Measurements of turbulence in the upper-ocean mixing layer using Autosub


Thorpe, S.A., Osborn, T.R., Jackson, J.F.E., Hall, A.J. and Lueck, R.G. (2003) Measurements of turbulence in the upper-ocean mixing layer using Autosub. Journal of Physical Oceanography, 33, (1), 122-145. (doi:10.1175/1520-0485(2003)033<0122:MOTITU>2.0.CO;2).

Download

Full text not available from this repository.

Description/Abstract

The rate of dissipation of turbulent kinetic energy has been measured with airfoil probes mounted on an autonomous vehicle, Autosub, on constant-depth legs at 2–10 m below the surface in winds up to 14 m s−1. The observations are mostly in an area limited by fetch to 26 km where the pycnocline depth is about 20 m. At the operational depths of 1.55–15.9 times the significant wave height Hs, and in steady winds of about 11.6 m s−1 when the wave age is 11.7–17.2, dissipation is found to be lognormally distributed with a law-of-the-wall variation with depth and friction velocity. Breaking waves, leaving clouds of bubbles in the water, are detected ahead of the Autosub by a forward-pointing sidescan sonar, and the dissipation is measured when the clouds are subsequently reached. Bands of bubbles resulting from the presence of Langmuir circulation are identified by a semiobjective method that seeks continuity of band structure recognized by both forward- and sideways-pointing sidescan sonars. The times at which bands are crossed are determined and are used to relate dissipation rates and other measured parameters to the location of Langmuir bands. Shear-induced “temperature ramps” are identified with large horizontal temperature gradients. The turbulence measurements are consequently related to breaking waves, the bubble clouds, Langmuir circulation, and temperature ramps, and therefore to the principal processes of mixing in the near-surface layer of the ocean, all of which are found to have associated patterns of turbulent dissipation rates. A large proportion of the highest values of dissipation rate occur within bubble clouds. Dissipation is enhanced in the convergence region of Langmuir circulation at depths to about 10 m, and on the colder, bubble containing, side of temperature ramps associated with water advected downward from near the surface. Near the sea surface, turbulence is dominated by the breaking waves; below a depth of about 6Hs the local vertical mixing in stronger Langmuir circulation cells exceeds that produced on average by the shear-induced eddies that form temperature ramps.

Item Type: Article
ISSNs: 0022-3670 (print)
1520-0485 (electronic)
Related URLs:
Subjects: G Geography. Anthropology. Recreation > GC Oceanography
Divisions: University Structure - Pre August 2011 > National Oceanography Centre (NERC)
University Structure - Pre August 2011 > School of Ocean & Earth Science (SOC/SOES)
ePrint ID: 2117
Date Deposited: 12 May 2004
Last Modified: 27 Mar 2014 18:00
URI: http://eprints.soton.ac.uk/id/eprint/2117

Actions (login required)

View Item View Item