequence CAl with superimposed templates. 

The noise model used in Section 4.4.1 (analysis of noisy synthetic imagery -

wraparound Gaussian noise) was applied to each frame of the CAl sequence, with 

examples of the different noise levels shown in Figure 13 (Section 3.4.4). The 

sequence processed here is identical both in content and in the type of noise added to 

it as that used in Section 3.4.4. Figure 13 shows the walker can be difficult to perceive 

in a single frame when the noise exceeds 40%. In fact, this is the point at which 

automatic extraction starts to fail, slightly earlier than for the synthesised imagery. 

The test results displayed in Figure 28 show the beginnings of accuracy loss at 40% 

noise, dropping off smoothly and missing the target completely above 80% noise. The 

difference between these results and those for synthetic imagery can be attributed to 

the imperfect conditions prevalent in the real world; e.g. the cluttered and noisy 

background and the imperfect shape and motion templates. Comparing it with the 

earlier CVHT result for this sequence, it can be seen that there has been a minor 

improvement. Since the CAl subject walks quite "flatly", with minimal bobbing 
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motion, it seems that CVHT linear velocity motion model managed a good extraction 

result, similar to that of the motion template. 

cd 
"S 
0 

1 
s 

40 60 

Image noise (%) 

Figure 28: Extraction accuracy in increasing Gaussian noise for CAl sequence 
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4.4.3 Image-occlusion performance on real-world sequences 

A simple test of the effects of occlusion was carried out on the walker sequence 

CAl described above. No noise was added to the sequence since this would be an 

unnecessary complicating factor. Instead, vertical lines of pixels were blanked out and 

the algorithm was run on the resulting images. The results revealed (Figure 29) that 

the new technique correctly extracts the walker until the blanking is 175 pixels wide -

completely obscuring the walker for approximately 70% of the duration of the entire 

sequence. Furthermore (although this is not shown on the graph), the extracted peak is 

within one pixel of the true peak for another thirty pixels, indicating there is a 

measure of peak spreading. Like the CVHT, the new technique is capable of handling 

high levels of occlusion owing to the global integration of evidence across the entire 

sequence. This result is similar to the earlier CVHT synthetic occlusion tests (Section 

3.4.3). 

C 0 -a 
s 

1 u 
4-1 
o 

100 150 

Number of pixels occluded 

Figure 29: Occlusion tests on CAl sequence 

250 
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4.4.4 Effects of noise in the motion template 

To determine the resihence to noise in the motion template, a percentage of co-

ordinates calculated from it were perturbed by uniform noise. Note that adjusting 

these co-ordinates is equivalent to moving the target shape in the image sequence by 

the same amount. There are two dimensions to the noise: first, how many of the co-

ordinates are affected; second, the maximum distance (in pixels) that would be added 

to each co-ordinate. These tests were performed on the synthetic sequence and motion 

template in Section 4.4.1. An example of this corruption can be seen in Figure 30 

below (as before, the darker the pixel, the more time spent traversing that section of 

the path). The corrupted motion template displayed in Figure 30b and Figure 30d had 

a 100% probability of a co-ordinate being affected, with a maximum offset from the 

true path of 1 pixel. 

(a) Original, uncorrupted 

motion template 

(b) CoiTupted motion 

template 

(c) 3D plot of original, 

uncorrupted motion template 

(d) 3D plot of corrupted 

motion template 

Figure 30: A corrupted motion template 
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The results show that as the percentage of co-ordinates corrupted increases, so the 

performance declines. Figure 31a shows the hit rate from 100 trials at each noise 

level, with a drop beginning after approximately 40% of motion template co-ordinates 

have been corrupted, and declining to total failure when all have been affected. The 

pixel distance added has no effect when its value is below 1 since quantisation in the 

accumulator removes any effect. Once the value is above 1, the effect cannot be 

negated and performance declines as described. Figure 31b shows the inverse of 

Figure 31a, the rising number of misses as a function of the two noise components. It 

is interesting to note that the drop-away in performance is fairly (although not 

completely) constant across the range of max-pixel-distances-added, perhaps because 

there is little competing noise in the synthetic sequence. 

The mechanism for performance decline can be attributed to a "peak-spreading" 

effect common to all HT-derived techniques. As the accuracy of the input data 

decreases, the peaks in the accumulator become less defined (smaller and more spread 

out) and the background noise level rises. To begin with, the HT-algorithm will find 

the correct parameters but, as noise increases and the definition of the correct peak 

becomes smoother, the parameter estimates slip gradually from their true values. This 

continues until the spreading of the peak weakens it to the point where the algorithm 

is attracted to other potential sites. It is made clear that this is occumng by comparing 

the graphs in Figure 32a and Figure 32b, which show near misses (in the immediate 

neighbourhood of the target). At lower noise levels, the graphs show a constant hit 

rate, indicating that the output peak is within the ranges specified on the graphs, and 

demonstrating that slippage is occurring rather than a radically different peak location 

being selected. As the noise increases, the location of the peak moves by 

approximately the same amount as the pixel distance noise being added to the motion 

template. Ultimately, as the correct peak sinks into background noise in the 

accumulator, the algorithm's output moves to more distant and incorrect peaks. 
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Hit rate (%) 

MT coords corrupted (%) 

M a x . pixel d i s tance 
added to cor rupt coords 

(a) Exact hits 

Hit rate (%) 

100 

80 

60 

4 0 

20 

0 

Max. pixel distance 
added to corrupt coords 

MT coords corrupted (%) 

0 0 

(b) Total misses (inverse of graph above and at a different viewing angle) 

Figure 31: Hits and total misses with percentage of coiTupted co-ordinates in 

motion template 
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Hit rate (%) 

MT coords corrupted (%) 

Max. pixel distance 
added to corrupt coords 

(a) Near hits (within one pixel) 

Hit rate (%) 

MT coords corrupted (%) 

Max. pixel distance 
added to corrupt coords 

(b) Near hits (within three pixels) 

Figure 32: Nearby misses with percentage of corrupted co-ordinates in motion 

template 
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In real situations, only some portions of the motion template are significant - it is a 

continuous representation being used with a discrete data set (the frames in a 

sequence). Consequently, each sequence will only exercise certain co-ordinates in the 

motion template - those with a time reference matching the time references of the 

frames in the sequence analysed. The effect of this on the validity of the results as a 

whole is negligible since noise is applied randomly and uniformly with many trials, 

thus averaging out any effects. However, since it is entirely possible to have a high 

corruption rate without necessarily affecting the particular co-ordinates that are vital 

to a sequence, the graphs show a smooth decline rather than a plunge. 

The graphs all show a plateau effect where the "maximum pixel distance" value is 

below a threshold (one pixel for Figure 31a and Figure 32a, two pixels for Figure 

32b). This occurs when the noise is less than the "hit" threshold. It is due to two 

effects: the discretisation process of accumulation rounds out the errors to within one 

pixel of accuracy and the post-processing that determines whether a hit has occurred 

flattens any other errors up to the hit threshold. 

In summary, the motion template is sensitive to noise only when the points 

significant for the sequence being processed are affected by noise, and if their number 

is sufficient to overwhelm the in-built resilience of the evidence-gathering approach. 

4.4.5 Simulated time-lapse imagery 

Replicating the earlier CVHT (Section 4.4.1) tests, this section tests motion 

template performance in conditions that simulate time-lapse video. Previously, it was 

stated that time-lapse video can be viewed as regular occlusion of the target and, as 

such, will cause severe problems for techniques that suffer in occlusion. It was found 

that the CVHT was successful with 50% of the sequence removed (a time-lapse where 

one frame in two is kept) but failed thereafter. It is likely that this failure was due to 

the inaccurate modelling of the motion of the target, a factor that is shown to have 

been eliminated by the motion template technique. 

The same CAl sequence (but with 40 frames, not 20) has been examined with the 

same time-lapse and noise (Gaussian wrap-around) models. As before, the number of 

trials were limited by practical concerns and focussed in areas of interest. 
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Figure 33: Simulated time-lapse sequence for 40 frames of CAl sequence 

The results in Figure 33 above show that time-lapse does not affect the extraction, 

even at the highest levels tested (naturally, 100% time-lapse must fail and thus was 

not included above). The motion template technique models the motion of the target 

well enough that any one frame is normally sufficient for accurate extraction. 

Considered another way, when the motion template implementation is given only one 

frame, it will degenerate to a single frame processor, like the GHT. The only 

difference is that the motion template algorithm's output will be time-corrected, so 

that parameters are reported relative to time zero, rather than applying directly to the 

frame processed as with the GHT. Naturally, the level of trust that can be placed in 

extractions from very short sequences is limited due to the small amounts of evidence 

accumulated. However, the motion template technique will always return the best fit 

for the data provided, even if that quantity of data is insufficient for a trustworthy 

analysis. 
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Hit rate (%) 
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Figure 34: Two views (from different angles) of performance when using 

simulated time-lapse imagery in varying levels of noise. 
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A fully successful extraction in all conditions (as above) does not reveal much 

about the performance of the technique. Consequently, and as with the CVHT tests, 

image noise is introduced in addition to time-lapse to give a more meaningful 

performance test. The graphs in Figure 34 indicate that the motion template technique 

performs appreciably better than the CVHT. Compared to the earlier algorithm 

(Section 4.4.1), total collapse is reached after 10-20% more image noise is applied 

(approximately 60-70% image noise), with excellent peifoiTnance in highly time-

lapsed sequences. For the majority of the time-lapse range, the image noise 

performance curve is notably similar to that displayed in the CAl real-world tests in 

Section 4.4.2 above. 

Looking at near misses (Figure 35), we see the motion template algorithm has a 

gently declining period where the output is close to the correct result before errors 

become prevalent. The period of grace is smaller than that of the CVHT, giving a 

sharper drop-off. This must be weighed against the fact that the motion template 

technique is robust in the lower noise levels where the CVHT fails (contrast Figure 35 

with Figure 17 in Section 4.4.1). Here, however, noise levels must be significantly 

higher to produce terminal failure - a flawless hit rate is maintained until 

contamination by noise is quite excessive (60% image noise with 80% time-lapse). 

Collapse occurs by 80% image noise at all levels of time-lapse, which is in line with 

the tests on non-time-lapsed imagery in Section 4.4.1. 

These results show the motion template algorithm is significantly more robust than 

the CVHT, enjoying notable endurance to high levels of time-lapse combined with 

substantial image noise. The credit for the improved extraction is likely due to the 

accurate motion model employed, which allows exact extraction on very limited data. 
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4.4.6 Finding people with motion templates 

Further tests were performed to check the repeatabiUty of human walker 

extraction. Three extra image sequences of walkers (MAI, SGI and VHl) were 

correctly extracted as shown in Figure 36, Figure 37 and Figure 38. Also shown in 

these figures are the results of attempting to extract the same walker - using the shape 

and motion templates from the original sequence - but tested on a second sequence 

(MA3, SG3 and VH3 respectively). This experiment is the beginnings of a study as to 

whether the shape and motion templates are appreciably similar for a person at 

different times, or indeed, whether a single generic template can be used for a general 

walker extraction technique. 

(a) MAI frame 0 (b) MAI frame 20 (c) MAI frame 40 

(d) MA3 frame 0 (e) MA3 frame 20 (f) MA3 frame 40 

(g) Motion template (starts on left) 

Figure 36: MAI and MA3 extracted with the same templates 

As can be seen, MA3 (Figure 36) has been correctly extracted using the MAI 

templates. Using the template from SGI, the extraction of SG3 (Figure 37) begins 

promisingly but loses accuracy towards the end of the sequence. Examining the full 

sequence (Appendix 9) shows that the subject moves faster than the motion template 

predicts in the latter half of the sequence, thus outpacing the template. Close 
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examination of the second half of the SGI motion template shows a change from the 

pattern established in the first half - the subject slows down after he reaches the 

midpoint of the sequence. 

(a) SGI frame 0 (b) SGI frame 20 

(d) SG3 frame 0 (e) SG3 frame 20 

(c) SGI frame 40 

KM* 

(f) SG3 frame 40 

(g) Motion template (starts on right) 

Figure 37: SGI and SG3 extracted with the same templates 

Figure 38 (VH3) demonstrates the same difficulty when using the template for 

VHl, but the algorithm manifests the location error at the beginning of the sequence. 

This is due to some problems towards the end of the sequence with poor edges (and 

hence a corrupted motion template) resulting from height of the subject causing 

interaction with the lighting in the room. 

The algorithm, as expected, performs the best extraction possible given the 

constraints placed upon it. Even when the motion and shape templates do not 

accurately match the sequence being examined the algorithm has successfully 

extracted parameters that best match the problem - locating the walker accurately for 

as much of the sequence as is possible. Given greater computational facilities (or 

perhaps the genetic algorithm implementation discussed in the future work - Section 

5.2), it would have been interesting to allow the algorithm more flexibility in its 

matching by permitting it to use a range of scaling factors, etc. Since the results are 
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either very accurate or fairly close, this offers hope for a future attempt at locating 

humans with a "standard walk" motion template and a suitable range of scaling 

parameters. This has not yet been attempted due to the computational requirements. 

