On static analysis of finite repetitive structures by discrete Fourier transform


Karpov, E.G., Stephen, N.G. and Dorofeev, D.L. (2002) On static analysis of finite repetitive structures by discrete Fourier transform. International Journal of Solids and Structures, 39, (16), 4291-4310. (doi:10.1016/S0020-7683(02)00259-7).

Download

[img]
Preview
PDF - Post print
Download (2558Kb)

Description/Abstract

Functional solutions for the static response of beam- and plate-like repetitive lattice structures are obtained by discrete Fourier transform. The governing equation is set up as a single operator form with the physical stiffness operator acting as a convolution sum and containing a matrix kernel, which relates to the mechanical properties of the lattice. Boundary conditions do not affect the equation form, and are taken into account at a subsequent stage of the analysis. The technique of virtual load and substructure is proposed to formally close the repetitive lattice into a cyclic structure, and to assure the equivalence of responses of the modified cyclic and original repetitive lattices. A discrete periodic Green's function is introduced for the modified structure, and the final displacement solutions are written as convolution sums over the Green's function and the actual external and virtual loads. Several example problems illustrate the approach.

Item Type: Article
Related URLs:
Keywords: repetitive structures, static response, discrete fourier transform, green's function
Subjects: T Technology > TJ Mechanical engineering and machinery
Divisions: University Structure - Pre August 2011 > School of Engineering Sciences
ePrint ID: 22063
Date Deposited: 14 Mar 2006
Last Modified: 27 Mar 2014 18:11
URI: http://eprints.soton.ac.uk/id/eprint/22063

Actions (login required)

View Item View Item

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics