On the uniqueness of steady flow past a rotating cylinder with suction


Buldakov, E.V., Chernyshenko, S.I. and Ruban, A.I. (2000) On the uniqueness of steady flow past a rotating cylinder with suction. Journal of Fluid Mechanics, 411, 213-232. (doi:10.1017/S0022112099008162).

Download

Full text not available from this repository.

Description/Abstract

The subject of this study is a steady two-dimensional incompressible flow past a rapidly rotating cylinder with suction. The rotation velocity is assumed to be large enough compared with the cross-flow velocity at infinity to ensure that there is no separation. High-Reynolds-number asymptotic analysis of incompressible Navier–Stokes equations is performed.

Prandtl's classical approach of subdividing the flow field into two regions, the outer inviscid region and the boundary layer, was used earlier by Glauert (1957) for analysis of a similar flow without suction. Glauert found that the periodicity of the boundary layer allows the velocity circulation around the cylinder to be found uniquely. In the present study it is shown that the periodicity condition does not give a unique solution for suction velocity much greater than 1/Re. It is found that these non-unique solutions correspond to different exponentially small upstream vorticity levels, which cannot be distinguished from zero when considering terms of only a few powers in a large Reynolds number asymptotic expansion. Unique solutions are constructed for suction of order unity, 1/Re, and 1/[surd radical]Re. In the last case an explicit analysis of the distribution of exponentially small vorticity outside the boundary layer was carried out.

Item Type: Article
ISSNs: 0022-1120 (print)
Related URLs:
Subjects: T Technology > TJ Mechanical engineering and machinery
Divisions: University Structure - Pre August 2011 > School of Engineering Sciences
ePrint ID: 21324
Date Deposited: 19 Jul 2006
Last Modified: 27 Mar 2014 18:10
URI: http://eprints.soton.ac.uk/id/eprint/21324

Actions (login required)

View Item View Item