(a) VHl frame 0 

(d) VH3 frame 0 

(b) VHl frame 20 

(e) VH3 frame 20 

(c) VHl frame 40 

(f) VH3 frame 40 

(g) Motion template (starts on left) 

Figure 38: VHl and VH3 extracted with the same templates 

Complete image sequences of the subjects studied in this section, with 

superimposed shape and motion templates, and some example edge-detected images, 

may be found in Appendix 9. 
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4.5 Conclusions 

This chapter has addressed the issue posed by the CVHT's difficulty with complex 

motion - namely, that the complexity of the algorithm is proportional to the 

complexity of the motion model. The central reason for the development of the CVHT 

was to avoid this very problem, but in the context of shape description rather than 

motion description. Accordingly, applying the same solution to the motion model was 

appropriate - i.e. use the template approach to set limits on the complexity. 

We have introduced the notion of motion templates as a means for description of a 

trajectory in order to efficiently integrate arbitrary motion into an evidence-gathering 

framework. The compromise made is the requirement for prior knowledge of the form 

of the motion. As argued, the literature has already successfully made a case for shape 

representation with prior knowledge and the proposition is equally valid for motion 

representation, given an appropriate application. 

Motion templates are a form of temporal template that has been re-interpreted in 

the HT setting. They have been used to encode multiple components of movement in 

a fixed cost representation. Thereby, accumulator complexity is constrained to a fixed 

magnitude regardless of the complexity of the motion. Fourier Descriptors were 

chosen as the particular form of implementation, although other basis types are 

equally valid. FDs are especially appropriate in this case since they provide access to 

the frequency components of the template (a significant factor when examining 

periodic motion) and, with the CVHT using the same representation for shape, we 

gain an integrated and consistent framework for the description of both shape and 

motion. We have provided a theoretical underpinning for this development. 

As with the CVHT, we have examined the performance of the new approach in a 

variety of situations; a set of synthetic circumstances, designed to examine particular 

characteristics, and a number of real-world test scenarios, in order to ensure the 

results from synthetic analysis generalise. As before, applying noise (both Gaussian 

and occlusion) to source images and processing them demonstrated excellent 

resilience - in fact, the performance was an improvement on the CVHT, necessitating 

the use of a more vigorous noise function in order to acquire useful results. Similarly, 

time-lapse studies showed improvements on the CVHT, paralleling those of the noise 

results. Examination of real-world sequences confirmed that the new algorithm 
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generalises without significant degradation. It seems likely that the improved 

performance can be attributed to the extra information possessed by the motion 

template technique, which facilitates enhanced resolving power in complex scenarios 

by focussing the peaks in the accumulator. 

With the introduction of the motion template, there is a new opportunity for noise 

to enter the system - noise in the motion template itself. We also examined this source 

of errors and found performance results consistent with the HT roots of the algorithm. 

Increasing noise initially has no effect, and then location accuracy suffers from local 

jitters as the peak in the accumulator begins to spread before finally noise levels cross 

a threshold and the algorithm fails. 

Finally, we have examined the effects of using shape and motion templates on 

sequences that they were not generated from. This investigation was intended to 

explore the possibility of using generic templates for particulai- scenarios and allowing 

the algorithm to adapt them to the situation. The results showed that the idea has 

promise; it has excellent accuracy in one case and reasonable success in a further two 

tests. The limiting factor was the amount of processing required, a solution to which is 

perhaps a GA, described in the next chapter. 

In summary, introducing templates to describe motion gives us a robust, optimal 

and (within the constraints of an evidence-gathering implementation) efficient 

algorithm capable of extracting arbitrarily moving arbitrary shapes. 
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5 Further work 

Our suggestions for future development concentrate on two main areas: 

applications and the algorithm. 

In the application domain, we intend to integrate current gait research with the 

new techniques (see Section 5.1). This is likely to require articulated objects, a simple 

extension, and the use of optimisation procedures in order to make practical searches 

on larger parameter spaces with current technology. Consequently, a genetic 

algorithm version of the motion template technique has been implemented, and is 

described in Section 5.2. 

On the algorithm development side, it would be useful to partly relax the rigid 

shape requirement in order to further generalise the approach. A possible approach 

might allow the motion template to specify different models for different parts of the 

sequence, perhaps with some form of interpolation or morphing between models that 

is loosely based on the HT for natural shapes (HTNS) [55]. The HTNS uses the set 

difference (in the mathematical sense) of the two extremes of a shape as the vote 

pattern, rather than the contour of one shape. In a motion template context, a model is 

selected for each waypoint in the motion template (e.g. two models may be used, one 

for waypoint 0 - frame 0 - and one for waypoint 1 - frame 10), and the vote pattern 

for a particular frame between two waypoints could be derived from an interpolation 

of the models based on the HTNS principle. Figure 1 illustrates the concept, with 

Figure Id showing the proposed accumulator vote pattern for a point in time between 

the two models in Figure lb and Figure Ic. The dark areas indicate where votes are 

cast, with larger areas signifying more uncertainty in the exact location of the true 

edge. The major disadvantage to this vote pattern is that it assigns more votes (and 

thus more weight) to areas of uncertainty, therefore increasing the likelihood of 

distorting the peak. 

An alternative to the suggested HTNS development might use a different method 

to generate the appropriate vote pattern. For example, a traditional computer-graphics 

"moiph" might be used, where the location of particular points on an image are 

interpolated from the old location to the new, warping the image they are attached to, 

and whilst the original image is faded out and the new one faded in. 
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(a) A Mycenaean jug 

(b) Vote pattern for jug at 0° (c) Vote pattern for jug at 15° 

\ 

(d) Combined vote pattern 

Figure 39: Suggested means of representing uncertainty for a changing model 
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5.1 Gait Recognition 

An emerging application of computer vision techniques is that of person 

identification (e.g. ATM machines using iris recognition, fingerprint or face 

recognition for unlocking screensavers and doors, see [31] for more examples). Many 

of the biometric collection mechanisms require close proximity or even contact. They 

may also be vulnerable to deception (e.g. holding a photograph of someone's face in 

front of the camera). 

Gait is a useful biometric because it can be measured non-invasively, remotely and 

with no easy means of disguise (since changing or hiding one's walk normally makes 

one conspicuous). Human motion analysis [2,18] has existed for some time, but there 

are presently only two means of calculating gait biometrics - statistically and using 

model based techniques [45]. 

The first method uses statistical techniques such as moments to measure changes 

in an image sequence of a walking person and derives a recognisable metric from this. 

This method does not directly use the motion of walking to aid in the location or 

identification of the person but rather uses the motion content of the images (or a 

region of them) as a whole. Some examples of statistical techniques are [27,41, 48]. 

The second approach uses models to identify regions on the body (e.g. the legs) 

and to make measurements directly upon these extracted regions (e.g. hip rotation 

cycles). One particular variant, described by Cunado [13], embodies the VHT to 

extract the locations of a leg in a sequence and, by analysing the angular motion, 

automatically generates gait signatures for recognition. By combining magnitude and 

phase components that were calculated from Fourier analysis of hip rotation, Cunado 

achieved 100% recognition from a database of 10 subjects - admittedly a database of 

insufficient size for statistical significance. 

The new techniques developed here can fit into either recognition category. For 

model-based recognition, we intend that they will be used to extract the location and 

orientation of legs, a gait signature as discussed later. For statistical-based 

recognition, the approaches isolate the moving human body, as such giving a primer 

to extract features for statistical based techniques, and thus extending the limited 

stock of techniques for this purpose. 

One possible development branch is to introduce articulation to the CVHT, so that 
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two legs can be tracked. This would enable a gait signature to be calculated from hip 

rotation cycles and would improve on the work in [13] since it would be possible to 

model the legs directly rather than with straight lines. However, the dimensionality of 

the problem remains high. 

A second branch would be to attempt to locate individuals using a motion template 

that describes a generic walking-pattern, ready for further processing to identify the 

person in question. Given that the representation of motion templates is inherently 

suited to describing periodic motion such a template should be easy to create. More 

ambitiously, it might be possible to look for specific individuals using a motion 

template to describe a person's unique walking motion. This will require an 

investigation of whether a motion template of a walking pattern is unique to an 

individual. Alternatively, in combination with an articulated leg model as described 

above, motion templates could be used to extract both legs for a more detailed 

description of the motion. 

A further twist to this idea is that since the motion template is implemented using 

Fourier descriptors, which allow access to frequency information, it may be possible 

to integrate Cunado's work into the motion template framework. The question to be 

resolved is whether gait signatures are encoded or can be encoded within motion 

templates. If this were possible, it would allow for an efficient and exact search of a 

sequence for a particular individual whose signature is known. 

5.2 Genetic Algorithms 

Genetic algorithms (OAs) [19] attempt to harness the evolutionary principle to 

achieve rapid but approximate answers to a problem. The technique improves on the 

gradient descent search algorithm by introducing an element of random change and a 

survival of the fittest strategy. Each solution is evaluated for its "fitness" (defined by 

the problem space and a fitness function) and this metric is used to select out the 

weaker solutions and combine the stronger. Over many generations or iterations, a 

population of solutions will tend towards greater, though not necessarily optimal, 

fitness. The random component (both in the choice of combination of and in mutating 

the genomes) is intended to prevent populations becoming trapped in local minima by 

occasionally exploring a totally unconnected part of the search space. This is a little 

like simulated annealing for gradient descent algorithms but without the "kick" being 

tied to a specific start point. 
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In the general case, a genetic algorithm version of any particular HT must encode 

(in a genome) the pai'ameters that normally describe the accumulator space (e.g. x and 

y offset, angle and scale factor for a GHT). For examples of the approaches taken see 

[63] for a GA circle-HT or [56] for a GA GHT-like algorithm. The values of these 

parameters are then allowed to vary under the action of the GA. The genetic operators 

- selection, crossover (combination) and mutation - allow prior knowledge to be 

applied to direct the evolutionary pressure. Given a good understanding of the 

problem, operators can be crafted that maximise the likelihood of improving a 

genome by excluding those changes that manifestly will fail or be meaningless. 

However, even without special purpose operators, GAs provide an effective means of 

searching a large solution space. 

At this point in time, computational power is insufficient for truly large-scale 

processing with the new algorithms above - the search spaces, while constrained, are 

still too expansive. Consequently, the way to real-world use of this work now is to 

apply an optimisation technique like a GA. The robustness and optimality of the 

newly developed HT techniques will be traded for speed by using a GA since it will 

no longer be performing an exhaustive search. Instead, a genetic algorithm version of 

any HT effectively reverts to a template-matching implementation. Particular 

solutions (e.g. the values of x and >' offset) are generated by initialisation or 

combination operators for each member of the population (a genome) and their fitness 

evaluated for the search space in question. In this instance, the fitness evaluation is 

made by calculating the number of matches between the outcome predicted by each 

genome and the actual data in question - i.e. a template match. 

We have made a preliminary implementation of a genetic algorithm variant of the 

motion template HT described in Chapter 4. A brief examination of its performance 

has been made by attempting to extract the "legs" shape first seen in Section 4.4.1, 

and shown again in Figure 40a below. As before, we ran multiple trials at several 

noise levels (100 trials at 11 noise levels). The noise model used was unchanged-

Gaussian noise (wrap-around, with a standard deviation of 1 and a mean of 0) added 

to each pixel. The probability of noise being added to any one pixel was varied 

between 0% and 100%, in 10% steps. 
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(a) Sharp edges (b) Smoothed edges ( 5 x 5 Gaussian blur) 

Figure 40: A frame from the "legs" sequence with sharp and blurred edges 
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Figure 41: GA performance on shaip-edged sequence in increasing noise (exact 

hits in 100 trials) 

Figure 41 shows the hit rate (defined as an exact match of the location output from 

the algorithm and the known ground truth). The algorithm is successful in 

approximately 35%±10% of the trials for the first 7 noise steps (up to 60% noise) 

before declining to total failure at 80% noise. The shape of this performance curve 

matches that of the "pure" HT implementation (Section 4.4.1) albeit with a lower 
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ceiling (-35% versus 100%). This lower ceiling is probably due to the non-optimal 

nature of genetic algorithms - unfortunate initialisation and getting trapped in local 

minima will inevitably blight some of the results. Pseudo-random characteristics like 

initialisation will also account for the fluctuation of the results about the 35% mark. 

That said, it is worth noting that the GA does far better than chance in attaining the 

35% result. Pure chance would give a hit rate of approximately 4% for this test (a 

small parameter space with a 50 x 50 accumulator and 100 genomes). The graphs 

below show the hit rates including near misses within one unit by a Euclidean 

measure (approximately one pixel) - Figure 42 - and three units (approximately three 

pixels) of the target - Figure 43. They indicate that when the GA misses, it gives a 

nearby result in 50% of the trials. 
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Figure 42: GA performance on sharp-edged sequence in increasing noise - near 

misses within approx. one pixel of target (includes Figure 41 results) 

In comparison with the pure HT implementation, this does not seem impressive. 

