Strong coupling of light to flat metals via a buried nanovoid lattice: the interplay of localized and free plasmons
Strong coupling of light to flat metals via a buried nanovoid lattice: the interplay of localized and free plasmons
 
  We study the optical plasmonic properties of metal surfaces which have a periodic lattice of voids buried immediately beneath their flat upper surface. Light reflection spectra calculated in the framework of a selfconsistent electromagnetic multiple-scattering layer-KKR approach exhibit two types of plasmon resonances originating from the excitation of different plasmon modes: surface plasmon-polaritons propagating on the planar surface of metal and Mie plasmons localized in the buried voids. Coupling between these two types of plasma oscillation leads to an enhancement of the surface plasmon-polariton resonances even for close-packed void lattices. Our theoretical model quantitatively agrees with experimental results, demonstrating that planar surfaces can exhibit strong plasmonic
field enhancements.
  surface plasmons, microstructure fabrication, mie theory, multiple scattering, metals, gratings
  
  
  1965-1972
  
    
      Teperik, Tatiana V.
      
        95bc6ea9-5503-4068-a2fc-0167cc5669c5
      
     
  
    
      Popov, Vyacheslav V.
      
        73697d50-19c3-4666-a062-6a98613a93c7
      
     
  
    
      García de Abajo, F. Javier
      
        c306107b-8ee2-46ac-9401-ea8c42121063
      
     
  
    
      Abdelsalam, Mamdouh
      
        d1cbddcb-9f5c-46d5-b774-1bbaee26e115
      
     
  
    
      Bartlett, Philip N.
      
        d99446db-a59d-4f89-96eb-f64b5d8bb075
      
     
  
    
      Kelf, Tim A.
      
        d7c554df-a0e6-41b4-95ef-e9f0a9726a67
      
     
  
    
      Suguwara, Yoshihiro
      
        d725446d-17f9-4451-8c05-7a06c0debab4
      
     
  
    
      Baumberg, Jeremy J.
      
        9eb85b3d-107f-466d-ac6e-2cfd03c9229a
      
     
  
  
   
  
  
    
      6 March 2006
    
    
  
  
    
      Teperik, Tatiana V.
      
        95bc6ea9-5503-4068-a2fc-0167cc5669c5
      
     
  
    
      Popov, Vyacheslav V.
      
        73697d50-19c3-4666-a062-6a98613a93c7
      
     
  
    
      García de Abajo, F. Javier
      
        c306107b-8ee2-46ac-9401-ea8c42121063
      
     
  
    
      Abdelsalam, Mamdouh
      
        d1cbddcb-9f5c-46d5-b774-1bbaee26e115
      
     
  
    
      Bartlett, Philip N.
      
        d99446db-a59d-4f89-96eb-f64b5d8bb075
      
     
  
    
      Kelf, Tim A.
      
        d7c554df-a0e6-41b4-95ef-e9f0a9726a67
      
     
  
    
      Suguwara, Yoshihiro
      
        d725446d-17f9-4451-8c05-7a06c0debab4
      
     
  
    
      Baumberg, Jeremy J.
      
        9eb85b3d-107f-466d-ac6e-2cfd03c9229a
      
     
  
       
    
 
  
    
      
  
  
  
  
  
  
    Teperik, Tatiana V., Popov, Vyacheslav V., García de Abajo, F. Javier, Abdelsalam, Mamdouh, Bartlett, Philip N., Kelf, Tim A., Suguwara, Yoshihiro and Baumberg, Jeremy J.
  
  
  
  
   
    (2006)
  
  
    
    Strong coupling of light to flat metals via a buried nanovoid lattice: the interplay of localized and free plasmons.
  
  
  
  
    Optics Express, 14 (5), .
  
   (doi:10.1364/OE.14.001965). 
  
  
   
  
  
  
  
  
   
  
    
    
      
        
          Abstract
          We study the optical plasmonic properties of metal surfaces which have a periodic lattice of voids buried immediately beneath their flat upper surface. Light reflection spectra calculated in the framework of a selfconsistent electromagnetic multiple-scattering layer-KKR approach exhibit two types of plasmon resonances originating from the excitation of different plasmon modes: surface plasmon-polaritons propagating on the planar surface of metal and Mie plasmons localized in the buried voids. Coupling between these two types of plasma oscillation leads to an enhancement of the surface plasmon-polariton resonances even for close-packed void lattices. Our theoretical model quantitatively agrees with experimental results, demonstrating that planar surfaces can exhibit strong plasmonic
field enhancements.
         
      
      
        
          
            
  
    Text
 21023-01.pdf
     - Version of Record
   
  
  
    
  
 
          
            
          
            
           
            
           
        
        
       
    
   
  
  
  More information
  
    
      Published date: 6 March 2006
 
    
  
  
    
  
    
  
    
  
    
  
    
  
    
     
        Keywords:
        surface plasmons, microstructure fabrication, mie theory, multiple scattering, metals, gratings
      
    
  
    
  
    
  
  
  
    
  
    
  
  
        Identifiers
        Local EPrints ID: 21023
        URI: http://eprints.soton.ac.uk/id/eprint/21023
        
          
        
        
        
          ISSN: 1094-4087
        
        
          PURE UUID: edf367ad-246c-4b16-a15d-72a0b031f7b6
        
  
    
        
          
        
    
        
          
        
    
        
          
        
    
        
          
        
    
        
          
            
              
            
          
        
    
        
          
        
    
        
          
        
    
        
          
        
    
  
  Catalogue record
  Date deposited: 09 Mar 2006
  Last modified: 16 Mar 2024 02:42
  Export record
  
  
   Altmetrics
   
   
  
 
 
  
    
    
      Contributors
      
          
          Author:
          
            
            
              Tatiana V. Teperik
            
          
        
      
          
          Author:
          
            
            
              Vyacheslav V. Popov
            
          
        
      
          
          Author:
          
            
            
              F. Javier García de Abajo
            
          
        
      
          
          Author:
          
            
            
              Mamdouh Abdelsalam
            
          
        
      
        
      
          
          Author:
          
            
            
              Tim A. Kelf
            
          
        
      
          
          Author:
          
            
            
              Yoshihiro Suguwara
            
          
        
      
          
          Author:
          
            
            
              Jeremy J. Baumberg
            
          
        
      
      
      
    
  
   
  
    Download statistics
    
      Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
      
      View more statistics