The University of Southampton
University of Southampton Institutional Repository

High velocity sand impact damage on CVD diamond

High velocity sand impact damage on CVD diamond
High velocity sand impact damage on CVD diamond
This paper describes a recent study of the damage mechanisms generated by high velocity-sand impact on diamond coatings deposited on tungsten substrates by chemical vapour deposition (CVD). The coatings were erosion tested using 90–355-?m diameter sand at a velocity of 268 m s?1 and the eroded coatings examined by scanning electron and acoustic microscopy. The images indicate that the circumferential cracks and pinholes are the main erosion features and are only located on debonded areas of the coating. This suggests that they could be formed by stress waves reflected from the coating–substrate interface, which interact with surface waves to generate circumferential cracks, the precursor to pinholes. The high spatial resolution of scanning acoustic microscopy enables the resolution of individual pinholes, thus, providing important evidence for identifying the mechanism responsible for the formation of circumferential cracks, the precursor to the pinholes. However, the acoustic images must be interpreted with care; in particular, it is important to compare microstructural features observed by acoustic microscopy with other techniques.
coating, defect, diamond films, tribology
0925-9635
459-462
Wheeler, D.W.
d276c145-56e0-48d0-ae37-a84dda92a947
Wood, R.J.K.
d9523d31-41a8-459a-8831-70e29ffe8a73
Wheeler, D.W.
d276c145-56e0-48d0-ae37-a84dda92a947
Wood, R.J.K.
d9523d31-41a8-459a-8831-70e29ffe8a73

Wheeler, D.W. and Wood, R.J.K. (2001) High velocity sand impact damage on CVD diamond. Diamond and Related Materials, 10 (3-7), 459-462. (doi:10.1016/S0925-9635(00)00520-3).

Record type: Article

Abstract

This paper describes a recent study of the damage mechanisms generated by high velocity-sand impact on diamond coatings deposited on tungsten substrates by chemical vapour deposition (CVD). The coatings were erosion tested using 90–355-?m diameter sand at a velocity of 268 m s?1 and the eroded coatings examined by scanning electron and acoustic microscopy. The images indicate that the circumferential cracks and pinholes are the main erosion features and are only located on debonded areas of the coating. This suggests that they could be formed by stress waves reflected from the coating–substrate interface, which interact with surface waves to generate circumferential cracks, the precursor to pinholes. The high spatial resolution of scanning acoustic microscopy enables the resolution of individual pinholes, thus, providing important evidence for identifying the mechanism responsible for the formation of circumferential cracks, the precursor to the pinholes. However, the acoustic images must be interpreted with care; in particular, it is important to compare microstructural features observed by acoustic microscopy with other techniques.

This record has no associated files available for download.

More information

Published date: 2001
Keywords: coating, defect, diamond films, tribology

Identifiers

Local EPrints ID: 21770
URI: http://eprints.soton.ac.uk/id/eprint/21770
ISSN: 0925-9635
PURE UUID: adb2dc67-86b5-4960-a4c3-e3feee5cbd29
ORCID for R.J.K. Wood: ORCID iD orcid.org/0000-0003-0681-9239

Catalogue record

Date deposited: 15 Mar 2006
Last modified: 16 Mar 2024 02:46

Export record

Altmetrics

Contributors

Author: D.W. Wheeler
Author: R.J.K. Wood ORCID iD

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×