However, the strengths of GAs lie not in their optimality but in their ability to 

examine a large search space in a practical time. While standard HTs give better 

results, it is not possible to use them in the more complicated scenarios where the GA 

compromise remains feasible. 
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This GA implementation uses standard operators for mutation and crossover. A 

well-known optimisation is to develop operators specialised for the problem domain. 

By building in knowledge of the problem, non-beneficial mutations or crossovers can 

be avoided and the focus of the GA improved. In terms of this algorithm, it may be 

worth implementing operators that avoid crossover of unrelated parameters. The other 

area of a GA that has a crucial impact on the solution finding capability is the fitness 

function. As it stands, the fitness function is merely the result of a template match on 

the source images for the particular range of parameters encoded in each genome. An 

alternative function could take account of local curvature (in order to account for 

spread peaks). 
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Figure 43: GA performance on sharp-edged sequence in increasing noise - near 

misses within approx. three pixels of target (includes Figure 42 results) 

Cunado [14] has suggested that presenting the GA with a smooth search space aids 

peak finding by encouraging incremental improvements. He achieved this by using a 

Sobel edge detector on the source images, thus avoiding the shaip edges of a Canny 

operator [11]. In the accumulator space (the search space), this is similar to an 

averaging filter. However, most accumulator spaces show a reasonable degree of 

continuity due to the nature of the template-matching/HT process; edge pixels in 

image space contribute to a locus of points in the accumulator, only one of which is 
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the true peak point. With the loci from many edge pixels converging on a single point 

in the accumulator, there will inevitably be a "hill" effect from the increasing co-

incidences of the loci. 

So, the implementation requirements of GAs are very different to those of a HT -

as an optimisation procedure, the conditions in which it runs are critical. The nature of 

GAs implies that they improve incrementally by ascending gradients in the search 

space to reach maxima. A smooth search space facilitates this ascent by providing 

"foothills" for the GA to follow up to the main peak. In contrast, the HT is at its best 

when it has a tightly focussed peak with minimal surrounding vote spread. This 

conjecture has been briefly examined by applying a Gaussian blur ( 5 x 5 kernel) to 

the source images - see Figure 40b for an exemplar image. The blurring of the source 

images leads to a spreading effect in parameter space, which makes for a smoother 

ascent for the GA. 
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Figure 44: GA performance on smooth-edged sequence in increasing noise (exact 

hits in 100 trials) 

Re-running the trials above gives improved results - see the graphs in Figure 44, 

Figure 45 and Figure 46. The exact hit performance is approximately 15% higher than 

before, while near misses within a pixel are approximately 25% higher and near 

misses within three pixels average 90%, 10% higher than without smoothing. 
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This brief experiment has shown that GAs, while sub-optimal, are capable of 

producing the correct result when several trials are made. The perfoiTnance curve 

matches that of the pure HT implementation despite operating with a lower peak hit 

rate. The most significant factor in their favour is that they are a practical way of 

exploring parameter spaces that are too large for a pure HT implementation. 
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Figure 45: GA performance on smooth-edged sequence in increasing noise - near 

misses within approx. one pixel of target (includes Figure 44 results) 
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Figure 46: GA performance on smooth-edged sequence in increasing noise - near 

misses within approx. three pixels of target (includes Figure 45 results) 
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6 Concluding remarks 

6.1 Application scenarios 

One of the significant features of this work is the extensive use of a priori 

information regarding target shape and motion. In a number of appUcations, collecting 

this information beforehand is infeasible and therefore the algorithms discussed here 

cannot be used. This bootstrapping problem limits the range of scenarios to which the 

CVHT and motion template techniques can be applied. However, it has so far proven 

impossible to produce a totally generic machine vision system, so limitations on 

applicability are commonplace in the field. 

The features of an application that is likely to benefit from the new methods will 

include: 

• Offline, non real-time processing (unless massive computational resources 

are available), 

• Availability of prior knowledge of target behaviour (approximate shape 

and motion) 

• Significant parallelism (ideally) 

• Target in a cluttered/noisy environment (take advantage of performance 

attributes) 

An example of an application exhibiting these features is visual database search. 

The CVHT and motion template algorithms can search, ideally in parallel, a large 

database of sequences (or a single large sequence that has been split up) that must be 

examined for known target behaviour. So, for example, if a long sequence is known to 

have a rare deviation from a norm, and the deviation is predictable in the sense that a 

human operator can specify it (perhaps by sketching an approximate shape and 

motion), all occurrences of this deviation can be found. This could be applied to a 

range of problems - e.g. searching for rare particle tracks in high-energy physics or 

locating a particular person in a crowd by their shape and motion. 
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6.2 Implementation issues 

6.2.1 Timings 

The algorithms described in this thesis were implemented in C++ and run on a 

variety of machines (most recently a 512MB, IGHz Pentium-Ill). Some typical times 

for a basic run with this hardware setup are listed below: 

• CVHT with {x and y) velocity and (x and y) acceleration, running on the 

Shuttle sequence (27 frames, 240x176), with no noise added. Parameter set 

in Table 2. Accumulator size = 49,420,800 cells (197,683,200 bytes). 

Approximately 8,869,899,230 votes cast, taking approximately 7,000 

seconds to complete. 

Image co-ordinate (x) 384 

Image co-ordinate (y) 256 

Shape scale 1 

Shape rotation 1 

Velocity in x 1 

Velocity in y 1 

Acceleration in x 26 

Acceleration in y 2 

Table 2: Parameter list for CVHT with acceleration 

• CVHT with (x only) linear velocity, running on the CAl sequence (50 

frames, 384x256), with no noise added. Parameter set as in Table 3. 

Accumulator size = 1,179,648 cells (4,718,592 bytes). Approximately 

1,052,524,599 votes cast, taking approximately 800 seconds to complete. 
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Image co-ordinate (x) 384 

Image co-ordinate (y) 256 

Shape scale 1 

Shape rotation 1 

Velocity in x 1 

Velocity in y 1 

Table 3: Parameter list for CVHT with linear velocity only 

Motion template HT, running on the CAl sequence (50 frames, 384x256), 

with no noise added. Parameter set as in Table 4. Accumulator size = 

98,304 cells (393,216 bytes). Approximately 85,526,827 votes cast, taking 

approximately 900 seconds to complete. 

Motion template HT, running on the CAl sequence (50 frames, 384x256), 

with Gaussian wraparound noise (100%) added, using the same parameter 

set as before (Table 4). Accumulator size = 98,304 cells (393,216 bytes). 

Approximately 781,028,245 votes cast, taking approximately 8,500 

seconds to complete. 

Parameter 

Image co-ordinate (x) 

Number of steps 

384 

Image co-ordinate (y) 256 

Shape scale 

Shape rotation 

MT global rotation 

MT global scale 

Phase of MT 

Temporal scaling of MT 

Table 4: Parameter list for Motion emplate HT 

91 



These timings show a range of times for typical runs. There are two interesting 

points to note. The first is the factor of ten difference in times between the motion 

template HT on a clean image and on a 100% noisy image (see Figure 13 for 

examples). This is due to the high noise causing many more pixels to be active (i.e. 

not black) and thus requiring that votes be entered into the accumulator for these 

pixels. It is interesting to note that a simple change in the input image can have such a 

drastic effect on the time taken to run. This also indicates that, in order to make 

accurate predictions, the numbers presented here should be used in combination with 

the complexity notation in Sections 3.1.2 and 4.1.1. 

The second point to note is that the motion template HT on the 100% noise 

sequence takes approximately the same run-time as the CVHT with acceleration, 

despite the latter casting nearly nine billion votes versus the former's 780 million. 

This illustrates the impact of the motion template calculations - a fairly minor 

addition, but one that is compounded over millions of votes. 

6.2.2 Optimisations 

Some considerable speed increases were achieved by caching important data 

structures. In particular, the Fourier descriptors require a significant amount of 

calculation in order to derive a list of discrete co-ordinates representing the analytic 

shape at a specified scale and orientation. Once these co-ordinates have been 

calculated, they will be used to cast votes into the accumulator for an edge pixel. 

After the voting is complete for that pixel, the HT algorithm will move on to the next 

pixel and exactly repeat the previous process of voting, including requiring exactly 

the same sets of shape co-ordinates used earlier. Consequently, caching these sets of 

co-ordinates means that each calculation need only be performed once for each 

orientation-scale pair. Alternatively, the FD calculation must be made P times, where 

P is the number of edge pixels in the full image sequence. This gives an order of 

magnitude improvement, and is especially significant for detailed templates with large 

numbers of FDs. A quick test confirms this - doing a simple run that took 

approximately 1,000 seconds with caching was predicted to take approximately 

31,000 seconds without (it was aborted after about 4,000 seconds, having processed 

seven frames out of a total of fifty). 

The caching optimization was also deployed for the genetic algorithm code, where 

the results of expensive template matches (for the specific set of parameters encoded 

92 



in each genome) were preserved. Although one might expect this to have little effect 

because the GA is supposed to be partially searching a large space, actually the 

mechanism of the GA ensures considerable overlap from one generation to the next. 

Consequently, many operations can be saved and the perfonnance improvement is 

noticeable, although difficult to quantify due to the random nature of the algorithm. 

The only other important design choice was in the arrangement of the nested loops 

that are the core of any HT approach. Looking at the pseudo-code in Section 3.3 

(CVHT) and Section 4.3 (motion template HT), one will find that the loops are 

organized so that the most computationally intensive calculations (e.g. generating co-

ordinates for shape or motion templates) are in the outermost loops possible. This 

prevents unnecessary and repeated calculations and keeps the inner loops as clear as 

possible. 

6.2.3 Implementation notes 

There are some important issues in the implementation of the Fourier Descriptors 

that require further detail than given in the main text. In this thesis, we have used 

Kuhl's Elliptic Fourier Descriptors [35], which are most easily constructed from a 

chain code. We have used an eight-way chain code, as recommended by Kuhl, which 

has some accuracy issues. 

In terms of our implementation, the chain code algorithm chooses the shortest 

route around a boundai'y, which has a tendency to round off right-angle comers. This 

probably assists the FD encoding later on since there will be fewer high-frequency 

components resulting from the comers. On the other hand, the implementation is 

perfectly capable of handling sharp discontinuities to the required accuracy, as proven 

by its ability to encode the 180° direction change at the ends of a non-cyclic curve (see 

Section 2.2, final paragraph). 

More seriously, there are proven accuracy issues with digital piecewise-linear 

encoding of continuous curves. Most contour representations incorrectly estimate the 

total contour length. The representation used here for shapes, Kuhl's Elliptic FDs, 

uses the (Ue, no) characterization, which is shown to have a deviation of 6.6% [16,36]. 

Interestingly, the adapted "waypoint" representation used for the motion templates is 

far better in the sense that it accurately specifies the exact length of the segments of 

the template. With the chain codes, a curve must be built up from many short 

segments of length 1 or V2, whilst the waypoint notation defines the changes from one 
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waypoint to another with the same precision as the original specification (i.e. a single 

large linear segment at a shallow angle is encoded as exactly that, rather than a series 

of steps). As a result of this representation, the motion templates have more accurate 

contour lengths than the shape templates. 

As mentioned in Section 2.2, the accuracy of the representation is dependent on 

the number of FD harmonics used. Obviously, using too many FDs incurs additional 

and substantial computational load, whilst using too few gives a bad representation. 

There is a balance to be struck between asymptotic improvement in accuracy, 

computational costs and the requirements of the application. 

The minimum accuracy we require here is that there must be no sign of aliasing 

between waypoints at the maximum resolutions requested. An additional factor is that 

the computational load has been reduced by the use of caching, which makes 

reconstruction from FDs a fixed cost per sequence and parameter combination. In 

view of the accuracy requirements and the efficiencies gained by caching, we have 

generally chosen a constant number of FDs that has proven sufficient at the 

resolutions and scales chosen. Typically, this figure is 100 FDs for shape templates 

and simple motion templates. With some of the most complex motion templates, we 

used 800 FDs - almost certainly overkill, but guaranteed to be enough. Figure 2 

shows a motion template reconstructed with various numbers of harmonics, and 

scaled up by a factor of eight to show detail. Whilst Figure 2a-c show clear evidence 

of insufficient harmonics (most prominently, rounded comers), Figure 2d and Figure 

2e are only marginally different. Figure 2e and Figure 2f are virtually 

indistinguishable at this resolution, justifying the choice of a constant number of FDs. 

A more automated approach might have used Kuhl's procedure for estimating the 

maximum enor of a curve for a given number of FDs (refened to in Section 2.2). 

Combine this with knowledge of image resolutions and the sizes of the various 

scaling parameters, and one could calculate a suitable number of FDs. 
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Figure 47: A motion template, reconstructed from FDs with 

various numbers of harmonics 
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6.3 Thesis summary and overall conclusions 

When the work in this thesis was begun, the state of the art in the HT arena (as 

applied to moving shape extraction) was to be able to extract analytically moving, 

analytic shapes using the VHT. Tandem development of a Fourier Descriptor based 

HT for arbitrary shapes allowed robust extraction whilst minimising discretisation 

errors. 

