Invariable biomass-specific primary production of taxonomically discrete picoeukaryote groups across the Atlantic Ocean


Grob, Carolina, Hartmann, Manuela, Zubkov, Mikhail V. and Scanlan, Dave J. (2011) Invariable biomass-specific primary production of taxonomically discrete picoeukaryote groups across the Atlantic Ocean. Environmental Microbiology, 13, (12), 3266-3274. (doi:10.1111/j.1462-2920.2011.02586.x).

Download

Full text not available from this repository.

Description/Abstract

Oceanic photosynthetic picoeukaryotes (< 3 µm) are responsible for > 40% of total primary production at low latitudes such as the North-Eastern tropical Atlantic. In the world ocean, warmed by climate changes, the expected gradual shift towards smaller primary producers could render the role of photosynthetic picoeukaryotes even more important than they are today. Little is still known, however, about how the taxonomic composition of this highly diverse group affects primary production at the basin scale. Here, we combined flow cytometric cell sorting, NaH14CO3 radiotracer incubations and class-specific fluorescence in situ hybridization (FISH) probes to determine cell- and biomass-specific inorganic carbon fixation rates and taxonomic composition of two major photosynthetic picoeukaryote groups on a ∼7500-km-long latitudinal transect across the Atlantic Ocean (Atlantic Meridional Transect, AMT19). We show that even though larger cells have, on average, cell-specific CO2 uptake rates ∼5 times higher than the smaller ones, the average biomass-specific uptake is statistically similar for both groups. On the other hand, even at a high taxonomic level, i.e. class, the contributions to both groups by Prymnesiophyceae, Chrysophyceae and Pelagophyceae are significantly different (P < 0.001 in all cases). We therefore conclude that these group's carbon fixation rates are independent of the taxonomic composition of photosynthetic picoeukaryotes across the Atlantic Ocean. Because the above applies across different oceanic regions the diversity changes seem to be a secondary factor determining primary production.

Item Type: Article
ISSNs: 1462-2912 (print)
1462-2920 (electronic)
Subjects: G Geography. Anthropology. Recreation > GC Oceanography
Q Science > QH Natural history > QH301 Biology
Divisions: National Oceanography Centre (NERC) > Ocean Biogeochemistry and Ecosystems
ePrint ID: 209905
Date Deposited: 02 Feb 2012 14:04
Last Modified: 27 Mar 2014 19:50
URI: http://eprints.soton.ac.uk/id/eprint/209905

Actions (login required)

View Item View Item