The first novel development of this thesis was to follow the clear route to 

increasing the generality of the VHT and FD-variant GHT by combining them. The 

resulting algorithm, the CVHT, retains the strengths of both its parent algorithms, 

permitting the optimal extraction of arbitrary shapes that move in a parametric 

fashion though a sequence of images. The use of FD-based shape templates prevents 

the rapid expansion of accumulator dimensionality implicit in the previous VHT 

approach. Comparative tests of the CVHT and a GHT-based frame-by-frame tracking 

algorithm showed the former is capable of sustaining higher levels of noise than the 

latter, particularly when individual frames are seriously damaged. The integration of 

the whole sequence into one accumulator permits exploitation of temporal 

correlation, thus enhancing the resilience of the CVHT to noise. Experiments on 

synthetic imagery demonstrated the limits on this resilience and clearly show the 

importance of temporal correlation in successful extraction. Real world imagery 

substantiated the results given by the synthetic tests. An alternative motion model 

was used on a Shuttle launch sequence, simultaneously illustrating the generality of 

the algorithm and suggesting the next area for study. 

The second novel development follows directly from the problem of motion model 

complexity. The CVHT represents its motion model by the same parametric process 

that the VHT used for both its shape and motion models. As with the VHT, this 

process directly links the complexity of the motion model (in terms of the number of 

its parameters) with the complexity of the algorithm. So, a more complex motion 

model increases the computational effort in an exponential fashion. To sidestep this 

issue, we have introduced the motion template to the HT as a way of representing 

arbitrarily complex trajectories. We used FDs again to obtain the benefits discussed 

previously and to exploit synergies in a common architecture for model 

representation, be it shape or motion. Of particular interest is the access to frequency 
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information afforded by Fourier methods, with possible future apphcation to periodic 

motion analysis. The new algorithm has been performance tested with synthetic and 

real-world imagery, using sequences that were occluded, time-lapsed and noisy (both 

in the image and in the motion template). The results have shown motion templates 

complement the CVHT, giving more robust extraction than the earlier technique. 

Initial research into genetic algorithms to allow the use of wider ranges of 

parameters on cmrent hardware has shown preliminary success. GAs offer the hope of 

extracting targets using generic templates that are adapted to the circumstance by the 

algorithm. 

In summary, this thesis has presented a new technique that robustly extracts 

optimal structural and motion parameters for arbitrarily moving arbitrary shapes in an 

image sequence. The technique requires no initialisation or training and has 

demonstrated excellent tolerance to noise and occlusion. Discretisation errors are 

minimised in the accumulator by using Fourier descriptors to represent templates of 

both shape and motion in continuous form, which eliminates common problems to do 

with rotation and scaling. Whilst the templates minimise the effects of noise in 

algorithm implementation, the temporal correlation between frames is also exploited, 

maximising the possibility of correct extraction. The use of motion templates is a 

novel development for the HT and allows for a wide range of applications that require 

a more general motion model. This new capability comes without the explosion of 

parameter space dimensionality that would be inherent in cunent parametric 

approaches. 
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8 Appendix: Formal theory of GHT 

This appendix reprises the work in [4] defining formal theory for the GHT. Also 

noteworthy is work by the same author on the principle of duality [6]. 

8.1 The Generalised Hough Transform 

The first formal definition of the HT was developed by Princen et al [52]. Its value 

is that it facilitates a proper analysis of the behaviour of the HT by providing a 

yardstick against which performance can be measured and a means of predicting the 

capabilities of an algorithm. However, their definition is limited in that it only 

describes parameterised versions of the HT - i.e. only those that define the features 

analytically (lines, circles, ellipses, etc). 

In the formal definition the value at a point in parameter space is represented as: 

# ( o ) = j p ( x , n ) / ( x )&% 

where p(X, Q) is the HT kernel and I(X) represents the feature space (e.g. the 

image to be searched). The equation is given as an integral since both the parameter 

and feature spaces are continuous. The HT kernel can be interpreted in two ways: for 

a fixed value of x, the kernel describes the points in feature space that make up the 

perfect instance of the parameters (i2); for a fixed value of Q, the kernel describes the 

point-spread function in parameter space (i.e. how the votes are cast for a particular 

feature point). 

I(X) is composed of Dirac delta functions in a continuous space, with each delta 

function representing one feature point. Using the sifting property of the delta 

function, the integral can be reduced to a summation to give a more familiar result: 

H ( Q ) = S f i x (21) 

j = i 

where n is the number of feature points to be considered. This summation 

represents the votes cast in parameter space for a particular feature point. The final 

HT is the summation of H(Q) for all Q, resulting in a double summation that 

describes the implementation of a typical HT accumulator. 
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The kernel of the HT is determined by the parameterisation used and the shape of 

the cells sampling the accumulator. Princen et al determined that different cell shapes 

and parameterisations have an effect on the accuracy of the voting process and can 

reduce quantisation problems caused by the sampling of the feature space and the 

parameter space that is necessary for implementation. 

The extension of the formal definition to arbitrary shapes [4] has been summarised 

below to provide context for pails of this thesis. The augmented definition covers both 

analytically and non-analytically defined shapes. In essence, the extension takes 

account of the fact that the GHT is the same in concept as that of the HT - the only 

difference is that an R-table replaces the parameterised equation of a curve (e.g. a 

circle, line, ellipse, etc). Accordingly, replacing the HT kernel with a description of an 

R-table arrives at the formal definition of the GHT. With the Merlin-Farber method, 

the kernel takes the form of a discrete set of points representing the template. The 

GHT improves on the Merlin-Farber method by reducing the number of feature points 

considered with a gradient direction constraint. Therefore the kernel appears with a 

reduced set of discrete points, constrained by the first derivative at each point. 

8,1.1 Definition of the HT for non-analytic shapes (general form) 

Firstly, a primitive in image space is defined as the set of points in a continuous 

curve z{s, or), where ^ is a parameter vector that describes the form of the curve and 

5 is a parameter that specifies a point on the curve. This more general formulation is 

used instead of the implicit form of a curve because it does not restrict the formalism 

to a specific type of curve. In terms of implementation, Z represents the template in 

the GHT, where: 

(22) 

A single point on Z, where s = s^, maps to a curve A in parameter space. 

represents the parameters of all the curves that can pass through z(.5^,a). If the 

function r ( s , i r ) is invertible then F" ' (s ,z) represents a point in parameter space for 

a given curve in image space. 

D, (23) 
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This is the kernel of the transform, which describes the pattern of votes to be cast 

in parameter space for a specific point in image space - in this case A . In the HT, 

A is defined for a set of edge points in image space /. 

If the image space only contains an instance of a shape defined by a parametric 

equation A (() , then: 

/ = {r (?) | r e £>/} (24) 

and A, can be redefined as: 

A, = { r ' ( ^ , A ( f ) ) | ^ e D j f e D, (25) 

A, is the set of points in parameter space that represent the possible parameter 

values for all of the individual edge points in image space I. For a specific instance of 

a shape, Z, only one of the points in A, will be the correct parameter vector, a . If the 

image contains an instance of Z, then all the edge points in that instance will generate 

curves in parameter space that pass through the point a . Hence, a corresponds to 

the intersection of the loci of A,, for all the edge pixels in the image. 

a= n (26) 
leD, 

In the case of noise in image space (ie. edge pixels that do not belong to the 

primitive Z), loci generated by the noise will generally not pass through a and will 

produce conflicting intersections elsewhere in parameter space. As discussed in more 

detail below, the HT technique relies on the conelation of good data outweighing the 

random effects of noise in parameter space. 

The equations above describe the concept of the HT but do not formalise the 

actual technique used, namely the accumulation phase. The parameter space can be 

mapped into an accumulator by using a matching function, which deteirnines whether 

a point, b , in parameter space should be incremented for a point, d , in the set A,. 

The equation below defines the simplest accumulation strategy, that of incrementing 

by unity for each match. Changing the voting functional, M, can accommodate more 

complex strategies. 

/— —\ [l if b = d ] 

Using this function, the HT of the function ) is defined as: 

(^)= If M (^, r ' (s , r ( / )))(/,9 c// (28) 
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The maximum of this function is a , the parameters best matching Z. 

In practise the HT is discrete, not continuous, being quantised by the digitised 

image and accumulator. A representation of this can be obtained by converting the 

integrals to summations and changing the continuous function A ( f ) to a discrete set 

of points r , : 

SDHT W = Z S ^ )) (29) 
LE D, S€ D, 

8.1.2 Definition of the HT for non-analytic shapes (MerHn-Farber) 

The equations above deal with a general fonnalism of the HT for arbitrary shapes. 

However, both the Merlin-Farber algorithm and the GHT algorithm can be described 

more specifically. 

For each edge pixel in the input image, the Merlin-Farber algorithm draws the 

template shape in parameter space, rotated by 180 degrees and with a chosen 

reference point centred on the co-ordinates of the edge pixel. 

First then, the representation of the primitive Z must be adapted to reflect the 

method used. The template is a set of points w = {vF,, | s g d „ } defined relative to an 

arbitrarily chosen reference point W . The primitive can be expressed as: 

Z = I z B = -R + , -6 G D g } (30) 

With this definition, the parameter vector (cf. a ) to be calculated is W, the 

location of the reference point. Consequently, the kernel of the HT is defined by: 

= (31) 

In the equation above, the template points w,; are translated to the image edge 

point A] and reflected in the diagonal axis (y = - %), i.e. subtracting from r , • With 

this kernel, the HT accumulates evidence of a rotated template, translated to the co-

ordinates of each edge pixel, as follows: 

E <32) 
/£ D / D /} 

In this discrete form, it can be seen that parameter space, image space and the 

template must share the same quantisation (i.e. cell size and shape) for the 

accumulation process to work correctly. If the points in the template are of a different 

size or shape to the cells in the accumulator, then drawing traces of the template in the 
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accumulator is meaningless. This is a particular problem with rotated or scaled 

templates because a rotated/scaled discrete template is effectively quantised in a 

different way to the original image and accumulator. For example, a rotated discrete 

template has a different cell shape because the rotation causes the square pixels to 

change shape relative to the original (e.g. 45 degree rotation will give diamond shaped 

cells). Similarly, scaling adjusts the cell size. Re-sampling the template into the 

correct quantisation allows the template to be usable but this process loses 

information since an alias may be extracted. 

8.1.3 Definition of the HT for non-analytic shapes (GHT) 

The GHT improves on the Merlin-Farber technique by incorporating gradient 

direction, reducing the number of votes cast by using the extra information to filter 

out obviously incorrect votes. In terms of the above, the template W is constrained by 

the first derivative of the edge pixels in the image I when voting in parameter space. 

For a vote to be cast, the gradient direction of an edge pixel in the template must be 

equivalent to that of the image edge pixel being considered. Effectively, the template 

is still traced out in parameter space but various implausible parts of it are masked 

out. Therefore, each edge pixel in the search image will generate only a few votes in 

the accumulator. Fewer votes mean less time is spent in the accumulation stage and 

less false votes will be cast, reducing the noise in the accumulator. 

In terms of the formalisation, this is achieved by considering a function, (piP) , 

which returns the gradient direction G at a point P. If this function is only applied to 

edge pixels in the template then, when it is inverted, it becomes a function 

(p~\G) that returns the edge pixels in the template that match its gradient direction 

parameter. This is the theoretical analogue of the R-table. Using (p ' (G) , the kernel 

of the HT becomes: 

7 ,̂ = e D , (33) 

The accumulation process of the GHT is then defined by; 

/e DI 

The second summation that is present in the earlier equation for the Merlin-Farber 

algorithm voted for all of the points in the template, but here it is unnecessary because 

(p (G) returns all the relevant points of the template and thus replaces the second 
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summation. An alternative definition of the template can restore the second 

summation: 

= D g } (35) 

Here the template is defined with the gradient direction constraint "built in". The 

kernel of the HT and the equation for the accumulation process are then nearly the 

same as that of the Merlin-Farber method. 

a , = I E VK,} (36) 

'5'GHr (̂  )= S ^ M (6 - ^ ) (37) 
ten, wgEtV, 

The difference is that the equations for both the kernel and the accumulation 

process do not consider the template set W to be constant, but rather that it is re-

evaluated for each edge pixel in the image being searched. 
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9 Appendix: Full sequences of motion template person 

extraction 

9.1 MA1 extraction with MA1 templates 

Frame 0 Frame 1 Frame 2 Frame 3 

Frame 4 Frame 5 Frame 6 Frame 7 

Frame 8 Frame 9 Frame 10 Frame 11 

.--"f 

Frame 12 Frame 13 Frame 14 Frame 15 

Frame 16 Frame 17 Frame 18 Frame 19 

Frame 20 Frame 21 Frame 22 Frame 23 

Figure 48: (part 1 of 2) MAI extracted with the MAI templates 
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Frame 24 Frame 25 Frame 26 Frame 27 

Frame 28 Frame 29 Frame 30 Frame 31 

Frame 32 Frame 33 Frame 34 Frame 35 

Frame 36 Frame 37 Frame 38 Frame 39 

Edge-detected 

frame 05 

Edge-detected 

frame 15 

Edge-detected 

frame 25 

Edge-detected 

frame 35 

Figure 49: (part 2 of 2) MAI extracted with the MAI templates 
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9.2 MA3 extraction with /LM1 templates 

Frame 0 Frame 1 Frame 2 Frame 3 

Frame 4 Frame 5 Frame 6 Frame 7 

Frame 8 Frame 9 Frame 10 Frame 11 

Frame 12 Frame 13 Frame 14 Frame 15 

Frame 16 Frame 17 Frame 18 Frame 19 

' - 3 ] 

Frame 20 Frame 21 Frame 22 Frame 23 

Figure 50: (part 1 of 2) MA3 extracted with the MAI templates 
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Frame 24 Frame 25 Frame 26 Frame 27 

Frame 28 Frame 29 Frame 30 Frame 31 

Frame 32 Frame 33 Frame 34 Frame 33 

Frame 36 Frame 37 Frame 38 Frame 39 

m 

Edge-detected 

frame 05 

Edge-detected 

frame 15 

Edge-detected 

frame 25 

Edge-detected 

frame 35 

Figure 51: (part 2 of 2) MA3 extracted with the MAI templates 
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9.3 SG1 extraction with SG1 templates 

Frame 0 

Frame 4 

Frame 8 

Frame 12 

Frame 16 

Frame 1 

Frame 5 

Frame 9 

Frame 13 

Frame 2 

Frame 6 

Frame 10 

Frame 14 

Frame 17 Frame 18 

Frame 3 

Frame 7 

Frame 11 

1 
Frame 15 

Frame 19 

Frame 20 Frame 21 Frame 22 Frame 23 

Figure 52: (part 1 of 2) SGI extracted with the SGI templates 
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Frame 24 Frame 25 Frame 26 Frame 27 

Frame 28 Frame 29 Frame 30 

Frame 32 

V../ . .... 

Frame 33 Frame 34 

T. 1 
'M' -ST 

Frame 36 Frame 37 Frame 38 

Edge-detected 

frame 05 

Edge-detected 

frame 15 

Edge-detected 

frame 25 

Frame 31 

warned: rw y? .Lt 

Frame 35 

Frame 39 

Edge-detected 

frame 35 

Figure 53: (part 2 of 2) SGI extracted with the SGI templates 



9.4 SG3 extraction with SG1 templates 

Frame 0 Frame 1 

Frame 4 Frame 5 

Frame 8 Frame 9 

Frame 12 Frame 13 

Frame 16 Frame 17 

Frame 2 

Frame 6 

Frame 10 

Frame 14 

Frame 18 

Frame 3 

Frame 7 

Frame 11 

Frame 15 

Frame 19 

Frame 20 Frame 21 Frame 22 Frame 23 

Figure 54: (part 1 of 2) SG3 extracted with the SGI templates 
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Frame 24 Frame 25 Frame 26 

Frame 28 Frame 29 Frame 30 

Frame 32 Frame 33 Frame 34 

Frame 27 

Frame 31 

Frame 35 

Frame 36 Frame 37 Frame 38 Frame 39 

Edge-detected 

frame 05 

Edge-detected 

frame 15 

Edge-detected 

frame 25 

Edge-detected 

frame 35 

Figure 55: (part 2 of 2) SG3 extracted with the SGI templates 
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9.5 VH1 extraction with VH1 templates 

Frame 1 Frame 3 Frame 0 Frame 2 

Frame 5 Frame 4 Frame 6 Frame 7 

Frame 9 Frame 10 Frame 11 Frame 8 

Frame 13 Frame 14 Frame 15 Frame 12 

Frame 16 Frame 17 Frame 18 Frame 19 

Frame 20 Frame 21 Frame 22 Frame 23 

Figure 56: (part 1 of 2) VHl extracted with the VHl templates 
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Frame 24 

Frame 28 

Frame 32 

Frame 36 

Edge-detected 

frame 05 

Frame 25 Frame 26 

Frame 29 Frame 30 

Frame 33 Frame 34 

Frame 37 Frame 38 

Frame 27 

Edge-detected 

frame 15 

Edge-detected 

frame 25 

Frame 31 

Frame 35 

Frame 39 

Edge-detected 

frame 35 

Figure 57: (part 2 of 2) VHl extracted with the VHl templates 
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9.6 VH3 extraction with VHl templates 

Frame 0 Frame 1 Frame 3 

Frame 4 

Frame 8 

Frame 5 Frame 6 

Frame 9 Frame 10 

Frame 7 

Frame 11 

Frame 12 Frame 13 Frame 14 Frame 15 

Frame 16 Frame 17 Frame 18 Frame 19 

Frame 20 Frame 21 Frame 22 Frame 23 

Figure 58: (part 1 of 2) VH3 extracted with the VHl templates 
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Frame 24 Frame 25 Frame 26 Frame 27 

Frame 28 Frame 29 Frame 30 Frame 31 

E? -ijh 

Frame 32 Frame 33 Frame 34 Frame 35 

Frame 36 Frame 37 Frame 38 Frame 39 

Edge-detected 

frame 05 

Edge-detected 

frame 15 

Edge-detected 

frame 25 

Edge-detected 

frame 35 

Figure 59: (part 2 of 2) VH3 extracted with the VHl templates 
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10 Appendix: Pattern Recognition paper (final publisher copy) 
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Summary 

There are currently available many approaches aimed at tracking objects moving in 

sequences of images. These approaches can suffer in occlusion and noise, and often 

require initialisation. These factors can be handled by techniques that extract objects 

from image sequences, especially when phrased in terms of evidence gathering. As 

yet, the newer approaches to arbitrary shape extraction avoid discretisation affects but 

do not include motion. The moving-object evidence gathering approach has yet to 

include arbitrary shapes and can require high order description for complex motions. 

Since the template approach is proven for arbitrary shapes, we re-deploy it for 

moving arbitrary shapes, but in a way aimed to avoid discretisation problems. As the 

template approach has already been seen to reduce computational demand in the 

extraction of arbitrary shapes, we further deploy it to describe the motion of moving 

arbitrary shapes. As with the shape templates, we use Fourier descriptors for the 

motion templates, yielding an integrated framework for the representation of shape 

and motion. This prior specification of motion avoids the need to use an expensive 

parametric model to capture data that is already known. Furthermore, as the 

complexity of motion increases, a parametric model would require increasingly more 

parameters, leading to a rapid and catastrophic increase in computational 

requirements, whilst the cost and complexity of the motion template model is 

unchanged. The new approach combining moving arbitrary shape description with 

motion templates permits us to achieve the objective of low dimensionality extraction 

of arbitrarily moving arbitrary shapes with performance advantage as reflected by the 

results this new technique can achieve. 



Extracting Moving Shapes by Evidence Gathering 

Michael G. Grant, Mark S. Nixon* and Paul H. Lewis 

Department of Electronics and Computer Science, University of Southampton, UK 

[mgg I msn | phi]@ecs.soton.ac.uk | http://www.isis.ecs.soton.ac.uk/ 

Abstract 

Many approaches can track objects moving in sequences of images but can suffer 

in occlusion and noise, and often require initialisation. These factors can be handled 

by techniques that extract objects from image sequences, especially when phrased in 

terms of evidence gathering. Since the template approach is proven for arbitrary 

shapes, we re-deploy it for moving arbitrary shapes, but in a way aimed to avoid 

discretisation problems. In this way, the discrete mapping operation is deferred as far 

as possible, by using continuous shape descriptions. A further advantage is reduction 

in computational demand, as seen in use of templates for shape extraction. This prior 

specification of motion avoids the need to use an expensive parametric model to 

capture data that is already known. Furthermore the complexity of the motion 

template model remains unchanged with increase in the complexity of motion, 

whereas a parametric model would require increasingly more parameters leading to an 

enormous increase in computational requirements. The new approach combining 

moving arbitrary shape description with motion templates permits us to achieve the 

objective of low dimensionality extraction of arbitrarily moving arbitrary shapes with 

performance advantage as reflected by the results this new technique can achieve. 
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1 Introduction 

Tracking and motion estimation is an area of research that has a long history. There is 

a substantial literature on the problem of tracking shapes in a sequence, for example 

the tracking of humans has recently been admirably surveyed [1]. Earlier research has 

ranged from optic flow [2] to Kalman filters [3] and includes temporal templates, 

which we use here in an adaptation of the Hough TransfoiTn (HT) [4] to enable 

optimal extraction of moving arbitrary shapes. 

Temporal templates are a technique for representing the movement of bodies 

through a sequence of images by encoding a motion trajectory. The encoding takes 

many forms - for example, there are many algorithms that combine spatial and 

temporal information into an XYT space to enable detection of particular movement 

patterns (e.g. detection of repetitive motion using temporal textures [5]). Other 

instances of the temporal template technique include a neural network based human 

motion tracker [6] that combines positional displacements with spatial templates of a 

human contour. The system contains several of these state vectors and is capable of 

tracking and predicting transitions between them. Similar efforts have been made 

using dynamic programming to track state transitions in gesture recognition [7]. 

In contrast, the thrust of this work is the extraction of moving shapes in an image 

sequence rather than tracking them. Extraction can be distinguished from tracking by 

a more holistic view of the sequence, and frequently use of a priori knowledge and an 

off-line approach. The new Velocity Hough Transform (VHT) [8] extracts conic 

sections moving in a parametrically described fashion. However, the VHT has two 

major restrictions: first, the shape description is limited to conic sections and, second, 

the motion description is parametric, causing computational difficulties as the 

complexity is increased. 

Here, we propose a method that maintains optimal and efficient extraction of 

targets moving in a specified arbitrary fashion (via a temporal or "motion template") 

even in high levels of noise or occlusion. In addition, there is no need for initialisation 

or training. These qualities are derived from the use of robust evidence-gathering 

techniques and the exploitation of temporal correlation in the sequence. 

In order to introduce motion templates into the HT, we have combined two other 

HT-related developments, integrating continuous template representations into a 



temporal correlation framework. To shed light on the approach we have taken, there 

follow brief summaries of the main developments relevant to this work. 

1.1 Generalised Hough Transform 

Merlin and Farber [9] first considered general-shape detection using the HT but their 

method provided no means for detecting rotated or scaled shapes and was 

computationally expensive. Ballaid developed the full mapping [10] for arbitrary 

shapes with rotation and scale invariance - the Generalised Hough Transform (GHT). 

The GHT replaces the analytic parametric constraints in the HT with a non-analytic 

tabular representation of an arbitrary shape. This table (the "R-table") describes the 

position of feature points in the template shape relative to a reference point and is 

indexed by the gradient direction information at each feature point. Compared with 

Merlin and Farber's method, this table increases the efficiency of the algorithm by 

reducing the number of feature points under consideration to those that fit an 

additional gradient direction constraint. Merlin and Farber trace entire instances of the 

template shape in the accumulator whereas the GHT only adds particular points from 

the template contour to the accumulator. In the GHT, the lower number of votes cast 

reduces the amount of noise in the accumulator generated by false votes (provided 

that the gradient data is of good quality) and can also improve the computational 

speed. 

Early adaptations of the standard HT increased the complexity of the shape 

equation and thus the dimensionality of the HT - lines require a 2D parameter space, 

circles a 3D space, ellipses a 4D space, etc. Extrapolation suggests that for a 

parametrically defined arbitrary shape (effectively a high- or infinite-order 

polynomial) the standard approach would require a nearly infinite dimensional 

parameter space. In contrast with such an approach [11], which required an exorbitant 

accumulator space, an arbitrary shape HT actually only needs to accumulate for the 

(relatively few) appearance parameters, provided that the shape to be located is 

already specified. Instead of searching for the best fit to the parameters of an arbitrary 

polynomial, the only parameters that need examination are those that adjust the 

template shape to match the target - position, rotation and scale, for example. We will 

later see how templates can be used efficaciously not only in shape extraction, but 

also in motion extraction and description. 



1.2 Fourier-descriptor template representation 

In the GHT, the template shape is represented by an R-table, which is a discrete 

lookup table. The problems with this representation are well described in the literature 

(most recently and in greatest detail in [12]), but essentially derive from the fact that it 

is a discrete representation sampled at a particular scale. When the template is scaled 

or rotated, there can be problems with aliasing and rounding errors. Figure lb shows 

the effects of scaling and rotating the discrete set of points comprising the original 

shape in Figure la. Clearly, the new sets of points have missing data (where the 

points in the original have become separated due to inadequate sampling at the new 

scale) and the effects of discretisation are evident. If the shape had been reduced in 

scale, the points in the original would merge, effectively oversampling the shape. 

Distortions are inevitable when working with discrete systems. Nevertheless, the 

worst effects can be avoided by maintaining a continuous representation for as much 

of the process as possible. Using an analytically defined curve makes it possible to 

defer discretisation until after the rotation and scaling stages. Elliptic Fourier 

descriptors (FDs) [13] have been deployed in an adaptation of the GHT [14] to give 

such a continuous representation. Instead of recovering vote co-ordinates from an R-

table, they are instead calculated from the FDs. This avoids the extra quantisation step 

inserted by the GHT (discretisation occurs in template transformations and again in 

the accumulation phase), thereby restoring the robustness of the original, analytic, HT 

formulation. 

Clearly, if the original template is of a smaller scale than the reconstructed one, 

there will be no additional detail provided by the FDs. The FDs merely provide a 

continuous representation of the original template shape. Addressing the problem of 

disjoint or non-contiguous contours (i.e. one with gaps) can be achieved by using a 

masking function that causes the regeneration phase to ignore the points that would 

otherwise fill in the gaps. 

Elliptic Fourier descriptors were chosen for their completeness, simple geometric 

interpretation, access to frequency informadon and the fact that they can be easily 

produced from a chain code of the contour. However, other analytic representations 

could equally have been used (e.g. cubic B-splines as in [6]). 



1.3 Temporal evidence gathering 

It is well known that most image sequences contain significant correlation between 

frames - a fact commonly utilised by machine vision and video compression 

algorithms amongst many others. The VHT [8] first exploited this correlation in 

evidence-gathering based techniques. The original implementation of the VHT 

extracted the optimum parameters describing a conic section moving with linear 

velocity. With simple extensions, it handles a subset of rigid motions that can be 

described parametrically - hence, the nature of the motion is known a priori. To take 

advantage of the inter-frame correlation, the VHT accumulates evidence from the 

whole sequence, concurrently extracting optimal structural and motion parameters. As 

a consequence of the additional information provided, the VHT is more robust than a 

standard frame-by-frame tracking implementation, especially when the target is 

occluded or noisy. Any missing or damaged structural information in a frame can be 

compensated for by redundant data in others (e.g. structural information in the target 

shape that is often repeated in each frame). 

Due to the global scope of the VHT, there is no need to initialise the algorithm to 

search in a specific area (although limiting the extent of the search is a possible 

optimisation). Another common motion estimation problem avoided by the VHT is 

that of correspondence. Points in different frames do not need to be matched since all 

the possible correspondences are examined implicitly in the accumulation phase. By 

the nature of evidence gathering, the best correspondences produce the highest 

accumulator peaks. 

The motion model is parametric and thus can be extended from linear velocity by 

including extra terms. In this respect, an extension to the VHT [15] to find walking 

subjects using an articulation model required thirteen parameters, when moving with 

constant velocity. The major disadvantage is that any extension to the motion model 

increases the dimensionality of the accumulator and, thus, the computational 

resources required. In summary, the VHT enables the use of temporal correlation in 

an evidence-gathering framework, resulting in a powerful and robust extraction 

algorithm. Unfortunately, the modelling of both shape and motion is seriously 

restricted. 



1.4 Contributions 

We will describe a new technique for extracting moving arbitrary shapes, which has 

been created by fusing the two evidence-gathering techniques, the VHT and Fourier-

descriptor template representation (for convenience, we will refer to this continuous-

template variant of the VHT as the CVHT). Uniting these techniques unifies their 

unique and complementary advantages. The Fourier descriptors provide a continuous 

template representation, minimising discretisation eiTor in the algorithm, and the VHT 

component exploits the temporal correlation across a sequence, mitigating the effects 

of noise and occlusion. The new algorithm does not require initialisation or training 

and avoids the need to solve the correspondence problem, inheriting these 

characteristics from the VHT. For illustration. Figure 2 shows frames of a sequence 

where the location, velocity and acceleration parameters of a Space-Shuttle booster 

during launch were correctly extracted by the new technique. 

However, the CVHT is still limited by its parameterised motion model. If the 

shuttle imagery included its parabolic trajectory, this more complex motion would 

have to be incorporated into the accumulation phase, requiring many more 

parameters. Hence, the simplistic approach to improving the generality of the motion 

model is to increase the complexity of the HT kernel to represent an increasingly 

complex motion path. Consequently, an accurate polynomial description of an 

arbitrary path will require a large or even infinite number of terms, massively 

increasing the dimensionality of the problem. There are parallels to this 

parameterisation of motion in the earlier parameterisation of shape, where 

increasingly complex shapes were represented by more complex parameterisations 

and a commensurately larger dimensionality. The solution to this dimensional 

explosion was found in the use of templates, which allowed an efficient and low 

dimensional parameterisation of any shape. The cost of this approach is that the 

method loses the (debatable) flexibility of finding all descriptions of all possible 

shapes in a scene. Following this historical parallel, the other part of our new 

approach is to describe the motion by a template, like the shape itself. These "motion 

templates" extend the use of templates in the HT from the spatial domain into the 

temporal. This ameliorates the punitive computational burden associated with 

increasing dimensionality since the aim changes from finding the potentially 



unlimited set of parameters that characterise a particular motion to finding the limited 

set of parameters that locate the object undergoing the specified motion. 

These novel developments clearly address two core weaknesses of the VHT -

namely that it is limited to extracting analytically described conic sections only and 

that the motion model is paiametric. Adding the capability to extract non-analytic 

arbitrary shapes that move arbitrarily increases the utility of the algorithm to a range 

of applications that require more general shape and motion models. 

We first describe our approach to arbitrary shape extraction with parametric 

motion (Section 2.1) and with arbitrary motion (Section 2.2). We next present results 

of some comparative evaluation and performance analysis in Section 3. Finally, we 

give conclusions and suggest directions for future research. 



2 Extracting Arbitrarily Moving Arbitrary Shapes 

2.1 Continuous Velocity-HT: Extracting Moving Arbitrary Shapes 

Effectively, the Fourier descriptor version of the GHT is extended in the same way as 

the HT for circles was extended into the VHT - by introducing velocity terms to the 

shape description. Instead of drawing a motion-compensated circle in the accumulator 

(as in the VHT), the Fourier descriptors are used to trace a locus of votes in the form 

of the template shape, adjusted for the estimated motion of the object relative to the 

time reference of each frame. The accumulation process (Merlin and Farber's variant) 

for the sequence in Figure 3a is illustrated in Figure 3b-d with votes increasing as 

more frames are added. Flipped instances of the template shape are generated in 

accumulator, centred on motion-compensated edge pixel co-ordinates from the frame 

being processed. The motion compensation is simply back-projection along the 

expected line of motion to convert the co-ordinates to the same temporal frame of 

reference as the initial frame, meaning that frame 5's votes for a particular edge pixel 

fall in the same place as those for frame 1. Once the voting process is complete, some 

intersections of template shapes in the accumulator foiTn peaks that indicate the 

location (at time r - 0) of an instance of the shape in the sequence. 

In order to develop the voting mechanism, we require an arbitrary-curve 

parameterisation for shapes. A curve defined by two sets of orthogonal co-ordinates, 

Cx(s) and Cy(s), parameterised by ^ e[0,2;?r) has elliptic Fourier descriptors as follows: 

^ % C r ( j ) c o s ( # d j and ^ (j)sin(A:f)dy (1) 

with a similar equation for the y descriptors, where /c is the harmonic number. The 

range of A: defines the number of ellipses used to represent a model shape and thus 

how accurate the shape representation is. In the general case, using more harmonics 

gives a more accurate representation of a shape. However, since the FDs are used in 

the context of a digital (thus discrete) image, there will be a limit defined by the pixel 

granularity beyond which additional harmonics have no perceivable effect. Before 

FDs can be used to draw the shape in the accumulator, they must be converted from 

the frequency domain to vectors in the spatial domain that specify co-ordinates on the 

contour of the template shape, n FDs can be converted to vectors (along x- and >'-axes) 

from the origin to a point on the curve by: 
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(^, FD;c) ^ cos(&^) + 6̂ ^ sin(^:y)) (2) 

where FD% = , 6^,, a^2' <̂ ;c«' ̂ jo,} '^ith complementary equations in y. 

The DC terms have been omitted, which translates the curve so that its centre is at the 

origin. The shape's initial scale and rotation is given by a,s=[Zg Pg] and the scaled and 

rotated shape itself can be described as 

7;̂  (^, ) cos(Pg) - (.y, FD y) sin(Pg) (3) 

with a similar equation for Ry. Now, we require a kernel that defines the shape of 

votes to be laid down in the accumulator for each feature point (e.g. an edge pixel). 

This is a combination of curves, each with its origin on the reference point to be voted 

for (typically at the centre of the template shape) but offset by the velocity, and at a 

number of orientations and scales (for similarity transfonn in variance). This 

combination of curves can be obtained from: 

m / , Z, P, , V J = Z, Z, p)[/y + + /VyC/y (4) 

where and Vy are respectively the x centre and y centre velocity parameters and 

f/x and Uy are two orthogonal vectors defining the %- and y- axis respectively. This 

curve is inserted into the accumulator by offsetting it from the co-ordinates of each 

feature point in the image sequence IS, defined by: 

D , , / e D y } (5) 

Here, A(r,/) is a parametric function that defines the points in the image sequence 

for a frame time /, where a suffix on the domain indicates its extent (here, D, is the 

domain of an image in the sequence and Df is the domain of the frames of the 

sequence). The accumulator vote-pattern expression is then: 

A, = - a r ( . y , / , z , p , v ^ , v y ) | f e D , } f e Dy (6) 

These equations describe the concept of the HT but do not formalise the actual 

technique used, namely the accumulation phase. The parameter space can be mapped 

into an accumulator by using a matching function, which determines whether a point, 

c, in parameter space should be incremented for a point, d , in the set A, . The 

equation below defines the simplest accumulation strategy, namely incrementing an 

accumulator cell by unity for each match. Changing the matching function M can 

accommodate more complex strategies. 



/ —\ 1 if c = d 

to 

Next, this function is apphed to At for a range of parameter values. This defines the 

continuous form of the CVHT, accumulating evidence in a parameter space SCVHT 

according to: 

SCVHT )= {j'j'M (F, MT, f ,1, p,V^,VY))ds dt df (8) 

Where b is the translation vector (i.e. the location of the reference point). Finally, 

this parameter space is sampled into a discrete multidimensional array SDCVHT, which 

is expressed by: 

/GDJ.-

This expression gives an accumulation strategy for finding moving arbitrary 

shapes. For each edge pixel in a frame, a locus of votes is calculated from the Fourier 

description of the template shape and entered into the unified accumulator. The co-

ordinates of the loci are adjusted to allow for the predicted motion of the shape, 

dependent on the frame index, as in the VHT. 
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2.2 Motion Templates: Extracting Arbitrarily Moving Shapes 

2.2.1 Overview 

The earlier approaches to moving shape extraction are limited by the dimensionality 

of the parameterised motion model. As stated, our objective is to remove this 

limitation and enable the extraction of arbitrary shapes undergoing arbitrary motion 

by using motion templates to describe the movement of the target. With these 

templates it is no longer necessary to accumulate for the parameters describing the 

motion since they are already known. It may be useful to imagine the motion template 

in terms of an infinite dimensional parametric motion model where all the parameters 

have a fixed value. Naturally, the motion templates require a priori knowledge 

concerning the target object's path before analysis can begin. Since, by definition, 

tracking precludes the possession of this information, it is important to observe that 

the niche for motion templates in the context of evidence gathering is extraction or 

recognition (an example application might be searching a video database). Motion 

templates make it possible to robustly and efficiently extract paiameters describing a 

shape that is following a specified trajectory. A limited prediction capability is 

possible if the motion template covers a larger timespan than is analysed (or in the 

case of repetitive motion) since it is assumed that the extracted subject will continue 

to follow the specified path. 

As a result of the requirement for detailed prior knowledge, the new algorithm will 

be of use in cases where the general path of motion is known (e.g. cars turning at 

traffic lights will follow roughly the same path). However, there may be difficulties in 

real world imagery since not all objects will follow exactly the same path. The 

forgiving nature of an evidence-gathering approach should abate this concern 

provided the deviations are not excessive. If they are, the voting or peak detection 

algorithms can be arranged to handle the uncertainty, (e.g. as in the Fuzzy HT [16]). 

Motion templates must encode the relative position of the target object at all times. 

This will automatically describe properties of the motion such as speed, acceleration, 

change in acceleration, etc. Motion templates should also record changes in scale and 

rotation over time since, in motion, many objects rotate (e.g. a car when viewed from 

above rotates as it comers) and scale (e.g. due to perspective effects). Note that this 

additional detail will not cause any increase in accumulator dimensionality - the 
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complexity of the algorithm is the same, only the complexity of the motion template 

itself has increased. It is possible to record more information relating to time-

structured changes in the model shape (e.g. changing models as the sequence 

progresses to represent deformations) but position, scale and orientation are a natural 

minimum. 

The representation of the motion templates should be continuous so as to avoid the 

problems of discrete representations (section 1.2). As such, it seems prudent to use 

Fourier descriptors for both motion and shape templates, since these descriptors are 

well understood and Fourier approaches can handle many situations (e.g. non-regular 

path sampling). A further advantage is access to frequencies in the motion template, 

which may be of use in certain applications. Furthermore, we have a consistent 

framework for the representation of arbitrary shape and motion. 

To encode the path for input to an implementation, it is convenient to specify a 

series of waypoints to encode the path, rather than use a smooth and complete 

description of the motion. The representation chosen must be able to take this data 

and interpolate it in a smooth fashion. Fourier descriptors have been designed to do 

this from the start and only need minimal modification to work with variable time 

periods between waypoints (required since movements may be quick or slow). The 

main danger comes from under-sampling the path with too few waypoints. In this 

case, it is possible to over-fit the FD and reproduce this under-sampled path too 

exactly. If desired, the waypoints could be filtered to generate a more smoothly 

flowing path. 

The introduction of motion templates into the HT requires no additional parameters 

to be searched for in the accumulation phase. However, such an inflexible 

implementation would restrict the functionality excessively. Essential parameters are 

rotation of the motion template in its spatial dimensions and scaling in both spatial 

and temporal dimensions. The scaling in the spatial axes does not need to be 

independent (i.e. it can be unifoiTn scaling) since we will only be dealing with affine 

transformations initially. Scaling in the temporal axis adjusts the time taken to 

traverse the motion template and thus the speed with which an object must move to be 

identified as the target. Using the previous example, this would allow the algorithm to 

locate cars cornering quickly or slowly. Finally, we must add an offset or phase 

parameter to separate the time encoded in a motion template from that used in a 

sequence. Otherwise, the frame time zero would be tied directly to time zero in the 
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motion template and the algorithm would be unable to correctly extract parameters for 

a sequence that began with the target object part-way through its trajectory. Hence, 

the time-scale parameter provides temporal scale invariance and the offset parameter 

gives temporal translation invariance. Rotation invariance is not required since time is 

one-dimensional. 

Accordingly, the use of motion templates adds four extra parameters, giving an 

eight-dimensional accumulator. While this will cause a large increase in the 

computational requirements, it is much less than the dimensional explosion presented 

by polynomial extension. Clearly, the ability to extract, optimally and robustly, 

arbitrary shapes following an arbitrary path is well worth the additional computational 

resources. 

2.2.2 Theory 

The theory supporting motion templates is developed from the CVHT, which itself is 

an extension to the Fourier-descriptor variant of the GHT [14]. As an aid to 

visualisation, for a given feature point (e.g. an edge pixel in a frame), a locus of points 

is plotted through the eight-dimensional accumulator space. This locus is constructed 

from the shape and motion descriptors, which are used to trace scaled and rotated 

instances of the template shape, translated to compensate for the expected motion of 

the object relative to the time reference of each frame, in two-dimensional planes 

taken along the x- and y-axes of the accumulator. Once the voting process is complete, 

peaks in the accumulator indicate the location and other parameters (at time ? = 0) of 

an instance of the target shape moving along the specified path. 

The changes to the CVHT are confined to implementing motion templates as the 

motion model. Hence the shape parameterisation is unchanged and Equations 1 

through 3 in section 2.1 describe the shape template. Having parameterised the shape 

template, we must now parameterise the motion template, encoding the changing x, y, 

rotation and scale parameters. There are two major differences in the definition of the 

motion template from that of the shape parameterisation. The first is that the DC 

terms of the FDs are retained and used in the reconstruction. Removing them would 

effectively translate reconstructed co-ordinates relative to some arbitrary origin (e.g. 

the centre of the template), which would destroy the utility of the sequence by moving 

the start point. Secondly, and relevant in terms of implementation or specifics of 

template definition only, the offsets used are not derived from chain codes, which 
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have fixed x, y and t values, but come from a list of waypoints and thus can instead 

specify larger increments. 

Let nixif), rny(f), nipif) and mi(f) be functions that take a frame t ime/and recover a 

co-ordinate (for x position, y position, rotation or scale respectively) from a motion 

template. This motion template is now used to transform the co-ordinates calculated 

from the shape descriptors. These co-ordinates have already been globally scaled and 

rotated (i.e. we are using Rx and Ry from Equation 3) to adjust for possible initial 

scales and orientations. They are then scaled and rotated as: 

/ , -o)7^(:y,aJcos^(/-o))-»^(y -o)j^(:y,aJsinl^^(/-o)) (10) 

with a similar equation for y co-ordinates and where / is the frame of the current 

image and o is a parameter that offsets any mismatch between the frame times in the 

sequence and in the motion template, mff-o) and nipif-o) recover scale and rotation, 

respectively, for time / - o from the motion template. These rotated and scaled co-

ordinates now represent the shape at the expected orientation and scale. Next, they are 

translated to compensate for the object's expected motion. However, the path of 

expected motion is also scaled and rotated (requiring parameters, a,„ = p,„ ]): 

(:y, / , o, a,„, a J = (^, / , o, a , ) ( / - o) cos(p^) - ( / - o) sin(p^) (11) 

again with a similar equation in y and where mx(f-o) and niyif-o) are the x and y 

offsets recovered from the motion template at t ime/ - o. Now we can form the kernel 

that defines the shape of votes in the accumulator. This is a multi-dimensional 

combination of the template at a number of translations, orientations and scales, and 

can be obtained from; 

m(^ , / ,o ,Zy ,a^ ,aJ = ; ( / f , ( / (y),o,a^,,aJ[/^ 4-//y(^,(/-Zy),o,a,^,aJ[/^ (12) 

One final parameter, //, has been added to perform temporal scaling on the motion 

template, thereby allowing adjustment of the speed at which the path is traversed. To 

ensure that the locus drawn in the accumulator passes through the reference point, the 

kernel is offset from the image co-ordinates of each feature point. Hence, for an image 

sequence IS (defined in Equation 5), the votes are placed in the accumulator as: 

A - { A ( f , / ) - 6 ) ( f , / , o , / y , a , „ , a , ) JE D J V / e D , , / e (13) 

As with the CVHT, the parameter space formed by the application of the 

expression above is mapped into an accumulator by the use of a matching function 
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(Equation 7). This multi-dimensional accumulator space is sampled into a discrete 

parameter space SDMT given by: 

, a J = M (6, A(f, / ) - (()(^, / , o, Zy, a ^ , a J ) (14) 

where i is a vector of the image co-ordinates at time 0, //is the time scale-factor, o 

is the time offset (phase) and a,„ and contain scale and rotation parameters that 

respectively transform the motion template's path and transfoiTn the initial orientation 

of the target shape. A(f,/) retrieves feature points from the sequence. This expression 

gives an accumulation strategy for finding arbitrary shapes moving arbitrarily. It 

allows extraction of the optimal parameters describing an arbitrary (but specified) 

shape of unknown orientation, position and scale that is following an arbitrary (but 

specified) path of unknown orientation and scale, which takes an unknown time to 

traverse. 

The new algorithm currently traces the entire template shape in the accumulator for 

each feature point and for each parameter combination. The GHT places a restriction 

on which template points are drawn - only those with the same gradient direction as 

the edge pixel being processed are added to the accumulator so that only the relevant 

fractions of the template are traced. With accurate gradient direction data, this 

restriction removes a lot of unnecessary votes (and hence noise) from the 

accumulator. The voting algorithm could be changed to perfomi the same reduction of 

votes as the GHT by incorporating a function that calculates the gradient direction at a 

point on the Fourier-described curve. This value would then be compared against 

edge pixel gradient direction to restrict the votes cast into the accumulator. Depending 

on the computational cost of the gradient direction calculation, this reduction in 

voting may result in a linear speed improvement. 

2.2.3 Computational cost 

The algorithm is of order 0(#points * #s * #r * #mt_s * #mtjr * #t_ojf * where 

#points is the number of feature points (e.g. thresholded edge-pixels) in the sequence 

and #s, #r, #mt_s, #mt_r, and ^t_s are the number of discrete steps in the 

parameter ranges for initial shape scale and rotation, scale and rotation of the motion 

template and temporal offset (phase) and scaling respectively. Hence, the new 

development inherits the usual computational cost penalty of the HT; the accumulator 

is eight-dimensional and can require significant resources. This is unavoidable if the 
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algorithm is to be used in its most basic form since, in the HT, the process that 

guarantees optimality is an efficient form of exhaustive search. However, most of the 

speed-up and memory-reduction modifications to HT-related techniques [4] are 

applicable - e.g. parameter space decomposition, multi-stage processing, random 

sampling algorithms or genetic algorithms. Also, the HT is known to be well suited to 

parallel implementation, with multiple opportunities for splitting the processing (e.g. 

by image, by region of an image, by ranges of parameter values, etc). 

2,2.4 Example 

As an example of the information that may be encoded in a motion template. Figure 4 

shows the changes in the % and y positions and the angle of the left foot of the walker 

pictured as the sequence progresses. The measurements were made manually with the 

X and } positions being taken from the heel of the foot and the angle being estimated 

by eye. This illustrates the information that a motion template might have to record, in 

this case, for extracting the location of a foot (a better description of the gait cycle 

may be found in [17]). Unfortunately, it is difficult to produce a more direct 

visuaUsation of a motion template because it must encode multiple dimensions of data 

(e.g. X, rotation, time), not to mention the possibility of the path looping back on 

itself. 
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3 Results 

3.1 Continuous Velocity HT 

3.1.1 Gaussian noise testing 

The CVHT was run on a five-frame sequence based on a small (20 x 20) image (the 

first image in Figure 5) moving linearly along the x-axis at a velocity of one pixel per 

frame. A small image was chosen to make practical computation of large-scale tests. 

Noise was added at random to each frame of the sequence at eleven noise levels from 

0% random coverage to 100% random coverage of the frame. The noise distribution 

was zero-mean Gaussian with a standard deviation of three and clipped when a pixel 

value exceeded the maximum allowable. Examples of the effects of the increasing 

noise levels can be seen in Figure 5. The grey-level images produced are thresholded 

by the algorithm and are shown in the thresholded state. The results for the normal 

GHT tracking algorithm were generated using a standard GET on each frame of the 

sequence and using linear regression on the results to calculate the velocity terms. The 

test conditions were as described above. 

The graph (Figure 6) shows the CVHT is significantly more accurate than the 

GHT-based technique. By accumulating temporally coiTelated evidence the new 

technique is able to handle noise levels that are approximately twenty percent greater 

than the standard. The GHT based technique is limited to the amount of evidence 

available in a single frame. When the noise becomes sufficient to mask out the conect 

peak in a single frame, the GHT technique is left with effectively random results to 

process for velocity terms. In intermediate noise levels, some of the results for each 

frame may be incorrect and this will tend to throw off the final regression step. The 

integrated approach taken by the new algorithm is more global and is not so 

susceptible to coiTupt frames as is demonstrated strongly in the occlusion testing later. 

This is consistent with earlier observations comparing the VHT to the HT with linear 

regression [8], 

3.1.2 Occlusion testing 

A simple test of the effects of occlusion was carried out on the five-frame sequence 

described above. No noise was added to the sequence since this would add an 

unnecessary factor. Instead, a number of vertical lines of pixels starting from column 
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two were blanked out and both algorithms run on the resulting image. Figure 7 shows 

example frames from the occluded sequence where the occlusion bar is five pixels 

wide (the bar is shown in grey to make it visible). 

The results shown in Figure 8 reveal that the new technique keeps track of the 

shape until the blanking is fifteen pixels wide - which obscures the shape for the 

duration of the entire sequence. The GHT based algorithm failed as soon as any 

blanking was introduced. This failure reveals more about the algorithm's 

implementation than about its resilience to occlusion. The cuirent implementation 

uses the estimated location of the template shape in every frame as an input to the 

linear regression stage. Therefore, when a frame is corrupted and gives an incorrect 

result, the output of the linear regression stage is affected causing a global estimation 

error. A more sophisticated implementation might include a heuristic that ignores 

frames giving evidence inconsistent with the majority of frames. 

The earlier results [8] relating to the VHT should also be applicable to the new 

technique since the underlying characteristics are essentially unchanged. These results 

indicate that VHT derived algorithms are capable of handling even extreme occlusion 

due to the global integration of evidence across the entire sequence. 

3.1.3 Finding People with the CVHT 

For purposes of illustration, the CVHT is now applied to locate a moving human body 

in a sequence of images. The cun'ent implementation of the new technique locates 

rigid shapes moving with linear velocity. Clearly, its formulation is general so shape 

deformation could be included, as it was for pulsating arteries in the original VHT 

formulation [8], but this would be considerably more complex. In the case of a human 

walking, the torso is approximately a constant shape and, if the camera is far enough 

away, the bobbing motion of gait is small enough to be compensated for by the 

resilience of the evidence gathering approach. Consequently, it is possible to detect 

people using the technique in its current form by searching for the torso. However, no 

meaningful gait data can be gathered from just the location of the torso so this method 

of locating a human silhouette is only useful as a primer for later statistical (gait) 

analysis. Nonetheless, using the CVHT to locate a human demonstrates that it is 

equally applicable to real world images. 

Self-occlusion of the body due to the motion of the arms and legs is a problem that 

affects the performance of many person-tracking algorithms. By the nature of 



evidence gathering, the new algorithm copes with occlusions that do not reduce the 

number of correct votes (from the uncorrupted remainder of the true contour across 

the whole sequence) below the level of noise in the image. As a result, there is no 

immediate need for special precautions. 

Figure 9 shows a reconstructed template of a walker's torso, which was originally 

created by manually tracing the torso in the first frame of the sequence. Also shown in 

Figure 9 are several frames of the MPl walker sequence with the template 

superimposed on the extracted locations. During the first part of the sequence, the 

walker's location is accurately extracted - the initial location is exact and the extracted 

speed (thirteen pixels per second) is correct. Shortly after frame seven the walker rises 

up on his leg (vertically, there is a rise of fifteen pixels), which will cause the votes to 

"miss" in the accumulator, since this movement has not been accommodated in the 

evidence gathering strategy. He also slows down slightly and this breaks the 

assumption of linear velocity and consequently the template "overtakes" the walker -

frame 10 shows it some pixels ahead. 

If noise is added, as in section 3.1.1 or 3.1.2, the performance drops off rapidly due 

to the large number of missed votes arising from the lack of modelling of the bobbing 

or vertical motion of gait. Under simulated addition of noise, as in Figure 6, the 

decline in accuracy is similar to that of the synthetic sequences but drops away at a 

lower noise level since the level of background noise is higher due to the surrounding 

scenery. 
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3.2 Motion Templates 

It is usually prudent to compare new techniques with contemporary or equivalent 

approaches. This appears unfeasible in this case since the most appropriate 

comparator technique is the GHT, but with interpolation, or tracking. The suitable 

form of this interpolation for the GHT or the motion model for tracking is actually the 

motion template, the very subject of these results. The alternative would be a fully 

representative parametric motion model that, as explained previously, is 

computationally intractable due to its infinite dimensionality. Consequently, the 

comparison that would be made is that of a frame-by-frame extraction process with a 

non-analytic template representation against an integrated multi-frame extraction 

process with an analytic template representation. This comparison has already been 

made in section 3.1, which examined the earlier approach to moving arbitrary-shape 

extraction (without motion templates but with a linear motion model) and 

consequently fails to test the subject of this section - the motion template in an 

evidence gathering context. 

Comparison with other techniques that use similar knowledge of motion (such as 

the neural network based human motion tracker [6] or the spatio-temporal repetitive 

motion detector using temporal textures [5] referred to in the introduction) is not 

comparing like with like. In the case of techniques that are as dissimilar as a tracker 

and an extractor, the comparison is best made on application-dependent qualitative 

requirements or on the basis of each technique's features (e.g. optimality vs. on-line 

performance), rather than a quantitative performance analysis. In light of these 

difficulties, we have examined the performance of the new technique in terms of noise 

affecting each component of the system rather than attempt to make direct 

comparisons with other distantly related approaches. We believe that such analysis 

will enable the aforementioned choice based on requirements or features. 

3.2.1 Image-noise performance on synthetic sequences 

The new algorithm was run on a nine-frame sequence based on a small (50x50) 

image, Figure 10a, moving along the path shown in Figure lOe. The path was 

regularly sampled (in time) for this illustration and the grey-levels show the time 

taken to traverse each section of the path (the darker the pixel, the more time was 

spent traversing it). The motion template used was given perfect co-ordinates since 
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we are examining the response to image noise in the input sequence, not noise in the 

motion template. Again, a small image was chosen to make practical computation of 

large-scale tests. Noise was added at random to each frame of the sequence at eleven 

noise levels from 0% random coverage to 100% random coverage of the frame, with 

pixel values wrapping rather than being clipped when the addition of noise took the 

values out of range. The noise distribution was zero-mean Gaussian with a standard 

deviation of one. Examples of the effects of the increasing noise levels can be seen in 

Figure 10. The grey-level images produced are thresholded by the algorithm (shown 

before thresholding in Figure lOb-d). Note that the shape is completely obliterated at 

the maximum noise level and that at around 50% noise it is nearly impossible to 

distinguish the shape by human vision. 

Again, the new technique is capable of coping with significant levels of noise. The 

performance curve in Figure 11 is similar to those for previous VHT-derived 

techniques and, as mentioned above, earlier studies found that the VHT-based 

techniques are able to handle noise levels that are approximately twenty percent 

greater than a comparable GHT-based frame-by-frame technique. 

3.2.2 Image-noise performance on real-world sequences 

Our current intention is to apply the new techniques to the analysis of human motion 

and, eventually, for biometric use. For these purposes, and to substantiate the 

applicability to real-world imagery, we have evaluated the performance of motion 

templates when locating a walking person viewed from the side, as with the CVHT in 

section 3.1.3. Co-ordinates specifying the particular motion of the walker were 

gathered by selecting a reference point on the body and estimating its position by eye 

for each image in the sequence. Since these measurements are likely to contain 

inaccuracies, the motion template itself is not perfect and will be another source of 

errors and peak-spread in the accumulator. Again, as with the CVHT, owing to the 

robustness of its formulation there is no need for exceptional precautions in the new 

technique. 

Figure 12a shows a reconstructed template of a walker's torso and head, which 

was created by manual tracing from one of the frames in the sequence. Also shown is 

a plot of the x and y components of the motion template used (Figure 12e) and several 

frames of the walker sequence CAl with the extracted template superimposed 

(Figure 12b-d). A series of Gaussian noise tests showed performance similar to those 
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earlier for synthetic shapes, starting to lose accuracy at 40% noise, dropping off 

smoothly and missing the target completely above 80% noise. The difference can be 

attributed to the imperfect conditions prevalent in the real world, e.g. the cluttered and 

noisy background and the imperfect shape and motion templates. 

A simple test of the effects of occlusion was carried out on the walker sequence 

CAl described above. No noise was added to the sequence since this would be an 

unnecessary complicating factor. Instead, a number of vertical lines of pixels were 

blanked out and the algorithm was run on the resulting image. The results revealed 

that the new technique correctly extracts the walker until the blanking is 175 pixels 

wide - which completely obscures the walker for approximately 70% of the duration 

of the entire sequence. Furthermore, the extracted peak is within one pixel of the true 

peak for another thirty pixels, indicating there is a measure of peak spreading. As with 

other VHT derived algorithms, the new technique is capable of handling even extreme 

occlusion owing to the global integration of evidence across the entire sequence. 

3.2.3 Effects of noise in the motion template 

To determine the resilience to noise in the motion template, a percentage of co-

ordinates calculated from it were perturbed by uniform noise. Note that adjusting 

these co-ordinates is equivalent to moving the taiget shape in the image sequence by 

the same amount. The strength of the noise determined the maximum distance (in 

pixels) that would be added to each co-ordinate. These tests were performed on the 

synthetic sequence and motion template in section 3.2.1. 

The results show that as the percentage of co-ordinates corrupted increases, so the 

performance declines (Figure 13a and Figure 13d). This decline can be attributed to 

a "peak-spreading" effect common to all HT-derived techniques. As the accuracy of 

the input data decreases, the peaks in the accumulator become smaller and more 

spread out and the background noise level rises. To begin with, the HT-algorithm will 

find the correct parameters but, as noise increases and the definition of the correct 

peak becomes smoother, the parameters slip gradually from their true values. This 

continues until the spreading of the peak weakens it to the point that the algorithm is 

attracted to other potential sites. By comparing the graphs (Figure 13b and Figure 

13c), it is clear that this is occumng. As the noise increases, the location of the peak 

moves in the neighbourhood by approximately the same amount as the pixel distance 
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noise being added to the motion template before finally switching to other incorrect 

peaks. 

Only some portions of the motion template are significant - it is a continuous 

representation but the only significant points are those with a time reference matching 

the time references of the frames in the sequence analysed. This will have no effect on 

the validity of the results since uniform noise is applied. However, since it is entirely 

possible to have a high corruption rate without necessarily affecting the particular co-

ordinates that are vital to a sequence, the graphs show a smooth decline. 

The graphs all show a plateau effect where the maximum pixel distance is less than 

a particular amount (one pixel for the first two graphs, two pixels for the second two). 

This occurs when the noise is less than the "hit" threshold (again, one pixel for the 

first two graphs, etc). It is due to two effects: the discretisation process of 

accumulation rounds out the errors to within one pixel of accuracy and the post-

processing for determining whether a hit has occurred flattens any other errors up to 

the hit threshold. 

In summary, the motion template is sensitive to noise only when the points 

significant for the sequence being processed aie affected by noise, and if their number 

is sufficient to overwhelm the in-built resilience of the evidence-gathering approach. 

3,2.4 Finding people with motion templates 

Further tests were performed to check the repeatability of human walker extraction. 

Three extra image sequences of walkers (MAI, SG3 and VHl) were extracted 

correctly as shown in Figure 14. Also shown are the results of attempting to extract 

the same walker from a different sequence (MAS, SG3 and VH3 respectively) whilst 

using the same shape and motion templates. As can be seen, MA3 and SG3 are 

correctly extracted but VH3 is slightly in enor. This is due to some problems towards 

the end of the sequence with bad edges (and hence a bad motion template) resulting 

from height of the subject and the interaction with the lighting in the room. 

Since the results are generally very accurate, this offers hope for a future attempt at 

locating humans with a "standard walk" motion template and a suitable range of 

scaling parameters. This has not yet been attempted due to the computational 

requirements but should be achievable with a genetic algorithm implementation. 
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4 Conclusions and Further Work 

We have presented a new technique that robustly extracts optimal structural and 

motion parameters for arbitrarily moving arbitrary shapes in an image sequence. The 

technique requires no initialisation or training and has demonstrated excellent 

tolerance to noise and occlusion. Discretisation errors are minimised in the 

accumulator by using Fourier descriptors to represent the templates of shape and 

motion in continuous form, which eliminate common problems to do with rotation 

and scaling. Whilst the use of templates minimises effects of noise, exploiting the 

temporal correlation between frames maximises the possibility of correct extraction. 

The use of motion templates is a novel development for the HT and allows for a wide 

range of applications that require a more general motion model. This new capability 

comes without the explosion of parameter space dimensionality that would be 

inherent in current parametric approaches. 

Future development will concentrate on two main areas. To further generalise the 

approach, it would be useful to partly relax the rigid shape requirement. A possible 

approach might allow the motion template to specify different models for different 

parts of the sequence, perhaps with some form of morphing between models loosely 

based on the HT for natural shapes [18]. In the application domain, we intend to 

integrate current gait research with motion templates. In combination with an 

articulated leg model, it may be possible to look for specific individuals using a 

motion template to describe a person's unique walking motion. This will require 

investigation of whether a motion template of a walking pattern is unique to an 

individual. 
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(a) original shape (b) rotated and scaled versions of original shape 

Figure 1 - Consequences of discrete shape representation 

(a) first frame (0) (b) frame 10 (c) frame 18 (d) frame 26 

Figure 2 - Space-Shuttle launch with extracted template (of the booster) 
superimposed in white 

Frame 10 

Frame 5 

rafne 1 

(a) simulated sequence of linearly moving arbitrary shape (star = start point) 

(b) Accumulator after (c) Accumulator after (d) Accumulator after 
processing frame 1 processing frame 5 processing frame 10 

Figure 3 - Simulated sequence and accumulator deriving from it 
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Figure 4 - Changes in x and y positions and rotation of a walker's foot angle 

(a) 0% noise (b) 40% noise (c) 60% noise (d) 80% noise (e) 100% noise 

Figure 5 - Artificial sequence with added Gaussian noise 
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Figure 6 - Noise performance (dashed = GHT-based, solid = CVHT) 
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Figure 7 - Frames 1, 3 and 5 of occluded sequence (bar is 5 pixels wide) 
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Figure 8 - Occlusion Tests (dashed = GHT-based, solid = CVHT) 

(a) MPl template (b) frame 1 (c) frame 3 

(d) frame 5 (e) frame 7 (f) frame 10 

Figure 9 - Extraction of MPl sequence using a linear velocity model 
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(a) 0% noise (b) 20% noise (c) 50% noise (d) 100% noise (e) trajectory 

Figure 10 - Original shape (with added Gaussian noise) and motion trajectory 
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Figure 11 - Noise performance for synthetic imagery 
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(a) torso 
and head 
template 

(b) extraction in 
frame 0 

(c) extraction in 
frame 17 

(d) extraction in 
frame 36 

(e) motion template (begins at the small cross on the far right) 

Figure 12 - Motion template and frames of sequence CAl with superimposed 
template 
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Figure 13 - Hits and misses with percentage of corrupted co-ordinates in 
motion template 
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Figure 14 - Extracting different subjects 
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